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Abstract: Active power modulation of line-commutated converter (LCC)-based high-voltage direct current (HVDC) system is
increasingly utilised, especially for the case of damping low-frequency oscillation associated with synchronous machine (SM) in
electromechanical timescale (around 1 Hz). Many papers have tried to analyse the mechanism of damping effects, but almost
rely on numerical studies, which cannot reveal the dynamic interaction between SM and DC-power-modulated LCC. This study
proposes a small-signal model of DC-power-modulated LCC based on motion equation concept. With this model, analytical
investigation of low-frequency oscillation from the scope of damping and synchronising powers is presented. Comparisons of
analytical results and eigenvalues draw some general conclusions which offer insight into the dynamic behaviour. By examining
the case of an SM connected to a DC-power-modulated LCC, simulations in MATLAB/Simulink are conducted to verify the
analytical results.

1 Introduction
Since active power modulation was successfully applied to the
Pacific high-voltage DC current (HVDC) Intertie in 1976 [1, 2],
DC modulation is increasingly used in modern power systems,
which allows HVDC to have the ability to stabilise power system,
including damping low-frequency oscillation by active power
modulation.

As a result of lacking damping of electromechanical mode in
power system, low-frequency oscillation usually occurs in
electromechanical timescale (around 1 Hz), in which DC-power-
modulated LCC with certain operation parameters can interact with
synchronous machine (SM).

Many papers have tried to analyse the influences on low-
frequency oscillation by active power modulation, but almost rely
on numerical studies like eigenvalues [3, 4], which, though are
effective to uncover some influential parameters’ effects, are not
intuitive enough to understand the dynamic interaction between
SM and DC-power-modulated LCC.

Demello and Concordia [5] proposed an analytical method to
analyse the dynamic interaction between torque–speed–angle loop
in SM and the rest of power system based on the concepts of
damping and synchronising powers. However, by packaging the
rest of power system as a black box, how certain device in black
box influences SM is unknown.

The contributions of this paper lie mainly in two aspects.
Firstly, this paper proposes a small-signal model of DC-power-
modulated LCC based on motion equation concept. By applying
the modelling idea to other power electronic devices, the whole
devices in power system can be modelled in a unified and

modularised way, which provides a new perspective to analyse the
dynamic interaction in multi-device power system. Secondly, this
paper conducts an analytical investigation of low-frequency
oscillation from the scope of damping and synchronising powers,
which depicts the mechanism on how DC-power-modulated LCC
influences SM.

The rest parts of this paper are organised as follows. In Section
2, DC-power-modulated LCC HVDC system is modelled based on
motion equation concepts. Section 3 presents a comprehensive
analytical investigation between DC-power-modulated LCC and
SM. Eigenvalue analysis and time-domain simulations are
conducted in Section 4 to verify the above theoretical analysis.
Finally, Section 5 draws the conclusion.

2 Modelling of DC-power-modulated LCC HVDC
system
To analyse the dynamic interaction between SM and DC-power-
modulated LCC, a typical scenario is chosen as illustrated in Fig. 1,
where the power system is divided into three parts, i.e. an SM, a
DC-power-modulated LCC rectifier, and a simple AC network. 

It is noted that the dynamic of LCC inverter is neglected and
replaced with an ideal DC voltage source to simplify the analysis,
which is necessary for analytical investigation with relatively low
complexity.

This section proposes small-signal models of the three parts
illustrated in Fig. 1 based on motion equation concepts.

2.1 SM model based on motion equation concept

To simplify the dynamic interaction between SM and DC-power-
modulated LCC, dynamics of SM is considered only characterised
by rotor motion illustrated in Fig. 2 [6]. 

According to Fig. 2, SM model based on motion equation
concept can be expressed as

ΔθSM = GSM(s)ΔPSM (1)

where

GSM(s) = −ωb

MSMs2 + DSMs (2)
Fig. 1  Typical scenario to study the dynamic interaction between SM and
DC-power-modulated LCC
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Based on (1) and (2), it is noted that phase motion of SM is
characterised by inertia coefficient MSM and damping coefficient
DSM, while no dynamic is considered in magnitude motion.

2.2 Small-signal modelling of DC-power-modulated LCC

A number of simplifying assumptions are made to hold the main
behaviour of concern of DC-power-modulated LCC model.

• Influences of commutation angle are neglected.
• Active power losses on converter transformer and thyristor are

neglected.
• Dynamic of DC voltage Vd is neglected.
• Converter transformer works on unsaturated situation.
• Harmonics in AC system are not taken into consideration.

