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Abstract

We explore various areas of computability theory, ranging from applications in computable
structure theory primarily focused on problems about computing isomorphisms, to a num-
ber of new results regarding the degree-theoretic notion of the bounded Turing hierarchy.

In Chapter 2 (joint with Csima, Harrison-Trainor, Mahmoud), the set of degrees that
are computably enumerable in and above 0(® are shown to be degrees of categoricity
of a structure, where « is a computable limit ordinal. We construct such structures in
a particularly useful way: by restricting the construction to a particular case (the limit
ordinal w) and proving some additional facts about the widgets that make up the structure,
we are able to produce a computable prime model with a degree of categoricity as high as
is possible. This then shows that a particular upper bound on such degrees is exact. This
joint work appears in [9].

In Chapter 3 (joint with Csima and Stephenson), a common trick in computable structure
theory as it relates to degrees of categoricity is explored. In this trick, the degree of an
isomorphism between computable copies of a rigid structure is often able to be witnessed
by the clever choice of a computable set whose image or preimage through the isomorphism
actually attains the degree of the isomorphism itself. We construct a pair of computable
copies of (w, <) where this trick will not work, examine some problems with decidability of
the structures and work with (w?,<) to resolve them by proving a similar result.

In Chapter 4, the effectivization of Walker’s Cancellation Theorem in group theory is dis-
cussed in the context of uniformity. That is, if we have an indexed collection of instances
of sums of finitely generated abelian groups A; ® G; 2 A; ® H; and the code for the isomor-
phism between them, then we wish to know to what extent we can give a single procedure
that, given an index 7, produces an isomorphism between G; and H;.

Finally, in Chapter 5, several results pertaining to the bounded Turing degrees (also known
as the weak truth-table degrees) and the bounded jump are investigated, with an eye
toward jump inversion. We first resolve a potential ambiguity in the definition of sets used
to characterize degrees in the bounded Turing hierarchy. Then we investigate some open
problems related to lowness and highness as it appears in this realm, and then generalize a
characterization about reductions to iterated bounded jumps of arbitrary sets. We use this
result to prove the non-triviality of the hierarchy of successive applications of the bounded
jump above any set, showing that the problem of jump inversion must be non-trivial if it
is true in any relativized generality.
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Chapter 1

Introduction

Although the subjects we investigate in each chapter of this thesis are relatively disparate,
it is worth beginning with an overview of the notation that we will use throughout. We
mostly follow the standard reference text Soare [28] in the notations that we use and con-
ventions that we follow. We write ¢, ¢1, ... as some enumeration of the partial computable
functions. The exact method for producing such a list are unimportant to us, however.
More generally, for a given set X, we write ®X to refer to the eth Turing functional with
oracle X. If the index e of the functional is not important, we may sometimes represent
the functional without it, such as T'Y or ¥X. The amount of X that is used by a certain
computation is called the use of the computation, and we write the use of the computation
DX (y) as uX (y) or useX (y). If we have a functional that lacks an index such as T'X, then
we may remove ambiguity by writing its use as u;¥ should the need arise. In all cases,
we may add a subscripted stage number (usually s or t) to indicate that the computation
should only be allowed to run for at most that many steps. For instance, ¢, s(x) refers to
the computation ¢.(x) run for only s steps.

When partial functions and functionals converge on an input x and yield an output y, we
write it as @.(z) | =y and ®X(x)| =y, respectively. In the case that they do not converge,
we write p.(x) 1 and ®X(x) 1 instead. In some cases, we may wish to enforce that a
function does not converge to a particular value gy, but nevertheless converges, which we
write as @.(x)}#y. On the other hand, if we simply desire that it does not converge to a
particular value and include the case where it diverges, then we write p.(z) # y. Similar
notation holds for functionals as well. In the case where we restrict a computation to run
for only s steps, ¢, ()1 indicates that the function has not converged by stage s.

In some cases, we have several portions of a computation expression that depend on some
other value (typically a stage number). For instance, we may have a set A we are building



by stages, so that at every stage s we have an approximation A, to A, which we then use
in some computation like (13’648(93) For brevity, it is customary to write such an expression
as ®(x)[s], where we interpret the [s] as a directive to restrict everything to its stage s
approximation where sensible.

When we have a set A, we will write A(z) as shorthand for xa(z), where x4 is the
characteristic function corresponding to the set A. In general, we may pass back and forth
between viewing sets as usual, as infinite bitstrings, or as characteristic functions without
much comment. If we wish to take the first n bits of A as a finite bitstring, we write A | n,
and A I} n if we wish to include A(n) in addition (i.e. the first n + 1 bits of A; the bits
of A up to and including n). However, finite bitstrings will generally be called o, 7 and
so on if they are defined independently of some set so that they are not mistaken for sets
themselves.

We write A®B to mean the join of the sets A and B, defined as {2n | n € A}u{2n+1 | n € B}.
Since the bits of A are placed at bits 0, 2, 4, etc., we say that A forms the even half of
A® B and B forms the odd half. When discussing groups, we will use @ for the direct sum,
as the context makes it clear that we are working group-theoretically and so it will not be
confused for the join.

A set that is the range of a computable function is said to be computably enumerable,
which we routinely abbreviate as c.e. We write W, to mean the set {z € w | ()] }; by a
basic result such sets are exactly the c.e. sets, and so we often use this notation to refer to
them. Given an oracle A, a set that is c.e. relative to A and also can compute A is said to
be c.e. in and above A. This terminology can be confusing at first glance, but it is more
sensible when the “and above” is parsed as a parenthetical; the set is c.e. in A and also
above A. It is common to abbreviate being c.e. in and above as being c.e.a.

There are several generalizations of sets being c.e., and we shall expand upon those more
later as the need arises. One such generalization that is particularly important is a set being
w-c.e. A set A issuch if there is some computable approximation function f :wxw — {0,1}
and a computable function g :w — w such that

o lim, .. f(z,5)=A(z) for all x, and
o |{s]| f(x,s)# f(x,s+1)}|<g(x) for all x.

Here, rather than an element of A being enumerated and never after allowed to leave, as it
is for a c.e. set, we are permitted to change our mind about membership in A finitely often,
but we have a bound g that limits how often this may occur. In this vein, we sometimes say
that the approximation for A is allowed to change at most computably often to highlight
that not just any finite bound will do.



We use (a, b) to refer to the standard pairing function that provides a one-to-one correspon-
dence between w x w and w. We use the same notation for functions obtained by iterating
this operation, which allows us to represent any n-tuple as a value in w and vice versa. A
common use for this function is to partition w into subsets, one for each index i € w. We
call such subsets slices and write the ith slice as wl’), defined as wli = {{z,i) | 7 e w}.

As is usual, we write A <r B to mean that A is computable from B, i.e. there is a functional
I’ such that I'? = A. In this case, we say that A is Turing reducible to B. We say that
A and B are Turing equivalent, written A =r B, if A <y B and B < A. The equivalence
classes of =7 are called Turing degrees and the inherited partial order on degrees is simply
written as <. We write a = deg(A) to refer to the degree of the set A. In order to work
with ordinals, we implicitly use the method of coding as in the book Ash and Knight [4],
which gives rise to the computable ordinals. In general, infinite computable ordinals have
non-unique representations, but we may fix a unique choice of representations in a given
context by specifying a largest computable ordinal of interest.

The most important operator on sets in computability theory is the jump operator, which
relativizes the Halting Problem to any set A, producing a set A’ that is of strictly higher
degree. In general, we write A" to refer to the nth iterate of the jump operator. More
generally, for any computable ordinal «, we can define the ath iterate of the jump of A,
written A(®) by induction on (the codes for) the computable ordinals that are at most «.
We define AM = A" and AB+D = (AB) and for a limit ordinal v, we have a sequence
B, Ba, ... <y whose limit is v (a fundamental sequence for v) and let A®) = @; AB). As
explained in Ash and Knight [4], different fundamental sequences for 7 give rise to different
sets, but they are all Turing equivalent. If we have chosen a unique code for each ordinal
as mentioned above, then the fundamental sequence is determined by the code and thus
the jump is well-defined.

In both Chapter 2 and Chapter 3, we study mathematical structures under the lens of
computability theory. We primarily work with computable copies of structures and com-
putable isomorphisms between them. Interestingly, however, it is easy to find computable
structures where the isomorphism between them is not computable and, in fact, is highly
non-computable. The standard example is the linear order (w,<); we can exhibit com-
putable copies of this structure so that isomorphisms between these copies codes &'.

A closer look at this structure shows that @’ is able to compute the isomorphism between
any two computable copies, and so the copies mentioned above that actually realize this are
somewhat special, and 0’, the degree of @', is the degree needed for general isomorphisms
between computable copies of (w,<): no lesser degree will always work, and any higher
degree is more than sufficient. Such degrees are known as degrees of categoricity and were
introduced by Fokina, Kalimullin and Miller [16]:
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Definition 1.1 (Folklore).
Let A be a computable structure, and suppose that d is a Turing degree which can
compute an isomorphism between any two computable copies of A. Then we say that
A is d-computably categorical.

Definition 1.2 (Fokina, Kalimullin and Miller [16]).
If {c| A is c-computably categorical } = {c|c >d}, then we say that d is the degree of
categoricity of A.

If A has degree of categoricity d and there exist computable copies A; and A, of A
such that every isomorphism f : A4; = A; computes d, we say A has strong degree of
categoricity d.

Finally, we say d is a (strong) degree of categoricity if there exists a computable struc-
ture with (strong) degree of categoricity d.

In Chapter 2, in joint work with Barbara Csima, Matthew Harrison-Trainor and Moham-
mad Assem Mahmoud, (which appears in [9]) we investigate a particular class of degrees
and find structures that witness these degrees as strong degrees of categoricity. These de-
grees are those c.e. in and above 0(®), where « is a computable limit ordinal. Although the
result is known for successor ordinals due to Csima, Franklin, and Shore [12], the method
that they used relied heavily on existence of the predecessor ordinal. The fact that there is
no predecessor ordinal means that more work needs to be done as we see better and better
approximations to « from below.

A modification to this result gives some amount of progress to a question of Bazhenov and
Marchuk [6] about degrees of categoricity of computable prime models. Prime models of
a structure are those that are particularly “simple”; they can be elementarily embedded
into any other model of their theory. Bazhenov and Marchuk [6] prove that the degree of
categoricity of such models can be at most 0w+ but the highest degree they were able
to realize was 0(“). By modifying the result above using what was gained about working
with limit ordinals, we are able to construct, for any degree d c.e. in and above 0+, a
computable prime model with strong degree of categoricity d. This cements the lower
bound on degrees d where computable prime models are always d-computably categorical
to be precisely 0«+1),

In Chapter 3, in joint work with Barbara Csima and Jonny Stephenson, we take a different
tack entirely, where we use degrees of categoricity for motivation. Many of the proofs
of constructions of degrees of categoricity use a particular trick for computing degrees of
categoricity that they have constructed. The structures are built so that they are rigid



and the isomorphism f between them carries a computable relation U on one copy to the
set f(U), which is shown to have the desired degree. Thus since f can compute f(U), and
the degree of categoricity must compute f, this degree must be at least f(U). Paired with
an argument that this degree will suffice to compute the isomorphism between any com-
putable copies of the structure, it provides a convenient method to design a construction to
demonstrate a degree is the degree of categoricity. But is this always possible? Could we
produce two computable copies of the structure so pathological such that the isomorphism
is of high degree — perhaps even a degree of categoricity for the structure — but that same
degree cannot be found as the degree of an image of any computable set?

In fact, unary relations are the only relations of interest, as binary relations and higher can
encode enough structure within themselves to completely recover the isomorphism. We
prove that there are computable copies of (w,<) so that the isomorphism between them
has degree 0’ and so that no computable U exists with f(U) =¢ f or f~Y(U) =r f. As
noted above, 0’ is the degree of categoricity for this structure, so even though f has the
highest possible degree, it is still not enough to force that some image or preimage of a
computable set is enough to compute f.

By modifying the proof of this result to forgo the requirement that f~!(U) cannot compute
f, it is possible to produce a computable copy of (w,<) so that the isomorphism from the
standard copy of (w, <) into this constructed copy has degree 0’ but no computable U exists
such that f(U) =¢ f. This is not a particularly surprising revelation, but it is somewhat
unexpected that we are able to prove that this is impossible if we look for an isomorphism
into the standard copy from the constructed copy rather than out of the standard copy.

That isomorphisms into the standard copy are always coded by a computable U is, however,
something peculiar to (w, <), which has relatively limited freedom in how it can be built.
Indeed, we are able to prove in the case of (w?,<) that there is a computable copy whose
isomorphism into the standard copy does not have the same degree as the image of any
computable sets through it, which we then attempt to improve to code 0", the degree of
categoricity for this structure. More investigation is needed, though, since we were only
able to code 0”, so perhaps a more powerful (or clever) technique is needed. Nonetheless,
this line of inquiry shows that the method of artfully choosing the set U so that f(U) helps
determine the degree of the isomorphism is not always guaranteed to work, provided the
copy of the structure is particularly mutilated.

In Chapter 4, we investigate the problem of effectivization of a result on abelian groups
proved independently by Cohn [8] and Walker [29], now known as Walker’s Cancellation
Theorem, which states the following;:



Theorem 1.1 (Cohn [8] and Walker [29]).
Let A be a finitely generated abelian group. Let G and H be abelian groups such that
AeG2Ao H. Then Gz H.

In order to simplify this theorem somewhat, Cohn represented both A@G and A® H inside
a single isomorphic copy, E. That is, by identifying A, G and H with their images inside
E, we can think of E as being equal to A® G and A ® H at the same time. However,
the images of the two copies of A need not be the same, so we instead have E containing
finitely generated abelian groups A and B which are isomorphic. Thus we can write this
as F=A®G=B®H with A~ B, and desire an isomorphism between G and H.

By examining the proof of Cohn, we find that the theorem can be effectivized in all cases. In
other words, given a computable group E with computable relations for A, B, G and H and
a computable isomorphism between A and B, we can produce a computable isomorphism
between G and H. Of course, this is not the end of the story. In order to do so, it seems in
Cohn'’s proof that one must have some finite amount of non-computable information. Thus,
the interest in this question from a computability theoretic standpoint is about effective
uniformity. That is, can one find a single computable procedure that, given indices for a
computable group E and the relations for A, B, G and H and a computable isomorphism
between A and B, produces an isomorphism between G and H? The key difference is that
now the single procedure cannot use any information specific to a given instance of the
problem, since it must work for all instances. Unsurprisingly given the non-computable
information, the answer is no.

A closer examination of the proof reveals exactly what portion of it fails to be uniform:
determining generators for cyclic abelian groups. The surprise is that even offering the
uniform procedure a large amount of information about the constituent groups and iso-
morphisms is not enough to rectify this issue.

Finally, in Chapter 5 we turn our attention away from applications of computability theory
and begin looking at a more pure topic within computability theory itself. We explore a
modified form of Turing reducibility, called bounded Turing reducibility. In many natural
contexts, where structures in other areas of mathematics are related via computability
theoretic methods, reductions tend to have a particularly nice property where the use of
the reduction can be specified ahead of time via a computable function, so that when
A is reducible to B via the functional I', we have a computable function f such that
B (@) (x) = A(x) for all x. Some authors refer to this type of reduction as a weak truth
table reduction and write <,;. We shall explain in more detail where this notation comes
from and how the two definitions are equivalent, but we will only use the notation <, as
we consider it to be preferable in this context. Such a reduction is more restrictive because



of the need to abide by this bound, and a number of questions arise about which classical
results — that is, results about unrestricted Turing reducibility — remain true when replaced
by this bounded version.

A collection of such results are the theorems about jump inversion, where given a set A
we find conditions on when there is a set X whose jump is of the same degree as A, i.e.
A =p X'. However, Csima, Downey and Ng [11] showed that some of these theorems do
not hold when we replace Turing reductions with bounded Turing reductions. The classical
theorems are:

Theorem (Shoenfield Jump Inversion ([27])).
For every A that is c.e. in and above @', there is some X <r @&’ such that X’ = A.

Theorem (Sacks Jump Inversion ([26])).
For every A that is c.e. in and above @', there is a non-computable c.e. set X such that
X' =T A.

However, by replacing the jump operator with a new jump-like operator designed specifi-
cally for the bounded Turing degrees, Csima and Anderson [2] showed that the Shoenfield
Jump Inversion Theorem now held. The definition of this bounded jump for a set A is a
set A defined as follows:

AV = {z | (Fi < 2)[pi(x) ) @7 ()]}

To avoid confusion with the classical case, the nth iterate of the bounded jump is written
as A" rather than A,

Expanding on this work, Anderson, Csima and Lange [3] endeavored to understand the
relationship between the bounded jump and the classical jump by exploring low and high
sets in each setting and how they interact. A set A is low if A’ <r @' and high if A’ >7 @",
and analogously, A is bounded low if A® <y @® and bounded high if A® >,7 @?°. Additionally,
we have the notions of superhigh and superlow where the Turing reducibility is replaced
with a much stronger reducibility known as truth table reducibility, of which bounded
Turing reducibility is a weakened form, as alluded to above. The details of how this
is defined are not relevant at the moment, but it seems natural that lowness, bounded
lowness and superlowness should be closely related to one another, as should highness,
bounded highness and superhighness. However, Anderson, Csima and Lange showed that
this was not the case: there are sets that are low and also bounded high, or high and also
bounded low.

We answer some of the open problems from that work by first constructing a set that is
low, bounded low, but not superlow and then constructing a set that superhigh but not

7



bounded high. Wu and Wu [30] answered these questions independently using slightly
different methods, and did additional work on some of the other problems. They also
proved an analogue of pseudo-jump inversion, which has been used classically to help
prove the Sacks Jump Inversion Theorem, as in [28]. We will remark more on this and
other partial results in this direction after we have investigated a useful characterization
of bounded Turing reductions.

Such a characterization was initially provided by Anderson and Csima [2]|, where they
related reductions to @™ to the Ershov hierarchy, which consists of the sets obtained by
generalizing the notion of w-c.e. sets to arbitrary computable ordinals: the a-c.e. sets. We
produce a relativized version of this characterization, allowing us to replace A <ur B™ by
the equivalent condition that A is w”-b.c.e. in B, where we modify the definition of a-c.e.
in a precise way to bound parts of it in a computable fashion. This is needed so that it
is agreeable with the computable bounds used in the bounded Turing reduction and the
bounded jump. The definition is somewhat unwieldy, but not without merit: we then use
it to prove that the bounded hierarchy is non-trivial at any level, i.e. that B and B have
a set X such that B <upr X <up B?, so that bounded jump inversion is non-trivial.

We also prove that a certain result of Epstein, Haas and Kramer [15] is not detrimental
to the use of the Ershov hierarchy in Anderson and Csima’s [2] work. That result showed
that which sets are w?-c.e. is ultimately up to how the computable ordinals are coded in
the system of notation used to represent them, which would mean that any effort to, for
instance, produce a set that is not w?-c.e. would be highly dependent on how ordinals are
coded and so results that use such sets would not be well-defined. However, we mitigate
this by showing that we can limit this ambiguity by enforcing additional information to be
coded about the ordinals we use, and such coding is naturally performed with the ordinals
of the form w”, which are the ones we are interested in using.



Chapter 2

Degrees of Categoricity Above Limit
Ordinals

The material in this chapter is joint work with Barbara Csima, Matthew Harrison-Trainor
and Mohammad Assem Mahmoud. We worked on this by having reqular working sessions
with the whole group; everyone contributed to every section and result. My focus was
primarily Theorem 2.3, several of the claims in Theorem 2.6, much of Theorem 2.7 and
verification of results of Hirschfeldt and White [19] that were needed in the main construc-
tions. The content of this chapter appears in [9].

2.1 Background

Recall Definition 1.2:

Definition 1.2 (Fokina, Kalimullin and Miller [16]).
If {c| A is c-computably categorical } = {c|c >d}, then we say that d is the degree of
categoricity of A.
If A has degree of categoricity d and there exist computable copies A; and A, of A
such that every isomorphism f : A4; ¥ Ay computes d, we say A has strong degree of
categoricity d.
Finally, we say d is a (strong) degree of categoricity if there exists a computable struc-
ture with (strong) degree of categoricity d.



Fokina, Kalimullin, and Miller showed that every degree that can be realized as a difference
of computably enumerable (d.c.e.) sets in and above 0("), for any n < w, and also the degree
0« are degrees of categoricity. Later, Csima, Franklin, and Shore [12] showed that every
degree 0(®) for any computable ordinal a, and every degree d.c.e. in and above 0(® for any
successor ordinal «; is a degree of categoricity. Csima and Ng have announced a proof that
every AJ degree is a degree of categoricity. Recently, Bazhenov, Kalimullin, and Yamaleev
[5] have shown that there is a c.e. degree d and a structure .4 with degree of categoricity d,
but d is not a strong degree of categoricity for A. Csima and Stephenson [14] have shown
that there is a structure of finite computable dimension that has a degree of categoricity
but no strong degree of categoricity.

It is often the case when trying to prove some property P(«) for ordinals « that things
get tricky at limit ordinals. Roughly speaking, if o is a successor ordinal and we know
something must happen before o, we can safely say it has happened by a—1. For « a limit
ordinal, in such a situation there is no canonical choice of earlier ordinal to look at. This
is why the methods of [12] did not work above limit ordinals.

Our main result is:

Theorem 2.7.
Let o be a computable limit ordinal and d a degree c.e. in and above 0(®). There is a
computable structure with (strong) degree of categoricity d.

This fills in a gap that was missing from [12] above limit ordinals, making further progress
towards Question 5.1 of that paper.

Recall that the theory of a structure is the set of first order sentences true in the structure,
and that models of the same theory need not be isomorphic. The type of a tuple in a
structure is the set of formulas (with the appropriate number of free variables) that the
tuple satisfies in the structure. The types of a theory are the types that are realized by
models of the theory. A type is called principal if there is one formula from which the
rest follow. A model of a theory is prime if it elementarily embeds into all other models
of the theory, and when everything is countable, this is the same as saying that the model
only realizes principal types. In a sense, prime structures are the most basic or natural
structures. Our second result gives progress towards a question of Bazhenov and Marchuk.

Question 2.1 (Bazhenov and Marchuk [6]).
What can be the degrees of categoricity of computable prime models?

A computable prime model — in fact, as [6] shows, a computable homogeneous model
— is always 0“*D-categorical, as we can ask 0«1 if two tuples satisfy the same type.
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Bazhenov and Marchuk construct a computable homogeneous model with degree of cate-
goricity 0w+ The complexity here is in the structure itself, rather than in the theory.
To build a prime model with degree of categoricity 0w+ the complexity must be in the
theory: If A is a computable prime model of a theory T, then A is 7" ® 0(“)-categorical as
T’ can decide whether a formula is complete, and 0(“) can decide whether a formula holds
of a tuple in A. We build a computable prime model with degree of categoricity 0+ (or
any other degree c.e. in and above 0(+)), showing that the bound cannot be lowered.

Theorem 2.9.
Let d be a degree c.e. in and above 0. There is a computable prime model A with
strong degree of categoricity d.

Bazhenov and Marchuk stated in [6] that a careful examination of the structures con-
structed in [16] shows they are prime models, so that all degrees d.c.e. in and above 0(™)
for a finite n, as well as 0, are strong degrees of categoricity of prime models. Along
the way to proving Theorem 2.9 we verify in Theorem 2.4 that the building blocks used
by Csima, Franklin and Shore for their examples in [12] are prime. This is enough to see
that their structures realizing degrees of categoricity less than or equal to 0(“) are prime.
However, the structure in [12] with degree of categoricity 0(“*1) is not prime. With The-
orem 2.9, we see that all known degrees of categoricity less than or equal to the 0+
bound can be realized by a prime model.

2.2 Categoricity Relative to Decidable Models

As a warm-up to illustrate the methods used to prove these two theorems, we give a simple
proof of a result of Goncharov [17] that for every c.e. degree d, there is a decidable prime
model with degree of categoricity d with respect to decidable copies. Recall that a structure
is said to be decidable if its full elementary diagram is computable. In [17], Goncharov
made the following definitions:

Definition 2.1 (Goncharov [17]).
Let d be a Turing degree and A a decidable structure. Then A is d-categorical with re-
spect to decidable copies if for every decidable copy B of A, d computes an isomorphism
between 4 and B.

Definition 2.2 (Goncharov [17]).
Let d be a Turing degree and A a decidable structure. Then d is the degree of cate-
goricity of A with respect to decidable copies if:
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e A is d-categorical with respect to decidable copies, and

e whenever A is c-categorical with respect to decidable copies, ¢ > d.

It is not hard to see that between any two decidable copies of a prime model, there is a
0’-computable isomorphism. Goncharov showed that any c.e. degree can be the degree of
categoricity with respect to decidable copies of a prime model. We give a different proof,
which we think is simpler, and which demonstrates some of the techniques that we will use
later.

Theorem 2.2 (Goncharov [17, Theorem 3]).
Let d be a c.e. degree. Then there is a decidable prime model M which has strong
degree of categoricity d with respect to decidable models.

Proof:
Let D € d be a c.e. set. We will construct the structures M and N. They are the
disjoint union of infinitely many structures M, and N,,, with M,, and N,, picked out
by unary relations R,,. The nth sort will code whether n € D. Fix n. The structure M,,
will have infinitely many elements (a;);e,. There will be infinitely many unary relations

(U¢) e, defined on M,, so that:
ag €Uy <= n € Dy 4
where n € D, s means that n enters D at exactly stage s, and
a; ¢ Ug for i >0 and all s.

Similarly, AV,, will have infinitely many elements (b;);e, with the unary relations defined
so that:
b;eUs<—=i=sand ne€ Dy ,.

It is easy to see that we can build computable copies of M and AN. These copies are in
fact decidable.

Claim 2.2.1: M and N are decidable.

Proof of Claim: Given a formula ¢(x1,...,x,) with k quantifiers and a;,,...,a;, € M,
it is not hard to see that M & ¢(a;,,...,a;,) if and only if the finite substructure M’ of
M whose domain consists of ag,...,ak, and a;,, ..., a;, also has M’ E p(a;,,...,a;,).

Thus M is decidable.

