
Combinatorial Arithmetic
on Elliptic Curves

by

Gabriel Gauthier-Shalom

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2017

c© Gabriel Gauthier-Shalom 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Paulo Barreto
Professor

Supervisor: David Jao
Associate Professor

Internal Member: Alfred Menezes
Professor

Internal Member: Kevin Purbhoo
Associate Professor

Internal-external Member: David McKinnon
Professor

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

We propose a scalar multiplication technique on an elliptic curve, which operates on
triples of collinear points. The computation of this operation requires a new approach
to operation chains, with similarities to Montgomery ladders for x-only scalar multipli-
cation. We develop a diagrammatic calculus with a combinatorial flavor for the purpose
of developing these operation chains. Some interesting algebra arises when studying this
diagrammatic calculus, which leads us to improvements to our algorithms. We propose
some cryptographic applications for our scalar multiplication technique.

iv

Acknowledgements

Thank you Professor David Jao for your infinite patience.

v

Dedication

This is dedicated to Cécile.

vi

Table of Contents

1 Introduction 1

1.1 Elliptic Curve Point Multiplication . 2

1.2 Montgomery’s x-only Point Multiplication 2

1.3 Line Multiplication . 3

1.4 Diagrammatic Algebra . 4

1.4.1 Improved Line Multiplication . 6

1.4.2 Three Torsion . 7

1.4.3 Trilinear Forms . 7

1.5 Applications and Future Work . 8

2 Elliptic Curve Cryptography 9

2.1 Cryptography . 9

2.2 The Discrete Logarithm Problem . 10

2.3 Introduction to Elliptic Curves . 11

2.4 Elliptic Curve Point Addition . 13

2.4.1 Elliptic Curve Point Multiplication 14

2.5 Elliptic Curves for Cryptography . 16

2.6 Efficient Elliptic Curve Arithmetic . 17

2.7 x-only point multiplication . 18

vii

3 Line Multiplication 21

3.1 Lines . 22

3.2 Line Multiplication . 24

3.3 Obstacles to Line Addition . 25

3.4 Cyclically Oriented Lines . 27

3.5 Cyclic Line Addition . 29

3.6 Generic Line Addition . 33

3.7 Formula for Linear Sum Function . 35

3.8 Generic Line Multiplication Operation Chain 39

3.8.1 Line Doubling . 40

3.8.2 Line Addition . 41

3.8.3 Line Multiplication Ladder . 41

3.9 Improving on Generic Algorithm . 44

3.10 Nine Point Diagrams . 45

3.11 Recursion . 48

4 Generalized Line Multiplication 50

4.1 Generalized Elliptic Curve Line Multiplication 50

4.1.1 Generalizing to Abelian Groups . 52

4.2 Generic Linear 2-Set Multiplication . 52

4.3 Generic Linear Multiplication . 55

4.3.1 Generic Line Multiplication . 56

4.3.2 Breakdown . 58

4.4 Linear Sets over a Field . 59

4.4.1 Generic Line Multiplication Over a Field 59

4.4.2 Improved Line Multiplication Over a Field 61

4.5 Application: Cipolla’s algorithm . 64

4.5.1 Cipolla Using Line Multiplication 66

viii

5 Diagrammatic Algebra 68

5.1 Label Structures . 69

5.1.1 Isomorphisms of Incidence Structures 70

5.1.2 Nine Point Diagram Structure . 71

5.2 Labeled Diagrams . 73

5.2.1 Automorphisms on Labeled Diagrams 74

5.2.2 Labeled Diagram Arithmetic . 75

5.3 Diagrams With Symmetry . 77

5.3.1 Automorphisms on Diagrams with Symmetry 78

5.3.2 Unlabeled Line Diagrams . 78

5.3.3 Cyclic Line Diagrams . 79

5.3.4 Nine Point Diagrams with Symmetry 79

5.4 Diagrammatic Arithmetic . 80

5.4.1 Isomorphic Diagrammatic Sum . 82

5.4.2 Diagrammatic Sum Symmetries . 86

5.4.3 Diagrammatic Sum . 89

5.5 Homomorphisms of Diagrams . 91

5.5.1 Algebraic Definition of Diagrammatic Homomorphisms 92

5.5.2 Forgetful Homomorphisms . 94

5.5.3 Line Extraction . 95

5.6 Linear Arithmetic . 95

5.6.1 Cyclic Line Arithmetic . 96

5.6.2 Forward Differences . 99

5.7 Nine Point Diagram Dichotomy . 102

5.7.1 Completion Diagram . 103

5.7.2 Diagrams Within Diagrams . 107

5.7.3 Line Addition and Completion Diagrams 109

ix

6 Diagrammatic Calculus 112

6.1 Diagram Functions . 114

6.2 Nine Point Diagrams . 115

6.2.1 Nine Point Diagram Function . 116

6.2.2 Algebraic Relations Between Line Coordinates 117

6.2.3 Nine Point Diagram Automorphisms 118

6.3 Nine Point Diagram Orientation . 119

6.3.1 Formulas for Nine Point Diagram Orientation 120

6.3.2 Orientation in Terms of Two Lines 122

6.3.3 Relation to Cyclic Orientation . 125

6.4 Forward Differences in Nine Point Diagrams 126

6.4.1 Alternate Representations . 130

6.4.2 Proof of Theorem 6.4.3 . 130

6.4.3 Cyclic Line Arithmetic . 134

6.5 Completion Diagrams . 136

6.5.1 Symmetries . 140

6.5.2 Relations from Line Sum Function 141

6.5.3 Pairing Indicators . 142

6.5.4 Linear Sum Diagram Orientation 144

6.6 Diagrammatic Line Addition . 146

6.7 Cyclic Line Multiplication . 149

7 Three Torsion Algebra 151

7.1 Elliptic Curve Three Torsion . 153

7.1.1 Action of Three Torsion . 155

7.2 Trilinear Forms . 156

7.2.1 Cyclic Orientation from Determinant Forms 159

7.2.2 Forward Difference from Trilinear Forms 163

7.2.3 Point Addition and Trilinear Forms 165

7.3 Trilinear Forms on Lines . 166

7.3.1 Trilinear Form Relations . 167

7.3.2 Proof of Theorem 7.3.3 . 168

x

8 Conclusion and Future Work 172

8.1 Geometric Interpretations . 172

8.2 Elliptic Curve Scalar Multiplication . 173

8.2.1 Point Multiplication in Algebraic Extension 174

References 175

Appendices 176

A Table of Formulas 177

A.1 Explicit Line Sum . 177

A.2 Doubling Formula . 179

A.3 Nine Point Diagram . 179

A.4 Nine Point Diagram Toolbox . 181

A.5 Line Sum Function . 182

A.6 Special Cases . 184

A.7 Eight Point Diagrams . 186

B Three Torsion Calculation 188

B.1 Elliptic Curve Three Torsion . 188

B.2 Action of the 3-torsion on Points . 192

B.3 Action of 3-torsion on Lines . 194

B.4 Algebraic Properties of Three Torsion Matrices 196

B.5 Trilinear Forms . 199

B.6 Hessian Form of Elliptic Curve . 201

B.6.1 Three Torsion . 201

B.6.2 Addition Formulas . 202

xi

Chapter 1

Introduction

In this thesis, we explore an operation associated to an elliptic curve, which we call line
multiplication. This will be defined for an elliptic curve E with the following equation:

E : y2 = x3 + a x+ b

for constants a, b in a field F. A line ` in this context is a collection of three points
P0, P1, P2 ∈ E satisfying P0 +P1 +P2 = O, without regard to their ordering and with repe-
titions allowed. Such a line ` is typically encoded by an equation of the form y = m`x+ b`;
geometrically, this corresponds to a line in the (x, y)-plane.

For a line `, we observe that we can multiply the equation P0 + P1 + P2 = O through
by k ∈ Z to obtain kP0 +kP1 +kP2 = O; thus the three points kP0, kP1, kP2 correspond to
another line which we denote k�`. We refer to the operation ` 7→ k�` as line multiplication,
and our goal is to develop algorithms for line multiplication and other related operations.

The algorithms that we develop are similar to double-and-add operation chains for
elliptic curve point multiplication, but they face additional obstacles. Namely, the addition
operation is ambiguous, with six possible outcomes when two typical lines would be added.
To deal with this, we develop a diagrammatic algebra that allows us to study the various
possible combinations. The diagrammatic algebra also endows additional structure to the
objects of our operation chains, and this assists in overcoming the obstacles. In conjunction
with the diagrammatic algebra, we develop a diagrammatic calculus which encompasses
formulas to express relations between the various objects in our diagrams. Together, these
give a powerful framework for developing line multiplication algorithms.

Our secondary goal is to explore potential applications of line multiplication in elliptic
curve cryptography. In fact, the inspiration for line multiplication came from Montgomery’s
x-only scalar multiplication, which has many such applications. In principle, the line
multiplication algorithms could be applied to perform point multiplication as well, but our

1

algorithms fall short of being competitive with existing implementations. On the other
hand, there is much more structure to our operation, and we hope to use this to develop
new cryptographic capabilities.

1.1 Elliptic Curve Point Multiplication

The study of elliptic curves has a long history in theoretical mathematics, and is particu-
larly notable for connecting seemingly disparate topics. More recently, elliptic curves have
risen to prominence in applied cryptography. This is largely due to the intractability of its
discrete logarithm problem; that is to say that in a suitable context, no efficient algorithm
is known that recovers k ∈ Z given P ∈ E and k · P ∈ E. Because of the the wide deploy-
ment of elliptic curve point multiplication, there is a lot of research devoted to developing
more efficient implementations.

In a point multiplication algorithm on E, we start with a point P ∈ E and an integer
k ∈ Z, and the goal is to compute the coordinates of k · P . The prototypical example is
the double-and-add operation chain, where we use a point doubling operation and a point
addition operation to iteratively compute a list of points, terminating with k · P . For
example, to compute 5 · P , we could iteratively compute:

P, 2 · P = DOUBLE(P), 4 · P = DOUBLE(2 · P), 5 · P = ADD(P, 4 · P)

There are many ways to improve the efficiency of these algorithms. For example, by
choosing a different equation to define an elliptic curve, we can obtain much more efficient
implementations of elliptic curve addition/doubling. There are also many methods to
improve on the double-and-add operation chain, often by using different representations
of the scalar k, or by using different arithmetic operations. We discuss elliptic curve point
multiplication in more detail in chapter 2.

1.2 Montgomery’s x-only Point Multiplication

Here we focus on a particular development in the theory of elliptic curve operation chains,
since it serves as a template for our line multiplication operation. That development is
Montgomery’s x-only point multiplication operation from his paper “Speeding the Pollard
and Elliptic Curve Methods of Factorization” [7]. In that paper, Montgomery consid-
ers various ways to improve the efficiency of factorization algorithms for large composite
integers. In particular, he develops a specialized operation chain to improve on the ellip-
tic curve factorization algorithm from Hendrik Lenstra’s “Factoring integer with elliptic
curves” [6].

2

The essential idea is that for k ∈ Z and a point P on an elliptic curve in reduced
Weierstrass form1:

E : y2 = x3 + ax+ b,

it is possible to compute x(k ·P) from x(P), without knowing y(P). Note that P can only
be determined up to sign if we are given x(P), since x(P) = x(−P). But this problem
resolves itself by noting that x(k · P) = x(−k · P), and hence the resulting x-coordinate
will be the same in any case.

The next challenge is to adapt an operation chain on E to the case where only the
x-coordinate is known. The doubling operation runs into no problems; given x(P), we can
compute:

x(2 · P) =
a2 − 2ax(P)2 − 8bx(P) + x(P)4

4 (b+ ax(P) + x(P)3)
.

The addition operation requires modification; if we are only given x(P) and x(Q), we
cannot distinguish between x(P + Q) and x(P − Q). This problem is resolved by not-
ing that symmetric combinations of those quantities can be computed. For example,
x(P +Q) + x(P −Q) can be expressed as a function of x(P) and x(Q):

x(P +Q) + x(P −Q) =
2 (2b+ a(x(P) + x(Q)) + x(P)2x(Q) + x(P)x(Q)2)

(x(P)− x(Q))2

So then if x(P − Q) is known, we can compute x(P + Q). This allows for an operation
chain called a Montgomery ladder to compute x(k · P), which is explained in section 2.7.

1.3 Line Multiplication

For the line multiplication operation, we start with a line, defined as the zero set of the
following function:

`(x, y) = y −m`x− b`
which intersects E at P0, P1, P2. The goal is to compute the coefficients of k � ` :

(k � `)(x, y) = y −mk�`x− bk�`

which intersects E at points k · P0, k · P1, k · P2 for some k ∈ Z.

We note that in the precise definition of line multiplication, we must include the pos-
sibility of vertical lines:

`(x) = x− x`
1Montgomery in fact uses the form By2 = x3 + Ax2 + x, but this does not affect our discussion

significantly.

3

which correspond to x-coordinates. This allows us to consider line multiplication as a
generalization of the x-only point multiplication operation.

Now we consider operation chains for computing line multiplication. We face similar
obstacles to those faced in the x-only operation. Namely, line doubling can be achieved
with an explicit formula, but line addition faces a problem of ambiguity. In fact, the
ambiguity in line addition is much more daunting since it is 6-fold! This corresponds
to the six possible ways of matching the points between the lines that we are adding.
Furthermore, the method of resolving the x-only addition ambiguity will not work for line
multiplication; if we add k0 � ` and k1 � `, we have 6 possible sum lines; one of those will
be the “good” sum line (k0 + k1) � `, but the other 5 “bad” sum lines will not be multiples
of `, and thus will not have appeared earlier in our operation chain. Fortunately, there are
ways to overcome those obstacles, which are summarized here:

• Obstacle: Reduce the 6-fold ambiguity in line addition. To deal with this
first obstacle, we attach additional structure to our lines. This consists of a cyclic
orientation on the set of three points that form each line. By imposing that the
line addition respect this structure, we reduce the 6-fold ambiguity down to a 3-fold
ambiguity (see the figure in the next section.) After that comes a magical vanishing
act: it turns out that with a little care, we can get the benefits of this reduction in
ambiguity without ever using cyclic orientations.

• Obstacle: Deal with “bad” sum lines in line addition. To deal with the
second obstacle, we will note that when summing lines k0 � ` and k1 � `, the two
“bad” lines that appear will be the same as the two “bad” lines that appear when
adding (k0 − k1) � ` and −k1 � `. This will allow for a trick where we eliminate the
“bad” lines together. In essence, the trick to overcoming the second obstacle boils
down to the observation that if P0 + P1 + P2 = O, then adding P0 is equivalent to
subtracting both P1 and P2.

In chapter 3, we elaborate on these obstacles and solutions, and present a conceptually
simple line multiplication algorithm. In fact, this generic line multiplication algorithm
applies to arbitrary abelian groups, which we describe in chapter 4 along with potential
applications. While generic line multiplication is conceptually simple, it is quite inefficient,
and we devote our efforts to finding more efficient algorithms in later chapters.

1.4 Diagrammatic Algebra

To improve our line multiplication algorithms from chapters 3 and 4, we take a closer look
at the line addition step in chapter 5. By studying the structures that emerge, we find

4

simple relations between the objects in our operation chains. These relations are then used
to develop more efficient line multiplication algorithms.

We start by considering the addition of two lines u, v, represented as follows:

u
P0 P1 P2

v
Q0 Q1 Q2

and organize the results into the nine point diagram shown on the left:

w5

w6

w4

w1

w3

w2

P0 +Q0

P1 +Q1

P2 +Q2

P1 +Q2

P2 +Q0

P0 +Q1

P2 +Q1

P0 +Q2

P1 +Q0

u � v
P0 P1 P2

Q2

Q1

Q0

u � v
P0 P1 P2

Q0

Q1

Q2

We note that the six possible sum lines between u, v are included, with the labels
w1, . . . , w6. As mentioned earlier, by specifying cyclic orientations on u and v, we reduce
the ambiguity down from 6-fold to 3-fold. This is indicated in the diagram; if u, v are
given the orientations indicated in the northeast corner, then the possible sum lines are
w1, w2, w3, while the orientations in the southeast corner correspond to the possible sum
lines w4, w5, w6.

5

To make our notion of diagram more precise, and to develop symbolic methods to work
with them, we develop a diagrammatic algebra in chapter 5. This has a combinatorial
flavor, with some inspiration coming from the theory of combinatorial species. And just
as that theory attaches a calculus to its algebra, in chapter 6 we attach a diagrammatic
calculus to our diagrammatic algebra.

The starting point of the diagrammatic calculus is the linear sum function u� v on E
which vanishes exactly at the points in the nine point diagram:

Div(u� v) =
∑

i,j∈{0,1,2}
(Pi +Qj)− 9(O)

We note that by partitioning the nine point diagram into three lines, we can factor u�v as
a product of three line functions. Since there are two ways to partition the points, we can
compare the corresponding expressions of u� v to obtain relations among the six possible
sum lines. For example, if the lines wi are defined by y = mix+ bi, then

m1 +m2 +m3 = m4 +m5 +m6.

The benefits of studying nine point diagrams are amplified by the fact that they appear
in line addition under many guises. In fact we can already describe a second appearance:
we can form a nine point diagram between the lines u, v,−wi for any sum line wi. In this
way, we can apply the results from our diagrammatic calculus in multiple ways to obtain
relations between the lines that appear in our operation chains.

1.4.1 Improved Line Multiplication

Using the diagrammatic tools that we develop, we gain a better understanding of the
generic line multiplication algorithm. Then we develop the diagrammatic tools further,
and this allows us to find simple relations which are used to improve our algorithms. The
main tools that we develop come from comparing structural elements of the input lines
u, v to structural elements of the nine point diagram.

For example, the cyclic orientation structure on u can be encoded via a forward dif-
ference line ∆u with points P2 − P1, P0 − P2, P1 − P0; this same line can be found in the
nine point diagram by starting at P1 +Q0 and taking the forward difference while traveling
west. Then by algebraically encoding these structures, we obtain explicit relations between
the lines u, v and the lines w1, w2, w3. This leads to a cyclic line multiplication algorithm
which improves on the generic line multiplication algorithm.

6

1.4.2 Three Torsion

To further improve our line multiplication algorithms, we study the symmetries of u � v
that arise from three torsion points in chapter 7. Three torsion points T ∈ E satisfy
3 · T = O, and so their tangent lines have a triple intersection with E:

`T (x, y) = y −mTx− bT
Div(y −mTx− bT) = 3(T)− 3(O)

This has an important consequence: there is in fact no ambiguity in the line addition
between `T and any line u, and we denote the line sum by u�T . And since the mapping
u 7→ u�T takes lines to lines, it is in fact a projective linear map; stated otherwise, the
map �T is given by a matrix multiplication. In fact, the map on points P 7→ P + T can
also be realized as a projective linear map as a consequence.

The aforementioned symmetries of u � v come from the following transformations for
three torsion points T ∈ E[3]:

(u, v) 7→ (u�T , v�T)

(u�T)� (v�T) = u� v

Since there are 9 three-torsion points in E(F), this imposes a group of 9 simple symmetries
on the coefficients of u � v. This tells us a lot about their structure, and we can exploit
this to simplify calculations involving the line sum function.

1.4.3 Trilinear Forms

Lastly, we combine the previous two approaches; by incorporating the action of E[3], we
can expand our diagrammatic calculus. Specifically, there are certain trilinear forms that
give simple relations between the lines that appear in a cyclic line addition. These can be
used to further improve on our cyclic line multiplication algorithms.

The aforementioned trilinear forms have analogues dO, e0, e1 in point arithmetic. These
have a simple arithmetic interpretation; for collinear points R0, R1, R2, we have

0 = dO(R0, R1, R2) = e0(R0, R1, R2) = e1(R0, R1, R2)

Since each of these is linear in the third point when we fix the first two, this allows us to
use linear algebra to derive point addition formulas.

In fact, this property has a simple explanation in terms of three torsion. First note that
if R0 +R1 +R2 = O, then those points are collinear. Hence the determinant dO(R0, R1, R2)
of the (projective) coordinate vectors must vanish. This gives the first of the trilinear

7

forms. To get another, we note that for any three torsion point T , we also have that
dO(R0, R1 + T,R2 − T) vanishes, since its arguments also add up to O. But because �T
is given by a matrix multiplication, it turns out that from det(R0, R1 + T,R2 − T) we
get a trilinear form that also vanishes when R0 + R1 + R2 = O. By taking all of these
together for various T , we find that we get a three dimensional space of trilinear forms;
the aforementioned dO, e0, e1 give a basis for that space, with simpler coefficients.

In line arithmetic, the determinant form first appears when considering the nine point
diagram orientation, which corresponds to a choice between the two ways to partition the
nine points into three lines. Specifically, the nine point diagram orientation is related to
the cyclic line orientations for u and v by a determinant formula. Then using three torsion
algebra, we can bootstrap this to replace the determinant form with other trilinear forms.
These provide simple relations between line coefficients in a nine point diagram.

1.5 Applications and Future Work

The most natural application for line multiplication is in implementations of point multi-
plication. As a simple illustration: given a point P ∈ E, we can choose two lines `, `′ that
contain it; then we could calculate k ·P = k� `∩ k� `′. Of course, this would be very in-
efficient. In chapter 8, we explain how to make better use of line multiplication to perform
point multiplication. In particular, line multiplication is well suited to point multiplication
in quadratic or cubic extensions of the base field. This is because we can choose lines with
coefficients in the base field, but whose points lie in an algebraic extension.

We also consider other uses of line multiplication in cryptography. For example, in a
Weierstrass form elliptic curve over a composite modulus N = pq, suppose that we choose a
random x-coordinate. Then determining the corresponding y coordinate involves taking a
square root; this problem is considered intractable for large N with unknown factorization.
Montgomery’s x-only point multiplication can be used in these cases, since the y coordinate
is not needed. In some applications, we can similarly work with partial information about
a point, by specifying a more general line that contains it.

The main work that we are doing at present is to look for improvements to line multipli-
cation algorithms. In particular, we can make many savings by working with the Hessian
form of elliptic curves, as we briefly mention in section B.6. This form arises naturally
when studying the invariance of the line sum function. There are also many mysteries
about the line addition algebra that we are trying to understand better. In fact, only a
small proportion of our experimentally discovered results are presented here, but most of
these are too fragmentary to be presented.

8

Chapter 2

Elliptic Curve Cryptography

Elliptic curves are mathematical objects with connections to a surprising number of math-
ematical fields. They arise naturally in geometry when trying to solve degree 3 or 4
polynomial equations in two variables. They also arise in analysis in connection to ellipse
circumference functions, and this is the source of their name. Today they play an important
role in a practical field of mathematics: cryptography.

In this chapter, we present the basic theory of elliptic curve cryptography. We start
with an overview of the history of cryptography leading up to the computer era. Then we
discuss elliptic curves, and how they fill an important niche in public key cryptography.

We then focus on algorithms for elliptic curve arithmetic. We present various methods
that cryptographic researchers have found to improve these algorithms. In particular, we
highlight Peter Montgomery’s x-only point multiplication algorithm, which serves as a
template for our own line multiplication operation.

2.1 Cryptography

At its core, cryptography is about rendering messages unreadable for everyone except
for the intended recipient. This need to obfuscate communications has a long history in
military applications. Historical cryptographic systems relied on prior secret agreements
between the communicating parties. The parties would agree on a suitable method to
transform a message into a ciphertext, and then a recipient who was privy to the method
could reverse it to recover the plaintext. The secret part of the method would often be en-
capsulated in a secret key; this might be a password or a configuration of a physical device.
This type of system is called a private key cryptographic system today, or alternatively
a symmetric key system, since communicating parties have knowledge of the same secret.
A famous example of such a system is the Enigma machine used by the Germans during

9

the Second World War. Its continued fame comes in part from the team at Bletchley Park
(including Alan Turing) that developed a computer to assist in cracking the Enigma code.

In the aftermath of the war, cryptographic researchers pondered systems that did not
rely on prior secret communications. This type of system would face significant challenges;
if an eavesdropper intercepted all communications, then surely they should be able to
decode all future communications. In fact, such public key cryptographic systems are
indeed possible. The essential idea is that each communicating party has a private key
known only to them, and a corresponding public key that can be broadcast to the world.
Then other parties use this public key to encode messages in such a way that the private
key is required to decode it. Because communicating parties do not have access to the
same secret keys, these system are also called asymmetric key systems.

Any public key system will have an inherent weakness; the private key can be calculated
from the public key. But this weakness can be overcome by carefully designing the system
to make sure that this calculation is impractical. For example, the widely deployed RSA
cryptosystem relies on the difficulty of factoring a large number into two prime factors.
This is considered to be infeasible if the prime factors are properly chosen to be large
enough. But modern advances in number theory have weakened this; the world record for
factorization is uncomfortably close to the size of some keys that are in use today.

With this in mind, cryptography has been slowly shifting towards using elliptic curve
systems. These systems use elliptic curves because they have a group structure that has a
difficult discrete logarithm problem. That is, we can multiply a point P on the curve by an
integer k ∈ Z, but given P and k ·P , it is considered infeasible to recover k. Because of the
growing use of elliptic curve cryptography, there is much research dedicated to improving
the efficiency of the underlying algorithms. This is the context for the system that we are
developing.

In fact, theoretical weaknesses in elliptic curve cryptography have now been found; these
rely on quantum computers, which have capabilities that allow for effective attacks on any
discrete logarithm problem. Although no quantum computer has yet been created of the
necessary size to implement such an attack, there is a lot of optimism (or pessimism) that
this will be achieved soon. Thus much attention has been shifted to newer post quantum
cryptographic systems. We will not discuss these systems further in this thesis.

2.2 The Discrete Logarithm Problem

In this section, we discuss an important early example of public key cryptography, called
the Diffie Hellman system. This will be used to illustrate the utility of finding an abelian
group G which has a difficult discrete logarithm problem.

10

Definition 2.2.1. The discrete logarithm problem in a finite abelian group G is to find
an efficient algorithm which takes as input g, gk for some g ∈ G and k ∈ Z, and outputs k.

Given an abelian group G with a difficult discrete logarithm problem, the Diffie Hellman
system works as follows, for communicating parties Alice and Bob:

• A fixed element g ∈ G is agreed upon.

• Alice secretly chooses a random integer a ∈ {0, 1, . . . , |G| − 1}, and sends ga to Bob.

• Bob secretly chooses a random integer b ∈ {0, 1, . . . , |G| − 1}, and sends gb to Alice.

• Alice computes (gb)a = gab.

• Bob computes (ga)b = gab.

Now the quantity is gab a shared secret between Alice and Bob.

An eavesdropper Eve who could solve the discrete logarithm problem would be able to
get in on the secret. By intercepting the values ga, gb, Eve finds a from ga, then computes
(gb)a = gab.

2.3 Introduction to Elliptic Curves

Thankfully, there exists a convenient class of groups with discrete logarithm problems
which are considered difficult. These come from elliptic curves over finite fields. We define
elliptic curves in a more general context in this section.

A typical presentation of an elliptic curve E is as the solution set in (x, y) of a Weier-
strass equation:

y2 = x3 + ax+ b

where a, b are fixed elements of a field F, with 4a3 + 27b2 6= 0. Additionally, E includes a
distinguished base point O in the vertical direction at infinity.

An important focus of the study of elliptic curves is to find and characterize points
with some desired property, such as being rational. In contrast with simpler curves, such
as conic sections, there is no simple parametrization of rational points on an elliptic curve.
But there is a saving grace; the points of an elliptic curve can be endowed with a group
structure. The problem of finding rational or integral points on an elliptic curve go at least
as far back as the third century AD, when Diophantus published a solutions from old for
certain cubic equations (See [5], book VI, problem 19 for example.)

11

The group structure is now well understood, but there are still many challenges re-
maining. In fact, the Clay Institute has offered a million dollar prize for the solution to
an outstanding problem in the field, known as the Birch and Swinnerton-Dyer conjecture
(which is normally shortened to “BSD conjecture” for obvious reasons.) This conjec-
ture posits a connection between the algebraic structure of an elliptic curve, and analytic
properties of an associated function. There is extensive numerical support for the BSD
conjecture, in addition to having parallels in well established results of algebraic number
theory and geometry.

The BSD conjecture and other mysterious connections involving elliptic curves are an
important focus in modern mathematics. One prominent success in this vein came from
Princeton’s Andrew Wiles, who used deep results about elliptic curves to prove Fermat’s
Last Theorem. As a conjecture, Fermat’s Last Theorem had stymied mathematicians for
centuries, and attracted much attention due to its simplicity:

Theorem 2.3.1 (Fermat’s Last Theorem). For n ∈ Z greater than 2, there is no solution
in positive integers to the equation

xn + yn = zn.

In recent decades, elliptic curves have risen to prominence in another field: cryptogra-
phy. This stems from the fact that in a suitable setting, the group of points on an elliptic
curve has a difficult discrete logarithm problem. Namely, if we use the group structure to
multiply a point P ∈ E by a scalar k ∈ Z, then it is intractable to recover the scalar k by an
adversary who is given only P and k ·P . It turns out that the difficulty of this problem can
be used as a basis for the security of public key cryptography protocols. Such protocols are
indispensable to the security of modern communications. For this reason, there is a large
amount of research devoted to improving the efficiency of point multiplication algorithms.

For completeness, we include a precise technical definition of an elliptic curve:

Definition 2.3.2. An elliptic curve over a field F is a non-singular curve E of genus 1,
along with a distinguished point O of E.

If the field F has characteristic other than 2 or 3, then E can be modeled by a reduced
Weierstrass equation:

E : y2 = x3 + ax+ b

for suitable coefficients a, b ∈ F; by default, the distinguished point is then O := (0 : 1 : 0)
in the projective completion of E.

12

2.4 Elliptic Curve Point Addition

In this section, we define an abelian group structure on an elliptic curve E. Given points
P,Q ∈ E, this allows us to form a new point denoted P + Q on E. Furthermore, this
operation is given by rational functions in the input, and the + operation satisfies the
group axioms with identity element O.

The addition on E is characterized by the following property: for any rational function
f ∈ F(E) with divisor

Div(f) = c0(P0) + . . .+ ck(Pk),

the following equation holds in the additive group structure on E:

c0P0 + . . .+ ckPk = O.

In other words, given a rational function f on E, the sum of all zeroes of f is equal to the
sum of all poles of f . We note that any rational function f ∈ F(E) has the same number
of zeroes and poles; that is, c0 + . . .+ ck = 0.

Now suppose that our curve is in reduced Weierstrass form:

E : y2 = x3 + ax+ b

for a, b ∈ F. We will more explicitly describe the addition on this curve.

We start by noting that for a fixed x0 ∈ F, the function x− x0 ∈ F[E] vanishes at two
points (x0,±y0) ∈ E(F). Hence we have:

Div(x− x0) =((x0, y0)) + ((x0,−y0))− 2(O)

and so (x0, y0) + (x0,−y0) = O. In other words, negation in the group structure of E
corresponds to reflection across the x-axis: (x0, y0) 7→ (x0,−y0).

Now we consider points P,Q ∈ E, and outline a method to obtain P + Q. Let ` be
the line through P and Q (or the tangent line at P if P = Q.) Then ` intersects E at a
third point R, which will satisfy P + Q + R = O. Thus R = −P −Q, and we can reflect
R across the x-axis to obtain P +Q. (For more details, see for example §13.1.2 of [3].)

Now we obtain a formula for R. Let our line be given by the equation ` : y = m`x+ b`;
note that if ` is a vertical line, then P + Q = O. Then the intersection points between `
and E satisfy the following:

0 =b+ ax+ x3 − (m`x+ b`)
2

=(b− b2
`) + (a− 2m`b`)x−m2

`x
2 + x3

13

Now since P,Q ∈ ` ∩ E, we know that xP , xQ are two roots of the above cubic. So by
Vieta’s formulas, the third root xR satisfies:

xP + xQ + xR = m2
`

which allows us to solve for xR. Then we get yR = m`xR + b`. Finally, we calculate
(x(P +Q), y(P +Q)) = (xR,−yR), since P +Q = −R.

This leads to addition formulas. First we note some special cases:

• If P = O, then P +Q = Q.

• If Q = O, then P +Q = P .

• If P = Q, we use a doubling formula:

m :=
a+ 3x2

P

2yP
x(2P) := m2 − 2xP

y(2P) := − (m (x(2P)− xP) + yP)

• If P 6= Q but x(P) = x(Q), then P +Q = O.

• Otherwise:

m :=
yP − yQ
xP − xQ

x(P +Q) := m2 − xP − xQ
y(P +Q) := − (m (x(P +Q)− xP) + yP)

2.4.1 Elliptic Curve Point Multiplication

Using the group structure on E, we define scalar multiplication of a point P ∈ E by a
scalar k ∈ Z:

k · P = P + P + · · ·+ P︸ ︷︷ ︸
k

Of course, this can be calculated by simply adding P to itself k times. But for large k,
this will be very inefficient, so we consider better algorithms. The simplest of these is
the double-and-add operation chain. Here it is, where ADD and DOUBLE represent the
formulas from the previous section:

14

Algorithm 1: Double-and-add point multiplication

Input : Parameters a, b of the elliptic curve E : y2 = b+ ax+ x3, a point
P = (xP , yP) ∈ E and a positive integer k ∈ Z>0 with binary expansion
kb−1 . . . k1k0 and kb−1 = 1.

Output: k · P
1 if P = O then
2 return O;
3 else
4 x, y ← xP , yP ;
5 end
6 for i← b− 2 to 0 do
7 x, y ← DOUBLE(xP , yP);
8 if ki = 1 then
9 x, y ← ADD((x, y), (xP , yP))

10 end
11 return (x, y);

12 end

15

2.5 Elliptic Curves for Cryptography

As mentioned earlier, elliptic curves found a new niche in recent decades, since scalar
multiplication is hard to reverse in an appropriately setting. These elliptic curves found
in cryptography are defined over finite fields. We will now give a brief overview of the
qualities that make an elliptic curve secure for cryptographic applications.

An elliptic curve over a finite field F can be modeled by a Weierstrass equation of the
form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for constants ai in the base field. The set of points E(F) that lie in the base field form
a finite group, which gives the setting for cryptographic algorithms. The cryptographic
applications of elliptic curves normally hinge on the difficulty of the discrete logarithm
problem. So suppose an adversary knows the curve, and is given the points P, kP ∈ E(F),
but is not given k ∈ Z. Then it should be computationally infeasible for him to discover k.

A simple example of elliptic curve point multiplication in cryptography is Elliptic Curve
Diffie Hellman (ECDH). This is an implementation of the prototypical public key cryptog-
raphy scheme; in fact the Diffie Hellman scheme is also one of the oldest. Alice and Bob
would like to communicate securely, but have no private communication channel. So they
first agree on a suitable elliptic curve E and a point P on that curve; this information is
assumed to be public. Alice chooses a secret ka, and sends ka ·P to Bob. Bob simultaneous
chooses a secret kb, and sends kb · P to Alice. Then Alice computes ka · (kbP) = kakbP ,
and Bob computes kb · (kaP) = kakbP . These are the same, and Alice and Bob have now
established a shared secret, over public channels! Of course, if an eavesdropper could solve
the discrete logarithm problem, then they could discover ka, kb from ka ·P, kb ·P , and thus
the secret would be out.

Now we discuss the group structure of E(F) as it pertains to the cryptographic appli-
cations. We first note that if the group order n of E(F) is small enough, then an adversary
could run an exhaustive search to solve the discrete logarithm problem. In fact, the points
of E(F) form a group whose order is approximately the same as the order q of F:

Theorem 2.5.1. For an elliptic curve E defined over a finite field Fq, the number of points
on E with coordinates in Fq is q + 1− t for some integer −2

√
q ≤ t ≤ √q.

Hence we need q to be large enough that an exhaustive search would be infeasible. But
this is not enough; it turns out that a variety of attacks exist on the elliptic curve discrete
logarithm problem, and curves must be selected carefully.

A simple example of an attack on the discrete logarithm occurs when the order n is
composite; in this case, the discrete logarithm problem can be broken down into smaller
subproblems. Hence n is normally chosen to be prime, or to at least have a large prime

16

factor. Thankfully, by choosing a curve with random parameters, a curve of prime order
is likely to be found after a reasonable number of iterations. But this is still not enough!
Once elliptic curves started being seriously considered for cryptographic applications, more
attacks emerged. For example, there are bilinear pairings on some curves which allow
the discrete logarithm problem to be transposed to a much simpler setting. Fortunately,
cryptographers have overcome all known practical attacks, through careful selection of
elliptic curve parameters.

That said, there is a thorn in the side of elliptic curve cryptography; a theoretical attack
exists that can solve the discrete logarithm problem on any elliptic curve. These attacks
are quantum algorithms, which can in fact solve large discrete logarithm problems in any
group. In fact there are quantum algorithms that break the most widely deployed public
key cryptography systems; for example, Shor’s algorithm can break RSA by factoring
large composite numbers. At the moment, quantum computers have not been sufficiently
developed for this to be an immediate threat, but this is an important consideration in
cryptography today.

2.6 Efficient Elliptic Curve Arithmetic

Because of the widespread deployment of elliptic curve cryptography in the twenty-first
century, there has been a lot of focus on improving the efficiency of algorithms that compute
elliptic curve arithmetic. Namely, a straightforward implementation of the algorithms
outlined in this chapter would be considered woefully inadequate today. We will now
outline in broad strokes some modern advances in this area.

A first improvement is in the base field arithmetic itself. For example, divisions use
many more resources than do the other basic arithmetic operation. Hence algorithms have
been adapted to minimize the number of divisions. Most notably, this can be achieved
by using projective coordinates; in essence, rather than dividing, we keep track of nu-
merators and denominators separately at each step. Other examples of ways to improve
base field arithmetic efficiency come from careful selection of the field, or from hardware
considerations.

Similarly, considerations of the arithmetic of E can lead to improved efficiency. There
are usually some operations that are more expensive than others, and algorithms are
adapted to replace expensive operations with cheaper ones. For example, in Weierstrass
form, point addition is normally more expensive than point doubling. But point subtrac-
tion has around the same cost as point addition. Hence the double-and-add operation chain
can be adapted to one which uses subtractions as well as additions. This extra freedom
allows for better chains which have fewer total numbers of additions/subtractions.

An important consideration is the equation that defines the elliptic curve itself. In fact,

17

although any elliptic curve can be transformed into one with a Weierstrass equation, it
is often beneficial to use a different form. For example, more efficient arithmetic can be
achieved using the Edwards form af an elliptic curve, for a fixed parameter d, with origin
(0, 1):

E : x2 + y2 = 1 + dx2y2 (x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)
Compared to Weierstrass form arithmetic, many fewer multiplications are necessary. See
[1] for much more detail.

2.7 x-only point multiplication

One common trick for point multiplication is to use the x-only point multiplication oper-
ation (see §13.2.3 of [3].) For any integer k, this operation allows one to compute x(kP),
given only the x-coordinate x(P) of a point P . This operation has applications which
come from the fact that x-only multiplication is often computationally quicker than full
point multiplication. Furthermore, this operation can be slightly tweaked to allow for the
computation of y(kP) at little additional cost; see formula 13.7 in [3].

There is another type of application which comes from elliptic curves E in composite
moduli. On a curve

E : y2 = x3 + ax+ b

in modulus N = p · q for large primes p and q, there is no known efficient general method
for finding points on E without knowing the factorization of N . One approach to this
problem is to choose an x-coordinate, and then to attempt to find the square root of
x3 + ax + b. Unfortunately, finding such square roots is provably as hard as factoring N .
This is where x-only formulas come in; for certain applications, we can choose a point P
via its x-coordinate, and then manipulate it without ever knowing its y-coordinate. An
example of such an application is Demytko’s elliptic curve analog of the RSA cryptosystem,
found in [4].

We will outline the idea behind this operation here. In analogy with square-and-
multiply exponentiation algorithms, we would like a formula to compute x(2P) and x(P +
Q) given x(P) and x(Q) for points P,Q ∈ E. The following formula gives us x(2P)
(assuming 2P 6= O):

x(2P) =
x(P)4 − 2ax(P)2 − 8bx(P) + a2

4(x(P)3 + ax(P) + b)
.

Unfortunately, if we only know x(P) and x(Q), we are dead in the water when trying
to compute x(P + Q). This is because x(P) is invariant under the negation of P , and so

18

P (or Q) can only be known up to sign. Hence there are two possibilities for x(P + Q),
which correspond to x(P + Q) = x(−P −Q) and x(P −Q) = x(−P + Q). These cannot
be distinguished in general without using more than just the knowledge of x(P) and x(Q).
Fortunately, there is a workaround, which involves tweaking the double-and-add operation
chain.

To this end, we make the following note: any function f(x, y) ∈ F(E) can be expressed
uniquely as f(x, y) = f0(x) + yf1(x). Then f is an even function if and only if f1 = 0;
stated otherwise, the functions on E which are even are exactly the functions of x. Now
the workaround comes from the observation that x(P +Q) + x(P −Q) is an even function
of both P and Q, and hence this quantity can be expressed as a function of x(P) and x(Q).
Explicitly,

x(P +Q) + x(P −Q) =
2(x(P)x(Q) + a)(x(P) + x(Q)) + 4b

(x(P)− x(Q))2
. (2.1)

This formula allows us to compute x(P +Q) given x(P), x(Q) and x(P −Q). In particular,
we can compute x((2` + 1)P) from x(`P) and x((` + 1)P , which allows for a relatively
efficient recursive point multiplication algorithm to compute x(kP) from x(P). Using the
Montgomery ladder algorithm (§13.2.3.d of [3]), we can compute x(kP) from x(P) with
around log2(k) point doublings and the same number of point additions.

Algorithm 2: Montgomery’s x-only point multiplication

Input : Parameters a, b of the elliptic curve E : y2 = b+ ax+ x3, an x-coordinate
x(P) and a positive integer k ∈ Z>0 with bits k0, k1, . . . , kb = 1.

Output: x(k · P)
1 if k = 1 then
2 return x(P);
3 else

4 r, s← x(P), x(2P) = x(P)4−2ax(P)2−8bx(P)+a2

4(x(P)3+ax(P)+b)
;

5 end
6 for i← b− 1 to 0 do
7 if ki = 0 then

8 r, s← 2(rs+a)(r+s)+4b
(r−s)2 − x(P), s

4−2as2−8bs+a2

4(s3+as+b)
;

9 else

10 r, s← r4−2ar2−8br+a2

4(r3+ar+b)
, 2(rs+a)(r+s)+4b

(r−s)2 − x(P);

11 end
12 return r;

13 end

19

In the next chapter, we will consider a more general version of x-only point multiplica-
tion. Then we revisit this operation for comparison in section 4.2.

20

Chapter 3

Line Multiplication

In this chapter, we introduce the theory of line multiplication on an elliptic curve E in
reduced Weierstrass form:

E : b+ ax+ x3 − y2 = 0

This operation takes as input a line ` : y −m`x− b` = 0 which intersects E at points
P0, P1, P2. The collinearity of P0, P1, P2 can be equivalently stated as P0 + P1 + P2 = O.
Then we note that for k ∈ Z, we also have collinearity of kP0, kP1, kP2, since these sum to
O once again. So the line multiplication operation aims to compute the coefficients of the
line through kP0, kP1, kP2.

The line multiplication is a generalization of Montgomery’s x-only point multiplication;
x-coordinates correspond to lines where one of the three points is O. As such, we will face
similar obstacles, and we will consider similar solutions. So we start by highlighting the
obstacles that appear when trying to adapt double-and-add type algorithms to the line
multiplication operation. In particular, the two way ambiguity that shows up in x-only
point addition is amplified to a six way ambiguity in the line addition step. To compound
this, we can no longer use the trick from x-only point addition, where we used knowledge
of one possible x-sum to determine the other. This is because five out of six possible sum
lines will not be part of a typical operation chain.

Next we outline the various methods for overcoming these obstacles. One important
method is to attach additional structure to the lines that we consider, which allows for a
reduction in the ambiguity in the line addition step. This leads us to cyclic line addition,
where the points on our lines are endowed with a cyclic orientation. The ambiguity in line
addition is thus reduced from six fold to three fold. Unfortunately, there still remains the
problem that two out of three possible sum lines are not part of a typical operation chain.
But we have a fortunate trick where we can eliminate these undesirable lines in pairs.

An interesting phenomenon then emerges: with a bit of care, it turns out that we
do not need to concern ourselves with cyclic orientations at all. The resulting algorithm

21

is referred to as generic line multiplication, and will serve as the template and point of
comparison for most line multiplication algorithms presented in this thesis. Because of
this, generalizations of generic line multiplication are the focus of chapter 4.

A natural question then arises: why bother with cyclic line multiplication at all if it
is simpler to circumvent it entirely? This is because while generic line multiplication is
conceptually simple to present, it is quite inefficient. In later chapters, we develop the
algebra that allows us to improve line multiplication algorithms. This algebra relies on
some additional structure that we introduce in this chapter. In chapter 5, we study those
structures in much greater depth.

In chapter 6, we develop a diagrammatic calculus that allows us to find algebraic
relations between the various quantities that appear in our operation chains. Then in
chapter 7, we incorporate the three torsion of E into our algorithms to obtain further
refinements.

3.1 Lines

Suppose that E is an elliptic curve in reduced Weierstrass form over a field F. The objects
of study in this thesis are appropriately scaled functions on E that have a pole of order at
most 3 at O, and no other poles:

L3(E) = {` ∈ F[E]× : Div(`) ≥ −3(O), ` normalized at O}

Elements ` ∈ L3(E) are typically of the form `(x, y) = y −m`x − b` for constants m`, b`.
We will refer to elements of L3(E) as lines (or linear 3-sets.)

For any non-zero function f ∈ F(E), there is v ∈ Z such that (x/y)−vf(x, y) has
neither a pole nor zero at O. Hence by scaling f appropriately, we can assure that this
latter function has value 1 at O; we then say that f is normalized :

Definition 3.1.1. For f ∈ F(E)∗, we say that f is normalized at O with respect to the
uniformizer u(x, y) = x/y (or simply normalized) if

u(P)− ordO(f)f(P)
∣∣
P=O = 1.

where ordO(f) is the order of vanishing of the function f at O. Note that ordO(u) = 1.

