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Abstract

The matching polynomial is a graph polynomial that does not only have interesting
mathematical properties, but also possesses meaningful applications in physics and chem-
istry. For a simple graph, the matching polynomial enumerates the number of matchings of
di�erent sizes in it. Two graphs are comatching if they have the same matching polynomial.
Two vertices u, v in a graph G are comatching if G\u and G\v are comatching.

In 1973, Schwenk proved almost every tree has the same characteristic polynomial with
another tree. In this thesis, we extend Schwenk's result to maximal limbs and weighted
trees. We also give a construction using 1-vertex extensions for comatching graphs and
graphs with an arbitrarily large number of comatching vertices. In addition, we use an
alternative de�nition of matching polynomial for multigraphs to derive new identities for
the matching polynomial. These identities are tools used towards our 2-sum construction
for comatching vertices and comatching graphs.
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Chapter 1

Introduction

For a graph G, we use V (G) to denote its set of vertices and E(G) to denote its set of
edges. For any u, v ∈ V (G), if {u, v} ∈ E(G), we say that u and v are adjacent, denoted
as u ∼ v.

Let G be a graph with n vertices. De�ne a matching M in G as a set of pairwise disjoint
edges. Let p(G, k) denote the number of matchings with k edges in G, then we de�ne the
matching polynomial of G to be

µ(G, x) =
∑
i

(−1)ip(G, i)xn−2i.

When there is no ambiguity, we drop the indeterminate variable and use µ(G) to denote
the matching polynomial of G.

For example, the matching polynomial of the graph K1,3 is

µ(K1,3) = x4 − 3x2.

The �rst known use of the matching polynomial traces back to Riodian's work, where he
considered permutations and de�ned the rook polynomial, which is an alternative version
of the matching polynomial for bipartite graphs [30]. Riodian used the rook polynomial to
study permutations with restrictions.

Not only used in mathematics, the matching polynomial originally emerged from var-
ious contexts in physics and chemistry research. A number of di�erent names for µ(G)
were used by researchers, including reference polynomial, acyclic polynomial, and match-
ing polynomial [1, 12, 13]. Mathematically speaking, the polynomial µ(G) enumerates
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matchings of di�erent sizes in a graph G, so we refer to it as the matching polynomial in
our writing.

In 1972, Heilmann and Lieb used graphs as a tool to model monomer-dimer systems:
Given a matching of a graph, monomers correspond to unsaturated vertices in a matching
and dimers correspond to edges in a matching [18]. This model allowed them to formulate
the matching polynomial, which was used in their study. They found recursive relationships
for the matching polynomial of paths, cycles, complete graphs, and Bethe graphs, which is
a family of rooted regular trees constructed recursively. Further, they discovered a vertex-
deletion recurrence for the matching polynomial, and used it to prove the roots of the
matching polynomial are real. In this thesis, we use their vertex-deletion recurrence to
prove many of our results.

Meanwhile, also in the 1970s, the matching polynomial was also studied by chemists
such as Aihara, Gutman, Milun, and Trinajsti¢ as well, to model the resonance energy of
conjugated systems and to study Hückel molecular orbital theory [1, 11]. In particular,
Hosoya derived an edge-deletion recurrence for the matching polynomial [21], which serves
as a fundamental tool in this thesis. He also proved the matching polynomial and the
characteristic polynomial coincide for all trees. We will de�ne the characteristic polynomial
of a graph later in this Chapter. This result was later con�rmed and extended to acyclic
graphs by several others, including Graovac et al. and Godsil and Gutman [15, 8].

Gutman and Hosoya were some of the �rst individuals who studied our version of the
matching polynomial from a purely mathematical perspective. Their work in [14] gave a
proof to a derivative formula, which we will introduce in Chapter 2. They also derived
speci�c recursive relationships for the matching polynomial of paths, complete bipartite
graphs, and complete graphs. Gutman proved a union formula in his work later [13]. It is
worth noting that Trinajsti¢[33] and Gutman et al.[15] de�ned the matching polynomial
for graphs with loops as well, which is used later in this thesis.

With the matching polynomial being a research interest of physicists, chemists, and
mathematicians, it is important to consider its computability. In fact, it is generally hard
to compute the matching polynomial of a graph. We say a problem is in #P if it counts
the number of accepting answers to a problem that can be computed by a nondeterministic
polynomial time Turning machine. Consequently, a problem in #P is at least as hard as
the corresponding NP problem. In 1979, Valiant proved that the complexity of computing
the permanent of a matrix is #P-complete [34]. Since any (0, 1)-matrix can be treated as
the bi-adjacency matrix of a bipartite graph G, and computing its permanent is to count
the number of perfect matchings in G, we can see that it is #P-complete to count the
number of perfect matchings in G. This is one way to see why computing the matching

2



polynomial of a graph can be a hard problem. There is no known e�cient algorithm to
compute the matching polynomial of general graphs.

Some research involving the matching polynomial was motivated from its shared prop-
erties with the characteristic polynomial. The characteristic polynomial is another graph
polynomial that is widely applied in chemistry [1]. For a graph G, let A be its adjacency
matrix, then the characteristic polynomial of G is de�ned as

φ(G, x) = det(xI − A).

Similarly, we use φ(G) to denote the characteristic polynomial of G when there is no
ambiguity. The characteristic polynomial is related to the matching polynomial in a number
of ways. As we mentioned earlier, the matching polynomial of a graph G is enumerating
matchings in G, or subgraphs of G that only contains disjoint copies of K2. Similarly,
the characteristic polynomial of G counts the number of subgraphs of G consisting of
disjoint copies of K2 and cycles [10, Theorem 2.1.3]. Notice that when G is a tree, every
such subgraph would be formed by disjoint copies of K2, which means the edges in such a
subgraph form a matching. This is one way to intuitively understand a result we mentioned
earlier.

1.1 Lemma ([21, 15, 8]). The matching polynomial of a graph coincides with the charac-
teristic polynomial if and only if it is a forest.

This lemma gives an important reason for the (−1)i term to exist in the de�nition of
the matching polynomial. Without this alternating term, the matching polynomial and
the characteristic polynomial of a forest would not coincide.

Two graphs are cospectral if they have the same characteristic polynomial. An im-
portant open problem in the study of characteristic polynomials is: Which graphs are
determined by their characteristic polynomials? Originated from chemistry, this question
has been open for about 70 years [35]. Van Dam and Haemer's paper [35] gives an overview
of the development and progress on this question. However, for most graphs, this question
remains open.

One of the most signi�cant results in this direction was due to Schwenk [32], who proved
almost every tree is cospectral to another tree. Here, by "almost every", we mean that,
for graphs over n vertices, the limit of the proportion of graphs over n vertices approaches
1, as n approaches in�nity. We will use this meaning of "almost every" throughout this
thesis. In this thesis, we extend Schwenk's results to some other types of trees. This is one
of our main results.
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Figure 1.1: The smallest pair of comatching graphs

Meanwhile, since the matching polynomial and the characteristic polynomial coincide
for trees, we could say almost every tree has the same matching polynomial as another
tree, or almost every tree is comatching to another tree. In other words, two graphs are
comatching if and only if they have the same matching polynomial. We know that there are
graphs that are not trees but are still comatching. In fact, the smallest pair of comatching
graphs are K1,3 and C3 ∪K1, shown in Figure 1.1, where one of them is not a tree. It is
then natural to ask, which graphs are not determined by their matching polynomials? Is
almost every graph comatching with another graph? These are some of the main questions
of interest in our research.

Although it might be generally di�cult to determine whether a graph has a comatch-
ing mate, several constructions for speci�c sets (mostly pairs) of comatching graphs were
given [5, 20, 28]. Farrell and Wahid proved a construction of a pair of comatching graphs
from a graph with a pair of comatching vertices for their bivariate version of the matching
polynomial. They also found two families of pairs of comatching graphs formed by paths
and cycles [5]. Holland and Whitehead proved that a pair of θ-graphs, which are con-
nected graphs with two vertices of degree 3 and all remaining vertices being degree 2, are
comatching when they satisfy certain conditions [20]. Using this, they also proved some
subdivisions of K4 are comatching with each other. Pranesachar constructed a set of 2n−1

bipartite graphs, each of which are comatching to Kn,n [28]. Yan and Yeh proved that,
given a pair of d-regular comatching graphs, if we subdivide every one of their edges exactly
once, then the resulting pair of graphs after all the subdivisions are still comatching [37].
However, more general constructions for sets of comatching graphs are yet to be found. In
this thesis, we give two constructions for comatching graphs via operations called 1-vertex
extension and 2-sum, respectively. We will de�ne these two terms later in this chapter.

One way of constructing comatching graphs is through constructing graphs with co-
matching vertices. Given a graph G, we say that u, v ∈ V (G) are comatching vertices if
G\u and G\v have the same matching polynomial. Therefore, if we have a graph with a set
of S comatching vertices, then by de�nition we have |S| (possibly isomorphic) comatching
graphs obtained by deleting one of the vertices in S from G. Similarly, for a graph G, we
say that u, v ∈ V (G) are cospectral vertices if G\u and G\v have the same characteris-
tic polynomial. Therefore, �nding constructions for graphs with cospectral or comatching
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vertices is another one of our research interests. The 1-vertex extension construction will
be applied to construct connected graphs with an arbitrarily large number of comatching
and cospectral vertices. The 2-sum construction will also be used to construct graphs with
comatching vertices.

Below, we give an introduction to each of our three main results in this thesis.

1.1 Extension of Schwenk's Results

In Schwenk's proof of almost every tree is cospectral to another tree, he de�ned a concept
called a limb [32]. For a tree T , suppose B is a subtree of T . Notice that this implies
there exists a vertex v ∈ V (B) such that every path from a vertex in V (B) to a vertex in
V (T )\V (B) contains v. We say that B is a branch of T at v if v is a degree 1 vertex in B.
A branch B at v is a maximal subtree of T under the degree restriction on v. A limb L at
v is a rooted subtree of T with v being the root, such that for each branch B at v, either
V (L) ∩ V (B) = {v} or V (L) ∩ V (B) = V (B). Using this de�nition, Schwenk then proved
that, given any `-vertex rooted tree L, almost every tree contains L as a limb.

In Chapter 3, we discuss a similar concept called a maximal limb, and extend Schwenk's
results to it. For a rooted tree T and any vertex v in V (T ), the maximal limb at v is the
limb at v that contains exactly all descendants of v. In a rooted setting, the de�ned limb is
maximal because all limbs at v are its subtrees. We prove the following result as Theorem
3.9.

Theorem (3.9). For any given rooted tree L, almost every rooted tree contains L as a
maximal limb.

Moreover, in Chapter 4, we extend Schwenk's results to weighted trees, both rooted
and unrooted. We say that a tree is weighted if each of its vertices is assigned a positive
integer weight. The following results are Theorem 4.5 and Theorem 4.11, respectively.

Theorem (4.5). For any given weighted rooted tree L, almost every weighted rooted tree
has L as a limb.

Theorem (4.11). For any given weighted rooted tree L, almost every weighted tree has L
as a limb.