For NV, suppose we have a formula ¢(z1,...,2,) with at most k quantifiers and which
uses only some subset of the relations Uy,...,U,. Let b;,...,b;, be elements of N.
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Then N & p(b;,,...,b;,) if and only if the finite substructure N of M whose domain
consists of by, ..., bgsn and b;,, ..., b; also has N & ¢(b;,, ..., b;,). Thus N is decidable.
]

Claim 2.2.2: M and N are isomorphic.

Proof of Claim: It suffices to show that for each n, M,, and N,, are isomorphic. If n ¢ D,
then a; = b; induces an isomorphism between M,, and N,,. If n € D,; ,, then the map

ag — bs
a; — by when 0<i<s
a; = b; when i > s
is an isomorphism between M,, and N,,. ]

Claim 2.2.3: M and N are prime.

Proof of Claim: It suffices to show that each M,, and N, are prime, since these struc-
tures are determined inside M and N uniquely by the relation R,. It is not hard to
see that M,, and N,, are models of an Ry-categorical theory, and hence are prime. =

Claim 2.2.4: Any isomorphism between M and N can compute D.

Proof of Claim: Let g be an isomorphism between M and N. For each n, let (a;);e, and
(b)icw be the elements in the definition of M,, and N,,. Let s be such that g(ag) = bs.
Then n e D if and only if n € D;. ]

Claim 2.2.5: Gi/\\//en a computable copy M of M, D can compute an isomorphism be-
tween M and M.

Proof of Claim: For each n, let Mn be the structure with domain R,, in M. 1t suffices
to compute an isomorphism ¢ between M, and M,, for each n. Let (¢i)icw be the
elements of Mn If n ¢ D, no relation U; holds of any of the the elements (a;);e, or
(¢i)iew- SO a; + ¢; is an isomorphism. On the other hand, if n € D, then for some unique
s, ag € Us. We can look for ¢, such that ¢, € U,. Map ag to ¢; map each other a; to
some other c;. ™

These claims complete the proof of the theorem. n
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2.3 Back-and-forth Trees

Fix a path through the computable ordinals, as in Ash and Knight [4]. We will identify
computable ordinals with their notation on this path. We will always first fix a limit ordi-
nal o and work below it. Recall that one can decide effectively whether a given computable
ordinal is a limit ordinal or a successor ordinal. For each limit ordinal 3 < «, fix a funda-
mental sequence for [, that is, an increasing sequence of successor ordinals whose limit is

3.

Hirschfeldt and White [19] defined, for each successor ordinal 3, a pair of trees Az and
&z which can be differentiated exactly by 8 jumps. These trees are called back-and-forth
trees.

Definition 2.3 (Hirschfeldt and White [19, Definition 3.1]).
Back-and-forth trees are defined recursively in . We view these as structures in the
language of graphs with the root node distinguished.

We take A; to be the tree with just a root node and no children, and we take &£ to be
the tree where the root node has infinitely many children, none of which have children.
See Fig. 2.1. We say that these trees have back-and-forth rank 1.

Suppose 3 is a successor ordinal. Define Ag,; as a root node with infinitely many
children, each the root of a copy of &3, and define £3,; as a root node with infinitely
many children, each the root of a copy of Az, and also infinitely many other children,
each the root of a copy of £3. See Fig. 2.2. These trees have back-and-forth rank 3+ 1.

Now suppose [ is a non-zero limit ordinal, and let g, 31, ... be a fundamental sequence
of successor ordinals for 3, that is, a sequence of successor ordinals below  with limit
B. We first define a family of helper trees Lz where k € w U {oo}. Define Lg o to
consist of a root node whose children are root nodes of copies of Ag,, and such that
each copy appears exactly once as a child. For k € w, Lg} has a root node whose
children are root nodes of copies of Ag,,...,As,,5,.,:E8,,,,- - - Where again each copy
appears exactly once as a child. Such trees are shown in Fig. 2.3. We say these trees
have back-and-forth rank 5.

We can now define Ag,; and &g, for the non-zero limit ordinal 8. For Ag,;, we have a
root node with infinitely many children, each the root node of a copy of L3, such that
for each k € w, Lg} appears infinitely many times. The definition of &g, is similar,
except k is drawn from w U {oo}. See Fig. 2.4. These trees have back-and-forth rank

b+1.
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Figure 2.1: A; and &;

-Aﬁ+1 gB+1

|Aﬁo||AB1||Aﬂ2| 'Aﬂt): |A5k| |Sﬁk+1

|55k+2

Figure 2.3: Helper trees L5 o and Lg, for k € w for the non-zero limit ordinal (.
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Figure 2.4: Ag,; and &g,q for the non-zero limit ordinal .

The next two lemmas piece together the facts that we will need about the back-and-forth
trees, first for arbitrary g, and second some additional properties for finite 5 in particular.
These facts come from Hirschfeldt and White [19] and Csima, Franklin and Shore [12].

Lemma 2.3.
Let o be a computable ordinal. For a successor ordinal 3 < «, the structures Ag and
&s satisty the following properties:

1. Uniformly in  and an index for a E% set S, there is a computable sequence of
structures C, such that

reS—=C,2& and 2¢S5—=C, 2 Az

2. Uniformly in 3, there is a Z% sentence ¢ such that £z = ¢ and Ag ¥ ¢.

3. Ag and &z are uniformly 0(%)-categorical.

Proof-
For (1), take (C,), to be the computable sequence of trees given by Proposition 3.2 in
Hirschfeldt and White [19].

For (2), take ¢ to be the sentence given by evaluating the formula guaranteed by Lemma
3.5 in Hirschfeldt and White [19] for B = & at its own root node. The complexity of
¢ is the natural complexity of £z, which is ¥5. This lemma says that for any tree T,
T E @ if and only if T = &s.

Finally, for (3), we use a result from Csima, Franklin, and Shore [12] about back-and-
forth trees. We will consider Ag; the case for £ is identical. We have that Az is a
back-and-forth tree, and hence if C is a computable structure isomorphic to Az, then it
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is also a computable back-and-forth tree. Corollary 2.6 in [12] allows @(?) to uniformly
compute an isomorphism between these two trees when the back-and-forth rank of the
trees is at most . Since the rank of Az is 8 by construction, the isomorphism is
uniformly computable in 0(%). O

Now for finite ordinals # (and writing n for ), we have some additional properties. We
will state the lemma in full, including properties that were covered by the previous lemma.
We think that these facts are well-known, but we do not know of a reference in print.

Lemma 2.4.
For 0 < n < w, the structures A,, and &, satisfy the properties:

1. Uniformly in n and an index for a 30 set S, there is a computable sequence of
structures C, such that

reS<—=C,z2¢, and wx¢S<—=C,2A,.

2. For each n, there is an elementary first-order 3, sentence ¢,,, computable uni-
formly in n, such that &, £ ¢ and A, ¥ .

3. A, and &, are prime.
4. A, and &, are 0("-categorical uniformly in n.

Proof -

(1) and (4) are the same as in the previous lemma. We show using induction on n
that these sequences satisfy (2) and (3) as well. It is easy to see that 4; and & are
prime models of their theories and that they are distinguishable (in the sense of (2) in
the statement of the lemma) by the existential sentence ¢y := Jz3y(x # y). Assume
now that A, and &, are prime and distinguishable by a first-order 3,, sentence ¢, (in
the sense that &, = ¢, but A, ¥ ¢,). We show that A,,; and &,,; are prime and
distinguishable by a first-order 3,,,; sentence @, 1.

It is not hard to see that we can take ¢, to be the sentence
(3z)[-¢n[= ] A (x is a child of the root node)]

where z is a new variable not appearing in ¢,, and @, [< =] is the formula obtained from
©n by bounding every quantifier to the subtree below z. (Note that in a tree of rank
n, if z is a descendant of z, i.e. there is a path from z to z, the length of the path is
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at most n, and so this is first-order definable and does not change the quantifier rank.)
gn+1 = Pn+1 but An+1 # Pn+1-

It remains to show that A,,; and &,,1 are prime. The same method will work for both
structures. Let a be an arbitrary tuple in &,,,;. We describe a formula that isolates the
type of the tuple a. Let rq,...,r; be the children of the root which are the roots of
subtrees containing elements of a; say that a = (as,...,a,) where a; is in the subtree
below 7;. (Note that we can re-order the tuples as we like, as if the type of some
permutation of a is isolated, so is a.) By the induction hypothesis, we know that the
subtree with root r; is prime for every ¢. Hence for each 7 = 1,..., k there is a formula
which isolates the type of the tuple a; in the subtree with root r;. There is also, for
each r;, a formula (either ¢,, or -y, ) which distinguishes between whether the subtree
below r; is isomorphic to A, or &,. So we can isolate the type of a by saying that there

are children rq, ...,y of the root such that a; satisfies the formula, in the subtree below
r;, which isolates it, and by saying whether the subtree below each r; is isomorphic to
A, or &,. O

Fokina, Kalimullin, and Miller [16] showed that there is a structure A with strong degree
of categoricity 0(+). We note the well-known fact that one can also have A be a prime
model. Our proof follows that of Csima, Franklin and Shore [12].

Theorem 2.5.
There is a computable structure A4 with strong degree of categoricity 0(“) such that A
is a prime model of its theory.

Proof sketch:
The structure is just the disjoint union of infinitely many copies of each &, for n < w.
Theorem 3.1 of Csima, Franklin and Shore [12] shows that this has strong degree of
categoricity 0“), and it is not hard to see using Theorem 2.4 that this structure is
prime. O

2.4 C.E. In And Above a Limit Ordinal

We begin this section by a short discussion of how we code a c.e. set into a structure.
Consider a c.e. set C. If one knows, for each n, at what point the approximation to C'(n)
has settled, then one can compute C. Moreover, one does not need to know exactly when
C' settles, but just a point after which C'(n) has settled. In particular, any sufficiently
large function can compute C'. Moreover, C itself can compute such a function. Following
the terminology of Groszek and Slaman [18], we say that C' has a self-modulus.
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Definition 2.4 (Groszek and Slaman [18]).
Let F:w - w and X Cw. Then:

e F is a modulus (of computation) for X if every G:w — w that dominates F
pointwise computes X.

e X has a self-modulus if X computes a modulus for itself.

The self-modulus of a c.e. set C' is the function f(n) = us(Cs(n) = C(n)). Groszek and
Slaman showed that every AY or a-CEA set has a self-modulus. In fact, the self-modulus
of a c.e. set has a nice form: it has a non-decreasing computable approximation.

Definition 2.5.
A function F:w — w is limitwise monotonic if there is a computable approximation
function f:w x w — w such that, for all n,

e F(n)=lim,o f(n,s).
e For all s, f(n,s) < f(n,s+1).

In fact, it is well-known and an easy exercise to show that the sets of c.e. degree are exactly
those with limitwise monotonic self-moduli. These remarks also relativize.

The next lemma encodes a limitwise monotonic function into the isomorphisms of copies
of a computable structure. Any isomorphism dominates the limitwise monotonic function;
but it does not seem to be the case that dominating the limitwise monotonic function is
sufficient to compute isomorphisms.

Lemma 2.6.
Let a be a computable limit ordinal. Let f:w — w be limitwise monotonic relative to
0(®). There is a structure with computable copies M and A such that:

1. Every isomorphism between M and N computes a function which dominates f.

2. f®0® computes an isomorphism between any two computable copies of M and

N.

Proof -
Let @ be a computable operator such that f(n) = lim,_. ®2‘”(n,s) and this is mono-
tonic in s. Write (®) = @,., 2 for successor ordinals v < a. By convention, for
B < o, we say that ®2”(n,s) converges if the computation ®2(n, s) halts, but the
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only part of the oracle @™ = @, ., @) that is read during the computation is that
part with v < 8. So if @Q(ﬂ)(n,s) = m then @Q(Q)(n,s) = m, and because « is a limit
ordinal, if ®2”(n,s) = m then ®2”(n, s) = m for some successor ordinal § < .

Let (Ap)p<a and (€3)p<a be as in Theorem 2.3. We will construct the structures M
and N. They are the disjoint union of infinitely many structures M,, and N,,, with M,,
and N,, picked out by unary relations R,,. The nth sort will code the value of f(n).

Fix n. The structure M,, will have infinitely many elements (a;);e, satisfying a unary
relation S. Each of these elements will be attached to, for each successor ordinal § < «,
a “box” M, 3 which contains within it a copy of either Az or £3; each of the boxes are
disjoint. By this we mean that there are binary relations Tz such that Ts(a;, z) holds
for exactly those x € M, 3. We define the structure M, g in the language of Theorem 2.3
so that:

1. Myp = Ag for all 5.
2. M, z=Es, i>1,if there is s such that 2 (n, s) > i.

3. M, z=Ag, i>1, otherwise.

Note that the condition in (2) is E% and so we can build such a structure M,, com-
putably.

Similarly, A,, will have infinitely many elements (b;);e., €ach of which is attached to,
for each § < a, a box N; g which contains within it:

1. N = s if there is s such that ®2” (n, s) > i.

2. N, g = As otherwise.

Again, the condition in (1) is E% and so we can build such a structure N,, computably.

Claim 2.6.1: Fix n.

1. For each j < f(n), there is 5 < v such that:

o for <3, Mjs,2N,, 2 A,
o for v> 03, Mj, 2N, 2E,,

2. For each j > f(n) and f<a, M52 N, 52 Mog= As.
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Proof of Claim: For (1), it is clear from the definitions of M, 5 and Nj 5 that for all
B <a, Mg 2N,z Since j < f(n), there is s such that 2V (n,s) = f(n) >j. In
particular, there must be some [ < « such that there is s with @g(ﬁ)(n,s) > 4. Let 8
be the least such ordinal. Then for all v > 3, there is s such that @zm(n,s) > 4, and
50 M1, 2N, 2 E,. By choice of 3, for 7y < 3, there is no s such that ®2(n, s) > j,
and so M1, 2N, 2 A,

For (2), it is clear that M1 3 =2 N, 3 for each j > f(n) and each < a, and it is also

clear that Mgz = Ag for each § < a. If j > f(n), then since ® is limitwise monotonic
approximation to f, ®2”(n,s) < f(n) <j for all s and 5. Thus N,z = Ag for all 3. m

Claim 2.6.2: M and N are isomorphic.

Proof of Claim: It suffices to show that for each n, M,, and N,, are isomorphic. Fix n.
Using Claim 2.6.1, we see that the map

ao v by(n)
a; — by when 0<i < f(n)
a; > b, when i > f(n)
extends to an isomorphism between M,, and N,,. [

Claim 2.6.3: Any isomorphism between M and A can compute a function which dom-
inates f.

Proof of Claim: Let g be an isomorphism between M and N. We will compute, using
g, a function ¢ which dominates f. For each n, define g(n) as follows. Let (a;)ie,
and (b;);eo be the elements in the definition of M,, and N,. Then g(n) is the number
satisfying g(ao) = by(n)-

To see that g(n) > f(n), we use Claim 2.6.1. For each § < o, My g = Ag, but if j < f(n),
there is 5 < a such that N 3 = £3. Thus no isomorphism can map ag to b; for j < f(n),
and so g(n) > f(n). m

Claim 2.6.4: Given a computable copy N of N , f ®0(® can compute an isomorphism
between N and V.

It is more convenient for the proof to consider A rather than M in this claim, but as
they are isomorphic it does not matter which we choose.

Proof of Claim: For each n, let Jvn be the structure with domain R, in~f\7 . It suffices to
compute an isomorphism g between N,, and N, for each n. Inside of NV,,, let (¢;);e, list
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the elements x satisfying S(z). For each ¢;, let JVZ 3 be the tree whose domain consists of
the elements y satisfying T3(c;,y). To begin, we will define g on (b;);e, € N,,. Compute
f(n). Using 0(®), look for f(n) elements c; such that, for some 8 < «, /Tfi,ﬁ z &s.
This search is computable relative to 0(*) by Theorem 2.3 (2), and by Claim 2.6.1 we
know that there are exactly f(n) such elements and so the search will terminate after
finding every such element. Rearranging (¢;)c,, we may assume that these elements
are Cop, ... ,Cf(n),l.

Now, for each k < f(n), find the least [ such that Ny, = &g, , and the least 7, such
that NV, 2 &, Again, this is computable in 0(®) by Theorem 2.3 (2). Note that we
must ask 0(%) to determine what f; and 7y are least. The sets {fo,...,Bfmn)-1} and
{70+, Yfm)-1} must be identical including multiplicity (but possibly in a different
order) as N, and N, are isomorphic. So by rearranging (¢i)iew ONCE again we may
assume that [y =~ for each k < f(n).

We have now rearranged the list (¢;);e, so that for each i and 5 < a, N; 5 = /\~/;5 Define
g so that g(b;) = ¢;. For each i and § < o, N; 3 = N g are isomorphic to either Ag or
s, which are uniformly 0(%)-categorical (Theorem 2.3 (3)), and we can compute using
0(®) which case we are in. So we can define g on N; 5 to be an isomorphism to /\7,5
Thus ¢ is an isomorphism from A, to N,. n

These claims complete the proof of the theorem. n

Using this lemma, and taking the limitwise monotonic function to be the self-modulus of
a c.e. set, it is not hard to prove our main theorem.

Theorem 2.7.
Let o be a computable limit ordinal and d a degree c.e. in and above 0(®). There is a
computable structure with (strong) degree of categoricity d.

Proof:

Fix o and let D € d be a set c.e. in and above 0(®). Since D is c.e. in and above
0(®) it has a self-modulus f that is limitwise monotonic relative to 0(®). Consider
the structure M constructed in Theorem 2.6 for this f. We will enrich this structure
slightly to produce a new structure §. Let S, be the computable structure with strong
degree of categoricity 0(®) constructed in Theorem 3.1 of Csima, Franklin and Shore
[12]. The new structure S consists of M and a disjoint copy of S,, and a new unary
relation R such that R(x) holds exactly when x belongs to the copy of S,. We claim
that S has strong degree of categoricity d.

First, suppose that 7 is some other computable copy of §. We will show that there is
a d-computable isomorphism between § and 7. Using the relation R, we may identify
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the component of 7 isomorphic to S,. Since S, has (strong) degree of categoricity
0(®) < d, we can d-computably find an isomorphism between the copies of S, in & and
T. We can also identify the component isomorphic to M in each structure. By choice
of M, any two such copies have an isomorphism between them computable in f ® 0(),
and D can compute this self-modulus f. Hence d can computably produce such an
isomorphism, since it can compute f @ 0(®. Gluing these two isomorphisms together
gives us the result.

Since S, has strong degree of categoricity 0(®), there is a computable copy S, of S,
such that every isomorphism between the two computes 0(®). Let S be a computable
copy of § built in the following way. Rather than using the “standard” copy S,
use the “hard” copy S, of S,. Additionally, rather than using M, instead use N as
built in Theorem 2.6. Any isomorphism between S, and S, computes 0(®), and any
isomorphism between M and N must compute a function that dominates f. Let g
be any isomorphism between S and S. Then by using R, we can restrict g to an
isomorphism between S, and S, and hence g can compute 0(®). Since g can also be
restricted to an isomorphism between M and A, it must compute a function dominating
f. But f is a modulus for D computable in 0(2), and hence g must be able to compute
D since it can compute 0(®) and a function dominating f. Hence ¢ can compute d. [J

We now turn to prime models, working above 0). Essentially, our work here is to check
that in taking o = w in the previous theorem and lemma, the construction results in a
prime model.

Lemma 2.8.
Let f:w — w be limitwise monotonic relative to 0(+). There is a prime model with two
computable copies M and N such that:

1. Every isomorphism between M and N computes a function which dominates f.

2. f®0® computes an isomorphism between any two computable copies of M and

N.

Proof -
The construction is exactly the same as that of Theorem 2.6 with a = w. We refer to
the structures Ag and £z of Theorem 2.3 as A,, and &,, n <w, but of course these are
the same. It remains to argue, using the properties from Theorem 2.4 which hold only
for the structures A,, and &, with n finite, that the resulting structure N is prime.

Recall that A is the disjoint union of structures N,,, each of which satisfies the relation
R,. So it suffices to show that the structures N, are prime. Also recall that N, was
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defined as follows: there were infinitely many elements (b;):e, (satisfying the unary
relation S), each of which is attached to (by binary relations 7,,), for each m < w, a
box N, which contains within it:

1. Nim 2 &,y if there is s such that 2 (n,5) > i.

2. Nim 2 Ay, otherwise.

By Claim 2.6.1 of Theorem 2.6, for each i, either i < f(n) and there is some m; < w
such that:

e for /< m;, ./\/;75 = .Ag,
e for /> m;, 'N’l}f ~ &,

or i > f(n) and for all m < w, N, 2 A,. Note that the sequence {m;};<s(») is non-
decreasing.

By Theorem 2.4 (2), for i < f(n), the automorphism orbit of b; is determined by the
first-order formula with free variable z which expresses that S holds of x, that the
structure with domain T,,,(x,-) satisfies ¢,,, (and so is isomorphic to &,,), and that
the structure with domain 7,,,_1(x,-) satisfies ~¢,,,-1 (and so is isomorphic to A,,,_1).
For i > f(n), the automorphism orbit of b; is determined by the first-order sentence
with free variable x which expresses that S holds of z, and that the structure with

domain Ty, ., (,") satisfies =y, , (and so is isomorphic to A

my-1)-

Fix a tuple ¢ from N,,. We will give a first-order formula defining the orbit of ¢. We
may assume that whenever ¢ contains an element of N; ,,, ¢ contains b; as well. We can
break the tuple ¢ up into finitely many elements b;,,...,b;, and finitely many tuples
Cim from N . The orbit of ¢ is determined by the orbits of b;,,...,b; (each of which
is determined by a first-order formula as described in the previous paragraph), the fact
that T,(b;,y) holds for any y € ¢ ,,, and the orbits of each of the tuples ¢;,, within

Nim. The latter orbits are first-order definable by Theorem 2.4 (3). O

Theorem 2.9.
Let d be a degree c.e. in and above 0. There is a computable prime model A with
strong degree of categoricity d.
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Proof-
The construction of such a model is similar to Theorem 2.7, except we replace M and
N from Theorem 2.6 with those M and N from Theorem 2.8 (which are actually the
same structures, if a = w), and we also replace the “easy” and “hard” copies of S, with
copies of the structure from Theorem 2.5 such that any isomorphism between them
computes 0). The same argument from Theorem 2.7 shows that this new structure
has strong degree of categoricity d. It remains to show that such models are prime;
they are the disjoint union of prime structures, distinguishable by the relation R, and
hence must be prime themselves. O
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Chapter 3

Coding Isomorphisms With Relations

The material in this chapter is joint work with Barbara Csima and Jonny Stephenson.
The main details and the general course of the results were produced by equal discussion
among all three co-authors. I was responsible for the details and write-up of each proof
in Sections 3.2 to 3.4. In particular, I authored the entirety of Theorem 3.7 based on a
short proof sketch produced by personal discussion with Stephenson. Much of the content
excluding Section 3.4 appears in the joint work [10].

3.1 Background

In computable structure theory, we are interested in studying mathematical structures
from a computable point of view, so it is natural to regard two computable copies of the
same structure are being equivalent if they are isomorphic via some computable isomor-
phism. However, there are many examples of very standard structures for which there are
computable copies which are not computably isomorphic. For example, consider (w,<),
the linear order with order type w. We let N/ denote the usual decidable copy. One can
readily construct another computable copy A of (w,<) such that the unique isomorphism
between N and A is of Turing degree 0’. In fact, in the case of (w,<), it is easy to show
that 0’ can compute the isomorphism between any two computable copies. So there is
a sense in which 0’ is the degree of difficulty of computing isomorphisms between copies
of (w,<). This gives rise to Definition 1.2, but we repeat it here since it is particularly
important:
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Definition 1.2 (Fokina, Kalimullin and Miller [16]).
If {c| A is c-computably categorical } = {c|c > d}, then we say that d is the degree of
categoricity of A.

If A has degree of categoricity d and there exist computable copies A; and A, of A
such that every isomorphism f : 4; 2 Ay computes d, we say A has strong degree of
categoricity d.

Finally, we say d is a (strong) degree of categoricity if there exists a computable struc-
ture with (strong) degree of categoricity d.

In addition to introducing this definition, Fokina, Kalimullin and Miller [16] showed that
every degree d which is 2-c.e. in and above 0(™) for some n € w is a strong degree of cate-
goricity. This was extended by Csima, Franklin and Shore [12] to 0(®) for any computable
ordinal o, and degrees 2-c.e. in and above 0(® for computable successor ordinals a.. Here
2-c.e. sets are the difference of c.e. sets, which can also be seen as a restricted version of
w-c.e. where we bound the number of changes by the constant 2 function.

Bazhenov, Kalimullin, and Yamaleev [5] as well as Csima and Stephenson [14] constructed
structures that have a degree of categoricity, but no strong degree of categoricity.

Many of the above papers use the same approach for computing the degree of categoricity
of the structures constructed. The structures are built in such a way that there is a
computable unary relation U on one of the copies of the structure, so that if f is the
isomorphism between the copies, then the isomorphism has degree f(U).

This raises the natural question: To what extent is this possible?

The reader may note that we are restricting attention to computable subsets of the domain
A of a structure A, rather than, for instance, working within A" for arbitrary n, or even
in A<“. Apart from our original motivating observations, there is a very straightforward
reason for this restriction: if we work with tuples instead, then we can trivially recover the
degree of an isomorphism f from f(R), where R is chosen entirely independently of the
structure we are working with:

Observation 3.1.
If A is a computable structure and f : A — B is an isomorphism to another computable

copy B, let R:={(n,n+1)}ne. Then f(R)={(f(n),f(n+1))} computes f.

Let us first examine the situation for unary relations on the linear order (w,<). We begin
with the following proposition.
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Proposition 3.2.
Let A be any computable copy of (w, <), and let N denote the standard decidable copy.
Let f: A — N be the isomorphism between the two copies. Let U = {m | (3In)[n <V
mam<An]}. Then f(U)=r f.

Proof Sketch:
Suppose we are given f(U). We show how to build the isomorphism f. First, find the

least member of f(U), say ng. Then we know there are exactly ng-many numbers that
are <A-below 0. We reveal the order <A until we find ag <4 a; <A - <A a,,-1 <A apy =0
and define f(a;) = i. We have now defined f on an initial segment, and proceed
inductively. O]

However, there is an asymmetry with (w, <), as we will see that there exists a computable
copy A of (w, <) such that for f: N'= A there is no computable U with f(U) =r f. Indeed,

this will follow from an easy modification to the proof of the following Theorem.