The following lemma makes the normalization constraint more explicit, and gives us a
more precise form for Div(`) when ` ∈ L3(E):

Lemma 3.1.2. A line ` ∈ L3(E) has

Div(`) =(P0) + (P1) + (P2)− 3(O)

22

for points P0, P1, P2 ∈ E which satisfy P0 + P1 + P2 = O.

Furthermore, there are ζ`,m`, b` ∈ F such that

`(x, y) = ζ`y −m`x− b`

where one of the following conditions holds:

• ζ` = 1 (when O 6∈ {P0, P1, P2})

• ζ` = 0 and m` = −1 (when one of P0, P1, P2 is O)

• ζ` = m` = 0 and b` = −1 (when all of P0, P1, P2 are O)

Conversely, given P0, P1, P2 ∈ E which satisfy P0 + P1 + P2 = O, there is ` ∈ L3(E)
with Div(`) = (P0) + (P1) + (P2)− 3(O).

Proof. The first and last claims follow from corollary III.3.5 of Silverman’s book [8], which
characterizes principal divisors. Using the notation and results from section II.5 of [8], we
see that by the Riemann-Roch theorem,

L(3(O)) = {f ∈ F(E) : Div(f) ≥ −3(O)} ∪ {O}

is a vector space of dimension 3. In Weierstrass form, the functions 1, x, y form a basis,
and hence `(x, y) = ζ`y −m`x− b` for appropriate constants ζ`,m`, b`.

Recall that ordO(x) = −2 and ordO(y) = −3 so ordO(x/y) = 1. The following calcula-
tion shows that y is normalized at O (in projective coordinates):(

x

y

)3
y

z

∣∣∣∣∣
(x:y:z)=(0:1:0)

=
y2 − axz − bz2

y2

∣∣∣∣
(x:y:z)=(0:1:0)

= 1

using the elliptic curve equation:

bz3 + axz2 + x3 − y2z = 0

x3 = z(y2 − axz − bz2).

Then x = y(x/y) is normalized at O, since it is a product of normalized functions. Note
that the sum of two functions with different orders at O is normalized if and only if the
lower order function is normalized. Hence if ζ` is non-zero, then it must be 1. Similarly,
if ζ` = 0, then the coefficient of x must be 1 or 0, and in the latter case the constant
coefficient must be 0.

Because such a function ` traces out a line in the plane, we use the following terminology:

23

Definition 3.1.3. A line ` is a normalized function in F(E) such that there are points
P0, P1, P2 ∈ E with

Div(`) =(P0) + (P1) + (P2)− 3(O)

We refer to P0, P1, P2 as the points of `, and we represent this line diagrammatically as
follows:

`
P0 P1 P2

3.2 Line Multiplication

We begin with the observation that for a line ` with points P0, P1, P2, we can multiply the
equation P0 + P1 + P2 = O through by any k ∈ Z to obtain kP0 + kP1 + kP2 = O. Hence
these latter three points form a line denoted k � `:

k � `
kP0 kP1 kP2

Definition 3.2.1. For a line ` with:

Div(`) =(P0) + (P1) + (P2)− 3(O)

and for k ∈ Z, the line multiplication by k map is:

k� : ` 7→ k � `

Div(k � `) = (kP0) + (kP1) + (kP2)− 3(O).

Line multiplication by −1 is called line negation, and is denoted �` := −1 � `. If there is
no chance of confusion with negation in F(E), we sometimes notate the line negation of `
as −`.

Our aim is to develop line multiplication algorithms to compute this function for an
arbitrary ` and k. Typically that means that we start with coefficients m`, b` such that:

`(x, y) =y −m`x− b`
Div(`) =(P0) + (P1) + (P2)− 3(O).

24

and we want to compute mk�`, bk�` which satisfy:

(k � `)(x, y) =y −mk�`x− bk�`
Div(k � `) =(kP0) + (kP1) + (kP2)− 3(O).

In fact we will often assume that our lines ` have ζ` = 1 when not otherwise specified, and
the line coordinates will be denoted m` and b` as above.

We are primarily interested in adapting double-and-add type operation chains to per-
form line multiplication. The doubling step runs into no obstacles, as we will see in section
3.8.1:

Theorem 3.2.2. If ` has no 2-torsion point, then

m2�` =
a2m2

` + 9bm`b` − 3ab2
` +m`(bm

3
` − am2

`b` − b3
`)

2(bm3
` − am2

`b` − b3
`)

b2�` =
4a3 + 27b2 + 6abm2

` − 8a2m`b` − 18bb2
` − a2m4

` − 8bm3
`b` + 2am2

`b
2
` − b4

`

8(bm3
` − am2

`b` − b3
`)

On the other hand, the “addition” step is much trickier to adapt to line multiplication
operation chains. This will be the topic of the next section.

3.3 Obstacles to Line Addition

In this section, we explain the obstacles that appear when trying to adapt the “addition”
step to a line multiplication operation chain. The first obstacle that we discuss is similar
to that encountered in x-only point multiplication, where it was necessary to disambiguate
between x(P ± Q). Line addition faces a more daunting obstacle; there is generally a
six way ambiguity in adding lines u, v ∈ L3(E), corresponding to each possible bijective
pairing between the points of u and those of v. These sum lines are indicated as w1, . . . , w6

in the following diagram, with wi(x, y) = y −mwi
x− bwi

:

25

u

P0

P1

P2

v

Q0

Q1

Q2

w1

P0 +Q0

P1 +Q1

P2 +Q2

� ?
= u

P0

P1

P2

v

Q0

Q1

Q2

w4

P0 +Q1

P1 +Q0

P2 +Q2

� ?
=

u

P0

P1

P2

v

Q0

Q1

Q2

w2

P0 +Q2

P1 +Q0

P2 +Q1

� ?
= u

P0

P1

P2

v

Q0

Q1

Q2

w5

P0 +Q0

P1 +Q2

P2 +Q1

� ?
=

u

P0

P1

P2

v

Q0

Q1

Q2

w3

P0 +Q1

P1 +Q2

P2 +Q0

� ?
= u

P0

P1

P2

v

Q0

Q1

Q2

w6

P0 +Q2

P1 +Q1

P2 +Q0

� ?
=

Now we consider the possibility of adapting the methods from the x-only operation to
our situation. Recall that the trick to overcome the two way ambiguity in x-only addition
was:

• Compute a symmetric combination of the possible output x-coordinates as a function
of the input x-coordinates.

• Since one x-coordinate is known, deduce the value of the other.

In our operation, we could consider the six possible sums w1, . . . , w6, and compute, say,
the sum of the six slopes mw1 + . . . + mw6 . But we now face a new problem; if we add
u = m� ` to v = n� `, then five of the six sum lines will not normally be multiples of `.
So our obstacles are:

26

• Six way ambiguity in line addition.

• Unwanted sum lines appearing in our line additions.

To deal with this, we will introduce cyclic line addition in the next section. This
will reduce the ambiguity, and will allow for a trick to eliminate unwanted sum lines.
Then we will explain how to circumvent cyclic orientations entirely. The resulting generic
line multiplication algorithm will be presented in various contexts in chapter 5. In later
chapters, we will focus on improving the results of that chapter.

3.4 Cyclically Oriented Lines

In this section, we reduce the ambiguity problem in line addition by attaching additional
structure to our lines. Specifically, for a line ` with points P0, P1, P2, we will choose a cyclic
orientation on the points, which will be either P0 → P1 → P2 → P0 or P0 → P2 → P1 → P0.
By endowing all of our lines with cyclic orientations, we will reduce the ambiguity in line
addition from 6-fold down to 3-fold.

We will define cyclic orientations in terms of forward differences between the points of
a line:

Definition 3.4.1. A line ∆` is a forward difference of the line ` if for points P0, P1, P2

we have:

Div(`) =(P0) + (P1) + (P2)− 3(O)

Div(∆`) =(P1 − P0) + (P2 − P1) + (P0 − P2)− 3(O)

A cyclically oriented line consists of a pair (`,∆`) where ∆` is a forward difference of `.
This will be represented diagrammatically with an added arrowhead:

`
P0 P1 P2

We interpret the points of ` as having the cyclic orientation P0 → P1 → P2 → P0 when
the forward difference ∆` has the points indicated in the above diagram. Note that the
only other possible orientation for ` is then −∆` = −1 � ∆`.

Now we will compare a second approach to cyclic orientation. Suppose u(x, y) =
y −mux− bu is a line with:

Div(u(x, y)) = (P0) + (P1) + (P2)− 3(O)

27

and Pi 6= O. The x-coordinates of the Pi are then the roots of the following polynomial:

(x− xP0)(x− xP1)(x− xP2) =b+ ax+ x3 − (mux+ bu)
2

=(b− b2
u) + (a− 2mubu)x−m2

ux
2 + x3

=
1

27

(
27b+ 9am2

u − 2m6
u − 18bum

3
u − 27b2

u

)
+

1

3

(
3a−m4

u − 6bumu

)(
x− m2

u

3

)
+

(
x− m2

u

3

)3

whose discriminant ∆u satisfies:

∆u = ((xP0 − xP1)(xP1 − xP2)(xP2 − xP0))
2

=
−1

27

(
4
(
3a−m4

u − 6mubu
)3

+
(
27b+ 9am2

u − 2m6
u − 18m3

ubu − 27b2
u

)2
)

=− 4a3 − 27b2 − 18abm2
u + a2m4

u + 4bm6
u − 4am5

ubu

+ 24a2mubu + 36bm3
ubu + 54b b2

u − 30am2
ub

2
u − 4m3

ub
3
u − 27b4

u

We will interpret a choice of square root δu of ∆u as indicating a cyclic orientation on the
points. The cyclic orientation P0, P1, P2, corresponds to

δu = (xP1 − xP0)(xP2 − xP1)(xP0 − xP2)

while the cyclic ordering P0, P2, P1 corresponds to

δu = −(xP1 − xP0)(xP2 − xP1)(xP0 − xP2).

The relation between the two points of view on cyclic orientation are given by the
following formulas, which can be checked by a direct calculation on a computer algebra
system:

Theorem 3.4.2. If u is a line with points P0, P1, P2 which are distinct from each other
and from O, and δu satisfies:

δ2
u =
−1

27

(
4
(
3a−m4

u − 6mubu
)3

+
(
27b+ 9am2

u − 2m6
u − 18m3

ubu − 27b2
u

)2
)

then the following give coordinates of a forward difference of u:

m∆u =
−6abu + am3

u + 3b2
umu + 9bmu

δu

b∆u =
−2a2mu − abum2

u + 2bm3
u + b3

u − 9bbu
δu

28

If
δu = (xP1 − xP0)(xP2 − xP1)(xP0 − xP2)

then

Div(∆u) =(P1 − P0) + (P2 − P1) + (P0 − P2)− 3(O)

In fact, this can be proven by hand using the theory we develop in chapter 7, where we
study cubic forms such as the numerators of m∆u, b∆u above; see theorem 7.2.7.

We make a final note that will come into play often in this thesis: the double forward
difference is essentially the same as multiplying by −3:

Div(∆(∆`))

=
(
(P2 − P1)− (P1 − P0)

)
+
(
(P0 − P1)− (P2 − P0)

)
+
(
(P1 − P2)− (P0 − P1)

)
− 3
(
O
)

=(−3P1) + (−3P2) + (−3P0)− 3(O)

Hence while there are two possible forward difference lines for a typical line `, when it is
cyclically oriented, we single the following one out:

Definition 3.4.3. For a cyclically oriented line (`,∆`):

`
P0 P1 P2

the forward difference of ` is (∆`,−3 � `):

∆`
P1 − P0 P2 − P1 P0 − P2

3.5 Cyclic Line Addition

We will consider cyclic line multiplication algorithms in this section. As noted earlier, the
additional structure helps us with the first obstacle to a recursive algorithm, by reducing
the ambiguity in line addition. In fact, it also allows us to tackle the second obstacle of
“bad” sum lines as well. We will present these methods in abbreviated form here, and we
will present a full algorithm in chapter 6. This is because in section 3.6 we will first present
a simpler version of cyclic line multiplication; we call this generic line multiplication, which
is essentially cyclic line multiplication without cyclic orientations.

Cyclic line multiplication by k ∈ Z is represented diagrammatically as:

29

`
P0 P1 P2

k � `
kP0 kP1 kP2

Definition 3.5.1. For a cyclically oriented line ` with forward difference ∆`, the multi-
plication by k map results in the line k � ` with forward difference k � ∆`.

Now we consider line addition with this additional structure. Let u, v be cyclically
oriented lines u, v with respective points P0, P1, P2 and Q0, Q1, Q2 in cyclic order:

u
P0 P1 P2

v
Q0 Q1 Q2

When we consider sum lines between u and v, we impose that the pairing must respect
the cyclic orientations. That is, if Pi and Qj are added together, then the sum consists of
the points Pi + Qj, Pi+1 + Qj+1, Pi+2 + Qj+2 (with indices in modulus 3.) So we have the
following three possibilities for the cyclic sum of u and v:

w1

P0 +Q0 P1 +Q1 P2 +Q2

w2

P0 +Q2 P1 +Q0 P2 +Q1

w3

P0 +Q1 P1 +Q2 P2 +Q0

Any symmetric polynomial in the coefficients of w1, w2, w3 can be expressed as a func-
tion of u and v along with their orientations specified by δu and δv. In particular, we can
define functions mΣ, bΣ with:

mΣ(u, δu, v, δv) =mw1 +mw2 +mw3

bΣ(u, δu, v, δv) =bw1 + bw2 + bw3

30

as we will see in chapter 6. Thus we have reduced the ambiguity in line addition from
six-fold to three-fold, which was the first obstacle mentioned in section 3.3.

Recall the second obstacle mentioned in section 3.3: when we consider the possible sum
lines of u = m� ` and v = n� `, we have w1 = (m+ n) � `, but normally w2, w3 will not
be multiples of `. Thus given, say, mw1 + mw2 + mw3 , we have trouble separating “good”
slope mw1 from the “bad” ones mw2 ,mw3 . In particular, it is unlikely that we can use the
trick like the one for x-only point multiplication. But as mentioned earlier, there is a trick
that lets us use the cyclic orientation structure to overcome this obstacle.

To overcome this second obstacle for the cyclically oriented lines u, v, we additionally
suppose that we know the lines u− v, u− 2v indicated below:

u− v
P0 −Q0 P1 −Q1 P2 −Q2

u− 2v
P0 − 2Q0 P1 − 2Q1 P2 − 2Q2

The trick that we will use boils down to the following observation: since Q0 +Q1 +Q2 =
O, addition of one of the Qi is equivalent to subtraction of the other two.

So when we take the cyclic linear sum between u− v and −v = −1 � v (with forward
difference −∆v = −1 � ∆v), we get three possible sum lines:

u− 2v
P0 − 2Q0 P1 − 2Q1 P2 − 2Q2

w4

P0 −Q0 −Q1 P1 −Q1 −Q2 P2 −Q2 −Q0

w5

P0 −Q0 −Q2 P1 −Q1 −Q0 P2 −Q2 −Q1

then by adding Q0 + Q1 + Q2 = O to each point in the two “bad” sum lines, we see
that they are in fact the same as the two “bad” sum lines between u and v!

w4 = w2

P0 +Q2 P1 +Q0 P2 +Q1

w5 = w3

P0 +Q1 P1 +Q2 P2 +Q0

31

Now we can use this method to eliminate the “bad” sum lines together. Let u+v := w1

denote the “good” sum line:

u+ v
P0 +Q0 P1 +Q1 P2 +Q2

Then since we assume knowledge of the cyclically oriented lines u − v, u − 2v, we
calculate:

mΣ(u,∆u, v,∆v) =mu+v +mw2 +mw3

mΣ(u− v,∆(u− v),−v,−∆v) =mu−2v +mw3 +mw2

Then by taking the difference between these, we can isolate mu+v:

mu+v =mΣ(u,∆u, v,∆v)−mΣ(u− v,∆(u− v),−v,−∆v) +mu−2v (3.1)

and similarly

bu+v =bΣ(u,∆u, v,∆v)− bΣ(u− v,∆(u− v),−v,−∆v) + bu−2v

So we have successfully calculated the “good” line u+ v!

We then need to calculate the forward difference of this line. This can be done similarly:
recall that if (`,∆`) is a cyclically oriented line, then its forward difference is (∆`,−3 � `).
So by applying the same formulas again, we get:

m∆(u+v) =mΣ(∆u,−3 � u,∆v,−3 � v)

−mΣ(∆(u− v),−3 � (u− v),−∆v, 3 � v) +m∆(u−2v)

b∆(u+v) =bΣ(∆u,−3 � u,∆v,−3 � v)

− bΣ(∆(u− v),−3 � (u− v),−∆v, 3 � v) + b∆(u−2v)

Note that the above algorithm is quite inefficient; it involves multiple calls to the functions
mΣ, bΣ, as well as a line tripling function. As we will later see, there are simple ways to
improve the calculation of ∆(u+ v).

We have now overcome enough obstacles to perform the line addition step in a modified
Montgomery ladder, provided that we have the functions mΣ, bΣ. That said, we will not
present an explicit algorithm for cyclic line multiplication here. This is because of the next
section’s simple method to circumvent cyclic orientations entirely. We will return to cyclic
line multiplication in the conclusion to chapter 6.

32

3.6 Generic Line Addition

When we first implemented cyclic line addition, an interesting phenomenon emerged. Cer-
tain combinations of the coefficients of w1, w2, w3, such as mw1 +mw2 +mw3 , only depended
on the lines u, v that we were adding. Namely, they did not depend on the cyclic orien-
tations of u or v at all. Note that other combinations such as bw1 + bw2 + bw3 do indeed
depend on the cyclic orientations of u and v. Yet the independence of orientation applied
to enough coefficient combinations to allow a modified version of cyclic line addition to run
without having ever keeping track of cyclic orientations.

There turns out to be a simple explanation for a general version of this phenomenon. In
this section, we give this explanation in the context of one step of cyclic line addition. This
then leads to a simple formalism for line multiplication, which applies in the more general
context of an arbitrary abelian group. Because of this generality, we term this generic
line addition. Chapter 5 is devoted to generic line multiplication, which uses generic line
addition as part of its operation chain.

The formalism of generic line addition is built around the following operation:

Definition 3.6.1. For lines u, v ∈ L3(E) with

Div(u) =(P0) + (P1) + (P2)− 3(O)

Div(v) =(Q0) + (Q1) + (Q2)− 3(O),

the linear sum function u� v ∈ F(E) is the normalized function satisfying:

Div(u� v) =
∑

i,j∈{0,1,2}
(Pi +Qj)− 9(O)

=(P0 +Q0) + (P0 +Q1) + (P0 +Q2)

+(P1 +Q0) + (P1 +Q1) + (P1 +Q2)

+(P2 +Q0) + (P2 +Q1) + (P2 +Q2)− 9(O)

The line difference function is u� v := u� (−v) = u� (−1 � v).

Recall that normalization is with respect to the uniformizer x/y at O. In effect,
normalization means that if we represent (u � v)(x, y) as a polynomial reduced modulo
b+ax+x3− y2 (with respect to either x or y), then the leading non-zero term will be xiyj

with coefficient 1 (where the leading term is the monomial that minimizes ordO.)

So if we are in the typical situation where Pi +Qj 6= O for i, j ∈ {0, 1, 2}, with

u(x, y) =y −mux− bu
Div(u) =(P0) + (P1) + (P2)− 3(O)

v(x, y) =y −mvx− bv
Div(v) =(Q0) + (Q1) + (Q2)− 3(O)

33

then for the proper choice of coefficients γi, we have:

(u� v)(x, y) =− γ9 − γ7x+ γ6y − γ5x
2 + γ4xy − γ3y

2 + γ2x
2y − γ1xy

2 + y3 (3.2)

Note that these γi are indexed by weight, with x and y having respective weights 2 and
3 (corresponding to poles of those orders at O). In section 3.7, we will find an explicit
expression for (u � v)(x, y) in terms of the coefficients of u, v. Note also that the signs
correspond to the index parity. These make certain formulas nicer in chapter 6.

Now we make a fundamental observation: if the three possible cyclic sum lines of u and
v are w1, w2, w3, then we can decompose the divisor of u� v:

Div(u� v) =(P0 +Q0) + (P1 +Q1) + (P2 +Q2)− 3(O)

+(P1 +Q0) + (P2 +Q1) + (P0 +Q2)− 3(O)

+(P2 +Q0) + (P0 +Q1) + (P1 +Q2)− 3(O)

= Div(w1) + Div(w2) + Div(w3) = Div(w1w2w3)

and since both functions are normalized, we in fact have:

(u� v)(P) =w1(P)w2(P)w3(P).

Furthermore, we observe that u�v is defined in terms of the lines u, v, with no dependence
on their cyclic orientations. These two observations will allow us to perform what is
essentially a step of cyclic line addition as presented in section 3.6, all while ignoring cyclic
orientations.

Namely, suppose that we are given lines u, v ∈ L3(E):

u
P0 P1 P2

v
Q0 Q1 Q2

without cyclic orientations. Then suppose that we also know the lines u−v, u−2v ∈ L3(E)
that correspond to the “good” pairing between u and v:

u− v
P0 −Q0 P1 −Q1 P2 −Q2

u− 2v
P0 − 2Q0 P1 − 2Q1 P2 − 2Q2

34

where again we assume no knowledge of their cyclic orientations. Then we will be able to
calculate the “good” sum line u+ v by comparing the following:

(u� v)(P) =(u+ v)(P)w2(P)w3(P)

((u− v)� v)(P) =(u− 2v)(P)w2(P)w3(P)

Explicitly, we have:

(u+ v)(P) =
(u� v)(P)(u− 2v)(P)

((u− v)� v)(P)
.

This is the addition step in a generic line multiplication. Note that this allows us to
dispense of the need to compute the cyclic orientation of u+ v as well.

3.7 Formula for Linear Sum Function

Now that we have explained how to perform a generic line addition, the next step towards
an explicit algorithm is to compute the linear sum function u� v as a function of u and v.
The following lemma allows us to use a computer algebra system to compute this:

Lemma 3.7.1. For lines u, v ∈ L3(E) with v having points Q0, Q1, Q2, we have the fol-
lowing formula for u� v ∈ F(E) as a function of R ∈ E:

(u� v)(R) =c−1 · v(R)3u(R−Q0)u(R−Q1)u(R−Q2)

for a non-zero constant c.

Proof. We only need to check that both sides have the same divisor. Since

Div(u(R−Qi)) =(P0 +Qi) + (P1 +Qi) + (P2 +Qi)− 3(Qi)

we have

Div
(
v(R)3u(R−Q0)u(R−Q1)u(R−Q2)

)
=3 ((Q0) + (Q1) + (Q2)− 3(O))

+ ((P0 +Q0) + (P1 +Q0) + (P2 +Q0)− 3(Q0))

+ ((P0 +Q1) + (P1 +Q1) + (P2 +Q1)− 3(Q1))

+ ((P0 +Q2) + (P1 +Q2) + (P2 +Q2)− 3(Q2))

=
∑

i,j∈{0,1,2}
(Pi +Qj)− 9(O) = Div(u� v)

35

Since u � v is normalized, the constant c must be chosen to normalize the right hand
side. If O is not a point of u, v or u� v, then we can make this constant explicit:

Corollary 3.7.2. Suppose that u, v ∈ L3(E) and v has points Q0, Q1, Q2. Suppose further
that for i ∈ {0, 1, 2}, the point −Qi is not O and is not a point of u. Then as a function
of R ∈ E:

(u� v)(R) =v(R)3
∏

i∈{0,1,2}

u(R−Qi)

u(−Qi)

To turn lemma 3.7.1 into an explicit formula, we first expand the terms in the product
as a rational function of xQi

. Recall the addition algorithm 2.4:

m =
−yR − yQi

xR − xQi

x(R−Qi) =m2 − xR − xQi

y(R−Qi) =m(x(R−Qi)− xR)− yR
=m3 −m(2xR + xQi

)− yR

Now by substituting in the above expressions as well as yQi
= mvxQi

+ bv, we get an
expression for u(R−Qi) as a rational function of Qi:

u(R−Qi) =y(R−Qi)−mux(R−Qi)− bu
=m3 −m(2xR + xQi

)− yR −mu

(
m2 − xR − xQi

)
− bu

m =
−yR −mvxQi

− bv
xR − xQi

Now we can use a computer algebra system to take the product of the u(−R − Qi) over
the three points Qi ∈ v. This is done via a resultant calculation, and gives a formula for
(u� v)(x, y) in terms of the line coordinates of u and v:

Theorem 3.7.3. Given lines u, v ∈ L3(E):

u(x, y) =y −mux− bu
v(x, y) =y −mvx− bv

suppose that O is not the sum of a point from u and one from v. Then the linear sum
function is:

(u� v)(x, y) :=− γ9 − γ7x+ γ6y − γ5x
2 + γ4xy − γ3y

2 + γ2x
2y − γ1xy

2 + y3

with γi being the coefficient found in section A.5 of the appendix.

36

These coefficients are indicated in figure 3.7. For instance, we have the following ex-
pression for γ2:

−a2(mu+mv)3−9b(bu+bv)(mu+mv)2+3a(bu+bv)2(mu+mv)−3(bu+bv)(bvmu−bumv)2

b(mu+mv)3−a(bu+bv)(mu+mv)2−(bu+bv)3−(mu+mv)(bvmu−bumv)2

Formulas for the linear sum function in other cases can be found in section A.5.

37

In[1]:= Γ0 = b Hmu + mvL3
- a Hmu + mvL2 Hbu + bvL - Hbu + bvL3

- Hmu + mvL Hmu bv - bu mvL2
;

Γ1 = Γ0
-1 IIa2 - 3 b mu mv + 2 a Hmu bv + mv buLM Hmu + mvL2

+

H9 b - a mu mv + 9 bu bvL Hmu + mvL Hbu + bvL - 3 Ha + mu bv + mv buL Hbu + bvL2
- mu mv Hbv mu - bu mvL2M;

Γ2 = Γ0
-1 I-a

2 Hmu + mvL3
- 9 b Hmu + mvL2 Hbu + bvL + 3 a Hmu + mvL Hbu + bvL2

- 3 Hbu + bvL Hmu bv - bu mvL2M;
Γ3 = Γ0

-1 I
4 a

3
+ 27 b

2
- 18 b bu

2
+ 18 b bu bv - 3 bu

3
bv - 18 b bv

2
+ 21 bu

2
bv

2
- 3 bu bv

3
- 8 a

2
bu mu +

4 a
2
bv mu + 6 a b mu

2
- 7 a bu bv mu

2
+ 3 a bv

2
mu

2
+ 9 b bv mu

3
- bv

3
mu

3
+ 4 a

2
bu mv - 8 a

2
bv mv -

6 a b mu mv + a bu
2
mu mv + 12 a bu bv mu mv + a bv

2
mu mv + 3 b bu mu

2
mv - 6 b bv mu

2
mv - bu bv

2
mu

2
mv +

a
2
mu

3
mv + 6 a b mv

2
+ 3 a bu

2
mv

2
- 7 a bu bv mv

2
- 6 b bu mu mv

2
+ 3 b bv mu mv

2
- bu

2
bv mu mv

2
+

a
2
mu

2
mv

2
- 2 a bv mu

3
mv

2
+ 9 b bu mv

3
- bu

3
mv

3
+ a

2
mu mv

3
- 2 a bu mu

2
mv

3
+ 4 b mu

3
mv

3M;
Γ4 = Γ0

-1 I
12 a bu

2
bv + 12 a bu bv

2
- 4 a

3
mu - 27 b

2
mu + 9 b bu

2
mu - 18 b bu bv mu - 9 b bv

2
mu + 3 bu

2
bv

2
mu - 6 bu bv

3
mu +

4 a
2
bu mu

2
- 3 a b mu

3
+ 3 a bv

2
mu

3
- 4 a

3
mv - 27 b

2
mv - 9 b bu

2
mv - 18 b bu bv mv - 6 bu

3
bv mv + 9 b bv

2
mv +

3 bu
2
bv

2
mv - 3 a b mu

2
mv - 6 a bu bv mu

2
mv - 3 a bv

2
mu

2
mv + 4 a

2
bv mv

2
- 3 a b mu mv

2
- 3 a bu

2
mu mv

2
-

6 a bu bv mu mv
2

+ 12 b bu mu
2
mv

2
+ 12 b bv mu

2
mv

2
+ a

2
mu

3
mv

2
- 3 a b mv

3
+ 3 a bu

2
mv

3
+ a

2
mu

2
mv

3M;
Γ5 = Γ0

-1 I
9 a

2
bu

2
- 18 a

2
bu bv + 9 a

2
bv

2
- 27 a b bu mu + 27 a b bv mu + 3 a bu

2
bv mu - 15 a bu bv

2
mu + a

3
mu

2
+ 27 b

2
mu

2
-

9 b bu bv mu
2

+ 9 b bv
2
mu

2
- 3 bu bv

3
mu

2
- a

2
bv mu

3
+ 27 a b bu mv - 27 a b bv mv - 15 a bu

2
bv mv + 3 a bu bv

2
mv +

2 a
3
mu mv - 27 b

2
mu mv + 9 b bu

2
mu mv + 36 b bu bv mu mv + 9 b bv

2
mu mv - 3 bu

2
bv

2
mu mv + 4 a

2
bu mu

2
mv -

3 a
2
bv mu

2
mv - 3 a b mu

3
mv - a bv

2
mu

3
mv + a

3
mv

2
+ 27 b

2
mv

2
+ 9 b bu

2
mv

2
- 9 b bu bv mv

2
- 3 bu

3
bv mv

2
-

3 a
2
bu mu mv

2
+ 4 a

2
bv mu mv

2
+ 12 a b mu

2
mv

2
- 4 a bu bv mu

2
mv

2
- a

2
bu mv

3
- 3 a b mu mv

3
- a bu

2
mu mv

3
- a

2
mu

3
mv

3M;
Γ6 = Γ0

-1 I
-4 a

3
bu - 27 b

2
bu - 4 a

3
bv - 27 b

2
bv + 18 b bu

2
bv + 18 b bu bv

2
- 3 bu

3
bv

2
- 3 bu

2
bv

3
- a

2
bu

2
mu + 6 a

2
bu bv mu +

3 a
2
bv

2
mu + 3 a b bu mu

2
- 3 a b bv mu

2
- 6 a bu bv

2
mu

2
- a

3
mu

3
- 9 b

2
mu

3
+ 9 b bv

2
mu

3
+ 3 a

2
bu

2
mv +

6 a
2
bu bv mv - a

2
bv

2
mv - 6 a b bu mu mv - 6 a b bv mu mv + a

3
mu

2
mv + 9 b

2
mu

2
mv + 6 b bu bv mu

2
mv -

3 b bv
2
mu

2
mv + 2 a

2
bv mu

3
mv - 3 a b bu mv

2
+ 3 a b bv mv

2
- 6 a bu

2
bv mv

2
+ a

3
mu mv

2
+ 9 b

2
mu mv

2
-

3 b bu
2
mu mv

2
+ 6 b bu bv mu mv

2
- a

2
bu mu

2
mv

2
- a

2
bv mu

2
mv

2
- a

3
mv

3
- 9 b

2
mv

3
+ 9 b bu

2
mv

3
+ 2 a

2
bu mu mv

3M;
Γ7 = Γ0

-1 I
27 a b bu

2
- 54 a b bu bv + 27 a b bv

2
- 12 a bu

2
bv

2
+ 8 a

3
bu mu - 27 b

2
bu mu - 4 a

3
bv mu + 54 b

2
bv mu + 9 b bu

2
bv mu -

9 b bu bv
2
mu - 3 bu

2
bv

3
mu - 9 a

2
b mu

2
+ 4 a

2
bu bv mu

2
- 3 a b bv mu

3
+ a bv

3
mu

3
- 4 a

3
bu mv + 54 b

2
bu mv +

8 a
3
bv mv - 27 b

2
bv mv - 9 b bu

2
bv mv + 9 b bu bv

2
mv - 3 bu

3
bv

2
mv + 18 a

2
b mu mv - 4 a

2
bu

2
mu mv - 4 a

2
bv

2
mu mv +

12 a b bu mu
2
mv - 21 a b bv mu

2
mv + a bu bv

2
mu

2
mv - 9 b

2
mu

3
mv - 3 b bv

2
mu

3
mv - 9 a

2
b mv

2
+ 4 a

2
bu bv mv

2
-

21 a b bu mu mv
2

+ 12 a b bv mu mv
2

+ a bu
2
bv mu mv

2
- 4 a

3
mu

2
mv

2
+ 18 b

2
mu

2
mv

2
- 6 b bu bv mu

2
mv

2
+

a
2
bv mu

3
mv

2
- 3 a b bu mv

3
+ a bu

3
mv

3
- 9 b

2
mu mv

3
- 3 b bu

2
mu mv

3
+ a

2
bu mu

2
mv

3
- 4 a b mu

3
mv

3M;
Γ9 = Γ0

-1 I
a
3
bu

2
+ 27 b

2
bu

2
+ 2 a

3
bu bv - 27 b

2
bu bv + a

3
bv

2
+ 27 b

2
bv

2
- 18 b bu

2
bv

2
- bu

3
bv

3
+ 9 a

2
b bu mu - 9 a

2
b bv mu -

a
2
bu

2
bv mu - 3 a

2
bu bv

2
mu + a

4
mu

2
+ 3 a b bu bv mu

2
+ 3 a b bv

2
mu

2
- a

3
bv mu

3
- 9 b

2
bv mu

3
+ b bv

3
mu

3
- 9 a

2
b bu mv +

9 a
2
b bv mv - 3 a

2
bu

2
bv mv - a

2
bu bv

2
mv - 2 a

4
mu mv - 3 a b bu

2
mu mv + 12 a b bu bv mu mv - 3 a b bv

2
mu mv +

2 a bu
2
bv

2
mu mv + 9 b

2
bu mu

2
mv + a

3
bv mu

2
mv - 18 b

2
bv mu

2
mv - 3 b bu bv

2
mu

2
mv + a

2
b mu

3
mv + a

4
mv

2
+

3 a b bu
2
mv

2
+ 3 a b bu bv mv

2
+ a

3
bu mu mv

2
- 18 b

2
bu mu mv

2
+ 9 b

2
bv mu mv

2
- 3 b bu

2
bv mu mv

2
- 6 a

2
b mu

2
mv

2
-

a
2
bu bv mu

2
mv

2
+ 2 a b bv mu

3
mv

2
- a

3
bu mv

3
- 9 b

2
bu mv

3
+ b bu

3
mv

3
+ a

2
b mu mv

3
+ 2 a b bu mu

2
mv

3
- 4 b

2
mu

3
mv

3M;
LineSumFunction = -Γ9 - Γ7 x + Γ6 y - Γ5 x

2
+ Γ4 x y - Γ3 y

2
+ Γ2 x

2
y - Γ1 x y

2
+ y

3
;

In[11]:= m =

-y - Hmv xq + bvL

x - xq

; xs = m
2

- x - xq; ys = m Hxs - xL - y;

Together�PolynomialRemainderA
-Hy - mv x - bvL3

ResultantAys - mu xs - bu, b + a xq + xq
3

- Hbv + mv xqL2
, xqE - Γ0 LineSumFunction, b + a x + x

3
- y

2
, yE

Out[12]= 0

Printed by Wolfram Mathematica Student Edition

38

3.8 Generic Line Multiplication Operation Chain

Now that we have the � operation, we will present an operation chain to compute the k�
operation on lines. We will perform a line addition step using the idea presented in section
3.6. So suppose that we have a line ` with points P0, P1, P2 in cyclic order, and we aim to
calculate k � `. Then consider the cyclic linear sum of m� ` and n� `:

m� `
mP0 mP1 mP2

n� `
nP0 nP1 nP2

The “good” sum line is (m+ n) � `, while the “bad” sum lines are the lines `m,n and `n,m
indicated below:

(m+ n) � `
(m+ n)P0 (m+ n)P1 (m+ n)P2

`m,n

mP0 + nP1 mP1 + nP2 mP2 + nP0

`n,m
nP0 +mP1 nP1 +mP2 nP2 +mP0

This uses the following notatation:

Definition 3.8.1. For a cyclically oriented line `:

`
P0 P1 P2

we define `m,n to be the following cyclically oriented line:

`m,n

mP0 + nP1 mP1 + nP2 mP2 + nP0

Furthermore, we define `m := `m,0 = m� `.

39

With this new notation, we have the following in F(E):

`m � `n = `m+n`m,n`n,m (3.3)

with the three lines on the right corresponding to the three cyclic sum lines. Note also
that we have ∆(`m,n) = (∆`)m,n = `−m−n,m−2n, and that `m,n has symmetries coming from
the fact that P0 + P1 + P2 = O:

Lemma 3.8.2. For m,n ∈ Z and a cyclically oriented line `, we have:

`m,n = `−n,m−n = `n−m,−m

Proof. This follows from the fact that P0 +P1 +P2 = O, and so we can eliminate P0 or P1

from the expression mP0 + nP1. Then by cycling around, we get the desired result. More
explicitly, for indices i in modulus 3, we get:

mPi + nPi+1 = (n−m)Pi+1 + (−m)Pi+2 = (−n)Pi−1 + (m− n)Pi.

3.8.1 Line Doubling

For the doubling step, consider equation (3.3) with m = n = 1, noting that `1,1 = `−1 by
lemma 3.8.2:

`� ` =(2 � `)`1,1`1,1 = (2 � `)(`−1)2

2 � ` =
`� `
(`−1)2

.

By a direct calculation, we get the following explicit formulas:

Theorem 3.8.3. For a line `, we have

2 � ` =
`� `
(�`)2

.

If ` contains no 2-torsion, then

m2�` =
a2m2

` + 9bm`b` − 3ab2
` +m`(bm

3
` − am2

`b` − b3
`)

2(bm3
` − am2

`b` − b3
`)

b2�` =
4a3 + 27b2 + 6abm2

` − 8a2m`b` − 18bb2
` − a2m4

` − 8bm3
`b` + 2am2

`b
2
` − b4

`

8(bm3
` − am2

`b` − b3
`)

Note that we can save a few operations in the computation of b2�` by rewriting the
above formula:

b2�` =
4a(a−m`b`)

2 + (9b− am2
` − 9b2

`)(3b+ am2
` + b2

`)− 8b`(bm
3
` − am2

`b` − b3
`)

8(bm3
` − am2

`b` − b3
`)

40

3.8.2 Line Addition

For the line addition step, we simply translate section 3.6 into our context. So consider the
linear sum of `m and `n. We get the “good” sum line `m+n = (m+ n) � `, and two “bad”
sum lines `m,n, `n,m. We then take advantage of the fact that we get the same “bad” sum
lines `m,n, `n,m when we sum the lines `m−n and `−n, to eliminate them together.

Theorem 3.8.4.

(m+ n) � ` =
(m� `)� (n� `)

((m− n) � `)� ((−n) � `)
((m− 2n) � `)

Proof. Using lemma 3.8.2, we get the following decomposition of the linear sum function
between `m−n and `−n:

`m−n � `−n =`m−2n`m−n,−n`−n,m−n

=`m−2n`n,m`m,n

Subsequently, we can divide this by the linear sum function between `m and `n to eliminate
the “bad” sum lines:

`m � `n
`m−n � `−n

=
`m+n`m,n`n,m
`m−2n`n,m`m,n

`m+n =
(`m � `n)`m−2n

`m−n � `−n

3.8.3 Line Multiplication Ladder

Now we have all of the tools needed to perform our modified Montgomery ladder. In this
modified ladder, at each step we will keep track of three consecutive multiples of `. Then if
we are given `m, `m+1, `m+2, we note that we can then calculate five consecutive multiples
of `:

`2m =2 � `m (3.4)

`2m+1 =`m+(m+1) =
(`m � `m+1) (`−m−2)

`−1 � `−m−1

(3.5)

`2m+2 =2 � `m+1 (3.6)

`2m+3 =`(m+2)+(m+1) =
(`m+2 � `m+1) (`−m)

`� `−m−1

(3.7)

`2m+4 =2 � `m+2 (3.8)

41

Then just as in the Montgomery ladder, we choose to either calculate the first three or the
last three, according to a bit in the binary expansion of k.

Suppose that the binary expansion of k ∈ Z>0 is k =
∑b

i=0 ki2
i. Then our ladder will

consist of triples (`Ki
, `Ki+1, `Ki+2) where Ki is obtained from k by truncating the last i+1

bits, and then doubling the result. Precisely, we have:

Ki =
b∑

j=i+1

kj2
j−i = 2

⌊
k

2i+1

⌋
for i decreasing from b to 0. Note that Ki−1

Ki−1 − 2Ki =

(
b∑
j=i

kj2
j−i+1

)
− 2

(
b∑

j=i+1

kj2
j−i
)

= 2ki

so Ki−1 = 2Ki + 2ki. Thus

(`Ki−1
, `Ki−1+1, `Ki−1+2)

can be computed from

(`Ki
, `Ki+1, `Ki+2)

using formulas (3.4), (3.5) and (3.6) when ki = 0, or using formulas (3.6), (3.7) and (3.8)
when ki = 1. In both cases, there are four 2� operations, and two line additions.

Finally we get K0 = k−k0, and so the last triple in the iteration will contain `k among
the first two entries.

For example, to calculate 25�`, we write 25 = 110012 in binary and iteratively compute:

0 : (`0, `1, `2) =(1, `, 2 � `)

10 : (`2, `3, `4) =

(
`2,

`1 � `2

`1 � `−1

`0, 2 � `2

)
110 : (`6, `7, `8) =

(
2 � `3,

`3 � `4

`1 � `−3

`−2, 2 � `4

)
1100 : (`12, `13, `14) =

(
2 � `6,

`6 � `7

`−1 � `−7

`−8, 2 � `7

)
11000 : (`24, `25, `26) =

(
2 � `12,

`12 � `13

`−1 � `−13

`−14, 2 � `13

)
And the result is `25 = 25 � `.

We remark that this algorithm is quite inefficient because of the size of the formula for
�. In chapter 5, we will see that there are simple ways to improve this situation. With
careful study of the algebra involved, we will in fact do much better by the end of the
thesis.

42

Algorithm 3: Recursive Algorithm to Compute k� : L•3(E)→ L•3(E)

Input : ` with Div(`) ∈ L•3(E) and a positive integer k with binary representation
k = kb . . . k1k0.

Output: k � `
1 r, s, t← 1, `, 2 � `;
2 for i← b− 1 to 0 do
3 if ki = 0 then
4 r, s, t← 2 � r, r�s

(�`)�(�s)(�t), 2 � s;

5 else
6 r, s, t← 2 � s, t�s

`�(�s)(�r), 2 � t;

7 end

8 end
9 if k0 = 0 then

10 return r;
11 else
12 return s;
13 end

43

3.9 Improving on Generic Algorithm

We now consider some simple improvements to the efficiency of the generic line multiplica-
tion algorithm. As a first refinement, we will show that u�v carries more information than
we need, and we can implement essentially the same algorithm without keeping track of all
of the coefficients. To achieve this, we reconsider equation (3.2), holding off on evaluating
the coefficients in the linear sum functions.

So for a line u ∈ L3(E), let un := n�u, and suppose that we are given uk, ul, uk−l, uk−2l.
Suppose further that the coefficients γi, γ

∗
i satisfy the following:

(uk � ul)(x, y) =− γ9 − γ7x+ γ6y − γ5x
2 + γ4xy − γ3y

2 + γ2x
2y − γ1xy

2 + y3

(uk−l � u−l)(x, y) =− γ∗9 − γ∗7x+ γ∗6y − γ∗5x2 + γ∗4xy − γ∗3y2 + γ∗2x
2y − γ∗1xy2 + y3.

Then if un(x, y) = y −mnx− bn, then:

uk+l(x, y) · (uk−l � u−l)(x, y) =uk−2l(x, y) · (uk � ul)(x, y)

or equivalently,

(y −mk+lx− bk+l)(−γ∗9 − γ∗7x+ γ∗6y − γ∗5x2 + γ∗4xy − γ∗3y2 + γ∗2x
2y − γ∗1xy2 + y3)

=(y −mk−2lx− bk−2l)(−γ9 − γ7x+ γ6y − γ5x
2 + γ4xy − γ3y

2 + γ2x
2y − γ1xy

2 + y3).

Now we reduce both sides of this equation modulo b+ ax+ x3 − y2 with respect to x and
compare coefficients. The coefficients of x1y3 and x0y3 give us respectively:

mk+l + γ∗1 =mk−2l + γ1

bk+l + γ∗3 +mk+lγ
∗
2 =bk−2l + γ3 +mk−2lγ2.

Note that we could get alternative algorithms by comparing other coefficients.

Lemma 3.9.1. Given multiples uk, ul, uk−l, uk−2l of u, we can calculate the coefficients of

uk+l(x, y) = y −mk+lx− bk+l

as follows:

mk+l =γ1(uk, ul)− γ1(uk−l, u−l) +mk−2l

bk+l =γ3(uk, ul)− γ3(uk−l, u−l) +mk−2lγ2(uk, ul)−mk+lγ2(uk−l, u−l) + bk−2l

with γi as found in theorem 3.7.3 or in section 6.2.1 of the appendix. (Note that we are
assuming that O does not lie on any of these lines.)

44

The formulas above in fact have simple interpretations. The formula for mk+l actually
has an interpretation that we have already seen! To see this, we start with equation 3.1
from the section on cyclic line addition, and translate it into this section’s notation. For
comparison, we juxtapose this with the above formula from lemma 3.9.1 for mk+l:

mk+l =mΣ(uk,∆uk, ul,∆ul)−mΣ(uk−l,∆uk−l, u−l,∆u−l) +mk−2l

mk+l =γ1(uk, ul)− γ1(uk−l, u−l) +mk−2l

These formulas are in fact the same! More precisely, we have the following, as we will
prove in the next section 3.10:

γ1(u, v) =mΣ(u,∆u, v,∆v)

=mw1 +mw2 +mw3

So γ1(u, v) gives the sum of the slopes of the three cyclic sums of u and v. This is interesting
because a priori, we expect that mΣ should depend on the cyclic orientations of u, v, but
it in fact does not. Note that bΣ does depend on the cyclic orientations of u, v. We will
study these combinations that do not depend on the cyclic orientation in the next section
3.10. This will set the stage for further improvements to the generic algorithm.