Observe that the concept of characteristic polynomial and cospectrality were unde�ned
for weighted trees. Therefore, to further extend Schwenk's results, we need to extend the
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de�nition of characteristic polynomial to weighted trees. For a weighted tree W , we use
A(W ) to denote the adjacency matrix of W . Suppose M(x) is an n × n diagonal matrix,
such that its rows and columns are each indexed by the vertices of W , and the ii-entry of
M(x) is xw(i), where w(i) is the weight of the vertex i and x an indeterminate. Let A(W )
be the adjacency matrix of W . The weighted characteristic polynomial φ∗(W,x) of W is
de�ned as

φ∗(W,x) = det(M(x)− A(W )).

Two weighted graphs are weighted cospectral if they have the same weighted characteristic
polynomial. With this de�nition, we will prove Theorem 4.18, which is stated below.

Theorem (4.18). Almost every weighted tree is weighted cospectral with another weighted
tree.

1.2 Constructing Cospectral and Comatching Graphs

and Vertices by 1-Vertex Extension

Given a graph G and a set of vertices S ⊆ V (G), we de�ne the 1-vertex extension of G with
respect to S to be the graph obtained by adding a vertex to G and connecting the added
vertex to all vertices in S and no other vertex. Using this operation, we give a construction
for cospectral and coMoreatching graphs by applying 1-vertex extension twice in a row to
a graph with certain properties. The following two results containing the constructions are
Theorem 5.2 and Theorem 5.9, respectively.

Theorem (5.2). Let F be a graph with c components that are pairwise cospectral. For
some integer m ≥ 1, suppose we have two distinct sets A1 = {S1

1 , S
1
2 , . . . , S

1
m} and A2 =

{S2
1 , S

2
2 , . . . , S

2
m}, both containing m sets of pairwise cospectral vertices from F , such that

for all 1 ≤ i ≤ m, each S1
i or S2

i contains exactly one vertex from each component of F .

For 1 ≤ i ≤ m and j = 1, 2, let F j
i be the 1-vertex extension of F with respect to Sji ,

with the added vertex being vji . Let Hj be the 1-vertex extension of
⋃m
i=1 F

j
i with respect to

vj1, . . . , v
j
m, with the added vertex being rj. Then H1 and H2 are cospectral.

Theorem (5.9). Let F be a graph with c components that are pairwise comatching. For
some integer m ≥ 1, suppose we have two distinct sets A1 = {S1

1 , S
1
2 , . . . , S

1
m} and A2 =

{S2
1 , S

2
2 , . . . , S

2
m}, both containing m sets of pairwise comatching vertices from F , such that

for all 1 ≤ i ≤ m, each S1
i or S2

i contains exactly one vertex from each component of F .
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For 1 ≤ i ≤ m and j = 1, 2, let F j
i be the 1-vertex extension of F with respect to Sji ,

with the added vertex being vji . Let Hj be the 1-vertex extension of
⋃m
i=1 F

j
i with respect to

vj1, . . . , v
j
m, with the added vertex being rj. Then H1 and H2 are comatching.

Notice that these results are applicable only if a graph F with the properties stated in
the theorem statement exists. In Chapter 5, we show the existence of such a graph F by
providing an example of a graph satisfying the stated properties, followed by a discussion
of how such a graph could be constructed.

Similarly, using the 1-vertex extension construction, we will also show that connected
graphs with an arbitrarily large number of cospectral and comatching vertices could be
constructed. This construction is recursive, with each iteration of the construction strictly
increases the number of comatching and cospectral vertices in the resulting graph. Theorem
5.3 and Theorem 5.10 prove that each step of the construction produces cospectral and
comatching vertices, respectively.

Theorem (5.3). Let F be a graph with c components that are pairwise cospectral. Suppose
there exists distinct sets S1, S2, . . . , Sm ⊆ V (F ) of pairwise cospectral vertices for some
integer m ≥ 1, such that for all 1 ≤ i ≤ m, each Si contains exactly one vertex from each
component of F .

For 1 ≤ i ≤ m, let Fi be the 1-vertex extension of F with respect to Si, with the added
vertex being vi. Let G be the 1-vertex extension of

⋃m
i=1 Fi with respect to v1, . . . , vm, with

the added vertex being r. Then

(a)
⋃m
i=1 N(vm)\r is a set of pairwise cospectral vertices in G; and

(b)
⋃m
i=1 N(vm)\r is a set of pairwise cospectral vertices in G\r.

Theorem (5.10). Let F be a graph with c components that are pairwise comatching. Sup-
pose there exists distinct sets S1, S2, . . . , Sm ⊆ V (F ) of pairwise comatching vertices for
some integer m ≥ 1, such that for all 1 ≤ i ≤ m, each Si contains exactly one vertex from
each component of F .

For 1 ≤ i ≤ m, let Fi be the 1-vertex extension of F with respect to Si, with the added
vertex being vi. Let G be the 1-vertex extension of

⋃m
i=1 Fi with respect to v1, . . . , vm, with

the added vertex being r. Then

(a)
⋃m
i=1 N(vm)\r is a set of pairwise comatching vertices in G; and

(b)
⋃m
i=1 N(vm)\r is a set of pairwise comatching vertices in G\r.

7



Combining the theorem above and Schwenk's results, we prove the following results,
Theorem 5.6 and Theorem 5.13, which are two of the most important results in this thesis.

Theorem (5.6). For any k ≥ 2, almost every tree has k cospectral vertices that are pairwise
non-similar.

Theorem (5.13). For any k ≥ 2, almost every tree has k comatching vertices that are
pairwise non-similar.

These two results are signi�cant, not only because they showed the large proportion of
trees with cospectral and comatching vertices, but also because our proof gave a construc-
tion for them. Also note that the construction relies on 1-vertex extensions, not the fact
that the underlying graphs are trees. Therefore, the construction could also be applied to
general graphs. However, the construction does result in a cut-vertex, while most graphs
do not have a cut-vertex, so our construction would not give any indications about the pro-
portion of general graphs with an arbitrarily large number of cospectral and comatching
vertices.

1.3 Constructing Comatching Graphs by 2-Sums

Our last main result, which will be discussed in detail in Chapter 6, is a construction for
comatching vertices and comatching graphs using 2-sums of speci�c graphs. In general,
the k-sum of two graphs would be a multigraph, which is de�ned as G = (V,E, f), such
that the function f maps from E to 1-subsets and 2-subsets of V . If f maps an edge e ∈ E
to a 1-subset in V , then that e is a loop on one vertex, otherwise e is mapped to a 2-subset
of V , and it is an edge connecting the two vertices in this subset. Also, the de�nition of
multigraphs allows multiple edges between two vertices.

For any function f , we use f |A to denote the restriction of f to a set A, where A is
a subset of the domain of f . Suppose G = (V (G), E(G), fG), H = (V (H), E(H), fH),
K = (V (K), E(K), fK) are multigraphs such that

(a) V (G) = V (H) ∪ V (K);

(b) |V (H) ∩ V (K)| = k;

(c) E(G) = E(H) ∪ E(K);

(d) |E(H) ∩ E(K)| = 0;
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(e) fG|E(H) = fH ;

(f) fG|E(K) = fK ;

then G is a k-sum of H and K, with respect to the set V (H) ∩ V (K).

Intuitively, a k-sum of G1 and G2 is the graph obtained by "merging" each of the chosen
vertex in G1 with a distinct chosen vertex in G2, where a total of k vertices are chosen in
G1 and G2. In other words, the two graphs share exactly k vertices.

To discuss our 2-sum construction, we �rst generalize the de�nition of matching poly-
nomial to multigraphs, using the de�nition provided in [15] and [33]. LetM(G) be the set
of all matchings in the multigraph G. By using β(M) for the number of edges in M that
are loops, the matching polynomial of a multigraph G is de�ned as

µ(G;x, h) =
∑

M∈M(G)

(−1)|M |−β(M)hβ(M)xn−2|M |+β(M).

Observe that the h variable counts the number of loops in M , while the x variable
counts the number of vertices that are not saturated by M .

Using the generalized de�nition of the matching polynomial, we will prove Theorem
6.10, which uses two graphs with comatching vertices to construct a larger graph with
comatching vertices via 2-sum.

Theorem (6.10). Let G be the 2-sum of the multigraphs G1 and G2 with V (G1)∩V (G2) =
{u, v}. Suppose u and v are comatching vertices in both G1 and G2. Then u and v are
comatching vertices in G.

Moreover, we will prove the following recurrence for the matching polynomial. This
recurrence plays a crucial role in our 2-sum construction of comatching graphs.

Corollary (6.9). Let H be a multigraph such that u and v are non-adjacent vertices in H.
Let G be the multigraph obtained by identifying u and v in H. Then

µ(G;x, h) = µ(H\u;x, h) + µ(H\v;x, h)− xµ(H\{u, v};x, h).

Using the recurrence above, Theorem 6.11 will be proved. This is another one of our
main results giving a construction for comatching graphs. Unlike the 1-vertex extension,
the 2-sum construction would not result in additional cut-vertices in the new graph.

9



Theorem (6.11). Let G1 and G2 be multigraphs with V (G1) ∩ V (G2) = {u, v}. Let G′2 be
a graph isomorphic to G2, such that

V (G′2) = V (G2),

and

E(G′2) =


E(G2)\

⋃
i∼u
in G2

{i, u}

 \ ⋃
j∼v
in G2

{j, v}

⋃
 ⋃

i∼u
in G2

{i, v}

⋃
 ⋃

j∼v
in G2

{j, u}

 .

Then the 2-sum of G1 and G2 and the 2-sum of G1 and G′2 have the same matching
polynomial if and only if u and v are comatching vertices in at least one of G1 and G2.
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Chapter 2

Generating Functions and Recurrences

In this chapter, we give a quick overview of generating functions. Then we introduce some
basic formulas that the matching polynomial and the characteristic polynomial satisfy.
We will keep referring back to these recurrences for the rest of this thesis, as they are
fundamental tools for our research. We also provide a 1-sum formula for both the matching
polynomial and the characteristic polynomial.

2.1 Generating Functions

Generating functions are one of the most fundamental mathematical objects in enumerative
combinatorics and combinatorial analysis. Given a set S and a weight function

w : S → Z+ ∪ {0},

the generating function gS of the set S is

gS(x) =
∑
s∈S

xw(s).

For example, if S = {(1, 3), (2, 1), (3, 4)}, and w(a, b) = |a|+ |b|, then

gS(x) = x4 + x3 + x7.

In the context of enumerative graph theory, it is common to consider the generating
function of a speci�c set of isomorphism classes of graphs, with the number of vertices
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being the weight of each graph. In other words, the coe�cient of the xn term in such
a generating function would be the number of graphs in the set with exactly n vertices.
Moreover, sometimes such a generating function could be expressed recursively, so that we
do not have to know all its coe�cients to write down an expression for it. A basic example
would be the generating function T (x) for T , the set of all rooted trees. It is well known
that

T (x) = x exp

(
∞∑
i=1

1

i
T (xi)

)
.

Here we omit the derivation of this expression since we will derive similar expressions for
the trees we are interested in later in this thesis. For more details of the derivation, please
refer to [17].

Observe that a generating function g(x) is a formal power series. Moreover, recall that
the radius of convergence r of a power series g(x) is a non-negative real number or∞ such
that g(x) converges when |x| < r, and g(x) diverges when |x| > r. In later chapters, we
will use this concept to compare the asymptotic behaviors of the generating functions of
speci�c sets of trees. For any power series g(x), we use 〈xi, g(x)〉 to denote the coe�cient
of xi.