Theorem 3.4.
There are two computable copies A and B of (w,<) such that if f: A - B is the

isomorphism between them, then f is of Turing degree 0’, and there is no computable
set U such that f(U) = f or f~1(U) =r f.

Note that Theorem 3.2 implies that for any computable copy A of (w, <), if f : A - N is the
isomorphism between A and the usual decidable copy of the order, there is a computable
set U such that f(U) =r f; this exposes a fundamental distinction between effectiveness
of isomorphisms mapping into and out of the standard copy N of (w,<).

One might wonder whether this phenomenon is somehow more about mapping into and
out of decidable structures, rather than about the particular choice of the structure (w, <).
This raises the question:

Question 3.3.
Suppose A is a computable structure and that B is a decidable copy isomorphic to A.
Suppose that the structures are rigid and that f: A — B is the isomorphism between
them. Must there be a computable U such that f(U) = f7?

This conjecture turns out to be rather easy to dismiss; indeed, all we need to do is to look
at (w?,<) rather than (w,<).

Theorem 3.6.
Let N2 be a decidable copy of (w?,<). There is a computable copy A of (w?, <) such that
if f: A— N2, then for no computable unary relation U on A do we have f(U) =r f.
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Note that in Theorem 3.4, the isomorphism constructed has degree 0’, which is the degree of
categoricity of the structure in question, (w,<). However, the isomorphism f we construct
above is clearly limit computable, so it does not have degree 0", the degree of categoricity
of (w?,<). So in this sense, Theorem 3.6 is a weak analogue of Theorem 3.4. However, it is
possible to modify the construction above to combine it with the method of the theorem
for the (w,<) case to code at least @” into the isomorphism.

Theorem 3.7.
Let N2 be a decidable copy of (w?,<). There is a computable copy A of (w?, <) such that
if f: A — N2, then for no computable unary relation U on A do we have f(U) =r f,
and furthermore, f > @".

Although this is not enough to show that f =y @ it is a good indicator that such a proof
may be quite difficult, since although Theorem 3.6 is only finite injury, the additional
constraint in Theorem 3.7 naturally pushes one to use an infinite injury argument. (See
Soare [28] for a detailed introduction to injury proofs, both finite and infinite.) We present
both Theorem 3.6 and Theorem 3.7 since it is easier to understand the requirements in the
simpler setting of the former, and allows us to highlight only the differences in the proof
of Theorem 3.7.

Section 3.2 is devoted to the proof of Theorem 3.4, Section 3.3 to proof of Theorem 3.6
and Section 3.4 to the proof of Theorem 3.7.

3.2 Isomorphisms on copies of (w,<)

This section is devoted to the proof of Theorem 3.4, which we restate here.

Theorem 3.4.
There are two computable copies A and B of (w,<) such that if f: A — B is the

isomorphism between them, then f is of Turing degree 0’, and there is no computable
set U such that f(U)=r f or f~1(U) =r f.

Proof:
We aim to meet, for all e, j € w, the following requirements:

R jy: If . =U for some set U, then (EIx)[CI);(U)(x) # f(z)], and
Stejy:  1If pe =U for some set U, then (Hx)[q)]f_lw)(x) £ f~1(z)].

To do this, we will build A and B by stages, enumerating the least unused element into
the domains of A and B, and perhaps more, at each stage. We will enforce that there are
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only finitely many enumerations at any given position, so that A and B are isomorphic
to (w,<). At each stage s, we let As and B denote the partially constructed portions
of their respective structures at that stage, and f, the partial isomorphism between
A, and B,. Note that by enumerating into A and B at different positions, we can
force that fo(z) # fe(x) or f71(y) # fL(y), so f = lims, e fs need not extend any
fs. Nevertheless, since any given position will change at most finitely often, f will
be computably approximable by this sequence of partial isomorphisms. That is, f will
extend longer and longer initial segments of the partial isomorphisms, so that for a fixed
initial segment of f, there is eventually some stage after which all partial isomorphisms
extend that initial segment.

An important note: although we aim to explicitly meet all requirements through the
construction, we will only implicitly meet some of them. If ¢, is the characteristic
function of some set U which is finite or cofinite, then we do not need to meet Ry jy or
S(e,j) explicitly for any j — that is, declaring a witness x or y during the construction
that eventually shows the requirement is met. Instead, since f(U) and f~1(U) will
be finite or cofinite (hence computable), we will automatically have that f(U) #r f
or f~Y(U) #r f, provided we make f non-computable. We will make f =r @', so
in particular, f will be non-computable. However, we cannot know which indices e
correspond to the finite or cofinite sets, so we must still ensure that they do not stall
the construction, even if the actions that they take do not explicitly ever meet their
requirements.

Because we are working with partial approximations to computable sets, we set the
following notation. At stage s for index e, we let 0., be the string defined by the
longest segment of ¢, that looks like a characteristic function. Thus |o.s| < s by
conventions on convergence. Hence if ¢, = U, then lim,_,o 0c s = U.

The plan for meeting a single Ry ;) is to choose a witness x and wait for @ﬁiﬂe’S)(x)i
= f(x). If this happens, we place an immediate <B-predecessor to f(z). However,
this may have the unfortunate side-effect of also causing the use of the computation
<I>£ (SU)(x) to be damaged, since it may be the case that fs(o.s) no longer agrees with
fs+1(0cs+1). This is because the enumeration of this predecessor value will change the
alignment of all values above it in B,,;. Thus, after such an enumeration — which
attempts to diagonalize against some computation — we may wish to restore that com-
putation if it was damaged by aligning the values used in the computation so that they
are again either in or out of f(U) in the limit.

Notice that we do not have to re-align these values with the exact same values as the
ones they were aligned with when the computation first existed. For example, if at
stage s the use of a computation contained 5 with f;(3) =5 and ¢.4(3) =1, (that is,
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5 € fs(0s)) then if we wish to restore this computation, we only need to find a value
n such that n € U and arrange for f(n) =5, since then 5 € f(U). So, as long as U is
both infinite and co-infinite, we can always wait for a sequence of values in the correct
order to appear and then arrange for them to be aligned with the use that we wish
to restore. We cannot stall the computation waiting for these values, however, since
we do not know if . determines an infinite, co-infinite set, so we shall instead wait
for such a configuration to appear. If one does not, then we shall show that ¢. does
not determine an infinite, co-infinite set and therefore we do not have to satisfy the
requirement directly, as noted above.

Additionally, we shall have markers {7;};c, that will code @’. We shall arrange these
markers so that if 7; eventually comes to rest on w, then ¢ € @' if and only if i € Ky(,),
where here { K}, is a standard enumeration of @’. To show that f >r @', we will show
that f allows us to additionally compute these final resting places of each ~;. Since any
isomorphism between two copies of (w, <) is @’-computable, this is all we need to show
that f =p @'. For each marker, we have the following requirement, which we aim to
meet:

I';:  Each ~; eventually comes to rest on some value z; such that ¢ € @’ if and only if
1e K f(z)-

To enable f to compute the final resting places of each marker, we shall take certain
actions to leave a trace of when each T'; is injured. Since a given I'; can only be
injured by higher priority requirements, we will have these higher priority requirements
leave the trace when they act, which allows us to use f to determine a stage where
all requirements of priority higher than a given I'; have finished acting. By simulating
the construction to this stage and then waiting — if we need to — for a stage where I';
is (re-)initialized, we can then determine the final position of 7;, since it will never be
injured after this stage.

We arrange the requirements according to the priority order Ry > Sy >I'g > R; > Sy >
I'; > -+ and proceed via a finite injury construction.

At any stage s+ 1, each requirement of index less than s will have a witness value. For
the requirement Ry j), we denote this witness by x(. ;, and similar for S ;y, we write
Ye.d)-

Additionally, during the course of the construction, we might associate (the graph of)
a finite characteristic partial function, say g, with a requirement. When we do this,
we say that the requirement has assigned function g. At certain stages, we may also
declare a requirement to be satisfied. This means that at such stages the requirement
believes that it has no more action to take and will be met. This is reset by injury,
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however, since the requirement may be forced to abandon its witness by higher priority
requirements.

We will enumerate the least value not in the domain of A, at the end of stage s, to
ensure that A eventually has domain w. This also serves a second purpose: any value
enumerated during stage s must be at least s. This value will be enumerated at the
end of A,, i.e. we will enumerate it and declare it to be <As-larger than any other value
in the domain of A,. This entire procedure is repeated for B.

At each stage s, each requirement may require attention and then possibly receive it.
We say that a requirement that is not satisfied requires attention under the following
conditions. We only list the R,; requirements and the I'; requirements, as the conditions
and actions for the S; requirements are similar to the R; requirements once the obvious
changes have been made.

e R ;) requires attention for diagonalization if @fs(ge’s)(xmj)) 1= fs(x(ej)) and it
has no assigned function.

If this requirement receives attention for this reason, then enumerate the least
value not in the domain of B, so that it is just below fs(x(.;y), so that we have
that fer1(2(jy) # fo(2(e ). Let g denote the characteristic function of the use

segment of the computation @;SS(UE’S)(x(e,j)). That is, the domain of g is the set of
values in the domain of B, used in this computation. Assign g to this requirement.

e R ;) requires attention for restoration if it has assigned function g and for the
elements of the domain of g exceeding f(x( ), say fs(@(cj)) <P di <Bs dy <Bs
o <Bs d.. there are elements in the domain of A say, a; <A ay <A - <As qy,
such that o.(a;) = g(d;) and such that d; <Bs fs(a;). (This last condition
ensures that the d;s and a;s are not already aligned, which is important since we
must make an enumeration no matter what for coding a trace of injury, and this
enumeration would mis-align them if they were already so.)

If this requirement receives attention for this reason, then enumerate the least
value not in the domain of B, so that it is just below fs(z( ;). Next enumerate
unused values under each d; in <Bs-increasing order so that fy.q(a;) = d;. We
may assume that this is always possible by noting that the values dy, ..., d, were
originally <Bs-consecutive, as they were the tail of the use segment for a compu-
tation, and we will enforce that enumerations between these values (by a higher
priority requirement) would re-initialize this requirement, so the values must still
be <Bs-consecutive. Hence with the correct pattern of enumerations, we can align
each d; with its corresponding a;. Furthermore, the first enumeration just below
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fs(z() will not inhibit our ability to do this, because dy <B f;(a;). Declare
that Ry ;) is satisfied.

e I'; requires attention if i € K.

If this requirement receives attention for this reason, then enumerate the least
value not in the domain of By so that it is just below fs(z;), where z; is the value
currently marked by ~;. Declare that I'; is satisfied.

Note that if R; receives attention at stage s and has witness z, then fs,1(x) > s since
we enumerate a fresh value in this spot in both cases. Similarly, if S; receives attention
at stage s and has witness y, then f7}(y) > s, and if T'; receives attention at stage s
and 7; marking z;, then fs,1(2;) > s. In this way, the witness / marked values of each
requirement codes the stage where it has caused injury most recently (if at all).

Construction:

Stage s: For the highest priority active requirement that requires attention at
stage s, perform the action indicated above and injure all lower priority require-
ments, de-activating them. For the highest priority requirement that is not active,
(re-)initialize it, assigning it a fresh large witness / marked value as needed. These
values are chosen larger than the use of any computation seen so far and larger
than any values ever used as witnesses or marked values.

Enumerate the least value not in the domain of A, as the final, largest element.
Proceed similarly for B;.

Let A:=U,As, B:=U,Bs and f :=lim,_. f;. This completes the construction.

Note that since witnesses are always chosen larger than any existing witness, and enu-
merations always occur (for that witness) at most just below it, any given position can
only be enumerated into finitely often, provided we show that each requirement receives
attention at most finitely often.

Claim 3.4.1: Each requirement receives attention at most finitely often.

Proof of Claim: We proceed by induction on the priority order. Suppose that we have
requirement Ry, ;) (the case for S jy is similar) and that all higher priority requirements
receive attention at most finitely often. So there exists a stage s after which all higher
priority requirements never again receive attention, and hence after stage s, Ry ;) will
permanently choose a witness, . We may assume that this stage is also s. If Ry
never receives attention after stage s, then we are done. Since Ry, ;) has no assigned
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function when it is re-initialized, the first stage ¢t > s where Ry ;) requires attention (and
receives it, since it is of highest priority by choice of s) must be for diagonalization, and
R ;) will be assigned some function g.

As Ry jy will never be re-initialized by choice of s, if Ry ;) requires attention after
stage t, it must be for restoration. Receiving attention for restoration causes Ry
to be declared satisfied, and this will never change. So R, ; cannot receive attention
again.

e,j)

Now suppose that we have requirement I';, and that again all higher priority require-
ments receive attention at most finitely often, finishing by stage s. If I'; never receives
attention after stage s, then we are done, and if it does require attention, it must receive
it (as it is of highest priority) and will be declared satisfied, and this will never change.
So I'; cannot receive attention again. [

Claim 3.4.2: For each infinite, coinfinite, computable set U and index j, there is some
x such that @f(U)(x) # f(x). That is, if ¢ is the characteristic function for U, then
requirement Ry ;) is met.

Proof of Claim: Fix a computable set U with ¢, = U and index j. Suppose otherwise,
so that <I>;.c ) - /. By the previous claim, there is some stage s after which Ry, jy never
receives attention and has permanent witness . Choose t > s large enough so that
@i ﬁU)(a:) = f(x), and also large enough so that after stage ¢, any partial isomorphism
fr extends the initial segment of f given by the use of this computation. That is, if
n is in the use of this computation, and f~!(n) = m, then m is in the domain of o,
and fy(m) = f(m) for all ¥ > ¢t. Such a stage exists eventually since ¢, really is a
characteristic function so 0., can be chosen to be arbitrarily long, and f is the limit of
the sequence {fs}s.

Since Ry ;) is not re-initialized after stage s, all requirements that are not of lower
priority must have stopped enumerating values, and all lower priority requirements
only enumerate values above the witness = of R ;. Hence at stage ¢, we have that

fi(x) = f(z), and also by choice of ¢ we have that q)itt(U)(x)iz CI>;.C(U)(J;) b

So, at stage t, we have that q)fft(ae‘t)(q;) = @f(U)(m)iz f(x) = fi(x). Then Ry j, should
receive attention for diagonalization, but this is impossible since we are beyond stage
s. So it must be the case that Ry jy has an assigned function g.

We claim that Ry jy cannot permanently have a function assigned without eventually
requiring attention for restoration. Let the elements of the domain of g exceeding
f(z) = fi(x) be f(x) <B dy <B dy <B .- <B dy. Since U is infinite and coinfinite, there
must be values a; < ag < -+ < ay such that U(a;) = g(d;) for all i < k. So wait for a stage
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t' >t where o (a;)|. Then at stage t, R ;) would receive attention for restoration
at stage t’. But this is impossible, since ¢’ >t > s.

So it must have been that at stage ¢, Ry j is already declared satisfied. This implies
that there was a stage t; where Ry, ;) received attention for diagonalization and was
assigned some function g, then at some later stage t5 received attention for restoration,
and was marked as satisfied, and then was never re-initialized.

At stage t1, it must be that @ﬁttll(ae’tl)(az) }= fi,(x). A value was enumerated into B so
that fi,.1(z) # fi,(z), and Ry j, was assigned the function g whose domain is the set
of values in By, used in this computation, with g(a;) = ocy, (a;) = pe(a;) = U(a;). Since
no higher priority requirements receive attention and enumerate values, all the values
in By, that are <B-below f;, (x) are never enumerated below, and all the values in Ay,
that are <A-below z are never enumerated below. So at all future stages ¢ > ¢, we have
that these values are in o, ; if and only if they are in o, . Hence for these d;, we have

that d; € f;(o.;) if and only if d; € fi, (0, ).

At stage to, values are enumerated into B so that fi,.1(a;) = d; where d; are the values in
the domain of g not considered above, and a; is chosen so that U(a;) = 0c,(a;) = g(d;).
As no values are then ever enumerated into A or B to destroy this, we have that for
any stage t > {5, these values d; have that d; € f;(o, ;) if and only if o, ;(a;) = g(d;) =1,
and g(d;) =1 exactly when d; € fi, (0cs, ).

filo.7) _
j,f (l‘) ‘L_

o)y 12 £ (2) % fi(x). Therefore this holds in the limit, so @;.C(U)(a:)li f(z),

Hence we must have that for all such stages t >ty > t; we have that ®

Jita
and so the requirement is met. [

An extremely similar argument shows that the following claim holds:

Claim 3.4.3: For each infinite, coinfinite, computable set U and index j, there is some

y such that @f_l(U)(y) # f~1(y). That is, if ¢, is the characteristic function for U, then

requirement S ;) is met.

Therefore, as noted above, all R; requirements and S; requirements are met, since the
remaining requirements are automatically met once f is non-computable, and this must
be the case, for the previous claims could not be true if f were computable.

Claim 3.4.4: Given f, we can compute the final resting position of each ~;. Furthermore,
f can compute @'

Proof of Claim: To determine the final marked value of some ~;, notice that it suffices
to determine a stage after which no requirement of higher priority than I'; ever receives
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attention. Once we know such a stage, we can run the construction to that stage and
then wait for I'; to be initialized and mark some value z. Since no higher priority
requirement will ever receive attention after this initialization, I'; cannot be injured,
and must mark z forever after. That is, z is the final resting position of ~;.

This then allows us to decide if 7 € @': Note that if ¢ ever enters @', I'; will require
attention and receive it at some point once it has marked z, since no higher priority
requirement ever receives attention after z has been marked. Say this occurs at stage
t. In this case, we will enumerate a fresh large value into the domain of B just below
fi(2), so that f;(z) >t — since values enumerated at stage ¢ must be at least t. Since
no enumeration can take place below this point, we must have f(z) >¢. So if i enters
@' by stage t, then f(z) > t. Hence to decide if i € @', compute s = f(z) and then
determine if 7 € K.

[t remains to show that, given f, we can determine a stage after which no higher priority
requirement ever receives attention. Proceed by induction on the priority order. Note:
We need to include all types of requirements in this induction, not just I';s. Suppose we
have a requirement Q of some type and using f we can determine a stage s after which
no requirement of priority higher than Q receives attention. Run the construction to
stage s and then wait for Q to be (re-)initialized. We need to determine a stage t after
which Q never receives attention.

If Q = R; for some j, then notice that if such a requirement receives attention at stage
t, then it enumerates a value into the domain of B such that f;(z;) >t. Since no higher
priority requirement can disrupt this, we would have f(z;) > ¢t. Hence, we use f to
compute t = f(z;). We need to wait for R; to be initialized above so that we can
determine what its witness x; is.

Similarly, if Q = S; for some j, then we can compute ¢ = f~!(y;), where y; is the witness
chosen for S; when it is (re-)initialized for the final time after stage s.

Finally, if Q = I'; for some j, then again notice that if such a requirement receives
attention at stage ¢, it enumerates a value into the domain of B such that f;(z;) > ¢,
where z; is the value marked by I';. So again, we use f to compute ¢ = f(z;).

This concludes the induction. We can use f to determine up to what stage to run the
construction for the highest priority requirement to stop receiving attention, run the
construction until the next requirement is (re-)initialized and then repeat this for each
successive requirement under the priority ordering until we can determine when a given
I'; marks its final value, which, as noted above, allows us to decide if 7 € @ using f
once again.

So f >r @', and hence f =r &'. ]
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Since A, B and f are as claimed, this completes the proof. O]

Note that if we remove the S; requirements, then no enumerations occur into A except
for the ones that occur at the end of each stage, which always occur at the end of the
current segment Ay, and so A4 will be the standard copy of (w,<). Hence we also have the
following:

Corollary 3.5.
There is a computable copy B of (w,<) such that if f : NV - B is the isomorphism
between the standard copy of (w,<) and B, then f =7 @' and no computable set U
exists such that f(U) =r f.

3.3 Isomorphisms on copies of (w? <) — Finite Injury

This section is devoted to the proof of Theorem 3.6, which we restate here.

Theorem 3.6.
Let N2 be a decidable copy of (w?,<). There is a computable copy A of (w?, <) such that
if f: A— N2, then for no computable unary relation U on A do we have f(U) =r f.

Proof -
To build A, we will meet the following requirements:

R jy: If ¢ =U for some set U, then (Hx)[cbf(U)(x) + f(2)].

We build A by stages, enumerating finitely many values into the domain of A. Since
at any stage s, A, will be isomorphic to some n < w, we shall guarantee A = U, A, is
isomorphic to w? by having an infinite sequence of markers that are promised to be the
limit points. Although a marker may occasionally change its value, we will ensure that
this occurs at most finitely often (in fact, at most twice) so that eventually each marker
settles. We will also ensure that all limit points in A arise in this way, by ensuring that
only marked values have new values enumerated into the domain of A directly below
them infinitely often. This allows us to make strong claims about uses of computations
that occur in the limit.

At the end of every stage s, we enumerate new values into the domain of A,, A, in a way
to eventually forced the marked values to become limit points, provided the markers
do not change. We refer to this action as “upkeep”, since it maintains the guarantee
that the marked values become limit points. For a marked value x, we define the tail
of x to be the set {y >A x| (Vz)[z <A 2z <A y = 2z is not marked]}. That is, the tail of

37



x is the smallest set containing x and closed under unmarked successors. The upkeep
action consists of enumerating a single new value into A, at the end of every marker’s
tail.

For example, if at the end of stage s we have A, as

ol @ o o/ © o |0 (0]

0 1 3 2 d 4 6 7

where the marked values are boxed, then when we perform this step, we enumerate
four new values into the domain of A — 8, 9, 10 and 11 — so that A, becomes

o] © © © o) @ o o [0 o [0 o

0 1 3 8 2 ) 4 9 6 10 7 11

It is clear that if the markers eventually settle, then A will be isomorphic to w? through
this procedure, provided that there are infinitely many markers, and provided we do
not disrupt this as mentioned above, by building non-marked limit points, or by a more
obviously destructive action, such as building an w* somewhere, for example.

In light of this, we will think of each marker as corresponding to a potential w-chain in
A consisting of the marked value and its eventual infinite tail.

To meet a single requirement R ; in isolation, we employ the following strategy.
Choose some witness value, say x, and mark it, so that it is associated with some
limit point, and choose some other value ¢ to the left of xq and mark it as well. For
simplicity, we shall suppose for this single requirement that ¢ is associated with the
limit point 0 and z is associated with the limit point w. (We also mark infinitely many
values to the right of xy so that we build a structure isomorphic to w?, but those values
are unimportant for now.) If no other action is taken, then the upkeep action detailed
above will build A isomorphic to w? via f, such that f(¢) =0 and f(zo) = w. If the
requirement is not met, then ¢, = U and (VZE)[(I);»C(U)(QE) = f(«)], and so in particular,

we would have @f(U)(xO) =w = f(xg). So, if we see a computation of this form at
some stage s, we seek to diagonalize against it, by introducing a new value x; to the
immediate right of x;, and moving the marker from xg to x;. This has the effect of
making x; the value associated with w, and pushes x( into the tail of ¢, so that xq is
now associated with some m € w.

Unfortunately, this action may destroy the use of the original computation that we
were diagonalizing against. Notice, however, that the only affected value is w. So, if
Ye(o) = we(x1), then z¢ € U if and only if z; € U. Hence the computation will be
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restored, as then w e f(U) < x1 € U < 19 € U < w € f(U)[s]. Then we will have
@f(U)(xo) =w, but f(zp) =m #w, a win.

In the case where p.(zg) # @c(x1), we perform the same trick, but this time using x;
in place of zy. So, we wait for a stage where (ID;.c(U)(xl) =w = f(x1) and then introduce
a new value x5 to the immediate right of x; and move the marker from x; to x5. This
pushes 7 also into the tail of £, and we now win automatically: If p.(x1) = pe(x2), then
the argument above works with zy and z; replaced by x; and w9, respectively. On the
other hand, if p.(z1) # @e(x2), then @ (x¢) = pe(22), since ¢, would be {0, 1}-valued,
and so this restores the original computation we diagonalized against when introducing
X1, SO @g(U)(xo) =w, but f(zg) =m # w.

In this way, through at most two actions, we can always diagonalize against a com-
putation, or wait forever for such a computation, which is also a win. Notice that in
meeting this single requirement, we only needed to consider two marked values, ¢ and
one of xy, 1 or z5. So, we can satisfy a single requirement in a w + w inside w?.

So we group the limit points of w? into consecutive pairs, as (0,w), (w-2,w-3),... and
use these pairs as locations to satisfy each requirement. When a requirement is injured,
it abandons its associated pair and is assigned a fresh large pair. Of course, this may
require enumerating new values at the end of A, and marking them, so as to “create”
a new pair of potential limit points. Since each pair of marked values and their tails
will eventually correspond to an w -2 inside A, we refer to the pair of marked values
itself as an w -2, and so we may speak of “creating a fresh large w -2 at stage s”, for
instance, even though this only truly refers to enumerating two values at the end of A,
and marking them.

As we can see above, each requirement will also have a state: it is either waiting for a
computation involving zy, waiting for a computation involving z; or has won. When
computations are (re-)initialized, they will always be waiting for z.

For a given requirement R ;), we will say that R ;) requires attention at stage s under
the following conditions:

o If R ;) is waiting for xg, then its w-2 has the form

E]...E]...
l To .

The requirement requires attention if CI>£ O (2)[s] L= fs(x0), and if it receives
attention, then enumerate a new value, xy, directly to the right of x4, and move
the marker from xg to 1. The w-2 for the requirement will then have the form
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14 To T ,

and it will be waiting for x;.

o If R j) is waiting for z;, then its w-2 has the form

@.@ .....

14 To I

The requirement requires attention if either ¢, s(zo){ = @e (1)1, or if @ s(z0)
# pes(x1) ) and q);(U)(xl)[s]i: fs(x1). In the former case, no further action is
needed, and the requirement is met (unless it is later injured).

In the latter case, if the requirement receives attention then enumerate a new

value, xg, directly to the right of x;, and move the marker from x; to z5. The
w - 2 for the requirement will then have the form

!/ Ty T T2

and the requirement will be met (again, unless it is later injured).

Here, when we write something like CI>;.C ) (20)[s], we think of this computation as
converging if each value y in the use is verifiably in f,(U) or verifiably not in f,(U).
That is, if = is such that fs(x) =y, then ¢, (x) e {0,1}.

