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Abstract
1.	 Movement is a key process driving animal distributions within heterogeneous 
landscapes. Graph (network) theory is increasingly used to understand and pre-
dict landscape functional connectivity, as network properties can provide crucial 
information regarding the resilience of a system to landscape disturbances, e.g. 
removal of habitat patches. The temporal dimension of movement patterns, how-
ever, is not generally included in network analysis, which can lead to a discrepancy 
between observed space use and landscape connectivity. Reaction–advection–
diffusion models, when coupled with network analysis, could provide a powerful 
mechanistic framework based upon spatio-temporal dimensions of animal move-
ment, but this approach remains poorly developed for ecological studies.

2.	 We developed a mechanistic space use model that considers both residency time 
in resource patches and movement amongst those patches within a spatial net-
work. The framework involves two main steps: first, the network topology that 
best reflects functional connectivity for the study system is identified; second, a 
spatio-temporal flow dynamic is implemented within the network using reaction–
advection–diffusion modelling. To illustrate the approach, we used observations 
of radiocollared plains bison Bison bison bison that were travelling in a meadow 
network within a forest matrix.

3.	 In the model application, we found that the graph best reflecting the functional 
connectivity of bison was a complex graph of ultra-small world scale-free network 
type. The reaction–advection–diffusion model involved the effect of meadow 
area and inter-meadow distance on bison travels. Simulations showed that a sim-
ple graph or distance-based graphs provided less accurate predictions of bison 
distribution, while also predicting different management actions to effectively 
impact bison space use.

4.	 Our study demonstrates how reaction–advection–diffusion modelling, coupled 
with network theory, can provide a robust mechanistic framework for predicting 
animal distribution in dynamic environments. The modelling approach can be ap-
plied to a large range of systems that are subjected to rapid environmental changes 
due to habitat management or natural resource extraction, for example. 
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1  | INTRODUC TION

Understanding animal movement is a fundamental and pressing 
challenge in ecology, notably because this information can help to 
characterize and anticipate the impact of human-induced altered 
landscapes on population spatial distributions (Nathan et al., 2008). 
Graph (or network) theory has been demonstrated to be particu-
larly valuable in describing and predicting animal movements within 
heterogeneous landscapes (Courbin, Fortin, Dussault, & Courtois, 
2014; Fox & Bellwood, 2014; Rhodes, Wardell-Johnson, Rhodes, & 
Raymond, 2006). Indeed, at some scale that is relevant to a given 
animal population, most landscapes can be viewed as spatial net-
works, where nodes are resource patches and links are potential 
movements between nodes (Fall, Fortin, Manseau, & O’Brien, 2007). 
These networks can be drawn with different mathematical rules, 
each one associated with particular properties of landscape func-
tional connectivity reflecting the specific interplay between animal 
movements and habitat attributes (Courbin et al., 2014). For ex-
ample, the minimum planar graph (MPG) considers that individuals 
move in a stepping stone fashion among resource patches, such that 
links in a MPG never cross (Fall et al., 2007). Another rule is to rep-
resent potential movements as a function of Euclidean or functional 
distance (e.g. least-cost modelling), where only patches closer than 
a certain threshold are connected (Lookingbill, Gardner, Ferrari, & 
Keller, 2010; Minor & Urban, 2008; O’Brien, Manseau, Fall, & Fortin, 
2006). Those mathematical rules are frequently used to model land-
scape connectivity for terrestrial mammals (Bunn, Urban, & Keitt, 
2000; Courbin et al., 2014; Lookingbill et al., 2010; O’Brien et al., 
2006), even without testing the relevance of more complex graphs. 
This choice might reflect the fact that when movement data are too 
limited to identify the most relevant network among different net-
work types, the mathematical rules associated with these types of 
network can still predict landscape connectivity solely based upon 
patch distribution (i.e. based on structural connectivity). The con-
straints imposed by such stringent rules, however, could hinder our 
capacity to understand and predict distribution patterns of animals, 
and their responses to landscape changes. Indeed, whenever tested, 
complex network topologies often best reflect the movements that 
various species make among resource patches (Fox & Bellwood, 
2014; Rhodes et al., 2006). This is significant for wildlife conservation 
and management because network topology informs on the impact 
that landscape disturbances (e.g. removal of habitat patches) should 

have on network resilience and, overall, on animal distributions (Fall 
et al., 2007). For example, a complex network of scale-free type 
tends to be resistant to the random removal of nodes, but it is highly 
sensitive to targeted removal of hubs (Albert, Jeong, & Barabasi, 
2000; Minor & Urban, 2008). In contrast, a disturbance would affect 
a MPG rather similarly, regardless of the nodes removed because of 
the presence of alternative paths (Reunanen, Fall, & Nikula, 2012). 
The graphical representation of landscape connectivity that is most 
faithful to the system under study should thus be identified, which 
would enable implementation of effective management actions and 
prediction of how individual movement flows should be reorganized 
following a disturbance.