2.2 Basic Recurrences for the Matching Polynomial

Given a graph G, there are many ways to modify it and obtain a new graph. Some of the
most common graph operations include adding or deleting a vertex or an edge. In this
section, we introduce some formulas that describe the change of the matching polynomial
under certain graph operations.

As mentioned in the Chapter 1, one of the earliest applications of the matching poly-
nomial was to due to Heilmann and Lieb, when they studied monomer-dimer systems [18].
They proved several important properties of the matching polynomial, including that its
roots are real. Below is a vertex-deletion recurrence they proved, which is a fundamental
tool in this thesis.

2.1 Lemma ([18]). Let G be a graph and u ∈ V (G), then

µ(G) = xµ(G\u)−
∑
i∼u

µ(G\{u, i}).
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This identity was later proved by Gutman and Hosoya as well [14].

Meanwhile, in Hosoya's study of the resonance energy of monocyclic conjugated systems
[21], he proved an edge-deletion recurrence and a derivative formula for the matching
polynomial, the former of which is also heavily applied in this thesis. These two recurrences
are stated blow, respectively.

2.2 Lemma ([21]). Let G be a graph and v ∈ V (G), and let e = {u, v} be an edge of G,
then

µ(G) = µ(G\e)− µ(G\{u, v}).

Note that G\e denotes the graph obtained by only deleting the edge e, without deleting
the end vertices of e. On the other hand, G\{u, v} denotes the graph obtained by deleting
the vertices u and v, as well as all edges incident to u or v. These two notations are used
throughout our discussions in this thesis.

2.3 Lemma ([21]). Let G be a graph with at least one vertex, then

d

dx
µ(G) =

∑
i∈V (G)

µ(G\i).

Gutman also proved the following union formula of the matching polynomial later in
his work.

2.4 Lemma ([13]). Let G and H be graphs, then the graph G ∪H formed by the disjoint
union of G and H

µ(G ∪H) = µ(G)µ(H).

Observe that, by using the vertex-deletion recurrence and the edge-deletion recurrence,
the matching polynomial of any graph can be computed recursively. Sage is the main com-
putational tool used in this research, and in fact it mostly uses the edge-deletion recurrence
to compute the matching polynomial of any given graph, with the following complement
formula by Godsil used occasionally [10]. For a graph G, we follow the convention that G
to denote its complement , such that G = (V (G), E(K|V (G)|)\E(G)).
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2.5 Theorem ([10]). For any graph G over n vertices,

µ(G) =

bn/2c∑
i=0

p(G, i)µ(Kn−2i).

This theorem tells us that, the matching polynomial of a graph G is determined by the
matching polynomial of its complement G. In other words, suppose we have a graph G
over n vertices and suppose G has more than bn(n−1)

4
c edges, which is more than half of

the number of the edges in Kn. Then, if we use the edge-deletion recurrence, it takes fewer
steps to compute the matching polynomial of G than to compute the matching polynomial
of G.

Meanwhile, for every edge in G, the edge-deletion recurrence converts the problem
of computing one matching polynomial to the problem of computing two polynomials.
Therefore, the Sage algorithm is exponential. As we mentioned in Chapter 1, it is generally
hard to compute the matching polynomial of a graph, so this is not very surprising to see.

2.3 The 1-Sum Formula

In the previous section, we discussed vertex-deletion, edge-deletion, the union of two graphs,
and how they a�ect the matching polynomial. For this section, recall the de�nition of k-sum
we introduced in Chapter 1. We will provide a 1-sum formula for the matching polynomial.

Suppose u ∈ V (H) and u ∈ V (K), then we use Hu·Kv to denote a 1-sum of H and
K, which is the graphs obtained by having u ∈ V (H) and v ∈ V (K) as the shared vertex.
When u and v are known in the context, we may denote the one-sum as H·K.

For example, Figure 2.1 gives an example of a 1-sum of the two graphs G1 and G2,
assuming that their shared vertex is the one that is rectangular in shape. Then their
1-sum is the graph G.

As a graph operation, taking a k-sum interests us because of how it a�ects the matching
polynomial. In particular, the following 1-sum formula holds.

2.6 Lemma. Let H and K be multigraphs with u ∈ V (H) and v ∈ V (K), then

µ(Hu·Kv) = µ(H\u)µ(K) + µ(H)µ(K\v)− xµ(H\u)µ(K\v).
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G1

G2

G

Figure 2.1: An example of a 1-sum
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Proof. Use w to denote the vertex shared by H and K in Hu·Kv, or H·K, then observe
that

(H·K)\w = (H\u) ∪ (K\v).

Then by the union formula,

xµ((H·K)\w) = xµ(H\u)µ(K\v).

Let S ⊆ V (H) and T ⊆ V (K) be the set of neighbors of u in H and the set of neighbors
of v in K, respectively. Then for any i ∈ S,

(H·K)\{u, i} = (H\{u, i}) ∪ (K\v),

and similarly for any j ∈ T ,

(H·K)\{v, j} = (H\u) ∪ (K\{v, j}).

In other words,
µ((H·K)\{u, i}) = µ(H\{u, i})µ(K\v),

and
µ((H·K)\{v, j}) = µ(H\u)µ(K\{v, j}).

Therefore, by the vertex deletion recurrence,

µ(H·K) = xµ((H·K)\w)−
∑
i∈S

µ((H·K)\{u, i})−
∑
j∈T

µ((H·K)\{v, j})

= xµ(H\u)µ(K\v)− µ(K\v)

(∑
i∈S

µ(H\{u, i})

)
− µ(H\u)

(∑
j∈T

µ(K\{v, j})

)
= xµ(H\u)µ(K\v) + µ(K\v) (µ(H)− xµ(H\u)) + µ(H\u) (µ(K)− xµ(K\v))
= xµ(H\u)µ(K\v) + µ(H\u)µ(K) + µ(H)µ(K\v)− 2xµ(H\u)µ(K\v)
= µ(H\u)µ(K) + µ(H)µ(K\v)− xµ(H\u)µ(K\v)

Thus the desired formula is proven.
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a b

Figure 2.2: This is the smallest tree S with a pair of cospectral vertices a and b, such that
a and b are not similar vertices.

This result is fundamental in Chapter 6, where we give a 2-sum construction for co-
matching vertices and comatching graphs. The characteristic polynomial also satis�es a
similar formula, which we will introduce in the next section.

It is natural to ask, is there a similar formula for a general k-sum? Note we cannot
apply the 1-sum formula recursively to obtain the matching polynomial of a k-sum, since
the 1-sum formula only applies to two graphs that share exactly one vertex, whereas a
k-sum is formed by two graphs sharing exactly k vertices. We need a method to obtain
the matching polynomial while identifying any number of vertices in two disjoint graphs.
At the end of Chapter 6, we will describe a way to compute the matching polynomial of a
k-sum.

2.4 Basic Formulas for the Characteristic Polynomial

In this section, we introduce similar formulas for the characteristic polynomial and some
preliminary results about cospectral vertices. Recall the characteristic polynomial φ(G)
from the introduction. In Chapter 1, we de�ned that for a graph G, we say that u, v ∈ V (G)
are cospectral vertices if φ(G\u) = φ(G\v).

Given any tree T , we consider Aut(T ), the group of automorphisms of T . For any
two vertices u, v ∈ V (T ), we say that u and v are similar if there exists an automorphism
f ∈ Aut(T ) such that f(u) = v. If u and v are two similar vertices, then they are cospectral.
Therefore, we are more interested in �nding pairs of non-similar cospectral vertices.

Figure 2.2 is the smallest tree S with a pair of cospectral vertices a and b, such that
S\a is not isomorphic to S\b. Note that this is the tree Schwenk used to perform his
limb replacement proof that almost every tree has a cospectral mate [32]. The pair of
non-similar cospectral vertices are exactly the pair of vertices he chose as the roots of his
limbs. In fact, any time there is a set of pair-wise cospectral vertices in the tree L, we can
use di�erent rootings of L as a limb to build cospectral trees. This is a consequence of
Lemma 2.8.
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To further discuss cospectral vertices, the following identities from Godsil's book are
useful [10, Theorem 2.1.5].

2.7 Lemma. (a) φ(G ∪H) = φ(G)φ(H).

(b) φ(G) = φ(G\e)− φ(G\{u, v}) if e = uv is a cut-edge of G.

(c) d
dx
φ(G) =

∑
i∈V (G) φ(G\i).

Any tree T that contains L as a limb can be constructed by taking a 1-sum of the
limb and the rest of the tree containing the root of the limb, which was an idea applied in
Schwenk's proof. Just like the matching polynomial, the characteristic polynomial satis�es
the following 1-sum identity [10, Corollary 4.3.3].

2.8 Lemma. Let G = Hu·Kv, with u ∈ V (H) and v ∈ V (K). Then

φ(G) = φ(H\u)φ(K) + φ(H)φ(K\v)− xφ(H\u)φ(K\v).

The identities in Lemma 2.7 and Lemma 2.8 play an important role in the Chapter
3, when we discuss Schwenk's work in detail. Schwenk used the 1-sum formula for the
characteristic polynomial extensively to prove almost every tree has a cospectral mate.
His results will be extended to weighted graphs and weighted rooted trees in Chapter 4.
Moreover, in Chapter 5, they will be used in our proof for that almost every tree contains
k cospectral vertices for any positive integer k ≥ 2.
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Chapter 3

Extending Limb Replacement to Rooted

Trees and Maximal Limbs

In this chapter, we start with a description of Schwenk's proof that almost every tree has
a cospectral mate. Then we also introduce an alternative result by McAvaney, which gives
an intermediate result about rooted trees that is useful to us later [25]. After that, we
will then extend Schwenk's limb replacement operation to a special type of limbs called
maximal limbs, which we will de�ne in this chapter.

The results in this chapter are joint work with Karen Yeats and are under review [36].
In particular, Theorem 3.5, Lemma 3.6, Theorem 3.7, and Theorem 3.9 are joint work.

3.1 Almost Every Tree Has A Cospectral Mate

Recall our de�nition of branch in Chapter 1: Let T be a tree and let B be a subtree of T .
Notice that this implies there exists a vertex v ∈ V (B) such that every path from a vertex
in V (B) to a vertex in V (T )\V (B) contains v. We say that B is a branch of T at v if v
is a degree 1 vertex in B. A branch B at v is a maximal subtree of T under the degree
restriction on v.

Observe that if B is a branch of T at v, then T is the 1-sum of B and T\(B\v), with
v being the identi�ed vertex. An example of a branch is shown in Figure 3.1, where the
part of T in the black box is a branch of T at v1. However, the part of T in the smaller
box on the right is not a branch of T at v1 because it is not maximal, and the part of T in
the box on the left is not a branch of T at v2 because v2 has degree 2 in it.
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v1v2

Figure 3.1: A tree T with a branch B at
the vertex v in the black box

As we de�ned in Chapter 1, a limb L at v is a rooted subtree of T with v being the
root, such that for each branch B at v, either V (L)∩V (B) = {v} or V (L)∩V (B) = V (B).
Similarly, if L is a limb of T at v, then T is the 1-sum of L and T\(L\v). Note that T is
not a rooted tree while L is.