Fig. 3 depicts a simplified diagram of LCC rectifier composed
of DC-power controller, phase-lock loop (PLL) controller, and
active power modulation. 

2.2.1 Linearisation of DC-power controller: Neglecting the
dynamic in DC voltage Vd, the firing angle α equation related to
DC-power controller is given by

α = kp1 + ki1
s Id − 1

Vd
Pdref (3)

By linearising (3) at some initial operating point, there exists

Δα = kp1 + ki1
s ΔId − 1

Vd
ΔPdref (4)

2.2.2 Linearisation of active power modulation: The structures
and parameters of active power modulation vary to meet different
needs [7]. To damp low-frequency oscillation related to fluctuation
of AC active power, active power modulation in this paper chose
the variation of AC active power Pr as input, and additional DC-
power reference value Pmod as output, so there exists

Pmod = Gmod(s)Pr (5)

Pdref = Pmod + Pconst (6)

As illustrated in Fig. 3, the structure of active power modulation
Gmod(s) is designed as [8]

Gmod(s) = Kmod
1

1 + TRs
1 + T1s
1 + T2s

4

(7)

Linearising (5) and (6) at some initial operating point yield

ΔPmod = Gmod s ΔPr (8)

ΔPdref = ΔPmod (9)

2.2.3 Linearisation of PLL: PLL's output phase can be expressed
as

θpr = 1
s kp2 + ki2

s sin θw − θpr (10)

Linearising (10) at some initial operating point yield

Δθpr = kp2

s + ki2

s2 Δθw − Δθpr (11)

2.2.4 Linearisation of AC current's phase: Neglecting the
influences of commutation angle, the relationships of PLL's output
phase θpr, AC current's phase θir, and firing angle α are shown in
Fig. 4, which can be written as

θir = θpr − α (12)

By linearising (12) at some initial operating point, there exists

Δθir = Δθpr − Δα (13)

2.2.5 Linearisation of dynamic of smoothing
reactance: Neglecting the active power loss on converter
transformer and thyristor, dynamic on smoothing reactance can be
expressed as

Pr − Pd = 1
2sLdId

2 (14)

Linearising (14) at some initial operating point yield

ΔPr − ΔPd = LdId 0sΔId (15)

where subscript 0 represents initial values when linearising. It is
noted that the dynamic of DC power ΔPd is only determined by the
dynamic of DC current ΔId, which can be expressed as

ΔPd = VdΔId (16)

2.2.6 Linearisation of AC current's magnitude: Neglecting
harmonics in AC system, the magnitude of the fundamental
frequency component of root mean square value of AC current can
be expressed as

Ir = 6Tr
π Id (17)

Linearising (17) at some initial operating point yield

ΔIr = 6Tr
π ΔId (18)

Fig. 2  Rotor motion of SM model
 

Fig. 3  Scheme of a DC-power-modulated LCC rectifier
 

Fig. 4  Phase relationships of DC-power-modulated LCC
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Based on (4), (8), (9), (11), (13), (15), (16), and (18), the
corresponding small-signal model of DC-power-modulated LCC is
illustrated in Fig. 5. 

2.3 DC-power-modulated LCC model based on motion
equation concept

Developed from basic rotor motion equation of SM, keys of motion
equation concept lie on two aspects [9]. Firstly, dynamics of
magnitude and phase of output variables are determined by the
variation of active and reactive power input, which provide a
physical perspective to depict the characteristics of magnitude and
phase of output variable when unbalanced power input varies.
Secondly, the model based on motion equation should only depend
on the model's own parameters without the influences of other
devices in the power system.

As shown in Fig. 5, the dynamic of DC-power-modulated
LCC's output AC current is determined by variation of active
power ΔPr and phase of terminal voltage Δθvr. To replace Δθvr
with variation of active power ΔPr and reactive power ΔQr, it is
noted that

Pr = VvrIircos φr (19)

Qr = VvrIirsin φr (20)

where φris the power factor angle which are expressed as

φr = θvr − θir (21)

Expressing (19) and (20) in terms of perturbed value yields

Δθvr = Δθir + k1ΔPr + k2ΔQr (22)

where

k1 = − sin φr0

Vvr0Ir0
(23)

k2 = cos φr0

Vvr0Ir0
(24)

By setting unbalanced active power ΔPrand unbalanced reactive
power ΔQr as inputs, and setting AC current's magnitude ΔIr and
AC current's phase Δθr as outputs, characteristics of DC-power-
modulated LCC is illustrated in Fig. 6, which are expressed as

ΔIr

Δθir
=

Gr11 s 0
Gr21 s Gr22 s

ΔPr

ΔQr
(25)

To describe the model in the form of motion equation like (2),
elements of matrix Gr(s) can be expressed as

Gr11 s = 1
Mr11 s s2 + Dr11 s s (26)

Gr21 s = 1
Mr21 s s2 + Dr21 s s (27)

Gr22 s = 1
Mr22 s s2 + Dr22 s s (28)

where inertial coefficients Mr11(s), Mr21(s), Mr22(s) and damping
coefficients Dr11(s), Dr21(s), Dr22(s) are frequency-dependent,
which is different from motion equation of SM.