Although graph theory can provide crucial information on an-
imal movements within a patch network, inference on population 
space use dynamics still requires an understanding of the temporal 
dimension of movement patterns (Jacoby & Freeman, 2016; Nathan 
et al., 2008). For example, network analysis alone failed to iden-
tify preferred sites for a population of broadnose sevengill shark 
Notorynchus cepedianus, because it did not account for residency pe-
riod in the different sites (Stehfest, Patterson, Barnett, & Semmens, 
2015). Integration of the temporal dimension of movement into a 
network requires the use of dynamic models, such as a reaction–ad-
vection–diffusion model (Barrat, Barthelemy, & Vespignani, 2008). 
Reaction–advection–diffusion models have been coupled with spa-
tial networks to evaluate metapopulation dynamics (Colizza, Pastor-
Satorras, & Vespignani, 2007; Sarhad, Carlson, & Anderson, 2013), 
but their potential application to the study of animal movement 
remains largely overlooked (Cantrell & Cosner, 2004). A reaction–
advection–diffusion model simulates variation in individual density 
through time at any given point in space (Turing, 1952), and as such, 
the reaction process that is generally linked to population growth 
can be readily adapted to model residency time in resource patches 
of networks. The implementation of both advection–diffusion and 
reaction processes should then provide a powerful mechanistic 
framework for describing and anticipating animal spatial distribu-
tions in dynamic environments.

We developed a mechanistic space use model that considers 
both residency time in the resource patches and movement among 
patches in a spatial network. Our approach integrates reaction–ad-
vection–diffusion modelling and spatial network theory to predict 
animal distributions in heterogeneous landscapes. We then used 
field observations of plains bison Bison bison bison to illustrate the 

Furthermore, our study demonstrates that management and conservation plan-
ning can strongly depend upon network structure, and that a faulty assessment of 
network topology can result in poor planning, with potential unexpected impacts 
on animal distributions.
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animal space use, distance-based graph, minimum planar graph, reaction–advection–diffusion 
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approach. Specifically, (1) we determined the most relevant type 
of network; (2) because the relevant type of network was complex 
for this system, we used a statistical model to predict the spatial 
graph that was based upon the observed functional connectivity; 
(3) we then predicted, based upon habitat attributes, residency 
time in patches and movement mechanisms among patches; (4) 
we evaluated the effect of network structure on bison space use 
patterns; (5) and finally, we assessed how the targeted removal of 
resource patches should affect bison distribution based on net-
work structure.

2  | MATERIAL S AND METHODS

First, we developed the modelling framework that involves the re-
action–advection–diffusion model and predictions of the network 
topology that best reflected landscape functional connectivity for 
our study system. Second, we illustrated and tested the approach 
with empirical data.

2.1 | Development of reaction–advection–
diffusion model

A classic reaction–diffusion model applied to a network with N 
nodes takes the general form:

where U (t)= (u1(t) ,… u2(t) ,… uN(t))
T is the vector of animal densi-

ties at time t in the N nodes of the network, dU(t)
dt
 is the vector of 

instantaneous rate of change in U(t), F= (f1(U(t)), f2(U(t)),… ,fN(U(t))
T 

is the vector of reaction functions in the N nodes of the network and 
G= (g1(U(t)), g2(U(t)),… ,gN(U(t))

T is the vector of diffusion functions 
in the N nodes of the network (Kouvaris, Kori, & Mikhailov, 2012).

While the reaction term usually models population growth 
(Cantrell & Cosner, 2004), the reaction also can be modelled as the 
density of individuals leaving node i, based upon residency time in 
node i: 

where Ti is the average residency time in node i; higher is the res-
idency time in node i, lower is the number of individuals leaving 
patch i.