3.10 Nine Point Diagrams

In this section, we introduce nine point diagrams. These diagrams represent all of the
possible sum lines and sum points between u, v ∈ L3(E). These will also reappear in other
guises in later chapters; for example, for lines u, v and any sum line w, the lines u, v,−w
can also be arranged into a nine point diagram. This phenomenon means that the results
that we obtain about nine point diagrams can be applied in multiple ways in the algebra
line addition. Because of this central role in the algebra of line addition, we will be studying
nine point diagrams in greater depth in chapter 6.

Let w1, w2, w3 denoted the three cyclic sum lines of u and v with respective cyclic orders
P0, P1, P2 and Q0, Q1, Q2. Then let w4, w5, w6 be the three cyclic sum lines of u with the
same cyclic order P0, P1, P2 and v with the opposite cyclic order Q0, Q2, Q1. These six lines
represent all possible sum lines of u and v, and can be overlaid to form this diagram:

45

u� v :

w5

w6

w4

w1

w3

w2

P0 +Q0

P1 +Q1

P2 +Q2

P1 +Q2

P2 +Q0

P0 +Q1

P2 +Q1

P0 +Q2

P1 +Q0

The above configuration of points and lines will be referred to as a nine point diagram;
these will be studied in detail in chapter 6.

The normalized function with divisor
∑

i,j∈{0,1,2}(Pi+Qj)−9(O) will be called the nine

point diagram function. For the diagram associated to the line addition of u, v ∈ L3(E),
this function is the same as the linear sum function u�v. This function can be written as a
product of three line functions, as we saw in section 3.6. In fact, we get two factorizations
this way:

(u� v)(x, y) =(y −mw1x− bw1)(y −mw2x− bw2)(y −mw3x− bw3)

=(y −mw4x− bw4)(y −mw5x− bw5)(y −mw6x− bw6)

which correspond to two different ways of partitioning the divisor (and noting that the
factors are all normalized.)

46

Reducing modulo b+ ax+ x3 − y2 with respect to x, we get:

(u� v)(x, y) =(y −mw1x− bw1)(y −mw2x− bw2)(y −mw3x− bw3) (3.9)

=− (bw1bw2bw3 − b ·mw1mw2mw3)

− x (bw2bw3mw1 + bw1bw3mw2 + bw1bw2mw3 − a ·mw2mw3mw1)

+ y (bw1bw2 + bw1bw3 + bw2bw3)

− x2 (bw3mw1mw2 + bw1mw3mw2 + bw2mw1mw3)

+ xy (bw2mw1 + bw3mw1 + bw1mw2 + bw3mw2 + bw1mw3 + bw2mw3)

− y2 (bw1 + bw2 + bw3 +mw1mw2mw3)

+ x2y (mw1mw2 +mw3mw2 +mw1mw3)

− xy2 (mw1 +mw2 +mw3) + y3

Hence we can now explain the interesting result mentioned in the last section 3.9:

Theorem 3.10.1. Consider the cyclic sum of oriented lines u and v. If the three possible
sum lines are w1, w2, w3, then the following combinations of coefficients of w1, w2, w3 are
also coefficients of (u� v)(x, y):

γ1 =mw1 +mw2 +mw3 (3.10)

γ2 =mw1mw2 +mw3mw2 +mw1mw3

γ3 =bw1 + bw2 + bw3 +mw1mw2mw3

γ4 =bw2mw1 + bw3mw1 + bw1mw2 + bw3mw2 + bw1mw3 + bw2mw3

γ5 =bw3mw1mw2 + bw1mw3mw2 + bw2mw1mw3

γ6 =bw1bw2 + bw1bw3 + bw2bw3

γ7 =bw2bw3mw1 + bw1bw3mw2 + bw1bw2mw3 − a ·mw2mw3mw1

γ9 =bw1bw2bw3 − b ·mw1mw2mw3

Consequently, these are functions of u, v that do not depend on the orientations of u and
v.

Explicit equations for these combinations as functions of u, v can be found in section
A.5 of the appendix.

Note that as a consequence of the independence from orientation, the above combina-
tions will be equal if we substitute w1, w2, w3 for w4, w5, w6. For example,

mw1 +mw2 +mw3 =mw4 +mw5 +mw6 , (3.11)

and similar equations hold for the other quantities. Relations between the nine point
diagram line coordinates will be visited in much greater detail in chapter 6.

47

3.11 Recursion

Now we will present the algorithm alluded to in section 3.9 in more detail. Suppose we are
given multiples uk, ul, uk−l, uk−2l of u. Then by theorem 3.10.1:

γ1(uk, ul) =mk+l +mk,l +ml,k

γ1(uk−l, u−l) =mk−2l +mk,l +ml,k

γ2(uk, ul) =mk+l(mk,l +ml,k) +mk,lml,k

γ2(uk−l, u−l) =mk−2l(mk,l +ml,k) +mk,lml,k

γ3(uk, ul) =bk+l + bk,l + bl,k +mk+lmk,lml,k

γ3(uk−l, u−l) =bk−2l + bk,l + bl,k +mk−2lmk,lml,k

So we isolate mk+l:

mk+l =γ1(uk, ul)− γ1(uk−l, u−l) +mk−2l

and similarly, we isolate bk+l:

bk+l =γ3(uk, ul)− γ3(uk−l, u−l) +mk−2lγ2(uk, ul)−mk+lγ2(uk−l, u−l) + bk−2l

Thus if we take the following formulas:

γ1(u, v) =
3 (mumv + 3X) (b+ aX +X3 − Y 2)− (a+ 3X2 − 2muY) (a+ 3X2 + 2mvY)

(mu +mv) (b+ aX +X3 − Y 2)

γ2(u, v) =
−a2 + 3aX2 + 9bX + 3XY 2

b+ aX +X3 − Y 2

γ3(u, v) =−
(
4a3 + 4a2bvmu + 4a2bumv − 8a2bumu − 8a2bvmv + a2mum

3
v

+ a2m2
um

2
v + a2m3

umv − 2abum
2
um

3
v + 3ab2

vm
2
u − 7abubvm

2
u

− 2abvm
3
um

2
v + 3ab2

um
2
v − 7abubvm

2
v + ab2

umumv + ab2
vmumv

− 6abmumv + 12abubvmumv + 6abm2
u + 6abm2

v + 27b2 − b3
vm

3
u + 9bbvm

3
u

− b3
um

3
v + 4bm3

um
3
v + 9bbum

3
v − 6bbumum

2
v − b2

ubvmum
2
v + 3bbvmum

2
v

− bub2
vm

2
umv + 3bbum

2
umv − 6bbvm

2
umv − 3bub

3
v + 21b2

ub
2
v − 3b3

ubv + 18bbubv

− 18bb2
u − 18bb2

v

)
/
(
(mu +mv)

3(b+ aX +X3 − Y 2)
)

where

(X, Y) := u ∩ (−v) =

(−bu − bv
mu +mv

,
bumv − bvmu

mu +mv

)
,

we get algorithm 4. Note that we assume that no line in the algorithm has O as a point
for simplicity. Those cases can be found in section A.5 of the appendix.

48

Algorithm 4: Recursive Algorithm to Compute k� : L3(E)→ L3(E)

Input : u = (m1, b1) ∈ L•3(E); and a positive integer k with binary representation
k = kb−1 . . . k1k0 and kb−1 = 1.

Output: k � u = (mk, bk)
1 mr, br ← LineDouble(m1, b1);
2 ms, bs ← LineTriple(m1, b1);
3 mt, bt ← LineDouble(mr, br);
4 for i← b− 2 to 0 do
5 if ki = 0 then
6 m′s ← γ1(mr, br,ms, bs)− γ1(−m1,−b1,−ms,−bs)−mt;
7 ms, bs ← m′s, γ3(mr, br,ms, bs)− γ3(−m1,−b1,−ms,−bs)−

mtγ2(mr, br,ms, bs)−m′sγ2(−m1,−b1,−ms,−bs)bt;
8 mr, br ← LineDouble(mr, br);
9 mt, bt ← LineDouble(ms, bs);

10 else
11 m′s ← γ1(mr, br,ms, bs)− γ1(−m1,−b1,−ms,−bs)−mt;
12 ms, bs ← m′s, γ3(mr, br,ms, bs)− γ3(−m1,−b1,−ms,−bs)−

mtγ2(mr, br,ms, bs)−m′sγ2(−m1,−b1,−ms,−bs)bt;
13 mr, br ← LineDouble(ms, bs);
14 mt, bt ← LineDouble(mt, bt);

15 end

16 end
17 return mr, br;

49

Chapter 4

Generalized Line Multiplication

In this chapter, we generalize line multiplication to other settings. We focus mostly on
generic line multiplication, since the formalism can be translated to other settings with
little work. This chapter should be considered as an optional addendum to chapter 3; the
definitions and results that are necessary for future chapters will be repeated in place. That
said, the generic algorithm is the basis for the main algorithms proposed in this thesis, so
it does not hurt to be familiar with it.

The main motivation for studying this generalization was to work with “toy” models,
where we could more easily make discoveries and test theories through computational
means. Many of these discoveries in fact had analogues for elliptic curve multiplication.
The notation and results from this chapter also set the stage for future generalizations.

Our first generalization of line multiplication is to linear n-set multiplication operation
�k : Ln(E) → Ln(E), which is an analogue with n points for n ∈ Z>0. For n = 2
this corresponds to x-only point multiplication, and for n = 3 this corresponds to line
multiplication.

Next we explain how the discussions and algorithms from chapter 3 generalize to re-
place E with an arbitrary abelian group. To achieve this, we focus on algorithms for
�k : L3(E) → L3(E), whose only connection to the specifics of the group E is via the
operation � which computes the linear sum function. This then allows us to replace E
with an arbitrary abelian group. In particular, we translate the generic line multiplication
algorithm to work in the multiplicative group of a field. Then as an illustration, we propose
a variant of Cipolla’s square root finding algorithm.

4.1 Generalized Elliptic Curve Line Multiplication

We start by generalizing line multiplication in L3(E) to arbitrary number of points:

50

Definition 4.1.1. For a positive integer n,

Ln(E) = {f ∈ F(E)× : Div(f) ≥ −n(O), f normalized at O}

and an element of Ln(E) is called a linear n-set over E.

By the characterization of principal divisors, for ` ∈ Ln(E), the points of ` are Pi for
i = 0, . . . , n− 1 with

Div(`) = (P0) + . . .+ (Pn−1)− n(O)

and P0 + . . . + Pn−1 = O. Conversely, given such a collection of points, there is a corre-
sponding linear n-set.

Definition 4.1.2. The linear n-set sum operation is:

� : Ln(E)× Ln(E)→ Ln2(E)

with u� v being a normalized function satisfying:

Div(u) =(P0) + . . .+ (Pn−1)− n(O)

Div(v) =(Q0) + . . .+ (Qn−1)− n(O)

Div(u� v) =
∑

i,j∈{0,...,n−1}
(Pi +Qj)− n2(O)

We then define a generic linear n-set multiplication algorithm to be an operation chain
in F(E) that starts with an element of Ln(E) and where we allow the following operations:

• Multiplication between elements in the operation chain:

· : Lm(E)× Ln(E)→ Lm+n(E)

• Division between elements in the operation chain, provided the result has no poles
away from O. That is, the partial function:

÷ : Lm+n(E)× Lm(E)→ Ln(E)

• The linear n-set sum operation:

� : Lm(E)× Ln(E)→ Lmn(E)

• The negation map � = −1� : Ln(E)→ Ln(E):

Div(u) =(P0) + . . .+ (Pn−1)− n(O)

Div(�u) =(−P0) + . . .+ (−Pn−1)− n(O)

51

4.1.1 Generalizing to Abelian Groups

In section 4.3, we will generalize generic linear set multiplication to an arbitrary abelian
group G instead of E. Since we do not have an algebraic structure on G a priori, we
work with the collection of points in a linear n-set directly, rather than a function that
encapsulates them. So rather than working with Ln(E), we work with L•n(E):

L•n(E) = {(P0) + (P1) + . . .+ (Pn−1) ∈ Z[E] : P0 + P1 + . . .+ Pn−1 = O}

We remark that there is a bijection between Ln(E) and L•n(E), with ` 7→ Div(`)+n(O).
This is because the condition that P0+. . .+Pn−1 = O means that (P0)+. . .+(Pn−1)−n(O)
is a principal divisor, and ` can be recovered as the normalized function with that divisor.
Furthermore, under this bijection, the � operation translates to multiplication in the group
ring Z[E].

The map k� on Ln(E) then corresponds to the k-power map on L•n(E):

πk : (P0) + . . .+ (Pn−1) 7→ (kP0) + . . .+ (kPn−1)

In these terms, it is now simple to generalize line multiplication to n points in an arbitrary
abelian group. This will be done in section 4.3. A very convenient observation is that in
this setting a “generic” algorithm to compute πk is simply an operation chain in Z[E] using
the ring operations.

4.2 Generic Linear 2-Set Multiplication

Here we present the simplest non-trivial case of generic linear n-set multiplication on E. So
we develop the linear 2-set multiplication algorithm, which computes the map k� on L2(E).
This is essentially equivalent to Montgomery’s x-only point multiplication operation from
section 2.7.

Non-trivial linear 2-sets correspond to x-coordinates for E in Weierstrass form:

L2(E) ={χ(x, y) = x− xP ∈ F(E) : P ∈ E\{O}} ∪ {1}

and we have Div(χ) = (P) + (−P)− 2(O). Our goal is to compute the function

(k � χ)(x, y) = x− xkP .

Note that k � χ = (−k) � χ, which simply states that x-coordinates are invariant under
negation.

52

The doubling formula for χ(x, y) = x− xP is:

(2 � χ)(x, y) =(x− x2P)

=x+ 2xP −
(
a+ 3x2

P

2yP

)2

=x− (a+ 3x2
P)

2 − 8xP (b+ axP + x3
P)

4(b+ axP + x3
P)

=x− a2 − 8bxP − 2ax2
P + x4

P

4(b+ axP + x3
P)

The linear 2-set addition operation between χ0(x, y) = x− xP0 and χ1(x, y) = x− xP1

gives a function with the following divisor (when P0 6= ±P1):

Div(χ0 � χ1) =(P0 + P1) + (P0 − P1) + (−P0 + P1) + (−P0 − P1)− 4(O)

= ((P0 + P1) + (−P0 − P1)− 2(O)) + ((P0 − P1) + (−P0 + P1)− 2(O))

and so we have

(χ0 � χ1)(x, y) =(x− x(P0 + P1))(x− x(P0 − P1)). (4.1)

Note that this corresponds to the fact that although we cannot distinguish x(P0 +P1) from
x(P0 − P1) given only x(P0) and x(P1), we can determine symmetric polynomials in those
quantities.

We will now explicitly compute a formula for χ0 � χ1 in the case P0 6= ±P1:

(x− xP0)� (x− xP1) = (x− xP0+P1)(x− xP0−P1)

=

(
x+ xP0 + xP1 −

(
yP0 − yP1

xP0 − xP1

)2
)(

x+ xP0 + xP1 −
(
yP0 + yP1

xP0 − xP1

)2
)

=(x+ xP0 + xP1)
2 − (x+ xP0 + xP1)

2y2
P0

+ 2y2
P1

(xP0 − xP1)
2

+
(y2
P0
− y2

P1
)2

(xP0 − xP1)
4

=(x+ xP0 + xP1)
2 − 2(x+ xP0 + xP1)

2b+a(xP0
+xP1

)+x3P0
+x3P1

(xP0
−xP1

)2
+

(a+x2P0
+xP0

xP1
+x2P1

)2

(xP0
−xP1

)2

It turns out to be quite simple to perform an operation chain to compute �k. The
following formula will give us all of the needed ingredients. Given m,n ∈ Z, we use
equation (4.1) to obtain:

Div(χ) =(P) + (−P)− 2(O)

(m� χ)� (n� χ) = ((m+ n) � χ) · ((m− n) � χ) (4.2)

53

Just as for x-only point multiplication, this is interpreted as follows: given m�χ, n�χ, we
cannot determine (m+ n) �χ, since we cannot distinguish it from (m− n) �χ in general.
That said, we can determine symmetric combinations of the two possible outcomes.

In our generic linear 2-set multiplication algorithm, we will use (4.2) to perform the
“addition” step. Again, the key will be to assume knowledge of m� χ, n� χ, (m− n) � χ
to determine (m+ n) � χ, just as is the x-only algorithm:

((m+ n) � χ) =
(m� χ)� (n� χ)

((m− n) � χ)

Specifically, if we take m = n+ 1, we get:

(2n+ 1) � χ =
(n� χ)� ((n+ 1) � χ)

χ

With this formula and the doubling formula, we can now perform a Montgomery ladder
operation chain. Suppose we want to compute k � χ. The idea is that at each step of our
operation chain, we will keep track of two consecutive values (i � χ, (i + 1) � χ), where
i will be a truncated binary expansion of k. From that pair, we can compute either
(2i� χ, (2i+ 1) � χ) or ((2i+ 1) � χ, (2i+ 2) � χ):

(2i) � χ =2 � (i� χ)

(2i+ 1) � χ =
(i� χ)� ((i+ 1) � χ)

χ

(2i+ 2) � χ =2 � ((i+ 1) � χ)

Hence by choosing the next bit of k, we can progressively compute these pairs until
we get (k � χ, (k + 1) � χ), and we are done. Specifically, we progressively compute
(i� χ, (i+ 1) � χ) with i being a binary truncation of k to its most significant bits. This
operation chain is called the Montgomery ladder, since it is essentially the same as that in
algorithm 5.

54

Algorithm 5: Algorithm to compute k� : L•2(E)→ L•2(E)

Input : χ = x− xP and a positive integer k with binary representation
k = kb−1 . . . k1k0.

Output: k � χ = x− xkP
1 r, s← χ, 2 � χ;
2 for i← b− 2 to 0 do
3 if ki = 0 then
4 r, s← 2 � r, r�s

χ
;

5 else
6 r, s← r�s

χ
, 2 � s;

7 end

8 end
9 return r;

For example, to compute 13 ·χ, we write 13 = 11012 in binary and iteratively compute:

1 : (1 � χ, 2 � χ) =(χ, 2 � χ)

11 : (3 � χ, 4 � χ) =

(
χ� (2 � χ)

χ
, 2 � (2 � χ)

)
110 : (6 � χ, 7 � χ) =

(
2 � (3 � χ),

(3 � χ)� (4 � χ)

χ

)
1101 : (13 � χ, 14 � χ) =

(
(6 � χ)� (7 � χ)

χ
, 2 � (7 � χ)

)
An important note is that the above algorithm calculates more than is necessary. In

particular, consider the operation � between χ0 and χ1:

(x− xP0)� (x− xP1) =x2 − (xP0+P1 + xP0−P1)x+ xP0+P1xP0−P1 .

This computes both the sum xP0+P1 + xP0−P1 and the product xP0+P1xP0−P1 . The x-only
multiplication algorithm from section 2.7 improves on this, since we only keep track of
xP0+P1 + xP0−P1 in the addition step, and the other coefficient xP0+P1xP0−P1 is made super-
fluous. A similar situation arose for linear 3-set generic multiplication, as we saw in section
3.9.

4.3 Generic Linear Multiplication

In this section, we explain how the generic line multiplication algorithm can be used in
a more general setting. Suppose that G is a multiplicative abelian group, with identity

55

element denoted 1G. In this context we will use the same terminology of linear sets to
denote elements of the following:

Definition 4.3.1. For a positive integer n, elements of the set

L•n(G) = {(g0) + (g1) + . . .+ (gn−1) ∈ Z[G] : g0 · g1 · . . . · gn−1 = 1G}

are called linear n-sets over G.

For k ∈ Z and (g0) + (g1) + . . .+ (gn−1) ∈ L•n(G), the k-power map on L•n(G) is defined
by:

πk((g0) + (g1) + . . .+ (gn−1)) =(gk0) + (gk1) + . . .+ (gkn−1)

An element (g0) + (g1) + . . .+ (gn−1) ∈ L•n(G) will be interpreted as an element g of G
for which we only have partial information; it is only known to be one of g0, g1, . . . , gn−1.
Note then that for k ∈ Z, we have gk0 · . . . · gkn−1 = 1G, and so our goal is to compute the
same partial information about gk.

In this setting, a generic linear n-set power algorithm computes the map πk, with
restrictions on the operations that are allowed. In fact, the restrictions are simpler to state
in this case: we are restricted to using multiplication in the group ring Z[G], element-wise
group inversion π−1. Explicitly, the following operations are allowed in the operation chain:

• Addition between elements in the operation chain.

• Subtraction between elements in the operation chain, provided the result has no
negative coefficients.

• Multiplication between elements in the operation chain.

• The −1-power map: (g0) + . . .+ (gn−1) 7→ (g−1
0) + . . .+ (g−1

n−1)

4.3.1 Generic Line Multiplication

Note that for the case n = 3, algorithm 3 can be directly translated into this setting.
The � operation in L3(E) corresponds to the ring multiplication in Z[G]. Note that we
identify Z with a subset of Z[G] via the embedding n 7→ n(1G). Although we have not
done so explicitly, we can also easily translate algorithm 5 into a generic linear 2-set power
algorithm.

56

Algorithm 6: Recursive Algorithm to Compute πk : L•3(G)→ L•3(G)

Input : u = (g0) + (g1) + (g2) ∈ L•3(G) and a positive integer k with binary
representation k = kb . . . k1k0.

Output: πk(u) = (gk0) + (gk1) + (gk2)
1 r, s, t← 3, u, u2 − 2π−1(u);
2 for i← b− 1 to 0 do
3 if ki = 0 then
4 r, s, t← r2 − 2π−1(r), rs− π−1(u)π−1(s) + π−1(t), s2 − 2π−1(s);
5 else
6 r, s, t← s2 − 2π−1(s), st− uπ−1(s) + π−1(r), t2 − 2π−1(t);
7 end

8 end
9 if ki = 0 then

10 return r;
11 else
12 return s;
13 end

57

4.3.2 Breakdown

We will now translate the concepts from section 3.8 to our new situation. The explanations
will be terse, because the explanations from the elliptic curve case can be repeated here
with little modification.

Definition 4.3.2. For u ∈ L•3(G) with points in cyclic order g0, g1, g2, we define:

uk,` :=(gk0g
`
1) + (gk1g

`
2) + (gk2g

`
0) ∈ L•3(G)

and uk = uk,0 = πk(u).

In analogy with the decomposition of the line sum function, we now have

uk · u` = uk+` + uk,` + u`,k

As a consequence of the relation g0g1g2 = 1, there are multiple representations of uk,`:

uk,` = u−`,k−` = u`−k,−k (4.3)

and thus the “bad” lines uk,`, u`,k can be eliminated as before:

uk · u` = uk+` + uk,` + u`,k

u−` · uk−` = uk−2` + uk,` + u`,k

u`−k · u−k = u`−2k + uk,` + u`,k

from which:

uk+` = uk−2` + uk · u` − u−` · uk−` (4.4)

= u`−2k + uk · u` − u`−k · u−k (4.5)

This is the formula that forms the basis for algorithm 6.

In particular, the modified Montgomery ladder can be understood in terms of the
following:

u2k = u2
k − 2u−k (4.6)

u2k+1 = uk+(k+1) = u−k−2 + ukuk+1 − u−1u−k−1 (4.7)

u2k+2 = u2
k+1 − 2u−k−1 (4.8)

u2k+3 = u(k+2)+(k+1) = u−k + uk+1uk+2 − u1u−k−1 (4.9)

u2k+4 = u2
k+2 − 2u−k−2 (4.10)

58

4.4 Linear Sets over a Field

Now we consider implementing generic line multiplication for G = F× with F being an
arbitrary field. Of course we could simply use algorithm 6 directly. But rather than
working over Z[F×], we would like to work in F using field operations.

Then to encode a linear n-set u:

u =(g0) + (g1) + . . .+ (gn−1) ∈ L•n(F×)

we note that there is a polynomial function in F[z] that vanishes exactly at g0, g1, . . . , gn−1.
Moreover, it is unique up to a scalar factor. We choose the polynomial whose lowest degree
non-zero coefficient is 1; equivalently, we normalize the polynomial at ∞ with respect to
the uniformizer z−1.

More precisely, we let ρu(z) ∈ F[z] denote the normalized function whose zeroes corre-
spond to u:

u =(g0) + (g1) + . . .+ (gn−1) ∈ L•n(F×)

ρu(z) =(g0 − z)(g1 − z) · · · (gn−1 − z)

=1− (g−1
0 + . . .+ g−1

n−1)z + . . .+ (g0 + . . .+ gn−1)(−z)n−1 + (−z)n

We note that since we are in a field, we can recover u by taking the roots of this polyno-
mial, with multiplicities. The addition operation in Z[G] translates into multiplication of
functions:

ρu+v =ρu · ρv.

The multiplication in Z[G] can be expressed as a resultant:

ρu·v(z) =
∏
i,j

(gihj − z)

=
∏
i,j

(gi −
z

hj
)

= Resx(ρu(x), xnρv(z/x))

4.4.1 Generic Line Multiplication Over a Field

Now we consider the n = 3 case of line multiplication in L•3(F×), while working with the
arithmetic in F directly. So we will translate algorithm 6. Then we will see how to make
simple improvements; these will be useful to us since there will be analogues for elliptic
curve line multiplication.

59

An element u = (g0) + (g1) + (g2) ∈ L•3(F×) is encoded as ρu:

ρu(z) =(g0 − z)(g1 − z)(g2 − z)

=1− t(u)z + s(u)z2 − z3 ∈ F[z]

where s(u) = g0 + g1 + g2 ∈ F and

t(u) = g0g1 + g0g2 + g1g2 = g−1
0 + g−1

1 + g−1
2 = s(π−1(u)).

The addition operation in Z[G] simply translates into multiplication of functions, as
noted earlier: ρu+v = ρu · ρv. The multiplication in Z[G] is the following when ρu(z) =
1− cz + dz2 − z3 and ρv(z) = 1− ez + fz2 − z3:

ρu·v(z) =
∏
i,j

(gihj − z) = Resx(ρu(x), xnρv(z/x))

= Resx(1− cx+ dx2 − x3, z3 − fxz2 + ex2z − x3)

=1− cez +
(
c2f + de2 − 2df

)
z2 −

(
c3 + e3 + cdef − 3cd− 3ef + 3

)
z3

+
(
c2de+ ce2f − ce− 2cf 2 − 2d2e+ d2f 2

)
z4

+
(
−c2e2 + 2c2f − cd2f + 2de2 − def 2 + df

)
z5

+
(
cdef − 3cd+ d3 − 3ef + f 3 + 3

)
z6

+
(
2ce− cf 2 − ed2

)
z7 + dfz8 − z9 (4.11)

The 2-power operation is simple to calculate:

ρπ2(u)(z) =
∏

i∈{0,1,2}
(g2
i − z)

= Resx(1− cx+ dx2 − x3, x2 − z)

=1− (c2 − 2d)z + (d2 − 2c)z2 − z3

Note that we can calculate ρπk(u)(z) = Resx(1 − cx + dx2 − x3, xk − z) more generally,
using general resultant algorithms, but we will not be exploring this idea, since our main
motivation is to have a “toy” model of line multiplication.

So now we are ready to translate algorithm 6! Unfortunately, this is quite messy already.
It involves calculating ρu·v twice for each “multiplication” step, and then we need to do
multiplication and division with these polynomials of degree 9. It turns out that we can
do much better, and we only need to calculate a small number of the coefficients of ρu·v.

60

4.4.2 Improved Line Multiplication Over a Field

Suppose that we have a group homomorphism ψ : G→ F×. Then we get a ring homomor-
phism Z[G] → F with (g) 7→ ψ(g). This allows us to interpret the formulas from Z[G] in
terms of the arithmetic in F. So in this vein, we define sk,` to be the image of uk,` ∈ L•3(F×)
under the identity homomorphism:

Definition 4.4.1. For a line u ∈ L•3(F×) with points g0, g1, g2 in cyclic order, we define:

sk,` =gk0g
`
1 + gk1g

`
2 + gk2g

`
0 ∈ F

sk =sk,0 = gk0 + gk1 + gk2 ∈ F

Recall the encoding of uk,`, which can be expressed in terms of the above notation:

ρuk,`(z) =(gk0g
`
1 − z)(gk1g

`
2 − z)(gk2g

`
0 − z)

=1−
(
g−k0 g−`1 + g−k1 g−`2 + g−k2 g−`0

)
z +

(
gk0g

`
1 + gk1g

`
2 + gk2g

`
0

)
z2 − z3

=1− s−k,−`z + sk,`z
2 − z3

So we can encode uk,` as the pair of coefficients (sk,`, s−k,−`) of ρuk,` .

By the aforementioned principle, we have that for any k, ` ∈ Z,

sk+` = sk−2` + sk · s` − s−` · sk−`
= s`−2k + sk · s` − s`−k · s−k

Alternatively, a simple calculation verifies this directly. This allows us to run an algorithm
very similar to the generic algorithm directly. Namely, if we know s±k, s±(k+1), s±(k+2), then
we can obtain:

s±2k =s2
±k − 2s∓k (4.12)

s±(2k+1) =s∓(k+2) + s±ks±(k+1) − s∓1s∓(k+1) (4.13)

s±(2k+2) =s2
±(k+1) − 2s∓(k+1) (4.14)

s±(2k+3) =s∓k + s±(k+1)s±(k+2) − s±1s∓(k+1) (4.15)

s±(2k+4) =s2
±(k+2) − 2s∓(k+2) (4.16)

Algorithm 7 is a vast improvement over the generic algorithm itself, since that involved
computing ρu·v multiple times. Note that in there are approximately log2(k) steps in the
operation chain, and each step involves 4 squarings and 4 multiplications.

61

Algorithm 7: Algorithm to Compute πk : L•3(F×)→ L•3(F×) Using F Arithmetic.

Input : c, d ∈ F (representing ρu(z) = 1− cz + dz2 − z3) and a positive integer k
with binary representation k = kb . . . k1k0 and kb = 1.

Output: (g−k0 + g−k1 + g−k2 , gk0 + gk1 + gk2), where (g−1
0 + g−1

1 + g−1
2 , g0 + g1 + g2) = (c, d)

1 r, s, t← 3, c, c2 − 2d;
2 ρ, σ, τ ← 3, d, c2 − 2c;
3 for i← b− 1 to 0 do
4 if ki = 0 then
5 r, s, t← r2 − 2ρ, rs− cσ + τ, s2 − 2σ;
6 ρ, σ, τ ← ρ2 − 2r, ρσ − ds+ t, σ2 − 2s;

7 else
8 r, s, t← s2 − 2σ, st− dσ + ρ, t2 − 2τ ;
9 ρ, σ, τ ← σ2 − 2s, στ − cs+ r, τ 2 − 2t;

10 end

11 end
12 if ki = 0 then
13 return r, ρ;
14 else
15 return s, σ;
16 end

62

For example, to calculate s±25 given s±1, we write 25 = 110012 in binary and iteratively
compute:

0 : (s0, s1, s2) =
(
3, s1, s

2
1 − 2s−1

)
(s0, s−1, s−2) =

(
3, s−1, s

2
−1 − 2s1

)
10 : (s2, s3, s4) =

(
s2, s1s2 − s1s−1 + 3, s2

2 − 2s−2

)
(s−2, s−3, s−4) =

(
s−2, s−1s−2 − s1s−1 + 3, s2

−2 − 2s2

)
110 : (s6, s7, s8) =

(
s2

3 − 2s−3, s3s4 − s1s−3 + s−2, s
2
4 − 2s−4

)
(s−6, s−7, s−8 =

(
s2
−3 − 2s3, s−3s−4 − s−1s3 + s2, s

2
−4 − 2s4

)
1100 : (s12, s13, s14) =

(
s2

6 − 2s−6, s6s7 − s1s−6 + s−5, s
2
7 − 2s−7

)
(s−12, s−13, s−14) =

(
s2
−6 − 2s6, s−6s−7 − s−1s6 + s5, s

2
−7 − 2s7

)
11000 : (s24, s25, s26) =

(
s2

12 − 2s−12, s12s13 − s1s−12 + s−11, s
2
13 − 2s−13

)
(s−24, s−25, s−26) =

(
s2
−12 − 2s12, s−12s−13 − s−1s12 + s11, s

2
−13 − 2s13

)
And we have obtained s±25.

63

4.5 Application: Cipolla’s algorithm

In this section, we propose an application of line multiplication in a square root finding
algorithm. This algorithm is a modification of Cipolla’s square root finding algorithm over a
finite field of odd order. In particular, we use our operation to implement an exponentiation
in a quadratic extension of a finite field. For some context about the general problem of
finding the square root of n ∈ Fp, see for example section 11.1.5 of [3].

The idea for Cipolla’s algorithm is to choose α ∈ Fp2\Fp with norm n. Then the
conjugates of α over Fp are α, αp, so their product gives the norm: α ·αp = n. Equivalently,
we have αp+1 = n, so we can find a square root simply by raising α to the power of p+1

2
:(

α
p+1
2

)2

= α · αp = N(α) = n

Note that such an α will be a root of an irreducible x2−ax+n ∈ Fp[x] for some a ∈ Fp.
So we approach this problem by choosing a ∈ Fp randomly, and checking if x2 − ax+ n is
irreducible in Fp[x]; concretely, we want a2 − 4n to be a non-square, or equivalently(

a2 − 4n

p

)
= −1

for the Legendre symbol. If this condition does not hold, we choose another a randomly,
and check again; since half of F×p consists of non-squares, it should not take long before an
appropriate a is found.

Once we have this value for a, we simply define α ∈ Fp2\Fp to be a root of x2− ax+n.

Then as mentioned earlier, the other conjugate root is αp, so αp+1 = n, and thus α
p+1
2 is a

square root of n. In the usual presentation of Cipolla’s algorithm, this is calculated using
a recursion.

We define rk, sk ∈ Fp to be the coefficients such that

αk =rk + skα.

Then since α2 = aα− n, we can equivalently define rk, sk via the following recursion:

(r0, s0) =(1, 0)

(ri+1, si+1) =(−nsi, ri + asi)

More efficiently, we can deduce a doubling formula:

α2k = (rk + skα)2 = r2
k + 2rkskα + s2

kα
2

=(r2
k − ns2

k) + (2rksk + as2
k)α

(r2k, s2k) =
(
r2
k − ns2

k, (2rk + ask)sk
)

64

Combining this with the previous formula, we get a “double plus one” formula:

(r2k+1, s2k+1) =(−ns2k, r2k + as2k)

=
(
−n(2rk + ask)sk, (r

2
k − ns2

k) + a(2rksk + as2
k

)
=
(
−n(2rk + ask)sk, r

2
k + 2arksk + (a2 − n)s2

k+
)

=
(
−n(2rk + ask)sk, (rk + ask)

2 − ns2
k

)

These two formulas allow us to perform an operation chain to compute α
p+1
2 , which

will give us a square root of n. This is presented in algorithm 8.

Algorithm 8: Cipolla’s Algorithm to Compute Square Root

Input : An odd prime p and an integer n satisfying
(
n
p

)
= 1; that is, a square in

Fp.
Output: A square root of n ∈ Fp

1 a← Random(Fp);
2 while

(
a2−4n
p

)
6= −1 do

3 a← Random(Fp);
4 end
5 r, s← 1, 0;
6 for i← b− 1 to 0 do
7 if ki = 0 then
8 r, s← r2 − ns2, (2r + as)s;
9 else

10 r, s← −n(2r + as)s, (r + as)2 − ns2;
11 end

12 end
13 return r;

65

Note that this calculation involves roughly 5 log2 n multiplications for the main loop.

4.5.1 Cipolla Using Line Multiplication

Now we will explain how we use line multiplication to compute α
p+1
2 in Cipolla’s algorithm.

The simplest approach is to take

u =(α) + (αp) + (α−p−1) ∈ L•3(F×p)

=(α) + (n/α) + (1/n) ∈ L•3(F×p)

Then we will calculate π p+1
2

(u), noting that it contains
√
n := α

p+1
2 . In fact, we have:

Lemma 4.5.1.

π p+1
2

(
(α) + (αp) + (α−p−1)

)
=
(√

n
)

+
(√

n
)

+

(
1

n

)
Proof. Recall that

√
n = α

p+1
2 is in the base field Fp. Hence it is fixed under the Frobenius

automorphism, or equivalently

α
p+1
2 =

(
α

p+1
2

)p
= α

1
2
p(p+1)

From this, we get:

π p+1
2

(u) =
(
α

1
2

(p+1)
)

+
(
α

1
2
p(p+1)

)
+
(
α−

1
2

(p+1)2
)

=
(√

n
)

+
(√

n
)

+

(
1

n

)

So if we compute the coefficients of u p+1
2

, then we get:

1− s− p+1
2
z + s p+1

2
z2 − z3 =

(√
n− z

)2
(

1

n
− z
)

=1−
(
n+

2√
n

)
z +

(
1

n
+ 2
√
n

)
z2 − z3

and we can extract
√
n = 1

2

(
s p+1

2
− 1

n

)
.

Recall that the standard implementation of Cipolla’s algorithm used roughly 5 log2(n)
multiplications. Our method requires roughly 8 log2(n) multiplications, but there is room

66

for improvement. By adding a parameter to the above process, we can save one multi-
plication at each step of the operation chain. Note that while this does not make our
algorithm competitive, it illustrates how extra degrees of freedom can be used to improve
our operation chains.

We can achieve this improvement by adding a parameter k ∈ F×p :

u =
(α
k

)
+

(
αp

k

)
+

(
k2

αp+1

)
∈ L•3(F×p)

ρu(z) =
(α
k
− z
)(αp

k
− z
)(

k2

αp+1
− z
)

=1−
(
n

k2
+
ak

n

)
z +

(
a

k
+
k2

n

)
z2 − z3

=1−
(
n2 + ak3

k2n

)
z +

(
an+ k3

kn

)
z2 − z3

Then we notice that this gives us some freedom in choosing the initial parameters c, d that
appear in each step of algorithm 7. In particular, we can choose one of c, d to be 0, to save
a multiplication at each step. To achieve this, notice that if we take a = n2b3, k = −nb,
then (α

k
− z
)(αp

k
− z
)(

k2

n
− z
)

= 1−
(

1− n3b6

nb2

)
z − z3

Then using the same process as earlier, we can recover (α/k)
p+1
2 =

√
n

k
p+1
2

. Then we note

that k
p+1
2 = k · k p−1

2 = ±k, so k
(

(α/k)
p+1
2

)
= ±√n is a square root of n. Recall that we

need the following condition: (
a2 − 4n

p

)
= −1

Experimentally, by choosing a random b, we get this approximately half of the time for
a = n2b3.

67

Chapter 5

Diagrammatic Algebra

In this chapter, we introduce a diagrammatic algebra which gives a unified treatment of
various forms of line multiplication, as well as other diagrams that emerge from the study of
line addition. In chapter 6, we will supplement this algebra with a diagrammatic calculus
that gives explicit tools for designing line multiplication algorithms. The diagrammatic
algebra and calculus have a combinatorial flavor, with some inspiration coming from the
theory of combinatorial species.

The diagrammatic calculus is based on diagrams, a term we use to refer to incidence
structures on elliptic curve points, subject to certain constraints. We have already used
unlabeled line diagrams to represent elements ` ∈ L3(E) in chapter 3:

`
P0 P1 P2

This usage will be given a precise meaning in this chapter. We will generalize the scalar
multiplication of lines to other diagrams. Then we will consider the structures that arise
when we consider the addition of two diagrams with the same structure. This will generalize
the linear sum diagram u� v that we have previously considered:

68

u� v :

w5

w6

w4

w1

w3

w2

P0 +Q0

P1 +Q1

P2 +Q2

P1 +Q2

P2 +Q0

P0 +Q1

P2 +Q1

P0 +Q2

P1 +Q0

This was introduced in section 3.10 as a natural structure on the possible sums between
points/lines of u, v ∈ L3(E) with respective points P0, P1, P2 and Q0, Q1, Q2. We will more
generally define nine point diagrams, as well as other diagrams that combine multiple
diagrams together. Nine point diagrams will be studied in greater depth in chapter 6.

Our diagrams will not be restricted to elliptic curves, but in fact will be defined over
an arbitrary abelian group. Recall that this was also the case in chapter 4; but in contrast,
the present chapter will take full advantage of this fact. For example, we use this to define
homomorphisms between diagrams, and we will re-interpret nine point diagrams as lines
of lines. In chapter 6, we will then revisit the diagrammatic algebra with elliptic curves
in mind. We will develop a diagrammatic calculus of formulas that encode structural
information about a diagram or between multiple related diagrams.

5.1 Label Structures

Recall that in chapter 3, we took a bottom-up approach: we first defined lines in L3(E)
with little structure, and then added structure to obtain cyclically oriented lines. In this
chapter, we take a top-down approach, and start with labeled lines, where the points are
all distinguished from one another. More generally, we define labeled diagrams, and then
we will whittle down the structure to obtain more general diagrams suited to our needs.

To do this, we will borrow some concepts and terminology from discrete geometry. The
underlying structure of a labeled diagram is a finite incidence structure; it is from this

69

structure that the labels will be taken. Since incidence structures normally have “points”
and “lines”, we will avoid a conflict of terminology by emphasizing their roles as labels:

Definition 5.1.1. An incidence structure D consists of a set P of point labels, a set L
of line labels, and an incidence relation I ⊆ P× L.

A line structure on a finite set N is the incidence structure LN with point labels from
N , and a single line label which is incident to all point labels. In particular, for a positive
integer n, the n-line structure Ln is the line structure on the integers modulo n.

We will normally represent our incidence structure with point labels drawn in a circle,
line labels drawn in a rectangle, and incidence will be indicated by a line emanating from
the rectangle and passing through the circle. For example an (n+ 1)-line with line label a
is represented as follows:

Ln+1 : a0 1 n

In practice we will sometimes omit line labels, especially when considering n-line structures
individually. This will also be the case when there is little relevance to the label, or when
the context makes it clear. So the 3-line structure L3 will be represented as follows:

0 1 2

5.1.1 Isomorphisms of Incidence Structures

When we later generalize labeled diagrams, we will use isomorphisms to allow for symme-
tries of the underlying structure:

Definition 5.1.2. An isomorphism φ : D→ D′ between incidence structures D,D′ consists
of a bijection φ : P→ P′ and a bijection φ : L→ L′, which preserves the incidence relation.
That is, φ(i) ∈ φ(k)⇔ i ∈ k for all (i, k) ∈ P× L.

An isomorphism φ : D→ D is called an automorphism, and these form a group Aut(D)
under composition. Any subgroup of Aut(D) is called an automorphism group.

In the simplest case of an n-line structure, the automorphism group is the full per-
mutation group Sn of its labels. We will notate permutations in cycle notation, and the
group operation is functional composition; so for example, on labels 0, 1, 2, the permutation
(012)(01) = (02) transposes 0, 2 and fixes 1.

70

5.1.2 Nine Point Diagram Structure

We will often combine incidence structures into larger ones. Notably, we will work with
nine point diagrams, which will be defined on the following structure:

Definition 5.1.3. The following incidence structure N is the nine point diagram structure:

N :

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

This in fact has 72 symmetries, generated by %, ς, τ , with % being a reflection across the
northwest to southeast diagonal, ς transposing the lines (01) and τ cycling the lines (012):

71

%

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

ς

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

τ

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

%N :

0′ 1′ 2′

000 01 02

110 11 12

220 21 22

ςN :

1 0 2

0′10 00 20

1′11 01 21

2′12 02 22

τN :

2 0 1

0′20 00 10

1′21 01 11

2′22 02 12

Lemma 5.1.4. The automorphism group Aut(N) is generated by the automorphisms %, ς, τ ,
which are defined on point/line labels as follows, working in modulus 3:

%(ij) = ji, ς(ij) = (1− i)j, τ(ij) = (i+ 1)j

%(l) = l′, ς(l) = (1− l), τ(l) = (l + 1)j

%(l′) = l, ς(l′) = l′, τ(l′) = l′

Furthermore, this automorphism group has order 72.

Note that by applying combinations of ς, τ , we can permute lines 0, 1, 2 arbitrarily, while
fixing lines 0′, 1′, 2′. We can do similarly with ς ′ = %ς%, τ ′ = %τ%; these permute the lines
0′, 1′, 2′ arbitrarily, while fixing lines 0, 1, 2.

Proof. First note that Aut(N) acts faithfully on the line labels; that is because if we are
given lines labeled φ(i), φ(j′), we must have the point labeled φ(ij) at their intersection.
So we will consider Aut(N) as a permutation group on the line labels.

72

We will prove that the order of the group is 72 by the orbit-stabilizer theorem. First
note that Aut(N) acts transitively on the line labels: id(0) = 0, τ(0) = 1, τ 2(0) = 2, %(0) =
0′, %τ(0) = 1′, %τ 2(0) = 2′. So the orbit of 0 has order 6. Next we consider the stabilizer of
2; so suppose that φ(2) = 2. Then φ must induce a permutation on {0, 1}, since the lines
labeled φ(0), φ(1) cannot intersect the line labeled φ(2) = 2. Hence the stabilizer of 2 is
〈ς, ς ′, τ ′〉, which has order 12. Hence |Aut(N)| = 6 ∗ 12 = 72.

Lastly since 〈ς, τ, ς ′, τ ′〉 (〈%, ς, τ〉 ⊆ Aut(N), the subgroup 〈%, ς, τ〉 must have index 1,
so we are done.