For example, consider T , L1, L2, and L3 as shown in Figure 3.2, where T is a tree, and
L1, L2, and L3 are rooted trees with the rectangular vertices being their roots, respectively.
Observe that L1 is a limb of T , as shown in the box on the right in T . Now we consider
L2, whose underlying unrooted trees is P4. It is clear that P4 is a subtree of T - the
box on the left of T is an occurrence of it. Based on the choice of the root in L2, either
degree 1 vertices in the box on the left in T could be considered as the root. However, this
occurrence of P4 does not include a branch at either of these root vertices entirely. This is
true for other occurrences of P4 in T as well. Therefore, L2 is not a limb of T . Meanwhile,
L3 has the exactly the same underlying unrooted tree (which is P4) as L2, but the root in
L3 is di�erent from that in L2. We observe that L3 is a limb of T , as shown in the box
on the left of T . Note that the corresponding branches of L3 in T are not cyclically next
to each other, as they are in L3. Cyclic ordering of branches is not being considered when
deciding whether a rooted tree is a limb of a tree.

For all trees over n vertices, given a `-vertex rooted tree L, how many of them have L
as a limb? Does the number vary when n and ` remain the same but the structure of the
limb changes? In Schwenk's paper, he considered the enumeration of limbs. Below is one
of his main results.

3.1 Theorem ([32]). If R and S are two rooted trees with ` vertices, and rn, sn are the
numbers of n-vertex trees which do not have R or S as a limb, respectively, then rn = sn.

In other words, given an `-vertex rooted tree L, the number of n-vertex trees that
contains L as a limb is a constant that only depends on n and `. Given any `-vertex
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T

L1

L2 L3

Figure 3.2: L1 is a limb of T , L2 is not, and L3 is.

rooted tree L, the structure of L is irrelevant when counting the number of n-vertex trees
containing L as a limb. Using this structure-less property from Theorem 3.1, the rooted
tree L can be replaced as K1,`−1 for the purpose of counting the number of containing
L as a limb in n-vertex trees. By this limb replacement technique, Schwenk derived the
following recursive equation that the generating function S(x) of trees without L as a limb
must satisfy [32, Theorem 5].

S(x) = (x− x`)
∞∑
i=1

1

i
S(xi)

It is worth noting that just one year later, McAvaney [25] derived this recursive equation
using more direct enumerative arguments. We will go over this derivation in detail in
the next section. In 1996, Lu [24] provided an alternative proof of Theorem 3.1 using a
dissimilarity argument, which we will discuss more in the next chapter.

By performing an asymptotic analysis, Schwenk showed the radius of convergence of
S(x) is greater than the radius of convergence of the generating function of trees [32]. This
implies that, for any `-vertex rooted tree L, almost every tree contains L as limb.

In particular, Schwenk considered the tree S in Figure 2.2. In this case, ` = 9. We can
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create two distinct rooted trees, L1 and L2, from S, by making a the root and b the root,
respectively. Schwenk proved that, for any tree T and any vertex v ∈ V (T ), the 1-sum
Tv·(L1)a and the 1-sum Tv·(L2)b are cospectral [32]. Therefore, for any tree with a copy of
L1 as a limb, we can replace that copy of L1 with a copy of L2 and obtain another tree
cospectral to the original tree. Since almost every tree contains at least one of L1 or L2 as
a limb, we get almost every tree is cospectral to another tree.

3.2 Theorem ([32]). Almost every tree has a cospectral mate.

For the rest of this chapter, we will give an introduction of McAvaney's result [25],
and then extend several of Schwenk's results, such as Theorem 3.1 and Theorem 3.2, to a
special type of limbs called maximal limbs. At the end of this chapter, we prove that, for
any given `-vertex rooted tree L, almost every rooted tree contains L as a maximal limb.

3.2 Limb Replacement in Rooted Trees

Limb replacement is a key technique Schwenk used to achieve his result about cospectral
trees. He was able to use this technique due to the structure-less property of unrooted
trees from Theorem 3.1. In this section, we discuss McAvaney's proof of that, given any
`-vertex rooted tree L, the number of rooted trees on n vertices containing L as a limb also
does not depend on the structure of the limb [25]. This is analogous to, yet di�erent from,
Schwenk's result for unrooted trees in Theorem 3.1.

For a rooted tree T and some vertex v ∈ V (T ), we de�ne a branch B at v to be a rooted
subtree of T , such that v is the root of B, v has degree 1 in B, and if v′ is a children of v
and v′ is in T , then all descendants of v′ are in T . A limb at v is a rooted subtree of T with
root v that consists of a collection of branches at v. We consider the same example as the
one in the last section, with T being a rooted tree with the rectangular vertex being its
root, as shown in Figure 3.3. Observe that L1 is no longer a limb of T with the rooting of
T , because there is no vertex in T with two or more children such that one of the children
has degree 1 and another one of the children has exactly two children of degree 1. However,
L2 is still a limb of T , as shown in the box.

Similar to what Schwenk did in the unrooted case, for any `-vertex rooted tree L, we
consider the number of n-vertex rooted trees without L as a limb. In particular, when `
is too small, there are no n-vertex rooted trees without L as a limb, so we may assume
` ≥ 3. McAvaney's discussion in his paper [25] implied this number does not depend on
the structure of the given limb. This implication is from his derivation of the generating
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T

L1 L2

Figure 3.3: L1 is a not limb of the rooted tree T , but L2 is.

function of rooted trees without some rooted trees L as a limb. Here, we state this result
formally and prove it. Note the proof is a rewording of McAvaney's discussion.

3.3 Theorem ([25]). Let S be the set of rooted trees without some `-vertex rooted tree L
as a limb, and let S(x) =

∑∞
i=0 Six

i be its generating function, then

S(x) = (x− x`)

(
∞∑
i=1

1

i
S(xi)

)
.

Proof. We use F (T ) to denote the rooted forest obtained by �rst deleting the root of a
rooted tree T and then letting the vertex that is the neighbor of the original root serve as
the new root of each component. Therefore, the number of root vertices in F (T ) is the
number of components in it. If T is in S, then F (T ) does not contain F (L) as a subgraph.

We can enumerate all rooted trees R where each component of R deleting its root is in
S using the following expression.

x

(
∞∏
i=1

(
1 + xj + x2j + . . .

)Sj

)
.
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In this expression, the x corresponds to the root of R, and the product counts all
possible combinations of components in F (T ). Note that R is not necessarily in S since
the rooted trees in F (L) are in S. Therefore, L could be a limb of R at the root of R.

We can also enumerate all rooted trees R′ such that each component of R′ is in S, and
L is a limb of R′ at the root of R′. The expression is as follows.

x · x`−1

(
∞∏
j=1

(
1 + xj + x2j + . . .

)Sj

)
.

Comparing to the previous expression, the only di�erence is the multiplication of the
x`−1 term, which guarantees there is a copy of every component of F (L) at the root of R′.
Therefore, the generating function for all rooted trees without L as a limb is the di�erence
between these two expressions.

S(x) = (x− x`) exp

(
∞∏
j=1

(
1 + xj + x2j + . . .

)Sj

)
.

Taking the logarithm of both sides, we get

log(S(x)) = log(x− x`) +
∞∑
j=1

Sj log

(
1

1− xj

)
= log(x− x`)−

∞∑
j=1

Sj log(1− xj).

We expand log(1− xi) to get

log(S(x)) = log(x− x`) +
∞∑
j=1

Sj

∞∑
i=1

xij

i

= log(x− x`) +
∞∑
i=1

1

i

∞∑
j=1

Sjx
ij

= log(x− x`) +
∞∑
i=1

1

i
S(xi).
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By taking the exponential on both sides, we found that the generating function for
rooted trees without an `-vertex rooted tree L as a maximal limb satis�es the following
recursive equation.

S(x) = (x− x`)

(
∞∑
i=1

1

i
S(xi)

)
.

From this result, we have obtained the generating function for rooted trees without a
given rooted tree L as a limb. The variable ` is the only quantity about L in this generating
function, so the number of rooted tree over n vertices without L as a limb is a �xed constant
that only depends on n and `, but not the structure of L. In other words, this derivation
process implies the following result, which is a rooted version of Theorem 3.1.

3.4 Theorem. Let L1 and L2 be two distinct rooted trees with ` vertices, where ` ≥ 3.
Let `1,n and `2,n denote the number of n-vertex rooted trees without L1 or L2 as a limb,
respectively. Then `1,n = `2,n.

Notice that it is also possible to prove Theorem 3.4 using a combinatorial argument as
well, by building a bijection between all trees without L1 as a limb and all trees without
L2 as a limb [31].

This result coincides with what Schwenk derived in [32]. Therefore, this is an enumer-
ative way to derive the generating function for unrooted trees without a given `-vertex
limb.

3.3 Maximal Limb Replacement

So far, the limbs we have considered are generic, in the sense that the branches they contain
are not chosen in any speci�c way. In this section, we consider a particular type of limbs
named maximal limbs, and extend Schwenk's results to them. For a rooted tree T and any
vertex v in T , the maximal limb at v is the limb at v that contains exactly all descendants
of v. In a rooted setting, the de�ned limb is maximal because all limbs at v are its subtrees.

For example, consider rooted trees T , L1, and L2 in Figure 3.4, where the rectangular
vertices are the roots, respectively. Both L1 and L2 are limbs of T . However, as the box
shows, the occurrence of L2 in T does not include all branches at the vertex corresponding
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L1

L2

T

Figure 3.4: An example of a maximal limb

to the root of L2, so L2 is not a maximal limb of T . Meanwhile, L1 is a limb and a maximal
limb of T .

In this section, we prove a result that is similar to Theorem 3.4, but for maximal limbs.

3.5 Theorem. Let L1 and L2 be two distinct rooted trees with ` vertices with ` ≥ 3. Use
`1,n and `2,n to denote the number of n-vertex rooted trees without L1 or L2 as a maximal
limb, respectively. Then `1,n = `2,n.

Proof. When n < `, the statement is trivially true because no rooted tree with n vertices
can have a limb with ` vertices. For the rest of this proof, we assume n ≥ `.

Use T1 to denote the set of n-vertex rooted trees with L2 as a maximal limb but without
L1 as limb, and T2 to denote the set of n-vertex rooted trees with L1 as a maximal limb
but without L2 as limb. It su�ces to show that |T1| = |T2|. We prove this bijectively.

Let T ∈ T1, and consider the occurrences of the maximal limb L2 in T . By de�nition of
maximal limbs, these occurrences must be rooted at distinct vertices. If two occurrences of
L2 rooted at two distinct vertices v1, v2 with i 6= j share a vertex u, then the union of the
paths v−v1−u and v−v2−u contains a cycle, which is a contradiction. Therefore, no two
of these occurrences of L2 share a vertex. To obtain a tree in T2 from T , we simply replace
each occurrence of the limb L2 with the limb L1. A similar argument can be applied to
the trees in T2.
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Therefore, this process is reversible, and we have constructed a bijection between T1

and T2, which completes the proof.

As a result, we have proved that, just as with generic limbs, for any `-vertex rooted tree
L, the number of n-vertex trees with L as a maximal limb is independent of the structure
of L. In the next section, we show that almost every rooted tree contains such a maximal
limb L by proving a number of more general statements.