Simple diffusion considers that individual flow is the same be-
tween connected network patches (i.e. an unweighted network, 
Kouvaris et al., 2012), and that animal movements have no bias with 
respect to habitat features. We can relax this assumption by consid-
ering directional biases in animal movement, i.e. an advection term. 
Advection properties can be modelled by assigning weights to the 
network’s links, which then reflects an uneven flow of individuals 
between connected network patches. The advection process then 

can be implemented by modifying the diffusion term in Equation 1 
according to:

where aji is the weight that is assigned to movement from node j to 
node i (aii = 0), which is proportional to the number of individuals arriv-
ing to patch i. The weights aji are standardized such that, 

∑N

k=1
ajk=1,  

which implies that individuals leaving patch j will distribute them-
selves among all nodes connected to node j.

Equation 1 now takes the following form:

where I is the identity matrix, A is the weighted adjacency matrix of 
the network containing all weights aij, i, j ∈ {1, …, N}2, and T is a di-
agonal matrix of the residency times in the N nodes of the network. 
Predicted densities at any time of the simulation can be transformed 
to estimate relative intensity of space use as follows,

where Ii(t) is the relative intensity of use for node i at time t.

2.2 | Identification of spatial network topology

2.2.1 | Selection of characteristic network metrics

Multiple network metrics are available to describe landscape con-
nectivity and to distinguish between network types (Rayfield, 
Fortin, & Fall, 2011). In this study, we focused on three metrics 
to identify the network type that can best predict landscape con-
nectivity of an empirical dataset: the degree distribution (i.e. the 
distribution of the number of links that each node has), the global 
clustering coefficient C (or the proportion of triangles, i.e. the 
number of connected triplets of nodes over the total number of 
triangles in the graph) and the characteristic path length L (i.e. the 
number of links in the shortest path between two nodes, averaged 
over all pairs of nodes; Rayfield et al., 2011). We chose these met-
rics because they allow to evaluate whether a network topology is 
complex and similar to classic complex network topologies found 
in real world, such as scale-free or small-world networks (Newman, 
2003).

2.2.2 | Network metrics behaviour for different 
network types

The degree distribution reflects whether the connectivity is main-
tained by some hubs, as is the case with scale-free network types 
(Albert et al., 2000). In such networks, the degrees conform to a 
power-law distribution whereas in simpler graphs, such as the MPG, 
the degrees should have a distribution close to the Gaussian, reflect-
ing a more homogeneous pattern of connectivity (Reunanen et al., 
2012).

(1)

dU(t)

dt
=F(U(t))+G(U(t))

(2)fi(U(t))=−
ui(t)

Ti
,i∈{1,… ,N}

(3)gi(U(t))=

N
∑

j=1

aji
uj(t)

Tj
,i∈{1,… ,N}

(4)
dU(t)

dt
=
(

I −A
)

T
−1
U(t),

(5)
Ii(t)=

ui(t)
∑N

j=1
uj(t)
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The global clustering coefficient associated with the characteris-
tic path length of a graph allows to evaluate whether the type of the 
graph is similar to that of a small-world network. Such a graph has 
shortcuts between nodes that result in a short characteristic path 
length and a large global clustering coefficient (Watts & Strogatz, 
1998). Although MPG does not have shortcuts, its characteristic path 
length tends to be relatively long (Fall et al., 2007). If a spatial graph 
has the small-world properties, then we expect two main features: 
(1) its global clustering coefficient should be much higher than the 
global clustering coefficient of a random graph CR constructed with 
the same number of nodes and the same number of links, and (2) its 
characteristic path length should be proportional to the characteris-
tic path length of its associated random graph (LR, Newman, 2003).

Using these metrics, we can evaluate which network, among 
four classic topologies (i.e. a MPG, a scale-free, a small-world and a 
distance-based graph, Fox & Bellwood, 2014; O’Brien et al., 2006), 
best fits the empirical network of a given study system. We can then 
predict the relevant network based upon the best topology.

2.3 | Predicting links in complex networks

Predicting links based on functional connectivity and the actual 
structure of the network is generally not implemented for spatial 
networks. Here, we propose to predict links using a latent space ran-
dom graph mixed model (ERGMM) and the observed animal move-
ments (Hoff, Raftery, & Handcock, 2002). A latent space random 
graph mixed model is a social network model that proved to be ef-
ficacious in predicting actual linkages in a spatial network (Fletcher, 
Acevedo, Reichert, Pias, & Kitchens, 2011).