5.2 Labeled Diagrams

To form a labeled diagram D on an incidence structure D, we assign a point Pi ∈ E to
each line label i ∈ P. For each line label j ∈ L, we impose a condition on the collection `j
of points assigned to labels i ∈ P that are incident to j; namely, `j must be a linear set.
Recall from chapter 4 that a linear n-set is an unordered n-tuple of points from E that
sum to O. More concisely, it is an element from L•n(E):

L•n(E) = {(P0) + (P1) + . . .+ (Pn−1) ∈ Z[E] : P0 + P1 + . . .+ Pn−1 = O}

Definition 5.2.1. A labeled diagram D with incidence structure D assigns a point pi(D) ∈
E to each point label i ∈ P of D, and a linear set lj(D) ∈ L•n(E) to each line label j ∈ L
of D. Furthermore, for each line label j ∈ L, the linear set lj must correspond to the
collection of points assigned to the point labels incident to j. The set of labeled diagrams
on D will be denoted L◦D(E).

We will normally indicate point assignments from E for each point label, and then
linear set assignments will be implicit; we note that there is really no choice in the matter.

We will normally represent the point pi(D) near its label i; often this will be denoted
Pi or similar. Similarly, the linear set li(D) will be represented near the line label, or else
near an endpoint of the line drawing; often we will denote that line by `i or similar. For
example, if we assign a point Pi ∈ E to each i ∈ {0, 1, 2} such that P0 +P1 +P2 = O then
we get a labeled line diagram:

`0

P0

1

P1

2

P2

The symbol ` then represents the linear set with points P0, P1, P2, and this is assigned to
the (omitted) line label. We will use the symbol `◦ to refer to the above labeled diagram.

73

In some cases, we simply use the symbol `, and the context makes it clear that we are
including the additional structure.

We will identify elements of L◦n(E) with the n-tuple of points assigned to the labels:

Definition 5.2.2. A labeled n-line `◦ is an n-tuple of points (P0, P1, . . . , Pn−1) from E
satisfying P0 + P1 + . . .+ Pn−1 = O. The set of labeled n-lines is denoted L◦n(E).

Again, the indices will be in modulus n, and if n is not otherwise specified, it should be
taken to be 3.

5.2.1 Automorphisms on Labeled Diagrams

To define new classes of diagrams, we will take equivalence classes of labeled diagrams
under the action of a symmetry group. These symmetries will be automorphisms of the
underlying incidence structure, which will be applied to the labels of a diagram. So if
D ∈ L◦D(E) assigns the point Pi ∈ E to each label i of D, then σD ∈ L◦D(E) assigns the
point Pi to the label σ(i) of D. Equivalently, σD assigns the point Pσ−1i to the label i of
D. More generally:

Definition 5.2.3. Given an isomorphism φ : D→ D′ and a labeled diagram D ∈ L◦D(E),
we define the labeled diagram φ(D) on structure D′ as follows:

• pi(φ(D)) = pφ−1i(D) for each point label i of D′

• lj(φ(D)) = lφ−1j(D) for each line label j of D′

The induced map φ : L◦D(E)→ L◦D′(E) is called a structural isomorphism.

This gives an action of Aut(D) on L◦D(E). For example, consider the automorphism
ω = (012) of a 3-line structure. We can apply this to a labeled line diagram ` to obtain
the labeled line diagram ω`:

`0

P0

1

P1

2

P2

ω`0

P2

1

P0

2

P1

As another example, recall the automorphism τ ∈ Aut(N) from section 5.1.2. Here we
have a labeled nine point diagram N on the left hand side, and τN on the right:

74

N :

`0 `1 `2

`′000

P00

10

P10

20

P20

`′101

P01

11

P11

21

P21

`′202

P02

12

P12

22

P22

τN :

`2 `0 `1

`′000

P20

10

P00

20

P10

`′101

P21

11

P01

21

P11

`′202

P22

12

P02

22

P12

5.2.2 Labeled Diagram Arithmetic

We will now discuss arithmetic in L◦D(E), with the goal of developing a more general
context to understand line arithmetic. We first define labeled diagram multiplication by
k ∈ Z to be the map k� : L◦D(E)→ L◦D(E) that multiplies each point by k:

Definition 5.2.4. For a labeled diagram D on an incidence structure D, the multiplication
by k map k� : L◦D(E)→ L◦D(E) results in the labeled diagram k �D with:

pi(k �D) =kpi(D)

lj(k �D) =k � lj(D)

So for a labeled line ` ∈ L◦3(E), and k ∈ Z, we get:

`0

P0

1

P1

2

P2

k � `0

kP0

1

kP1

2

kP2

Recall that the (unlabeled) line addition in L3(E) that we have considered has an
inherent six way ambiguity. In contrast to this, labeled line addition has no ambiguity,
since we simply pair the points according to their labels:

75

`00

P0

1

P1

2

P2

`10

P ′
0

1

P ′
1

2

P ′
2

`0 + `10

P0 + P ′
0

1

P1 + P ′
1

2

P2 + P ′
2

or equivalently,

(P0, P1, P2) + (Q0, Q1, Q2) = (P0 +Q0, P1 +Q1, P2 +Q2)

More generally, we can take the sum of two labeled diagrams in this same way:

Definition 5.2.5. For labeled diagrams D0,D1 ∈ L◦D(E), the labeled diagram sum D0 +
D1 ∈ L◦D(E) satisfies the following for each label:

pi(D0 +D1) = pi(D0) + pi(D1)

This operation is termed labeled diagram addition, and gives L◦D(E) an abelian group
structure. The identity element of this group is DO, which has the point O assigned to
each label.

For labeled lines, we denote the additive identity as follows:

`O0

O
1

O
2

O

We will extend our diagram multiplication k� to include the possibility that k is a
structural automorphism:

Definition 5.2.6. For k = k0σ0 + . . .+ kmσm ∈ Z[Aut(D)] with ki ∈ Z and σi ∈ Aut(D),
we define

k �D = k0 � σ0D + . . .+ km � σmD

This notation will make it simpler to discuss addition of diagrams in certain contexts.
We will make good use of this notation in section 5.6.1, when we discuss cyclic line arith-
metic.

76

5.3 Diagrams With Symmetry

In this section, we define more general diagrams in terms of labeled diagrams. In particular,
this will give a precise meaning to the line diagrams that we have used to represent a line
` ∈ L3(E):

`
P0 P1 P2

First we note that the points of a line ` ∈ L3(E) are unordered. Hence if we want a diagram
that represents such a line, the diagram resulting from a permutation of the points should
be considered to be equivalent to the original diagram. Thus we define an unlabeled line
diagram to be an equivalence class of labeled line diagrams under arbitrary permutations
of its points.

More generally, a diagram will correspond to an equivalence class of labeled diagrams
on an incidence structure D under the action of a symmetry group:

Definition 5.3.1. Given an incidence structure D and an automorphism group S ⊆
Aut(D), a diagram D with symmetry group S is an orbit of L◦D(E) under the action
of S. The collection of such diagrams is denoted LSD(E).

If S is the full automorphism group, then we say that D is an unlabeled diagram, and
the set of unlabeled diagrams is denoted L•D(E).

Generally speaking, unlabeled diagrams will be drawn with filled circles, while labeled
diagrams will be drawn with unfilled circles. Furthermore, the labels will often be omitted.
Note that we will identify L◦D and L{id}D by a slight abuse of notation. Accordingly, a
diagram with only trivial symmetry group will also be termed a labeled diagram.

For a diagram D with symmetry group S, the notation D◦ will be used to refer to some
labeled diagram in its equivalence class. Normally D is defined in terms of a drawing, and
D◦ is understood to refer to the specific representative that is drawn. On the other hand,
we use the notation D• to denote the same diagram, but with full symmetry group.

Recall that the n-line structure has points labeled by integers modulo n, and a single
line that passes through all of them. We will refer to any diagram on this structure as an
n-line diagram:

Definition 5.3.2. An n-line diagram is a diagram on an n-line incidence structure. An
unlabeled n-line diagram has full symmetry group Sn. When n is not specified, it should
be assumed to be 3.

Later in this section, we will redefine the lines from previous chapters in diagrammatic
terms. Note that the line structure has automorphism group S3, and we will use the
generators ρ = (01) and ω = (012).

77

5.3.1 Automorphisms on Diagrams with Symmetry

Definition 5.3.3. Given an isomorphism φ : D→ D′ and a symmetry group S ⊆ Aut(D),
we define the symmetry group S ′ ⊆ Aut(D′) by element-wise conjugation: S ′ = φ◦S ◦φ−1.
Then we can apply φ to D ∈ LSD(E) to obtain φ(D) ∈ LS′D′(E).

In light of this, we consider automorphisms of diagrams with symmetry. To preserve
their symmetry group, we simply define the automorphism group of D to be:

Definition 5.3.4. For a symmetry group S ⊆ Aut(D) of an incidence diagram D, we
define the S-automorphism group of D to be the quotient of the normalizer of S by S:

AutS(D) = NAut(D)(S)/S

Note that for D ∈ LSD(E) and ν ∈ NAut(D)(S), we have D = SD◦ for some labeled dia-
gram D◦ ∈ L◦D(E). Thus we can unambiguously define νD = νSD◦ = SνD◦. Furthermore,
every element σ ∈ S acts trivially on D by definition.

5.3.2 Unlabeled Line Diagrams

An unlabeled line diagram ` ∈ L•3(E) will be represented as follows:

`
P0 P1 P2

This represents the equivalence class consisting of the following six labeled line diagrams:

`◦0

P0

1

P1

2

P2

ω`◦0

P2

1

P0

2

P1

ω2`◦0

P1

1

P2

2

P0

ρ`◦0

P1

1

P0

2

P2

ρω`◦0

P0

1

P2

2

P1

ρω2`◦0

P2

1

P1

2

P0

Such an unlabeled line diagram corresponds to an unordered triplet of points of E, with
repetitions allowed. Note that this gives an alternate but equivalent definition to the one
from section 4.1.1:

L•3(E) = {(P0) + (P1) + (P2) ∈ Z[E] : P0 + P1 + P2 = O}

78

More generally, unlabeled n-line diagrams correspond to elements of L•n(E) as defined in
section 4.1.1:

L•n(E) = {(P0) + . . .+ (Pn−1) ∈ Z[E] : P0 + . . .+ Pn−1 = O}

5.3.3 Cyclic Line Diagrams

Now we can redefine cyclically oriented lines in diagrammatic terms:

Definition 5.3.5. A cyclic n-line diagram has symmetry group generated by the permuta-
tion i 7→ i+ 1 in modulus n. We denote the set of cyclic n-line diagrams by L.n(E).

For n = 3, we simply refer to this as a cyclic line diagram. We use the notation
ω = (012), and thus a cyclic line diagram has symmetry group {1, ω, ω2}. It is drawn as
follows:

`
P0 P1 P2

and represents the following three diagrams:

`◦0

P0

1

P1

2

P2

ω`◦0

P2

1

P0

2

P1

ω2`◦0

P1

1

P2

2

P0

We note that since S = {1, ω, ω2} is a normal subgroup of Aut(L3), cyclic line diagrams
have an automorphism group of order 2. We will use the symbol ρ for the non-trivial
automorphism.

5.3.4 Nine Point Diagrams with Symmetry

Any diagram on a structure isomorphic to N will be referred to as a nine point diagram.
An unlabeled nine point diagram will be represented as follows:

79

N • :
`′0

`′1

`′2

`0

P00

P01

P02

`1

P10

P11

P12

`2

P20

P21

P22

The prototypical nine point diagram is the u�v line sum diagram that we have referred
to countless times. As we will see in the next section, the line sum diagram has 6∗6∗2 = 72
symmetries corresponding to an arbitrary permutation of each line, and to swapping the
order of summation. Thus the symmetry group must be the full Aut(N), since the latter
has order 72. Thus the line sum diagram is in fact an unlabeled nine point diagram.

In the following chapters, we will consider nine point diagrams with other symmetry
groups. The goal will be to track additional information in our operation chains, that
impose additional structure on the nine point diagrams that we consider. For example,
if u, v are cyclically oriented lines, then N can be determined up to a symmetry group
of order 18, and we will benefit from this in chapter 6 when we develop a diagrammatic
calculus.

5.4 Diagrammatic Arithmetic

In this section, we develop the arithmetic of diagrams in LSD(E) for a symmetry group S.
The first step is easy; for a diagram D ∈ LSD(E), the scalar multiplication by k ∈ Z map
simply applies to each labeled diagram in the orbit of D:

Definition 5.4.1. Given a diagram D with symmetry group S, let D◦ denote a labeled
diagram in its equivalence class. Then we define k�D to be the equivalence class of k�D◦
with symmetry group S.

Next we consider operation chains to compute scalar multiplication. Of course, the
addition step will be our point of focus, as it has been for line multiplication in previous
chapters. First we consider unlabeled line addition; a typical 3-line ` represents six possible
labeled lines. Hence for `, `′ there are 36 possible labeled sum lines! Of course, we will
consider such diagrams to be equivalent under the action of S, which reduces the number
of possibilities to 6.

80

This is a reinterpretation of the discussion from section 3.3 about the ambiguity inherent
to line addition. Explicitly, suppose that u, v ∈ L•3(E) are represented by u◦, v◦ ∈ L◦3(E)
with respective points Pi, Qi on label i:

u
P0 P1 P2

v
Q0 Q1 Q2

Then there are six possible sum lines between u and v. Recall that for any line diagram `,
the notation `• indicates the unlabeled line that is represented by `:

u

P0

P1

P2

v

Q0

Q1

Q2

w1 = (u◦ + v◦)•

P0 +Q0

P1 +Q1

P2 +Q2

� ?
= u

P0

P1

P2

v

Q0

Q1

Q2

w4 = (u◦ + ρv◦)•

P0 +Q1

P1 +Q0

P2 +Q2

� ?
=

u

P0

P1

P2

v

Q0

Q1

Q2

w2 = (u◦ + ωv◦)•

P0 +Q2

P1 +Q0

P2 +Q1

� ?
= u

P0

P1

P2

v

Q0

Q1

Q2

w5 = (u◦ + ρωv◦)•

P0 +Q0

P1 +Q2

P2 +Q1

� ?
=

u

P0

P1

P2

v

Q0

Q1

Q2

w3 = (u◦ + ω2v◦)
•

P0 +Q1

P1 +Q2

P2 +Q0

� ?
= u

P0

P1

P2

v

Q0

Q1

Q2

w6 = (u◦ + ρω2v◦)
•

P0 +Q2

P1 +Q1

P2 +Q0

� ?
=

81

More generally, we define the following, which matches our definition of “sum line”
between elements of L3(E):

Definition 5.4.2. Suppose we have diagrams D1,D2 ∈ LSD(E) with the same structure and
symmetry group. Let D◦1,D◦2 represent labeled diagram in their respective orbits. For any
σ ∈ S, the equivalence class of D◦1 + σD◦2 under S is termed a sum diagram between D1

and D2.

Next we recall that in section 3.10, we organized the six sum lines between u, v ∈ L3(E)
into the following diagram:

u� v :

w5

w6

w4

w1

w3

w2

P0 +Q0

P1 +Q1

P2 +Q2

P1 +Q2

P2 +Q0

P0 +Q1

P2 +Q1

P0 +Q2

P1 +Q0

In the remainder of this section, we will precisely define this unlabeled line sum diagram.
In fact, we will generalize this to a diagrammatic sum between any two diagrams. We will
use this definition as the centerpiece of our renewed discussion of line addition, where we
reconsider cyclic line addition.

5.4.1 Isomorphic Diagrammatic Sum

Suppose that D,D′ are two incidence structures, with respective labeled diagrams D,D′,
and suppose that I ⊆ Iso(D,D′) is a set of isomorphisms between the structures. We will
consider sums between D + φ−1D′ as φ varies over I. In fact, we will put all of these into
a single diagram D �I D′, called an I-diagrammatic sum. When I = Iso(D,D′) contains
all isomorphisms, we call this a full diagrammatic sum.

82

Definition 5.4.3. Given incidence structures D,D′ and a set I of isomorphisms between
them, we define D�I D′ to have points and lines being respectively:

{(i, φ(i)) : i ∈ P, φ ∈ I}
{(k, φ−1) : k ∈ L, φ ∈ I}

where P and L denote the point and line labels of D. The incidences of D�ID′ are exactly
those of the form (i, φ(i)) ∈ (k, φ−1) for each incidence i ∈ k of D and for each φ ∈ I.

The full diagrammatic sum structure between L3 and itself is denoted L�, and can be
represented as follows:

ω

ρ

id

ρω

ω2

ρω2

0,2

2,1 1,1

1,0 0,0 2,0

2,2 1,2

0,1

We embedded L� in the Cartesian plane in modulus 3, which convenient choices of repre-
sentatives. Note that we simplified the line labels by ignoring the first components; these
would would have all been the same. We will next consider an example in more detail.

The idea behind this structure is that for each isomorphism φ ∈ I, we will consider
D + φ−1D′ as a diagram on D, embedded into D �I D′ by identifying the point labels
i↔ (i, φ(i)) and the line labels k ↔ (k, φ−1). For example, consider a labeled line diagram
u on L3, and v on L{α,β,γ}, with a structural isomorphism φ which maps 0 7→ α, 1 7→ β
and 2 7→ γ. Then we consider u+ φ−1v as if it were a diagram on point labels 0, 1, 2:

83

φ

p u0

P0

1

P1

2

P2

q vα

Qα

β

Qβ

γ

Qγ

p,φ−1 u+ φ−1v0α

P0 +Qα

1β

P1 +Qβ

2γ

P2 +Qγ

Definition 5.4.4. The I-diagrammatic sum D�ID′ of two labeled diagrams on structures
D,D′ with a set I ⊆ Iso(D,D′) of isomorphisms, is the labeled diagram on structure D�ID′
with

pi,j(D �I D′) =pi(D) + pj(D′)
lk,φ−1(D �I D′) =lk(D + φ−1D′)

=lk(D) + lφ(k)(D′)

when I = Iso(D,D′) contains all isomorphisms, we call this a full diagrammatic sum, and
denote it D �◦ D′.

For example, for labeled lines `0, `1 with respective points P0, P1, P2 and Q0, Q1, Q2, we
get the following full diagrammatic sum, with `σ = (`0 + σ`1)•:

84

`ω

`ρ

`id

`ρω

`ω2

`ρω2

0,2P0 +Q2

2,1P2 +Q1 1,1P1 +Q1

1,0P1 +Q0 0,0P0 +Q0 2,0P2 +Q0

2,2P2 +Q2 1,2P1 +Q2

0,1P0 +Q1

With more detail, we get the following full diagrammatic sum for the φ-related line
diagrams u, v from earlier, noting that we have changed the order of summation:

v �◦ u :

q,φρω

φρωu+ v

q,φρω2

φρω2u+ v

q,φρ

φρu+ v

q,φ φu+ vα0

Qα + P0

β1

Qβ + P1

γ2

Qγ + P2

q,φω2 φω2u+ vβ2

Qβ + P2

γ0

Qγ + P0

α1

Qα + P1

q,φω φωu+ vγ1

Qγ + P1

α2

Qα + P2

β0

Qβ + P0

85

5.4.2 Diagrammatic Sum Symmetries

We will next define diagrammatic sums for diagrams with symmetry. We accomplish this
by defining an appropriate group of symmetries for an I-diagrammatic sum. First we note
that the full diagrammatic sum inherits the automorphisms of both of its summands:

Definition 5.4.5. The automorphism group Aut(D)×Aut(D′) acts on the respective point
and line labels of D�◦ D′ as follows:

(σ0, σ1)(i, j) :=(σ0(i), σ1(j))

(σ0, σ1)(l, φ−1) :=(σ0(l), σ0 ◦ φ−1 ◦ σ−1
1)

For example, for the linear sum structure L� = L3 �◦ L3, we can apply σ ∈ S in the
first coordinate. We illustrate this with the (σ, id)`0 �◦ `1 diagram:

`σ−1ω

`σ−1ρ

`σ−1

`σ−1ρω

`σ−1ω2

`σ−1ρω2

0,2Pσ−10 +Q2

2,1Pσ−12 +Q1 1,1Pσ−11 +Q1

1,0Pσ−11 +Q0 0,0Pσ−10 +Q0 2,0Pσ−12 +Q0

2,2Pσ−12 +Q2 1,2Pσ−11 +Q2

0,1Pσ−10 +Q1

The action of Aut(D) × Aut(D′) allows us to extend I-diagrammatic sums to include
diagrams with symmetry D ∈ LSD(E), D′ ∈ LS′D′(E). The symmetry group of D �I D′ will
be S × S ′. For the symmetries to be well defined, we need that I ⊆ Iso(D,D′) be closed
under composition on the right by S, and on the left by S ′:

86

Definition 5.4.6. Suppose diagrams D ∈ LSD(E), D′ ∈ LS′D′(E) are represented by D◦ ∈
L◦D(E), D′◦ ∈ L◦D′(E) respectively, and that I ⊆ Iso(D,D′) satisfies S ′ ◦ I ◦ S = I.

Then the I-diagrammatic sum D �I D′ has underlying structure D �I D′, symmetry
group S × S ′, and is represented by the labeled diagram D◦ �I D′◦.

For diagrams D1,D2 ∈ LSD(E) with the same underlying structure, we can take I = S to
get the ordered diagrammatic sum D◦1 �S D◦2. In this case, there is also another canonical
automorphism, and we will use this commutation automorphism to get a commutative
diagrammatic sum.

We note that generally, the I-diagrammatic sum operation is almost commutative; in
fact, D�ID′ and D′�I−1D are related by an isomorphism ς of their underlying structures.
For point labels, the map is ς(i, j) = (j, i); then we note that (i, j) ∈ (l, φ−1) if and only if
i = φ−1(j) ∈ l, which is equivalent to j = φ(i) ∈ φ(l). Hence:

Definition 5.4.7. The commutation isomorphism ς : D�I D′ → D′ �I−1 D is defined as
follows on point and line labels respectively:

ς(i, j) :=(j, i), ς(k, φ−1) :=(φ(k), φ)

For the linear sum structure L�, the symmetry group has generators %, ς, τ :

• % = (ρ, id) transposes (01) in the first coordinate. This can also be thought of as a
reflection across the line through the point labels 20, 21, 22.

• ς swaps the indices. This can also be thought of as a reflection across the line through
the point labels 00, 11, 22.

• τ = (ω2, ω) is a translation by (−1, 1) in the Cartesian plane.

We represent this as follows:

87

ω

ρ

id

ρω

ω2

ρω2

0,2

2,1 1,1

1,0 0,0 2,0

2,2 1,2

0,1

% = (ρ, 1)

%

%

ς

τ = (ω2, ω)

Note that we use the same symbols for the generators of Aut(N); this is in fact coordinated:

Lemma 5.4.8. The linear sum structure is isomorphic to the nine point diagram structure
via the following map φ : L� → N which is defined on point labels as

φ : ij 7→ (i− j − 1)(−i− j)

in modulus 3, and on line labels as

φ : ωk 7→ k − 1, ρωk 7→ (k − 1)′

Furthermore, we can identify the automorphism groups via conjugation by φ. That is,
the symbol ς will represent both the commutation automorphism on L� and the element of
Aut(N) that permutes the line labels as (01); we also make the identifications % = (ρ, id)
and τ = (ω2, ω).

We can represent this pictorially with the nine point diagram structure rotated 135◦

counterclockwise relative to our usual representation, and with different representatives for
the point labels of L� in the Cartesian plane:

88

L� :

id

ρω

ω2

ρω2

ω

ρ

(ρ, 1)

ς

(ω2, ω)

00

11

12

22

20

21

01

02

10

N :
2

0′

11′

0

2′

%

ς

τ

20

21

10

22

11

00

12

01

02

For completeness, we note other translations between Aut(N) and Aut(L�); namely
ς ′ = σ(ρ, ρ) and τ ′ = (ω, ω); and in the other direction % = (ρ, id), %ς ′ς = (id, ρ), τ(τ ′)−1 =
(ω, id) and τ−1(τ ′)−1 = (id, ω).

5.4.3 Diagrammatic Sum

Now we are ready to define a more general analogue of a linear sum diagram:

Definition 5.4.9. The diagrammatic sum D1 � D2 between D1,D2 ∈ LSD(E) is the S-
diagrammatic sum D◦1 �S D◦2, under the action of the symmetry group generated by S × S
and the commutation automorphism ς. Explicitly, the underlying structure is D �S D,
whose point/line labels are:

{(i, φ(i)) : i ∈ P, φ ∈ S}
{(k, φ−1) : k ∈ L, φ ∈ S}

and incidence is given by (i, φ(i)) ∈ (k, φ−1) for any φ ∈ S whenever i ∈ k in D. The
point/line labels are assigned points/linear sets as follows:

pij(D◦1 �S D◦2) =pi(D◦1) + pj(D◦2)

lk,φ−1(D◦1 �S D◦2) =lk
(
D◦1 + φ−1D◦2

)
=lk (D◦1) + lφ(k) (D◦2)

89

The symmetry group of D1 �D2 is generated by S × S along with the commutation auto-
morphism ς:

(σ1, σ2)(i, j) =(σ1(i), σ2(j)), (σ1, σ2)(k, φ−1) =
(
σ1(k), σ1 ◦ φ−1 ◦ σ−1

2

)
ς(i, j) =(j, i), ς(k, φ−1) = (φ(k), φ)

For example, consider labeled lines `0, `1 with respective points Pi, Qi for i = 0, 1, 2.
Then the diagrammatic sum `0� `1 is essentially the same as the labeled line sum `0 + `1:

`0 + `10

P0 +Q0

1

P1 +Q1

2

P2 +Q2

`0 � `100

P0 +Q0

11

P1 +Q1

22

P2 +Q2

This is because a labeled line has trivial symmetry group, so the points must be paired
together in the only possible way. We will in fact make this identification between u + v
and u� v for labeled lines u, v.

For unlabeled lines `•0, `
•
1 ∈ L•3(E) represented by `0, `1 ∈ L◦3(E) with respective points

Pi, Qi on label i, we get the following diagrammatic sum:

`ω

`ρ

`id

`ρω

`ω2

`ρω2

P0 +Q2

P2 +Q1 P1 +Q1

P1 +Q0 P0 +Q0 P2 +Q0

P2 +Q2 P1 +Q2

P0 +Q1

90

The lines in this diagrammatic sum are `σ = (u◦ + σv◦)• for σ ∈ S3, at the label σ. This is
in fact an unlabeled nine point diagram, since its symmetry group is the full automorphism
group of the underlying structure L�.

5.5 Homomorphisms of Diagrams

Our next step in understanding diagrammatic arithmetic is to take a closer look at the
structure that appears in the diagrams we consider. Our main tools for this will be dia-
grammatic homomorphisms, which we will define in this section. We will use diagrammatic
homomorphisms to express relations between various quantities involved in a diagrammatic
addition. For example, the forward difference of a cyclically oriented line is given by a di-
agrammatic homomorphism, and can also be recovered from the linear sum diagram via
a homomorphism. We will work with a general abelian group G here rather than E; the
benefits of this will soon become clear.

First we note that given an isomorphism φ : D → D′ of incidence structures, we have
already seen how to define a structural isomorphism φ : L◦D → L◦D′ . In this section, we will
think of this as follows: for a label i of D, think of pi as a function that assigns a group
element of G to a diagram from L◦D(G). Then we define a diagram on D′, where to a point
label i′, we assign the function pφ−1i. Then when we “plug” a diagram D in, we get the
labeled diagram φ(D) on D′.

For example, if φ : L3 → L{α,β,γ} maps 0 7→ α, 1 7→ β, 2 7→ γ, then the structural
isomorphism φ is represented as:

φα

p0
β

p1
γ

p2

and by plugging in the following `, we get φ(`):

`0

P0

1

P1

2

P2

φ(`)α

p0(`) = P0

β

p1(`) = P1

γ

p2(`) = P2

More generally, for a diagrammatic homomorphism H : L◦D → L◦D′ , to a label of D′

we will assign a linear combination of the functions pi from D. For example, the forward
difference homomorphism ∆ : L◦3 → L◦3 is given as follows, along with its application to
the labeled line ` from earlier:

91

∆0

p2 − p1
1

p0 − p2
2

p1 − p0

∆`0

P2 − P1

1

P0 − P2

2

P1 − P0

Another example that we have seen is the multiplication by k map k� is a diagrammatic
homomorphism on any structure, with k� : L◦3 → L◦3 represented as:

k�0

kp0
1

kp1
2

kp2

Precisely, these assignments will come from the following group:

Definition 5.5.1. To each incidence structure D, we associate an abelian group 〈D〉 which
is called the diagrammatic group, and is presented as follows:

• For each i ∈ P, there is a generator pi

• For each j ∈ L, there is a relation
∑

i∈j pi = 0

For example, 〈L3〉 is generated by p0, p1, p2, and those satisfy p0 + p1 + p2 = 0. Now
we simply define a diagrammatic homomorphism H : L◦D → L◦D′ to be a labeled diagram
on L◦D′ with point label i′ of D′ being assigned a value from the diagrammatic group 〈D〉.
In other words, H ∈ L◦D′(〈D〉):

Definition 5.5.2. A diagrammatic homomorphism H : L◦D → L◦D′ is an element H ∈
L◦D′(〈D〉).

For a group G, a diagrammatic homomorphism H : L◦D → L◦D′ gives rise to a map
H : L◦D(G)→ L◦D′(G). To describe this, start with D ∈ L◦D(G) which assigns pi(D) ∈ G to
a point label i of D. Then in the diagram H, if each instance of pi is replaced with pi(D),
then the diagram H(D) ∈ L◦D′(G) is obtained. We will make this more precise in the next
subsection.

5.5.1 Algebraic Definition of Diagrammatic Homomorphisms

To more precisely define diagrammatic homomorphisms, we start with a more algebraic
definition of a labeled diagram:

92

Definition 5.5.3. Given an abelian group G, a labeled diagram D over G with structure
D corresponds to a group homomorphism ΓD : 〈D〉 → G. Equivalently,

• A group element pi(D) := ΓD(pi) ∈ G is assigned each i ∈ P

• For each j ∈ L, the assignments are subject to the constraint
∑

i∈j pi(D) = 0

The collection of all labeled diagrams over G with structure D will be denoted L◦D(G).

Now we reconsider our definition of a diagrammatic homomorphism H ∈ L◦D′(〈D〉).
Such an H corresponds to a group homomorphism ΓH : 〈D′〉 → 〈D〉. Thus from D ∈
L◦D(G), we obtain HD ∈ L◦D′(G) by functional composition ΓHD := ΓD ◦ ΓH :

Definition 5.5.4. Given incidence structures D,D′, a diagrammatic homomorphism H :
L◦D → L◦D′ is an element of L◦D′(〈D〉). For D ∈ L◦D(G), we define HD ∈ L◦D′(G) via the
associated group homomorphism ΓHD := ΓD ◦ ΓH , where ◦ represents functional composi-
tion.

We can apply a diagrammatic homomorphism to a diagram with symmetry, under the
proper conditions. For H : L◦D → L◦D, we would like to simply define H : LSD → LS

′
D′ , but

this might run into trouble. Namely, the result should not change if we apply σ ∈ S to D;
hence Hσ should be equal to σ′H for some σ′ ∈ S ′. But if such a condition holds for each
σ ∈ S, then we in fact get a well-defined diagrammatic homomorphism:

Definition 5.5.5. Given incidence structures D,D′, and respective symmetry groups S, S ′,
suppose that H : L◦D → L◦D′ satisfies ΓS ◦ ΓH ⊆ ΓH ◦ ΓS′. Then we define H : LSD → LS

′
D′

to be the orbit of H ∈ L◦D′(〈D〉) under the action of S ′.

Note that for D ∈ LSD(G), we will have HD ∈ LS′D′(G) with HD = S ′(HD◦) for any
representative D◦ ∈ L◦D(G).

An example of a homomorphism with symmetry is the forward difference homomor-
phism on cyclic line diagrams ∆ : L.D → L.D:

∆
p2 − p1 p0 − p2 p1 − p0

∆`
P2 − P1 P0 − P2 P1 − P0

93

5.5.2 Forgetful Homomorphisms

We have already worked with a simple example of a homomorphism of diagrams with sym-
metry; namely the homomorphism (·)• which turns an arbitrary diagram into an unlabeled
diagram:

Definition 5.5.6. For an incidence structure D and symmetry groups S0 ⊆ S1 ⊆ Aut(D),
the following forgetful homomorphism is induced by the identity homomorphism:

(·)S1 : LS0
D → LS1

D

When S1 = Aut(D), this is denoted (·)•.

For example, a labeled line diagram ` gives rise to a cyclic line diagram `{id,ω,ω
2},

which we normally denote `.. These examples of “forgetful” homomorphisms all leave the
collection of points on a labeled diagram untouched, but there is no homomorphism which
can recover the original structure.

We will more generally refer to homomorphisms with this property as forgetful. Another
such homomorphism on a nine point diagram this outputs the unlabeled 9-line that contains
the same points:

Definition 5.5.7. The forgetful homomorphism |·| : LSN → L•9 is defined by the following
diagram (with N included below as a reminder):

N :

00 10 20

01 11 21

02 12 22

L9 : |·|0

p00
1

p10
2

p20
3

p01
4

p11
5

p21
6

p02
7

p12
8

p22

We note that this is possible because N can be partitioned into 3 lines; hence the points
of N sum to O.

94

The forgetful homomorphism encompasses the same information as the normalized
functionN (x, y) ∈ F(E) that vanishes at those nine points. Hence we consider this forgetful
homomorphism to be a purely diagrammatic analog to diagram functions that we will study
in chapter 6.

5.5.3 Line Extraction

We would like to view the lines in a nine point diagram as labeled lines in their own right.
To accomplish this, we define homomorphisms to extract the lines:

Definition 5.5.8. For i ∈ {0, 1, 2}, the diagrammatic homomorphism li : L◦N → L◦3 is
given by:

li0

pi0
1

pi1
2

pi2

and similarly for j ∈ {0, 1, 2}:

l′j0

p0j
1

p1j
2

p2j

Note that l0 + l1 + l2 = l′0 + l′1 + l′2 = 0 is the zero homomorphism.

5.6 Linear Arithmetic

Here we will discuss the arithmetic of line diagrams. We will recontextualize the results of
previous chapters, and outline the progress that we will make in future chapters.

The diagrammatic sum u�v for u, v ∈ L•3(E) carries a lot of information about the line
sum u+ v between u, v, given only the unlabeled lines themselves. In the next chapter, we
will develop a diagrammatic calculus which will help us to use this additional structure. In
contrast, the generic line multiplication that we have previously focused on “forgets” a lot
of the structure found in the diagrammatic sum. In fact, the generic algorithm only uses
the unlabeled collection of points, and thus essentially we are working in L•n(E). Recall
the forgetful homomorphism from definition 5.5.7:

95

N :

`′0

`′1

`′2

`0

P00

P01

P02

`1

P10

P11

P12

`2

P20

P21

P22

|·|
|N |

P00

P10

P20

P01

P11

P21

P02

P12

P22

Most of the progress we make in the following chapters focuses in one way or another
on improving on generic line multiplication, by using more of the line sum structure. In
particular, we will impose additional structure on lines u, v, and then take advantage of
the additional structure on u� v that results.

5.6.1 Cyclic Line Arithmetic

The simplest way to add structure to the line sum diagram is to add structure to the input
lines. So we now reconsider cyclically oriented lines u, v ∈ L.3(E):

u
P0 P1 P2

v
Q0 Q1 Q2

Now we reconsider cyclic line arithmetic of section 3.4, in terms of line diagrams. We
start by noting that 1+ω+ω2 acts as 0 on labeled line diagrams. That is, (1 + ω + ω2)�`
is the identity element `O for any labeled line diagram ` ∈ L◦3(E):

`+ ω`+ ω2` = `O0

O
1

O
2

O

Thus we have an action of the Eisenstein integers Z[ω]/〈1 + ω + ω2〉 on labeled line
diagrams. In particular, note that (ω − ω2) ` is the following forward difference:

96

(ω − ω2) ` = ∆`0

P2 − P1

1

P0 − P2

2

P1 − P0

Furthermore, we will notate
√
−3 := ω − ω2, noting that in the Eisenstein integers

(ω − ω2)
2

= −3.

Now we can reinterpret cyclic line diagrams as orbits of L◦3(E) under the action of the
Eisenstein integers {1, ω, ω2}. Then we get an action of the Eisenstein integers on cyclic
line diagrams, and we simply have

√
−3 � ` = ∆`. Note also that ω � ` = ` for a cyclic

line diagram ` ∈ L.3(E).

Given a cyclic line `, suppose we want to calculate k� ` for k ∈ Z. Recall the auxiliary
lines `m,n that we introduced in section 3.8, with points mPi + nPi+1 for i in modulus 3.
We can now simply define this as `m,n := (m+ ω2n) � `:

`m,n = (m+ ω2n) � `
mP0 + nP1 mP1 + nP2 mP2 + nP0

This notation will simplify matters when we reconsider cyclic line multiplication. To
illustrate this, observe that the transformation rules `m,n = `n−m,−m = `−n,m−n are more
simply stated as µ� ` = ωµ� ` for an Eisenstein integer µ. If we add cyclic line diagrams
µ� ` and ν � `, then we get three possibilities: the “good” sum (µ+ ν) � `, or the “bad”
ones (µ+ ων) � `, (µ+ ω2ν) � `.

The following is the diagrammatic sum of u and v, which we notate u. � v.:

97

`ω

`id

`ω2

P0 +Q2

P2 +Q1 P1 +Q1

P1 +Q0 P0 +Q0 P2 +Q0

P2 +Q2 P1 +Q2

P0 +Q1

The three possible cyclic sum lines between u and v are indicated as `1, `ω, `ω2 . The indices
indicate that `σ = (u◦ + σv◦)., with the superscript . indicating that we are considering
the parenthesized line diagram as being a cyclic line diagram.

Note that this diagrammatic sum has a group of 18 symmetries. In contrast, a disjoint
union of three cyclic lines would have 3∗3∗3∗6 automorphisms, corresponding to shifting
each line arbitrarily, and then permuting the three lines arbitrarily. The arrowheads and
dotted lines indicate the extra constraints that make this distinction. Namely, the sym-
metries of the diagrammatic sum are exactly the nine point diagram automorphisms that
take dotted lines to dotted lines, and respect the indicated line orientations.

To be more explicit, Aut(u. � v.) = 〈ς, τ, τ ′〉. Geometrically, the commutation au-
tomorphism ς is a reflection across the diagonal in the (1, 1) direction; τ = (ω2, ω) is a
translation by (−1, 1) and τ ′ = (ω, ω) is a translation by (1, 1). A nine point diagram
with the same 18 symmetries will be called a cyclic nine point diagram. We include the
following diagram as a reminder (drawn differently from that in section 5.4.2):

98

ς

%
τ

N :

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

ς

(ρ, 1)
(ω2, ω)

L� :

ω ω2 id

ρω21 12 00

ρω202 20 11

ρ10 01 22

So we have `0 ↔ `ω, `1 ↔ `ω2 , `2 ↔ `id.

5.6.2 Forward Differences

Now we consider the problem of recovering ∆u,∆v ∈ L.3 from the linear sum diagram. Since
the point at coordinate (i, j) is Pi +Qj, this is easy to accomplish. Namely, by starting at
any point and taking the forward difference while traveling in the (1, 0) direction, you will
get ∆u, since the Qj terms will cancel out. Now we will describe this in terms of Aut(N),
since the diagram will not always be so nicely fit into a grid. Hence we take the forward
difference starting in the τ(τ ′)−1 = (ω, 1) direction. Similarly, we get ∆v by taking the
forward difference in the τ−1(τ ′)−1 direction.

Now we will define these as functions of a labeled nine point diagram:

Definition 5.6.1. The northeast forward difference homomorphism l : L◦N → L◦3 and the
northwest forward difference homomorphism l : L◦N → L◦3 are represented as follows:

l0

p11 − p02
1

p20 − p11
2

p02 − p20

l0

p01 − p12
1

p20 − p01
2

p12 − p20

We can verify that ∆u = l (u �◦ v). and ∆v = l (u �◦ v). when u �◦ v is identified
with the following nine point diagram:

99

w5

w6

w4

w2

P2 +Q1

P0 +Q2

P1 +Q0

w3

P1 +Q2

P2 +Q0

P0 +Q1

w1

P0 +Q0

P1 +Q1

P2 +Q2

l (u�◦ v)

0P2 − P1

1 P0 − P2

2P1 − P0

In chapter 6, we will find explicit formulas for l (N) and l (N), and these will give us
relations between lines involved in a line addition step.

Note that l = l ◦ ς, which corresponds to the fact that ς changes the order of sum-
mation, when considered as an automorphism of u �◦ v. In the same vein, if we apply ρ
to the first summand u, the forward difference becomes:

∆ρu = (ω − ω2)ρu = ρ(ω2 − ω)u = −ρ∆u

and this corresponds to the operation % ∈ Aut(N). Hence we define l = −ρl = l ◦ % and
similarly l = −ρl :

Definition 5.6.2. We define the southwest/southeast forward differences respectively as:

l0

p11 − p20
1

p02 − p11
2

p20 − p02

l0

p01 − p20
1

p12 − p01
2

p20 − p12

Of course, as unlabeled lines these are simply the negatives of the other two: l• = −l•
and l• = l• .

Now we note that l (u �◦ v) = ∆u is invariant under (id, σ) for any σ ∈ S3. These in
fact translates into invariances of l as a homomorphism (see section 5.4.2):

100

Lemma 5.6.3. The homomorphism l is invariant under composition on the right by
〈%ς ′ς, ττ ′〉, while l is invariant under 〈%, τ−1τ ′〉.

Proof. We verify this for l first:

l0

p01 − p12
1

p20 − p01
2

p12 − p20

l ◦ %0

p10 − p21
1

p02 − p10
2

p21 − p02

l ◦ (τ−1τ ′)0

p10 − p21
1

p02 − p10
2

p21 − p02

Then we note that p01− p12 = p10− p21 holds because 0 = p01 + p11 + p21 = p10 + p11 + p12

by collinearity; the other two points on l and l ◦ % similarly match. Clearly the last two
lines are the same. Then since l = l ◦ ς, it follows that l is invariant under ς%ς = %ς ′ς
and ςτ−1τ ′ς = ττ ′.

Now we compare the following three representations of l , obtained by successively
composing on the right by ττ ′:

l0

p11 − p02
1

p20 − p11
2

p02 − p20

l = l ◦ ττ ′0

p00 − p21
1

p12 − p00
2

p21 − p12

l = l ◦ (ττ ′)20

p22 − p10
1

p01 − p22
2

p10 − p01

Then we notice that by mixing and matching these representations, we can express l
in terms of l0, l1, l2 (see section 5.5.3):

101

l = ω2l1 − ωl00

p11 − p02
1

p12 − p00
2

p10 − p01

l = l0 − ω2l20

p00 − p21
1

p01 − p22
2

p02 − p20

l = ωl2 − l10

p22 − p10
1

p20 − p11
2

p21 − p12

Note that the equality of these expressions is a consequence of the fact that l0 + l1 + l2 = 0.
More generally:

Lemma 5.6.4.

l =ωl2 − l1 = l0 − ω2l2 = ω2l1 − ωl0
l =l1 − ω2l2 = ωl2 − l0 = ω2l0 − ωl1

Proof. The first line was already demonstrated. The second comes from l = l ◦ ς, noting
that l0 ◦ ς = l1, l1 ◦ ς = l0 and l2 ◦ ς = l2.

We will often use the expressions l = ω2l1 − ωl0, l = ω2l0 − ωl1 directly, since they
are easier to work with than the definitions themselves.

5.7 Nine Point Diagram Dichotomy

In this section, we discuss nine point diagrams, and elaborate on the dichotomy between
viewing it as N or L�. Recall that the structure L� was defined to be the structure of a
diagrammatic sum. This structure arises naturally as a way to organize the various sum
lines `σ between two line diagrams u, v. On the other hand, the structure N has been
analyzed as a collection of three labeled lines which sum to zero l0 + l1 + l2 = 0, as well as
an involution %.

To connect these two points of view, we start by considering a sum line `σ between
lines u, v. We then note that the sum between −u, −v and `σ vanishes, if the addition
is interpreted appropriately. And that interpretation is best expressed with a nine point
diagram structure on −u,−v, `σ! For example we take the lines −u◦,−σv◦, `σ:

102

(−u◦,−σv◦, `◦σ) :

−u◦

−P0

−P1

−P2

−σv◦

−Qσ−10

−Qσ−11

−Qσ−12

`σ

P0 +Qσ−10

P1 +Qσ−11

P2 +Qσ−12

noting that the other three lines indicate how to connect points from −u,−v, `σ to obtain
`O as a sum.

We can in fact connect the all of the diagrams obtained this way together into a com-
pletion diagram. On top of that, since all sum points Pi + Qj and sum lines `σ appear,
it will also be endowed with a u � v diagram among those. Just as a nine point diagram
contains 6 line diagrams, the completion diagram will turn out to contain 10 nine point
diagrams in its 15 points. Completion diagrams connect all of the lines that appear in a
step of line addition. In the next chapter, we will show that a large array of relations can
be simply understood on a completion diagram.

5.7.1 Completion Diagram

We will now define the completion diagram structure, in terms of the linear sum structure
L�. To obtain the point labels of C, we start with the point labels of L�, then append
points L0, L1, L2 and R0, R1, R2, to represent the points of −u,−v in the (−u,−v, `σ)
diagrams. Then we attach two line labels L,R which are incident to Li,Ri respectively for
i = 0, 1, 2. Lastly, for each point label ij of L�, we add a line label ij which is incident to
the point labels Li,Rj, ij.

Definition 5.7.1. The completion diagram structure C has point labels:

{ij : i, j ∈ {0, 1, 2}} ∪ {L0, L1, L2} ∪ {R0, R1, R2}
and line labels

{L,R} ∪ {ij : i, j ∈ {0, 1, 2}} ∪ S3

with incidences:

Li ∈ L, Ri ∈ R, Li, Rj, ij ∈ ij, iσ−1i ∈ σ
for each i, j ∈ {0, 1, 2}.