We arrange the requirements according to the priority ordering Ry > R; > -+, and
proceed by a finite injury argument.

Construction:

Stage s: For the highest priority active R; that requires attention at stage s,
perform the action indicated above and injure all lower priority requirements,
de-activating them. Perform the upkeep as mentioned above, where new values
are enumerated into A, at the end of the tail associated to each marker. Finally,
for the highest priority requirement that is not active, assign to it a fresh large
w -2, beyond the use of any computation seen so far in the construction.

Verification:

Claim 3.6.1: Every requirement receives attention at most finitely often and is met.
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Proof of Claim: It is clear from the construction that each requirement can only be
injured by higher priority requirements, and each requirement can receive attention
at most twice if it is never injured. Because of this, it is clear that each requirement
receives attention at most finitely often. Indeed, R; receives attention at most 2+2 — 2
times.

Consider the requirement Ry, ;). By induction on the priority ordering, we may assume
that there is a stage after which no requirement of higher priority than Ry, ;) receives
attention, and a least stage s after that where R jy was (re-)initialized for the final
time, and permanently associated with an w-2, say with limit points w-n and w-(n+1).

Suppose for a contradiction that ¢, = U for some set U (i.e. @, is total and {0, 1}-valued)
and for all = we have @f(U)(x)iz f(x).

First, Ry j) cannot permanently be waiting for zo. To see why, note that if no action
takes place, then f;(zg) = w-(n+1) for all t > s, and so f(z9) = w-(n+1). Since
@f(U)(xo) } = f(zo) by assumption, there must be some stage s’ > s where q)f(U)(xo)[s’] J
=w-(n+1)= fg(xp). But then at stage s’, Ry, would require attention and receive
it, since it is of highest priority. So at some stage s, R ;) must receive attention and
wait for x;.

Recall that while waiting for x;, requirements can require attention for two reasons,
which we refer to as condition (1) and condition (2). We will first show that if a
requirement that is waiting for z; never requires attention via condition (2), then it
must require attention via condition (1). Since Ry ;) will be of highest priority, if
it requires attention for either of these reasons, it will receive it. We will therefore
show that in either case, the action taken contradicts the supposition above, which will
complete the proof of the claim.

So, suppose the requirement never requires attention via condition (2). By similar rea~
soning as in the previous case, we can find some stage s” > s’ > s where q);(U)(xl)[s”]i
=w-(n+1) = fo(z1). So at no stage ¢t > s” can we have @, (z0){# @e(z1)]. Since ¢,
is total by assumption, there must be some stage t' > s” where @, (29) = @er(x1) .
But this is exactly condition (1), so Ry would require attention via condition (1) at
stage t'.

Suppose first that R ;) receives attention via condition (1). Note that at stage s/,
it must have been the case that @f(U)(xo)[s’] J=w-(n+1). Since all higher priority
requirements do not act after s < s” and lower priority requirements were injured at
stage s’ and then later re-initialized beyond the use of this computation, we know that
FO)[s'] = f(U)[s"] on the use of this computation, except for possibly at x( since
fs(zg) =w-(n+1) and fyi1(xp) =w-n+m for some m € w.
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Hence, at stage t', we have fy(z1) = w-(n+1) and @ (20) L = per (1)1, 80 2o € f(U)[5']
if and only if x; € f(U)[t'], and so @f(U)(:vo)[t’] J=w-(n+1). Now note that xg is
never again marked after we stop waiting for xq, so f(x¢) =w-n+m#w-(n+1), and
S0 @;w)(xo) # f(x0), a contradiction. Hence Ry ;) is met in this case.

Suppose second that Ry jy receives attention via condition (2). Hence ¢.(x0) |#
we(x1) ], and so zg € U if and only if z; ¢ U. Wait for some stage where ¢, (), which
exists since . is total. If p.(x2)| = pc(21) |, then similar reasoning as before gives that
@f(U)(xl)iz w-(n+1l)#zw-n+m' = f(x), where m’ e w. If p(x2)|# pe(x1)], then
since ¢, is {0,1}-valued by assumption, it must be the case that ¢e(x2) = @c(z0) |,
and so @f(U)(xo) l=w-(n+1)#w-n+m= f(xy). So again, we have a contradiction
and Ry jy is met.

Thus Ry jy is met in all cases, as desired. [

Note that in any given w -2, enumerations only take place twice when the associated
requirement (if there is any) receives attention and also during the upkeep at the end
of each stage. The latter clearly preserves the ordinal structure, since it occurs at the
end of the two tails, and the former occurs only twice. The marker moves at most
twice. Hence it is clear that each pair of marked values really does build an w -2 and
so A 2 w?, since infinitely many w -2 will be created during the construction, as a new
w -2 is created each time a requirement is newly initialized. O]

3.4 Isomorphisms on copies of (w?, <) — Infinite Injury

This section is devoted to the proof of Theorem 3.7, which we restate here. Because of
the similarity of the requirements to those in Theorem 3.6, we will mostly highlight the
differences as we change to the infinite injury setting used for this result.

Theorem 3.7.
Let N2 be a decidable copy of (w?,<). There is a computable copy A of (w?, <) such that
if f: A— N2, then for no computable unary relation U on A do we have f(U) =r f,
and furthermore, f > @".

Proof:
The broad strategy is to combine the R; requirements from the proof of the weaker
version of the theorem with the idea of the I'; requirements from the proof where we
were working with (w, <) (rather than (w?,<)) and coding @' into an isomorphism.
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As with the weaker version of this theorem, we will be working with the w -2 blocks
we get after partitioning w? as such. To begin with, we describe the mechanism of
action that a I-type requirement takes to code whether e € @” in the absence of other
requirements. This coding will take place in a single w-2 block — since we are ignoring
other requirements for now — and so for sake of example, we will assume that we are
working in the [0,w -2) block. We code e € Inf =p @" into this block. Recall that
Inf is the set of indices of computable functions whose domains are infinite. That is,

Inf = {e | |[W,| = oco}.

The method of coding is as follows: when creating this block, we (as before) enumerate
values that we mark, and then allow the upkeep step to build w -2 by the end of time.
However, the action that we take to change the marked values is now more complicated
than it was for the R-type requirements. We instead enumerate three values ¢ < p <m
and mark ¢ and m. The value ¢ is permanently marked and nothing will ever be
marked below it, so we will have f(¢) =0. The value p is the infinitary location and m
is the current finitary location. The value p will always be the infinitary location, but
the finitary location may change from stage to stage, moving to <A-greater values. If
e € Inf, then we want f(p) = w, while if e ¢ Inf, then we want f(p) # w and f(n) = w
where n is some value that permanently becomes the finitary location at some stage.
Thus, knowing f and the infinitary location p will allow us to decide if e is in Inf or
not.

To arrange for these conditions to occur, we take the following action at each stage s.
Looking forward, we shall also indicate what is to be done if this requirement has been
initialized but is not able to receive attention. If W, has grown since the last stage
where I' received attention and I' is permitted to receive attention at this stage, then
we unmark the current finitary location and mark the infinitary location. Otherwise,
if the infinitary location is marked, designate the right-most value in this w-2 — that
is, the value at the end of the tail — as the the current finitary location and mark it,
unmarking the infinitary location. At the end of the stage, perform upkeep on this w-2
in all cases.

Now, if W, is infinite, then there will be infinitely many stages where we marked p and
perform upkeep, so p will have an infinitely long tail. Also, each value that is ever a
finitary location only stays as such for finitely many stages, and hence is not marked
for infinitely many stages, so they cannot correspond to a limit point. Then f(p) = w
when e € Inf. On the other hand, if W, is finite, then there is some finite stage where
p is marked for the last time, and the next stage a finitary location n is chosen and
marked, and p is permanently unmarked. Hence p is absorbed into the tail of ¢ and n
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is marked at infinitely many stages, so n is a limit point. Thus f(n) =w and f(p) +w
when e ¢ Inf.

In fact, this strategy gives more, which we will make use of later. Suppose we have
finished building the computable copy A, and we are given f. Again, for the sake of
example, we will assume that I" is coding in the block [0,w-2), but later on we will need
to determine which block the coding is taking place in, which we ignore for now. Use
f to determine f~1(w). If f~1(w) = p, then e € Inf, and if f~1(w) # p, then e ¢ Inf, as
we have already determined. If f~'(w) =n # p for some n, then in this case we can run
the construction until a stage where n is designated as the finitary location. We then
know that after this stage, I' never reverts to marking the infinitary location p, since
we cannot abandon a finitary location and then come back to it, thanks to the upkeep
step. This additional information will prove useful, since the marking of an infinitary
location will cause injury. So using f, we can not only decide if e is in Inf or not, but
also at what stage I' stops causing injury (if such a stage exists).

Notice however that this method of action for I'-type requirements causes problems
for R-type requirements of lower priority. Since R-type requirements must diagonalize
against a computation whose use depends crucially on f, R-type requirements should
be injured whenever a I'-type requirement changes between the infinitary case and the
finitary case, as this changes between f(p) = w and f(n) = w, respectively. But this
type of action may occur infinitely often if W, is infinite, and so lower priority R-type
requirements would be re-initialized forever and therefore fail to be met.

Because of this, we will use an infinite injury priority strategy on a tree, with require-
ments guessing about the outcome of higher priority I'-type requirements. As per usual,
the infinitary guess is denoted 0 and the finitary guess is denoted 1 with 0 to the left
of 1.

Again, as usual, we define the notation of a o-stage recursively for all o € 2<“ as follows:

e Every stage is a @-stage.

e If s is a o-stage and if ‘VV|U|73‘ > ‘I/V|U|7t| where ¢ < s is the previous o-stage (where
Wo|,-1 = @ and -1 is considered to be a o-stage), then s is a 070 stage, and a 0”1
stage if not.

For each o € 2<“, we have requirements R, and I', attempting to meet Rjy and T
respectively. Each requirement will take actions in a particular w-2 block, but may also
injure other requirements and cause them to be reset and re-initialized in a fresh large
block. When this occurs, the requirement that causes the injury can, in some cases,
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seize control of the abandoned block and change which elements are marked so as to
change which elements become limit points at the end of the construction.

In light of now needing infinite injury, let us re-examine an R-type requirement and
describe its action. As in the proof of the weaker theorem, R ;) is attempting to find

a computation to diagonalize against, so that if ¢, = U for some set U, then be(U) # f.

Let us recall the action of this requirement in the weaker theorem. We had the R-type
requirements respect requirements of higher priority and wait to see a computation that
it desired to diagonalize against whose use is some initial segment of f(U)[s] that was
verifiable. We said that f(x) was verifiably in (or not in) f(U)[s] if pes(x) e {0,1}. If
this occurred, the requirement would injure lower priority requirements, causing them
to abandon their blocks and allow R ; to preserve the use of the computation as long
it was never injured by a higher priority requirement. Requirement R, ; would take
this action at most twice, provided it was not later injured.

However, we must now worry about requirements not on the true path acting infinitely
often and spoiling preserved computations. We must also worry about computations
that come into existence at the end of the construction, but were never seen at any
finite stage during the construction, since R-type requirements would not be able to
diagonalize against these computations.

To fix this, we allow R, to simulate computations that do not exist at the current
stage, but which could exist if ¢ is on the true path. If such a computation is found,
then when R, injures lower priority requirements, it may need to seize control of their
abandoned blocks in order to change which values are marked. It can then arrange for
this simulated computation to actually become a reality, so the computation actually
exists at a finite stage.

More formally, the action of R, at the o-stage s is as follows: assume that R, is
currently in the w-2 block [w-n,w-(n+2)) with ¢ permanently marked, so f(¢) = w-n.
When R, is newly initialized in this block, it marks zy as the value corresponding to
w-(n+1). At stage s, if zq is marked, search for a possible computation to diagonalize
against. This process is not easy to formally describe, so the below steps are quite
verbose, although the actual idea is not particularly complicated.

First, find the longest initial segment of A, that is verifiably in or out of U by computing
@es(x) e {0,1} for each x that has been enumerated into the domain of A. Next,
determine all possible limit point outcomes in A as of stage s if ¢ is on the true
path. To do this, assume that each I'-type requirements of higher priority than R,
acts according to the guess encoded in o. For example, if o > 0, then I'y is assumed
to have the value in its infinitary location correspond to the second limit point for
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its block, while if o > 1, then I'y is assumed to have the value in its current finitary
location correspond to the this limit point. Also assume that all R-type requirements
will never act after this stage, and so their current marked values correspond to their
associated limit point. Finally, for all lower priority I'-type requirements, include both
the infinitary location and the current finitary location as possible corresponding values
for that requirement’s block’s second limit point.

Second, once this list of possible list of limit point outcomes has been built, generate the
associated list of partial isomorphisms, with each partial isomorphism corresponding to
a certain limit point outcome.

Third, search for a computation to diagonalize against using all these partial isomor-
phisms. Rather than simply waiting for a computation of the form @Zf (U)(xo)[s] b=
w-(n+1), we also include all computations @f(U)(xo)[s] }=w-(n+1), where g ranges
over this list of partial isomorphisms that we have just built for R, at stage s.

If such a computation exists, take action by injuring lower priority requirements and
seizing control of their blocks, and (un)mark values in these blocks to create the limit
point outcome of the particular g that was used. Enumerate z; into A and mark it
as before. The rest of the action is very similar to the proof of the weaker theorem,
where xy is possibly enumerated at some later stage, except again when searching
for a computation to diagonalize against, we use this method of simulating desirable
computations rather than passively waiting.

Construction:

Stage s: Determine the o of length s such that s is a o-stage. For each initialized
I'-type requirement, take the prescribed action for that requirement. Note that
only I'; with 7 < ¢ are permitted to receive attention. If I', receives attention
and marks its infinitary location, then all requirements with priority to the right
of 770 are injured and abandon their blocks. Now find the highest priority R.;
with 7 < o that requires attention. If there is one, it receives attention, injuring
requirements of lower priority and seizing control of their blocks (and any un-
owned blocks that are needed). Finally, initialize the highest priority requirement
that is not initialized (assigning it a fresh large block) and perform upkeep on all
blocks.

Verification:

Let TP be the true path, that is, the left-most path visited infinitely often.
Claim 3.7.1: TP(i) = 0 < i € Inf.
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Proof of Claim: Suppose T'P(i) = 0. Then for infinitely many stages s, we must have
that s is a (T'P 1i)70-stage. Then [W; | > |W; |, where ¢ is the previous (T'P 11i)-stage.
Hence |W;| must be infinite, and so i € Inf.

Conversely, suppose TP(i) = 1. Then (TP } )70 is only visited finitely often (since
any extension of it is to the left of T'P), so there must be some stage $ after which
nothing to the left of (TP 1)~ 1 = (TP I\ (i+1)) is ever visited. So |[W; 4| = |[W;,| for
all (T'P i)-stages s with prior such stage ¢ which both exceed §, and so |W; 5| = |[W; s:1]
for all stages s > §. Thus |W;| = |W, ¢| < co and therefore i ¢ Inf. n

Claim 3.7.2: For each n, consider o := (T'P | n), the initial segment of the true path of
length n. Then the requirement R, receives attention at most finitely often.

Proof of Claim: We proceed inductively on n. So suppose that there is some stage s
by which all R, with 7 < ¢ have finished receiving attention. Additionally, since o is
on the true path, we may assume s is large enough so that no path to the left of o is
visited after stage s. Thus, after stage s, no requirement R, or I'; receives attention
where 7 is to the left of o.

We claim that R, cannot be injured after stage s. If R, were to injure R,, then ¢ must
have lower priority than 7. But after stage s, we know that for R, to receive attention,
7 cannot be to the left of 0 and it cannot be an initial segment of o. Hence it is to the
right of ¢ or extends o, neither of which are of higher priority than o.

Since R, is never injured after stage s, it is permanently assigned to an w-2 block at or
after stage s. As in the case of the weaker theorem, it can thereafter receive attention
at most twice: once to mark a new value z; and once more to mark a new value .
Hence R, can receive attention at most finitely often, as desired. [

Claim 3.7.3: For each n, consider o = (T'P | n) as before. Then the requirement I',
eventually is permanently assigned an w -2 block. Moreover, in this block, if |o| € Inf,
then the limit points are the permanently marked location ¢ and the infinitary location,
and if |o| ¢ Inf, then the limit points are the permanently marked location ¢ and a
finitary location.

Proof of Claim: As in the previous claim, there must eventually be some stage after
which no higher priority requirement receives attention and hence eventually T, is
(re)-initialized and assigned an w -2 block and then never after injured.

Since o is on the true path, there are infinitely many o-stages, and hence infinitely many
stages to see that ‘VV|U|| has grown. So if |o| is in Inf, then there are infinitely many
stages where the infinitary location will be marked. Conversely, if |o| is not in Inf, then
there are only finitely many stages where the infinitary location will be marked, and
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hence at some stage a finitary location will be permanently marked. The exact details
are essentially as we informally outlined when introducing the I'-type requirements
above, so they will not be repeated. [

Claim 3.7.4: For each 7 and e, the requirement Ry ; is eventually met. That is, if
e = U for a computable set u, there is some x such that @{(U)(x) # f(x).

Proof of Claim: Fix ¢ and e and suppose otherwise. That is, for all x we must have
@{(U)(x) = f(z). Consider o :=TP 1 ({e,i)). By Claim 3.7.1, there must be some stage
s after which no node to the left of o on the tree is ever visited. Moreover, since R-type
requirements along the true path only receive attention at most finitely often, we may
take s large enough so that after stage s, R, will never after be injured and if it requires
attention, then it will receive it. Suppose the w -2 block that R, is assigned to by or
after this stage is [w-n,w- (n+2)). Without loss of generality, we may assume R, is
(re-)initialized in this block at stage s. Finally, take s large enough so that if o(j) =1
(i.e. j ¢ Inf), then W;, = W;.

First, R, cannot be permanently waiting for xy. If no action by R, ever takes place
after stage s, then fi(xo) =w-(n+1) for all ¢ > s, and so f(x¢) =w-(n+1). (Requirements
that are assigned blocks to the left of R,’s block cannot change the number of limit
points in these blocks, which is why f;(x¢) and f(xg) can be explicitly computed as
w-(n+1).)

Since @f(U)(xo) }= f(xo) by assumption, we must be able to find a o-stage s’ > s
where ®/(20) = w- (n+1) = fu(xo). Unlike in the proof of the weaker theorem,
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we cannot guarantee that @fg,])(:po) }= @f(U)(xo)[s’]i for some large enough s’, since
higher priority I'-type requirements may continue to act infinitely often.

Consider the set of blocks used in this computation. Some of them are owned by R-type
requirements. If the R-type requirement is of higher priority, then by choice of s, it
cannot ever receive attention since this would injure R,,. If it is of lower priority, then
R, could seize control of that block should it need to. Additionally, some of the blocks
are owned by I'-type requirements. At any o-stage s’ > s, we must have that the higher
priority I'-type requirements act according to the guess o, and so at this stage s’, they
will mark the infinitary or finitary location in their block as appropriate. In particular,
since by assumption s is large enough so that o(j) = 1 implies that W; s = W;, if one of
these I'-type requirements would eventually mark a permanent finitary location, it has
already done so by stage s and then never changes this. That is, these higher-priority
I-type requirements correctly mark the limit points in their blocks at any o-stage after
stage s. The lower priority I'-type requirements mark either their infinitary location or
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a finitary location. Take s’ large enough so that if a finitary location is marked by one
of these requirements in the limit, then it has actually been chosen as the (permanent)
finitary location by stage s’. It may not be marked at stage s’, but since we simulate
computations for R, to see if it should act, we will simulate computations where either
the infinitary location and the finitary location are eventually marked.

Finally, take s’ large enough so that enough of the tails of every eventual limit point
has already been correctly enumerated into A by stage s’. Hence, the computation
(I>£ (S,U)(xo)l would actually be simulated at the o-stage s’ and so R, should act and
diagonalize against it by enumerating x; into this block and marking it.

The remainder of the proof is similar to the proof of the same claim in the weaker
theorem. However, one important note is that R, takes control of any blocks owned
by lower priority requirements should it see a computation that it needs to diagonalize
against. It does this so that it can make the desired limit point outcome definitely
occur for that diagonalization. Otherwise, if it was now waiting for x1, then it needs
to guarantee that the computation it diagonalized against for xy cannot go away. This
allows us to make the same claim that f(U)[s’] = f(U)[s"] (except possibly at x,) for
a future stage of interest s”, which we could not do if we diagonalized against a possible
future computation but never actually made this computation occur. ]

Claim 3.7.5: Given f, and the eventual final resting location of some R, or I', where
o < TP, then we can determine if that requirement receives attention finitely often
or infinitely often in this location, and if the former, find a stage s after which that
requirement never again receives attention, if such a stage exists.

Proof of Claim: Suppose we have been told that the requirement has final resting posi-
tion in the w-2 block [w-n,w-(n+2)). Run the construction until the requirement is
(re-)initialized in this block, say at stage ¢.

First suppose the requirement is an R-type requirement. Then by Claim 3.7.2, we
know that R, receives attention at most finitely often. To find a stage s after which
R, never receives attention, compute f~'(w-(n + 1)), and wait for a stage s where
fi'(w-(n+1)) = fY(w-(n+1)). Such a stage must exist since the action of R, permits
it to only change this value at most twice, and it never returns to a previous value.

Now suppose the requirement is an I'-type requirement. Compute f~'(w-(n+1)). If this
is the infinitary location that was chosen when I', was (re-)initialized in this block, then
T, receives attention infinitely often, and hence no such stage s exists. On the other
hand, if it is not the infinitary location, then it must be some finitary location. Run
the construction until a stage s where it is chosen as the finitary location. Then after
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stage s, I', cannot receive attention, since this location would be forever abandoned as
a marked location and hence could not be f~1(w-(n+1)). m

Claim 3.7.6: Given f, for each n let o, = TP } n. Then we can compute the final
resting position of R, and find a stage s after which it never receives attention, and
compute the final resting position of I',, and determine if there is a stage ¢ after which
it never receives attention and find this ¢ if so. Additionally, we can determine T'P(n)
and hence compute TP I n.

Then since TP(i) = 0 < ¢ € Inf by Claim 3.7.1, this allows us to compute Inf from f,
and thus f >7 Inf =¢ @".

Proof of Claim: We proceed by induction on n, so suppose the claim holds for m < n.
Then we can compute o, == TP I'n and also find stages after which all requirements R,,
and T', for o < g, stop receiving attention if such a stage exists for that requirement.
Take the maximum M of all these stages and run the construction up to stage M.
(Take M =0 if no requirements have such a stage.)

From stage M, run the construction until R, is initialized (if it is not already initialized
at stage M). Then the block that R,, currently in is its final resting position, since
no requirement of higher priority can receive attention after stage M and cause injury,
since if requirements to the left of the true path received attention, then when the true
path was next visited, a I'-type requirement that only receives attention would do so
after stage M, contradicting the choice of M.

By the previous claim, we can then use f to find a stage s after which R,, never
receives attention. Run the construction to this stage and then run the construction
until T',, is initialized (if it is not already initialized at stage s). Then similarly to the
previous, we know that the block that I', is currently in is its final resting position.
By the previous claim, we can determine if this requirement receives attention infinitely
or finitely often. If the latter, by the claim we can also determine a stage t after which
it never receives attention.

Now, if T',, receives attention infinitely often, then TP(n) = 0. Otherwise, TP(n) =1,
and so we can determine TP I n.

This completes the induction, and hence f > T'P =¢ Inf =p @". [ | O

3.5 Future Work

In light of the above proof, a natural question is:
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Question 3.8.
Can Theorem 3.7 be improved so that we code @’ into f instead of just @"?

Of course, since we are working with the ordinal (w,<) and (w?,<), a broader question is

Question 3.9.
For any k > 1, it is possible to produce a computable copy A of w¥ such that if f :
A - N* then for no computable unary relation U on A do we have f(U) =r f, and
furthermore, f =; @217

A potential starting point for such a proof is to use the metatheorem about 7-systems
developed by Montalbén [22], which is inspired by Ash’s similar metatheorem as in [4].
Montalban’s version of the metatheorem was later improved by Csima and Harrison-Trainor
[13] to make it more sensible for limit ordinals. If such a proof could be developed, one
might wonder about extracting the “intermediate” structure (if any) that has degree of
categoricity 0(2%) for which the metatheorem is able to prove a similar result.

Even more generally, one might wonder if there are any natural examples of this phe-
nomenon of the ordinals, and if so, is there a characterization of structures where such a
result holds? Further, even in the examples we give, the copies we construct are, in some
sense pathological, since there exist copies of (w,<) and (w?,<) where the isomorphisms
are relatively benign in this regard, so one may wish to know the following:

Question 3.10.
Fix A, a rigid and computable structure with strong degree of categoricity d. Under
what conditions are there computable copies B,C of A with isomorphism f: B — C and
a computable U such that f(U) is of Turing degree d? What about when A need not
be rigid?

Additionally, the results we have proven above are weak in the sense that f(U) is unable
to compute f, but could potentially be any degree below f. Is it possible to construct
two copies of some rigid structure where f(U) =7 @ for all computable unary relations U,
where f is the isomorphism between copies?
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Chapter 4

Direct Sums of Abelian GGroups

This section was co-supervised by Matthew Harrison-Trainor, based on a question that he
posed after discussion with Noah Schweber. Jason Bell helpfully pointed us toward the
relevant references in the literature.

4.1 Background

Suppose that A is a finitely generated abelian group, and G and H are abelian groups such
that A@ G 2 Ae H. Must it be the case that G and H are isomorphic? Cohn [8] and
Walker [29] independently proved this result, now know as Walker’s Cancellation Theorem,
using essentially the same techniques. We aim to determine to what extent can such an
isomorphism be constructed computably given knowledge of the constituent groups. We
mainly follow Cohn’s notation and refer to his method of proof.