Link prediction is based upon the position of each node in a la-
tent space, meaning that connected nodes would be closer in the 
latent space than unconnected nodes. Covariates associated with 
node and link properties also can be added to better define the 
functional connectivity that is used to predict links. Several models 
reflecting different hypotheses on link prediction thus can be con-
structed a priori, and then compared using the Bayesian information 
criterion (BIC). The best model for predicting links (i.e. lowest BIC) 
can be selected a posteriori and used to estimate a probability of 
link presence between each pair of nodes. The probabilities then can 
be dichotomized to {0, 1} (i.e. absence vs. presence, Figure 1), based 
upon a threshold that maximizes the Cohen’s kappa which assesses 
the similarity between observed and predicted links (Fletcher et al., 
2011).

2.4 | Case study

2.4.1 | Study area

The study was conducted in Prince Albert National Park, 
Saskatchewan, Canada (53°44′N, 106°39′W). Plains bison occupy 
c. 1,000 km2 of the park’s southwestern corner, which is composed 
of deciduous and conifer stands (85%), meadows (10%) and water 
bodies (5%). Because bison strongly select meadows (Fortin, Fryxell, 

O’Brodovich, & Frandsen, 2003), which are dispersed throughout 
the forest matrix, graph theory is highly applicable to study land-
scape connectivity within this system (Dancose, Fortin, & Guo, 
2011).

2.4.2 | Spatial data

Landscape data
We delimited meadows from the rest of the landscape using the 
supervised classification of a SPOT 5 multispectral image (August 
2008, 10-m resolution, Dancose et al., 2011). We also extracted 
meadow area and Euclidean distance between meadow centroids 
from this image. Extraction of habitat information was performed 
using Quantum GIS software (QGIS 2016).

Bison data
Movements can be strongly influenced by environmental factors 
that are likely to change with seasons; thus, we focused our analysis 
on summer data (weeks 18–33, Merkle, Fortin, & Morales, 2014). We 
followed 43 adult females (>3 years old) using GPS collars (4400M, 
Lotek Engineering, Newmarket, ON, Canada; TGW 4780-3, Telonics, 
Mesa, AZ, USA) between 2005 and 2015 (Laval University, ethical 
approvals #2011196-1 and #2017001-1). Three to fifteen bison were 
monitored each summer and 1,410 locations on average (range: 37–
1,918) were collected per individual (relocation frequency varying 
between every 1 or 3 hr for all animals, Table S1). Because hourly re-
locations provided more detailed information on bison movements, 
we only retained hourly data to construct individual trajectories. To 
estimate relative intensity of space use based upon empirical data, 
we resampled all GPS data to obtain relocations every 3 hr and kept 
only individuals followed continuously the whole season (N = 22 in-
dividuals; 867 locations/individual, on average for the summers of 
2005, 2007 and 2010–2015; range: 851–895). In addition, we used 
bison trail data collected in the field during summer 2008 to validate 
whether GPS-collar data provided a good assessment of meadow 
connectivity (Appendix S1).

2.4.3 | Network construction

Empirical graph
We used trajectories of bison produced by GPS relocations at 1-hr 
interval to build the empirical network of plains bison (N = 75,519 
relocations). Specifically, we identified when a move occurs between 
two meadows, and determined the source (departure) and target 
(arrival) meadow. When two or more collared bison were travel-
ling together, we considered their collective move from a source to 
target meadow as a single link use. Using all inter-meadows moves, 
we constructed the empirical network using the igraph package in r 
software (R Core Team, 2016).

Network based on complex topology
To predict links in the spatial graph, we fitted the empirical graph 
to a ERGMM. We selected a priori the key covariates involved in 
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bison functional connectivity (i.e. meadow area and distance be-
tween meadows, Dancose et al., 2011; also see Results), and which 
reflected the empirical network properties (i.e. number of trian-
gles, see Results). In addition, we considered random effects on 
the source and target meadows to model direction in inter-patch 
movements (Fletcher et al., 2011). We used the latentnet package 
in r software to fit the model using the Markov Chain Monte Carlo 
algorithm and predicted the links.

Additional networks
Because the MPG and distance-based graphs are commonly used 
in the literature, we also considered those two types of network to 
evaluate the effect of network structure on space use patterns of 

bison. We thus built the MPG using the grainscape package in r soft-
ware. We only retained MPG links that connected visited meadows.