103

We attach an automorphism group to this, which acts on the lines labeled L,R. In fact,
the symmetry group is the same as that for the linear sum structure L� and N, and we
will reuse the notation. First we present the Aut(C) using the notation of diagrammatic
sums:

Definition 5.7.2. The automorphism group Aut(C) is generated by S3×S3, and an element
ς of order two. The subgroup S3 × S3 acts on point labels via

(σL, σR) : Li 7→ LσL(i), Ri 7→ RσR(i), ij 7→ σL(i)σR(j)

and on line labels via

(σL, σR) : L 7→ L, R 7→ R, ij 7→ σL(i)σR(j), σ 7→ σLσσ
−1
R

while ς transposes point labels ij ↔ ji and Li ↔ Ri; and transposes line labels ij ↔ ji,
L↔ R and σ ↔ σ−1 for σ ∈ S3.

We use the notation τ = (ω2, ω) and % = (ρ, id), and note that Aut(C) can be identified
with Aut(L�) and Aut(N) via this notation.

Now consider the incidence that only includes the two lines labeled L,R. In fact,
that structure is diagrammatically isomorphic to C, since the inclusion homomorphism is
inverse to a “forgetful” homomorphism; this is because all of the point/line assignments
are determined by the two lines labeled L,R. We will not make explicit use of this fact,
but we mention it as a good example of a non-structural diagrammatic isomorphism.

We represent the C structure as follows:

104

ρω

ρω2

ρ

12

20

01

00

11

22

21

02

10

ω

21

02

10

L

L0

L1

L2

R

R0

R1

R2

L2

L0

L1

R1

R2

R0

L1

L2

L0

R2

R0

R1

id

00

11

22

ω2

12

20

01

The dashed lines/points represent repeated features, and are only included to simplify
the pictorial representation. We will apply the τ automorphism often, and this representa-
tion allows for a simple interpretation; τ shifts everything downwards one level wrapping
around at the bottom.

We will normally use simplified representations of the following form for completion
diagrams:

105

C :

`ρω

`ρω2

`ρ

`ω2

P12

P20

P01

`L

PL0

PL1

PL2

`R

PR0

PR1

PR2

`id

P00

P11

P22

`ω

P21

P02

P10

Where Pij = −PLi−PRj. We are most interested in the 8 solid lines, and more specifically
the 5 red lines, but we will also make use of the others. When we do, we will apply a
symmetry first to reveal the hidden lines. For example, we can apply (ω, 1) to get:

106

(ω, 1)C :

`ρω2

`ρ

`ρω

`ω

P02

P10

P21

`L

PL2

PL0

PL1

`R

PR0

PR1

PR2

`ω2

P20

P01

P12

`id

P11

P22

P00

and the dashed lines have been swapped out for other hidden ones. We will revisit these
diagrams in section 6.5.

5.7.2 Diagrams Within Diagrams

Because of the increasing complexity of our pictorial representations, we will introduce
simplified representations. But rather than doing this in an arbitrary way, we will use the
theory that we have developed so far. This will take advantage of the fact that we are
working with an arbitrary group G.

We will interpret a nine point diagram as an element of L◦3(L◦3(E)):

107

N0

`0
1

`1
2

`2

where we view `i ∈ L◦3(E) as a labeled line with pj(`i) = pij(N). Then `0 + `1 + `2 = `O
vanishes, so this is properly a labeled line diagram of labeled line diagrams!

This allows us to abbreviate completion diagrams as follows:

C(`0, `1) :

L

`0
R

`1

ω2 `+2

id `2

ω `−2

Note that each `i represents a labeled line, and the straight lines represent nine point
diagrams thought of as elements of L◦3(L◦3(E)). The curved lines on the top and bottom
represent the nine point diagrams with lines ω2`0, ω`1, `

+
2 and ω`0, ω

2`1, `
−
2 respectively.

The line labels L,R, id, ω, ω2 will normally be omitted.

We often focus on the following automorphisms, which use the notation for Aut(L�) =
Aut(N):

108

C

L

−u
R

−v

ω2 ω2u+ ωv

id u+ v

ω ωu+ ω2v

ςC

L

−v
R

−u

ω2 ωu+ ω2v

id u+ v

ω ω2u+ ωv

τC

L

−ω2u
R

−ωv

ω2 ωu+ ω2v

id ω2u+ ωv

ω u+ v

τ 2C

L

−ωu
R

−ω2v

ω2 u+ v

id ωu+ ω2v

ω ω2u+ ωv

Noting that the same three labeled lines appear on the right of all of those diagrams.

5.7.3 Line Addition and Completion Diagrams

Given this simplified notation, we can now discuss line addition in simpler terms. First we
note that for labeled lines `L, `R ∈ L◦3(E), we can fill in the completion diagram as follows:

C(`L, `R) :

L

`L
R

`R

ω2 −ω2`L − ω`R

id −`L − `R

ω −ω`L − ω2`R

In particular, if three labeled lines form a nine point diagramN = N (`0, `1, `2), then the
forward difference lines ` = l (N), ` = l (N) can be placed into a completion diagram.
Recall from lemma 5.6.4 that l = ω2l1 − ωl0, l = ω2l0 − ωl1, and hence:

109

C(`0,−`1) :

L

`0
R

−`1

ω2 −` = ω`1 − ω2`0

id `1 − `0

ω ` = ω2`1 − ω`0

In fact, we can say much more than that. Recall from section 3.5 that in a step of a
cyclic line addition, we start with lines u, v with cyclic orientations encoded via the forward
difference lines ∆u,∆v. Then to perform a step of the ladder we further assume that we
are given u− v and its orientation ∆(u− v), and u− 2v. For notational reasons, we treat
these all as labeled lines. Then when we try to add u and v, we get three possibilities
u + v, ω2u + ωv, ωu + ω2v; these appeared earlier in the completion diagram, but we will
take a different point of view at the moment. Namely, all of the lines mentioned in addition
to u, v appear in the following two completion diagrams:

C(ω2u+ ωv, ωu+ ω2v) :

L

ω2u+ ωv
R

ωu+ ω2v

ω2 u− 2v

id u+ v

ω v − 2u

C(ω2u+ ωv,−ωu− ω2v) :

L

ω2u+ ωv
R

−ωu− ω2v

ω2 −∆u

id ∆(u− v)

ω ∆v

In the next chapter, we will see that two completion diagrams that differ in the sign of lR
are algebraically related, and this will be used for new approaches to line addition.

110

Lastly, we note that a completion diagram is essentially a simplified nine point diagram
in L◦N(L◦3(E)):

ω2`0 ω`1 `+2

`0 `1 `2

ω`0 ω2`1 `−2

where we identify the cyclically shifted lines together. This highlights an interesting par-
allel; we are essentially using L◦N(L◦3(E)) to study L◦3(L◦3(E)), just as we used L◦N(E) to
study L◦3(E).

111

Chapter 6

Diagrammatic Calculus

In this chapter, we will attach a diagrammatic calculus to the diagrammatic algebra that
we developed in chapter 5. The main use of this comes when diagrams are connected
together to form larger diagrams. Then the calculus will consist of formulas that express
algebraic relations between the smaller diagrams.

The first important case comes when we combine six line diagrams together into a
nine point diagram. The diagrammatic calculus will attach formulas expressing relations
between the various lines involved in a nine point diagram. Recall that nine point diagrams
arose in section 3.10, as a natural structure on the possible sums between points/lines of
u, v ∈ L3(E) with respective points P0, P1, P2 and Q0, Q1, Q2:

u� v :

w5

w6

w4

w1

w3

w2

P0 +Q0

P1 +Q1

P2 +Q2

P1 +Q2

P2 +Q0

P0 +Q1

P2 +Q1

P0 +Q2

P1 +Q0

112

In section 3.10, we already had a primitive nine point diagram calculus, consisting of
formulas such as:

wi(x, y) = y −mix− bi
m1 +m2 +m3 = m4 +m5 +m6

Unfortunately, that calculus is unlikely to suffice for a line multiplication operation chain,
since the lines w4, w5, w6 are hard to work with.

In chapter 5, we reinterpreted the nine point diagram u � v as a diagrammatic sum.
This more general view allows us to see the additional structure that a nine point diagram
gains when the lines u, v are given additional structure. For example, by adding cyclic
line structures, we reduce the number of possible linear sum diagrams from 72 to 18.
Furthermore, the cyclic orientations of u, v have a simple relation with the orientation
∂(u� v), and this allows us to distinguish w4, w5, w6 from w1, w2, w3. This helps to remove
a large barrier to line multiplication algorithms:

∂(u� v) =
m1(b3 − b2) +m2(b1 − b3) +m3(b2 − b1)

m∆u −m∆v

(6.1)

Another quality of nine point diagrams that makes them attractive is their versatility.
To illustrate this, we show that we already have multiple nine point diagram structures
among the lines that we have mentioned. For example, for any possible sum line w between
u and v, the lines−u,−v, w form a nine point diagram. We illustrate this, as well as another
example which includes sum lines and the forward difference line of v:

u

P0

P1

P2

v

Q0

Q1

Q2

−w1

−P0 −Q0

−P1 −Q1

−P2 −Q2

−w1

−P1 −Q1

−P2 −Q2

−P0 −Q0

w2

P1 +Q0

P2 +Q1

P0 +Q2

∆v

Q1 −Q0

Q2 −Q1

Q0 −Q2

In fact, we can combine many of these nine point diagrams into larger diagram struc-
tures, such as the completion diagrams introduced in section 5.7.1. Then we will use the
same nine point diagram calculus applied in many ways to obtain unexpected relations
between various lines, all of which are relevant in line multiplication. In fact, this process

113

will also lead to new formulas in the nine point diagram calculus, by bootstrapping from
preexisting formulas.

In chapter 7, we will develop the algebra of three torsion on E as it relates to line
arithmetic. This allows for a striking occurrence of the aforementioned bootstrapping
process. The following is an example of one of these relations applied to the nine point
diagram of the line sum u� v gives another formula for the orientation ∂(u� v):

3b(m1 +m2 +m3)− 2a(b1 + b2 + b3) + am1m2m3 +m1b2b3 +m2b1b3 +m3b1b2

m∆ub∆v +m∆vb∆u − 2a

By comparing this to the earlier expression (6.1) for ∂(u� v), we get a relation that only
involves the lines wi(x, y) = y−mix− bi for i ∈ {1, 2, 3} as well as the forward differences
∆u,∆v which determine the orientation of u, v ∈ L3(E).

6.1 Diagram Functions

A major goal of this chapter is to encode structural elements of diagrams with algebraic
quantities. The starting point for this is the diagram function:

Definition 6.1.1. Given a diagram D, the diagram function, also denoted D, is the nor-
malized function in F(E) that satisfies

Div(D) =
∑
i∈D

((Pi)− (O))

if such a function exists.

Note that the diagram function does not exist if the points of a diagram do not sum to
O. When we use diagram functions, it will normally be the case that the given diagram
can be partitioned into linear sets. This is the case for a nine point diagram, whose points
can be partitioned into three lines, in two different ways. In fact, in diagrams composed
from multiple lines, it will very often be the case that we can perform such a partition in
multiple ways, and this will give us relations between the various lines in the diagram.

A diagram function encodes the unordered tuple of points in a diagram, assuming that
those sum toO. On the other hand, the diagram function “forgets” the rest of the structure.
This is analogous to the “forgetful” homomorphism (see definition 5.5.7), which takes any
nine point diagram N ∈ LN(E), and returns an unlabeled linear diagram |N | ∈ L•9(E).

In particular, the diagram function “forgets” the symmetry group of the diagram D.
Hence we aim to attach algebraic quantities to diagrams that encode the structure that
is lost in the diagram function. For example in section 3.4, the additional structure of a

114

cyclically oriented line u was encoded by a square root δu of a cubic determinant, or by a
forward difference line ∆u.

For unlabeled lines, the diagram function encodes the entire structure, and this is
consistent with the encoding that we used in the earlier chapters:

`
P0 P1 P2

which is the normalized function ` ∈ F(E) satisfying

Div(`) = (P0) + (P1) + (P2)− 3(O)

If O is not a point of `, then we define α(`), β(`) to be the coefficients such that

`(x, y) = y − α(`)x− β(`).

6.2 Nine Point Diagrams

In this section, we retread the discussion from section 3.10 to begin the development of the
nine point diagram calculus. This will give us relations that exist between lines in a nine
point diagram. In the following sections, we will define more general nine point diagram
quantities, and these will further our understanding of the relations that exist between the
lines of a nine point diagram.

We will notate our labeled nine point diagram as follows:

N :
`′0

`′1

`′2

`0

P00

P01

P02

`1

P10

P11

P12

`2

P20

P21

P22

We focus on this specific representation to avoid the many ambiguities that arise when
considering linear sum diagrams. In fact, some of our results are most easily understood
by considering these rigid labeled diagrams first.

115

We focus on nine point diagrams with “typical” properties, and we will leave special
cases for the appendix. To make this more precise, we first characterize the condition that
allows nine points Pij ∈ E to form a nine point diagram. Recall that by definition, we
need the following relations:

Lemma 6.2.1. Nine points Pij ∈ E for 0 ≤ i, j ≤ 2 form a nine point diagram N if and
only if they satisfy the following relations:

O = P00 + P01 + P02 = P10 + P11 + P12 = P20 + P21 + P22

= P00 + P10 + P20 = P01 + P11 + P21 = P02 + P12 + P22 (6.2)

Hence we will often make the implicit assumption that the points P00, P10, P01, P11 of
N are linearly independent over Z, to avoid special cases. Then by lemma 6.2.1, we have

P02 =− P00 − P01, P12 = −P10 − P11

P20 =− P00 − P10, P21 = −P01 − P11

P22 =P00 + P01 + P10 + P11

The line functions of N will be notated `i(x, y) = y − αix− βi and `′i(x, y) = y − α′ix− β′i
for i = 0, 1, 2.

The additional assumptions will simplify the development of a nine point diagram
calculus. In appendix A.7, we will deal with special cases, such as nine point diagrams
that include O.

6.2.1 Nine Point Diagram Function

Here we will discuss the nine point diagram function N ∈ F(E) associated to a nine point
diagramN . This discussion will allow us to deduce relations between the lines ofN . Recall
that this function is characterized as the normalized function with the following divisor:

Div(N) =
∑

i,j∈{0,1,2}
(Pij)− 9(O)

First we note that we can partition the divisor of a nine point diagram function N :

Div(N) =(P00) + (P01) + (P02)− 3(O)

+(P10) + (P11) + (P12)− 3(O)

+(P20) + (P21) + (P22)− 3(O)

116

to obtain the factorization N = `0`1`2, since both sides are normalized. We then expand
this product and reduce modulo b+ ax+ x3 − y2 with respect to x to obtain:

N (x, y) =(y − α0x− β0)(y − α1x− β1)(y − α2x− β2)

=− (β0β1β2 − b α0α1α2)

− x (α0β1β2 + α1β0β2 + α2β0β1 − a α0α1α2)

+ y (β0β1 + β0β2 + β1β2)

− x2 (α0α1β2 + α0α2β1 + α1α2β0)

+ xy (α0(β1 + β2) + α1(β0 + β2) + α2(β0 + β1))

− y2 (α0α1α2 + β0 + β1 + β2)

+ x2y (α0α1 + α0α2 + α1α2)

− xy2 (α0 + α1 + α2) + y3 (6.3)

We will notate the coefficients as follows:

Lemma 6.2.2. For the nine point diagram N , we have:

N (x, y) =−N9 −N7x+N6y −N5x
2 +N4xy −N3y

2 +N2x
2y −N1xy

2 + y3

with

N1 = α0 + α1 + α2

N2 = α0α1 + α0α2 + α1α2

N3 = α0α1α2 + β0 + β1 + β2

N4 = α0(β1 + β2) + α1(β0 + β2) + α2(β0 + β1)

N5 = α0α1β2 + α0α2β1 + α1α2β0

N6 = β0β1 + β0β2 + β1β2

N7 = α0β1β2 + α1β0β2 + α2β0β1 − a α0α1α2

N9 = β0β1β2 − b α0α1α2

Of course, this assumes that O is not a point of N ; otherwise the leading term would
not be y3.

6.2.2 Algebraic Relations Between Line Coordinates

Now we are ready to prove our first algebraic relations between the lines of a nine point
diagram, again by generalizing a result from section 3.10. We start with the factorization
from lemma 6.2.2; then by symmetry, we have N = `0`1`2 = `′0`

′
1`
′
2 in F(E).

117

We then obtain algebraic relations between the coordinates of `i and `′i for i = 0, 1, 2
by comparing these two factorizations of the nine point diagram function. For N which
does not have point O, we get:

N (x, y) = (y − α0x− β0)(y − α1x− β1)(y − α2x− β2) (6.4)

= (y − α′1x− β′1)(y − α′0x− β′0)(y − α′2x− β′2) (6.5)

Comparing coefficients of this equality in the form of equation (6.3), we deduce the follow-
ing:

Theorem 6.2.3. For the nine point diagram N , we have:

α0 + α1 + α2 = α′1 + α′0 + α′2 (6.6)

α0α1 + α0α2 + α1α2 = α′1α
′
0 + α′1α

′
2 + α′0α

′
2 (6.7)

α0α1α2 + β0 + β1 + β2 = α′1α
′
0α
′
2 + β′1 + β′0 + β′2 (6.8)

α0(β1 + β2) + α1(β0 + β2) + α2(β0 + β1)

= α′1(β′0 + β′2) + α′2(β′1 + β′2) + α′2(β′1 + β′0) (6.9)

α0α1β2 + α0α2β1 + α1α2β0 = α′1α
′
0β
′
2 + α′1α

′
2β
′
0 + α′0α

′
2β
′
1 (6.10)

β0β1 + β0β2 + β1β2 = β′1β
′
0 + β′1β

′
2 + β′0β

′
2 (6.11)

α0β1β2 + α1β0β2+α2β0β1 − a · α0α1α2

= α′1β
′
0β
′
2 + α′0β

′
1β
′
2+α′2β

′
1β
′
0 − a · α′1α′0α′2 (6.12)

β0β1β2 − b · α0α1α2 = β′1β
′
0β
′
2 − b · α′1α′0α′2 (6.13)

These are the first of many relations between nine point diagram lines that we will prove
in this chapter. Given the underlying motivation of this chapter, we will have a special
interest in relations that do not involve `′0, `

′
1, `
′
2. That is because these do not normally

correspond to lines in our line multiplication chains. So we are left with the somewhat
more complicated question of finding relations between the coordinates of `0, `1, `2, as well
as other quantities that figure into our operation chains.

6.2.3 Nine Point Diagram Automorphisms

An important step in developing the nine point diagram calculus is to study functions that
distinguish the lines `′0, `

′
1, `
′
2 from `0, `1, `2. To this end, we consider the automorphisms

of nine point diagram structures.

There is another reason for bringing this topic up here; it is often easiest to define
properties of labeled diagrams, and then to subsequently show that they are invariant under

118

a symmetry group. In particular, we often define symmetric quantities as combinations of
quantities that do not respect the given symmetries; rather, they transform in known ways
and can be combined to achieve invariance.

Recall from section 5.1.2 that the automorphism group of the nine point diagram struc-
ture N has 72 automorphisms. Furthermore, Aut(N) is generated by %, ς, τ , which are
represented as follows:

%

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

ς

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

τ

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

%N :

0′ 1′ 2′

000 01 02

110 11 12

220 21 22

ςN :

1 0 2

0′10 00 20

1′11 01 21

2′12 02 22

τN :

2 0 1

0′20 00 10

1′21 01 11

2′22 02 12

We use the notation ς ′ = %ς% for the transposition of the line labels 0′, 1′, and τ ′ = %τ%
for the cycle (0′1′2′). Recall then that 〈ς, τ, ς ′, τ ′〉 is a direct product of 〈ς, τ〉 and 〈ς ′, τ ′〉,
and the two latter subgroups are isomorphic to S3. In the next section, we will discuss a
quantity which is invariant under S3 × S3, but changes sign under the action of %.

6.3 Nine Point Diagram Orientation

In this section, we define the orientation ∂(N) of a nine point diagram. This quantity is
invariant under the automorphisms in S3 × S3, but changes signs under the action of %;

119

so ∂(%N) = −∂(N), while ∂(ςN) = ∂(τN) = ∂(N). Hence this quantity will allow us to
distinguish the lines `0, `1, `2 from the lines `′0, `

′
1, `
′
2 in a nine point diagram. In fact, this

quantity will be a central focus for much of our diagrammatic calculus.

Definition 6.3.1. Given the nine point diagram N with O 6∈ N , we define the nine point
diagram orientation to be:

∂(N) = β0 + β1 + β2 − β′0 − β′1 − β′2

We will often use the notation ∂(`0, `1, `2) := ∂(N). A priori, each line `i is unlabeled,
and so this notation needs justification. In fact, ∂(N) can be expressed as a rational
function of the line coefficients. An explicit expression can be found in equation (A.2) of
the appendix; this lemma can be verified by a direct but tedious calculation. Note then
that the property ∂(%N) = −∂(N) can be restated as ∂(`′0, `

′
1, `
′
2) = −∂(`0, `1, `2).

For the remainder of this section, and much of the rest of this chapter, we focus on
various formulas for nine point diagram orientations. By studying these formulas, we will
be able to study related diagrams, and some surprising symmetries will emerge.

6.3.1 Formulas for Nine Point Diagram Orientation

Here we take the idea used to define ∂(N) further to get other formulas. These are simply
low hanging fruit from considering the two factorization formulas for N (x, y), in the vein
of theorem 6.2.3.

Note that the combination β0 +β1 +β2 is not Aut(N)-invariant, and this is the basis for
our definition of ∂(N). So what about starting with another non-invariant combinations,
such as α0α1α2? It turns out that the obvious alternatives lead to closely related quantities.
For example, by theorem 6.2.3 we have

β0 + β1 + β2 + α0α1α2 = β′0 + β′1 + β′2 + α′0α
′
1α
′
2

and hence the non-invariance of α0α1α2 leads to the same indicator ∂(N):

∂(N) =β0 + β1 + β2 − β′0 − β′1 − β′2 = α′0α
′
1α
′
2 − α0α1α2

We can do away with the rest of the coefficients of N (x, y) in one swoop. Consider the
following polynomial in x, y:

f(x, y) =(y − α0x− β0)(y − α1x− β1)(y − α2x− β2)

− (y − α′0x− β′0)(y − α′1x− β′1)(y − α′2x− β′2)

− (α′0α
′
1α
′
2 − α0α1α2)(b+ ax+ x3 − y2)

120

Notice that the first two expressions are the two factorizations of N (x, y) from equation
(6.4). Hence it is easy to see that f(x, y) is 0 as a function on E. As a consequence, it must
be a multiple of b+ax+x3−y2. But the coefficient of x3 can be checked to be 0, and hence
f(x, y) has degree less than 3 in x; and so it must be identically 0. Thus by combining this
with the equation ∂(N) = α′0α

′
1α
′
2 − α0α1α2 we get the following supplement to theorem

6.2.3:

Lemma 6.3.2. As polynomials in x, y, we have:

∂(N)(b+ ax+ x3 − y2) =(y − α0x− β0)(y − α1x− β1)(y − α2x− β2)

− (y − α′0x− β′0)(y − α′1x− β′1)(y − α′2x− β′2)

By comparing coefficients, we get:

∂(N) =β0 + β1 + β2 − β′0 − β′1 − β′2
∂(N) =α′0α

′
1α
′
2 − α0α1α2

a ∂(N) =α′0β
′
0β
′
1 + α′1β

′
0β
′
2 + α′2β

′
0β
′
1 − α0β0β1 − α1β0β2 − α2β0β1

b ∂(N) =β′0β
′
1β
′
2 − β0β1β2

As an important corollary, we get the following factorizations of ∂(N):

Theorem 6.3.3.

∂(N) = (α′0 − α0) (α′0 − α1) (α′0 − α2)

= (α′1 − α0) (α′1 − α1) (α′1 − α2)

= (α′2 − α0) (α′2 − α1) (α′2 − α2)

= (α′0 − α0) (α′1 − α0) (α′2 − α0)

= (α′0 − α1) (α′1 − α1) (α′2 − α1)

= (α′0 − α2) (α′1 − α2) (α′2 − α2)

Proof. By plugging y = α′0x+ β′0 into the first equation of lemma 6.3.2, we get:

∂(N)(b+ ax+ x3 − (α′0x+ β′0)2)

=((α′0 − α0)x+ (β′0 − β0))((α′0 − α1)x+ (β′0 − β1))((α′0 − α2)x+ (β′0 − β2))

We get the first factorization by comparing x3 coefficients. The others follow by symmetry.

Note that if the line coordinates satisfy αi = α′j for some i, j ∈ {0, 1, 2}, then in
fact `i = `′j; this is because those lines are parallel and share a point. Furthermore, we
have that the three lines `0, `1, `2 are the same as the three lines `′0, `

′
1, `
′
2. Hence we can

interpret theorem 6.3.3 as saying that ∂(`0, `1, `2) gives zero exactly when the diagram
has a symmetry which swaps the horizontal and vertical lines. Equivalently, ∂(`0, `1, `2)
indicates whether there are two non-collinear points on the nine point diagram that are
equal.

121

6.3.2 Orientation in Terms of Two Lines

We will now prove a formula for ∂(N) in terms of the labeled lines `0, `1. Note that for
unlabeled lines, this is not generally possible, since there are multiple lines that could take
the place of `2. We will study the collection of `2 such that `0, `1, `2 form a nine point
diagram in section 5.7.1, and the formulas we develop here will be used to compare various
related nine point diagrams.

To more easily state the formula, we need to define some quantities in terms of `0, `1.
First we consider the following function, which indicates whether two lines intersect on E:

Definition 6.3.4. For (x, y) ∈ F2, we define:

e0(x, y) =b+ ax+ x3 − y2

Then for any lines `0, `1 which do not have point O, we define:

e0(`0; `1) :=b(α0 − α1)3 − a(α0 − α1)2(β0 − β1)− (β0 − β1)3 − (α0 − α1)(α0β1 − α1β0)2

=(α0 − α1)3e0(`0 ∩ `1)

Note that this is a function of `0, `1 as unlabeled lines. As mentioned earlier, we need
to use the label structure at some point, and we do so via the following:

Definition 6.3.5. For labeled line `0, `1 with label i being assigned points

P0i = (x0i, y0i), P1i = (x1i, y1i)

respectively, we define the following pairing indicator:

φ(`0; `1) = (x10 − x00)(x11 − x01)(x12 − x02)

Note that the pairing indicator is invariant under the diagonal subgroup of S3 × S3

applied to (`0, `1); that is, for any σ ∈ S3, we have φ(σ`0;σ`1) = φ(`0; `1). This is consistent
with the fact that the points would be paired together in the same way after applying the
same permutation to both lines.

Before stating the next theorem, we include the following diagram for reference:

N :
`′0

`′1

`′2

`0

P00

P01

P02

`1

P10

P11

P12

`2

P20

P21

P22

122

Theorem 6.3.6. The following gives a formula for ∂(N) = ∂(`0, `1, `2) in terms of the
lines `0, `1:

∂(`0, `1, `2) =
e0(`0; `1)

φ0

=
φ1φ2

e0(−`0; `1)

where

φ0 =φ(`0; `1) = (x10 − x00)(x11 − x01)(x12 − x02)

φ1 =φ(ω`0; `1) = (x10 − x01)(x11 − x02)(x12 − x00)

φ2 =φ(ω2`0; `1) = (x10 − x02)(x11 − x00)(x12 − x01).

More explicitly, we have

∂(`0, `1, `2) =
b(α0−α1)3−a(α0−α1)2(β0−β1)−(β0−β1)3−(α0−α1)(α0β1−α1β0)2

(x10−x00)(x11−x01)(x12−x02)

=− (x10−x01)(x10−x02)(x11−x00)(x11−x02)(x12−x00)(x12−x01)
b(α0+α1)3−a(α0+α1)2(β0+β1)−(β0+β1)3−(α0+α1)(α0β1−α1β0)2

We will use the following lemma to prove this:

Lemma 6.3.7. Suppose v is a (labeled) line with points Q0, Q1, Q2 and v(x, y) = y−mvx−
bv. Then the following holds as a polynomial in x:

(x− xQ0)(x− xQ1)(x− xQ2) = b+ ax+ x3 − (mvx+ bv)
2.

For P = (xP , yP) ∈ E,

(xP − xQ0)(xP − xQ1)(xP − xQ2) = −v(P)v(−P).

If u is a (labeled) line with points P0, P1, P2 and u(x, y) = y −mux− bu, then

v(P0)v(P1)v(P2) = e0(v;u).

Proof. Note that each Qi satisfies b + axQi
+ x3

Qi
− y2

Qi
= 0 and yQi

= mvxQi
+ bv. Hence

that polynomial’s roots are exactly xQi
for i = 0, 1, 2. Then by plugging in xP , we get:

b+ axP + x3
P − (mvxP + bv)

2 =y2
P − (mvxP + bv)

2

=− (yP −mvxP − bv)(−yP −mvxP − bv) = −v(P)v(−P)

123

For the last equality,∏
i∈{0,1,2}

v(Pi) =
∏

i∈{0,1,2}
(yPi
−mvxPi

− bv) =
∏

i∈{0,1,2}
(bu +muxPi

−mvxPi
− bv)

= −(mu −mv)
3
∏

i∈{0,1,2}
(− bu − bv
mu −mv

− xPi
)

=− (mu −mv)
3

(
b+ a

(
− bu − bv
mu −mv

)
+

(
− bu − bv
mu −mv

)3

−
(
bu +mu

(
− bu − bv
mu −mv

))2
)

=− (mu −mv)
3e0(u ∩ v) = −e0(u; v) = e0(v;u)

Now we prove the following lemma, which gives the second expression for ∂(`0, `1, `2)
from the first in theorem 6.3.6:

Lemma 6.3.8.

φ0φ1φ2 =e0(`0; `1)e0(−`0; `1)

Proof. Using lemma 6.3.7:

φ0φ1φ2 =
∏

i,j∈{0,1,2}
(x1i − x0j) =

∏
i∈{0,1,2}

 ∏
j∈{0,1,2}

(x1i − x0j)


=

∏
i∈{0,1,2}

(−`0(P1i)`0(−P1i)) = −

 ∏
i∈{0,1,2}

`0(P1i

 ∏
i∈{0,1,2}

`0(−P1i)


=− e0(`0; `1)e0(`0;�`1) = e0(`0; `1)e0(�`0; `1)

(where we use the notation �` to distinguish line negation from negation in F(E).)

And finally we prove theorem 6.3.6:

Proof. First we establish the following formula for α′0−α0, by substituting y00 = α0x00+β0:

α′0 − α0 =
y10 − y00

x10 − x00

− α0 =
y10 − y00 − α0x10 + α0x00

x10 − x00

=
y10 − α0x10 − β0

x10 − x00

=
`0(P10)

x10 − x00

124

Then we combine this result with its conjugates under (τ ′)2, (τ ′) ∈ Aut(N) and use theorem
6.3.3:

∂(`0, `1, `2) =(α′0 − α0)(α′1 − α0)(α′2 − α0)

=
`0(P10)`0(P11)`0(P12)

(x10 − x00)(x11 − x01)(x12 − x02)
=
e0(`0; `1)

φ0

using lemma 6.3.7. The other form follows from lemma 6.3.8.

In section 6.5, we will combine theorem 6.3.6 with its conjugates to eliminate the φi
terms using lemma 6.3.8. In the same vein, we note that by negating `1 in N and updating
`2 accordingly, we get the same term φ0 in the denominator; then by taking a quotient, we
get cancellation of that factor.

Another important use of the results presented here is that we can derive a relatively
simple explicit formula for u+v in terms of the lines u, v, and the points on those lines. We
do this in section A.1 of the appendix. This can be used to verify the formulas presented
in this thesis, using a computer algebra system, or in some cases by hand.

6.3.3 Relation to Cyclic Orientation

Now we compare the notion of cyclic orientation on u, v to the orientation of u� v. Recall
from section 3.4 that we had two ways of defining a cyclic orientation on a line u ∈ L3(E).
One was to specify a square root δ(u) of a cubic discriminant:

Definition 6.3.9. For a cyclic line ` ∈ L.3(E) with points P0, P1, P2 in cyclic order, the
cyclic orientation of ` is

δ(`) = (xP1 − xP0)(xP2 − xP1)(xP0 − xP2)

assuming that O is not a point of `.

The cyclic orientation could also be specified via a forward difference line ∆u. It turns out
that both of these quantities have simple relations with the orientation of u � v, but in
quite different ways.

First we consider the symmetries of u◦, v◦ ∈ L◦3(E) that preserve the function u � v,
and those that flip it:

125

u� v :

w5

w6

w4

w1

w3

w2

P0 +Q0

P1 +Q1

P2 +Q2

P1 +Q2

P2 +Q0

P0 +Q1

P2 +Q1

P0 +Q2

P1 +Q0

A transposition applied to one of the lines u, v changes the orientation of u�v; for example
(02) applied to u◦, swaps w1 and w6 among others. On the other hand, a 3-cycle applied

to u◦ or v◦ does not affect the orientation of u � v. Hence the expression ∂(u�v)
δuδv

can be
seen to be invariant under all permutations of the input lines. And as we will see in the
next section, this has a simple expression in terms of the line coordinates of u, v:

∂(u� v) = ± δuδv
e0(`0;−`1)

In the next section, we will use the completion diagrams from section 5.7.1 to prove this.

There turns out to be another less obvious relation as well. If wi(x, y) = y −mix− bi,
then for the appropriate choice of signs (which need not be the same):

∂(u� v) =
m1(b3 − b2) +m2(b1 − b3) +m3(b2 − b1)

±m∆u ±m∆v

We will prove this in section 6.4, and we will explain how to determine the signs. This
formula has some nice generalizations as well, that are obtained in chapter 7 by studying
the action of three torsion on points and lines of E.

6.4 Forward Differences in Nine Point Diagrams

In this section, we discuss a line addition concept in terms of nine point diagrams: forward
difference lines. In fact, we can recover the forward differences ∆u from the u � v nine

126

point diagram from section 3.10; see section 5.6.2. Appropriately enough, we accomplish
this by taking a forward difference within the nine point diagram!

Specifically, we accomplish this by starting from the point P0 + Q0, and taking the
forward difference as we travel in the northeast direction, wrapping back around at the
edges. So we get the points (Pi+1 + Q0) − (Pi + Q0) = Pi+1 − Pi, which are the points of
∆u:

w6

w4

w5

w1

P1 +Q1

P2 +Q2

P0 +Q0

w2

P0 +Q2

P1 +Q0

P2 +Q1

w3

P2 +Q0

P0 +Q1

P1 +Q2

∆u

P1 − P0

P2 − P1

P0 − P2

In fact, despite there being nine choices of starting point, they all result in the same
line ∆u. So there are four possible outcomes to this process, depending on which line sum
diagram was drawn, which result in the four forward difference lines ±∆u,±∆v ∈ L•3(E)
for the possible orientations of u and v.

Now we define forward difference lines in terms of a nine point diagram. These will turn
out to play an important role in line addition algebra. In particular, there are relations
that we will demonstrate between the lines `i and these forward difference lines; notably,
the three other lines `′i are not involved. This will set the stage for new cyclic line addition
algorithms.

Definition 6.4.1. For the nine point diagram N , the northeast forward difference line `◦

is the labeled line with the following points:

P 0 := P11 − P02, P 1 := P20 − P11, P 2 := P02 − P20

Similarly, the northwest/southwest/southeast forward difference lines `◦ , `◦ , `◦ are the
lines with the following points:

P 0 := P01 − P12, P 1 := P20 − P01, P 2 := P12 − P20

P 0 := P11 − P20, P 1 := P02 − P11, P 2 := P20 − P02

P 0 := P01 − P20, P 1 := P12 − P01, P 2 := P20 − P12.

127

If O is not a point of these lines, then they have line functions ` (x, y) = y − α x − β ,
` (x, y) = y − α x− β , ` (x, y) = y − α x− β and ` (x, y) = y − α x− β .

We will mostly work with these as unlabeled lines ` , ` , ` , ` . In fact, as unlabeled
lines these are independent of starting point, as a simple consequence of equation (6.2).
For example, by considering the collinearity of the points of `1 and of `′0, we get:

O =P00 + P10 + P20 = P10 + P11 + P12

P 2 =P11 − P00 = P20 − P12

Lemma 6.4.2. As a cyclically oriented line, ` (respectively `) is obtained from taking
the the southeast (respectively northeast) forward difference starting from any point on the
nine point diagram.

Diagrammatically, we represent ` and the various representations of its points as fol-
lows:

`0 `1 `2

`′0
P00 P10 P20

`′1
P01 P11 P21

`′2
P02 P12 P22

`

P 1 = P00 − P22 = P12 − P01 = P21 − P10

P 2 = P11 − P00 = P20 − P12 = P02 − P21

P 0 = P22 − P11 = P01 − P20 = P10 − P02

Similarly, we can represent ` diagrammatically as follows:

128

`0 `1 `2

`′0
P00 P10 P20

`′1
P01 P11 P21

`′2
P02 P12 P22

`

P 0 = P00 − P21 = P11 − P02 = P22 − P10

P 1 = P12 − P00 = P20 − P11 = P01 − P22

P 2 = P21 − P12 = P02 − P20 = P10 − P01

The following formulas give the slopes of the forward difference lines:

Theorem 6.4.3.

α =
−α0β1 − α1β2 − α2β0 + α′0β

′
1 + α′1β

′
2 + α′2β

′
0

β0 + β1 + β2 − β′0 − β′1 − β′2
α =

α0β2 + α1β0 + α2β1 − α′0β′1 − α′1β′2 − α′2β′0
β0 + β1 + β2 − β′0 − β′1 − β′2

And we will prove this shortly. Observe that in theorem 6.4.3, the denominators are
∂(`0, `1, `2), and the undesirable terms α′i, β

′
i can be canceled out together:

α + α =
α0(β2 − β1) + α1(β0 − β2) + α2(β1 − β0)

∂(`0, `1, `2)

and this leads to a simple expression for ∂(`0, `1, `2):

Theorem 6.4.4.

∂(`0, `1, `2) =
α0(β2 − β1) + α1(β0 − β2) + α2(β1 − β0)

α + α

This gives us a useful tool for cyclic line addition, since the lines ` , ` will be known.
In chapter 7, we will see that this result can be generalized to give new expressions for
∂(`0, `1, `2).

129

6.4.1 Alternate Representations

Now we will consider the forward difference lines ` , ` , ` , ` as labeled lines, and express
them in terms of the lines ofN . We will consider `i as a labeled line with points Pi0, Pi1, Pi2.
Notice that we can mix and match the point representations for ` as follows: P 0 =
P11 − P02, P 1 = P12 − P00, P 2 = P10 − P01. This can then be succinctly written as
` = ω2`1−ω`0. Similarly, ` = ω`2− `1 = `0−ω2`2, and these representations are related
by the fact that `0 + `1 + `2 = `O vanishes.

As for ` , we note that by its definition it is obtained by swapping the index 0j for 1j
and vice versa wherever those appear. Equivalently, ` is the northeast forward difference
of the diagram ςN . This can be stated more precisely in the language of section 5.6.2, as
` = l (N) = l (ςN). Thus we can get an expression analogous to ` = ω2`1 − ω`0 as
follows:

` =l (N) = l (ςN) = (ω2l1 − ωl0)(ςN)

=(ω2l1ς − ωl0ς)(N) = (ω2l0 − ωl1)(N)

=ω2`0 − ω`1

and similarly, ` = ω`2 − `0 = `1 − ω2`2. For the other two forward difference lines, we
have ` = −ρ` and ` = −ρ` , recalling that ρ swaps the places of the points assigned to
labels 0, 1.

These representations will be useful in the following sections, since they allow for sym-
bolic manipulation without having to do a diagram chase.

6.4.2 Proof of Theorem 6.4.3

Now we prove the first part of theorem 6.4.3:

α =
−α0β1 − α1β2 − α2β0 + α′0β

′
1 + α′1β

′
2 + α′2β

′
0

β0 + β1 + β2 − β′0 − β′1 − β′2
Note that the denominator that appears in these expressions is ∂(`0, `1, `2). Before proving
theorem 6.4.3, we first need to define auxiliary lines:

Definition 6.4.5. For i, j ∈ {0, 1, 2}, the line `∆ij : y − α∆ijx − β∆ij = 0 contains the
following three points:

`∆ij

Pij −P(i+1)(j+1) P(i+1)(j+1) − Pij

130

These auxiliary lines have slopes that can be combined to obtain α :

Lemma 6.4.6.

α = α∆00 + α∆11 + α∆22

Proof. Consider the following diagram:

`∆00

`∆11

`∆22

`

P11 − P00

P22 − P11

P00 − P22

x22

O

−P22

P22

x00

P00

O

−P00

x11

−P11

P11

O

The diagram function can be factored in two ways:

(y − α∆00x− β∆00)(y − α∆11x− β∆11)(y − α∆22x− β∆22)

= (y − α x− β)(x− x22)(x− x00)(x− x11).

If we reduce this modulo b + ax + x3 − y2 with respect to x, then by comparing the
coefficient for xy2, we obtain:

α = α∆00 + α∆11 + α∆22.

The next step to prove theorem 6.4.3 is to find an expression for α∆00:

Lemma 6.4.7.

α∆00 =
α′0(β′2 − β0)− (α′1 − α0 − α2)(β′1 − β1)− α0(β2 − β′0)

β0 + β1 + β2 − β′0 − β′1 − β′2

Proof. Again we consider the following diagram, and compare two factorizations:

131

`∆00

`′1

x02

`∆21

P11 − P00

P21

−P02

`0

P00

P01

P02

x11

−P11

P11

O

We get:

(y − α∆21x− β∆21)(y − α0x− β0)(x− x11)− (y − α∆00x− β∆00)(y − α′1x− β′1)(x− x02)

= (b+ ax+ x3 − y2)(x11 − x02) = (b+ ax+ x3 − y2)(α∆21α0 − α∆00α
′
1)

noting that the difference between the first and the second expressions has degree less than
2 in y and is thus reduced modulo b+ax+x3−y2 with respect to y. Similarly, the difference
between the first and the third expressions has degree less than 3 in x. Hence the above
equalities hold as polynomials in x, y.

By comparing coefficients of x2y and y2, we get:

α0 + α∆21 = α′1 + α∆00

x11 − x02 = α∆21α0 − α∆00α
′
1

= (α′1 − α0 + α∆00)α0 − α∆00α
′
1

= (α0 − α∆00)(α′1 − α0)

From which we isolate α∆00:

α∆00 = α0 −
x11 − x02

α′1 − α0

= α0 −
− β′1−β1
α′1−α1

+
β′2−β0
α′2−α0

α′1 − α0

=
(α′1 − α2)(β′1 − β1)

(α′1 − α0)(α′1 − α1)(α′1 − α2)
− (α′0 − α0)(β′2 − β0)

(α′0 − α0)(α′1 − α0)(α′2 − α0)
+ α0

Notice that by theorem 6.3.3, the denominators are both ∂(`0, `1, `2), so we have:

α∆00 =
(α′1 − α2)(β′1 − β1)− (α′0 − α0)(β′2 − β0)

β0 + β1 + β2 − β′0 − β′1 − β′2
+ α0

=
(α′1 − α2)(β′1 − β1)− (α′0 − α0)(β′2 − β0) + α0(β0 + β1 + β2 − β′0 − β′1 − β′2)

β0 + β1 + β2 − β′0 − β′1 − β′2
=
α′0(β0 − β′2) + (α′1 − α0 − α2)(β′1 − β1) + α0(β2 − β′0)

β0 + β1 + β2 − β′0 − β′1 − β′2

132

Note that by symmetry, we have these formulas as well:

α∆11 =
α′1(β1 − β′0) + (α′2 − α1 − α0)(β′2 − β2) + α1(β0 − β′1)

β0 + β1 + β2 − β′0 − β′1 − β′2
α∆22 =

α′2(β2 − β′1) + (α′0 − α2 − α1)(β′0 − β0) + α2(β1 − β′2)

β0 + β1 + β2 − β′0 − β′1 − β′2
Now we can put everything together to prove theorem 6.4.3:

Proof. By combining the previous two lemmas, we get:

α =α∆00 + α∆11 + α∆22

∂(`0, `1, `2)α =∂(`0, `1, `2)α∆00 + ∂(`0, `1, `2)α∆11 + ∂(`0, `1, `2)α∆22

=α′0(β0 − β′2) + (α′1 − α0 − α2)(β′1 − β1) + α0(β2 − β′0)

+ α′1(β1 − β′0) + (α′2 − α1 − α0)(β′2 − β2) + α1(β0 − β′1)

+ α′2(β2 − β′1) + (α′0 − α2 − α1)(β′0 − β0) + α2(β1 − β′2)

=α0(β1 + 2β2 − β′0 − β′1 − β′2)

+ α1(2β0 + β2 − β′0 − β′1 − β′2)

+ α2(β1 + β0 + 2β1 − β′0 − β′1 − β′2)

+ α′0(β′0 − β′2) + α′1(β′1 − β′0) + α′2(β′2 − β′1)

Now we rewrite this last expression so that it can be simplified using the symmetric relations
from theorem 6.2.3:

∂(`0, `1, `2)α =− α0β1 − α1β2 − α2β0 + α′0β
′
1 + α′1β

′
2 + α′2β

′
0

+ 2 (α0(β1 + β2) + α1(β0 + β2) + α2(β0 + β1))

− 2 (α′0(β′1 + β′2) + α′1(β′0 + β′2) + α′2(β′0 + β′1))

− (β′0 + β′1 + β′2)(α0 + α1 + α2 − α′0 − α′1 − α′2)

=− α0β1 − α1β2 − α2β0 + α′0β
′
1 + α′1β

′
2 + α′2β

′
0

Hence as desired, we have:

α =
−α0β1 − α1β2 − α2β0 + α′0β

′
1 + α′1β

′
2 + α′2β

′
0

β0 + β1 + β2 − β′0 − β′1 − β′2
Now note that the symmetry ς which swaps `0 and `1 also has swaps ` and −` (as
unlabeled lines), so by applying the above formula to ς(N), we get:

α =
α0β2 + α1β0 + α2β1 − α′0β′1 − α′1β′2 − α′2β′0

β0 + β1 + β2 − β′0 − β′1 − β′2

133

6.4.3 Cyclic Line Arithmetic

We will now connect the results from this chapter with line arithmetic. Recall from corol-
lary 6.4.4 that we can combine the formulas for α , α to get:

∂(`0, `1, `2) =
α0(β2 − β1) + α1(β0 − β2) + α2(β1 − β0)

α + α
(6.14)

Given cyclically oriented lines u, v, the above will in fact be well defined on u � v,
although there is a subtlety involved. Namely, the cyclic linear sum diagram has the
commutation symmetry ς, which changes the order of summation. But under the action
of ς on N , two of the lines `0, `1, `2 will be transposed, and thus the numerator in equation
(6.14) will change signs. Hence α0(β2 − β1) + α1(β0 − β2) + α2(β1 − β0) is not a function
of the cyclic linear sum diagram u � v. Similarly, ς transposes ` and −` when applied
to N , so the denominator α + α changes signs as well. But these two problems cancel
each other out, since the quotient does not vary when ς is applied to N .