We note first the following simplification: Rather than considering two separate but iso-
morphic groups A @ G and A® H, we instead let £ be any isomorphic copy and identify
A and G with their images as subgroups of E under such an isomorphism. For instance, if
¢: A® G - FE is such an isomorphism, then we can think of A as ¢(A) € F, and similarly
think of G as ¢(G) € E. In the same way, we can identify the A @ H inside E. However,
since the identification of the copy of A from A @ G and the copy of A from A & H may
not co-incide inside E, we call the latter B. So, we now have a group E which can be
written as the (internal) direct sum A®G and also as B& H, with A 2 B. By making these
identifications, we can see how the two representations interact with each other directly
rather than passing through isomorphisms every time we wish to do so.
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First, we begin by examining to what extent the theorem is true in a computable setting
and what portion of the question is ultimately of interest to us. We shall see that if we are
only interested in a particular E, then the theorem is always true computably. However,
the natural question of uniformity arises and it is in this setting that we find important
limitations in Cohn and Walker’s work. When we speak of “uniformity” here, we mean
that, given an index for £ and computable relations that decide A, B, G and H, and an
index for the isomorphism between A and B, then can we uniformly compute an index for
an isomorphism between G and H? We will show that if we are attempting to work in this
way, then the theorem cannot be true, even if we also give the procedure access to a large
amount of information about the groups and subgroups.

4.2 Computably Splitting Direct Sums

We begin with the most amount of information about A and B, namely what groups they
are and what their generators are. That is, since A and B are finitely generated abelian
groups, we know that they must be isomorphic to some F; @ Fy & --- @ F}, where each F;
is cyclic of either prime power or infinite order. We suppose that this expansion is known
ahead of time, both the order of each F; and the corresponding a; € A and b; € B such that
the copy of F; in A is generated by a; (and similarly b; in B). We say that we know the
groups and know the generators, respectively.

First we make a small remark about uniformity, which is ultimately what concerns us. By
examining the proof of Cohn [8] closely, we see that determining a computable isomorphism
between G' and H must always be possible, provided (finite) additional information can be
hardcoded into the program that produces such an isomorphism. In fact, if we know both
the groups and generators for A ¥ B and A and B are known to be finite, then we can
discover this information as we proceed in the construction of the isomorphism. That is:

Theorem 4.1 (Based on Cohn [8]).
Suppose we know both the groups and generators of A~ B and A@G=B®&H. Then G
and H are computably isomorphic, and moreover, if A and B are known ahead of time
to be finite, then such an isomorphism can be constructed uniformly in the indices for
A, B, GG, H and the isomorphism between A and B, as mentioned above.

Proof:
We will essentially follow Cohn’s proof, commenting on what can be performed com-
putably and what needs to be hard-coded.

We proceed by induction on k, the number of cyclic summands F; that comprise A and
B. Since we know the groups and generators, we may assume that the representation
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Fle Fo®---@ F}, is in some canonical order. We will show that we can solve the problem
for A and B cyclic, with known order and known generators, which we call a and b,
respectively. The details of the induction step are easy and hence omitted.

Suppose A and B are infinite. Let D = Gn H, then G/D 2 G/(GnH) =2 (G+H)/H.
Since G+ H is a subgroup of E, G/D is thus isomorphic to a subgroup of E/H, and
hence isomorphic to a subgroup of B. As B is infinite and cyclic, G/D is therefore either
infinite cyclic or trivial. A similar argument shows that H/D is either infinite cyclic or
trivial. Suppose GG/ D is infinite and choose u € G so that u+ D € G/D is a generator for
G/D. Let U € GG be the subgroup generated by u. Then it is easily seen that G = U@ D.
Then E=AeoU@®D =B& H. We have that D is a subset of H, so taking a quotient
by D results in AeU = B@ (H/D). Hence H/D must also be infinite. The converse is
identical, so G/D and H/D must be either both infinite or both trivial. In either case,
let u+ D be a hardcoded generator for G/D and v + D be a hardcoded generator for
H/D. Let U = (u) and V = (v). Then GzU@® D 2V & D = H. This isomorphism is
computable: given an element g € G, search for the unique representation of g as ku+d,
where k € w and d e Gn H. To do this, compute g — ku for more and more k € w until
g—kueGn H is found. Then map g to the element h = kv +d.

Now suppose A and B are finite cyclic, say of order p” for some prime p. First, there is
an element u € F such that no multiple of u is in G u H unless it is 0, and u has order
p™. In fact, one of a, b or a + b always works, as can be easily shown. For each of these
three candidate values x, we compute x,2z,...(p" — 1)z and ensure that if it is not 0,
then it is not in G u H. There are only finitely many values to compute, and hence u
can be found. Let U be the subgroup generated by u. Then U n G must be {0}. Also,
(U+@G)]G =2UJ(UnG) by the isomorphism theorem, and hence (U + G)/G =z U. So
[U+G:G]=ord(u) =p But [E:G]=ord(a) =p” and U + G € E, so we must have
U+G=F, and hence E =U @& G since Un G = {0}. Similarly, £ =U & H. Thus any
element of £ can be written uniquely as su + g for some 0 < s < p" and g € G and also
as tu+h for some 0 <t <p®and he H, and so G 2 E/U = H. To build the isomorphism
between G and H, given g we search for and eventually find such the unique ¢ and h
such that g = tu + h, and map g to h. O]

Note that in the finite case, we did not need to have any hardcoded information about the
groups; if our procedure is given the order p” of A and B and their generators a and b as we
pre-supposed, then it can construct an isomorphism between G and H using only indices
for the subgroups and the isomorphism between A and B. On the other hand, however,
in the infinite case, Cohn’s proof demands the generator of an infinite cyclic subgroup,
and this cannot be determined from the given information. Such a generator needs to be
supplied from outside the procedure.
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Of course, perhaps we are simply not being clever enough. Cohn’s proof is not designed to
take computability-theoretic questions into mind. Could a different proof avoid the need
for non-uniform information in the infinite case?” The answer is no, as the next result
shows: we can defeat uniformity in the infinite case, even if we know both the groups and
generators. We shall construct an example of such groups, so that A and B are ultimately
isomorphic to Z and G and H are isomorphic to Z x Z. A key leverage point of the proof
is that we do not need to specify in advance any information about the generators of G or

H.

Theorem 4.2.
There is no partial computable function F' which, given the index for (the presentation
of) the computable group F = A® G = B@® H and indices for computable relations
determining A, B, G and H and the generators of A and B, respectively a and b,
outputs an index for a computable isomorphism between G and H.

Proof -

For each partial computable function F, we construct a counterexample such that A
and B are isomorphic to Z and G and H are isomorphic to Z xZ. We use the Recursion
Theorem (see Soare [28]) to be given the indices for our counterexample. In exchange,
we must ensure that if F fails to halt at any stage, we nevertheless build groups of the
required form. We shall explicitly note where we wait for F' to halt and show that no
problems arise should F fail to halt. The same holds true for the function that F' may
produce: if it fails to halt on some value in G, then we win provided we ultimately end
up building the desired type of groups in this case.

We must specify the generators of A and B in advance so that the uniform procedure
may have access to them. We arrange the following conventions: we view elements of
E=A&G=B®H as elements of Z x Q x Q — although E will not be this full group,
but rather a subgroup of it. We define A to be the subgroup generated by a = (1,0,0).
Importantly to the proof, we do not define the generators of G ahead of time. Instead,
we declare the elements ¢; = (0,1,0) and go = (0,0,1) to be elements of G. Note
that g; and g9 will never be multiples of each other. If we do not explicitly declare
additional elements to be in G, then it is not hard to see that G ¢ Z x Z, with g; and
g2 as generators. However, we could, for example, declare that (0,1/2,0) is also in G,
in which case g is clearly not a generator. In this way, we may reveal new information
that changes which elements of G' appear to be generators, and it is this technique that
allows us to defeat the uniform procedure F'.

We have not yet supplied the generator of B. We define B to be generated by b :=
(-2,-1,-2) = =2a — g1 — 2¢2. As with G, we define hy = (5,2,5) = 5a + 2g; + 5go and
he = (0,0,1) = g5, which we declare as elements of H.
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Note that if we never reveal new generators of G or H, then A® G will be generated by
{a,g1,92} and B & H will be generated by {b, hi,hs}, and these two groups are equal
to each other (and to Z @ Z & Z) since a = 2b+ hy — ha, g1 = —=5b—2h; and go = hs.

Thus the uniform procedure F' we are attempting to defeat must provide an isomor-
phism between G and H, say f: G — H. If it never does, then we do not enumerate
new elements into our group that are not sums of existing elements. In this way, as
noted above, F = A& G = B® H, with A and B generated by a and b, respectively, and
G generated by {g1, g2} and H generated by {h, hs} and both G and H are isomorphic
to Z x 7, since we will never introduce torsion.

So now suppose that F' has halted and given us the index for a function, which it
purports to be an isomorphism f : G - H. We first claim that f(gs) must be +hs.
Wait for f(gs) to be declared. Again, if f(g2) never halts, then we continue building
the groups as before and win, since we have not taken any action that would disturb
this yet.

We know that f must send gy to mhy +nhy for some m,n € Z. Suppose first that m # 0.
Take N to be larger than |m|, and reveal a new element of G and H, g = (0,0,1/N)
and note that Ng = go = hy. Now A @ G is generated by {a,q:1,¢}, and B @ H is
generated by {b,hi, g}, and the relationship between elements in A® G and in B& H
remain the same. However, g, = N g, so there must be some element h of H such that
Nh=f (g2) or else the potential isomorphism f fails. The generators for H are now
hy and g, so h must be some linear combination of h; and g, say m'hy +n'g. Then
mhy +nhy = f(g2) = Nho= Nm/hy + Nn'§. As N§ = hs, this gives m = Nm/ and n = n’.
But m # 0 and N is larger than |m|, so this is impossible and we defeat f, no matter
what it is. Hence m = 0.

If m =0, then we have nh; = f(g2) and so h; non-trivially divides f(go) unless n = +1,
as we have claimed. Since g, appears at this moment to be a generator of GG, there are
no elements in A @ G that non-trivially divide g, and so there cannot be any elements
in B@ H that non-trivially divide f(gs).

Hence if f is truly a potential isomorphism between G and H, it must declare that
f(g2) = £hs. Since {g1, g2} generates G unless we take further action, f must be such
that {f(g1), f(g2) = £ho} generates H. Then f(g;) must be of the form kihy + nhy for
some ky € {1,-1} and n € Z. Wait for f(g2) = k2hs to be declared, where ky =€ {1,-1}
and also wait for f(g;) to be declared. Note that we are in the m = 0 case, and thus
we have not taken any action like we did in the m # 0 case that would change the
generators of G and H, so if f does not halt on both of these values, we can continue
building G and H as before and win.
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So suppose f(g1) and f(go) have both halted and are kyhy +nhy and kshs, respectively.
We will show that we can reveal new elements of G and H such that f cannot be an
isomorphism, thus we will win.

If n#0 (mod 5), then let d :=0. Otherwise, n =0 (mod 5), and let d := 1. We proceed
as follows: Reveal a new element u of G such that 5u = g; + dgo and a new element v of
H such that 5v = hy + 2dhy. That is, u = (0,1/5,d/5) and v = (1,2/5,(5 +2d)/5). Now
A@ G is generated by {a,u, g2} and B @ H is generated by {b,v, hy}, and as before the
relationships between elements in A ® G and B & H remains the same. Also, A® G is
still equal to B @ H, since we have

-2 -5 -2+dlla b
1 2 1 ul=1v
0 0 1 g2 hz

as can be checked easily, and this matrix is invertible over Z. Then the element g;+dgs =
5u, so f(g1+dgs) must also be divisible by 5. Such a divisor must be of the form pv+ghs
for some p,q € Z since f(g1 +dge) € H, and H is generated by {v, ha}. Then we have

f(g1 +dga) =5(pv + ghs)
f(g1) +df (g2) = p(5v) + 5qhs
kihy + nha + dkshs = p(hy + 2dhy) + 5qhs
kihi + (n + dkg)hse = phy + (2pd + 5q) ho

and so p = ky and n + dky = 2pd + 5q = 2k1d + 5q. Hence n = 5q + (2k; —ko)d. If n #0
(mod 5), then d = 0, and we have n = 5¢q, a contradiction. On the other hand, if n =0
(mod 5), then d = 1 and we have 0 =n = (2k; - k2) (mod 5), but ki, ko € {1,-1}, so this
is impossible. In either case, f fails to be an isomorphism, since it maps the element
g1 + dgs which is divisible by 5 to an element of H not divisible by 5. O

4.3 Further Work

As we have seen above, when we must supply the groups and generators in advance, we
know only that the problem is not computable. Thus we have the following question:

Question 4.3.
What is the complexity of uniformity in Walker’s Cancellation Theorem when we know
both the groups and generators? Is it a natural complexity like @', or something else?
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Furthermore, what happens when we weaken the information we give to the uniform pro-
cedure? If we give only the groups and allow the generators to change, does the complexity
increase? If so, to what? Similarly, what happens if we give only the generators, but allow
the size of the groups to change?

Additionally, notice that although we are permitted to use any finitely generated abelian
groups as A and B, the troublesome groups were, essentially, direct sums of Z, which
can be represented as lattices. Is there some analogous question that we could ask about
lattices that would provide more insight, or conversely, show that some problem of lattices
is also of interest?

Finally, as noted in Lubarsky and Richman [20], Walker’s Cancellation Theorem is, in
some sense, directly related to the projectivity of subgroups of Z via the following classical
result, which is easily seen to be able to be effectivized:

Theorem.
Let A be an abelian group and f and g surjective homomorphisms from A onto Z.

Then f(ker(g)) = g(ker(f)).

It is possible that this property on kernels is equivalent to Walker’s Cancellation Theorem.
Similarly, it could be the case that the non-effective portion of the proof is all one needs,
i.e. that subgroups of Z are projective. Here, when we say “equivalent”, we mean in the
sense of Weihrauch reducibility (see, for instance Brattka and Gherardi [7] for an overview)
which allows us to relate computational complexity of theorems.
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Chapter 5

Bounded Turing Reducibility and the
Bounded Jump

5.1 Background

Recall that when A is Turing reducible to B (i.e. A <7 B), we have a Turing functional
I’ such that I'® = A. However, many natural reductions also have the property that we
can, ahead of time, produce a computable function f such that the use of the functional
is bounded by f, so that I'B1/(*)(z) = A(x) for all x. Such reductions are called bounded
Turing reductions, and we refer to the function f as the use bound for the functional T'.
We write A <yr B in this case.

Such reductions can also be seen as a weakened form of a truth-table reduction, where A
is truth-table reducible to B if there exists a computable function k : w — w, a uniformly
computable collection of truth tables T} : {0,1}*(*) - {0,1} and a computable use location
function g : w — W) so that T(B(g(x))) = A(x) for all x. In other words, g determines a
k(x)-tuple of locations within w, which are then viewed as a row in the truth table T, by
checking which elements of the tuple belong to B. We write this as A <;; B. The crucial
difference between a truth-table reduction and a bounded Turing reduction is that in the
former, the truth table (which corresponds to I'(x)) is computable and thus must be able
to produce output no matter which k(x)-tuple it receives, whereas in the latter, I'(z) may
diverge with an oracle that is not B. Because of this, it is traditional to refer to bounded
Turing reductions as weak truth-table reductions, written A <, B, but we do not follow
this convention, since in most cases it is more natural for us to think of the reduction as
a Turing reduction whose use is bounded rather than a truth-table reduction whose truth
table is not total.
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Because the jump is a strictly increasing operator, we can wonder if it is surjective (on
degrees). This type of property is known as jump inversion, and there a few important
variants that we mention:

Theorem 5.1 (Friedberg Jump Inversion).
For every A >7 @', there is some X such that X' =r A=y X & &',

Theorem 5.2 (Shoenfield Jump Inversion ([27])).
For every A that is c.e. in and above @', there is some X <r @' such that X’ =1 A.

Theorem 5.3 (Sacks Jump Inversion ([26])).
For every A that is c.e. in and above @', there is a non-computable c.e. set X such that
X'’ =T A.

Note that Sacks Jump Inversion is a strict improvement over Shoenfield Jump Inversion,
because it improves X from A9 to non-computable c.e., i.e. strictly X9,

A natural question is to ask if analogues of these results hold for the bounded Turing
degrees. Friedberg Jump Inversion holds even for truth-table degrees, as Anderson [1]
showed, while Csima, Downey and Ng [11] showed that Shoenfield (and hence Sacks)
Jump Inversion fails for both the bounded Turing and truth-table degrees. In response to
this failure, Csima and Anderson [2] produced a definition of the jump more suitable to
the bounded Turing degrees.

The bounded jump of a set A, denoted A?, is defined as
AP =z | (Fi<a)[pi(x) b A2 ()L ]},

Using this definition, which they showed satisfied the expected properties of a jump opera-
tor — for instance, it is strictly increasing — they were able to prove the analogue of Shoen-
field Jump Inversion holds. They also proved a useful characterization between bounded
Turing reductions and the Ershov hierarchy, which we will make use of and expand upon.

Because of how often this characterization is used in the following sections, it is worth
mentioning it here. Recall that a set A is said to be w-c.e. if there is some computable
approximation function f:w xw — {0,1} and a computable function ¢ : w - w such that

o lim, .. f(2,5)=A(z) for all x, and
o [{s| f(x,s)# f(z,s+1)} <g(x) for all .

Then a well-known result says that A <,r @' exactly when A is w-c.e. The characterization
expands upon this using a more general definition. We give this in a slightly different
format than it is usually presented, but it is essentially equivalent to those seen elsewhere.
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Definition 5.1 (a-c.e.).
Let o be a computable ordinal. We say that a set A is a-c.e. if there is a computable
function f:w xw — {0,1} x o such that for all z:

o lim, ., fo(z,s) = A(x) and fo(x,0) =0,
o if fo(x,s+1) % fo(z,s), then fi(z,s+1)< fi(x,s), and
e fi(z,s+1)< fi(x,s).

(Here fy and f; are the projections of f onto the first and second coordinate, respectively.)

The full characterization states that A <7 @™ exactly when A is w”-c.e. The reader familiar
with results about such sets may be aware that the coding of computable ordinals has an
effect on which sets are w?-c.e. and which are not, which is not suitable for our purposes. In
Section 5.2, we resolve the problem by showing that not any coding of computable ordinals
will do for our purposes, but rather a particularly nice one that computably admits a
Cantor normal form for the ordinals we care about. Such codings agree on which sets are
w?-c.e. and thus do not pose a problem.

Once we have resolved this issue, we prove two results that answer questions of Anderson,
Csima and Lange [3]. Recall the following definitions:

Definition 5.2.
Let A be a set. Then:

o Aislow if A’ <r &',

A'is high if A’ >p @,

A is bounded low if A <y @°,

A is bounded high if Ab >y @2,

A is superlow if A’ <y &',
e A is superhigh if A’ >, @&".

Section 5.3 is devoted to the proofs of these results, which are the following:

Theorem 5.5.
There is a c.e. set A that is low and bounded low and is also not superlow. Since any
superlow set is easily seen to be both low and bounded low, this shows that the low,
bounded low sets properly contain the superlow sets.
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Theorem 5.6.
There is a c.e. set A that is bounded low and Turing complete, hence a set that is
superhigh but not bounded high.

Next, in Section 5.4 we extend the characterization mentioned above so that it works
relative to an arbitrary oracle. That is, we give equivalent conditions for when a set A
is bT-reducible to B* for some set B and k > 0. Although the characterization is not
particularly beautiful — and hence we do not reproduce it here for brevity — we are able to
use it to prove the following result, to which Section 5.5 is dedicated:

Theorem 5.13.
For any set B, there is a set A such that B <yr A <yr BY. Furthermore, B® <y A? <
B2,

This theorem shows that (relativized) bounded jump inversion is non-trivial relative to any
oracle B and we expand more upon this question in Section 5.6 and detail further work
and open problems related to the bounded jump.

5.2 Resolving A Foundational Problem

In various proofs relating the bounded jump to the Ershov hierarchy — for example, Ander-
son and Csima [2] — we use a computable coding of some initial segment of the computable
ordinals. The details are omitted, but this seemingly causes a problem: A result of Epstein,
Haas and Kramer [15] shows that given any f <r @', there is some system of notation S
in which f is w?-c.e., which suggests that the hierarchy is highly dependent on the exact
choice of how ordinals are coded. To resolve this, we will first briefly remind the reader
of the definition of a system of notation, then reproduce this proof, comment on why the
proof proceeds as it does, and then finally show that this result does not actually pose a
problem for our purposes.

We begin with the definition of the system of notations, due to Rogers.

Definition 5.3 (System of Notation, Rogers [25, pg. 205]).
A system of notation S below the ordinal a is a map v from D € w onto the set of
ordinals below a with the following additional functions:

e A computable function kg so that kg(z) determines the type of ordinal that v(x)
is. (Among zero, successor, non-zero limit).
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e A partial computable function pg so that for all x with v(z) a successor ordinal,
ps(z)| and v(ps(x)) +1=rv(x). That is, ps determines a predecessor ordinal, if
possible.

e A partial computable function gg so that for all z with v(z) a non-zero limit or-
dinal, e = gs(z) |, . is total and {v(p.(0)),v(pc(1)),...} is a strictly increasing
set of ordinals with limit v(x). Such a sequence is called a fundamental sequence

for v(x).

The stated form of the definition does not quite match the original, where kg was permitted
to be only partial computable on w but computable on D. We are not interested in what
occurs for x not in D, so restricting kg in this way is not an issue.

We will informally say that x is “a name” for the ordinal v(x). In the result of [15], each
ordinal has at most one name, but this need not be true of a generic system of notation.

Notice that this definition is restrictive because it requires that we can determine prede-
cessors and fundamental sequences effectively, but is also rather weak since there is no
guaranteed computable way of performing ordinal operations like addition or multiplica-
tion.

We now turn to the proof we are interested in examining.

Theorem 5.4 (Epstein, Haas and Kramer [15, 8b]).
For each g < @', there is a system of notation S such that g is w?-c.e. under this coding.

Proof-
Since g < @', we can by the Limit Lemma (see Soare [28]) find some computable
function f(x,s) with g(x) = lims.e f(x,s) for all x and f(z,0) = 0 for all x. Let
X ={(x,s) | s=0v f(z,s) # f(z,s— 1)} and define (x,s) <g (y,t) if either x <y, or
x =y and s >t. Notice that (X,<g) is a well-order of type w, and also both X and <p
are computable since f(z,s) is.

Pad X into a system of notation as follows: The domain D is wlX] = {{u,m) | u €
X Am € w}, and we define (u,m) <g (v,n) if v <z u should v # u or if m < n should
u=wv. Then (D,<g) is a well-order of type w?, with the ordinal w-i + j having name
(u,7), where the ith element of (X, <g) is u. We will give more detail on why S satisfies
the full requirements to be a system of notation in a later remark.

Define the computable function d(z,s) = (f(z,s),({(z,t),0)), where ¢ < s is largest so
that (z,t) € X. That is, if we treat the second coordinate as an ordinal in the system
of notation S, then d(x,s) = (f(x,s),w-1i), where i is chosen so that it has name (z,t)
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with ¢ < s as large as possible. Then it is not hard to see that g is w?-c.e. via d in the
system of notation S.

Note: The original proof used a different (but equivalent) definition of w?-c.e., which
we have adapted to fit our definition of a-c.e. n

In Fig. 5.1, we reproduce Diagram 3 from [15], which is very instructive in understanding
the definition of X and also why d will work.

01234..s

Ol5— 1

INF 5 4 T

23 7T

3 e
13 12 11 10 9

X e

Figure 5.1: Enumeration order for (X, <g) as determined from f(z,s)

The attentive reader may perhaps wonder why we must pad (X,<g) to (D,<g). After all,
can we not simply set

d(x,s) = (f(x,5), (1))

where t < s is largest so that (x,t) € X as before, and hence g would be w-c.e. via d? The
answer is that we cannot, because X cannot be made into a system of notation. Recall from
the definition that not only do we require some set D that acts as the “names” of ordinals,
but we also require that we have three functions that give some information about those
ordinals. In this case, it is easy to see that kx and gx could be defined, but px cannot be
partial computable unless g is computable — the diagram is again instructive as to why.

By padding out X into S, we obviate this problem. It is easy to see that in S, ks and pg
are easily defined and now it is gg that is the sticking point. We repeat here the proof of
Rogers [25][11.8.XX] that produces a ¢g that will work. We know that all names for non-
zero limit ordinals have the form (u,0). Let m be the minimal element for X. Fix u e X.
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We will define the function h(z) to produce a fundemental sequence for the non-zero limit
ordinal (u,0). We do this inductively:

h(0) = (m,0)

h(n+1) Zz{

(w,0), if w=(ux<n)[s<gx<gu] here h(n) = (s.1)
where h(n) = (s,t).
(s,t+1), if no such w exists.

Then h computes a fundamental sequence for (u,0), and so we set gs({u,0)) =y where y
is an index for the partial computable function h.

We now resolve the issue: not just any coding of ordinals will work for our purpose of
defining wk-c.e. We also require that the system of notation has some way of computing
a Cantor normal form from the names of the ordinals. That is, if x is the name of the
ordinal w*-ay, +---+w-ay +ag, then there should be some computable function g that maps
x to (ag,...,ap0). We only work with ordinals less than some pre-determined wk*!, so we
can assume that our Cantor normal form can be encoded in such a way; we call such a
g a Cantor normal form function or CNF function. Recall from the remark above that
the existence of a CNF function is not intrinsically prescribed by a system of notation and
must be justified separately. A result of Ash and Knight [4] shows that once we choose
our largest ordinal we care about, we can always find some particular system of notation
where a Cantor normal form representation exists. So this is not a tall order in the cases
we are interested in. Indeed, if we choose that largest ordinal to be w**1, then it can be
easily determined that the representation that is constructed by that proof is effectively
the same as the (k + 1)-tuple produced by a CNF function.

Consider the system of notation S that we constructed above — that was designed so that
g <7 @ was w?-c.e. Suppose S has a CNF function C. Since S represents ordinals less
than w?, C' maps elements of D to ordered pairs, where C'(x) = (4, 7) if = is the name of the
ordinal w-7+j. Notice that by our definition of D, (u,m) names the ordinal w-i+m where
ue X is associated to i € w as we view (X,<p) as w. So we can define C'(u) = g({u,0)) for
all we X, so that C provides an order-preserving isomorphism from (X, <g) to w.

Fix x and define 7 := C’((x -1,0)) should z > 0 and -1 should z = 0. Enumerate X until
we find (z, s) such that C({z,s)) =i+ 1. Then g(x) = f(x,s), which we can compute. So
g <r C <7 C. If we demand that the CNF function C' be computable, then the the function
g that S was designed to make w?-c.e. was already computable and so trivially w?-c.e.