Distance-based network requires defining a distance threshold 
below which movement among patches may occur. The probability 
that two nodes i and j are connected is usually modelled as pij=e−ϕdij,  
where dij is the distance between nodes i and j and ϕ is the rate 
of decay of the probability with distance (Ferrari, Preisser, & 
Fitzpatrick, 2014). By fitting a linear model to the log distribution 
of link length of the empirical graph, we first estimated the rate 
of decay ϕ. Then, from the estimated equation (i.e. pij=e−0.0017dij, 
R2 = .95), we calculated the presence probability of each link among 
all visited meadows. We then dichotomized the probabilities so that 
all those greater than a given threshold were set to 1 and the others 

F IGURE  1 Graphical representation of different network structures to model landscape functional connectivity of the population of 
plains bison in Prince Albert National Park during summer. (a) Empirical graph based on bison GPS trajectories. (b) Ultra-small world scale-
free network. (c) Minimum planar graph. (d) 700-m distance threshold network. (e) 1,800-m distance threshold network. Bison occupy the 
southwestern corner of the park during summer time (black rectangle on the map of the park)
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were set to 0. The threshold value was chosen so as to maximize 
the Cohen’s kappa (Fletcher et al., 2011). Equivalent distance asso-
ciated to the threshold probability maximizing the Cohen’s kappa 
was 700 m. We also used a tail distance for which pij = 0.05 (Bunn 
et al., 2000; Ferrari et al., 2014), equivalent to 1800 m. Thus, two 
threshold distance graphs were built to predict bison movement 
among meadows, one for which meadows at distance <700 m were 
connected and one for which meadows at distance <1,800 m were 
connected.

For all predicted networks, we extracted the degree distribution, 
the clustering coefficient and the characteristic path using the igraph 
package in r software. We also identified the links that were pre-
dicted by the MPG (MGP links) and those that were not (non-MPG 
links).

2.4.4 | Prediction of residency time and 
patch choice

Residency time in meadows
We used the method developed by Bastille-Rousseau, Fortin, 
Dussault, Courtois, and Ouellet (2011) to calculate individual resi-
dency time in each meadow: for a given meadow and a given individ-
ual, we considered portions of the movement segments entering and 
leaving the meadow (assuming constant speed), together with the 
number of successive locations inside the meadow. Because some 
radiocollared females travelled together from time to time (i.e. bison 
form a fusion–fission society, Fortin et al., 2009), we considered 
only one trajectory for a group of bison. The residency time for each 
meadow was then predicted from the fit of a linear model linking log-
residency time in meadows to two habitat attributes (i.e. meadow 
area and relative risk of wolf predation in meadow, Appendices S2 
and S3). Statistical analyses for residency time were performed 
using the linear mixed model implemented in package lmerTest in r 
software.

Patch choice implemented with link weights
Link weight was estimated from the fit of a conditional logistic 
regression linking some habitat attributes (i.e. meadow area, 
Euclidean distance between meadows and relative risk of wolf 
predation in meadow, Appendices S2 and S4) with empirical 
patch choices (Fortin et al., 2005). Following Merkle et al. (2014), 
we identified, for each inter-meadow move, all available mead-
ows within a radius of 3.2 km from the source meadow (95% of 
all observed inter-meadows movements). We then selected 20 
random meadows within that radius based upon their distance 
to the source meadow (see Merkle et al., 2014 for more details 
on random meadow selection). Finally, we compared attributes of 
the target meadow with the attributes of the random meadows 
using a conditional logistic regression (Appendices S2 and S4). We 
ran the model for MPG and non-MPG links separately, to evaluate 
whether different mechanisms were implied in the two movement 
types. Statistical analysis for patch choice was performed using 
package survival in r software.

Link weights were then calculated using the estimated coeffi-
cients from conditional logistic regression (Appendix S4) as follows,

1.	 Considering a meadow i connected to m meadows with MPG 
links, the weight for a MPG link from meadow i to meadow j,  
j ∈ {1, …, m}, is:

where β̂MPG
p
, p ∈ {1, …, P} are the P estimates of the regression 

coefficients for MPG links and Xjp, p ∈ {1, …, P} are the values of 
the P covariates for meadow j.

2.	 Considering the same meadow i connected to s meadows with 
non-MPG links, the weight for a non-MPG link from meadow i to 
meadow j, j ∈ {1, …, s} is:

where β̂shortcut
p

, p ∈ {1, …, P}, are the P estimates of the regression 
coefficients for non-MPG links and XJp, p ∈ {1, …, P} are the values 
of the P covariates for meadow j.