Now we rewrite equation (6.14) in a more convenient form. Namely, both the numerator
and denominator can be expressed as determinants:

Definition 6.4.8. For a line `, we define [`] to be the vector such that `(x, y) = [`]ᵀ[x y 1]ᵀ.
The following three vectors respectively represent a line ` without O as a point; a line χ
with points O, P,−P for P 6= O; and the line at infinity `O:

[`] =

 −m`

1
−b`

 , [χ] =

 1
0
−xP

 , [`O] =

 0
0
1


For three lines `0, `1, `2 ∈ L•3(E), we define the following determinant form:

dO(`0, `1, `2) := det([`0], [`1], [`2])

where we take the determinant of the matrix with the three given columns in respective
order.

Then we note that in the equation (6.14), both the numerator and denominator can be
written in terms of dO:

dO(`0, `1, `2) =

∣∣∣∣∣∣
−α0 −α1 −α2

1 1 1
−β0 −β1 −β2

∣∣∣∣∣∣ = α0(β2 − β1) + α1(β0 − β2) + α2(β1 − β0)

dO(`O,−` , `) =

∣∣∣∣∣∣
0 α −α
0 1 1
1 β −β

∣∣∣∣∣∣ = α + α

134

Since we are dealing with unlabeled lines now, we have ` = −` , and so:

∂(`0, `1, `2) =
dO(`0, `1, `2)

dO(`O, ` , `)
(6.15)

Now we discuss applying this result to cyclic line arithmetic. Suppose we have two
cyclic lines, represented by u, v ∈ L◦3(E) with respective points P0, P1, P2 and Q0, Q1, Q2.
Then we assign the labeled diagram u�v to the structure L�, with Pi+Qj at label ij. We
will apply this section’s results to φ(u�v), where φ : L� → N is the structural isomorphism
indicated below, which was defined in section 5.4.2:

L� :

ω ω2 id

ρω21 12 00

ρω202 20 11

ρ10 01 22

φ
N :

0 1 2

0′00 10 20

1′01 11 21

2′02 12 22

Now we extract the lines that appear in equation (6.15). For example, the line `0 will
correspond to l0(φ(u � v)), which has points P2 + Q1, P0 + Q2, P1 + Q0 in order. More
generally:

`ω :=l0(φ(u� v)) = ωu+ ω2v

`ω2 :=l1(φ(u� v)) = ω2u+ ωv

`id :=l2(φ(u� v)) = u+ v

And then using lemma 5.6.4, we have l = ω2l0 − ωl1 and l = ω2l1 − ωl0, so we confirm
that:

l (φ(u� v)) =ω2(ωu+ ω2v)− ω(ω2u+ ωv) = (ω − ω2)v = ∆v

l (φ(u� v)) =ω2(ω2u+ ωv)− ω(ωu+ ω2v) = (ω − ω2)u = ∆u

noting that l and l were defined to extract those quantities. Hence we have:

∂(`ω, `ω2 , `id) =
dO(`ω, `ω2 , `id)

dO(`O,∆v,∆u)
(6.16)

∂(ωu+ ω2v, ω2u+ ωv, u+ v) =
dO(ωu+ ω2v, ω2u+ ωv, u+ v)

dO(`O,∆v,∆u)
(6.17)

135

Note that all of the lines can be treated as unlabeled lines in those formulas.

In the next section, we will explain how to obtain a formula for ∂(`ω, `ω2 , `id) from u, v
and their cyclic orientations. On the other hand, the denominator is known, and this will
give us enough control to perform a cyclic line multiplication.

6.5 Completion Diagrams

In this section, we combine nine point diagrams together into a completion diagram; these
were described in section 5.7.1. Just as nine point diagrams are used to study line diagrams,
we use completion diagrams to study nine point diagrams.

For u, v ∈ L◦3(E) with respective points P0, P1, P2 and Q0, Q1, Q2, we represent a com-
pletion diagram as follows, where Rij = Pi + Qj and as an unlabeled line `σ represents
u+ σv:

136

C :

`ρω

`ρω2

`ρ

`ω2

R12

R20

R01

−u

−P0

−P1

−P2

−v

−Q0

−Q1

−Q2

`id

R00

R11

R22

`ω

R21

R02

R10

Note that there are six lines which are not represented, but are implied: these are lines `ij
with points −Pi,−Qj, Pi +Qj for indices ij for i, j ∈ {0, 1, 2}.

On the right side of the completion diagram, there is a vertical u� v diagram. In fact,
there are 10 nine point diagrams that can be found; we leave finding them as an exercise
to the reader. In this section, we will combine the various formulas for ∂(N) together to
relate ∂(u� v) to the cyclic orientations of u and v.

When −u,−v are understood to be labeled lines with respective points −Pi,−Qi for
i = 0, 1, 2, then we will use a simplified pictorial representation of C:

137

C(−u,−v) :

L

−u
R

−v

ω2 `ω2 = ω2u+ ωv

id `id = u+ v

ω `ω = ωu+ ω2v

The three lines on the right in descending order are `ω2 , `id, `ω, which we now view as
labeled lines. In a nutshell, the straight lines indicate that the three collinear labeled
lines add up to `O; that is, they are labeled lines of labeled lines in L◦3(L◦3(E)), which are
equivalent to nine point diagrams. The curved lines represent a similar relation, but with
factors ωi inserted; see section 5.7.2 for a precise description of the pictorial representation.

The main results of this section will be stated for the C(−u,−v) diagram, which is
related to the line addition u� v, as well as the C(−u, v) diagram, which is related to the
line addition u� v:

C(−u, v) :

L

−u
R

v

ω2 `−ω2 = ω2u− ωv

id `−id = u− v

ω `−ω = ωu− ω2v

Where we notate the three labeled lines on the right as `−ω2 , `−id, `−ω in descending order,
noting that without the labels, `•−σ = (u− σv)•.

First we translate the result of theorem 6.4.4 into this setting (in the form of equation
(6.15)):

∂(`0, `1, `2) =
dO(`0, `1, `2)

dO(`O, ` , `)

But rather than apply this to u � v, we apply it to N (−u,−v, `id). Note that by the
results of section 6.4.1, we have the following equalities of labeled lines: ` = ω2`1 − ω`0

138

and ` = ω2`0 − ω`1. Hence for N (−u,−v, `id), these translate to ω2(−v)− ω(−u) = `−ω
and ω2(−u)− ω(−v) = −`−ω2 . Hence we get:

∂(−u,−v, `id) =
dO(−u,−v, `id)

dO(`O,−`−ω2 , `−ω)
=
dO(−u,−v, `id)
α−ω + α−ω2

∂(−u,−v, `ω) =
dO(−u,−v, `ω)

α−id + α−ω2

∂(−u,−v, `ω2) =
dO(−u,−v, `ω2)

α−id + α−ω

For symbolic calculations, it is convenient to write this explicitly:

∂(−u,−v, u+ v) =
dO(−u,−v, u+ v)

dO(`O, ωv − ω2u, ωu− ω2v)
(6.18)

The first main result of this section is in the same vein, and encapsulates theorems 6.5.5
and 6.5.6:

Theorem 6.5.1. For labeled lines u, v ∈ L◦3(E), consider the three sum lines w0 = ωu +
ω2v, w1 = ω2u+ωv,w2 = u+v which form a nine point diagram, as well as their counterpart
difference lines w′0 = ωu− ω2v, w′1 = ω2u− ωv,w′2 = u− v. Then for i = 0, 1, 2:

e0(u; v)

e0(u;−v)
=
∂(−u,−v, w0)

∂(−u, v, w′0)
=
∂(−u,−v, w1)

∂(−u, v, w′1)
=
∂(−u,−v, w2)

∂(−u, v, w′2)

e0(u; v) =∂(−u,−v, w0)∂(−u,−v, w1)∂(−u, v, w′2)

e0(u;−v) =∂(−u, v, w′0)∂(−u, v, w′1)∂(−u,−v, w2)

This will be a fundamental tool in our nine point diagram calculus. Moreover, in
chapter 7, these will be an important theoretical tool when studying the action of three
torsion on points and lines.

The second main result of this section is theorem 6.5.8, which gives the following formula
for the linear sum diagram’s orientation, in terms of the cyclic orientations of u, v:

∂(`id, `ω, `ω2) =
−δu · δv
e0(u;−v)

This will be a useful tool for building cyclic line multiplication algorithms; we rewrite it in
a convenient form for this purpose:

∂(u+ v, ωu+ ω2v, ω2u+ ωv) =
−δ(u) · δ(v)

e0(u;−v)
(6.19)

139

6.5.1 Symmetries

The full symmetry group of a completion diagram encompasses all permutations of the two
leftmost lines −u,−v, as well as swapping their places; see section 5.7.1. We will illustrate
this with the cycle ω = (012) acting on the leftmost line −u:

(ω, 1)C :

ω`ρω2

ω`ρ

ω`ρω

ω2`ω

R02

R10

R21

−ωu

−P2

−P0

−P1

−v

−Q0

−Q1

−Q2

ω2`ω2

R20

R01

R12

ω2`id

R11

R22

R00

In particular, we focus on the automorphisms τ = (ω2, ω), ς, as well as % = (ρ, 1) when
we want to consider the other orientation of u � v; these three automorphisms generate
Aut(C). This is because in the appropriate context, the five lines u, v, `id, `ω, `ω2 are all
lines that appear in a line addition step. Pictorially, for labeled lines u, v ∈ L◦3(E), we
focus on the following:

140

C

L

−u
R

−v

ω2 `ω2 = ω2u+ ωv

id `id = u+ v

ω `ω = ωu+ ω2v

ςC

L

−v
R

−u

ω2 `ω = ωu+ ω2v

id `id = u+ v

ω `ω2 = ω2u+ ωv

τC

L

−ω2u
R

−ωv

ω2 `ω = ωu+ ω2v

id `ω2 = ω2u+ ωv

ω `id = u+ v

τ 2C

L

−ωu
R

−ω2v

ω2 `id = u+ v

id `ω = ωu+ ω2v

ω `ω2 = ω2u+ ωv

Notice that these have exactly the same labeled lines on the right side.

6.5.2 Relations from Line Sum Function

Now we turn to the problem of describing relations between the lines in a completion
diagram. As a first step, we can translate some earlier results into this context. Namely,
we can use the formulas for the line sum function from theorem 3.7.3 to express relations
between the 5 lines −u,−v, `id, `ω, `ω2 that we are most interested in. We do this briefly,
since we will not use these results very much.

Let `σ(x, y) = y − ασx − βσ. Then we will use the following functions to concisely
express our relations:

Definition 6.5.2. For (x, y) ∈ F2, we define:

e0(x, y) =b+ ax+ x3 − y2

e1(x, y) =− a2 + 9bx+ 3ax2 + 3xy2

141

Then for lines `0, `1, we define:

e0(`0; `1) :=b(α0 − α1)3 − a(α0 − α1)2(β0 − β1)− (β0 − β1)3 − (α0 − α1)(α0β1 − α1β0)2

=(α0 − α1)3e0(`0 ∩ `1)

e1(`0; `1) :=−a2(α0 − α1)3 − 9b(α0 − α1)2(β0 − β1) + 3a(α0 − α1)(β0 − β1)2 − 3(β0 − β1)(α0β1 − α1β0)2

=(α0 − α1)3e1(`0 ∩ `1)

These functions allow us to express the coefficients of the line sum function in a simpler
form. In fact, the denominators of line sum coefficients are e0(u;−v), and this corresponds
to the fact that O ∈ u� v when u ∩ −v ∈ E.

With this notation, we can rewrite the formula for γ2 from section 3.7, and equate this
to the expression from theorem 3.10.1:

αidαω + αidαω2 + αωαω2 = αραρω + αραρω2 + αρωαρω2 =
e1(u,−v)

e0(u;−v)

In fact e0, e1 are cubic forms that we will study in chapter 7.

6.5.3 Pairing Indicators

Now we would like to apply theorem 6.3.6 to the completion diagram. We define the
quantity φi from theorem 6.3.6 more generally, as a function of the pairing between −u,−v
that results in the sum `σ:

Definition 6.5.3. For lines u, v as found in the completion diagram C, the pairing indi-
cator is

φ(C) := φ(u; v) := (xQ0 − xP0)(xQ1 − xP1)(xQ2 − xP2)

noting that this is invariant under negation of either argument. More generally, for σ ∈
Aut(C) we define:

φσ(C) := φσ(u; v) := φ(σC)

Note that φ is not a function of u, v as unlabeled lines. It do have invariance under the
diagonal subgroup of S3 × S3 ⊂ Aut(C):

φ(σ,σ)(u; v) := φ(σu;σv) := φ(u; v)

which we interpret as u, v having points paired together in the same way as σu, σv under
(labeled) line addition.

142

In particular, φς(u; v) = φ(v;u) = −φ(u; v), and we focus on the following three quan-
tities:

φid := φid(u; v) =(xQ0 − xP0)(xQ1 − xP1)(xQ2 − xP2)

φτ := φτ (u; v) =(xQ2 − xP1)(xQ0 − xP2)(xQ1 − xP0)

φτ2 := φτ2(u; v) =(xQ1 − xP2)(xQ2 − xP0)(xQ0 − xP1)

Now we have the following corollary of theorem 6.3.6:

Lemma 6.5.4. For the completion diagram C, we have φidφτφτ2 = e0(−u;−v)e0(u;−v),
and

∂(−u,−v, `id) =
e0(−u;−v)

φid
=

φτφτ2

e0(u;−v)

∂(−u,−v, `ω) =
e0(−u;−v)

φτ2
=

φidφτ
e0(u;−v)

∂(−u,−v, `ω2) =
e0(−u;−v)

φτ
=

φidφτ2

e0(u;−v)

Furthermore,

∂(−u,−v, `id)∂(−u,−v, `ω)∂(−u,−v, `ω2) =
e0(−u;−v)2

e0(u;−v)

Hence if we know u, v and two of their possible sum lines, then we can calculate the ori-
entation for the diagram containing −u,−v and the third possible sum line. The following
form will be an important tool in our nine point diagram calculus:

Theorem 6.5.5. For cyclically oriented lines u, v, if the three sum lines are w1, w2, w3,
then we have:

∂(−u,−v, w1)∂(−u,−v, w2)∂(−u,−v, w3) =
e0(−u;−v)2

e0(u;−v)

Now we consider completion diagrams where the line v replaces −v:

C(−u, v) :

L

−u
R

v

ω2 `−ω2 = ω2u− ωv

id `−id = u− v

ω `−ω = ωu− ω2v

143

Note that as unlabeled lines, `−σ is the difference u − σv. Note also that the functions
φσ only depend on x-coordinates, and hence they are the same when v changes signs:
φσ(C) = φσ(C). So by taking quotients, those terms cancel out:

e0(−u;−v)

e0(−u; v)
=
∂(−u,−v, `id)
∂(−u, v, `−id)

=
∂(−u,−v, `ω)

∂(−u, v, `−ω)
=
∂(−u,−v, `ω2)

∂(−u, v, `−ω2)

More generally:

Theorem 6.5.6. For lines u, v, if w is a sum line, and w′ is a difference line, and fur-
thermore the points of u,±v are paired together the same way to obtain w and w′, then:

∂(−u,−v, w)

∂(−u, v, w′) =
e0(−u;−v)

e0(−u; v)

Note that if u, v are known, as well as one of ∂(−u,−v, w), ∂(−u, v, w′), then we can
deduce the other. This will be considered to be an important part of our nine point diagram
calculus as well.

6.5.4 Linear Sum Diagram Orientation

We will now express the orientation of the u � v diagram found in C in terms of u, v
and their cyclic orientations. We define the following quantities, which indicate the cyclic
orientations of u, v; see definition 3.4.1:

Definition 6.5.7. The cyclic orientations of the lines −u,−v of C are:

δu =(xP1 − xP0)(xP2 − xP1)(xP0 − xP2)

δv =(xQ1 − xQ0)(xQ2 − xQ1)(xQ0 − xQ2)

The idea is to use theorem 6.3.6 on two closely related diagrams found in C; then by
taking the quotient of their orientations, we get a lot of cancellation. For those same
diagrams, we do the same using the factorization formulas in theorem 6.3.3. Then by
combining all of those factorizations together, we get the following:

Theorem 6.5.8.

∂(`id, `ω, `ω2) =
−δu · δv
e0(u;−v)

Proof. We use the factorization formula 6.3.3 with the following two nine point diagrams
consisting of lines `00, `11, `ρ:

144

`00

`11

`ρ

`01

−P0

−Q1

R01

`10

−Q0

−P1

R10

`id

R00

R11

R22

and `00, `11, `22:

`00

`11

`22

−u

−P0

−P1

−P2

−v

−Q0

−Q1

−Q2

`id

R00

R11

R22

By taking the ratio of their orientations, we get cancellation:

∂(`00, `11, `ρ)

∂(`00, `11, `22)
=

(αid − α00)(αid − α11)(αid − αρ)
(αid − α00)(αid − α11)(αid − α22)

=
(αid − αρ)
(αid − α22)

Similarly, we take the same ratio with respect to theorem 6.3.6:

∂(`00, `11, `ρ)

∂(`00, `11, `22)
=

e0(`00; `11)

(xQ1 − xP0)(xP1 − xQ0)(xR11 − xR00)

(xP1 − xP0)(xQ1 − xQ0)(xR11 − xR00)

e0(`00; `11)

(αid − αρ)
(αid − α22)

=
(xP1 − xP0)(xQ1 − xQ0)

(xQ1 − xP0)(xP1 − xQ0)

Now we consider the above applied to (ω, ω)C. In the place of −Pi,−Qi there will be
−Pi−1,−Qi−1; in the place of `ρ there will be `ω−1ρω = `ρω2 ; and in the place of `id there
wil be `ω−1idω = `id. So we get:

(αid − αρω2)

(αid − α11)
=

(xP0 − xP2)(xQ0 − xQ2)

(xQ0 − xP2)(xP0 − xQ2)

145

and similarly for (ω2, ω2)C we get:

(αid − αρω)

(αid − α00)
=

(xP2 − xP1)(xQ2 − xQ1)

(xQ2 − xP1)(xP2 − xQ1)

Then we multiply those three conjugate formulas together:

(xP1 − xP0)(xP2 − xP1)(xP0 − xP2)(xQ1 − xQ0)(xQ2 − xQ1)(xQ0 − xQ2)

(xQ0 − xP1)(xQ0 − xP2)(xQ1 − xP0)(xQ1 − xP2)(xQ2 − xP0)(xQ2 − xP1)

=
δuδv
φτφτ2

= −(αid − αρ)(αid − αρω)(αid − αρω2)

(αid − α00)(αid − α11)(αid − α22)

recalling the notation from lemma 6.5.4. Then we recognize the numerator and denomi-
nator of the last expression respectively as

∂(`ρ, `ρω, `ρω2) =− ∂(`id, `ω, `ω2)

∂(`00, `11, `22) =− ∂(−u,−v, `id)

using theorem 6.3.3. So we have:

∂(`id, `ω, `ω2)

∂(−u,−v, `id)
=− δuδv

φτφτ2

We multiply this with lemma 6.5.4:

∂(−u,−v, `id) =
φτφτ2

e0(u;−v)

to obtain the desired form:

∂(`id, `ω, `ω2) =
−δuδv

e0(u;−v)

6.6 Diagrammatic Line Addition

Now we can use the results so far to provide an alternative to the algorithm of section 3.11.
This can be used to improve the efficiency in the step where bu+v is recovered. That said,
we will not focus on this aspect since the improvement is small, and this requires some
care. Instead, we focus on the large number of connections that exist between quantities
in a line addition step. This gives very many alternatives for performing a line addition,
and we hope to find efficient ways to take advantage of this in future work.

146

Note also that this thesis is not self-contained, since the earlier line multiplication
algorithms relied on a computer algebra system to verify the formula for u � v. In this
section, the algorithm described will not depend on any unwieldy formulas like the one for
γ3(u, v). The only reliance left on computer verification is for the γ1 function; this can in
fact be done in less than a page by hand, using the result from section A.1 and a little
trickery.

To describe our algorithm, we start with a labeled line u with points P0, P1, P2. Then
we use the notation uk,l(x, y) = y−mk,lx− bk,l to represent the line function associated to
uk,l = (k + lω2) � u:

uk,l0

kP0 + lP1

1

kP1 + lP2

2

kP2 + lP0

with uk := uk,0. Note that we define uk,l as a labeled line for convenience of notation.
When we encounter uk,l in the algorithm below, that line should be thought of as an
unlabeled line. So for computational purposes, uk,l generally represents the pair (mk,l, bk,l)
of scalars.

Recall the algorithm from section 3.11, where we obtained the line sum uk+l of uk, ul,
given uk−l, uk−2l. In this section, we similarly make use of the following function to recover
the slope mk+l:

γ1(uk, ul) =mk+l +mk,l +ml,k

We will avoid using other coefficients γi of u�v, and instead use the results of this chapter
to recover bk+l.

Now we consider theorem 6.4.4 with respect to the following diagram:

uk

kP0

kP1

kP2

ul

lP0

lP1

lP2

u−k−l

(−k − l)P0

(−k − l)P1

(−k − l)P2

The forward differences in the respective northeast and northwest directions are respec-
tively:

147

ul,−k

lP0 − kP1 lP1 − kP2 lP2 − kP0

uk,−l

kP0 − lP1 kP1 − lP2 kP2 − lP0

so we have by corollary 6.4.4:

∂(uk, ul, u−k−l) =
dO(uk, ul, u−k−l)

m−k,l +ml,−k

∂(u−k, ul, uk−l) =
dO(u−k, ul, uk−l)

mk,l +ml,k

Note that in the latter expression, we will know all three lines u−k, ul, uk−l, so we can
compute the numerator; on the other hand, the denominator is known as a side effect of
computing mk+l. Hence we can calculate ∂(u−k, ul, uk−l), and then we use lemma 6.5.6 to
compute ∂(uk, ul, u−k−l):

∂(uk, ul, u−k−l) =
e0(uk;ul)

e0(u−k;ul)
∂(u−k, ul, uk−l)

And this allows us to recover bk+l as follows, starting from the beginning:

1. Input: uk, ul, uk−l, uk−2l

2. Compute mk,l +ml,k = γ1(uk−l, u−l)−mk−2l

3. Compute mk+l = γ1(uk, ul)− (mk,l +ml,k)

4. Compute ∂(u−k, ul, uk−l) = dO(u−k,ul,uk−l)

mk,l+ml,k

5. Compute ∂(uk, ul, u−k−l) = e0(uk;ul)
e0(u−k;ul)

∂(u−k, ul, uk−l)

6. Compute mk,−l +m−l,k = γ1(uk, u−l)−mk−l

7. Compute det(uk, ul, u−k−l) = (mk,−l +m−l,k)∂(uk, ul, u−k−l)

8. Since bk+l(mk−ml)−mk+l(bk− bl) + (mkbl−m`bk) = det(uk, ul, u−k−l), we compute:

bk+l =
det(uk, ul, u−k−l) +mk+l(bk − bl)− (mkbl −mlbk)

mk −ml

Note that although we used the orientation ∂ of various nine point diagrams, we do not
consider this to be a cyclic line multiplication algorithm. We will reserve that terminology
for cases where we break the symmetry between uk,l and ul,k.

148

6.7 Cyclic Line Multiplication

Now we consider cyclic line multiplication. Suppose that u is a labeled line, and that
(ω − ω2) � u = ∆u is known. As a starting point, take any unlabeled line multiplication
algorithm. Then we can technically perform a cyclic line multiplication by computing k�u
from u and k�∆u from ∆u in parallel. Of course this feels like cheating! We briefly discuss
improvements on this idea.

We will use the notation uk = k � u, for k ∈ Z[ω]/〈1 + ω + ω2〉 in the Eisenstein
integers, and consider u to be a cyclically oriented line (see section 5.6.1.) So for a line
addition, we start with uk, ul, uk−l, uk−2l, and we also have their forward differences, with
∆uk = u(ω−ω2)k = u√−3k. Note that we can compute ∂(uk�ul), ∂(uk−l�u−l) using theorem
6.5.8, since we know the cyclic orientations of those lines.

Then we can start by computing mk+l as usual, and we do the same for the forward
difference:

mk+ωl +mk+ω2l =γ1(uk−l, u−l)−mk−2l

m√−3(k+ωl) +m√−3(k+ω2l) =γ1(u√−3(k−l), u−√−3(l))−m√−3(k−2l)

In fact, we outline a method to extract bk+l and b√−3(k+l) with essentially the same method.
This was alluded to in section 3.5.

Consider the following, thought of as a function of a nine point diagram N :

βΣ(`0, `1, `2) := β0 + β1 + β2 −
1

2
∂(`0, `1, `2)

Clearly this is invariant under ς, τ , since those permute the lines `0, `1, `2. But this is also
invariant under %, and hence all of Aut(N):

βΣ(N)− βΣ(%N) =β0 + β1 + β2 −
1

2
∂(N)− β′0 − β′1 − β′2 +

1

2
∂(%N)

=(β0 + β1 + β2 − β′0 − β′1 − β′2)− ∂(N) = 0

As a consequence, this is a function of the unlabeled nine point diagram, since it has
invariance under all of the generators of the symmetry group.

Hence βΣ(u � v) has an expression as a function of u, v as unlabeled lines. So we can
compute:

bΣ(uk � ul) :=bk+l + bk+ωl + bk+ω2l = βΣ(u� v) +
1

2
∂(�v)

Hence by applying this to uk−l � u−l as well, we can compute bk+l just as we did for mk+l:

bk+l =bΣ(uk � ul)− bΣ(uk−l � u−l) + bk−2l

=(bk+ωl + bk+ω2l + bk+l)− (bk+ωl + bk+ω2l + bk−2l) + bk−2l

149

Then similarly, we can compute b√−3(k+l) and this completes a cyclic line addition step.

Now we outline an alternative method in the same vein. Consider the following, thought
of as a function of a nine point diagram N :

γ(`0, `1, `2) := β0 + β1 + β2 − α0α1α2 − ∂(`0, `1, `2)

Using the same argument as for βΣ, this is Aut(N)-invariant:

γ(N)− γ(%N) =β0 + β1 + β2 − α0α1α2 − ∂(N)

− β′0 − β′1 − β′2 + α′0α
′
1α
′
2 + ∂(%N)

=(β0 + β1 + β2β
′
0 − β′1 − β′2) + (α′0α

′
1α
′
2 − α0α1α2)− 2∂(N) = 0

As a consequence, γ(u � v) has an expression as a function of u, v as unlabeled lines. In
fact, there are many expressions with similar properties, but this one was chosen because
it is simpler than the others. Here it an expression for γ(u� v), with (X, Y) = u ∩ (−v):

γ(u� v) =

(
(3b+ 2aX − Y 2)(2a+mubv +mvbu)− (a+ 3X2)(3b− amumv − bubv)

− 2(3b(mu −mv)− 2a(bu − bv))Y
)
/

(
(mu +mv)(b+ aX +X3 − Y 2)

)
Using this, we get an algorithm similar to the method of section 3.11, but with the shorter
expression γ rather than the huge γ3. In fact, this can be used as an unlabeled line
multiplication algorithm, if the ∂ expression is extracted as it was in the last section, for
example.

In chapter 7, we will see new formulas which can be used for cyclic line multiplication.
These involve trilinear forms f0, f1, which can replace the trilinear form dO:

dO(`0, `1, `2)

dO(∆v,∆u, `O)
=

f0(`0, `1, `2)

f0(∆v,∆u, `O)
=

f1(`0, `1, `2)

f1(∆v,∆u, `O)
= ∂(`0, `1, `2)

We are currently developing such algorithms.

150

Chapter 7

Three Torsion Algebra

Recall from chapter 3 that there is normally a six way ambiguity in adding two lines. In
this chapter, we focus on a special case of line addition with no ambiguity: the addition of
a triple intersection line. Such a line arises as the tangent line `T to E at a three torsion
point T ∈ E[3]. Then for any line ` ∈ L3(E), there is a unique line sum between ` and `T ,
which is denoted `�T .

The operation ` 7→ `�T turns out to play an important role in the algebra of line
addition. For one, it provides symmetries of the line sum function:

u� v =u�T � v�T .

By studying invariant functions of this E[3]-action, we can better understand the line sum
function. This is especially beneficial because the operation ` 7→ `�T turns out to have a
simple form: it is a projective linear map, and so the coefficients of `�T can be obtained
from those of ` via a matrix multiplication.

We then focus on an important class of functions which arise in connection to E[3]-
invariance. These are trilinear forms which have simple transformation rules under the
E[3]-action. These trilinear forms will provide simple relations between various lines that
appear in a line addition. Furthermore, these relations have analogues in point arithmetic.
This analogy is briefly mentioned here, since it is a good illustration of the central theme
of this chapter.

First we note that for points satisfying P0 +P1 +P2 = O, we have det(P0, P1, P2) = 0 in
projective coordinates due to the collinearity of those points. Then we note that for any T ∈
E[3], we also have that (P0 + T) + (P1 − T) + P2 = O. By representing addition of three
torsion with a matrix multiplication, we in fact get a cubic form det(MTP0,M−TP1, P2)
that vanishes for collinear points. By varying T ∈ E[3], we can generate a 3 dimensional

151

vector space. By choosing a convenient basis, we get equations characterizing the relation
det(P0, P1, P2) = 0.1

For example, in a Hessian form elliptic curve, we can use this principle to get simple
point addition formulas. A Hessian form elliptic curve is defined by the equation:

Eα : x3 + y3 + 1− 3αxy = 0,

with O = (−1 : 1 : 0). We can characterize collinearity of three (affine) points P0, P1, P2 ∈
Eα by the vanishing of the following three cubic forms:

P0 + P1 + P2 = O ⇔ 0 =1 + x0x1x2 + y0y1y2

=x0y1 + x1y2 + x2y0

=x0y2 + x1y0 + x2y1.

An analogous phenomenon arises in line addition, and this leads to simple line addition
formulas on Hessian curves. Recall that for cyclic lines u, v with forward differences ∆u,∆v,
there are three cyclic sum lines `0, `1, `2. By theorem 6.4.4, these satisfy

− dO(`0, `1, `2)

dO(∆u,∆v, `O)
= ∂(`0, `1, `2) (7.1)

Now we use the perspective from section 5.7 to similarly replace dO with other trilinear
forms. Suppose that `0, `1, `2,∆u,∆v are labeled lines; then because they form a nine point
diagram, we have `0 + `1 + `2 = `O without loss of generality; furthermore, the forward
differences can be taken to be ∆u = l (`0, `1, `2) = ω2`1 − ω`0, ∆v = l (`0, `1, `2) =
ω2`0 − ω`1.

Then we also have `�T0 + `�T1 + `2 = `O, using the same trick as for points. Hence
`�T0 , `�T1 , `2 form a nine point diagram. The forward differences are then

l (`�T0 , `�T1 , `2) =ω2`�T1 − ω`�T0

=
(
ω2`1 − ω`0

)�T
= (∆u)�T

l (`�T0 , `�T1 , `2) =ω2`�T0 − ω`�T1

=
(
ω2`0 − ω`1

)�T
= (∆v)�T

So we get

− dO(`�T0 , `�T1 , `2)

dO((∆u)�T , (∆v)�T , `O)
= ∂(`�T0 , `�T1 , `2)

1See Daniel R.L. Brown’s paper [2] for a different approach using cubic forms.

152

It turns out that by studying the transformation of ∂ under the action of E[3], this last
equation gives us exactly what we need! That is,

− det(Mᵀ
−T [`0],Mᵀ

T [`1], [`2])

det(Mᵀ
−T [∆u],Mᵀ

T [∆v], [`O])
= ∂(`0, `1, `2)

and this gives a new trilinear form to replace dO! Again we get a 3 dimensional space of
trilinear forms, and we can choose a convenient basis dO, f0, f1 with:

− dO(`0, `1, `2)

dO(∆u,∆v, `O)
= − f0(`0, `1, `2)

f0(∆u,∆v, `O)
= − f1(`0, `1, `2)

f1(∆u,∆v, `O)
= ∂(`0, `1, `2)

Now we elaborate on the transformation of ∂ under three torsion being added or sub-
tracted from a nine point diagram. First off, if all points have T added, then the transfor-
mation is simple:

∂(`�T0 , `�T1 , `�T2) =
(2yT)3

`0(−T)`1(−T)`2(−T)
∂(`0, `1, `2)

which can be deduced by examining equation (7.1) under the transformation; in essence,
each vector in the determinant is multiplied by the same matrix. For ∂(`�T0 , `�T1 , `2), this
process would not work so cleanly, since the columns would be multiplied by different
matrices. Fortunately though, we can rectify this by examining the following result of
theorem 6.5.1, and its application under the transformation:

∂(`0, `1, `2)∂(`0,−`1, `)∂(`0,−`1, `) =e0(−`0; `1)

∂(`�T0 , `�T1 , `2)∂(`�T0 , (−`1)�T , `�T)∂(`�T0 , (−`1)�T , `�T) =e0((−`0)�T ; `�T1)

Then all but the first term transform predictably; hence we can predict the transformation
of the remaining term as a result. We briefly discuss a better explanation that we are
developing in section 8.1.

7.1 Elliptic Curve Three Torsion

In this section, we characterize the triple intersection lines with E, since they provide a
particularly simple case of line addition. In fact, the six possible sum lines mentioned in
section 3.3 collapse to a single possibility if one of the summands is a triple intersection
line.

Definition 7.1.1. A triple intersection line `T for T ∈ E is a line satisfying:

DivP (`T (P)) =3(T)− 3(O)

153

By the characterization of principal divisors (see section 2.4), a triple intersection line
`T exists for T ∈ E if and only if 3T = O; so triple intersection lines correspond exactly to
tangent lines at 3 torsion points T ∈ E[3]. We characterize E[3] explicitly now, and define
the notation that we use throughout this chapter:

Theorem 7.1.2. Suppose E : b + ax + x3 − y2 = 0 is an elliptic curve over a field F of
characteristic 0, with a 6= 0. Then E has nine three torsion points which form a subgroup
that is a direct sum of two cyclic subgroups of order 3:

E[3] ={O,±T0,±T1,±T2,±T3}
={iT0 + jT1 | i, j ∈ {0, 1, 2}

where we define T2 = T0 + T1 and T3 = T0 − T1.

For T = (xT , yT) ∈ E[3]\{O}, the triple intersection line is notated `T (x, y) = y −
mTx − bT (and `O(x, y) = 1.) The eight slopes z = mT for T ∈ E[3]\{O} correspond to
the eight distinct roots of −27a2 + 108b z2 + 18a z4 + z8, and the coordinates of T and `T
are:

T = (xT , yT) =
(
m2

T

3
,

3a+m4
T

6mT

)
`T (P) =yP −mTxP − bT = yP −mTxP − 3a−m4

T

6mT
.

Note that (m−T , b−T) = (−mT ,−bT) and (x−T , y−T) = (XT ,−yT).

There is a primitive cube root of unity ω ∈ F (with 1 + ω + ω2 = 0) such that

mT2 =mT0+T1 = ω2mT0 + ωmT1

mT3 =mT0−T1 = ωmT0 − ω2mT1

and furthermore mT0 and mT1 are related as follows for
√
−3 := ω − ω2:

0 =3
√
−3a−m3

T0
mT1 +

√
−3m2

T0
m2
T1

+mT0m
3
T1

Note that as a simple corollary of theorem 7.1.2, the x-coordinates of T ∈ E[3]\{O}
are exactly the roots of the following polynomial:

Definition 7.1.3. The third modular polynomial is:

ψ3(x) := −a2 + 12bx+ 6ax2 + 3x4

and we denote ψ3(Q) := ψ3(xQ).

Theorem 7.1.2 is a summary of the results of section B.1 of the appendix. In fact, the
main tool that we use in our proof is the diagrammatic calculus applied to a nine point
diagram formed from three triple intersection lines.

154

7.1.1 Action of Three Torsion

In this section, we study the action of E[3] on E via translations. A crucial observation is
that addition of three torsion preserves lines. This corresponds to the following action of
E[3] on lines:

Definition 7.1.4. For T ∈ E[3] and a line ` ∈ L◦3(E) with points P0, P1, P2, we define the
T -shift of ` to be the line `�T with points P0 + T, P1 + T, P2 + T . This gives a map �T :
L◦3(E)→ L◦3(E), which is well-defined for any line diagram. We also define `�T := `�(−T).

We point out an important consequence of the preservation of lines; the map �T is
projective linear, and hence is given by a matrix multiplication in projective coordinates.
A further consequence is that the translation by T map P 7→ P + T on E can also be
realized by a projective linear map. To more precisely state this, we first need to establish
our linear algebraic notation:

Definition 7.1.5. For a point P ∈ F2
and a line ` without O as a point,

[P] :=

 xP
yP
1

 , [`] =

 −α(`)
1

−β(`)


More generally, [`] is defined so that `(P) = [`]ᵀ[P].

For example,

[`T] =

 −mT

1
−bT

 for T ∈ E[3]\{O}, and [`O] =

 0
0
1

 .

Then we can explicitly express the translation by T map as a matrix multiplication in
projective coordinates:

Theorem 7.1.6. For a three torsion point T ∈ E[3] and P ∈ E\{O,−T}:

[P + T] =

(−2yT
`−T (P)

)
MT [P]

where MO = I, and MT is the following matrix for T 6= O:

MT :=
1

−2yT

 −bT − yT xT xT (bT + 2yT)
−mTyT yT −yT (bT + 2yT)
mT 1 bT

 .

155

More precisely, for T ∈ E[3]\{O} the following holds for functions of P in F(E): xP+T

yP+T

1

 =

(−2yT
yP +mTxP + bT

)
MT

 xP
yP
1


For T ∈ E[3]\{O}, the coefficient vector of `�T is:

[`�T] =
−2yT

yT + α(`)xT + β(`)
Mᵀ
−T [`]

This allows us to translate points from the plane by T as well:

Definition 7.1.7. For T ∈ E[3]\{O} and a point P ∈ F2
with `−T (P) 6= 0, we define

P + T by the formula

[P + T] =

(−2yT
`−T (P)

)
MT [P]

Theorem 7.1.6 is proved in section B.2 of the appendix (see theorem B.2.1 and theorem
B.3.1.) The following lemma gives algebraic properties of the various matrices MT :

Lemma 7.1.8. For any T, T ′ ∈ E[3]:

(i) det(MT) = 1

(ii) MTMT ′ = ωiMT+T ′ for some i ∈ {0, 1, 2}.

(iii) M2
T = M−T

(iv) M3
T = I

This is lemma B.4.1, which is proved in section B.4 of the appendix, with more detail.

7.2 Trilinear Forms

The action of E[3] is important to us because linear summation is invariant under the
transformation (u, v) 7→ (u�T , v�T):

u� v =u�T � v�T .

156

Hence we can better understand linear summation by studying E[3]-invariant functions.
This in fact leads to simpler expressions in our line multiplication algorithms. But the ben-
efits run much deeper, since there are arithmetic interpretations of many of the expressions
that arise naturally when classifying E[3]-invariant functions.

We first focus on a class of expressions which transform predictably under T -shifts of
their arguments. These are typified by the determinant form:

dO(P0, P1, P2) := det([P0], [P1], [P2])

As a consequence of the projective linearity of T -shifts, the determinant form has a simple
transformation rule under translation by T ∈ E[3]\{O}:

dO(P0 + T, P1 + T, P2 + T) =

(
2∏
i=0

−2yT
`−T (Pi)

)
dO(P0, P1, P2)

This is a simple consequence of theorem 7.1.6. In fact, using the algebraic properties of
the MT matrices from lemma 7.1.8, we can define more general forms which have the same
transformation formulas:

Definition 7.2.1. For T ∈ E[3], the T -determinant form is the following trilinear form
for v1, v2, v3 ∈ F3:

dT (v0, v1, v2) := det(v1,MTv2,M−Tv3).

We use the same terminology to denote the following associated function of P0, P1, P2 ∈ E:

dT (P0, P1, P2) :=dT ([P0], [P1], [P2]) = det([P0],MT [P1],M−T [P2]).

We also define the cubic form dT (v) := dT (v, v, v), and similarly dT (P) := dT (P, P, P).

We first establish the transformation rules for these forms under T -shifts and permu-
tations:

Theorem 7.2.2. For any T ′ ∈ E[3], the form dT ′ transforms as follows under translation
of its arguments by T ∈ E[3]\{O}:

dT ′(P0 + T, P1 + T, P2 + T) =

(
2∏
i=0

−2yT
`−T (Pi)

)
dT ′(P0, P1, P2)

Furthermore, dT is invariant under cyclic shifts:

dT (P0, P1, P2) = dT (P1, P2, P0) = dT (P2, P0, P1)

and transforms as follows under transposition of any two arguments:

dT (P0, P2, P1) = −d−T (P0, P1, P2)

157

Proof. We use the following result from theorem 7.1.6 for T ∈ E[3]\{O}:

[P + T] =

(−2yT
yP +mTxP + bT

)
MT [P] =

(−2yT
`−T (P)

)
MT [P].

We also recall lemma 7.1.8, which implies that MT ′MT = ωiMTMT ′ for some i ∈ {0, 1, 2},
and that M−1

T ′ = M−T ′ . Hence

M−T ′MT = M−T ′(MTMT ′)M−T ′ = M−T ′(ω
−iMT ′MT)M−T ′ = ω−iMTM−T ′

and we can use this to demonstrate the T -shift transformation formula:

dT ′ (P0 + T, P1 + T, P2 + T) = det ([P0 + T],MT ′ [P1 + T],M−T ′ [P2 + T])

= det

(−2yT
`−T (P0)

MT [P0],
−2yT
`−T (P1)

MT ′MT [P1],
−2yT
`−T (P2)

M−T ′MT [P2]

)
=

(
2∏
i=0

−2yT
`−T (Pi)

)
det
(
MT [P0], ωiMTMT ′ [P1], ω−iMTM−T ′ [P2]

)
=

(
2∏
i=0

−2yT
`−T (Pi)

)
det ([P0],MT ′ [P1],M−T ′ [P2]) =

(
2∏
i=0

−2yT
`−T (Pi)

)
dT ′ (P0, P1, P2)

Where we used the fact that det(MT) = 1. We use that same property to prove the
invariance of dT under cyclic shifts:

dT (P1, P2, P0) = det([P1],MT [P2],M−T [P0])

= det(MT [P1],MTMT [P2],MTM−T [P0])

= det(MT [P1],M−T [P2], [P0])

= det([P0],MT [P1],M−T [P2]) = dT (P0, P1, P2)

Lastly under transpositions we have:

dT (P0, P2, P1) = det([P0],MT [P2],M−T [P1])

=− det([P0],M−T [P1],MT [P2]) = −d−T (P0, P1, P2)

The determinant forms can be used to define functions of P ∈ E that are invariant
under translation by T ∈ E[3]. For example, the function dT ′(P)/dT ′′(P) is invariant under
the action of E[3] for fixed T ′, T ′′ ∈ E[3]\{O}. Many of those E[3]-invariant functions have
connections to point arithmetic on E; for example the function dT ′(P)/dT ′′ is related to
x(3P) by a simple transformation.

158

There are many other connections between determinant forms and point arithmetic. In
particular, for any T ∈ E[3] we have dT (P0, P1, P2) = 0 whenever P0 +P1 +P2 = O. When
T = O, this is easy to see since we are taking a determinant of a matrix whose columns
represent three collinear points. More generally, dT vanishes with those arguments since
P0 + (P1 + T) + (P2 − T) = O:

Lemma 7.2.3. For T ∈ E[3] and P0, P1, P2 ∈ E satisfying P0 + P1 + P2 = O, the T -
determinant form satisfies dT (P0, P1, P2) = 0.

Proof. By definition,

dT (P0, P2, P1) = det([P0],MT [P1],M−T [P2])

and those column vectors represent the points P0, P1 +T, P2−T respectively in projective
coordinates, by theorem 7.1.6. The determinant thus vanishes, since those points P0, P1 +
T, P2 − T are collinear by virtue of having sum O.

We can use this lemma to derive point addition formulas. Suppose that P0, P1 ∈ E are
given, and we would like to find P0 +P1. First we solve for P2 = −P0−P1 in the following
system of linear equations:

dO(P0, P1, P2) = dT0(P0, P1, P2) = dT1(P0, P1, P2) = 0

and then we simply negate P2 to obtain P0 + P1. We will elaborate on this concept in
section 7.2.3. For now, we focus on other arithmetic connections which we will use to
prove algebraic properties of determinant forms.

7.2.1 Cyclic Orientation from Determinant Forms

We will now give another arithmetic interpretation to the determinant forms. Specifically,
for Q ∈ E and a line u with points P0, P1, P2 we will prove the following in theorem 7.2.4:∣∣∣∣∣∣
xP0+Q xP1+Q xP2+Q

yP0+Q yP1+Q yP2+Q

1 1 1

∣∣∣∣∣∣ =
(xP1−xP0)(xP2−xP1)(xP0−xP2)(−a2 + 12bxQ + 6ax2

Q + 3x4
Q)

(yQ +muxQ + bu)3

This relates the determinant form to the cyclic orientation δ(u) of u ∈ L.3(E) which
was introduced in section 3.4:

δ(u) =(xP1−xP0)(xP2−xP1)(xP0−xP2).