Hence, if the results of Anderson and Csima are modified so that they require a computable
CNF function (as noted in the follow-up paper Anderson, Csima and Lange [3]), then this
resolves this issue. In fact, given those results, this is enough to make the notion of w™-c.e.

65



completely well-defined, since then the proofs of Anderson and Csima provide an ordinal-
free characterization of w”-c.e., namely being bT-below @™, and so the choice of notations
for w™ cannot have any impact on which sets are w™-c.e.

5.3 Bounded Low and Bounded High

The aim of this section is to answer some questions posed by Anderson, Csima and Lange
[3]. Recall from Definition 5.2 that we say that a set A is low if A’ <r @' and high if
A’ 27 @", and analogously, A is bounded low if A® <yr @ and bounded high if A® >y @2
Finally, following the definition of Mohrherr [21], a set A is said to be superlow if A’ <y &',
and superhigh if A’ >, &".

In Anderson, Csima and Lange [3], the existence of a c.e. set that was bounded low and
yet high was demonstrated, as was the existence of a set bT-below @’ that is bounded high
and yet low. These two results show the disconnect between classical low/highness and
bounded low /highness. In that vein, they posed some questions about refining the overlap
between these classes. We reproduce the questions of interest here:

Question (Anderson, Csima and Lange [3, 4.2a]).
Does there exist a bounded low set that is low, but not superlow?

Question ([Anderson, Csima and Lange [3, 4.3]).
Does there exists a set that is superhigh but not bounded high?

We answer both of these positively. In fact, for the latter, we improve both of the conditions
by constructing a set that is complete (hence superhigh) but is bounded low (hence not
bounded high). These results were proved independently and simultaneously by Wu and
Wu [30], who also answered additional open problems from [3]. Their method for these
other open problems is illuminating for the question of jump inversion, which we remark
more on at the conclusion to this chapter.

5.3.1 Low, Bounded Low, Not Superlow

We construct a c.e. low, bounded low but not superlow set A via a finite injury construction.

Theorem 5.5.
There is a c.e. set A that is low and bounded low and is also not superlow. Since any
superlow set is easily seen to be both low and bounded low, this shows that the low,
bounded low sets properly contain the superlow sets.
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Proof-
We aim to meet the following requirements.

To ensure that A is low, we meet the standard lowness requirements (see Soare [28]):
Lo (3%s)[@2(e)[s]L ] = P2 (e) !

As in the proof of the bounded low set that is high from [3], we have the following
requirements that ensure Ab is w-c.e.:

P.: 1If ¢, s(z)] with n <z, then all requirements U, with e > z are restrained from
enumerating any y < ¢, () into A after stage s.

Meeting these requirements will then show that A’ < @' =; @°, and so A will be
bounded low. A requirement P, imposes a restraint on all requirements U, with e > x
so that we can ensure that A’ is w-c.e. In fact, we will show that the computable
function g(x) := 2z(x + 1) bounds the number of changes in the natural approximation

of Ab(x), as in [3].
Finally, we must ensure that A is not superlow. To do so, we note that A is superlow

if and only if A’ is w-c.e., so we have the following requirements, which follow the
requirements used in the construction of a low but not superlow set in Nies [24].

Uy ) Thereis an 2 such that o;(z,t) cannot approximate A’(z) with at most ¢;(x)-
many changes. That is, if p;(z) | and ¢;(y,s) is a total {0,1}-valued function with
lim,, o i(y, s) = A’(y) for all y, then there are at least (¢;(x)+1)-many stages s where
wi(x,8) #@i(r,s+1).

We build a Turing functional T'Y (z,¢). For a fixed ¢, we use the following procedure

to define I'V(z, ¢) and also a set A, at the same time. For brevity in the construction,
however, we write A for A,.

Let WZ(y, z) = ®Z(y) for all z. By the relativized s-m-n Theorem (see Soare [28]), there
is a computable, injective function p such that for all sets Z and for all z, q)g(y)(z) =
\I/f(yZ,z) = ®Z(y). In particular, take z = p(y) to see that @}f(y) (p(y)) = ®Z(y) for all
sets Z.

We define a restraing function R(s) for all the requirements P, at stage s. Let R(s) =

on(x), if ‘Pn,S(x)wL

max{k(n,z,s) | n <z <s} where k(n,z,s) = T
-1, otherwise

Note that R is finite and computable.

To each requirement U,, we will associate a counter c., a witness z, and markers m,
and t.. We will always choose x, and m,. from wlel.
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To build the c.e. set A, we proceed by stages:

Construction:

Stage 0: Set Ag = @. Set z. = (e,0), t. =0, c. = 0 for all e, and leave all m,
undefined.

Stage s+ 1: If ¢, (z) converges for the first time at stage s+ 1 and n < x < s,
then we say that P, acts. For all e > z, run the injury procedure for U,, which
we describe at the end of the construction.

For each e < s, if ®1(e)[s]) but u(e)[s—1] # ul(e)[s] in case s > 1, then we say
that L. acts. For all i > e, run the injury procedure for U;. (If ®4(e)[s - 1]1, we
say that ud(e)[s-1]=-1.)

In any case, choose the least (i, ) < s such that ; ()1, cu ) < @;(2) +1, Ug
has no requests issued and either

ciijy is even A (3t < s[>t Apis(2z,t)=0]

or
Clijy is odd A (3t < s)[t >t 5y Apis(z,t) = 1],

where z = p(z(; j))-

In the first case, define I'(z(; j,¢) | with use u > my; j,, where we define my; j
to be some value from wl®] not yet in A and exceeding R(s) and the stage
number s + 1. For all e > (i,7) run the injury procedure for U,. Issue a request
for convergence for Uy, ;. We insist that the convergence of I'V (z; j,q) depends
only on the single value my; jy, so that I'V (z; jy,q) | exactly when my; ;) ¢ Y. This
will allow us to enumerate m; ;) into A at some later stage if we desire, and so
destroy the convergence of T'4(z(; 5, q).

In the second case, enumerate my;;, into A. Issue a request for divergence for
Ugij)-

In either case, we say that requirement U; ;) acts at stage s +1 and increment
C(i,j5) by 1.

Finally, for all U, that have requests issued, we attempt to fulfill their request at
end of stage s+ 1 in the following way. Let z = p(x.). If U, has a request for

convergence (resp. divergence) issued and ®4(z)[s+ 1] converges (resp. diverges)
then set t, := s + 1 and consider the request fulfilled.
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Injury Procedure: Whenever a requirement U, is injured, we run the following
procedure: set t. =0, ¢, =0, and set m, to be undefined. If z. = (e, 1) for some 1,
set x. = (e,i + 1). Cancel all requests that have been issued for U.. We say that
the requirement U, has been reinitialized.

This completes the construction of A, and the definition of the partial computable
Turing function I'V (z, q).

By the relativized s-m-n Theorem, there is some computable function f(q) such that

@}f(q) (z) =TI'Y(z,q) for all sets Y. By the relativized Recursion Theorem (see [28]), there

is a fixed point for f, say ¢/, so that ®},(z) = @J‘f(q,)(q:) =TY(z,q¢') for all Y. Notice in
the construction, we choose p — depending on ¢ — so that q)lf(y)(p(y)) = ®Y(y), so this
gives @I’:(x)(p(:c)) =TIV (x,q") for the function p associated to ¢’. That is, p(z) € Y’ <
(I)z};(x) (p(x))l<=TY(z,q¢')|. We claim that the set A, satisfies all the requirements and

is our desired set. Again, for brevity we write A, but the reader should not forget that
our choice of ¢’ allows us to relate Y’ to I'V (x,¢") via p.

Claim 5.5.1: For every e, requirement L. acts at most finitely often and is met. For
every x, requirement P, acts at most finitely often. For every e, requirement U, acts
at most finitely many times.

Proof of Claim: By induction, we may assume that all higher priority requirements act
at most finitely often, and hence there is some stage sy such that no requirement of
higher priority acts at any stage ¢ > sg.

Suppose the requirement under consideration is L, for some e. If ®2(e)[¢]1 for all ¢ > s,
then L, never acts after stage sq, and so acts at most finitely often. Further, L. is met
vacuously, since its hypothesis fails. So suppose some stage t > s exists with ®2(e)[¢]J.
Let ' < ¢ be the smallest stage where uZ(e)[s] = ud(e)[t] for all #’ < s <t — note that it
need not be the case that ' > s5. Then L, must have acted at stage ¢’ and reinitialized all
lower priority requirements. So after stage t’, all lower priority requirements would only
be able to enumerate values exceeding ¢’ into A. Since all higher priority requirements
stop acting at stage sg, no values below ¢’ can be enumerated into A beyond stage t.
By assumption, u2(e)[t] = u2(e)[t'] < ' and so the computation ®4(e)[t] will persist
forever as no value below its use will be enumerated into A after stage t. Thus L, will
never act after stage ¢, and L, is met, since ®4(e) = ®4(e)[t].

Now suppose the requirement under consideration is P, for some z. It is easy to see
that P, acts at most finitely often; indeed, it can act at most x + 1 times, once for each
n <z, since @, (x) can converge for the first time at most once.
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Finally, suppose the requirement under consideration is Uy; ;) for some 4, j. Notice that
the condition c(; jy < ¢;(2) + 1 forces Uy; ;) to act at most finitely often provided it is
never reinitialized, since cy; jy is only ever incremented, or reset by reinitialization of
Uy;,j)- It is plain to see from the construction that Uy jy can only be reinitialized by
higher priority requirements. Hence after stage so, U; ;y will never be reinitialized, and
so will act at most (¢;(z) +2)-many times after stage sop. Thus Uy, ;) acts at most
finitely often. ]

Since A satisfies all the lowness requirements, it is low. It remains to show that A® is
w-c.e., while A’ is not w-c.e., i.e. A is bounded low but not superlow.

Claim 5.5.2: Ab is w-c.e.

Proof of Claim: To show that A° is w-c.e., we use the same approximation function as
in [3]. That is, let

1, if (3n <) [pns(2)) A2 (2)[s])]
0, otherwise

|
Suppose that f(z,s) = 1, i.e. there is some n < z such that ¢, ,(z) | and &5 (z)[s]|
. Since ¢, s(x) |, there was a stage s’ < s where ¢, (x) first converged. So at stage s, P,
must have acted and reinitialized all lower priority requirements. If those requirements
enumerate a value into A after stage s/, they must have chosen it to exceed R(s’) since
R(t) > R(s") for all stages t > s'. We know R(s") > ¢,(z) since ¢, () |, so if any
requirement of lower priority than P, enumerated a value after stage s’, it would not
injure the computation 4" (z)[s].

So it remains to consider the higher priority requirements, since they are not reinitialized
at stage s’ and still may enumerate a value below ¢, (z). We show that each of these
requirements can only injure the computation @4 '#"")(2)[s] at most once, for each
n < z. Indeed, if the requirement U, enumerates a value m, into A, it may choose a
new value for m, at a later stage. But at any later stage t, all requirements obey the
restraint function R(¢) and hence m, will be chosen to exceed R(t) — and hence exceed
on(x) — even though U, is of higher priority than P,.

Hence for a given x, each requirement of higher priority than P, can enumerate below
@n(z) for each n < x at most once. Therefore the number of changes to f(z,s) for a
given z is bounded by g(z) = 2z(z + 1), by the same proof as in [3]. So A® is w-c.e.,
and thus A is bounded low. ]

Claim 5.5.3: Each requirement U, is met for all e, which makes A’ not w-c.e.
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Proof of Claim: Consider the requirement Uy; j.

We know by Claim 5.5.1 that all requirements of higher priority act at most finitely
often, and hence there is a least stage sy after which Uy, jy is never reinitialized. Hence
x(;,;y would never be increased after stage so. For brevity, let x be this eventual value
of z; j. We claim that z = p(z) is a witness for Uy, j.

Suppose that ¢;(z) | and lim,,. ;(z,s) = A’(2) where ¢;(z,s) is in {0,1} for all z
and s. Since Uy, ;) acts only finitely often and is never reinitialized after stage sg, there
must be some limiting value for c; ;y, which we denote by c. We claim that ¢ > ¢;(2)+1.
Let ' be the limiting value of #; ;). Let s’ > sy be the first stage after which c(; ;) never
changes. Since whenever Uy; ;) acts we increment c(; jy, we know that Uy, ;) never acts
after stage s'.

We first claim that if Uy, ;) issues a request at stage t > sq, it will be fulfilled at some
future stage. Suppose otherwise.

First, if it is a request for convergence, we would have defined I'*(z,¢’)| at stage t. All
higher priority requirements have finished acting by stage so. Only Uy jy can enumerate
Mgy, as my; jy € wl®. Thus if the request for convergence is never fulfilled, then Uy, j
will never act again and this computation persists forever, i.e. I'4(z,¢’)| for the final
set A. By our choice of ¢/, this means z € A’. Then there is some s > ¢ such that ®2'5(2)
by the use principle. But then at stage s we would fulfill the request for convergence.

Second, if it is a request for divergence, we would have I'4(z, ¢') 1 at stage t. Since only
U; j can define convergence for z, if the request persists forever, then I'‘(z,¢") 1 for
the final set A. By our choice of ¢/, this means z ¢ A’. Since A satisfies the lowness
requirements by construction, ®4(z2)1 means that all but finitely many stages s have
®2+(2) 1. In particular, there is some s > ¢ such that ®2+(2) 1 and so ®4(2) 1. But
then at stage s we would fulfill the request for divergence.

Hence, U, jy never acting after some stage is not because a request was issued that was
never fulfilled. Suppose ¢ < ¢;(z)+1 for a contradiction. By assumption, the conditions
@;(2) and ¢ ;) < ;(z) +1 are met, so the only reason for Uy, j, not acting is because
no value of ¢ > t; ;) = t" could be found satisfying associated condition.

If ¢ is even, it must be that ¢;(z,¢) = 1 for all ¢ > ¢’. By assumption, ¢;(z,t) settles
on A’(z), so we get that z € A’. Since Uy, ;) never acts after stage s’, we never define
I'4(x,q")| at any stage after s’. Hence I'*(z,q’)1 for the final set A. But by our choice
of ¢’, this means z ¢ A’, a contradiction.

If ¢ is odd, it must be that p;(z,t) =0 for all ¢t > ¢'. So z ¢ A’. Since A satisfies the
lowness requirements by construction, all but finitely many stages s have ®2(2)1. In
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particular, there is some stage s > s’ such that z ¢ A.. So I'4s(z,¢’) 1. During the last
stage where Uy, ;) acts and incremented c(; jy to ¢, we would have defined T'4(z,¢") | .
Only Uy, ;y can injure the computation, by enumerating m,; ;). But by assumption this
never happens. So Ay M u = A, I v and yet T'4s(z,¢') 1 but I'4s(z,¢’) | with use u, a
contradiction.

So in any case there is a contradiction, and hence ¢ > ¢;(z) +1. Let s/ <53 <3<+ < s,
be the stages where Uy ;) acts, so that c(; ;) is incremented from e ~ 1 to e at stage s..
Then ¢;(z,51-1) =0, @;(2,52—1) =1, etc. Hence there must be at least ¢ — 1 stages s
such that ¢;(z,s-1) # p;(2,5). But c=1> ¢,(z) and so the number of changes exceed
©;(z). Hence Uy, jy is met. |

So A is low and bounded low, and since A’ is not w-c.e., A is not superlow. Therefore
A is the desired set. m

5.3.2 Bounded Low, Complete

Theorem 5.6.
There is a c.e. set A that is bounded low and Turing complete, hence a set that is
superhigh but not bounded high.

Proof:

In order to show that A is complete, we will meet, for all 7, the following requirements:
Ri:  (3m)(VE>m)[pi(0) ] > pa(0) 2 i (0)]

where p;(¢) is the element of A in the /th position. That is, if A = {ag < a; <---}, then
pa(l) = ay.

To show that A is bounded low, we use a modified version of the method used in the
construction of the high, bounded low set in [3]. In that proof, we needed requirements
to prevent “too much” action by R,; below certain restraints that we set, so that com-
putations involved in the definition of A® did not change too often. However, we can
take aggressive pre-emptive action so that no explicit restraint functions are needed.
Otherwise, the bulk of the argument will proceed in the same way. That is, to show
that A is bounded low, we will equivalently show that A’ is w-c.e., and to do so we

will bound the number of changes in a natural approximation of A® by a computable
function.

Additionally, we will meet, for all e, the following restrictions to ensure that A is
coinfinite:
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N.: |A]>e.

As per usual, at each stage s+ 1, we will be given an approximation 4, and enumerate
finitely many values from A, = {aps < a15 < ags < -} into A to build Ag,;.

Construction:
Stage 0: Set Ay =@.
Stage s+ 1: Write A, = {aps < a1 s <ags <}

(Pre-emptive Action): If ¢, ()| newly (i.e. ¢ s-1(x)1 but ¢, s(z)|) with
n < x, then enumerate all a,, such that ¢ >z and as s < @, s(z) into A.

(Normal Action): We ask:
(Fi<s)(Fl<s)U>inpis(0)>aps].

If so, find the least such pair (i,¢). Compute u least such that a, s > ¢;()
and enumerate ass, g1, - ., Gy-1,s into A for the sake of R;. We say that
these enumerations are due to the pair (i,/).

Set A:=uU,A,. This completes the construction.

Claim 5.6.1: For all e, the limit lim,_, o a. s exists. Hence all N, hold, so A is coinfinite.

Proof of Claim: Fix e. Inductively, we may assume that there is some stage sy such
that lim,_, e a;s = a;; for all ¢ > sp and for all i < e. So no elements below a. 4, are
enumerated into A after stage sq.

First notice that if a, s is enumerated during pre-emptive action at some stage s+1, then
¢ >x and ¢, s(x)| newly for some n < x. Notice second that if a, is enumerated for
the sake of R; at stage s+1, then at any stage ¢ > s+1, we have aps > ag 11 > aus > 9i(£),
so R; will not enumerate any elements into A at stage t + 1.

It is not hard to see that we can find a stage s; > sq such that (a) for all i,y <e, v;(y) !
exactly if ¢; 5,-1(y) |l — so that no ¢;+(y)| newly for i,y < e at any stage ¢t > s; — and
(b) no R; with i < e enumerates into A due to a pair (i, {) with ¢ < e at any stage after
S1.

We show that lim,_, @ s = ac5,. Suppose otherwise. Then there is some stage s’+1 > 54
where some ay o with ¢ < e is enumerated into A. By assumption, s’ +1 > s; > 59, so we
must have ¢ = e by choice of sy. For a.y to be enumerated during pre-emptive action
at stage s’ + 1, we need e > z and ¢, ¢(2) | newly for some n < x. This contradicts
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the choice of s; by taking y =2 <eandi=n<xz<ein (a). So a.y must have been
enumerated for the sake of some R;. For this to be the case, we must have had the
following condition hold:

(< >ingia(U)>ap]

and e > ¢' so that a.y € {apyg,api1,,... 0415} Then e > ¢ >4 and R; with i < e
enumerates into A due to a pair (i,£') with ¢’ < e, contradicting (b). So no such stage
s"+1 exists.

Hence a. s = a. s, for all s> sy and so lim,_,e G s exists. So A is coinfinite, and we may
write p(e) = lims_ o ae s for all e. []

Claim 5.6.2: For all ¢, R; is satisfied. Hence A is complete.

Proof of Claim: Fix ¢ and consider m = i. Suppose £ >m and ¢;(¢)| . Let sy be a stage
such that lim,, . aps = ap, for all £ > sg. Since a5, never changes after stage sg, R,
must never enumerate ag; = ars, at any stage t > so. In particular, R; never acts due
to the pair (i,¢) after stage so.

Since ¢ > m = i, this should occur unless ¢;+(¢) | > a,, fails for all ¢ > 5. Since ¢;(¢) |
by assumption, there is some stage t > so such that ¢; (€)1, so @;(€)1=p;i+({) i< ap; =
lim,_ e aps = p(¢), as desired.

Thus p; dominates every partial computable function on their domains, so A must be
complete. m

Claim 5.6.3: A is w-c.e. That is, A is bounded low.

Proof of Claim: We construct a computable function f:w xw — {0,1} such that

e lim, ., f(z,s) = Ab(x) for all 2 and

o f(x,s)#+ f(x,s+1) for at most g(z) ==2(x +3)(x + 1) many stages s.

Let
1, if (3 <2)[pns(z) ) A02P" O (2)[s]4],

0, otherwise.

fx,s) ¢={

Suppose f(z,s) =1, i.e. there is some n <z such that ¢, ((z)| and @fr“p”(m)(:ﬁ)[s] .
Then there is some sy < s such that ¢, ()| newly. At stage so+ 1, we would take
pre-emptive action and enumerate all a5, such that ¢ > z and a5, < @, (x) into A.
Then .41 4+1 > ©n(x), and hence the only elements of A; below ¢, (z) for ¢t > so + 1
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are drawn from {ag sy+1,- - -, @zs+1}. S0 for the use of @f“""(m)(x) to change at stage
5> sp+ 1, it must be because one or more of these x + 1 elements were enumerated into
A at stage s. Thus after stage so+ 1, there are at most x + 1 stages that change A below
the use of the the computation we are interested in. As ¢, ¢, (z)| newly, such changes
only occur at stage sg, So+ 1 or these at most (x + 1)-many stages.

So f(z,s) # f(z,s+1) for at most g(x) = 2(z+3)(x + 1)-many stages, since for each of
the (z + 1)-many potential uses — given by the n <z with ¢, (z)| — there are (x + 3)-
many stages where enumerations below this potential use may occur and each such
enumeration may lead to at most two changes (divergence, then reconvergence at some
later stage).

Therefore f witnesses that A is w-c.e. with computable bound g. ]

Thus A is the desired bounded low and complete c.e. set.

As an aside, we have shown that we can construct a set that is bounded low and Turing
complete, that is, A =p @’. We cannot improve this so that A =, @', since then A =yp
@ =, @' =7 A and this is impossible since A £,r A.

The above proof also gives us some new information on the structure of the bounded jump:
Corollary 5.7.

There are c.e. sets A and B such that A is bounded low and B is bounded high, but A
and B have the same Turing degree.

Proof-
Take A as above and B = @®. Then the result follows immediately from the complete-
ness of A, the definition of bounded high and the fact that @’ =, @b. m

5.4 Relativized Characterization of Bounded Turing
Reductions

Recall that when we are working relative to some set B, it is extremely useful to be able
to characterize sets A that are reducible to B(™). In the typical Turing reduction, such as
characterization is well-known, provided by the relativized form of Post’s Theorem, which
relates such sets to the arithmetic hierarchy. That is, A <7 B(" exactly when A is AB

n+1-

A non-relativized version of such a characterization for the bounded Turing degrees was
proven in Anderson and Csima [2], which relates reductions to the Ershov hierarchy, which
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consists of the w*-c.e. sets. Since we will be working with such sets and attempting to
relativize this result, it is worth first recalling the definition of such sets.

In light of Section 5.2, we will dispense with the system of notation for the computable
ordinals involved in such sets and work more informally. Recall the definition of a-c.e. we
have from Section 5.1:

Definition 5.4 (a-c.e.).
Let o > 1 be a computable ordinal. We say that a set A is a-c.e. (a—1-c.e. when « is
finite) if there is a computable function f:w xw — {0,1} x « such that for all z:

o lim,_ ., fo(z,s) = A(x) and fo(x,0) =0,
o if fo(z,s+1) % fo(x,s), then fi(x,s+1) < fi(z,s+1), and
o fi(z,s+1)< fi(z,s).

(Recall that fy and f; are the projections of f onto the first and second coordinate, re-
spectively.)

This definition reduces to a simpler one when « = w, and that this definition is equivalent
to the normal definition of w-c.e. can be seen with not much effort. We will use this usual
definition to motivate the first result, and return to the more general definition once we
have explored relativizing this simpler case. The change in index when « is finite is so
that 1-c.e. aligns with our usual notion of c.e., 2-c.e. with the difference of c.e. sets, and
so on. However, for the most part, we will have a > w, so this notational irregularity will
not matter.

We now begin the results proper. The first generalizes the familiar result that a set A is
bT-below @' if and only if A is w-c.e.

Theorem 5.8.
Let A and B be sets. The following are equivalent:

(i) A <y Bb

(ii) There exists a function f <7 B via I" such that lim,_., f(z,s) = A(x) and f(z,0) =
0 for all z, a computable function g such that |{s| f(z,s+1) # f(x,s)}| < g(z)
for all z, and a computable function h that is monotone increasing in the second
coordinate such that |{s | h(x,s) # h(z,s + 1)}| < g(x) for all z and uB(z,s) <
h(z) = limyeo h(z,t) for all z and all s.
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Proof:
Su{)pose A <yr B via T' with use bound p. For each s, define (B°)s = {z | (Ji <
2)[@is ()} ABEIF#T) (1) | T}, Note that {(B"),}se is uniformly computable from B.
Fng)s(x), if Fng)s(LC)l with use less than p(z) and s # 0,
Define f(z,s) =10, if s=0,
f(x,s-1), otherwise.

Notice that f is computable from B since {(B?)s} e, is uniformly computable from B.
b
Also, lim,.e (BY), = BY, so for large enough s, f(z,s) =T (2) | =T8" (z) = A(z).

To compute f(x,s), we first compute {(B®); I'p(z) |t < s} from B. Once we know these
initial segments, we can compute f(x, s) according to the definition. To compute (B®);,
we require at most max{y;+(y) | |i <y < p(z)}-many bits of B, and so to compute
f(x,s), we need h(zx,s) =max{g;+(y){ |i<y<p(x)at<si-many bits of B. It is clear
that & is computable and monotone increasing in s and possibly changes only when
some ¢;(y) newly converges for i and y as above, i.e. at most (p(z)? + p(x))/2-many
times.

Also, f(x,0) = 0 by definition. Finally, |{s | f(z,s+ 1) # f(z,s)}| < p(z) + 1 since
the approximation can only change at most p(x)-many times for each use change, plus
one more for the initial convergence (which does not require a use change). The use
can only change at most p(x)-many times since once an element enters some (B?);, it
cannot leave at any later stage. Hence taking g(z) = (p(x)?+p(z))/2 will work, as this
exceeds p(z) + 1 and satisfies the requirements.

It now remains to show the converse statement, which is a more involved argument.
So, suppose f, I', g and h are as given. We begin with a preliminary definition.