3.	 Finally, we corrected the weight with the intensity of use of each 
link type (MPG links had twice the use of non-MPG links, Table 
S4), with standardization that depended upon link type:

2.5 | Model simulations

In each network, we simulated 300 individuals moving among the 
connected meadows. Initially, all meadows were used uniformly 
meaning that all meadows had the same initial conditions (i.e. 300/
number of connected meadows in the network). We then used the 
fourth order Runge–Kutta method to solve the system of ordinary 
differential equations (Equation 4, Dahlquist & Björck, 2008). We 
first validated the model (Appendix S5), then evaluated the effect 
of network structure on bison space use pattern. In our case, the 
most relevant network was an ultra-small world scale-free net-
work (see Results); without loss of generality, we have thus exem-
plified our approach using this complex network. Specifically, we 
ran the model using the ultra-small world scale-free network, the 
MPG and the two distance-based networks for defining landscape 
connectivity.

To evaluate the similarity between predicted space use at the 
end of the season, i.e. after 112 simulated days, and space use ob-
tained empirically, we used the pseudo-R2 of a linear model includ-
ing an exponential spatial correlation (Box, Jenkins, Reinsel, & Ljung, 

(6)

aMPG
ij
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exp
�
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p
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j

p

�

∑m

j=1
exp

�

∑p

p=1
β̂MPG
p

X
j

p

��

(7)anon−MPG
ij

=

exp
�

∑p

p=1
β̂non−MPG
p

X
j

p

�

∑m

j=1
exp

�

∑p

p=1
β̂non−MPG
p

X
j

p

��

(8)
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ij

, if i→ j is a non−MPG link
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2015). The empirical space use index consisted of the proportion 
of 3 hr relocations in each meadow. Statistical analyses were per-
formed using package nlme in r software.

Finally, to demonstrate the utility of our model and the advan-
tages of using the best network, we evaluated the impact of potential 
management actions (e.g. fence erection) on bison distribution. We 
used the ultra-small world scale-free network, the MPG and the two 
distance-based networks to identify the 10 most connected mead-
ows in each network (yellow stars, Figure 4). We then changed the 
accessibility of these nodes in the network by setting the weights 
of the existing links arriving and leaving those meadows to zero. For 
example, this could be implemented in the field using fences (Fortin 
et al., 2010). We ran the model with the modified networks and com-
pared predicted space use before and after the intervention for all 
network structures.

3  | RESULTS

GPS-collar data provided a good assessment of meadow connectiv-
ity. Indeed, the observed connectivity from trail data was relatively 
similar to the observed connectivity from GPS data (Figure S1).

3.1 | Properties of the empirical network

The degree distribution of the empirical network of plains bison in 
the study area decayed as a power function, meaning that few mead-
ows were highly connected (i.e. hubs), while most meadows had few 
links (Figure 2). Also, the empirical network had a much higher clus-
tering coefficient than its associated random graph, meaning that 
the proportion of triangles in the graph was greater than would be 
expected by chance alone (Table S2). Further, the characteristic path 
length of the empirical graph was equivalent to the characteristic 
path length of its associated random graph (Table S2). The properties 
of the empirical graph were thus more closely related to an ultra-
small world scale-free network, a complex network (Figure 1).

3.2 | Network based on complex topology

The best model for predicting links in the spatial network of plains 
bison during summer included meadow area, Euclidean distance be-
tween meadows and the number of triangles in the network (Table 
S2, Model 1). The spatial network predicted using the best model 
was based upon 539 connected nodes including 3,418 links. The 
predicted graph had the same properties as the empirical graph, that 
is ultra-small world scale-free network (Figure 1).

3.3 | Effect of habitat attributes on residency 
time and patch choice

Residency time in meadows could be explained by their areas, with 
bison staying longer in larger meadows (β̂log(area)(±S.E) = 0.32 ± 0.013 
p < .001, Table S4). Patch choice was mainly explained by the area of 
the target meadow and the distance between the source and tar-
get meadows for both MPG and non-MPG links (Table S5). Most 
observed inter-patch movements were not predicted by the MPG, 
but those MPG links were used twice as much as non-MPG links 
(Table S5).