3.4 Maximal Limb in Rooted Trees

In the previous section, we extended Schwenk's limb replacement result to maximal limbs.
Moreover, we can also ask, given any `-vertex rooted tree L, would almost every rooted
tree contains it as a maximal limb? In this section, we show that, this answer to this
question is yes.

Similar to the approach Schwenk used, we start by deriving a recursion for the gen-
erating function of the set of rooted trees without L as a maximal limb. Due to the
structure-less property shown in Theorem 3.5, we may assume L = K1,`−1. Let S be
the set of rooted trees without L as a maximal limb, and let S(x) =

∑∞
i=0 Six

i be the
generating series of S.

Suppose we have a rooted tree T in S. If we delete the root of T , we can see that F (T )
is a rooted forest S that is not identical to F (L), where F (L) is a rooted forest consisting of
(`− 1)K1, with the vertex in each copy of K1 being a root. Therefore, we get the following
expression for S(x).

S(x) = x

(
∞∏
j=1

(
1 + xj + x2j + . . .

)Sj − x`−1

)

= x

(
∞∏
j=1

(
1

1− xj

)Sj

)
− x`

Using a derivation process that is similar to that in the proof of Theorem 3.3, we get

S(x) = x exp

(
∞∑
i=1

1

i
S(xi)

)
− x`.
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To compare this generating function with the generating function of all rooted trees,
one way is to compare their radii of convergence. We denote the radius of convergence of
S(x) as αS, and in the following lemma we prove S(αS) = 1.

3.6 Lemma. The series S(x) satis�es S(αS) + (αS)
` = 1.

Proof. De�ne a multivariate function: for x, y ∈ C,

FS(x, y) = x exp

(
y +

∞∑
i=2

1

i
S(xi)

)
− x` − y.

Observe that y = S(x) is a solution to the equation F (x, y) = 0. We can see that
F (x, y) is analytic in each variable separately in the neighborhoods of αS and S(αS).

Moreover, consider the following partial derivative:

∂FS
∂y

(x, y) = x exp

(
y +

∞∑
i=2

1

i
S(xi)

)
− 1 = F (x, y) + xl + y − 1.

If ∂FS

∂y
(αS, S(αS)) 6= 0, then by the Implicit Function Theorem (see Appendix 7.4 for

more details), there is a unique function f(x) such that FS(x, f(x)) = 0, so this function
must be S(x). Moreover, the Implicit Function Theorem also gives that this function is
analytic in the neighborhood of αS. However, since αS is the radius of convergence of S(x),
we know that S(x) has a singularity at x = αS, which is a contradiction. Therefore, we
must have

∂FS
∂y

(αS, S(αS)) = 0,

and as a result S(αS) + (αS)
` = 1.

Meanwhile, recall that the generating function for rooted trees satis�es

T (x) = x exp

(
∞∑
i=1

1

i
T (xi)

)
.

Let αT be the radius of convergence of T (x). Note that it is known that T (αT ) = 1 [17].

3.7 Theorem. The radius of convergence of S(x) is greater than the radius of convergence
of T (x).
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Proof. Note that T (rT ) = 1, while Lemma 3.6 gives S(αS) + (αS)
` = 1.

By de�nition, S(x) is coe�cient-wise bounded above by T (x), which implies αS ≥ αT .
Moreover, since the trees T (x) counts include trees with L as a maximal limb while the trees
S(x) counts do not, we get 〈xi, S(x) + x`〉 = 〈xi, T (x)〉 for all i ≤ `, and 〈xi, S(x) + x`〉 <
〈xi, T (x)〉 for all i > `. Therefore, S(αT ) + (αT )

` < T (αT ) = 1, which means αS 6= αT .
Consequently, we obtain αS > αT .

The following theorem on Page 211 in the book by Harary and Palmer relates the radius
of convergence of series with their coe�cients.

3.8 Theorem ([17]). Let F (x, y) be analytic in each variable separately in some neighbor-
hood of (x0, y0) and suppose that the following conditions are satis�ed:

(a) F (x0, y0) = 0;

(b) y = f(x) is analytic in |x| ≤ |x0| and x0 is the unique singularity on the circle of the
convergence;

(c) if f(x) =
∑∞

n=0 fnx
n is the expansion of f at the origin, then y0 =

∑∞
n=0 fnx

n
0 ;

(d) F (x, f(x)) = 0 for |x| < x0;

(e) ∂F
∂y
(x0, y0) = 0;

(f) ∂2F
∂y2

(x0, y0) 6= 0.

Then f(x) may be expanded about x0:

f(x) = f(x0) +
∞∑
k=1

ak(x0 − x)k/2

and if a1 6= 0,

fn ∼
−a1

2
√
π
x
−n+1/2
0 n−3/2

and if a1 = 0 but a3 6= 0

fn ∼
3a3

4
√
π
x
−n+3/2
0 n−5/2.

Using the theorem above, we obtain the following result.
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3.9 Theorem. For any given rooted tree L, almost every rooted tree contains L as a
maximal limb.

Proof. We de�ne

FS(x, y) = x exp

(
y +

∞∑
i=2

1

i
S(xi)

)
− x` − y

and

FT (x, y) = x exp

(
y +

∞∑
i=2

1

i
T (xi)

)
− y.

It is easy to see that both of these bivariate functions satisfy the conditions of Theorem
3.8, with S(x) and T (x) being the corresponding univariate functions, respectively. The
radii of convergence αS and αT serve as the point x0 in the statement of Theorem 3.8. To
see why FS(x, y) and FT (x, y) satisfy the conditions for Theorem 3.8, we consider FS(x, y)
and S(x) as an example.

It is clear that FS(x, y) satis�es condition (a) in Theorem 3.8.

To see why S(x) satis�es condition (b) in Theorem 3.8, we consider a point p on the
circle of the convergence of S(x) such that p 6= αS. We know that

∂FS
∂y

(x, y) = x exp

(
y +

∞∑
i=2

1

i
S(xi)

)
− 1.

Moreover, observe that∣∣∣∣∣x exp
(
y +

∞∑
i=2

1

i
S(xi)

)
− 1

∣∣∣∣∣ ≥ 1−

∣∣∣∣∣x exp
(
y +

∞∑
i=2

1

i
S(xi)

)∣∣∣∣∣ > 1− F (αS, S(αS)) = 0.

Therefore, for any point p with |p| = αS and p 6= αS, we have that ∂FS

∂y
(p, S(p)) 6= 0. (Note

that S(p) is bounded since S(αS) is bounded.) Then by the Implicit Function Theorem,
S(x) is analytic at p for |p| = αS and p 6= αS.

Condition (c) in Theorem 3.8 follows from Lemma 3.6. Conditions (d) and (e) are
clearly satis�ed. For condition (f), we have

∂2FS
∂y2

(x, y) = x exp

(
y +

∞∑
i=2

1

i
S(xi)

)
,

so ∂2FS

∂y2
(αS, S(αS)) 6= 0.
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In the neighborhood of x = αS, we match the coe�cients of the de�ning power series
of S(x) and the expansion given by Theorem 3.8.

S(x) = S(αS) +
∞∑
k=1

ak(αS − x)k/2 for some constants ak.

By taking the derivative of this expansion in the neighborhood of αS, we get

S ′(x) =
−a1

2(αS − x)1/2
+O(αS − x),

Meanwhile, if we take the derivative of the recursion de�nition of S(x), we get

S ′(x) = exp

(
∞∑
i=1

1

i
S(xi)

)
+

(
∞∑
i=1

xS(xi)

)
exp

(
∞∑
i=1

1

i
S(xi)

)
− `xl−1.

We consider S ′(x)(1− S(x)− x`) using these two di�erent expressions of S ′(x), where
x < αS and x is in the neighborhood of αS. For the �rst expression, we get

S ′(x)(1− S(x)− x`)

=

(
−a1

2(αS − x)1/2
+O(αS − x)

)
(1− S(αS)− (αS)

` − a1(αS − x)1/2 +O(αS − x)).

Recall that Lemma 3.6 gives 1 − S(αS) − (αS)
` = 0. After omitting the O(αS − x)

terms, the expression above becomes

S ′(x)(1− S(x)− x`) = 1

2
a2

1.

On the other hand, if we compute S ′(x)(1 − S(x) − x`) using the other expression of
S ′(x), we get

S ′(x)(1− S(x)− x`)

=

((
exp

(
∞∑
i=1

1

i
S(xi)

)
− `xl−1

)
+

(
∞∑
i=1

xS(xi)

)
exp

(
∞∑
i=1

1

i
S(xi)

))
(1−S(x)−x`).
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Since both S(x) and x` are monotone increasing and S(αS) + (αS)
` = 1, we can see

that (1− S(x)− x`) > 0 when x < αS and x is in the neighborhood of αS. Observe that

〈x`−1, exp

(
∞∑
i=1

1

i
S(xi)

)
〉 = 〈x`, x exp

(
∞∑
i=1

1

i
S(xi)

)
〉 = 〈x`, S(x) + x`〉,

which is simply one plus the number of `-vertex rooted trees without a speci�c `-vertex
rooted tree as a maximal limb. This number is clearly greater than `, so exp

(∑∞
i=1

1
i
S(xi)

)
−

`xl−1 is a series with all positive coe�cients, which implies the �rst term in the product
above is positive when x < αS and x is in the neighborhood of αS. Thus S ′(x)(1− S(x)−
x`) = 1

2
a2

1 > 0, which implies a1 6= 0. By Theorem 3.8, we conclude that

Sn ∼
−a1

2
√
π
α
−n+1/2
S n−3/2.

By a similar argument, we can also see that

Tn ∼
−a′1
2
√
π
α
−n+1/2
T n−3/2,

where a′1 is a non-zero constant. Therefore, the ratio between Sn and Tn approaches 0 as
n approaches in�nity, which implies that for any given rooted tree L, almost every rooted
tree contains L as a maximal limb.

It is important to note that Schwenk's result does imply Theorem 3.9. Consider a
rooted tree L with root r. We construct the rooted tree L′ by adding a leaf r′ to r and
make r′ the root of L′. Schwenk proved that almost every tree contains L′ as a limb, which
implies almost every tree contains L as a maximal limb. Our contribution is to study
the generating series for trees without a speci�c maximal limb and therefore providing an
alternative proof to Theorem 3.9.
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Chapter 4

Cospectral Weighted Trees

In this chapter, the main mathematical objects of interest are weighted trees, both rooted
and unrooted. As de�ned in Chapter 1, a tree is weighted if each of its vertices is assigned
a positive integer weight. Weighted trees are widely studied in the �eld of combinatorics,
mathematics, and computer science. Speci�cally, the interpretation of limbs in quantum
�eld theorem inspired us to study them. For more details, please refer to [4].

The results in this chapter are joint work with Karen Yeats and are under review [36].
In particular, Lemma 4.2, Lemma 4.3, Theorem 4.4, Theorem 4.5, Lemma 4.11, Lemma
4.12, Lemma 4.14, Lemma 4.15, Lemma 4.16, Lemma 4.17, and Theorem 4.18 are joint
work.

4.1 Limb Replacement in Weighted Rooted Trees

We start by considering weighted rooted trees in this section. In particular, we de�ne
weighted rooted trees as rooted trees where each vertex is assigned a positive integer weight.
In this context, we say a weighted rooted tree L is a limb of a weighted rooted tree T if
the unweighted version of L is a limb of the unweighted version of T , and there exists an
occurrence of the unweighted version of L in T such that the weights assigned to each of
the vertices in this occurrence are exactly the same as the weights in the corresponding
vertices in L. We extend Schwenk's limb replacement technique and asymptotic analysis
to weighted rooted trees.