Define the injective computable function j(x,n) as follows:

h(z,t), where t is least such that |[{A(x,s) |s<t}|=n+1,
Soj(ac,n)(y) = . .
1, if no such ¢ exists.

Then for a fixed z, ¢;j(zn)(y) | implies that n < g(x), and if n is the largest such, then
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Let X be an unknown oracle. We define a function vX(z,n,s) that is computable in
X, which will be defined by recursion in n and s as follows:

vX(x,n,s-1), ifvX(z,n,s-1)%-1,

PP (@), i (0¥ (2m,5-1) = —1v s =0) A

v¥(x,n,s) = t < s is largest such that z := Ffrﬁ(%s)(m,t)l A
(v¥(x,n-1,8) ¢ {-1,2} vn =0),
-1, if no such t exists.

vX(x,n,s) records the value of the computation we are interested in after it has changed
n times by stage s, or —1 if it changes fewer than n times. This information will be
useful as we attempt to build a bounded reduction from A to BP.

We can now define the injective computable function ¢(z,n,c) where x,n € w and
ce{0,1} as follows:

NN 0, if (3s)[vX(z,n,8)#-1A((c=0)Vv(c=1rvX(z,n,s)=1))],
(z,m,c) 1, otherwise.

and then use the Padding Lemma (see Soare [28]) to ensure that ¢(z,n,c) > max{j(x,7) | i <
g(z)} for all z,n,c as above.

Notice that when X = B, vB(z,n, s) behaves as follows:

e For fixed z and s, a sequence like vP(z,0,s) # vB(x,1,8) # -+ = vB(x,ng,s)
(none of which are —1) witnesses the existence of ng + 1 values for ¢ such that
T2hEs) (4 1) converge and disagree in sequence. That is, ng + 1 values to, ..., ,,
such that Ffrh(z’s)(x, ti)l# FsBrh(I’S)(:U, ti+1)4 for all i < n,. Hence, by choice of T,
['B = f and so this witnesses n,+ 1 values for ¢t where f(x,t) disagree in sequence,
i.e. f(x,t) changes at least ns-many times.

By assumption, [{t | f(z,t) # f(z,t + 1)} < g(x), and so n, < g(z). Hence
vB(x,n,s) # -1 implies that n < g(x).

o If vB(z,n,s) + -1, then vB(x,n,t) = vB(x,n,s) for all ¢ > s. Hence, when we
compute @ﬁx’n,c), if we find some s such that vB(z,n,s) # -1, then we know that
for any ¢ > s we will have the same answer and can thus stop if and when we find
such an s. That is, there is no need to continue the search if the first s we find
with vB(x,n,s) # -1 does not satisfy the remainder of the condition.
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e Choose s, large enough so that f(z,s,) = f(x,t) = A(z) for all ¢ > s; and h(z,t) =
h(x,s,) = h(z) for all t > s;. Next, choose s > s; such that ['B(z, s1) |, which exists
since T'B = f is total. Then at stage s, the largest n such that v®(xz,n,s) # -1
will have vB(x,n,s) = f(z,s1) = A(x), and since no larger ¢ exists where f(z,t)
differs from this (by choice of s1), we will have that v®(z,n+1,8) = -1 for all s.

e Hence, by the above, to decide if z € A, we need to determine the largest n such
that there is some s where v2(x,n,s) # -1 and then we will know that x € A if
and only if vB(xz,n,s) = 1. By the first point, if such an n exists, it must be no
larger than g(z).

So, by the definition of @eB(x ) and the previous remarks, we can compute if z € A by
finding the largest n < g(x) such that <I>£ )(y)i and then determining if (I)z(zn i
for that largest n. If so, x € A, and if not, x ¢ A. (Here y can be any value.)

To compute (bg(m . c)(y) we need to be able to compute vB(z,n,s) for all s, and a quick

1nspect1on of the definition of vB(x,n ,s) shows that this can be computed using only
' h(z,s). By the assumptions on h, it will suffice to use B | h(z), since h(z,s)
monotomcally approaches h(x) from below.

By the definition of ¢, we know that max{y;.)(y) | | < g(x)} = h(z) and
(x,n,c) >max{j(z,i)|i< g(x)} by assumption, so we have that
B8, ) = D) (0 ) )
< (3] < w,n, )y (Ux.n,0) L ARy 0" (U, m, )]

L(z,n,c)
< ((z,n,c) e B.

So, to decide if x is in A, we find the largest n < g(x) such that ¢(x,n,0) € B® and
then we will have x € A if and only if ¢(x,n,1) € B for that n. As we need only
B t max{{(z,n,c) |n<g(x)Ace{0,1}}, we get that A <yr BY, as desired. O

In fact, A < BY, since we know in advance that we only need to determine the membership
of {{(z,n,c) | n<g(x)rce{0,1}} in Bb and since ¢ is computable, we can determine
these locations ahead of time. Then, we find the largest n such that £(x,n,0) € B® and
check if ¢(x,n,1) € B®, which works for any oracle (not just B%) once we add a provision
that if we cannot find such an n, we declare that x ¢ A.

Note also that a careful examination of the previous theorem shows that we can effectively
pass between the different indices for A. That is, if A <ur B® via ®, and ¢;, and f = ¢;,,
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9 =), [ <r B via ®; and h = ©j,, then we can pass effectively from (e, ) to (j1, j2, Js, ja)-
This will prove useful later on, when we are given C' <yr Db say, and wish to (effectively)
produce the respective f, g, I' and h.

Finally, it does not take much effort to see that when B = @&, we can take h to be any
computable function and recover that A <7 @® =; @ exactly when A is w-c.e. Because of
this, we can now view the second of the two equivalent statements as a definition of how
to relativize the notion of w-c.e. such that it characterizes when a set A is bT-below BY.
Since this definition is different from how we might expect to relativize the definition of
w-c.e. to make it suitable for a bounded setting, we refer to this as A being w-b.c.e. in B
instead.

This motivates the following definition, where we extend this notion to all infinite com-
putable ordinals:

Definition 5.5 (a-b.c.e. in B).
For any computable ordinal o > w and any set B, we say that A is a-b.c.e. in B if

e There exists f <y B via I" such that f:wxw — {0,1} x « and

— for all z, lim,_ fo(x,s) = A(z) and fy(x,0) =0,
— for all z and all s, fo(z,s) # fo(z,s+1) implies fi(z,s) > fi(z,s+1), and
— for all x and all s, fi(x,s) > fi(z,s+1)

e There exists a computable g : wxw — « such that for all z and all s, there is some
n such that f(x,s) +n = g(x,s). (Note that n need not be computable from z
and s, since this would imply that f is computable.)

e There is a computable function h:wsxw —> D, where D is the set of total
computable functions from the set of limit ordinals below « to (w x w) u {None}
such that the following hold:

— For all x and all s, if there is some n € w such that fi(z,s) = B+n
for some limit ordinal 8, then h(z,s)(8) # None and uf(z,s) < hg(z) =
lithS hO(xv t)(ﬁ)

— For all z, all s, and all limit ordinals 3, if ﬁ(x,s)(ﬁ) # None, thenﬁ(q:,s +
1)(B) # None. Furthermore, in this case we have that ho(z,s)(8) < ho(z, s +
1)(B) and hy(z,s)(8) = hi(x,s+1)(B), and if the former inequality is strict,
then so is the latter.
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For brevity, we will sometimes say that ﬁ(x, s)(8) “exists” when it is not None, and “does
not exist” if it is None. Note that since the underlying function is still computable, we can
effectively determine if 2(z, s)(8) exists or not; we do not need to rely on a computation
converging or not.

Note that the definition above has the following properties:

o If B=r @, then A is a-c.e. in B if and only if A is a-c.e.
e When a = w, this reduces to the previous definition, as expected.

e We can equivalently use g instead of f in the definition of h, since by assumption we
know that for all x and all s, there is some n € w such that f(z,s) +n = g(x,s), so
f(x,s) =B +ny for some ny €w if and only if g(x,s) = § + ny for some ny € w.

We now establish that the definition above has the properties that we expect of it. These
proofs are heavily based upon those found in Anderson and Csima [2] where the non-
relativized versions are proven; i.e. when B =y @. In many of these proofs, we need to
perform ordinal arithmetic using commutative ordinal addition, denoted +., defined in [2].
Informally, we write the ordinal in Cantor normal form and then group like terms, as
though we were symbolically adding two polynomials with indeterminate w.

Theorem 5.9.
Let k>0 and A and C be sets with A <7 C. If C' is wk-b.c.e. in a set B, then so is A.

Proof:
Let ¥ and p witness that A <r C', and f, I', g and h witness that C' is wk-b.c.e. in B.
We will define f, g, and h to witness that A is wh-b.c.e. in B. (The analogue to I' will
be defined implicitly.)
Fix n and s. Let o” be the string of length p(n) + 1 defined by o7(i) = f,(¢,s) for
i <p(n). It is clear that {07}, s, is uniformly computable from B.
Let ds = f1(0,8) +c - +¢ f1(p(n), ) +cu(f1(0,8) +c -+ +c f1(p(n), s)) and g == f1(0,0) +.
e fl(p(n)7 0) te u(f1(07 0) te e fl(p(n)a O))

Let . .
(Uee (n),ds), if U35 (n)} As+0,

f(n,5)=1(0,80 + 1), it s=0,
(fo(ny s—=1),0s+.1), otherwise.

It is clear that defining §(n, s) = (0, )+ +.g(p(n), s)+cu(g(0, 5)+e+cg(p(n), s))+.1
will work with this f.
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Before we define h, we will first verify that f has the properties that we require. The
second and third properties are easy and use ordinal properties as in the proofs we are
mimicking, while the fourth property is true by definition of f. So it remains to show
the first property, that lim,.e fo(z,s) = A(z) for all .

Fix n and choose s > 0 so that for all ¢t > s we have fy(i,t) = C'(¢) for all i < p(n) and so
that U™ (n) | = A(n). Tt is possible to find an s since limy_e fo(i,t) = C(i) for all
i by choice of f and W¢ = A with use bound p. Then for ¢ > s, we have o} = C' It p(n)
and hence fy(i,t) is given by \I/f? (n) = \Iftcnp(n)(n) = A(n), since \Ifscnp(n)(n)l by choice
of s and s # 0.

Now we define h. Fix n, and let s be the first stage where the limit ordinal 3 is
encountered in f(n,-), which can be determined from the computable function §(n,-)
instead. We know that g(n,t) is defined as g(0,t) +. - +. g(p(n),t) +c u(g(0,t) +. - +.
g(p(n),t)) +. 1 for all t. Let the limit ordinal part of g(i,t) be denoted by f;; for
t <'s. Then the collection of {f;;}icp(n)1<s is finite and since h(i,t)(B;;) must exist,
h(i,t')(B;+) must exist for all #/> s.

So at all stages ¢’ > s, we define

h(n,t')(8) = | max {ho(i.t)(B)}, S I t)(Bis))-

i<p(n),t<s i<p(n)t<s

We verify that ;L has the desired properties. First, l:zo(n, -)(p) is non-decreasing (resp.
hi(n, -)A(B) is non-increasing) because its constituents consist of ho(i, ') (i) (respec-
tively h1(é,¢')(B;+)), and these are non-decreasing (resp. non-increasing) by choice of
h. Also, if ho(n,t'+1)(8) > ho(n,t'), then this must be because some lAzo(i,tN’+ D(Bis) >

hy(i,8)(Bis), 50 ha(i,t" +1)(Bis) < Ry (i,#)(Bis) and thus hy(n, ¢’ +1)(3) < hy(n,t')(B).

We now just need to verify one final property of h, namely that uli? (n,t) < Bg(n)
whenever the limit ordinal part of f(n,t")is 8 (equivalently, whenever the limit ordinal
part of g(n,t') is ). Note that hg(n) = maxc,n)<s{hs,,(4)} and so with hg(n)-many
bits of B we can determine (recursively) f(n,0),..., f(n,s),..., f(n,t').

As an aside, we need to consider 3;; for all £ < s since the definition of f is recursive, and
so we may need to compute f(n,t’'—1), f(n,t’ —2),... to obtain the value of f(n,t').

However, since we first see the limit ordinal  at stage s, we know that ¢’ > s and
between these two stages we do not see any new limit ordinals. So it suffices to have
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enough of B to compute the 3;; that contribute to the limit ordinals we see before /3
in addition to [ itself. ]

Theorem 5.10.
Let £ >0 and A be wk-b.c.e. in some set B. Then A’ is w¥*1-b.c.e. in B.

Proof -
Let f, I', g and h witness that A is wk-b.c.e. in B. As before, we will define f, g, h

(and implicitly T') to witness that A? is w**!-b.c.e. in B.
Fix n and s. Let ¢” be the string of length m(n,s) (defined momentarily) such that
o (i) = fs(i,s) for all i <m(n,s).

We define m(n,0) =0 and m(n, s+ 1) =max{y; +1(n)} |i<n}. Note that m(n,s) is
non-decreasing in s for a fixed n. We will also have a function ¢ to keep track of when
this changes. Define ¢(n,0) :=n+1, and if s+ 1 is a stage where m(n,s+ 1) >m(n, s),
then we set ¢(n,s+1) ={(n,s) — 1. It is nor hard to see that ¢ is well-defined, since
m(n,-) can increase at most n+1 times, one for each i < n. Since m(n, s) is computable,
{07} s new 1s uniformly computable from B.

Let

r(n,s) = wk'g(nus) +cf1(072) terrte fl(m(n75)75) +cu(f1(075) terrte fl(m(n75)78))'

We can now define f. Let f(n,0) = (0,w* - (n+1)) and for s >0, we set

(1,7(n,s) +1), if 75 (n)l,
(0,7(n,s)+2), otherwise.

Fn,s) = {

Setting
g(n,s) = w* (n,8) +cg(0,8) +c+cg(m(n, s),s) +.u(g(0,s) +c -+ g(m(n, s),5)) +. 2

clearly works by properties of g. By how we have defined f , g will be computable since

¢, m and g are. Before we define ﬁ, we will first verify that f has the properties we
require.

First, we must show that lim,,e fo(n,s) = A%(n) for all n. Fix n. If n € A® then
there is some 7 < n such that ;(n)| and @f"%(")(n) }. Let s be large enough so that
@is(n)l. Then for all ¢t > s, we know m(n,t) > ¢;(n). Since limy_,. fo(x,t) = A(z) for
all z, take s even larger so that for all j < p;(n) and all ¢ > s we also have fo(j,t) = A(t),
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so that o ' pi(n) = A ngl(n) Now take s even larger so that @Anwz(n)(n)l. Then for
all £ > s we will have (I)n,t(n)l‘ and so fo(n,t) = 1. Thus lim fo(n,t) = 1= A%(n).

Conversely, suppose n ¢ A’. Let s be large enough so that all ¢;(n) with i < n have
converged by stage s if they ever do. Then m(n,t) = m(n,s) for all ¢ > s; call this limit
value m. As before, take s even larger so that for all j < m and all £ > s we also have
fo(j,t) = A(j) so that o7 = A t m. Then for all t > s, fo(n,t) = 1 means that @fﬂ(n)l
and so @, (n)}. Then m >0 and so we must have some i < n such that o;(n)|=m.

But then n € Ab, since ¢;(n)| and ; %(")(n)i a contradiction. So for ¢ > s, we must
have fo(n,t) =0 and so limy fo(n,t) = 0= A%(n).

Next, we must show that if fo(n,s +1) # fo(n,s), then fi(n,s + 1) < fl(n,s). Since
r(n,s+1) <r(n,s) for all n and all s, this is clear when fi(n,s+1) =1 and fo(n,s) = 0.
For the other case, notice that if @ns(n) } but (Pnjil(n) 1, then we must have that
oy #0”,,. But this can only happen if we have some i < |07| = m(n, s) with fo(i,s+1) #
fo(i,s) and hence by the choice of f, we know that fi(i,s+ 1) < fi(i,s) and thus
r(n,s + 1) < r(n,s). Then by ordinal arithmetic, this means that r(n,s + 1) + 2 <

r(n,s)+1. So we get the desired result.

Finally, we must show that fi(n,s+1) < fi(n,s). Since r(n,s + 1) <7(n,s) for all n
and all s, this is obvious from the definition unless fy(n,s) = 0 and fo(n,s+1) = 1. But
then fo(n s+1) # fo(n,s) and so fi(n,s+1) < fi(n,s) by the above.

Now we define h. Fix n. Let s be the first stage where the limit ordinal ( is encountered
in f(n,-) (again, computed using g). We know that

g(nvs) = wk ‘E(TL,S) +te g(O,S) terrte g(m(n75)7s) +e u(g(O,s) terte g(m(nas)as))'

So let the limit ordinal part of g(i,s) be denoted as /3;. Note that ¢ and m are com-
putable and constant for a given 3, as /¢ is clearly constant, and m changing implies ¢
changes. So at all stages t > s, we define

>N

(n,8)(8) = max {ho(,0)(80)}, 32 Pu(i.)(8)).

i<m(n,s)

As before, some thought shows that hg(n,-)(8) is non-decreasing and Ay (n,-) is non-
increasing.

So we just need to ensure that uf (n,t) < hg(n) whenever the limit ordinal part of

f(n,t) is B. To compute this, we need to compute fy(i,t) for all i < m(n,t). If s is as
above, then we know m(n, s) = m(n,t), since if m changes, then ¢ does and so we could
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not have the same 5. We have hg(n) = MAX <y (n, s) hg,(n), so this will work. (Again,
we can use hg, because we do not see any new limit ordinals for fi(é,-) between stage

s — where we chose §; — and stage t, since this would cause [ to change. So this same
B; will work at stage t.) O

Theorem 5.11.
Let k > 0 and A be wk-b.c.e. in some set B. Then A <y B*. Furthermore, given
(the codes for) the functional I' and the computable functions g and h that witness A
being wk-b.c.e. in B, we can effectively pass to (codes for) the functional ¥ and the
computable function p that witness A <y; B*?.

Proof-
We proceed by induction on k. We have already proven this for £ =1 in Theorem 5.8.
So assume this holds for & and we wish to show it holds true for k+1. Let f, I', g and
h witness that A is w®*1-b.c.e. in B.

Uniformly in ¢ and n perform the following sequence of steps: Search for the first s, if
it exists, where g(n,s) = w*-i + « for some «a < wk. If no such s exists, we will have

ei(n)?. If such an s exists, however, we call it sop. Then we build f, g and h as follows.
Note that I' is built implicitly.

F(m. s) (j,a+c.1), ifm=nand f(m,so+s)=(j,wr i+a) for some a < wk,
m,s) = _
(0,0), otherwise.

R a+.1, if m=nand g(m,so+s)=wr-i+a for some a < wk,
g(m, s) = )
0, otherwise.
h(m,so+s)(wF-i+B), if m=nand h(m,so+s)(w*-i+ ) exists,
;L(ﬁ) _140,0), if g(m,sg+s) <wk-i
; and h(m, sy + s)(w* - i) does not exist,

T, otherwise.

We claim that these will witness a set A, ,, that is w¥-b.c.e. in B, namely lim;_, f(x, s);

it is not hard to see that this limit exists for all x. The properties of f , g and h are
easily checked, since all we are doing is ignoring all but z =n, as A;,,(m) =0 for m # n,
and then accelerating our existing approximation so that it starts at stage so. We also
abandon it and set A, , = 0 if the approximation for A(n) ever starts to use ordinals
below w¥ -4, hence we add 1 to a so that we can do this. We also must add a caveat to
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h so that if it encounters the limit ordinal 0 for the reason of abandonment, it uses the

value (0,0). However, it is possible that h has encountered 0 before — if A encounters
w7 +0 — so we only do this if this has not occurred, and hence cannot occur since the
approximation will have gone below w¥ -7 when abandonment occurs.

p. Set e;(n) L= (e,p(n)). We write e;o(n) and e;1(n) to refer to these two values
respectively.

Apply the induction hypotheses to f, I', § and h to get that A;n <pr B¥ via @, and

Define the computable function v by @y(in)(y) = €;1(n) and let u(n) = max{v(i,n)}.
This is computable since we only need to consider ¢ at most the one we can compute
using g(n,0) = w¥ - ipax + @, since all ¢ must then be below iy, We write 4,, to be this
imax- Note that {i, },e, is computable in n.

Now note that if, for a given n, we could determine the least ¢ such that there is an s
with g(n,s) = wk-i+« for some o < w*, we could use @fkob(n)(n) with use bound e; 1 (n)

to compute A;,(n), and since i is least we would know that this is A(n).

We shall use the following:

Claim 5.11.1: Let A be any set. There is a computable function j such that @’ <; A®.
Furthermore, this choice of j is uniform and does not depend on A.

Proof of Claim: We know x € @ if and only if ¢,(z)|. Define the functional <I>JC($) as
follows:

0, if u(x)]
(I)C - ) )
i(@) ) {T, otherwise.

and by the Padding Lemma (see Soare [28]), increase j(z) so that it exceeds e, where
©. is an index of some fixed total function, say, the constant 0 function. Then

j(@) e A" & (i < () [@i(a) 4 A2yt (2) )] (5.1)

< (Fi<j@)pi(@)d rps(2) ]
< ()l red.

Here we when go from the third line to the second line, we take i = e, since p.(z) =0
and e < j(z).
Thus @’ <; Ab via j. As j clearly has no dependence on A, we are done. ]

Let j be as in the lemma and let z;,, denote the bit of @’ that answers the ¥;-question
(3s)(3a)[g(n,s) =wF i+ «a] for i <i,.
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For all i and all n, we define the injective computable function r(z,n) such that

0, ifi<iyne(n)l A®Y (n)l=1,

CI)C . = ei,o(n)

i () {T, otherwise.

By the Padding Lemma, we may enforce that r(i,n) > u(n) for all i < i,. Now, for
1 < i,, we have that

r(i.n) € BEDY < (Ju<r(i,n))[pu(r(i,n)) L Ad5, 120 (1 (i, n)) 1] (5.4)
e (3 <r(i,n)[pu(r(in) | ae(n) 4 AdE TS CEM () 1] (5.5)
< @Zkob(f;’l(”)(n) b=1< Ain(n) =1. (5.6)

Here when we go from the second line to the third, we take v =v(i,n) < u(n) <r(i,n)
so that ¢, (7(4,1)) | = @uun)(r(i,n))l=e;1(n).

Thus to compute if n € A, we find the least ¢ <4, such that z;, € @’ by finding the least
i <y, such that j(z;,) € B**Db Then n € A exactly when n € A, ,,, which occurs if and
only if r(i,n) € B&+*H? by the above.

Formally, we define U so that on input n, it finds the least i < i, such that j(z;,) € C
and then halts and outputs C'(r(i,n)) for this least . If no such least i exists — although
it must when C = B¢+1b — ¥C halts and outputs 0. We have that the use of ¥€(n)
is at most max{j(x;,,r(i,n) | i <i,} which is computable since i,, r, and j are, and
finding x;,, from i and n is. So taking p(n) = max{j(z;,,r(i,n) | i < i,} will work,
proving the result. O]

Finally, we combine the previous results to prove that this definition provides a character-
ization of <ur with respect to the bounded jump.

Theorem 5.12.
Let A and B be sets. Then A <,r B* if and only if A is w*-b.c.e. in B.

Proof:
We have just proved the reverse direction in Theorem 5.11. To prove the forward
direction, we use Theorem 5.9 and Theorem 5.10. We will show that for all k£ > 0, B
is wk-b.c.e. in B. Then if A <7 B we will be able to conclude that A is also wk-b.c.e.
in B, by Theorem 5.9.

Since we know that a set C? is w**1-b.c.e. in B whenever C is w*-b.c.e. in B by Theo-
rem 5.10, it suffices to show the base case of this induction: B is w-b.c.e. in B for any
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set B. But by our characterization of w-b.c.e., this amounts to showing that B® <7 B,
since a set C'is w-b.c.e. in B exactly when C' <y BP. Since BY <, B? trivially, we are
done. 0

5.5 Non-triviality of the Bounded Jump Hierarchy

We shall use the definition of a-b.c.e. obtained in the previous section to prove the following:

Theorem 5.13.
For any set B, there is a set A such that B <ur A <p7 B?. Furthermore, B® <;r A <yr
B2,

This result is of interest because it demonstrates that the bounded jump hierarchy is not
trivial at any level. This is somewhat different from showing the hierarchy does not collapse
at any level, which is far easier, since it is immediate once one knows that B <,y B? for any
set B. Instead, we are interested in generating, for an arbitrary B, a set that is strictly
between B and BP. This demonstrates, for example, that the question of bounded jump
inversion is non-trivial relative to any B.

Proof:
It is enough to produce a set A such that B <y A <y B with Bb <y A? <y B?P. To
meet B <y A, we code B into A via a l-reduction, and to meet A <y BY, we also
build A so that it is w-b.c.e in B. To meet B® <;7 A? <47 B?, we aim to satisfy the

requirements:
. By, b
Rii: @ i 2 A

and
Qe ®FM 20

where C'is some set that is (w + 1)-b.c.e. in B which we build during the course of the
construction.

We code B directly into the odd half of A, and so all coding (in A) happens in the even
half. We will arrange it so that witnesses are kept in priority order. That is, since the
requirements are arranged according to the priority order Ry > Qo > Ry > Qq > -+, at
each stage, the witnesses we select will always be in the order zg < yo < 1 < y1 < -+,
where x; is the witness for R; and y; is the witness for Q;. (The actual witnesses will
be more complicated; in particular, each R; will have two witnesses at certain stages.
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We will remark more on this as appropriate.) Additionally, each witness for Q; will
be drawn from wlil, and each witness for R; will be drawn from 2wlil. There is an
exception in the latter case, due to the “double witnesses” already mentioned.

Using the (Relativized) Recursion Theorem, we fix computable injective functions p
and ¢ such that for all z, we control @p(z) and @4,y and ¢(z) < p(z). At certain stages,
we might demand a new pair of such indices, i.e. (p(z),q(z)) for some z. When we
do so, we will be interested in making p(z) suitably large. Since p is injective, this is
always possible. We shall also enforce that once this occurs, any pairs requested later
will have p(z’) > p(z). Note that this is stronger than making p strictly increasing
and then emitting (p(0),¢(0)), (p(1),q(1)),... when queried, since each query can also
demand that p(z) is suitably large, and so we might have to skip some values. We refer
to this procedure as querying the witness machine for a new pair (p(z),q(z)).