159

The other factor that appears in the numerator is ψ3(Q):

ψ3(Q) =− a2 + 12bxQ + 6ax2
Q + 3x4

Q

recall from section 7.1 that this is the third modular polynomial, which vanishes for Q ∈
E[3]\{O}.

In section 3.4, we also talked about specifying a cyclic orientation via a forward differ-
ence line ∆u. These also appear in theorem 7.2.2 when we consider more general determi-
nant forms:

dT (P0 +Q,P1 +Q,P2 +Q)

dO(P0 +Q,P1 +Q,P2 +Q)
=
−yT −m∆uxT − b∆u

2yT

In fact, this formula will be used in section 7.2.2 to derive formulas for m∆u and b∆u,
closing the gap left in theorem 3.4.2 without the use of a computer algebra system.

Theorem 7.2.4. Suppose the line u ∈ L.3(E) has three distinct non-zero points P0, P1, P2.
Then for Q ∈ E\{O,−P0,−P1,−P2} we have:

dO(P0 +Q,P1 +Q,P2 +Q) =
δ(u)ψ3(Q)

−u(−Q)3

and for T ∈ E[3]\{O} we similarly have:

dT (P0 +Q,P1 +Q,P2 +Q) =
∆u(−T)

2yT
· δ(u)ψ3(Q)

−u(−Q)3

Proof. We consider u as being fixed, and we assume that u has no point from E[3]. Then
for each T ∈ E[3] we define the following function dT ∈ F(E):

dT (Q) := det

 xP0+Q

yP0+Q

1

 ,MT

 xP1+Q

yP1+Q

1

 ,M−T
 xP2+Q

yP2+Q

1


Claim: For each T ∈ E[3], there is a constant cT such that dT (Q) = cT · ψ3(Q)/u(−Q)3.

We will prove this claim by showing that both functions have identical divisors. Recall
that the third modular polynomial vanishes at non-zero three-torsion points, and u(−Q)
vanishes at −P0,−P1,−P2:

DivQ

(
ψ3(xQ)

u(−Q)3

)
=
∑
T∈E[3]

(T)− 9(O)− 3 ((−P0) + (−P1) + (−P2)− 3(O))

=
∑
T∈E[3]

(T)− 3(−P0)− 3(−P1)− 3(−P2)

160

On the other hand, consider the expansion of dT (Q) as a polynomial in x(Pi + Q) and
y(Pi +Q) for i = 0, 1, 2. Each monomial will be of the form

ξ0(P0 +Q)ξ1(P1 +Q)ξ2(P2 +Q)

where ξi is one of the functions x, y or 1. Hence Div(ξi) ≥ −3(O), and as a consequence
DivQ (ξi(Pi +Q)) ≥ −3(−Pi). So the monomial satisfies the following:

DivQ (ξ0(P0 +Q)ξ1(P1 +Q)ξ2(P2 +Q)) ≥ −3(−P0)− 3(−P1)− 3(−P2)

It follows that Div(dT) satisfies the above inequality as well. Furthermore, the function
dT (Q) vanishes for each Q ∈ E[3]; this is because the columns in the determinant give the
three collinear points P0 +Q,P1 +Q+ T, P2 +Q− T in projective coordinates. Hence

DivQ (dT (Q)) ≥
∑
T∈E[3]

(T)− 3(−P0)− 3(−P1)− 3(−P2) = DivQ

(
ψ3(Q)

u(−Q)3

)

Now since all principal divisors have weight 0, the two divisors must in fact be equal. Hence
the first claim is proved.

Claim: cO = −(xP1 − xP0)(xP2 − xP1)(xP0 − xP2) = −δ(u)

We will prove this by expanding the functions dO(Q) and ψ3(Q)/u(−Q)3 locally at O,
and comparing leading coefficients. Recall from section 3.1 that the uniformizer w := x/y
vanishes to order 1 at O. For functions in F(E), we will use the notation f = g+O(wk) to
indicate that Div(f−g) ≥ k(O). Note that since x, y are normalized functions of respective
orders −2,−3 at O, we have the expansions:

x = w−2 +O(w−1), y = w−3 +O(w−2)

We can use the identity y2 = b+ ax+ x3 to bootstrap these into better expansions:

w2x = w3y =x3y−2 = 1− axy−2 − by−2 = 1− aw4 +O(w5)

Next we expand the terms xP+Q and yP+Q that appear in the determinant, using the
standard point addition formulas (see section 2.4.) We first expand the slope between
these points:

m :=
y − yP
x− xP

= w−1w
3y − yPw3

w2x− xPw2
= w−1 1− yPw3 − aw4 +O(w5)

1− xPw2 − aw4 +O(w5)

=w−1 + xPw − yPw2 + x2
Pw

3 +O(w4)

161

Then we calculate the coordinates of P +Q:

xP+Q =m2 − xP − xQ
=
(
w−2 + 2xP − 2yPw + 3x2

Pw
2 +O(w3)

)
− xP −

(
w−2 − aw2 +O(w3)

)
=xP − 2yPw + (a+ 3x2

P)w2 +O(w3)

yP+Q =−m(xP+Q − xP)− yP
=−

(
w−1 + xPw +O(w2)

) (
−2yPw + (a+ 3x2

P)w2 +O(w3)
)
− yP

=yP − (a+ 3x2
P)w +O(w2)

Finally we expand dO as a determinant, noting that it vanishes at Q = O:

dO =

∣∣∣∣∣∣
xP0 − 2yP0w xP1 − 2yP1w xP2 − 2yP2w

yP0 − (a+ 3x2
P0

)w yP1 − (a+ 3x2
P1

)w yP2 − (a+ 3x2
P2

)w
1 1 1

∣∣∣∣∣∣+O(w2)

=3(xP1 − xP0)(xP2 − xP1)(xP0 − xP2)w +O(w2) = 3δ(u)w +O(w2)

On the other hand,

ψ3(Q)

−u(−Q)3
=

(−a2 + 12bxQ + 6ax2
Q + 3x4

Q)

(yQ +muxQ + bu)3
= 3w +O(w2)

so we have dO(Q) = −δ(u)ψ3(Q)/u(−Q)3 since those functions have identical divisors and
leading coefficients; thus cO = −δ(u).

Claim: cT/cO = ∆u(−T)/(2yT) for T ∈ E[3]\{O}
Since dT/dO is a constant function, we determine its value by considering Q = −P1. To
make the argument precise, we will consider the expansion of dT (Q − P1)/dO(Q − P1) at
Q = O. First we consider the leading term in the denominator:

w3dO(Q− P1) =

∣∣∣∣∣∣
xP0−P1+Q w3xQ xP2−P1+Q

yP0−P1+Q w3yQ yP2−P1+Q

1 w3 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
xP1−P0 0 xP2−P1

−yP1−P0 1 yP2−P1

1 0 1

∣∣∣∣∣∣+O(w)

=(xP1−P0 − xP2−P1) +O(w)

So w3dO(Q− P1)|Q=O = (xP1−P0 − xP2−P1). For the numerator, we proceed similarly:

w3dT (Q− P1)
∣∣
Q=O = det

 xP1−P0

−yP1−P0

1

 ,MT

 0
1
0

 ,M−T
 xP2−P1

yP2−P1

1


=
−1

4y2
T

∣∣∣∣∣∣
xP1−P0 xT (bT + yT)xP2−P1 + xTyP2−P1 − xT (bT + 2yT)
−yP1−P0 yT −mTyTxP2−P1 − yTyP2−P1 − yT (bT + 2yT)

1 1 −mTxP2−P1 + yP2−P1 − bT

∣∣∣∣∣∣
162

to simplify this determinant, we add mTxP2−P1 − yP2−P1 + (bT + 2yT) times the second
column to the third one; and lastly we expand along the second column:

w3dT (Q− P1)
∣∣
Q=O =

−1

4y2
T

∣∣∣∣∣∣
xP1−P0 xT 2yTxP2−P1

−yP1−P0 yT −2yTyP2−P1

1 1 2yT

∣∣∣∣∣∣
=

(xP1−P0 − xP2−P1)yT + (yP2−P1 − yP1−P0)xT + (xP1−P0yP2−P1 − xP2−P1yP1−P0)

−2yT

After dividing this by (xP1−P0 − xP2−P1), we recognize the coefficients of the line ∆u which
passes through P1 − P0 and P2 − P1:

dT (Q− P1)

dO(Q− P1)
=
yT +m∆uxT + b∆u

−2yT
=

∆u(−T)

2yT

So in fact dT/dO = cT/cO = ∆u(−T)/(2yT), which proves the claim and concludes the
proof of theorem 7.2.4.

Now we generalize theorem 7.2.4 to more general arguments R0, R1, R2 in the determi-
nant forms. We can use theorem 7.2.4 by first solving for Q ∈ E(F) with 3Q = R0+R1+R2,
and then taking u with points Pi = Ri −Q:

Corollary 7.2.5. For T ∈ E[3]\{O} and for distinct R0, R1, R2 ∈ E\E[3] with R0 +R1 +
R2 6= O, the following holds:

dT (R0, R1, R2)

dO(R0, R1, R2)
=
−yT −m∆xT − b∆

2yT

where y −m∆x− b∆ represents the line with points R1 −R0, R2 −R1, R0 −R2.

7.2.2 Forward Difference from Trilinear Forms

Now we consider the vector space generated by dT as T varies over E[3]. We use corollary
7.2.5 as our starting point, in the following form:

dT
dO

=
−1

2
+m∆

−xT
2yT

+ b∆
−1

2yT
(7.2)

where dT , dO,m∆, b∆ are considered as functions of distinct R0, R1, R2 ∈ E\E[3] with
R0 +R1 +R2 6= O. We consider dT/dO for T = O, T0, T1:

dO
dO

=1

dT0
dO

=
−1

2
+m∆

−xT0
2yT0

+ b∆
−1

2yT0
dT1
dO

=
−1

2
+m∆

−xT1
2yT1

+ b∆
−1

2yT1

163

by solving for m∆, b∆, we obtain trilinear forms e0, e1 with 3e0/dO = m∆ and e1/dO = b∆.
Then each determinant form dT for T ∈ E\{O} is simply expressed as follows:

dT =
−1

2
dO +

−3xT
2yT

e0 +
−1

2yT
e1

see section B.5 for a more detailed argument. Note that the factor 3 is for consistency with
definition 6.3.4.

Definition 7.2.6. The trilinear forms e0, e1 are defined via the following:

 dO
e0

e1

 =

 1 0 0
−1
2

−3xT0
2yT0

−1
2yT0

−1
2

−3xT1
2yT1

−1
2yT1


−1  dO

dT0
dT1


For points P0, P1, P2 in the plane with Pi = (xi, yi), the following gives formulas for
ei(P0, P1, P2):

e0 =b+
a

3
(x0 + x1 + x2) + x0x1x2 −

1

3
(y0y1 + y0y2 + y1y2)

e1 =−a2 + 3b (x0 + x1 + x2) + a(x0x1 + x0x2 + x1x2) + x0y1y2 + x1y0y2 + x2y0y1

and we define ei(P) := ei(P, P, P), so for P = (x, y):

e0(x, y) =b+ ax+ x3 − y2

e1(x, y) =− a2 + 9bx+ 3ax2 + 3xy2

We can now prove theorem 3.4.2, using the technique of local expansions from the proof
of theorem 7.2.4:

Theorem 7.2.7. For a line u ∈ L.3(E) with distinct non-zero points, the forward difference
line ∆u has the following coefficients:

m∆u =
9bmu − 6abu + am3

u + 3mub
2
u

(xP1 − xP0)(xP2 − xP1)(xP0 − xP2)

b∆u =
−2a2mu − 9bbu + 2bm3

u − am2
ubu + b3

u

(xP1 − xP0)(xP2 − xP1)(xP0 − xP2)

Proof. As a function ofQ, the expression ei(P0+Q,P1+Q,P2+Q)/dO(P0+Q,P1+Q,P2+Q)
is constant and takes the value m∆u for i = 0 and b∆u for i = 1. To determine the value,
we expand the numerators and denominators locally around Q = O. The denominator

164

dO(P0 +Q,P1 +Q,P2 +Q) expands as 3δ(u)w+O(w2), as we saw in the proof of theorem
7.2.4. Then we calculate the coefficient of w1 in the numerators:

w−1e0(P0 +Q,P1 +Q,P2 +Q)
∣∣
Q=O =

∑
cyclic

((a
3

+ x0x1

)
(−2y2)− 1

3
(y0 + y1)(−a− 3x2

2)

)
=9bmu − 6abu + am3

u + 3mub
2
u

and similarly

1
3
w−1e1(P0 +Q,P1 +Q,P2 +Q)

∣∣
Q=O =− 2a2mu − 9bbu + 2bm3

u − am2
ubu + b3

u

These trilinear forms e0, e1 have the advantage of having coefficients that do not depend
on a choice of three torsion point. They have these properties inherited from the dT :

Theorem 7.2.8. For i ∈ {0, 1} and points R0, R1, R2 in the plane,

ei(R0 + T,R1 + T,R2 + T) =

(
2∏
i=0

−2yT
`−T (Pi)

)
ei(R0, R1, R2)

Furthermore, e0 and e1 are symmetric functions of their arguments.

Proof. These follow from theorem 7.2.2 and theorem B.5.2. The symmetry is clear from
the definition.

7.2.3 Point Addition and Trilinear Forms

Here we use the trilinear forms dO, e0, e1 to present a different point of view on elliptic
curve point addition. This has similarities to the approach we take to line addition.

Recall that for T ∈ E[3], and for P0, P1, P2 ∈ E, we have dT (P0, P1, P2) = 0 when
P0 + P1 + P2 = O. Then since e0, e1 are linear combinations of the dT , this property also
holds for those forms. Hence we can solve the following system of equations to derive
a formula for P2 = −P0 − P1 given points P0, P1 (with some special cases that are not
covered):

d0(P0, P1, P2) = e0(P0, P1, P2) = e1(P0, P1, P2) = 0

So if Pi = (xi, yi) for i = 0, 1, we solve for P2 = −P0−P1 = (x2, y2) in the following system:

0 =(x0y1 − x1y0) + (y0 − y1)x2 − (x0 − x1)y2

0 =
(
b+

a

3
(x0 + x1)− y0y1

)
+
(a

3
+ x0x1

)
x2 −

1

3
(y0 + y1)y2

0 =(−a2 + 3b(x0 + x1) + ax0x1) + (3b+ a(x0 + x1) + y0y1)x2 + (x0y1 + x1y0)y2

165

We note that there are identical addition formulas on other elliptic curves as well. For
example, consider the curve E1 defined by e1(P) = −a2 + 9bx+ 3ax2 + 3xy2 = 0 and with
base point (0 : 1 : 0); note that the line x = 0 has a triple intersection at the base point. It
follows that the T -shift of that line has a triple intersection at T ; hence the three torsion
points are the same for E1 and E. Furthermore, the T -shifting formulas are also the same.

7.3 Trilinear Forms on Lines

There are also dual cubic forms, which have simple transformation properties. These will
be useful to us later when discussing line addition relations.

Then we can similarly define trilinear maps:

Definition 7.3.1. For T ∈ E[3] and vectors v0, v1, v2, we define:

d̂T (v0, v1, v2) := det
(
v0,M

ᵀ
−Tv1,M

ᵀ
Tv2

)
and for lines `0, `1, `2 ∈ L•3(E):

dT (`0, `1, `2) := det
(
[`0],Mᵀ

−T [`1],Mᵀ
T [`2]

)
Similarly to the trilinear forms on points, we also have a more convenient basis:

Definition 7.3.2. We define the following two trilinear forms:

f0 =
ωmT1(mT0 −mT2)

2

6
√
−3

(d̂T0 − d̂−T0)−
ω2mT0(mT1 −mT2)

2

6
√
−3

(d̂T1 − d̂−T1)

f1 =
ωbT1(mT0 −mT2)

2

6
√
−3

(d̂T0 − d̂−T0)−
ω2bT0(mT1 −mT2)

2

6
√
−3

(d̂T1 − d̂−T1)

For vectors

v0 =

 α0

ζ0

β0

 , v1 =

 α1

ζ1

β1

 , v2 =

 α2

ζ2

β2

 ,
we have:

f0(v0, v1, v2) :=3b(α0ζ1ζ2 + α1ζ0ζ2 + α2ζ0ζ1)− 2a(ζ0ζ1β2 + ζ0ζ2β1 + ζ1ζ2β0)

+ aα0α1α2 + α0β1β2 + α1β0β2 + α2β0β1

f1(v0, v1, v2) :=− 2

3
a2(α0ζ1ζ2 + α1ζ0ζ2 + α2ζ0ζ1)− 3b(ζ0ζ1β2 + ζ0ζ2β1 + ζ1ζ2β0)

+ 2bα0α1α2 −
1

3
a(α0α1β2 + α0α2β1 + α1α2β0) + β0β1β2

166

7.3.1 Trilinear Form Relations

We recall some important context: we would like to find relations between `0, `1, `2, to
be used in the line addition step of our line multiplication operation chain. In particular,
we will generally not assume a priori knowledge of `′0, `

′
1, `
′
2. As a first step to rectifying

this, we would like to develop formulas for ∂(`0, `1, `2) which do not involve knowledge of
`′0, `

′
1, `
′
2. Instead, we assume knowledge of `0, `1, `2, as well as the forward difference lines

` , ` ; in contrast to `′i, the forward difference lines can be easily included in an operation
chain, making a natural appearance in cyclic line addition.

Recall from chapter 6, that one approach was to use lemma 6.4.4. By comparing
multiple nine point diagrams, we could get suitable cancellation that allowed us to perform
a cyclic line addition. In this chapter, we will improve upon this. This is accomplished by
developing new relations between `0, `1, `2, ` , ` . These are best expressed in terms of the
trilinear forms on lines. In fact, they are reminiscent of the cubic form addition formulas
from section 7.2.3.

These new relations come from a striking use of the formulas from chapter 6. By
applying T -shifts to the arguments in judicious ways, we reveal extra symmetries. These
lead to a bootstrapping process from lemma 6.4.4 to show that the trilinear form dO can
be replaced by any of the trilinear forms from section 7.2:

Theorem 7.3.3. Using the notation from section 7.2, we have the following formulas for
∂(`0, `1, `2):

∂(`0, `1, `2) =− dO(`0, `1, `2)

dO(`O, ` , `)

=− f0(`0, `1, `2)

f0(`O, ` , `)

=− f1(`0, `1, `2)

f1(`O, ` , `)

or explicitly:

∂(`0, `1, `2) =
α0(β1 − β2) + α1(β2 − β0) + α2(β0 − β1)

α − α
=

3b(α0 + α1 + α2)− 2a(β0 + β1 + β2) + aα0α1α2 + α2β0β1 + α1β0β2 + α0β1β2

α β + β α − 2a

=
2a2(α0+α1+α2) + 9b(β0+β1+β2)− 6bα0α1α2 + a(α1α2β0+α0α2β1+α0α1β2)− 3β0β1β2

9b+ aα α + 3β β

The proof follows a similar outline to that of the forward difference formulas from
section 7.2. Namely, we first bootstrap from dO to dT for T ∈ E[3]\{O}, and then we take

167

linear combinations of numerators and denominators. The bootstrapping process is quite
pretty in fact; it is simply a matter of combining the formulas for ∂ over various naturally
arising nine point diagrams. The only finicky bit is to keep track of various factors that
pop up. But the payoff is then all the more; the various factors all cancel out, leaving the
elegant formulas from theorem 7.3.3.

7.3.2 Proof of Theorem 7.3.3

To prove theorem 7.3.3, we start by proving that dO can be substituted with dT for T ∈
E[3]\{O}. To achieve this, we start with theorem 6.5.1, which says that for this nine point
diagram:

N :
`′0

`′1

`′2

`0

P00

P01

P02

`1

P10

P11

P12

`2

P20

P21

P22

we have:

e0(−`0; `1) = ∂(`0, `1, `2)∂(`0,−`1,−`)∂(`0,−`1, `)

Now notice that if we add T to `0 and subtract it from `1, then the factor ∂(`0,−`1,−`)
transforms predictably, since each argument is shifted by T . Similarly, we have a simple
transformation rule for ∂(`0,−`1, `) and e0(`0;−`1). Thus to deduce the transformation
rule for ∂(`0, `1, `2), we simply need to keep track of precise transformation rules for the
other factors.

The first step is to establish the transformation formula for ∂ under T -shifts:

Lemma 7.3.4. (i) The orientation ∂(N) of a nine point diagram N = N(`0, `1, `2)
transforms as follows under T -shifting:

∂(`�T0 , `�T1 , `�T2) =
(2yT)3

N (−T)
∂(`0, `1, `2)

168

(ii) The expression e0(`0; `1) = (α0−α1)3e0(`0∩`1) transforms as follows under T -shifting:

e0

(
`�T0 ; `�T1

)
=

(
2yT

`0(−T)

)3(
2yT

`1(−T)

)3

e0 (`0; `1)

Proof. (i) Recall theorem B.3.1:

[`�T] =
−2yT

yT +m`xT + b`
Mᵀ
−T [`] =

2yT
`(−T)

Mᵀ
−T [`]

now we calculate the following (see section B.3):

∂(`�T0 , `�T1 , `�T2) =
dO
(
`�T0 , `�T1 , `�T2

)
dO (`O, ` , `)

=
(2yT)3 det(Mᵀ

−T [`0],Mᵀ
−T [`1],Mᵀ

−T [`2])

`0(−T)`1(−T)`2(−T)dO (`O, ` , `)

=
(2yT)3 det([`0], [`1], [`2])

N (−T)dO (`O, ` , `)
=

(2yT)3dO(`0, `1, `2)

N (−T)dO (`O, ` , `)

=
(2yT)3

N (−T)
∂(`0, `1, `2).

(ii) By a direct calculation,

α
(
`�T0

)
− α

(
`�T1

)
=− 2yT

(α0β1 − α1β0)−mT (β0 − β1) + (α0 − α1)bT
(yT + α0xT + β0)(yT + α1 + β1)

=
−2yT `−T (`0 ∩ `1)

`0(−T)`1(−T)
(α0 − α1)

and then we have a straightforward computation, where we use theorem 7.2.8:

e0

(
`�T0 ; `�T1

)
e0 (`0; `1)

=

(
α
(
`�T0

)
− α

(
`�T1

)
α0 − α1

)3
e0

(
`�T0 ∩ `�T1

)
e0 (`0 ∩ `1)

=

(−2yT `−T (`0 ∩ `1)

`0(−T)`1(−T)

)3
e0 ((`0 ∩ `1) + T)

e0 (`0 ∩ `1)

=

(−2yT `−T (`0 ∩ `1)

`0(−T)`1(−T)

)3(−2yT
`−T (`0 ∩ `1)

)3

=

(
2yT

`0(−T)

)3(
2yT

`1(−T)

)3

In theorem 7.3.3, dO can be substituted for any T -determinantal form, for T ∈ E[3]:

169

Lemma 7.3.5. For any T ∈ E[3],

∂(`0, `1, `2) =− dT (`0, `1, `2)

dT (`O, ` , `)

Proof. Consider the nine point diagrams N = N(`0, `1, `2) and N ′ = N(`�T0 , `�T1 , `2).
Recall from lemma 5.6.4 that l = ω2l0 − ωl1 and l = ω2l1 − ωl0, so

l (N ′) =ω2(`0 + `T)− ω(`1 − `T) =
(
ω2`0 − ω`1

)
− `T = `�T

l (N ′) =ω2(`1 − `T)− ω(`0 + `T) = `�T

where ` = l (N) and ` = l (N). Now we use theorem 6.5.1 to both N and N ′ to obtain:

e0

(
(�`0)�T ; `�T1

)
e0 (�`0; `1)

=
∂
(
`�T0 , `�T1 , `2

)
∂ (`0, `1, `2)

· ∂
(
`�T0 , (�`1)�T , (�`)�T

)
∂ (`0,�`1,�`)

· ∂
(
`�T0 , (�`1)�T , `�T

)
∂ (`0,�`1, `)

Next we isolate the first factor on the right hand side; the resulting expression is then
simplified using lemma 7.3.4 and the identity �`(P) = −`(−P):

∂
(
`�T0 , `�T1 , `2

)
∂ (`0, `1, `2)

=
e0

(
(�`0)�T ; `�T1

)
e0 (�`0; `1)

· ∂ (`0,�`1,�`)

∂ (`�T0 , (�`1)�T , (�`)�T)
· ∂ (`0,�`1, `)

∂ (`�T0 , (�`1)�T , `�T)

=

(−2yT
�`0(T)

)3(−2yT
`1(T)

)3

· `0(−T)(�`1)(−T)(�`)(−T)

(2yT)3
· `0(−T)(�`1)(−T)` (−T)

(2yT)3

=

(−2yT
−`0(−T)

)3(−2yT
`1(T)

)3

· `0(−T)(−`1(T))(−` (T))

(2yT)3
· `0(−T)(−`1(T))` (−T)

(2yT)3

=
` (T)` (−T)

`0(−T)`1(T)

Now we use the determinantal formula from theorem 6.4.4, in the form of equation (6.15):

∂ (`0, `1, `2) =
`0(−T)`1(T)

` (T)` (−T)
· ∂
(
`�T0 , `�T1 , `2

)
=
`0(−T)`1(T)

` (T)` (−T)
· dO

(
`�T0 , `�T1 , `2

)
dO (`O, `�T , `�T)

=
det
(
`0(−T)

2yT
[`�T0], `1(T)

−2yT
[`�T1], [`2]

)
det
(

[`O],
` (T)

−2yT
[`�T],

` (−T)

2yT
[`�T]

)
=

det
(
Mᵀ
−T [`0],Mᵀ

T [`1], [`2]
)

det
(
[`O],Mᵀ

T [`],Mᵀ
−T [`]

)
=

dT (`0, `1, `2)

d−T (`O, ` , `)
= − dT (`0, `1, `2)

dT (`O, ` , `)

170

Now it is a simple matter to prove theorem 7.3.3:

Proof. By lemma 7.3.5, we have that

∂(`0, `1, `2)dT (`O, ` , `) + dT (`0, `1, `2) = 0

Since this is linear in the dT , we can take linear combinations among those to obtain

∂(`0, `1, `2)fi(`O, ` , `) + fi(`0, `1, `2) = 0

for i ∈ {0, 1}, recalling definition 7.3.2.

171

Chapter 8

Conclusion and Future Work

We conclude with a discussion of past, present and future research. Our progress in this
project has gone in cycles, where geometric intuition leads to algebraic results, and then
algebraic experimentation leads to new geometric insights. For example, the notion of
a nine point diagram arose from a need to explain certain algebraic phenomena in line
addition. Then by studying the geometry of diagrams, we were able to better contextualize
the trilinear forms that we had found, in terms of three torsion.

We mention some potential future applications, mostly in various areas related to ellip-
tic curve scalar multiplication. Although we have not made significant progress, we hope
to find uses for our operation that lead to new cryptographic capabilities. For example, we
have considered trapdoor systems on elliptic curves in composite modulus. We even toyed
with the idea of using this operation with binary pairings in composite modulus.

8.1 Geometric Interpretations

In this section, we outline some geometric observations that we are studying. First we
mention the family of curves mentioned in section 7.2.3, given by the following equation
for a paramater k:

−a2 + 9bx+ 3ax2 + 3xy2 − k(b+ ax+ x3 − y2) = 0

Note that the above is a cubic form from chapter 7. These curves all share the same three
torsion, as well as the action of the three torsion. There are some interesting connections
between various curves in this family. For example, we can partially explain the formula
(A.2) in geometric terms. But despite much effort, these geometric explanations are most
naturally expressed in terms of another curve in the family, where the line addition is
“degenerate” in a sense.

172

There is also a dual family of elliptic curves, defined in terms of the dual cubic forms.
We can use these to give a better geometric interpretation for theorem 7.3.3, which also
better explains the transformation of a nine point diagram under `0, `1, `2 7→ `�T0 , `�T1 , `2.
Unfortunately, it involves many concepts not included in the current version of this thesis,
and we are currently working on a clean presentation. In a nutshell, we consider a new
type of cyclic line diagram `, where we consider the points pi to be in the group E, but
where the identity element iT is different for each i. By cyclically shifting the line, we get
3 different unlabeled lines; but these lines can all be considered as part of the same “dual”
elliptic curve, and together can be encoded via a 3-isogeny. This is the context that most
cleanly explains the aforementioned E[3]-transformations.

8.2 Elliptic Curve Scalar Multiplication

The most natural application is for point multiplication on an elliptic curve. A direct
approach would be to start with P ∈ E, then select lines u, v ∈ L3(E) which both have
P as a point. Then we would get k � u ∩ k � v = kP (with a few unlikely exceptions.)
Of course, this operation is significantly slower than the standard point multiplication
operation, since it requires two line multiplications, and each of those is more expensive
than simply multiplying P by k.

To take a page out of the x-only operation, we could also obtain kP with a single line
multiplication. This trick is analogous to formula 13.7 in [3]. Suppose that u has points
P,Q,−P − Q. Then we can use our recursive line multiplication algorithms to compute
k � u and (k − 1) � u, and then the following subroutine allow us to recover kP :

1. From the coordinates of (k− 1) � u and P , we compute a function f which vanishes
at R + P for each R ∈ (k − 1) � u.

2. Simultaneously solve the three equations

f(x, y) =0

y =mk�ux+ bk�u

y2 =b+ ax+ x3

The solution is then the coordinates of kP . We note that the recovery of kP from k · u
and (k − 1) · u takes a fixed number of field arithmetic operations; this subroutine could
also be encoded as a single explicit formula.

Now we make an important observation; once the above algorithm to compute kP is
completed, we can repeat the final subroutine with k � u, (k − 1) � u and Q to compute
kQ, at little extra cost. Hence we can compute kP and kQ from P and Q using only one

173

recursion. We hope to improve this operation to a point where it is competitive with other
point multiplication algorithms for certain applications.

8.2.1 Point Multiplication in Algebraic Extension

Another setting which we consider is point multiplication in an algebraic extension. This
is analogous to the algorithm that we proposed to modify Cipolla’s square root finding
algorithm in section 4.5. There we performed an exponentiation in an extension field using
line multiplication.

As a first example, we use line multiplication to perform a point multiplication in a
quadratic extension. Suppose that P ∈ E(Fq2)\E(Fq) for an elliptic curve E over Fq. Then
computing kP normally involves working with Fq2 arithmetic, which is expensive. The line
multiplication operation could be used in its place as follows:

1. Let P = (x(P)q, y(P)q) denote the conjugate point.

2. Let ` ∈ L3(E) be the line with points P, P ,−P − P .

3. Compute (k − 1) � `, k � `

4. Solve for R = kP such that R ∈ k � ` and R− P ∈ (k − 1) � `.

This only involves base field arithmetic. Of course this improvement needs to be weighed
against the extra cost of the line multiplication operation.

Another example works in a cubic extension. Suppose that P ∈ E(Fq3)\E(Fq) for
an elliptic curve E over Fq. Suppose that the three conjugates of P are P0, P1, P2 over
Fq. These three points typically will not sum to O, but a little trick will help us. We
construct the line ` with points (3Pi−P0−P1−P2) for i = 0, 1, 2. Then again we compute
bk/3− 1c� `, bk/3c� `. Then we similarly use a recovery algorithm to compute 3bk/3cP ,
and at most one more doubling and/or addition is require to compute kP .

174

References

[1] Daniel J. Bernstein and Tanja Lange. Analysis and optimization of elliptic-curve single-
scalar multiplication. Cryptology ePrint Archive, Report 2007/455, 2007. http://

eprint.iacr.org/2007/455.

[2] Daniel R. L. Brown. Alternative cubics’ rules with an algebraic appeal. IACR Cryp-
tology ePrint Archive, 2015:544, 2015.

[3] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim
Nguyen, and Frederik Vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography, Second Edition. Chapman & Hall/CRC, 2nd edition, 2012.

[4] N. Demytko. A new elliptic curve based analogue of RSA. In Tor Helleseth, editor, Ad-
vances in Cryptology EUROCRYPT, volume 765 of Lecture Notes in Computer Science,
pages 40–49. Springer Berlin Heidelberg, 1994.

[5] Thomas Little Heath and Leonhard Euler. Diophantus of Alexandria : A study in the
history of Greek algebra / Sir Thomas L. Heath. C.V. Clay London, 1885.

[6] H. W. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987.

[7] Peter L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factoriza-
tion. Mathematics of Computation, 48(177):243–264, 1987.

[8] J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 2009.

175

http://eprint.iacr.org/2007/455
http://eprint.iacr.org/2007/455

Appendices

176

Appendix A

Table of Formulas

A.1 Explicit Line Sum

Here we derive an explicit formula for `2 in terms of `0, `1:

N :
`′0

`′1

`′2

`0

P00

P01

P02

`1

P10

P11

P12

`2

P20

P21

P22

The following theorem uses the notation and results of section 6.3.2:

Theorem A.1.1. The following gives an expression for the slope of `2 in terms of `0, `1:

α2 − α0

=
(x10 − x01)(x10 − x02)`0(−P11)`0(−P12)− (x11 − x02)(x12 − x01)`0(−P10)`1(−P00)

e0(−`0; `1)

Proof. By substituting y00 = α0x00 + β0, we get the following expression:

α′0 − α0 =
y10 − y00

x10 − x00

− α0 =
y10 − α0x10 − β0

x10 − x00

=
`0(P10)

x10 − x00

177

We use lemma 6.3.7 to partially rationalize this, and afterwards we apply the symmetry ς:

α′0 − α0 =
`0(P10)

x10 − x00

=
(x10 − x01)(x10 − x02)

−`0(−P10)

α′0 − α1 =
(x00 − x11)(x00 − x12)

−`1(−P00)
=

(x11 − x00)(x12 − x00)

−`1(−P00)

Then we remark that the factors on the left appear in theorem 6.3.3, and those on the
right appear in theorem 6.3.6:

∂(`0, `1, `2) =(α′0 − α0)(α′0 − α1)(α′0 − α2)

=
(x10 − x01)(x10 − x02)(x11 − x00)(x11 − x02)(x12 − x00)(x12 − x01)

e0(−`0; `1)

and thus we isolate the following expression for α′0 − α2 in terms of `0, `1:

α′0 − α2 =
(x11 − x02)(x12 − x01)`0(−P10)`1(−P00)

e0(−`0; `1)

Then we use lemma 6.3.7 again to fully rationalize α′0 − α0:

α′0 − α0 =
(x10 − x01)(x10 − x02)

−`0(−P10)
=

(x10 − x01)(x10 − x02)`0(−P11)`0(−P12)

e0(−`0; `1)

Finally we get the desired result by taking the difference (α′0 − α0)− (α′0 − α2).

By taking `0 = −u, `1 = −v, this can be used to derive a formula for `2 = u+ v. This
is useful for verifying polynomial equations on a computer algebra system. Explicitly:

−u

−P0

−P1

−P2

−v

−Q0

−Q1

−Q2

u+ v

P0 +Q0

P1 +Q1

P2 +Q2

and we apply our lemma to obtain the following formula for mu+v:

Theorem A.1.2.

mu+v +mu

=
(xQ0 − xP1)(xQ0 − xP2)u(−Q1)u(−Q2)− (xQ1 − xP2)(xQ2 − xP1)u(−Q0)v(−P0)

e0(u;−v)

178

A.2 Doubling Formula

Lemma A.2.1. The following gives the line doubling formula (see theorem 3.8.3):

m2�` =
a2m2

` + 9bm`b` − 3ab2
` +m`(bm

3
` − am2

`b` − b3
`)

2(bm3
` − am2

`b` − b3
`)

(A.1)

b2�` =
4a3+27b2+6abm2

`−8a2m`b`−18bb2`−a2m4
`−8bm3

`b`+2am2
`b

2
`−b4`

8(bm3
`−am2

`b`−b3`)

A.3 Nine Point Diagram

Now we collect formulas related to the following nine point diagram:

N :
`′0

`′1

`′2

`0

P00

P01

P02

`1

P10

P11

P12

`2

P20

P21

P22

• If O 6∈ Pij, then:

N (x, y) = −N9 −N7x+N6y −N5x
2 +N4xy −N3y

2 +N2x
2y −N1xy

2 + y3

Where Ni represents the following:

N9 =β0β1β2 − b · α0α1α2

N7 =α0β1β2 + α1β0β2 + α2β0β1 − a · α0α1α2

N5 =α0α1β2 + α0α2β1 + α1α2β0

N4 =α0(β1 + β2) + α1(β0 + β2) + α2(β0 + β1)

N3 =α0α1α2 + β0 + β1 + β2

N2 =α0α1 + α1α2 + α2

N1 =α0 + α1 + α2

179

• The lines of N satisfy the following, where ∂(N) is the diagram orientation (see
section 6.3):

α0 + α1 + α2 = α′1 + α′0 + α′2
α0α1 + α0α2 + α1α2 = α′1α

′
0 + α′1α

′
2 + α′0α

′
2

α0α1α2 + β0 + β1 + β2 = α′1α
′
0α
′
2 + β′1 + β′0 + β′2

α0(β1 + β2) + α1(β0 + β2) + α2(β0 + β1)

= α′1(β′0 + β′2) + α′2(β′1 + β′2) + α′2(β′1 + β′0)

α0α1β2 + α0α2β1 + α1α2β0 = α′1α
′
0β
′
2 + α′1α

′
2β
′
0 + α′0α

′
2β
′
1

β0β1 + β0β2 + β1β2 = β′1β
′
0 + β′1β

′
2 + β′0β

′
2

a · α0α1α2 − (α0β1β2 + α1β0β2 + α2β0β1)

= a · α′1α′0α′2 − (α′1β
′
0β
′
2 + α′0β

′
1β
′
2 + α′2β

′
1β
′
0)

b · α0α1α2 − β0β1β2 = b · α′1α′0α′2 − β′1β′0β′2
∂(N) =β0 + β1 + β2 − β′0 − β′1 − β′2
∂(N) =α′0α

′
1α
′
2 − α0α1α2

b ∂(N) =β′0β
′
1β
′
2 − β0β1β2

a ∂(N) =α′0β
′
0β
′
1 + α′1β

′
0β
′
2 + α′2β

′
0β
′
1 − α0β0β1 − α1β0β2 − α2β0β1

• The diagram orientation has the following expressions:

∂(N) = (α′0 − α0) (α′0 − α1) (α′0 − α2)

= (α′1 − α0) (α′1 − α1) (α′1 − α2)

= (α′2 − α0) (α′2 − α1) (α′2 − α2)

= (α′0 − α0) (α′1 − α0) (α′2 − α0)

= (α′0 − α1) (α′1 − α1) (α′2 − α1)

= (α′0 − α2) (α′1 − α2) (α′2 − α2)

•

∂(N) =
(a−N4)N1N2 − 9N7 + 3N3N4 − 3N1N6 + 2N2N5 + 2N 2

2N3

9a+ 3N4 +N 2
2

− 2α0α1α2

(A.2)

Lemma A.3.1.

l =ωl2 − l1 = l0 − ω2l2 = ω2l1 − ωl0
l =l1 − ω2l2 = ωl2 − l0 = ω2l0 − ωl1
l =ρl1 − ρωl2 = ρω2l2 − ρl0 = ρωl0 − ρω2l1

l =ρl1 − ρωl2 = ρω2l2 − ρl0 = ρωl0 − ρω2l1

180

A.4 Nine Point Diagram Toolbox

For labeled lines u, v ∈ L◦3(E):

• From equation 6.18 (and generalized in chapter 7):

∂(−u,−v, u+ v) =
dO(−u,−v, u+ v)

dO(`O, v − ωu, u− ωv)

∂(−u,−v, u+ v) =
f0(−u,−v, u+ v)

f0(`O, v − ωu, u− ωv)

∂(−u,−v, u+ v) =
f1(−u,−v, u+ v)

f1(`O, v − ωu, u− ωv)

∂(−u, v, u− v) =
dO(−u, v, u− v)

dO(`O,−(u+ ω2v), u+ ωv)

∂(−u, v, u− v) =
f0(−u, v, u− v)

f0(`O,−(u+ ω2v), u+ ωv)

∂(−u, v, u− v) =
f1(−u, v, u− v)

f1(`O,−(u+ ω2v), u+ ωv)

• From equation 6.16

∂(u+ ωv, u+ ω2v, u+ v) =
dO(u+ ωv, u+ ω2v, u+ v)

m∆u −m∆v

∂(u+ ωv, u+ ω2v, u+ v) =
f0(u+ ωv, u+ ω2v, u+ v)

f0(`O,∆u,∆v)

∂(u+ ωv, u+ ω2v, u+ v) =
f1(u+ ωv, u+ ω2v, u+ v)

f0(`O,∆u,∆v)

• From equation 6.19

∂(u+ ωv, u+ ω2v, u+ v) =
−δu · δv
e0(u;−v)

• From theorem 6.5.1

e0(u; v)

e0(u;−v)
=
∂(−u,−v, u+ v)

∂(−u, v, u− v)

e0(u; v) =∂(−u,−v, u+ ωv)∂(−u,−v, u+ ω2v)∂(−u, v, u− v)

e0(u;−v) =∂(−u, v, u− ωv)∂(−u, v, u− ω2v)∂(−u,−v, u+ v)

181

A.5 Line Sum Function

Here we give explicit formulas for the line sum function. This includes the coefficients that
were omitted from theorem 3.7.3, as well as special cases.

Suppose that u, v ∈ L3(E) have respective points P0, P1, P2 and Q0, Q1, Q2, with
u(x, y) = y −mux − bu and v(x, y) = y −mvx − bv. Then we have the following equality
as functions of R ∈ E, for some non-zero normalization constant c:

(u� v)(x, y) =c−1 (−γ∗9 − γ∗7x+ γ∗6y − γ∗5x2 + γ∗4xy − γ∗3y2 + γ∗2x
2y − γ∗1xy2 + γ∗0y

3) (A.3)

where

γ∗0 =b(mu +mv)
3 − a(mu +mv)

2(bu + bv)− (bu + bv)
3 − (mu +mv)(mubv − bumv)

2

γ∗1 =(a2 − 3bmumv + 2a(mubv +mvbu))(mu +mv)
2 − 3(a+mubv +mvbu)(bu + bv)

2

+ (9b− amumv + 9bubv)(mu +mv)(bu + bv)−mumv(bvmu − bumv)
2

γ∗2 =− a2(mu +mv)
3 − 9b(mu +mv)

2(bu + bv) + 3a(mu +mv)(bu + bv)
2

− 3(bu + bv)(mubv − bumv)
2

γ∗3 =4a3 + 4a2bvmu + 4a2bumv − 8a2bumu − 8a2bvmv + a2mum
3
v + a2m2

um
2
v

+ a2m3
umv − 2abum

2
um

3
v + 3ab2

vm
2
u − 7abubvm

2
u − 2abvm

3
um

2
v + 3ab2

um
2
v

− 7abubvm
2
v + ab2

umumv + ab2
vmumv − 6abmumv + 12abubvmumv + 6abm2

u

+ 6abm2
v + 27b2 − b3

vm
3
u + 9bbvm

3
u − b3

um
3
v + 4bm3

um
3
v + 9bbum

3
v − 6bbumum

2
v

− b2
ubvmum

2
v + 3bbvmum

2
v − bub2

vm
2
umv + 3bbum

2
umv − 6bbvm

2
umv − 3bub

3
v

+ 21b2
ub

2
v − 3b3

ubv + 18bbubv − 18bb2
u − 18bb2

v

γ∗4 =− 4a3mu − 4a3mv + 4a2bum
2
u + 4a2bvm

2
v + a2m3

um
2
v + a2m2

um
3
v − 3abm3

u

− 3abm2
umv − 3abmum

2
v − 3abm3

v + 12ab2
ubv − 3ab2

umum
2
v + 3ab2

um
3
v + 12abub

2
v

− 6abubvm
2
umv − 6abubvmum

2
v + 3ab2

vm
3
u − 3ab2

vm
2
umv − 27b2mu − 27b2mv

+ 9bb2
umu − 9bb2

umv − 18bbubvmu − 18bbubvmv + 12bbum
2
um

2
v − 9bb2

vmu

+ 9bb2
vmv + 12bbvm

2
um

2
v − 6b3

ubvmv + 3b2
ub

2
vmu + 3b2

ub
2
vmv − 6bub

3
vmu

182

γ∗5 =9a2b2
u − 18a2bubv + 9a2b2

v − 27abbumu + 27abbvmu + 3ab2
ubvmu − 15abub

2
vmu

+ a3m2
u + 27b2m2

u − 9bbubvm
2
u + 9bb2

vm
2
u − 3bub

3
vm

2
u − a2bvm

3
u + 27abbumv

− 27abbvmv − 15ab2
ubvmv + 3abub

2
vmv + 2a3mumv − 27b2mumv + 9bb2

umumv

+ 36bbubvmumv + 9bb2
vmumv − 3b2

ub
2
vmumv + 4a2bum

2
umv − 3a2bvm

2
umv

− 3abm3
umv − ab2

vm
3
umv + a3m2

v + 27b2m2
v + 9bb2

um
2
v − 9bbubvm

2
v

− 3b3
ubvm

2
v − 3a2bumum

2
v + 4a2bvmum

2
v + 12abm2

um
2
v − 4abubvm

2
um

2
v

− a2bum
3
v − 3abmum

3
v − ab2

umum
3
v − a2m3

um
3
v

γ∗6 =− 4a3bu − 27b2bu − 4a3bv − 27b2bv + 18bb2
ubv + 18bbub

2
v − 3b3

ub
2
v − 3b2

ub
3
v

− a2b2
umu + 6a2bubvmu + 3a2b2

vmu + 3abbum
2
u − 3abbvm

2
u − 6abub

2
vm

2
u − a3m3

u

− 9b2m3
u + 9bb2

vm
3
u + 3a2b2

umv + 6a2bubvmv − a2b2
vmv − 6abbumumv − 6abbvmumv

+ a3m2
umv + 9b2m2

umv + 6bbubvm
2
umv − 3bb2

vm
2
umv + 2a2bvm

3
umv − 3abbum

2
v

+ 3abbvm
2
v − 6ab2

ubvm
2
v + a3mum

2
v + 9b2mum

2
v − 3bb2

umum
2
v + 6bbubvmum

2
v

− a2bum
2
um

2
v − a2bvm

2
um

2
v − a3m3

v − 9b2m3
v + 9bb2

um
3
v + 2a2bumum

3
v

γ∗7 =27ab(bu − bv)2 − 12ab2
ub

2
v + (8a3 − 27b2)bumu − 4a3bvmu + 54b2bvmu + 9bb2

ubvmu

− 9bbub
2
vmu − 3b2

ub
3
vmu − 9a2bm2

u + 4a2bubvm
2
u − 3abbvm

3
u + ab3

vm
3
u − 4a3bumv

+ 54b2bumv + 8a3bvmv − 27b2bvmv − 9bb2
ubvmv + 9bbub

2
vmv − 3b3

ub
2
vmv

+ 18a2bmumv − 4a2b2
umumv − 4a2b2

vmumv + 12abbum
2
umv − 21abbvm

2
umv

+ abub
2
vm

2
umv − 9b2m3

umv − 3bb2
vm

3
umv − 9a2bm2

v + 4a2bubvm
2
v − 21abbumum

2
v

+ 12abbvmum
2
v + ab2

ubvmum
2
v − 4a3m2

um
2
v + 18b2m2

um
2
v − 6bbubvm

2
um

2
v

+ a2bvm
3
um

2
v − 3abbum

3
v + ab3

um
3
v − 9b2mum

3
v − 3bb2

umum
3
v + a2bum

2
um

3
v − 4abm3

um
3
v

γ∗9 =a3b2
u + 27b2b2

u + 2a3bubv − 27b2bubv + a3b2
v + 27b2b2

v − 18bb2
ub

2
v

− b3
ub

3
v + 9a2bbumu − 9a2bbvmu − a2b2

ubvmu − 3a2bub
2
vmu + a4m2

u + 3abbubvm
2
u

+ 3abb2
vm

2
u − a3bvm

3
u − 9b2bvm

3
u + bb3

vm
3
u − 9a2bbumv + 9a2bbvmv − 3a2b2

ubvmv

− a2bub
2
vmv − 2a4mumv − 3abb2

umumv + 12abbubvmumv − 3abb2
vmumv + 2ab2

ub
2
vmumv

+ 9b2bum
2
umv + a3bvm

2
umv − 18b2bvm

2
umv − 3bbub

2
vm

2
umv + a2bm3

umv + a4m2
v

+ 3abb2
um

2
v + 3abbubvm

2
v + a3bumum

2
v − 18b2bumum

2
v + 9b2bvmum

2
v

− 3bb2
ubvmum

2
v − 6a2bm2

um
2
v − a2bubvm

2
um

2
v + 2abbvm

3
um

2
v − a3bum

3
v

− 9b2bum
3
v + bb3

um
3
v + a2bmum

3
v + 2abbum

2
um

3
v − 4b2m3

um
3
v

In particular, if Pi + Qj 6= O for i, j ∈ {0, 1, 2}, then the leading coefficient γ∗0 is
non-zero, and we get theorem 3.7.3 where γi = γ∗i /γ

∗
0 for i > 0:

(u� v)(x, y) :=− γ9 − γ7x+ γ6y − γ5x
2 + γ4xy − γ3y

2 + γ2x
2y − γ1xy

2 + y3

183

A.6 Special Cases

Now we discuss the cases that were not covered in theorem 3.7.3. First we note that as long
as O is not a point of u or v, then equation (A.3) holds, where c is the leading non-zero
coefficient on the right hand side. The remaining special cases correspond to O being a
point of u or v.