An example of limbs for weighted rooted trees is shown in Figure 4.1. In the �gure, we
have three weighted rooted trees, T , L1 and L2, with the rectangular vertices being their
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Figure 4.1: An example of a limb in weighted rooted trees

roots, respectively. Observe that L1 is a limb of T . Meanwhile, even though L2 has the
same underlying unweighted tree as L1, it is not a limb of T . This is because we cannot
�nd a vertex of weight 3 in T as the root of an occurrence of L2, such that it has three
degree 1 children vertices having the same degrees as the three children vertices of the root
in L2. The vertex of degree 3 in T has three neighboring vertices of degree 1 with the same
degrees as the ones in L2, but one of those neighboring vertices is its parent vertex, so it
would not work.

We apply the generating function argument that Schwenk used to analyze weighted
rooted trees without a given limb. To utilize this argument, we need to �rst derive a
recursion for the generating function of the set of weighted rooted trees. For the purpose
of generating functions, the weight of a weighted graph, rooted or unrooted, is the sum
of the weights of all its vertices. Let TW be the set of all weighted rooted trees, and let
TW (x) =

∑∞
i=0 Tw,ix

i be its generating function, where a weight of a tree is the sum of the
weights of all its vertices. Like for the rooted trees, given a weighted rooted tree TW , we use
F (TW ) to denote the weighted rooted forest obtained by �rst deleting the root of TW and
then letting the vertex that was adjacent to the root of TW serve as the new root of each
component, and the weight on each of the remaining vertices is unchanged. Similarly to
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unweighted rooted trees, consider what happens to a weighted rooted tree TW if its root r
with weight wr is deleted. We see that F (TW ) is a forest, where each component of F (TW )
is an element of TR. Therefore, we can obtain the following equation.

TW (x) =

(
∞∑
k=1

xk

)(
∞∏
j=1

(1 + xj + x2j + . . .)Tw,j

)

=

(
∞∑
j=1

xj

)
exp

(
∞∑
i=1

1

i
T (xi)

)

=
x

1− x
exp

(
∞∑
i=1

1

i
TW (xi)

)
(4.1)

The simpli�cation process from the �rst line to the second line is similar to the simpli-
�cation process for S(x) in the proof of Theorem 3.3. Observe that rooted trees can be
considered as a speci�c case of weighted rooted trees where all vertices have weight 1.

Analogous to Schwenk's proof, we start by considering the radius of convergence of
TW (x), denoted as αT .

4.1 Lemma. The radius of convergence of TW (x) is at least 1
16
.

Proof. De�ne the sequence {Tn} such that

TW (x) =
∞∑
n=1

Tnx
n.

Let

A(x) =
TW (x)

x

and

B(x) =
∞∑
i=1

1

i
TW (xi).
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Note that, by Equation (4.1), A(x) = 1
1−x expB(x). Moreover, we have

d

dx
A(x) =

1

1− x
exp

(
∞∑
i=1

1

i
TW (xi)

)
· d
dx
B(x)

+
1

(1− x)2
exp

(
∞∑
i=1

1

i
TW (xi)

)

= A(x) · d
dx
B(x) +

1

1− x
A(x).

Therefore,

Tn+1 =
1

n
〈xn−1,

d

dx
A(x)〉

=
1

n
〈xn−1, A(x) · d

dx
B(x)〉+ 1

n

n−1∑
i=0

〈xn−1−i, A(x)〉

=
1

n

n∑
i=1

∑
d|i

dTd

Tn−i+1 +
1

n

n∑
i=1

Tn−i+1

=
1

n

n∑
i=1

(
iTi ·

∑
i≤ci≤n

Tn−ci+1 + Tn−i+1

)

For every weighted rooted tree of weight n, by adding 1 to the weight of its root, we
can create a distinct weighted rooted tree corresponding to it with weight n+1. Therefore,
the sequence {Tn} is weakly increasing, and so for any c such that i ≤ ci ≤ n, we have
Tn−ci+1 ≤ Tn−i+1. Then

∑
i≤ci≤n Tn−ci+1 ≤ nTn−i+1. Additionally, since T1 = 1, it is clear

that Ti ≥ 1 for any i ≥ 1, so Tn−i+1

iTi
≤ Tn−i+1 for any 1 ≤ i ≤ n. Thus,

=
1

n

n∑
i=1

iTi ·

( ∑
i≤ci≤n

Tn−ci+1 +
Tn−i+1

iTi

)

≤ 1

n

n∑
i=1

iTi ·
n+ i

i
Tn−i+1

≤ 2
n∑
i=1

TiTn−i+1.
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Now, we de�ne a power series f(x) =
∑

i=1 fix
i, where f1 = 1 and

fn = 2
n∑
i=1

fifn−i−1.

Since f(x) bounds TW (x) above, the radius of convergence of f(x) is a lower bound for the
radius of convergence of TW (x). Moreover,

〈xn+1, (f(x))2〉 =
n∑
i=1

fifn−i+1 =
1

2
fn+1

for all n ≥ 2, and 〈x, (f(x))2〉 = 0. Then we have

(f(x))2 − 1

2
f(x) + x = 0.

By the quadratic formula and the fact that f(0) = 0, we get

f(x) =
1

4

(
1− 1√

1− 16x

)
.

The radius of convergence of f(x) is 1
16
, so the radius of convergence of TW (x) is at least

1
16
.

The following lemma shows that TW (αT ) is bounded, where αT the radius of convergence
of TW (x). We will use this to compare αT and the radius of convergence of the generating
series of weighted trees with a forbidden limb. The general approach used to prove this
lemma is described in Section 9.5 of Harary and Palmer [17].

4.2 Lemma. The series TW (x) converges to 1 at x = αT .

Proof. We begin by proving TW (x) converges at x = αT .

Observe that, for all x ∈ (0, αT ),

log

(
TW (x)

x/(1− x)

)
= TW (x) +

∞∑
i=2

TW (xi).

Consequently, we get

TW (x) ≤ log

(
TW (x)

x/(1− x)

)
.
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Since TW (x) has positive coe�cients, log
(

TW (x)
x/(1−x)

)
must be positive as well. We divide

both sides of the inequality above by x
1−x log

(
TW (x)
x/(1−x)

)
to obtain

TW (x)/(x/(1− x))

log
(

TW (x)
x/(1−x)

) ≤ 1− x
x

.

Observe that
TW (x)

x/(1− x)
= exp

(
∞∑
i=1

1

i
TW (xi)

)
,

which is monotone increasing and is greater than 1 on (0, αT ). As x → α−T , we have
1−x
x

approaching the constant 1−αT

αT
. The function f(x) = x

log(x)
is continuous on the interval

(1,∞), and this is the only interval for which the value of f(x) is positive. It strictly
decreases on (1, e) and strictly increases on (e,∞). Therefore, since TW (x)/(x/(1−x))

log
(

TW (x)

x/(1−x)

) ≤ 1−x
x

on (0, αT ), the left hand side of this inequality is positive, we get the value of TW (x)
x/(1−x)

is
bounded above by either f(1) or 1−αT

αT
. So TW (x) is bounded on (0, αT ).

Since TW (x) is monotone increasing, limx→αT
TW (x) exists, and its value is TW (αT ).

Now we show that the value that TW (x) converges to at x = αT is 1. De�ne a multi-
variate function: for x, y ∈ C,

G(x, y) =
x

1− x
exp

(
y +

∞∑
i=2

1

i
TW (xi)

)
− y.

Observe that y = TW (x) is a solution to the equation G(x, y) = 0. We can see that
G(x, y) is analytic in each variable separately in the neighborhoods of αT and TW (αT ).

Moreover, consider the following partial derivative:

∂G

∂y
(x, y) =

x

1− x
exp

(
y +

∞∑
i=2

1

i
TW (xi)

)
− 1 = G(x, y)− 1 + y.

Then

∂G

∂y
(αT , TW (αT )) = G(αT , TW (αT )) + TW (x)− 1 = TW (αT )− 1.
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If ∂G
∂y
(αT , TW (αT )) 6= 0, then by the Implicit Function Theorem, there is a unique

function f(x) such that G(x, f(x)) = 0, so this function must be TW (x). Moreover, the
Implicit Function Theorem also gives that this function is analytic in the neighborhood of
αT . However, since αT is the radius of convergence of TW (x), we know that TW (x) has a
singularity at x = αT , which is a contradiction. Therefore, we must have

∂G

∂y
(αT , TW (αT )) = 0,

and as a result TW (αT ) = 1.

Now we have established the groundwork to discuss weighted rooted trees, let us de�ne
what a limb is in this case. Let T be a weighted rooted tree and suppose v ∈ V (T ). A
branch B at v is a weighted rooted subtree of T , such that v is the root of B, v has degree
1 in B, and if v′ is a child of v and v′ is in T , then all descendants of v′ are in T . A limb
at v is a weighted rooted subtree of T with root v that consists of a collection of branches
at v.

It is useful to observe that Theorem 3.4 applies to weighted rooted trees. The reason
is simple: Consider two weighted rooted trees L1 and L2 with the weights for each of their
vertices already assigned. By Theorem 3.4, the number of n-vertex rooted trees without the
unweighted version L1 as a limb is the same as the number of n-vertex rooted trees without
the unweighted version of L2 as a limb. Since the weight for each vertex is already �xed,
taking the weights into consideration does not a�ect the equality of these two numbers.
Therefore, the number of weight n weighted rooted trees without the L1 as a limb is the
same as the number of weight n weighted rooted trees without L2 as a limb.

Given a rooted tree L, let SW be the set of all weighted rooted trees without L as a limb.
We derive its generating series SW (x) by an argument similar to Schwenk's [32]. Suppose
the weight of L is `, and the weight of its root vertex is w. If L is too small, SW would be
trivial. So, assume L contains at least three vertices, which implies ` ≥ 3.

We construct the generating function SW (x) =
∑∞

i=0 sw,ix
i using the recursive relation-

ship among the trees in the set SW . Given a weighted rooted tree TW in SW , observe that
F (TW ) is a weighted rooted forest in SW that does not contain F (L) as a subset. Assume
the root of L has weight w, then the total weight of the vertices in F (L) is ` − w. The
generating function SW (x) is the di�erence between the generating function for weighted
rooted trees with a root of any weight attached to any forest where each component is an
element of SW and the generating function for weighted rooted trees U with root of weight
w while F (L) is a subgraph of F (U). Consequently, the generating function for weighted
rooted trees without a given weighted limb L satis�es the following equation.
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S(x) =

(
∞∑
k=1

xk

)(
∞∏
j=1

(1 + xj + x2j + . . .)sw,j

)
− xw · x`−w

(
∞∏
j=1

(1 + xj + x2j + . . .)sw,j

)

=
x

1− x
exp

(
∞∑
i=1

1

i
S(xi)

)
− xw · x`−w exp

(
∞∑
i=1

1

i
S(xi)

)

=

(
x

1− x
− x`

)
exp

(
∞∑
i=1

1

i
S(xi)

)

Since the number of weighted rooted trees without a given limb increases as a function
of the number of vertices, it is easy to see that the radius of convergence of S, denoted
as αS, is �nite. Meanwhile, by de�nition, 〈xi, SW (x)〉 ≤ 〈xi, TW (x)〉 for any non-negative
integer i, so αS ≥ αT > 0. To further compare these two quantities, in the following lemma,
we prove S(αS) = 1.