3.4 | Effect of network structure on space 
use pattern

Space use patterns predicted by the reaction–advection–diffusion 
model strongly differed, depending upon the structure of the spatial 
network used to model functional connectivity (Figure 3). The mini-
mum planar graph and both networks based on distance predicted 
much more uniform use of meadows than did the ultra-small world 
scale-free network. Hubs were more intensely used in the complex 
network compared to the other types of network, more closely 
reflecting the observed space use of bison (Figure 3).

3.5 | Effect of an intervention on space use pattern

The 10 most connected meadows were different, depending upon 
network structure (Figure 4) and, as a result, removing nodes yielded 
different changes in the intensity of meadow use. The removal of 
hubs in the ultra-small world scale-free network increased the use 
of specific areas in the summer bison range and decreased the use 
of some meadows close to affected ones (Figure 4). In contrast, the 
removal of hubs from the MPG or from the two networks based on 
distance slightly and uniformly increased the use of all remaining 
meadows (Figure 4).

4  | DISCUSSION

We developed a model of animal distribution by combining reaction–
advection–diffusion modelling and network theory. The mechanis-
tic approach relies upon three main components: (1) the structural 
properties of the underlying spatial network; (2) the residency 

F IGURE  2 Degree distribution (black dots) of the empirical 
spatial network of plains bison in Prince Albert National Park based 
upon the movements of 43 GPS-collared individuals in the summers 
2005–2015. The distribution decays as a power function,that is, 
y ∝ x−α, with α(±S.E) = 1.4 (±0.073) (solid line), as expected for scale-
free networks
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time in resource patches; and (3) the functional connectivity of re-
source patches. Part of our contribution rests in the integration of 
two ecological fields that have been largely developed in parallel: 
theories of spatial network and of reaction–advection–diffusion. 
We demonstrate that this combination provides a robust mecha-
nistic framework based upon spatial and temporal dimensions of 
animal movement to describe and anticipate animal distributions. 
The framework can disentangle the relationships between observed 
space use and the underlying characteristics of movement patterns 
and, as a result, it improves our ability to predict change in animal 
distributions following a disturbance. Such an ability to anticipate 
animal distribution dynamics is becoming increasingly relevant for 
animal conservation and management because human activities 
create resource networks that can rapidly change over space and 
time. An increasing number of species and populations are becom-
ing established in such highly dynamic resource networks (Fischer & 
Lindenmayer, 2007), because of industrial activity such as resource 
extraction (O’Brien et al., 2006).

The accuracy with which the model was able to predict the 
spatial distribution of plains bison in Prince Albert National Park 
strongly depended upon the accuracy of the underlying network 
used to make inferences. While a MPG or a distance-based graph 
are generally used to predict links in spatial networks of terrestrial 
species (Bunn et al., 2000; Courbin et al., 2014; Minor & Urban, 
2008; O’Brien et al., 2006), the spatial network for plains bison in 
the park corresponded more closely to an ultra-small world scale-
free network, a complex network having structural properties that 
differ from a MPG or a distance-based graph. In a MPG, there are 
no shortcuts among nodes and individuals simply traverse the land-
scape using stepping stone paths (Fall et al., 2007), resulting in a rel-
atively homogeneous pattern of connectivity and space use within 
the graph (Figure 3). Although, MPG fit could probably be improved 
using least-cost path instead of Euclidean distance (O’Brien et al., 
2006), all patches would still be stepping stones. In distance-based 
graphs, shortcuts may arise when the distance threshold is large 
enough (Figure 1). However, the degree distribution of the graph 

F IGURE  3 Relative intensity of meadow use estimates for plains bison in Prince Albert National Park: (a) based upon geolocations of 
22 bison during summer over 8 years of monitoring (2005, 2007, 2010–2015); predicted by the reaction–advection–diffusion model while 
considering different network structures (b) ultra-small world scale-free network, (c) mininum planar graph, (d) 700-m distance threshold 
network and (e) 1800-m distance threshold network. Goodness-of-fit of (b), (c), (d) and (e–a) are respectively pseudo-R2

B
= .74, pseudo-R2

C
= .21,  

pseudo-R2
D
= .21 and pseudo-R2

E
= .37

(a) (b) (c)

(d) (e)
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stays relatively homogeneous independently to the distance thresh-
old, as it was the case with both thresholds we used (700 m and 
1,800 m, also see Minor & Urban, 2008). Thus, this relatively homo-
geneous pattern of connectivity is also reflected in space use within 
the graph (Figure 3). In contrast, an ultra-small world scale-free 
network has both hubs and shortcuts that reflect the highly hetero-
geneous pattern of connectivity within the graph (Fox & Bellwood, 
2014). Space use therefore was also largely heterogeneous with the 
occurrence of some heavily used hubs relative to the other nodes. 
This pattern is more consistent with bison distribution that is ob-
served in the park (Figure 3). These findings reveal that landscape 
connectivity can be strongly organized over space, and overlooking 
such organization can induce spurious inference regarding space 
use.