First we dispense of the case where O appears more than once as a point of u or v. If O
is a point of a line more than once, then that line is the line at infinity `O, and u�`O = u3.
Otherwise, if O is a point of both u and v, then we have u(x, y) = x−xP , v(x, y) = x−xQ.
If P = ±Q, then

(u� v)(x, y) =(x− xP)2(x− x2P)

and otherwise:

(u� v)(x, y) =(x− xP)(x− xQ)(x− xP+Q)(x− xP−Q)

and we can expand these in terms of xP , xQ using the formulas from section 4.2.

Now suppose that u has points P,−P,O, so u(x, y) = x− xP , but O is not a point of
v, so v(x, y) = y −mvx− bv. Using lemma 3.7.1, we calculate:

(u� v)(x, y) =c−1 (−γχ9 − γχ7 x+ γχ6 y − γχ5 x2 + γχ4 xy − γχ3 y2 + γχ2 x
2y − γχ1 xy2 + γχ0 y

3)

where

γχ0 =b+ axP + x3
P − (bv +mvxP)2

γχ1 =2bv(a+ 3x2
P)− 3bmv −mv(bv +mvxP)2 − amvxP + 3mvx

3
P

γχ2 =− a2 + 9bxP + 3ax2
P + 3xP (bv +mvxP)2

γχ3 =9bbv − b3
v + a2mv − 2abvm

2
v + 4bm3

v + (7abv − 3bmv + b2
vmv + 2am3

v)xP

+mv(a− bvmv)x
2
P + (3bv +m3

v)x
3
P

γχ4 =a(−3b+ 3b2
v + am2

v)− 2(2a2 − 3abvmv + 6bm2
v)xP + 3(3b+ b2

v − am2
v)x

2
P + 6bvmvx

3
P

γχ5 =− a(abv + 3bmv + b2
vmv + am3

v) + (9bbv + 3b3
v − 4a2mv + 4abvm

2
v)xP

+ (3abv + 9bmv − 3b2
vmv − am3

v)x
2
P + 3bvm

2
vx

3
P

γχ6 =− a3 − 9b2 + 9bb2
v + 2a2bvmv + (−3ab+ 6ab2

v − 6bbvmv + a2m2
v)xP

+ (−a2 − 3bm2
v)x

2
P + 3b2

vx
3
P

γχ7 =3abbv + ab3
v − 9b2mv − 3bb2

vmv + a2bvm
2
v − 4abm3

v

+ (−4a2bv − 12abmv − ab2
vmv + 6bbvm

2
v − a2m3

v)xP

+ (9bbv − 3b3
v − 4a2mv + abvm

2
v − 3bm3

v)x
2
P +mv(3b

2
v − am2

v)x
3
P

γχ9 =− a3bv − 9b2bv + bb3
v + a2bmv + 2abbvm

2
v − 4b2m3

v

+ (−3abbv − 9b2mv + 3bb2
vmv + a2bvm

2
v − 2abm3

v)xP

+ (−a2bv − 3abmv + 2ab2
vmv − 3bbvm

2
v)x

2
P + (b3

v − bm3
v)x

3
P

184

Again, if Pi + Qj 6= O for i, j ∈ {0, 1, 2}, then we have the following with γi = γχi /γ
χ
0

for i > 0:

(u� v)(x, y) :=− γ9 − γ7x+ γ6y − γ5x
2 + γ4xy − γ3y

2 + γ2x
2y − γ1xy

2 + y3

Γ0x = Ib + a xu + xu
3

- Hbv + mv xuL2M;
Γ1x = Γ0x

-1 I2 bv Ia + 3 xu
2M - 3 b mv - mv Hbv + mv xuL2

- a mv xu + 3 mv xu
3M;

Γ2x = Γ0x
-1 I-a

2
+ 9 b xu + 3 a xu

2
+ 3 xu Hbv + mv xuL2M;

Γ3x = Γ0x
-1 I9 b bv - bv

3
+ a

2
mv - 2 a bv mv

2
+ 4 b mv

3

+ I7 a bv - 3 b mv + bv
2
mv + 2 a mv

3M xu + mv Ha - bv mvL xu
2

+ I3 bv + mv
3M xu

3M;
Γ4x = Γ0x

-1 Ia I-3 b + 3 bv
2

+ a mv
2M

- 2 I2 a2 - 3 a bv mv + 6 b mv
2M xu + 3 I3 b + bv

2
- a mv

2M xu
2

+ 6 bv mv xu
3M;

Γ5x = Γ0x
-1 I-a Ia bv + 3 b mv + bv

2
mv + a mv

3M + I9 b bv + 3 bv
3

- 4 a
2
mv + 4 a bv mv

2M xu

+ I3 a bv + 9 b mv - 3 bv
2
mv - a mv

3M xu
2

+ 3 bv mv
2
xu

3M;
Γ6x = Γ0x

-1 I-a
3

- 9 b
2

+ 9 b bv
2

+ 2 a
2
bv mv

+ I-3 a b + 6 a bv
2

- 6 b bv mv + a
2
mv

2M xu + I-a
2

- 3 b mv
2M xu

2
+ 3 bv

2
xu

3M;
Γ7x = Γ0x

-1 I-3 a b bv + a bv
3

- 9 b
2
mv - 3 b bv

2
mv + a

2
bv mv

2

- 4 a b mv
3

+ I-4 a
2
bv - 12 a b mv - a bv

2
mv + 6 b bv mv

2
- a

2
mv

3M xu

+ I9 b bv - 3 bv
3

- 4 a
2
mv + a bv mv

2
- 3 b mv

3M xu
2

+ mv I3 bv2 - a mv
2M xu

3M;
Γ9x = Γ0x

-1 I-a
3
bv - 9 b

2
bv + b bv

3
+ a

2
b mv + 2 a b bv mv

2

- 4 b
2
mv

3
+ I-3 a b bv - 9 b

2
mv + 3 b bv

2
mv + a

2
bv mv

2
- 2 a b mv

3M xu

+ I-a
2
bv - 3 a b mv + 2 a bv

2
mv - 3 b bv mv

2M xu
2

+ Ibv3 - b mv
3M xu

3M;
LinexSumFunction = -Γ9x - Γ7x x + Γ6x y - Γ5x x

2
+ Γ4x x y - Γ3x y

2
+ Γ2x x

2
y - Γ1x x y

2
+ y

3
;

m =
-y - Hmv xq + bvL

x - xq

; xs = m
2

- x - xq; ys = m Hxs - xL - y;

Together�PolynomialRemainderB

Hy - mv x - bvL3
ResultantB

xu - xs

xu - xq

, b + a xq + xq
3

- Hbv + mv xqL2
, xqF - LinexSumFunction,

b + a x + x
3

- y
2
, yF

Out[12]= 0

Printed by Wolfram Mathematica Student Edition

185

A.7 Eight Point Diagrams

Similarly, suppose that one of the points is O. Then we instead have:

`′0

`′1

xP ′

`0

P00

P01

P ′

`1

P01

P11

−P ′

xP

P

−P

O

f(x, y) =(y − α0x− β0)(y − α1x− β1)(x− xP) (A.4)

=− (b · α0α1 + β0β1xP)

+ x (β0β1 − a · α0α1 − (α1β0 + α0β1)xP)

+ y ((β0 + β1)xP)

+ x2 (α1β0 + α0β1 − α0α1xP)

− xy (β0 + β1 − (α0 + α1)xP)

− y2 (xP − α0α1)

− x2y (α0 + α1) + xy2

Theorem A.7.1. With the above configuration of the eight point diagram, the following
relations hold:

α0 + α1 = α′0 + α′1 (A.5)

xP − α0α1 = xP ′ − α′0α′1 (A.6)

β0 + β1 − (α0 + α1)xP = β′0 + β′1 − (α′0 + α′1)xP ′ (A.7)

α1β0 + α0β1 − α0α1xP = α′1β
′
0 + α′0β

′
1 − α′0α′1xP ′ (A.8)

(β0 + β1)xP = (β′0 + β′1)xP ′ (A.9)

β0β1 − a · α0α1 − (α1β0 + α0β1)xP = β′0β
′
1 − a · α′0α′1 − (α′1β

′
0 + α′0β

′
0)xP ′ (A.10)

b · α0α1 + β0β1xP = b · α′0α′1 + β′0β
′
1xP ′ (A.11)

186

So we get the following relations:

(y − α0x− β0)(y − α1x− β1)(x− xP)− (y − α′0x− β′0)(y − α′1x− β′1)(x− xP ′)
= (b+ ax+ x3 − y2)(xP − xP ′)

Corollary A.7.2. With the above configuration of the eight point diagram, the following
relations hold:

xP − xP ′ = α0α1 − α′0α′1 (A.12)

= (α0 − α′0)(α1 − α′0) = (α0 − α′1)(α1 − α′1) (A.13)

= −(α0 − α′0)(α0 − α′1) = −(α1 − α′0)(α1 − α′1) (A.14)

187

Appendix B

Three Torsion Calculation

B.1 Elliptic Curve Three Torsion

Here we fill in the gaps from section 7.1. Recall that for T ∈ E[3], the line `T has the
point T three times; geometrically, this is the tangent line to E at T , which has a triple
intersection there.

Theorem B.1.1. Suppose E : b + ax + x3 − y2 = 0 is an elliptic curve over a field F of
characteristic 0, with a 6= 0. Then E has 9 triple intersection lines `T over F, corresponding
to each three torsion point T ∈ E[3]. Furthermore, the 3-torsion points form a subgroup
that is the direct sum of two cyclic groups of order three.

Note that O ∈ E[3], and `O(P) = 1. Each other T ∈ E[3]\{O} arises from a distinct
root z = mT of −27a2 + 108b z2 + 18a z4 + z8, and has the following coordinates and line
function:

T = (xT , yT) =

(
m2
T

3
,
3a+m4

T

6mT

)
`T (P) =yP −mTxP − bT = yP −mTxP −

3a−m4
T

6mT

.

Proof. The fact that E[3] is a direct sum of two cyclic groups of order three is proved in
Silverman’s book [8], theorem 6.1.

For a triple intersection line `T at T ∈ E\{O}, we start by noting the following equality
(of polynomials in x):

b+ ax+ x3 − (mTx+ bT)2 = (x− xT)3

(b− b2
T + x3

T) + (a− 2mT bT − 3x2
T)x+ (−m2

T + 3xT)x2 = 0

188

which is a restatement of the fact that `T only intersects E at T . By comparing coefficients,

xT =
m2
T

3
, bT =

a− 3x2
T

2mT

=
3a−m4

T

6mT

0 =b− b2
T + x3

T = b−
(

3a−m4
T

6mT

)2

+
m6
T

27

=
−27a2 + 108bm2

T + 18am4
T +m8

T

108m2
T

So we have:

yT =mTxT + bT =
3a+m4

T

6mT

And the following gives a polynomial satisfied by mT :

0 =− 27a2 + 108bm2
T + 18am4

T +m8
T .

Note that the condition a 6= 0 ensures that mT 6= 0.

Now we prove some algebraic properties of three torsion which allow us to do explicit
calculations. We use the results of chapter 6 about nine point diagrams to simplify calcu-
lations.

Lemma B.1.2. Suppose that T, T ′, T ′′ ∈ E[3]\{O} are distinct, and satisfy T +T ′+T ′′ =
O. Then there is a primitive cube root of unity ω ∈ F such that

mT + ωmT ′ + ω2mT ′′ = 0.

Furthermore, the line ` through T, T ′, T ′′ has the following slope:

m` =
1

3

(
(1− ω)mT + (1− ω2)mT ′

)
Proof. Consider the nine point diagram N := N(`T , `T ′ , `T ′′):

`

`

`

`T

T

T

T

`T ′

T ′

T ′

T ′

`T ′′

T ′′

T ′′

T ′′

189

By theorem 6.3.3 we have the following formulas for the orientation ∂(N):

∂(N) =(m` −mT)3 = (m` −mT ′)
3 = (m` −mT ′′)

3

=(m` −mT)(m` −mT ′)(m` −mT ′′)

Note that the factors (m` −mT), (m` −mT ′), (m` −mT ′′) are distinct, since T, T ′, T ′′ are
distinct. Furthermore, since ` and `T are distinct lines which share a point, they cannot
be parallel; hence the three factors are also non-zero. It follows that (m` − mT), (m` −
mT ′), (m`−mT ′′) are related through multiplication by a primitive cube root of unity. More
specifically, there is ω ∈ F such that:

(m` −mT ′) =ω(m` −mT)

(m` −mT ′′) =ω2(m` −mT)

and hence we can isolate m` in the first equation, and subsequently solve for mT ′′ in the
second:

m` =
mT ′ − ωmT

1− ω =
(1− ω)mT + (1− ω2)mT ′

3

mT ′′ =− ωmT − ω2mT ′

noting that 1 + ω + ω2 = 0, so (1− ω)(1− ω2) = 3.

We now define the notation for E[3] that we use throughout the rest of this thesis:

Definition B.1.3. When working with the elliptic curve E : b+ ax+ x3 − y2 = 0 defined
over F of characteristic 0, we use T0, T1 ∈ E[3] to denote two generators of E[3]:

E[3] = {iT0 + jT1 | i, j ∈ {0, 1, 2}}.

We also denote T2 = T0 + T1 and T3 = T0 − T1. In light of lemma B.1.2, we let ω ∈ F
denote the primitive cube root of unity satisfying:

mT0 + ωm−T0−T1 + ω2mT1 = 0

and note that 1 + ω + ω2 = 0. We also make frequent use of the following square root of
−3:

√
−3 := ω − ω2.

Lemma B.1.4.

mT2 =mT0+T1 = ω2mT0 + ωmT1

mT3 =mT0−T1 = ωmT0 − ω2mT1

190

Proof. Since mT2 = −m−T0−T1 , by the definition of ω, we have

mT2 =ω2mT0 + ωmT1 .

By lemma B.1.2, the following equations hold for some i, j ∈ {1, 2}:
0 =mT0−T1 + ωimT1 − ω2imT0

0 =mT0−T1 + ωjmT0+T1 + ω2jmT0

We claim that (i, j) = (2, 1). We derive a contradiction from the other three cases.

First note that for T, T ′ ∈ E[3]\{O},
mT = ±mT ′ ⇒ xT = xT ′ ⇒ T = ±T ′

since at most two points can share an x-coordinate on E. So the eight values ±mTi for
i = 0, 1, 2, 3 are distinct.

• Now for (i, j) = (1, 1) we get a contradiction by substituting

mT0−T1 =ω2mT0 − ωmT1

mT0+T1 =ω2mT0 + ωmT1

to obtain:

0 =mT0−T1 + ωmT0+T1 + ω2mT0

=(1 + 2ω2)mT0 − (ω − ω2)mT1

=−
√
−3(mT0 +mT1)

• Similarly for (i, j) = (1, 2) we get a contradiction:

0 =mT0−T1 + ω2mT0+T1 + ωmT0

=(2ω + ω2)mT0 + (1− ω)mT1

=− ω2
√
−3(mT0 −mT1)

• Lastly when (i, j) = (2, 2), we get a contradiction by substituting

mT0−T1 =− ωmT0 − ω2mT0+T1

mT1 =− ωmT0 + ω2mT0+T1

to obtain:

0 =mT0−T1 + ω2mT1 − ωmT0

=− (1 + 2ω)mT0 + (ω − ω2)mT0+T1

=−
√
−3(mT0 +mT0+T1)

191

Lemma B.1.5.

0 =3
√
−3a−m3

T0
mT1 +

√
−3m2

T0
m2
T1

+mT0m
3
T1

Proof. By lemma B.1.2 applied to the line ` through T0, T1,−T0 − T1, we know that

m` =
(1− ω2)mT0 + (1− ω)mT1

3

and we can expand this in terms of mT0 ,mT1 to get the desired result:

(1− ω2)mT0 + (1− ω)mT1

3
=
yT0 − yT1
xT0 − xT1

=

3a+m4
T0

6mT0
− 3a+m4

T1

6mT1

m2
T0

3
− m2

T1

3

=
−3a+mT0mT1(m

2
T0

+mT0mT1 +m2
T1

)

2mT0mT1(mT0 +mT1)

So:

0 =−9a+mT0mT1(3m
2
T0

+ 3mT0mT1 + 3m2
T1
− 2(mT0 +mT1)((1− ω2)mT0 + (1− ω)mT1))

=− 9a+mT0mT1((1 + 2ω2)m2
T0

+ (−1 + 2ω + 2ω2)mT0mT1 + (1 + 2ω)m2
T1

)

=− 9a+mT0mT1(−
√
−3m2

T0
− 3mT0mT1 +

√
−3m2

T1
)

=
√
−3(3

√
−3a−m3

T0
mT1 +

√
−3m2

T0
m2
T1

+mT0m
3
T1

)

B.2 Action of the 3-torsion on Points

In this section, we fill in the gaps from section 7.1.1 to realize the translation by T map
P 7→ P+T on E as a projective linear map. The following theorem explicitly demonstrates
that translation by T corresponds to a matrix multiplication:

Theorem B.2.1. For a three torsion point T ∈ E[3] and P ∈ E\{O,−T}, the following
two vectors give projective coordinates for the same point:

[P + T] ∝MT [P]

where MO = I, and MT is the following matrix for T 6= O:

MT :=
1

−2yT

 −bT − yT xT xT (bT + 2yT)
−mTyT yT −yT (bT + 2yT)
mT 1 bT

 .

192

More precisely, for T ∈ E[3]\{O} the following holds with coordinates as functions of P
in F(E):  xP+T

yP+T

1

 =

(−2yT
yP +mTxP + bT

)
MT

 xP
yP
1

 =

(−2yT
`−T (P)

)
MT [P].

Explicitly, we have:

xP+T =
xTyP − (bT + yT)xP + xT (bT + 2yT)

yP +mTxP + bT

yP+T =
yTyP −mTyTxP − yT (bT + 2yT)

yP +mTxP + bT

Note that the factor −1/(2yT) is there so that det(MT) = 1; this will be of benefit when
considering algebraic properties of these matrices.

Theorem 7.1.6 is a simple consequence of the following lemma:

Lemma B.2.2. Suppose that T = (xT , yT) ∈ E[3] is a three torsion point, with tangent
line bT +mTx− y = 0. The following identities hold as functions of P ∈ E:

y(P)−mTx(P)− bT
y(P) +mTx(P) + bT

=
y(P + T) +mTx(P + T) + bT

2yT
(B.1)

2yT
y(P) +mTx(P) + bT

=
y(P + T)−mTx(P + T)− bT

−2yT
(B.2)

Proof. These equalities follow from comparing zeroes and poles of each side; if these coin-
cide, then by Proposition II.3.1 of Silverman’s book [8], the equality holds up to a constant
factor, and hence we only need to check for equality at any point.

More precisely, we start by noting that since T and −T are inflection points, their
tangent lines have triple intersections with E, so:

Div (bT +mTx(P)− y(P)) = 3(T)− 3(O)

Div (bT +mTx(P) + y(P)) = 3(−T)− 3(O).

Now to prove equation (B.1), we note that both sides have the same divisor:

Div

(
y(P)−mTx(P)− bT
y(P) +mTx(P) + bT

)
= (3(T)− 3(O))− (3(−T)− 3(O))

= 3(T)− 3(−T)

Div

(
y(P + T) +mTx(P + T) + bT

2yT

)
= 3(−T − T)− 3(O − T)

= 3(T)− 3(−T)

193

and furthermore, both sides evaluate to 1 at P = O (recalling from section 3.1 that both
the numerator and denominator are normalized functions with poles of order 3 at O.)

Similarly, for equation (B.2), both functions have divisor 3(T) − 3(O). Furthermore,
both sides evaluate to 1 at P = T .

Now we can complete the proof of theorem 7.1.6:

Proof. We can restate lemma B.2.2 in matrix form: −mT 1 −bT
0 0 −2yT
mT 1 bT

 xP
yP
1

 =
yP +mTxP + bT

2yT

 mT 1 bT
−mT 1 −bT

0 0 2yT

 xP+T

yP+T

1

 . (B.3)

With a direct computation, we verify that: mT 1 bT
−mT 1 −bT

0 0 2yT

−1  −mT 1 −bT
0 0 −2yT
mT 1 bT


=

1

2mTyT

 yT −yT −bT
mTyT mTyT 0

0 0 mT

 −mT 1 −bT
0 0 −2yT
mT 1 bT


=

1

2mTyT

 −mT (bT + yT) mTxT mTxT (bT + 2yT)
−m2

TyT mTyT −mTyT (bT + 2yT)
m2
T mT mT bT


=

mT

2mTyT
(−2yT)MT = −MT . (B.4)

So we rearrange equation (B.3) to get theorem 7.1.6: xP+T

yP+T

1

 =

(−2yT
yP +mTxP + bT

)
MT

 xP
yP
1

 . (B.5)

B.3 Action of 3-torsion on Lines

Now we derive a formula for `�T using the formulas for adding T to a point found in
theorem 7.1.6. Informally, the argument is that P ∈ `�T if and only if P − T ∈ `, which
can be equivalently expressed in linear algebraic terms:

0 = [`]ᵀ (M−T [P]) =
(
Mᵀ
−T [`]

)ᵀ
[P].

194

And thus Mᵀ
−T [`] satisfies the property that characterizes the coefficient vector of `�T . We

then obtain a formula for [`�T] by scaling appropriately. We make this more precise in the
following theorem:

Theorem B.3.1. For T ∈ E[3]\{O}, the coefficient vector of `�T is:

[`�T] =
−2yT

yT +m`xT + b`
Mᵀ
−T [`] (B.6)

where M−T is the matrix defined in theorem B.3.1, so:

Mᵀ
−T :=

1

2yT

 bT + yT −mTyT −mT

xT −yT 1
−xT (bT + 2yT) −yT (bT + 2yT) −bT

 .

Explicitly, we have:

m`�T =
−(bT + yT)m` −mTyT +mT b`

yT +m`xT + b`

b`�T =
xT (bT + 2yT)m` − yT (bT + 2yT) + bT b`

yT +m`xT + b`
.

Proof. Note that the coefficient vector [`�T] is characterized by the following property, up
to non-zero scalar multiplication:

DivP ([`�T]ᵀ[P]) =(P0 + T) + (P1 + T) + (P2 + T)− 3(O).

We claim that the vector Mᵀ
−T [`] has this property as well. If this claim holds, then

the scaling factor can be determined by comparing the second coordinates. The second
coordinate of [`�T] is 1 by definition, while for Mᵀ

−T [`] it is

1

2yT

 xT
−yT

1

ᵀ  −m`

1
−b`

 =
yT +m`xT + b`

−2yT
.

This confirms that equation (B.6) has the correct scaling factor.

So all that remains is to prove our claim that:

DivP
((
Mᵀ
−T [`]

)ᵀ
[P]
)

=(P0 + T) + (P1 + T) + (P2 + T)− 3(O).

We start by invoking theorem 7.1.6, which is the analogous result for points:

[P − T] =

(
2yT

yP −mTxP − bT

)
M−T [P].

195

From this we get a formula for `(P − T):

`(P − T) = [`]ᵀ[P − T] =

(
2yT

yP −mTxP − bT

)
[`]ᵀM−T [P],

which can be rearranged into:(
Mᵀ
−T [`]

)ᵀ
[P] =

yP −mTxP − bT
2yT

`(P − T).

Finally we take divisors to obtain the desired result:

Div
((
Mᵀ
−T [`]

)ᵀ
[P]
)

= (3(T)− 3(O)) + ((P0 + T) + (P1 + T) + (P2 + T)− 3(T))

=(P0 + T) + (P1 + T) + (P2 + T)− 3(O).

B.4 Algebraic Properties of Three Torsion Matrices

Now we will establish some algebraic properties of the MT matrices for T ∈ E[3] that
were defined in theorem 7.1.6. This is because of their central role in the algebra of line
addition. Thus these properties will be used in computations throughout the rest of this
chapter. Another motivation is that we can find a more natural model of elliptic curve for
line multiplication by finding conjugating these matrices; we discuss this further in section
B.6.

For reference MO = I, and for T ∈ E[3]\{O}:

MT =
1

−2yT

 −bT − yT xT xT (bT + 2yT)
−mTyT yT −yT (bT + 2yT)
mT 1 bT


Recall also that E[3] = 〈T0, T1 | T 3

0 = T 3
1 = I, T0T1 = T1T0〉, and T2 = T0+T1, T3 = T0−T1.

Lemma B.4.1. For any T, T ′ ∈ E[3]:

(i) det(MT) = 1

(ii) MTMT ′ = ωiMT+T ′ for some i ∈ {0, 1, 2}.

(iii) M2
T = M−T

(iv) M3
T = I

196

Proof. (i) This is a simple consequence of equation (B.4), where −MT is expressed as a
product of matrices of respective determinants (2mTyT)−1 and −2mTyT .

(ii) By theorem 7.1.6, the matrix MTMT ′M
−1
T+T ′ has the property that

[P] ∝MTMT ′M
−1
T+T ′ [P]

for all but a finite number of points P ∈ E. Thus this matrix is a multiple of the
identity matrix. The multiple must be a cube root of 1 since MTMT ′M

−1
T+T ′ has

determinant 1.

(iii) We have M2
T = ωiM−T for some i ∈ {0, 1, 2}. We check that i = 0 by comparing the

coordinates in the second row and second column:

(
M2

T

)
2,2

=

(
1

−2yT

)2 (
−mTxTyT + y2

T − yT (bT + 2yT)
)

=− 1

2
= (M−T)2,2

(iv) Similarly, we check that M3
T = MTM−T = 1 by comparing the entries in the second

row and second column.

In light of lemma B.4.1, we define the following:

Definition B.4.2. For T, T ′ ∈ E[3], we define 〈T, T ′〉 ∈ {1, ω, ω2} to be the cube root of 1
such that

〈T, T ′〉I = MTMT ′M−T−T ′

This is in fact an alternating bilinear form, and we can use it to restate the first part
of lemma B.1.2 as well:

Lemma B.4.3. Suppose τ0, τ1 ∈ E[3] form a basis. Then for i, j, k, l in modulus 3, we
have

〈iτ0 + jτ1, kτ0 + lτ1〉 = 〈τ0, τ1〉il−jk (B.7)

mτ0+τ1 = 〈τ1, τ0〉mτ0 + 〈τ0, τ1〉mτ1 (B.8)

and in particular 〈T0, T1〉 = ω.

197

Proof. First note that by lemma B.4.1, 〈T, T ′〉 = 1 when the arguments are linearly de-
pendent in modulus 3. So we suppose that they are linearly independent. We will think
of equation (B.7) as follows:

〈[
i j
k l

] [
τ0

τ1

]〉
= 〈τ0, τ1〉

∣∣∣∣∣∣ i j
k l

∣∣∣∣∣∣

which we will demonstrate for the identity matrix. We will also show that both sides of
the equation transform equivalently under any invertible elementary row operation; hence
equation (B.7) will hold for any basis.

We start by showing that 〈−T, T ′〉 = 〈T, T ′〉−1 = 〈T,−T ′〉 for any T, T ′ ∈ E[3]. Suppose
that these form a basis, and compare MT and M−T ; the entry in position i, j flips signs
when i+ j is even, so we have ∗ 0 ∗

0 0 0
∗ 0 ∗

 =I +MT +M−T

after checking that the (2, 2)-entry is 1− 1
2
− 1

2
= 0. We ignore entries marked ∗. Next we

multiply through by MT ′ on the right: ∗ 0 ∗
0 0 0
∗ 0 ∗

MT ′ =MT ′ +MTMT ′ +M−TMT ′

=MT ′ + 〈T, T ′〉MT ′+T + 〈−T, T ′〉MT ′−T (B.9)

and compare (2, 2)-entries to deduce that

1 + 〈T, T ′〉+ 〈−T, T ′〉 = 0.

Since each term is among 1, ω, ω2, we deduce that all three values are represented by the
three terms above (recalling that 1 + ω + ω2 = 0.) Thus 〈−T, T ′〉 = 〈T, T ′〉−1; a similar
argument where we multiply by MT ′ on the left leads to 〈T ′,−T 〉 = 〈T ′, T 〉−1. From this
it follows that for any T, T ′ ∈ E[3] and i, k ∈ Z, we have 〈iT, kT ′〉 = 〈T, T ′〉ik.

Next we will show that 〈T, T ′〉 = 〈T ′, T 〉−1 and 〈T, T ± T ′〉 = 〈T, T ′〉 = 〈T ± T ′, T ′〉 for
any T, T ′ ∈ E[3]. We start with the definition 〈T, T ′〉I = MTMT ′M−T−T ′ , conjugate by
MT+T ′ , and then invert both sides:

〈T, T ′〉I =M−T−T ′〈T, T ′〉IMT+T ′ = M−T−T ′MTMT ′

〈T, T ′〉−1I =M−T ′M−TMT+T ′ = 〈−T ′, T 〉−1I = 〈T ′, T 〉I

198

so 〈T, T ′〉 = 〈T ′, T 〉−1. The first equation then also tells us that

〈T, T ′〉 = 〈−T − T ′, T 〉 = 〈T + T ′, T 〉−1 = 〈T, T + T ′〉

and we deduce also that 〈T, T ′ − T 〉 = 〈T, T + (T ′ − T)〉 = 〈T, T ′〉. We similarly get that

〈T ± T ′, T ′〉 = 〈T ′, T ± T ′〉−1 = 〈T ′, T 〉−1 = 〈T, T ′〉.

Lastly we demonstrate equation (B.8). Consider the entry in position 2, 1 in equation
(B.9), multiplied by −2:

0 = mT ′ + 〈T, T ′〉mT ′+T + 〈−T, T ′〉mT ′−T (B.10)

Fore a basis τ0, τ1 for E[3], take T ′ = −τ0 − τ1 and T = −τ0 + τ1; then we have 〈T, T ′〉 =
〈−τ0 +τ1,−τ0−τ1〉 = 〈τ0, τ1〉−1 and we get equation (B.8). By comparing this to definition
B.1.3 we see that ω = 〈T0, T1〉 since mT0+T1 = ω2mT0 + ωmT1 .

As an addendum, we note the following, where nT := 2bT + yT =
9a+m4

T

6mT
:

Lemma B.4.4. Suppose τ0, τ1 ∈ E[3] form a basis. Then for i, j, k, l in modulus 3, we
have

mτ0+τ1 =〈τ1, τ0〉mτ0 + 〈τ0, τ1〉mτ1

nτ0+τ1 =〈τ1, τ0〉nτ0 + 〈τ0, τ1〉nτ1

B.5 Trilinear Forms

Now we give explicit relations between the T -determinant forms, using the notation from
definition B.4.2. For example, dO + dT + d−T = 0, and dT0+T1 = −ωd−T0 − ω2d−T1 :

Lemma B.5.1. For distinct τ0, τ1 ∈ E[3] we have

dτ0+τ1 = −〈τ0, τ1〉d−τ0 − 〈τ1, τ0〉d−τ1

Proof. We first show that dO + dT + d−T = 0 for any T ∈ E[3]\{O}. Recall that
dT (v1, v3, v2) = −d−T (v1, v2, v3), and hence dO + dT + d−T is an alternating trilinear form.
So we must have dO + dT + d−T = cdO for some constant c, and we will show that c = 0.
By definition, and using the fact that det(M−T) = 1, we get:

(dO + dT + d−T)(M−Tv1, v2, v3)

= det(M−Tv1, v2, v3) + det(M−Tv1,MTv2,M−Tv3) + det(M−Tv1,M−Tv2,MTv3)

= det(M−Tv1, v2, v3) + det(v1,M−Tv2, v3) + det(v1, v2,M−Tv3)

199

then by plugging in [v1 v2 v3] = I we get the trace of M−T , which is 0, so dO+dT +d−T = 0.

Continuing from this equation, suppose that T ′ ∈ E[3]. Then we get:

0 =(dO + dT + d−T)(v1,MT ′v2,M−T ′v3)

= det (v1,MT ′v2,M−T ′v3)

+ det (v1,MTMT ′v2,M−TM−T ′v3)

+ det (v1,M−TMT ′v2,MTM−T ′v3)

= det (v1,MT ′v2,M−T ′v3)

+ det (v1, 〈T, T ′〉MT+T ′v2, 〈−T,−T ′〉M−T−T ′v3)

+ det (v1, 〈−T, T ′〉MT ′−Tv2, 〈T,−T ′〉MT−T ′v3)

= det (v1,MT ′v2,M−T ′v3)

+ 〈T ′, T 〉 det (v1,MT+T ′v2,M−T−T ′v3)

+ 〈T, T ′〉 det (v1,MT ′−Tv2,MT−T ′v3)

=(dT ′ + 〈T ′, T 〉dT ′+T + 〈T, T ′〉dT ′−T)(v1, v2, v3)

Hence dT ′ + 〈T ′, T 〉dT ′+T + 〈T, T ′〉dT ′−T = 0 and we get the desired result by taking T ′ =
τ0 + τ1 and T = τ0 − τ1, so 〈T ′, T 〉 = 〈τ0 + τ1, τ0 − τ1〉 = 〈τ0, τ1〉.

We now write down a convenient representation for e0, e1. Recall: dO
e0

e1

 =

 1 0 0
−1
2

−xT0
2yT0

−1
2yT0

−1
2

−xT1
2yT1

−1
2yT1


−1  dO

dT0
dT1



=
−1

xT0 − xT1

 −(xT0 − xT1) 0 0
yT0 − yT1 2yT0 −2yT1

xT0yT1 − xT1yT0 −2xT1yT0 2xT0yT1

 dO
dT0
dT1


and we can simplify this as follows:

Lemma B.5.2. e0, e1 can be written as linear combinations of dO, dT0 , dT1. Explicitly:

e0 =
−mT3

3
√
−3

dO +
mT2 −mT3

3
√
−3

dT0 −
mT2 +mT3

3
√
−3

dT1

e1 =
mT3xT0 −

√
−3yT0√

−3
dO +

(mT3 −mT2)xT1
3
√
−3

dT0 +
(mT2 +mT3)xT0√

−3
dT1

and furthermore, (
e0

dO
,
e1

dO

)
= (m∆, b∆)

200

B.6 Hessian Form of Elliptic Curve

The Hessian form of an elliptic curve is especially well suited to our operation. Here we
have a parameter α, and our elliptic curve is given in projective form as:

Eα : x3 + y3 + z3 − 3αxyz = 0

O = (−1 : 1 : 0)

This equation for Eα makes certain symmetries apparent.

Firstly, Eα is invariant under permutations of (projective) coordinates. Secondly, a
primitive cube root ω of 1 provides the symmetry (x : y : z) 7→ (ωx : ω2y : z). These
operations have simple group-theoretic descriptions in Eα:

• The permutation (x : y : z) 7→ (y : x : z) corresponds to negation.

• The cyclic shift (x : y : z) 7→ (y : z : x) corresponds to addition of the three torsion
point (0 : −1 : 1).

• The map (x : y : z) 7→ (ωx : ω2y : z) corresponds to addition of the three torsion
point (−ω : 1 : 0).

To define the addition operation on these curves, we first consider three torsion so that
we can use section 7.2.3 to get nice formulas.

B.6.1 Three Torsion

The three torsion points correspond exactly to those where one of the coordinates is 0. For
example, the origin (−1 : 1 : 0) has triple intersection with the line x + y + αz = 0, since
that function vanishes to order three:

x3 + y3 + z3 − 3αxyz = (x+ y + αz)((αz − x)(αz − y) + (x− y)2)− (1− α3)z3

The three torsion subgroup of Eα can be presented as follows (in additive notation):

Eα[3] = 〈T, T0 | 3T = 3T0 = O, T + T0 = T0 + T 〉
T = (−ω : 1 : 0)

T0 = (0 : −1 : 1)

with addition table:

+ O T −T
O (−1 : 1 : 0) (−ω : 1 : 0) (−ω2 : 1 : 0)
T0 (0 : −1 : 1) (0 : −ω : 1) (0 : −ω2 : 1)
−T0 (−1 : 0 : 1) (−ω2 : 0 : 1) (−ω : 0 : 1)

201

B.6.2 Addition Formulas

Here we will derive the addition formulas (as in section 7.2.3.) To do so, we will characterize
points P0, P1, P2 ∈ Eα satisfying P0 + P1 + P2 = O. To simplify notation, let xi := x(Pi)
and yi := y(Pi) for i = 0, 1, 2. First we note that summing to O is equivalent to the
collinearity of P0, P1, P2; we can express this in terms of a vanishing determinant:

0 =

∣∣∣∣∣∣
x0 x1 x2

y0 y1 y2

1 1 1

∣∣∣∣∣∣ = (x0y1 + x1y2 + x2y0)− (x0y2 + x1y0 + x2y1)

We will obtain two further relations which will allow us to determine (x2, y2). To this
end, note that for any Q ∈ Eα, we have collinearity between P0, P1 + Q,P2 − Q. We can
now exploit the fact that adding three torsion gives a linear operator. If we take Q to be
T or T0 from section B.6.1, then we get:

0 =

∣∣∣∣∣∣
x0 ω2x1 ωx2

y0 ωy1 ω2y2

1 1 1

∣∣∣∣∣∣ = ω(x0y1 + x1y2 + x2y0)− ω2(x0y2 + x1y0 + x2y1)

0 =

∣∣∣∣∣∣
x0 y1 1
y0 1 x2

1 x1 y2

∣∣∣∣∣∣ = (1 + x0x1x2 + y0y1y2) + (x0y2 + x1y0 + x2y1)

We can then combine these relations into a simpler form:

0 = x0y1 + x1y2 + x2y0

0 = x0y2 + x1y0 + x2y1

0 = 1 + x0x1x2 + y0y1y2

And these last equation allows us to solve for (x2, y2) in an overdetermined system:

(x2, y2) =

(
x2

1y0 − x2
0y1

x0y0 − x1y1

,
x0y

2
1 − x1y

2
0

x0y0 − x1y1

)
=

(
x0y0y

2
1 − x1

x0x2
1 − y2

0y1

,
y0 − x2

0x1y1

x0x2
1 − y2

0y1

)
=

(
x1y

2
0y1 − x0

x2
0x1 − y0y2

1

,
y1 − x0x

2
1y0

x2
0x1 − y0y2

1

)

202

Then we negate to get the addition operation:

(x0, y0) + (x1, y1) =

(
x0y

2
1 − x1y

2
0

x0y0 − x1y1

,
x2

1y0 − x2
0y1

x0y0 − x1y1

)
=

(
y0 − x2

0x1y1

x0x2
1 − y2

0y1

,
x0y0y

2
1 − x1

x0x2
1 − y2

0y1

)
=

(
y1 − x0x

2
1y0

x2
0x1 − y0y2

1

,
x1y

2
0y1 − x0

x2
0x1 − y0y2

1

)

203

	Introduction
	Elliptic Curve Point Multiplication
	Montgomery's x-only Point Multiplication
	Line Multiplication
	Diagrammatic Algebra
	Improved Line Multiplication
	Three Torsion
	Trilinear Forms

	Applications and Future Work

	Elliptic Curve Cryptography
	Cryptography
	The Discrete Logarithm Problem
	Introduction to Elliptic Curves
	Elliptic Curve Point Addition
	Elliptic Curve Point Multiplication

	Elliptic Curves for Cryptography
	Efficient Elliptic Curve Arithmetic
	x-only point multiplication

	Line Multiplication
	Lines
	Line Multiplication
	Obstacles to Line Addition
	Cyclically Oriented Lines
	Cyclic Line Addition
	Generic Line Addition
	Formula for Linear Sum Function
	Generic Line Multiplication Operation Chain
	Line Doubling
	Line Addition
	Line Multiplication Ladder

	Improving on Generic Algorithm
	Nine Point Diagrams
	Recursion

	Generalized Line Multiplication
	Generalized Elliptic Curve Line Multiplication
	Generalizing to Abelian Groups

	Generic Linear 2-Set Multiplication
	Generic Linear Multiplication
	Generic Line Multiplication
	Breakdown

	Linear Sets over a Field
	Generic Line Multiplication Over a Field
	Improved Line Multiplication Over a Field

	Application: Cipolla's algorithm
	Cipolla Using Line Multiplication

	Diagrammatic Algebra
	Label Structures
	Isomorphisms of Incidence Structures
	Nine Point Diagram Structure

	Labeled Diagrams
	Automorphisms on Labeled Diagrams
	Labeled Diagram Arithmetic

	Diagrams With Symmetry
	Automorphisms on Diagrams with Symmetry
	Unlabeled Line Diagrams
	Cyclic Line Diagrams
	Nine Point Diagrams with Symmetry

	Diagrammatic Arithmetic
	Isomorphic Diagrammatic Sum
	Diagrammatic Sum Symmetries
	Diagrammatic Sum

	Homomorphisms of Diagrams
	Algebraic Definition of Diagrammatic Homomorphisms
	Forgetful Homomorphisms
	Line Extraction

	Linear Arithmetic
	Cyclic Line Arithmetic
	Forward Differences

	Nine Point Diagram Dichotomy
	Completion Diagram
	Diagrams Within Diagrams
	Line Addition and Completion Diagrams

	Diagrammatic Calculus
	Diagram Functions
	Nine Point Diagrams
	Nine Point Diagram Function
	Algebraic Relations Between Line Coordinates
	Nine Point Diagram Automorphisms

	Nine Point Diagram Orientation
	Formulas for Nine Point Diagram Orientation
	Orientation in Terms of Two Lines
	Relation to Cyclic Orientation

	Forward Differences in Nine Point Diagrams
	Alternate Representations
	Proof of Theorem 6.4.3
	Cyclic Line Arithmetic

	Completion Diagrams
	Symmetries
	Relations from Line Sum Function
	Pairing Indicators
	Linear Sum Diagram Orientation

	Diagrammatic Line Addition
	Cyclic Line Multiplication

	Three Torsion Algebra
	Elliptic Curve Three Torsion
	Action of Three Torsion

	Trilinear Forms
	Cyclic Orientation from Determinant Forms
	Forward Difference from Trilinear Forms
	Point Addition and Trilinear Forms

	Trilinear Forms on Lines
	Trilinear Form Relations
	Proof of Theorem 7.3.3

	Conclusion and Future Work
	Geometric Interpretations
	Elliptic Curve Scalar Multiplication
	Point Multiplication in Algebraic Extension

	References
	Appendices
	Table of Formulas
	Explicit Line Sum
	Doubling Formula
	Nine Point Diagram
	Nine Point Diagram Toolbox
	Line Sum Function
	Special Cases
	Eight Point Diagrams

	Three Torsion Calculation
	Elliptic Curve Three Torsion
	Action of the 3-torsion on Points
	Action of 3-torsion on Lines
	Algebraic Properties of Three Torsion Matrices
	Trilinear Forms
	Hessian Form of Elliptic Curve
	Three Torsion
	Addition Formulas