4.3 Lemma. The series SW (x) satis�es SW (αS) = 1.

Proof. De�ne a multivariate function: for x, y ∈ C,

F (x, y) =

(
x

1− x
− xl

)
exp

(
y +

∞∑
i=2

1

i
SW (xi)

)
− y.

By the Implicit Function Theorem (see Appendix 7.4 for more details), y = SW (x) is
the unique analytic solution of F (x, y) = 0. Moreover, it has a singularity at x = αS, and
F (αS, SW (αS)) = 0.

Therefore,

∂F

∂y
(αS, SW (αS)) = F (αS, SW (αS)) + SW (x)− 1 = SW (αS)− 1 = 0,

due to the singularity. Thus SW (αS) = 1.

Now we are ready to prove αS > αT .

4.4 Theorem. The radius of convergence of SW (x) is greater than the radius of conver-
gence of TW (x).
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Proof. By de�nition, SW (x) is coe�cient-wise bounded above by TW (x), which implies
αS ≥ αT , and SW (x) ≤ TW (x) for any x > 0. Moreover, since TW contains all weighted
rooted trees with weight ` while L 6∈ SW , the coe�cient of xl in SW is strictly less than the
coe�cient of that in TW . Meanwhile, Lemma 4.3 and Lemma 4.2 imply SW (αS) = TW (αT ).
Therefore, αS 6= αT , so αS > αT .

A direct consequence of the theorem is the following result analogous to Schwenk's
main result in [32].

4.5 Theorem. For any given weighted rooted tree L, almost every weighted rooted tree has
L as a limb.

Proof. By Theorem 4.4, SW (x) converges on a larger disk than TW (x). In other words, the
coe�cients of TW (x) have a larger order of growth that those of SW (x). Since SW (x) is
the generated series of weighted rooted trees without L as a limb, we can conclude that
for any rooted weighted tree L, almost every weighted rooted tree has L as a limb.

Therefore, we have successfully extended Schwenk's results to weighted rooted trees.

4.2 The Dissimilarity Theorem

The dissimilarity theorem is an important result by Otter [27] that can be used to relate
the number of rooted trees and the number of trees. In this section, we provide a summary
of the dissimilarity theorem, preparing for our discussion about the relationship between
the number of weighted rooted trees and the number of weighted unrooted trees in the
next section.

Given any tree T , we consider Aut(T ), the group of automorphisms of T . For any two
edges e1, e2 ∈ E(T ), we say that e1 and e2 are similar if there exists an automorphism
f ∈ Aut(T ) such that f(e1) = e2. An orbit of a vertex u (an edge e) is the largest set of
pairwise similar vertices (edges) in T that contains the vertex u (the edge e). We say an
edge is a symmetry edge if its two end-vertices are a pair of similar vertices.

In his well-known paper, Otter considered the relationship between orbits of vertices
and orbits of edges [27]. In particular, he proved the famous dissimilarity theorem for trees.
The following is a rewording of the original theorem statement.

4.6 Theorem ([27]). Suppose T is a tree with p orbits for vertices, q orbits for edges, and
s symmetry edges. Then p− q + s = 1.
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Moreover, the following simple result tells us any tree has at most one symmetry edge.

4.7 Lemma. Let T be a tree, then T has either zero or one symmetry edge.

Proof. For any tree T , either T has no symmetry edge, or it has at least one symmetry
edge. In the �rst case, we are done, so we only consider the latter.

Suppose T has at least two symmetry edges e1 = {u1, v1} and e2 = {u2, v2}. Then by
de�nition T\u1 = T\v1 and T\u2 = T\v2. In particular, the component in T\u1 containing
v1 and the component in T\v1 containing u1 are isomorphic. Moreover, observe that each
vertex of T is in exactly one of these components, and these two components form exactly
T\e1. In other words, T\e1 consists of exactly two isomorphic components.

By the same logic, T\e2 also consists of exactly two isomorphic components, C1 and C2.
Without loss of generality, assume e1 ∈ E(C1). We can obtain T\e1 by deleting e1 from
C1 and add the edge e2 to (C1\e1) ∪ C2. However, one of the components of (C1\e1) ∪ C2

must be a proper subtree of C1, which has fewer vertices than C1 does. Recall C1 and C2

are isomorphic and therefore have the same number of vertices, then a proper subtree of
C1 has less than |V (T )|/2 vertices. This contradicts the fact that T\e1 consists of exactly
two isomorphic components. Thus, it is impossible for T to have two or more symmetry
edges.

Therefore, by Theorem 4.6, the di�erence between the number of orbits of vertices and
the number of orbits of edges in any tree is either 0 or 1. Let

t(x) =
∞∑
i=0

tix
i

be the generating function for all trees, and

T (x) =
∞∑
i=0

Tix
i

be the generating function for all rooted trees. Using Theorem 4.6, a proof in Harary's
book [16] showed that

t(x) = T (x)− 1

2
[T 2(x)− T (x2)].

We provide a version of the full proof here, since similar ideas will be discussed for weighted
trees later.
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4.8 Theorem ([16]). Let T (x) =
∑∞

i=0 Tix
i be the generating function for all trees, and

T •(x)
∑∞

i=0 T
•
i x

i be the generating function for all rooted trees, then

T (x) = T •(x)− 1

2
[(T •(x))2 − T •(x2)].

Proof. This proof is based on the proof of Theorem 15.11 in Harary's book [16].

Use T to denote the set of all trees, T • to denote the set of all rooted trees, and Tn to
denote the set of all tree with n vertices. For any tree T ∈ Tn, suppose T has p orbits for
vertices, q orbits for edges, and s symmetry edges.

Theorem 4.6 gives 1 = p − q + s. Summing both sides of this equation over all trees
over n vertices, we get

Tn =
∑
T∈Tn

p−
∑
T∈Tn

(q − s).

If we were to convert the unrooted tree T into a rooted tree, then we need to pick a
root out of the n vertices of T . There are p distinct choices up to isomorphism. Therefore,
if we were to sum the number of orbits of all trees over n vertices, then we get∑

T∈T

p = T •n ,

the number of rooted trees over n vertices.

Similarly, we could consider
∑

T∈Tn(q− s) as the number of trees over n vertices rooted
at an edge that is not its symmetry edge. In particular, suppose we pick e ∈ E(T ) that
is not a symmetry edge of T . Then T\e can be considered as two non-isomorphic rooted
trees. In other words, each term in this sum corresponds to an unordered pair of distinct
rooted trees with a total of n vertices.

Let SET2(T ) be the set of all subsets of size 2 of T . Based on the discussion above,
we get the following equation.

|T | = |T •| − |SET2(T )|. (4.2)

De�ne D(T × T ) := {(T, T )|T ∈ T }, then

2|SET2(T )| = |(T × T )| − |D(T × T )|.
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Observe that the generating function for D(T × T ) is T 2(x). As a result, we can see
that the generating function of SET2(T ) is

1

2
((T •(x))2 − T •(x2)).

Using this and Equation 4.2, we get

T (x) = T •(x)− 1

2
[(T •(x))2 − T •(x2)],

as desired.

In the next section, we use the ideas in the proof above to discuss the relationship
between weighted rooted trees and weighted unrooted tress.

4.3 Limb Replacement in Weighted Trees

Using the underlying relationships between corresponding rooted and unrooted structures,
we extend the discussion from the previous section to weighted trees that are unrooted.
Similar to weighted rooted trees, a weighted tree is de�ned as a tree where each vertex is
assigned a positive integer weight, but with no distinguished root vertex. The following
result relates the generating functions of weighted trees and weighted rooted trees.

4.9 Theorem. Let W be the set of all weighted trees, and W (x) be the generating function
of W. Let TW be the set of all weighted rooted trees, and TW (x) be the generating function
of TW . Then

W (x) = TW (x)− 1

2
((TW (x))2 − TW (x2)).

Proof. Let TW be the set of weighted rooted trees. Let SET2(TW) denote the set of all
subsets of size 2 of TW . De�ne D(TW × TW) := {(T, T )|T ∈ TW}, then

2|SET2(TW)| = |(TW × TW)| − |D(TW × TW)|.

Observe that the generating function of D(TW × TW) is TW (x2). Consequently, the
generating function for SET2(TW) is

1

2
((TW (x))2 − TW (x2)).
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Meanwhile, observe that the dissimilarity theorem for trees still holds for weighted
trees as we simply ignore the weights for the constructions of the dissimilarity theorem.
Speci�cally, the dissimilarity theorem says that

|W| = |TW | − |SET2(TW)|.

Based on the combinatorial equivalence above, we get

W (x) = TW (x)− 1

2
((TW (x))2 − TW (x2)),

as desired.

There is an equation relating the generating functions of weighted trees without a given
limb and weighted rooted trees without a given limb. However, the proof of the previous
theorem does not directly apply.

Lu [24] proved this analogous equation for the unweighted versions of trees without a
given limb. Below is a rewording of his result and its proof.

4.10 Lemma ([24]). Suppose L is an `-vertex rooted tree. Let R be the set of rooted trees
without L as a limb. Let S be the set of unrooted trees without L as a limb. Use R(x) and
S(x) to denote the generating functions of R and S, respectively. Then R(x) and S(x)
satisfy the following equation.

S(x) = R(x) +
1

2
((R(x))2 −R(x2)).

Proof. Let R1 be the set of unrooted trees with L as a limb, such that each of them has
a vertex v and L is not a limb of the rooted tree obtained by setting v as the root of this
tree. Let R1(x) be the generating function of R1.

Note that the trees in R1 could have multiple occurrences of L as a limb. However,
these occurrences must be rooted at the same vertex, and no two of them are disjoint, for
otherwise the de�nition of R1 is violated. Therefore, the vertex orbit containing the root
of L is T has size 1.

For any unrooted tree T ∈ S, use p, q, s to denote the number of vertex orbits, the
number of edge orbits, and the number of symmetry edges in T , respectively. By Otter's
formula [27], we get p− q+ s = 1. Summing this over all trees over n vertices in S, we get∑

T ′∈S
|V (T ′)|=n

p−
∑
T ′∈S

|V (T ′)|=n

(q − s) =
∑
T ′∈S

|V (T ′)|=n

1 = 〈xn, S(x)〉.
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(Recall that we use 〈xn, S(x)〉 to denote the coe�cient of xn in S(x).)

Similarly, for a unrooted tree T ′ ∈ R1, use p′, q′, s′ to denote the number of vertex
orbits, the number of edge orbits, and the number of symmetry edges in T ′, respectively.
Otter's formula gives (p′ − 1) − (q′ − s′) = 0. Summing this over all trees over n vertices
in R1, we get ∑

T ′∈R1
|V (T ′)|=n

(p′ − 1)−
∑
T ′∈R1
|V (T ′)|=n

(q′ − s′) = 0.