Complex spatial networks have been identified in other em-
pirical studies, such as in the inter-patch movements network of 
white-striped freetail bats Tadarida australis and various herbiv-
orous fish species (Fox & Bellwood, 2014; Rhodes et al., 2006). 
The spatial network of bat roosting sites had the property of a 
scale-free graph, with one hub maintaining connectivity for the 
whole group of trees (Rhodes et al., 2006). Complex networks 
likely occur more frequently than has been currently described 
in the ecological literature. Network properties can provide us 
crucial information on how the system can withstand landscape 
disturbance, such as resource extraction, as long as network to-
pology is accurately identified (Newman, 2003). Indeed, since 

network structural properties have an effect on network robust-
ness, a perturbation would have different consequences on land-
scape connectivity, depending upon the topology of the graph and 
the specific nodes that are disturbed (Figure 4). For example, Fox 
and Bellwood (2014) showed that coral reef fishes had spatial net-
works with small world properties, such that the concentration of 
fishing effort at known aggregation sites could increase the risk of 
extinction of coral reef fish species. The potential effect that a dis-
turbance could exert on the coral reef fish community remains an 
assumption that cannot be fully evaluated using only network anal-
ysis, because the temporal dynamic of movement is then ignored 
(Stehfest et al., 2015). Ferrari et al. (2014) showed the utility of 
using dynamic network models for studying dynamical processes. 
Indeed, they modelled the temporal changes in the occurrence of 
links within a patch network to identify habitat patches that con-
tributed the most to pathogen range expansion. Our study demon-
strates the advantages of dynamic network models for wildlife 
conservation and management. We used reaction–advection–dif-
fusion modelling to provide an effective tool to anticipate vari-
ation in space use following, for example, management-induced 
changes in landscape connectivity (Figure 4).

Accurate modelling of landscape connectivity using spatial 
network requires an understanding of the interplay between ani-
mal movement and habitat attributes (Nathan et al., 2008). Here, 
we offer guidance on how to predict links in a spatial network 
while considering structural and functional connectivity. Indeed, 

F IGURE  4 Change in relative intensity 
of meadow use estimates for plains bison 
in Prince Albert National Park: predicted 
by the reaction–advection–diffusion 
model while considering different network 
structures for implementing the removal 
of the 10 most connected meadows 
(yellow stars) (a) ultra-small world scale-
free network, (b) mininum planar graph, (c) 
700-m distance threshold network and (d) 
1,800-m distance threshold network. The 
value represents the change in the relative 
intensity of meadow use in comparison to 
model prediction before meadow removal 
(Figure 3)
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meadow area and distance between meadows were two key co-
variates to predict the links in the spatial network of plains bison, 
using the ERGMM. The resulting network had similar properties 
than the empirical graph of bison constructed directly from GPS 
data. The adjustment was not as good for the distance-based and 
minimum planar graphs, which only consider inter-meadow dis-
tances in our case. Thus, the ERGMM can provide an accurate and 
superior model of landscape connectivity without being limited by 
the number of landscape attributes (i.e. a large variety of param-
eters can be implemented at a relatively low computational cost). 
Besides, considering the fast development of telemetry tools 
(e.g. GPS-collars are now available for a broad range of species, 
Cagnacci, Boitani, Powell, & Boyce, 2010) and geographic infor-
mation systems, movement among patches and residency time can 
then be estimated for an increasing number of species in various 
landscapes. Our modelling approach should thus be increasingly 
used in ecological studies.

In conclusion, our work has demonstrated how reaction–advec-
tion–diffusion modelling coupled to network theory can provide a ro-
bust mechanistic framework to predict animal distributions in dynamic 
environments. Our modelling framework could be applied to a large 
range of systems that experience rapid environmental changes due 
to habitat management, for example. Finally, complex networks can 
be relevant for modelling landscape connectivity in ecological studies, 
and identifying appropriate conservation or management targets.
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