Based on (25)–(28), it is noted that dynamics of DC-power-
modulated LCC can be described as motions of magnitude and
phase of AC current determined by variations of active and
reactive power input. To be more precisely, magnitude motion is

only determined by active power input, while phase motion is
determined by both active power input and reactive power input.

Furthermore, from Fig. 6, it is interesting to find that magnitude
motion of DC-power-modulated LCC is simply characterised by
dynamics of smoothing reactance at certain operating point, while
phase motion is mainly characterised by DC-power controller, PLL
controller, active power modulation, and dynamics of smoothing
reactance.

2.4 AC network model

In electromechanical timescale, dynamics of inductors and
capacitors in AC network can be neglected, so AC network can be
described as algebraic equations, which simplify the analytical
investigation between SM and DC-power-modulated LCC. To
establish a complete close loop of the studied power system, AC
network is modelled as

ΔPSM

ΔPr

ΔQr

=
HAC1 HAC2

HAC3 HAC4

ΔθSM

ΔIr

Δθir

(29)

where matrix HAC is determined by line inductance and reactive
compensator.

3 Analytical investigation of dynamic interaction
This section first depicts two different influential paths between
SM and DC-power-modulated LCC. Then the quantitative values
of two paths are given by mathematical expressions

3.1 Influential paths between SM and DC-power-modulated
LCC

Based on (25), (1), and (29), the corresponding model based on
motion equation concept of Fig. 1 is illustrated in Fig. 7. 

As illustrated in Fig. 7, SM's input power ΔPSM is influenced
by two paths, viz. the direct influence from SM's output phase
motion ΔθSM, as well as the influence from DC-power-modulated
LCC's magnitude motion ΔIr and phase motion Δθir.

3.2 Quantitative values of influential paths

By substituting (25) into (29), equal feedback transfer function F(s)
of SM can be expressed as

ΔPSM = F s ΔθSM = F1ΔθSM
ΔPSM1

+ F2 S ΔθSM
ΔPSM2

(30)

where

F s = HAC1
F1

+ HAC2 Gr
−1 s − HAC4

−1HAC3

F2 S
(31)

From (31), it is noted that F(s) is composed of two parts. Self-
stabilising coefficient F1 is only determined by AC network
parameter, while en-stabilising coefficient F2(s) intuitively shows
the quantitative dynamic interaction of DC-power-modulated LCC.

Moreover, it is noticeable that F1 in electromechanical
timescale is constant, while F2(s) in electromechanical timescale is
frequency-dependent. In other words, ΔPSM1 is completely in
phase with ΔθSM, which is a pure synchronising power, while
ΔPSM2 can be divided into two components, viz., synchronising
power ΔPSM2s which is in phase with ΔθSM, and damping power
ΔPSM2d which is in phase with ΔωSM, and can be expressed as

ΔPSM1 = F1ΔθSM (32)

ΔPSM2 s = F2s s ΔθSM
ΔPSM 2s

+ F2d s ΔωSM
ΔPSM 2d

(33)
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Therefore, based on (30)–(33), dynamic interaction between SM
and DC-power-modulated is illustrated in Fig. 8, where all the
expressions of transfer functions are quantitative and intuitive in
the forms of damping and synchronising powers 

4 Verification
This section first verifies the proposed DC-power-modulated LCC
model based on motion equation concept with the detailed model.
Then analytical results of damping and synchronising powers are

verified by the comparisons with eigenvalues and time-domain
simulations in MATLAB/Simulink.

4.1 Verification of the proposed DC-power-modulated LCC
model based on motion equation concept

To verify the phase and magnitude motion of the proposed DC-
power-modulated LCC, a simple scenario shown in Fig. 3 is used,
where DC-power-modulated LCC is connected to an infinite AC
bus and an ideal DC voltage source.