According to the definitions above, we must produce a pair of computable functions to
witness that A is w-b.c.e. in B, and another pair of computable functions to witness
that C'is (w+1)-b.c.e. in B. Since the construction of A itself will use B as an oracle —
really, an arbitrary oracle Y so that we can use the Relativized Recursion Theorem (see
Soare [28]) — we cannot build these functions simultaneously as we build A. Instead, we
will arrange the construction of A so that we keep all of the non-computable portions
separate, and hence we can computably follow the broad course of the construction,
even though we might not be able to computably determine the exact approximations
of A and C' at any given stage.

To begin, we will first make some notes about the pairs of computable functions men-
tioned above, so that we may ease notation when discussing them.

Recall that we must produce a pair of computable functions g and h for both A and
C. In fact, we must produce a functional I" for each of A and C as well, but since
are allowed to have B as an oracle, they can be defined implicitly during the course of
the construction. The difficulty is in defining the computable functions, which as noted
above, cannot use B and thus must be dealt with explicitly.

We refer to these computable functions are g4, ha and go, ﬁc, respectively. Defining
ga and g¢ is simple; we may do so now. We will arrange it so that for any z, the
approximation of A(z) changes at most z times, hence setting ga(z,s) = x will work
for all s and x. Note that this is all we require for a w-b.c.e. in B set (examine the
definition of a-b.c.e. in B when « = w to see this.) Similarly, for gc, we set

w, if @; o(z)1 where x € wlted)] for some e,

go(z,s) = {

wis(x)+2, if v;s(x)] where i is as above.
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To agree with this, at each stage s, we will check if any = < s has ¢; ;(z)| for i <s. If
we have not begun changing the approximation of z in C| i.e. we still have that x ¢ C'
with confidence w, we will say that = ¢ C' at stage s with confidence ¢; ;(z) + 3. This
will not change any of the strategies we employ, since we will only be interested in
changing the membership of z in C' should ¢;(z) converge, and so we may enforce that
z ¢ C until ¢; ().

The definitions of h, and iLC are more complicated, and will be saved for after the
construction. However, we first make some general remarks about our strategy for
defining them. They need to approach a limit which gives a bound on the number of
bits to decide if z € A, (or if y € Cy) for any stage s. To do this, we need enough of B
to decide the following:

1. Is = (resp. y) ever selected as the witness by stage s by a requirement R,; (resp.
Q) that is permitted to use it a witness?

2. If so, is x (resp. y) ever abandoned as the witness for its requirement by stage s
once it has been chosen?

3. How many times do we change the approximation of x € A (resp. y € C) up to
stage s while it is the witness?

It is important to keep these points in mind throughout the construction, since they
restrict how and why we can take action. We shall return to them after the construction,
when we have enough information in order to answer the three questions.

Before the construction proper, we describe the (re-)initialization module for each each
requirement:

Initialization:

e R ;): Query the witness machine for a new pair of (x, j) such that z is larger than
any computable convergence seen so far and larger than the current witness of the
next highest priority requirement. We declare that x is a non-coding witness.

e Qi Pick some large y € wl{e)] larger than the current witness of the next
highest priority requirement such that y is larger than any computable convergence
seen so far.

Note that we demand that witnesses are larger than the current witness of the next
highest priority requirement so that we maintain the priority ordering of witnesses.
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We make one final note about terminology. When we initially request witnesses from
the witness machine, the usage of these values is different depending on if they are used
for R-type requirements or Q-type requirements. In the latter case, the witness is used
as we expect from other constructions. However, in the former case, we sometimes
need to generate a new value (not from the machine) to stand in as the witness for
the purpose of bound calculations, etc. We still call this new value a “witness” so that
we can simply refer to the collection of the values important for these calculations in a
convenient way. This is why we mentioned above the need for two witnesses for R-type
requirements: one is the true witness obtained from the machine and the other is a
stand-in that will not actually be used to witness the truth of the requirement per se.
We will call the true witness the “non-coding” witness and call the stand-in witness
the “coding” witness, since the stand-in witness’ only role is to be used to code a value
into A’. If we are working with an arbitrary requirement, the term “witness” refers
to the active witness for that requirement, i.e. the coding witness if it exists and the
non-coding witness otherwise. However, if we are examining an R-type requirement in
particular, we shall be sure to distinguish between the two witnesses, should they exist.

Construction:

Stage 0: Let Ay =@ and Cy = @.
Stage s+ 1:

— (Initialize New Requirements): Initialize Ry and Q.
— (Cause Injury):

* We say that Ry ;) requires attention for witness if its current witness x
is non-coding, and ¢; s(x) | .
* We say that Ry requires attention for coding if its current witness m

is coding (with non-coding witness x) and @2{2”8"%(1)(35) 1= (A% ().

* We say that the requirement Q. requires attention if it has current
witness y and ¢; s(y) 4 and ¢ys(z) | newly since y was chosen as the
witness, for some £ < z < @;(y).

We say that the highest priority requirement that requires attention receives
attention at stage s+ 1 and we do the following:

* If Ryc;) requires attention for witness, choose some fresh large m €
2wlted] such that m > z and m > ¢; (z) + 3. We say that this require-
ment now has coding witness m with non-coding witness x. Since x was
the first half of some pair produced by the witness machine, = = p(z)
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for some z, there is some j = ¢(z) with j < = such that we control ;.
Declare that ¢;(z) |=m+ 1. Also, since we control ®,, declare that
®Y(z)| if and only if meY.

* If Ry ;) requires attention for coding, toggle m in A, so that A (m) #
As+1(m)~

* If Q(e,5) requires attention, do nothing, except for what follows.

In all cases, re-initialize all lower priority requirements, forcing them to aban-
don their current witnesses and choose new witnesses. We re-initialize re-
quirements in priority order, so that the witnesses they choose maintain this
priority order when re-initialization is complete. In the first case, note that
the witnesses will now be chosen larger than m (which is larger than the
previous witness for this requirement, z). In the third case, witnesses will
be chosen larger than the newly convergent ¢, (z). (In the second case,
toggling m in A simply causes injury to lower priority requirements’ approx-
imation of A, and so the witnesses of lower priority requirements need to be
re-chosen for this reason alone.)

We say that all lower priority requirements are injured at stage s+ 1.

We have the following important restriction that will prove useful later on:
When a requirement R; is forced to abandon a coding witness m, we will
enforce that it withdraws m from A if needed. We will need to be mindful
of this when we count the number of changes the approximation of m in A
has.

(Tend to Q Requirements): For every Q.; that has been initialized at
or before stage s, we tend to it as follows: If the requirement has witness
v, vis(y) |l and @?b”%(y)(y)[s] 1= Cy(y), toggle y in C, and set the new
confidence to be 1 lower than before. (If the previous confidence was w, then
we set the new confidence to be 2¢p; s(y) + 1. This can only happen if this is
the first stage where ¢; ;(y) converges; see the remark made while defining
gc above.)

Set A :=lim,,. As and C' =lim,_ ., C,. This concludes the construction.

To show that A and C are well-defined, we must show that every requirement receives
attention or is tended to at most finitely often. This suffices, since we do not return to
witnesses once we abandon them.

Claim 5.13.1: All requirements receive attention or is tended to at most finitely often
and is eventually met. Thus A £, B® and C' £, A®.
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Proof of Claim: We proceed inductively on the priority order. Suppose we have a
requirement such that, at some stage s, all higher priority requirements have stopped
receiving attention. We will show that in this case, the requirement under consideration
receives attention or is tended to at most finitely often, and is eventually met.

Ryc): If the witness for this requirement is non-coding, then we have two cases. If Ry )
never requires attention for witness, then it can never require attention at all, since it
will permanently have a non-coding witness. In this case, Ry ;y never receives attention
after stage s, and must be met, since p;(z)1, where z is the non-coding witness. Hence
©; is not total, and so A® cannot be bT-computed from B? using ®, and use bound ;.
On the other hand, if Ry ;y does at some stage receive attention for witness, then we
can wait until this stage, and continue as below.

If the witness is a coding witness, then it must be the permanent witness for R ;), since
no higher priority requirement ever receives attention after this stage. So let m be this
coding witness, with non-coding witness z. Let ¢ be a future stage where B? I} ¢;(x)
no longer changes. (Note that we know that ¢;(x)| since m was created as the coding
witness for the non-coding witness x.) In fact, the approximation to this initial segment
of BY can only change at most (¢;(x) + 1)-many times, since B is a fixed oracle, and
hence elements can only enter B® and then never leave.

It o2 "9:() ()1, then this never occurs after stage ¢, since B I ¢;(z) = (B?), I ¢i()

and elements cannot leave B once they have entered. In this case, Ry is met, and
b (2 . .

never receives attention after stage t. So assume that <I>f i )(x) | . By increasing t

appropriately, we may assume that this happens by stage t. So @gfb)t"%(m)(x) }. Call
this value w. If R ;) does not require attention (for coding), it is because w # (A),(x).
If it does require attention, then it will receive it — since all higher priority requirements
no longer require attention — and so w = (A%),(z) # (A%)¢1(x). As long as (A?)1(x)
never changes after stage ¢ + 1, in either case we will never have that R ; requires
attention, and will be met.

We have

ze (A" = (3 <2)[pei(x) ) AL (1) ]

< (< x)[@es(z)l Am e A 1 @e(x)] by our definition of @,
< m e A; by taking ¢ = j with ¢;(x)|=m+1

so this is true. That is, we can control x € A® by changing m € A appropriately.

Q(e,i): Let y be the permanent witness for this requirement. Then this requirement

receives attention only when ¢, s(2) | newly since the last initialization — the final
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initialization — of Qs), and m < z < ;(y) . If ;(y) 1, then this requirement never
receives attention and is met trivially. Otherwise, since new convergences can only
occur at most once, Q. ;) must receive attention at most finitely often.

Let s be a stage whereafter Q. ;) never again receives attention and the witness y
has been permanently chosen by stage s. Since y is permanent, no higher priority
requirement receives attention after stage s. Then any x whose membership in A
changes after stage s must be larger than max{,,(2)| | m <z <¢;(y)}, since all such
convergences happen before stage s, and so all z must be lower priority witnesses that
exist after stage s, and these x will have been chosen larger than this bound.

Then A% ' p;(y) 2 (A%)s I ¢i(y), since elements can only enter A® and then never leave
(as A does not change below max{y,(2){ |m <z < ¢;(y)}). Hence Q. will be
tended to at most ¢;(y)+2 times, toggling the membership of y in C' so that eventually

(ID’:b rW’i(y)(y) 1 # C(y) forever. Hence Q. ; will be met, and receives attention and is
tended to at most finitely often. ]

From this claim, it is clear that the approximation to C' agrees with go. As mentioned
above, we must be careful about coding witnesses being withdrawn from A if their
requirement abandons them, so let us explicitly compute the number of times the
approximation for such a witness may change. Since B? It p;(x) changes at most ¢;(z)+1
times, and the approximation to A(m) changes only when B It p;(x) does, we get a total
number of changes as ¢;(x) + 3, where the extra two changes are an initial convergence
(which does not require a B® change) and the final withdrawal upon abandonment by
the requirement. Since m > ¢;(x)+3 by assumption, the number of changes is bounded
by m, so g4 is correct.

We are now able to define h4 and }Alc. First, since 0 is the only limit ordinal below w,
we may think of h(x,t)(0) as an increasing computable function such that for each x
and each s, limy_,eo h1a(2,t)(0) exists and bounds the use of B needed to determine if
x € A,, and this approximation increases at most computably often. In fact, since we
code B directly into the odd half of A, we can take ha(2z + 1,5)(0) = (z,0), since at
any given stage s, we know that we need only B I} z and also this approximation never
needs to change. The even half is more complicated, so let us first discuss he.

For iLc, we note that there are only two limit ordinals below o = w + 1: w and 0. Since
we know y ¢ C' when the confidence of the approximation is w, we can set hc(y, s)(w) =
(0,0), since we need no bits of B to determine this, and this approximation never
needs to change. Since we only require he(y, s)(0) to exist if the membership of y in
C has been declared with confidence less than w, we only must worry about defining
he(y, $)(0) once we see that this occurs. Since we have enforced that this happens if
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and only if ¢;(y) | where y € wlt¢] for some e, we have that he(y, s)(0) may depend
on the value of ;(y) |, even though this function is not a priori known to converge.

Let us now turn our attention to the three points we had to consider, which we said
would help us determine ha and hc

1. Is = (resp. y) ever selected as the witness by stage s for the (single) requirement
R; (resp. Q;) that is permitted to use it a witness?

2. If so, is x (resp. y) ever abandoned as the witness for its requirement by stage s
once it has been chosen?

3. How many times do we change the approximation of x € A (resp. y € C) up to
stage s while it is the witness?

Let us deal with the first and second points for ha and ﬁc simultaneously, since wit-
nesses for both types of requirements are chosen using the same procedure. In the
construction, the conditions for picking a new witness are listed in the (Cause Injury)
section. Importantly, tending to Q,; does not cause injury — so no new witnesses are
picked and none are abandoned. Hence, given z, it is enough to find enough of B so that
we can simulate this portion of the construction until the stage we desire. The restric-
tion is that the amount of B cannot depend on s, although the simulation procedure
itself certainly does.

So, consulting the construction, we note that none of B is required for when require-
ments R; require attention for witness, nor when requirements Q; require attention.
The only amount of B we need is when we determine if a requirement R ;y requires
attention for coding. For our fixed value, which we shall call w, we only need to sim-
ulate the action of requirements whose witnesses are below w, for if they are above
w, they are of weak enough priority that any action they take cannot cause a change
of witnesses below w. So we may assume that Ry ;y has coding witness m < w and
non-coding witness x.

Then for each stage ¢t < s, we need enough of B to determine (B%); I} p;(x). Now,
(BY): = {z | (3] < 2)[@su(2) 4 A@2T¥F(2) 1]}, Hence we need B It max{y;(z) |
| 7 < 2z < pi(x),t < s}. Our ch01ce needs to work for all s, so we expand this to
B tmax{p;(z)| |j<z<gi(x)}. By choice of m, we will have ¢;(z) < m, and we know
m < w, so we need B rfmax{goj(z)i | j < z <w}. This increases at most computably
often (in w), and so we can define h4 and he using this to decide the first and second
points.
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In fact, to decide the number of times a value is toggled in A by stage s, (i.e. the third
point for A 4), this same strategy will work, as long as we additionally simulate the
action of the requirement that selects w as its (coding) witness. To do so, we just use
B ' max{g;(2)| |j<z<w}, by the reasoning above.

It remains to consider the third point for ha. This is substantially more complicated
than what we have just done, since elements of C' are not changed during the (Cause
Injury) section, but rather when a requirement Q. ;y has selected the given element
as its witness and it is tended to. First, because we draw the witnesses for Q.
from wled] we can determine ahead of time which requirement will be associated to
which witness. Also, as mentioned in our prior discussion of ﬁc, we need only define
he(y, s)(0) at each stage s once ¢;(y) |} — recall that here i is such that Q(eiy is the
requirement associated to y — and our definition of this function is therefore permitted
to use the value of ¢;(y).

We toggle the membership of y in C' only when Q. is tended to, i.e. only when
@fb"%(y)(y)[s] 1= Ci(y). So, we need to determine (A%); I' p;i(y). Now, (Ab), =
{z| (3j < 2)[pje(2)] /\@ﬁt"%’t(z)(z) 11}, and so as before we need A; ' max{y;.(2) |
| j <2z <@i(y),t <s}. However, unlike before, this is not B, but A. We have just
discussed h 4, and so the natural idea is to use this to help us decide how much of B we
need to compute this much of A;. Unfortunately, each fixed value of the approximation
ha changes at most computably often, and without a fixed (computable) bound of the
amount of A;, we cannot find an approximation that changes at most computably often.
(Instead, the number of changes would be computably bounded by w? rather than w).

Fortunately, we are rescued by the priority ordering of witnesses, and our insistence of
withdrawing R,;-witnesses as they are being abandoned. First, notice that A | y cannot
change, since this would cause injury to Q. , and hence cause y to be abandoned as
a witness. So, we just need to compute A |} y at the first stage where y is selected as
a witness for Q. ;. Now, let ¢ be a stage after which y was selected as the witness for
Q(c,i), but before it is abandoned (if ever). We know Q. ;, must receive attention if it
requires it, since no higher priority requirement can act without spoiling y. Hence, if
max{y;+(z)} |7 <z<;(y)}increased, we would injure all lower priority requirements,
causing them to withdraw their witnesses from A (if they have a witness in A) and
choose new witnesses above this range. Hence at any such stage ¢, we can assume that
Ay tmax{p;(2)} |j<z<pi(y),t<s}isof the form @ ® B above y.

So, to compute this initial segment of A, it suffices to compute A; |'y and then determine
B tmax{p;:(z)| |7 <z<¢i(y),t<s}. We can remove the stage dependence of the
latter by extending this to B I max{¢;(z)| |Jj <z < ¢i(y)}, which changes at most
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computably often. Since A; I'y is now a constant-length initial segment of A;, we can
use h to provide a bound on B required to compute this, and crucially, this bound
will still only increase computably often.

This completes the verification: A is w-b.c.e. in B and has B <; A, so B <yr A < B°.
Thus B? <yr A? <pr B? and since all the requirements are met, we have that B? <,
Ab <y B? | as desired. O

Corollary 5.14.
Let n > 0. Then there is some set X such that @™ <, X <up @(+10,

The attentive reader will note that we have proved a stronger statement than the one we
set out to prove. Indeed, we produce a set A that is strictly bT-between B and BY, but the
reason this is so is because A° is strictly bT-between BY and B?*. That is, A is bounded
intermediate, i.e. not bounded low nor bounded high relative to B. An open question
is thus if the proof can be adapted to generate sets that are bounded intermediate,, for
any n > 1 so that A" is strictly b7-between B™ and B(™*Db The classical proof of the
existence of such intermediates (in the Turing degrees) is typically proved using pseudo-
jump inversion (see Soare [28], for instance), but there is no known notion of pseudo-jump
inversion for the bounded Turing degrees. Such a notion perhaps could be used, as in the
classical case, to prove an equivalent of the Sacks Jump Inversion Theorem.

5.6 Jump Inversion and Further Work

The question of jump inversion for bounded Turing degrees has made an appearance in
several of the preceding sections; it is now worth discussing it on its own.

As we have previously mentioned, the motivation for Anderson and Csima [2] to introduce
the bounded jump was in an effort to rescue the Shoenfield Jump Inversion theorem in the
bounded Turing degrees. However, the analogue of the Sacks Jump Inversion Theorem is
not known. Recall that in the classical setting, the Theorem is as follows:

Theorem (Sacks Jump Inversion ([26])).
If A is a set that is c.e. in and above @', then there is a non-computable c.e. set X such
that X’ =7 A.

In fact, Sacks proved more than this: he added the consequent that for any non-computable
AY set C, A can be chosen so that it cannot compute C. However, this is typically omitted
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unless it is needed. Also, the proof of the Theorem is easily relativized, and it is this form
that we are particularly interested in.

A result of Ng and Yu [23] shows that a non-relativized form of the Theorem is not true:

Theorem 5.15 (Ng and Yu [23, 2.1]).
There exists an (w + 1)-c.e. set A such that for any c.e. set V| either V? £, A® @' or
A ,{-bT Vb.

Note that even this result need not quell any hopes of a version of Sacks for bounded
reductions, since it replaces “c.e. in and above @'’ with “(w + 1)-c.e.”. Indeed, one of the
key differences between Sacks and Shoenfield is that Sacks is concerned with (relatively)
c.e. sets rather than sets that are (relatively) AY. Because of this, we may expect that if we
wish to prove a version of the Sacks Jump Inversion Theorem for bounded Turing degrees,
then we will need a notion of c.e. that works for bounded Turing degrees. At first blush,
this may seem odd, but notice that relative to a set B, the definition of a c.e. set W2 is
permitted to access an arbitrary amount of B, which is precisely what we wish to avoid
when working with bounded Turing reductions. Thus even the existence of an (w + 1)-c.e.
set that fails to be invertible may not be an issue, if this set were outside what “ought” to
be the equivalent of c.e. in and above @&'.

In light of the above and the preceding work, the natural guess for a bounded analogue of
a c.e. set is obtained by setting « to be 2 in the definition of a-b.c.e., since when B =r @&,
this would recover the definition of a c.e. set as usual. In this case, we get that a “bounded
c.e.” set in B is of the form W2 where the functional responsible has a use bounded by
the function h and h(z) = lim,_ e B(x, s) changes computably often, and h is computable.

This definition is not what we would expect, however, since the more natural guess would
be one that mimics the definition of A%, namely that the use of the functional should be
bounded by a computable function (i.e. h would be computable). If we are even more
careful, we might mimic the definition even more closely and arrive at a definition where
the use of the functional is not computable, but instead is the limit of a computable h as
before, but h is permitted to change at most once, not computably often.

Perhaps then this is the reason why the analogue of the Sacks Jump Inversion Theorem
(and pseudo-jump inversion, which is essentially equivalent) has resisted much effort thus
far: the different equivalent forms of when a set A is computably enumerable relative
to B seems to separate for bounded Turing reductions. Wu and Wu [30] have proved a
version of pseudo-jump inversion for bounded Turing reductions, but that result is not
a direct analogue as we would hope. Instead, it modifies the classical result to produce
bounded high or bounded low sets, but does not actually provide any inversion related to
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the bounded jump per se, since it still deals with usual c.e. sets and (unbounded) Turing
reductions.

These problems raise a question: is <r really the best reducibility to be working with when
it comes to the bounded jump? The question sounds absurd, but perhaps the bounded
jump is instead a jump for a different reducibility and only happens to work for <. If a
better reducibility were chosen, perhaps some of the issues above would disappear, since
then the two “types” of c.e. sets might be equivalent.

A member of the following family of reducibilities is the natural guess:

Definition 5.6.
Let A and B be sets such that A = T'B for some Turing functional T'". If there is a
computable function i such that uB(x) < h(z) where h(z) = lim,_ e h(z,s) and h(z,-)
changes at most n times (resp. computably often), then we say that A <, yr B (resp.
A<t B)

Clearly <o_pr is just <pp. Also note that A <,y B implies A <, 7 B when n < m,
including when m = w. We would (perhaps) hope to resolve our problems above by finding
some way of showing an equivalence between <;_yr and <, 7. Unfortunately, this is not
possible, as the following propositions prove.

Proposition 5.16.
Fix n e w. Then there are sets A and B such that A <¢,,1)-pr B but A &, _yr B.

Proof:
In order to have that A £, 7 B, we require that if p(z) = lim,_ ¢;(z, s) is a use bound
for the functional ®_, then this functional does not provide a reduction from A to B.
So, we aim to meet the following requirements:

Ri;: If ¢; is total and changes at most n times, with limit p, then there is some z
such that @2 (2)  A(z).

On the other hand, to show that A <¢,, 1)y B, we build a function iz(:z:, s) that changes
at most (n+1)-many times for any fixed x, with limit h, and implicitly build a functional
U so that \I/eB"h(I) = A.

We proceed using a finite injury construction. Since the proof is completely unsur-
prising, we describe the basic module and the actions taken during the construction;
the interested reader can fill in the standard details. The basic module for Ry ; is as
follows:

Choose a witness z € wlte? and define ﬁ(m,O) = m where m is the least element of
wl®l. At stage s+1, compute M = maxs{p; s(z,s)| }. If this exists and exceeds h(z, s),
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then set iz(:v,s +1) to be an element of wl*] that is larger than anything seen so far
(including larger than M) and unused by the construction. Otherwise, set h(x,s+1) =
h(z,s). Ignore this if ¢; has increased n times. We do this for all 2 € wl(e)] even if
x is not selected as the witness for the requirement at this stage. If x is the witness
and @fS"M(Jc) I = A(x), then toggle the value of A(x) to break this, and also toggle

B(h(z,s+1)) to match.

Since we start ignoring more than n changes in ;, iL(ZL‘, -) changes at most n + 1 times,
since it may need to increase an additional time after discovering the value of y;(z,0),
which does not require a increase of ;. Since we destroy possible computations until
¢; has changed more than n times, we meet requirement Ry ).

When a requirement receives attention, it injures requirements of lower priority, forcing
them to abandon their witnesses, and they must choose a fresh large witness. In this
way, witnesses like x can be toggled in and out of A and their coding location ﬁ(x, s)
can be toggled in and out of B without disrupting computations that higher priority
requirements would like to preserve.

Now note that we can compute A from B with use bound A(z) = lim,_e h(z, s) since
x e Aif and only if h(z) € B. O

Proposition 5.17.
There are sets A and B such that A £,y B for any n € w, but yet A <, 4 B.

Proof Sketch:
Repeat the above, but requirements now also guess the maximum number of changes
that their function is permitted to make and ignore them after they reach this number
rather than the fixed value n as in the previous proof. Potential witnesses for Ryc ;) —
that is, elements in wlte#™)] — have h(z) change at most n+1 times, which is computable
from x, and ﬁ(x, s) is computable as before.

The rest of the basic modules, priority method and verification are essentially the
same. [

(These results actually prove more, since the “use bound” is actually a coding location, so
the reductions are more like a generalization of a 1-reduction.)

Thus, the multiple notions of c.e. cannot be reconciled under any of these reducibilities,
because they are, respectively, the natural definitions for 0 — 7', 1 — 0T and w - bT" and
by the above results, none of the reducibilities can coincide. Hence if we are to work with
“the” definition of c.e. for the bounded Turing degrees, we will need to pick one of these
and will be unable to pass between them as we like, as we do in the classical setting.

Hence we have the following broad questions, each building on the previous:
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Question 5.18.
Is there a definition of b.c.e. that is more natural than others, and can it be used to
prove analogues of results about relatively c.e. sets?

Question 5.19.
With such a definition, is the analogue of the Sacks Jump Inversion Theorem true?
Does pseudo-jump inversion exist for the bounded Turing degrees?

Question 5.20.
Using such theorems (or perhaps without), can one show that the bounded high /
bounded low hierarchies do not collapse?” Are there bounded intermediate sets, i.e. sets
that are not bounded low,, or bounded high,, for any n? If not, for which n are there
sets that are bounded intermediate,,?

Question 5.21.
Are there natural characterizations of when a set is bounded low,, or bounded high,,?
How much about (classically) low and high sets can transferred to bounded low and

bounded high sets?
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