Assuming that a small disturbance in DC-power reference value
occurs at 0.3 s, Fig. 9 shows the comparative responses of AC
current's phase θir and AC current's magnitude Ir between the
proposed and detailed model. It is obvious that the proposed DC-
power-modulated LCC is in good accordance with detailed model,
which means the proposed model can hold the main behaviour in
concerned electromechanical timescale. 

4.2 Verification of the analytical results based on damping
and synchronising power

The typical scenario shown in Fig. 1 is used to verify the analytical
results. Generally, the structure and parameter of active power
modulation are designed by pole placement technique [10]. As
illustrated in Table 1, this paper designs two cases of different
dominant poles by setting corresponding parameters of active
power modulation. 

Fig. 5  Corresponding small-signal model of DC-power-modulated LCC of
Fig. 3

 

Fig. 6  Model of DC-power-modulated LCC based on motion equation
concept

 

Fig. 7  Models of SM, AC network, and DC-power-modulated LCC based
on motion equation concept

 

Fig. 8  Dynamic interaction between SM and DC-power-modulated LCC
from the perspective of damping and synchronising powers

 

Fig. 9  Comparisons of simulation responses between the proposed and
detailed models
(a) AC current's phase θir, (b) AC current's magnitude Ir

 

J. Eng., 2019, Vol. 2019 Iss. 16, pp. 1864-1868
This is an open access article published by the IET under the Creative Commons Attribution-NoDerivs License
(http://creativecommons.org/licenses/by-nd/3.0/)

1867



Then, based on (32)–(33), damping and synchronising
coefficients are calculated to reflect the dynamic interaction
between SM and DC-power-modulated LCC. It is noticeable that
small adjustment of active power modulation from case A to case
B markedly improves the damping coefficient.

In addition, eigenvalues analyses of the proposed model of two
cases are depicted in Table 2, and the related response mode are
also given. It is worth mentioning that eigenvalues dominated by
active power modulation are very close to eigenvalues dominated
by SM rotor, while other eigenvalues are far away from these two.
In other words, active power modulation in LCC can interact with
SM in electromechanical timescale. 

Also, time-domain simulations in MATLAB/Simulink are
conducted to verify the analytical results. Assuming that a small
disturbance in active power input ΔPSM, Fig. 10 shows the
comparative responses of ΔωSM in two cases. It is shown that

oscillation frequencies of ΔωSM are both 13.2 rad/s, while the
attenuation speed of case B is much faster, which is in good
accordance with analytical results. 

5 Conclusion
Compared with voltage source converter and modular multilevel
converter [11, 12], DC-power-modulated LCC plays an unique and
fundamental role in damping low-frequency oscillation. This paper
proposes a small-signal model of DC-power-modulated LCC based
on motion equation concept, which is used for analytical
investigation of low-frequency oscillation from the scope of
damping and synchronising powers.

Compared with numerical studies, analytical investigation of
dynamic interaction in this paper has two merits. On the one hand,
based on the concept of motion equation, analytical study can
directly show the paths between unbalanced power and magnitude/
phase motion of devices, which can be easily applied to dynamic
interaction among multi-device power system. On the other hand,
from the scope of damping and synchronising powers, the effects
of those paths are quantitative by mathematical expressions.

Besides, in order to damp low-frequency oscillation, it is
suggested that the dominated poles of power system designed by
active power modulation should be away from the left of the
imaginary axis as well as the eigenvalues dominated by SM.
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Table 1 Two cases of different dominant poles and
corresponding parameters of active power modulation and
calculated damping and synchronising coefficients

Case A Case B
designed dominated poles −0.5 ± j13.2 −3.2 ± j13.2
parameters of active power
modulation

Kmod = 0.0012 Kmod = 0.0025
T1 = 0.26 T1 = 0.20
T2 = 0.02 T2 = 0.03

damping coefficient, p.u. 0.1865 0.2893
synchronising coefficient, p.u. 0.0117 0.0120
 

Table 2 Eigenvalue analysis of two cases in the proposed
model

Eigenvalues Response mode
Case A
 λ1,2 −1.67 ± j13.18 SM rotor
 λ3,4 −0.50 ± j13.20 active power modulation
 λ5,6 −30.00 ± j22.37 PLL control
 λ7 −46.15 DC-power control
 λ8 −274.44 smooth reactance
Case B
 λ1,2 −1.67 ± j13.18 SM rotor
 λ3,4 −3.20 ± j13.20 active power modulation
 λ5,6 −30.02 ± j22.36 PLL control
 λ7 −46.15 DC power control
 λ8 −274.44 smooth reactance

 

Fig. 10  Comparison of simulated responses of ΔωSM in two cases
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