Observe that for a unrooted tree T ′ ∈ R1, we can consider p′−1 as the number of ways
of picking a vertex in a speci�c vertex orbit in T ′ to create a rooted version of T ′, such that
the picked vertex is not the root of an occurrence of L in T ′. Let x be the number of vertex
orbits in T ′, such that the vertices in these orbits can be chosen as a root of T ′ to get a
rooted tree without L as a limb, and let x′ be an integer such that p′ − 1 = x + x′. Since
each rooted tree without L as a limb corresponds to a unrooted tree in R1 or a unrooted
tree without L as a limb, we get

〈xn, R(x)〉 =
∑
T ′∈R1
|V (T ′)|=n

x+
∑
T ′∈S

|V (T ′)|=n

p.

Meanwhile, for a unrooted tree T ′ ∈ R1, let y be the number of edge orbits in T ′ that
do not contain the symmetry edge, such that if an edge-rooted tree is created by setting e
as the root edge of T ′, the resulting edge-rooted tree does not have L as a limb. Let y′ be
an integer such that q′ − s′ = y + y′.

Recall that p′−1 = x+x′, so x′ counts the number of vertex orbits that do not contain
the root of occurrences of L in T ′, yet picking a root vertex from any of these vertex orbits
would give a rooted tree with L as a limb. Meanwhile, since q′ − s′ = y + y′, we see that
y′ counts the number of edge orbits that contain edges that are not symmetry edges, yet
picking a root edge from any of these edge orbits would give an edge-rooted tree with L as
a limb. Suppose v is in an orbit counted by x′, then v is not the root of any occurrences
of L. Moreover, since T ′ is a tree, there exists a unique path between v and the root r of
any occurrences of L in T . This path does not use any vertices except for r in at least one
occurrence of L or edges in at least one occurrence of L, since L is a limb in the rooted
tree created by setting v as the root vertex. Let e be the edge incident to v in this path.
Since T ′ ∈ R1, it cannot contain two disjoint occurrences of L as limbs, so v is not in the
same orbit as the other end-vertex of e′. Then e is not a symmetry edge, and therefore
it is an edge in an orbit counted by y′. For each such vertex v, we have a unique edge e
corresponding to it. Therefore, y′ ≥ x′.
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On the other hand, if we pick an edge e from an orbit counted by y′, then both of its
end vertices v1 and v2 must be counted by x′. Note that there is a unique path from each
of v1 and v2 to the the root r of any occurrences of L in T , and one of these two paths
contains e. Without loss of generality, suppose v1 is further away to r than v2, then the
edge orbit of each such e corresponds to the vertex orbit of such a v1. So we have x′ ≥ y′.
Therefore, x = y.

Consequently, we get

〈xn, S(x)〉 =
∑
T∈S

|V (T )|=n

p−
∑
T∈S

|V (T )|=n

(q − s)

= 〈xn, R(x)〉 −
∑
T ′∈R1
|V (T ′)|=n

x−
∑
T∈S

|V (T )|=n

(q − s)

= 〈xn, R(x)〉 −

 ∑
T ′∈R1
|V (T ′)|=n

y +
∑
T∈S

|V (T )|=n

(q − s)

 .

Observe that ∑
T ′∈R1
|V (T ′)|=n

y +
∑
T∈S

|V (T )|=n

(q − s)

counts the number of weighted edge-rooted trees over n vertices in S obtained by joining
two distinct weighted rooted trees on the two ends of the root edge. So∑

T ′∈R1
|V (T ′)|=n

y +
∑
T∈S

|V (T )|=n

(q − s) = 1

2
〈xn, (R(x))2 −R(x2)〉.

Thus the desired equation holds.

The proof for the corresponding result for weighted trees and weighted rooted trees is
identical since the proof only involves the structure of trees without needing to consider
their vertex weights.

Let SU be the set of all weighted trees without a given rooted tree L as a limb, let SU(x)
be the generating function of SU , and let SW be the generating function for weighted rooted
trees without L as a limb, then

SU(x) = SW (x)− 1

2
((SW (x))2 − SW (x2)).
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Suppose the radius of convergence of a power series A(x) is less than 1. Then the radius of
convergence of A(x2) is less than 1 but strictly greater than that of A(x), and the radius
of convergence of (A(x))2 is the same as that of A(x). Therefore, the radius of convergence
of SW (x)− 1

2
((SW (x))2 − SW (x2)) is the same as that of SW (x). Consequently, the radius

of convergence of TW (x) is αT and the radius of convergence of SU(x) is αS. Theorem 4.4
proved αS > αT . Similarly to Corollary 4.5, we get the following result.

4.11 Theorem. For any given weighted rooted tree L, almost every weighted tree has L as
a limb.

Therefore, we have extended one of Schwenk's main results to weighted trees.

4.4 Cospectrality of Weighted Graphs

Recall that, in Chapter 1, we de�ned the weighted characteristic polynomial for a weighted
graph W over n vertices in the following way: Let M(x) be an n×n diagonal matrix, such
that its rows and columns are each indexed by the vertices of W , and the ii-entry of M(x)
is xw(i), where w(i) is the weight of the vertex i and x is an indeterminate. Let A(W ) be
the adjacency matrix of W . The weighted characteristic polynomial φ∗(W,x) of W is

φ∗(W,x) = det(M(x)− A(W )).

When there is no ambiguity, we drop the indeterminate variable and use

φ∗(W ) = det(M − A(W ))

to denote the weighted characteristic polynomial of W .

This de�nition of weighted characteristic polynomial is consistent with our previous
de�nitions. In particular, we choose to put the weight of each vertex to be the power of
their corresponding term, because that was how we enumerated the weighted trees and
weighted rooted trees. For any weighted graph G, the term of the highest power of the
weighted characteristic polynomial is exactly x to the weight of G. This is not necessarily
the only possible de�nition for the weighted characteristic polynomial, and we choose it
here because it works well with the results which we apply this de�nition to. It is worth
noting that some of the following results could still hold with some other sensible de�nition
of the weighted characteristic polynomial.

If two weighted graphs have the same weighted characteristic polynomial, we say that
they are weighted cospectral . Similarly, two vertices u and v in a weighted graph G are
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weighted cospectral if G\u and G\v are weighted cospectral graphs. For the rest of this
section, we prove that almost every weighted rooted tree is weighted cospectral with another
weighted rooted tree.

We start by proving the weighted characteristic polynomial satis�es identities that are
analogous to the union formula, the edge-deletion recurrence, the derivative formula, and
the 1-sum formula for the characteristic polynomial, discussed in Section 2.2 and Section
2.3.

Below, we consider the union formula for the weighted characteristic polynomial, which
is fairly straight-forward.

4.12 Lemma. Suppose W1 and W2 are weighted graphs. Then

φ∗(W1 ∪W2) = φ∗(W1)φ
∗(W2).

Proof. For square matrices A and B, note that det
[
A 0
0 B

]
= det(A) det(B). Therefore,

φ∗(W1 ∪W2) = det(M(x)− A(W1 ∪W2))

= det

[
M1(x)− A(W1) 0

0 M2(x)− A(W2)

]
= φ∗(W1)φ

∗(W2),

where M1(x) and M2(x) are the corresponding diagonal matrices for W1 and W2 in the
de�nition of the weighted characteristic polynomial.

It is a little more complex to prove the edge-deletion recurrence for the weighted char-
acteristic polynomial. To do so, we need to use the following two intermediate results.
The �rst result is a theorem about the determinant of the sum of two matrices. For more
information about this theorem, please refer to Godsil [10, Theorem 2.1.1].

4.13 Theorem ([10]). Let X and Y be any n × n matrices. Then det(X + Y ) is equal
to the sum of the determinants of the 2n matrices obtained by replacing each subset of the
columns of X by the corresponding subset of the columns of Y .

Meanwhile, the following lemma discusses a speci�c type of block matrix and shows its
determinant is zero.
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4.14 Lemma. Let M be a n× n block matrix of the form[
C 0
0 D

]
,

where 0 represents all-zero matrices of appropriate dimensions, C is a ` ×m matrix with
` 6= m, and D is a (n− `)× (n−m) matrix. Then det(M) = 0.

Proof. Without loss of generality, we may assume that ` > m. Suppose D = [D1|D2] where
D1 is a (n− `)× (`−m) matrix and D2 is a (n− `)× (n− `) matrix. Then we can view
M as a block lower triangular matrix [

C ′ 0
E D2

]
,

where C ′ = [C|0] is a ` × ` matrix, E = [0|D1] is a (n − `) × ` matrix, with 0 again
representing all-zero matrices of appropriate dimensions. Clearly, det(C ′) = 0. Then
det(M) = det(C ′) det(D2) = 0.

Now we have all the necessary tools to prove the following result for the weighted
characteristic polynomial, analogous to the edge-deletion recurrence for the characteristic
polynomial.

4.15 Lemma. Let W be a weighted graph. Suppose e = {u, v} is a cut-edge in W . Then

φ∗(W ) = φ∗(W\e)− φ∗(W\{u, v}),

where W\e denotes the weighted graph obtained by deleting the edge e from the weighted
graph W , but not the end vertices of e, while W\{u, v} denotes the weighted graph induced
by V (W )\{u, v}.

Proof. Suppose W has n vertices. Let Euv be the n × n matrix, all of whose entries are
zeros except that the uv-entry and vu-entry are 1's. Recall that e is a cut-edge, so deleting
it would separate the graph into two components. We may assume the n × n matrices in
our discussion are arranged in a way where the �rst ` rows and columns correspond to
the component C1 with u in it, with the `-th row and column corresponding u, and the
(`+ 1)-st row and column corresponding to v. The other component is C2. Observe that

φ∗(W ) = det(M − A(W )) = det(M − A+ Euv − Euv).
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Let

X =M − A(W ) + Euv =


M1 − A(C1\u) · · · 0 0

... xw(u) 0 0

0 0 xw(v) ...
0 0 · · · M2 − A(C2\v)

 ,
where the matrices M1 and M2 are diagonal matrices of appropriate dimensions, whose
diagonal entries are xw(i), such that i is the vertex corresponding to the respective row and
column. Notice that each entry represented by dots above and to the left of the xw(u) term
or the dots below and to the right of the xw(v) term could be either 0 or −1, depending on
their adjacency relationship with the vertex u of v, respectively.

Let Y = −Euv. Then we can apply Theorem 4.13 to compute det(M − A(W )), or
det(X + Y ). Since any matrix with an all zero column has determinant 0, when using
Theorem 4.13 to replace columns ofM−A(W )+Euv, only three cases need to be considered:

1. Do not replace column u or column v at all.

2. Replace both column u and column v.

3. Replace exactly one of column u and column v.

In the �rst case, the determinant of the resulting matrix is det(M−A(W )+Euv), which
is φ∗(W\e).

In the second case, by Laplace's formula (cofactor expansion) along the `-th and (`+1)-
st columns we see that the determinant of the resulting matrix is −φ∗(W\{u, v}).

Now we consider the last case. Assume �rst that the `-th column in M −A(W ) +Euv
is replaced by the `-th column of −Euv. We call the resulting matrix is B, which is the
following.

B =


M1 − A(C1\u) 0 0 0

... 0 0 0

0 −1 xw(v) ...
0 0 · · · M2 − A(C2\v).


Then we consider the determinant of B. Let B′ be the matrix obtained from B by

deleting its (`+ 1)-st row and `-th column, so
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B′ =

 M1 − A(C1\u) 0 0
... 0 0
0 · · · M2 − A(C2\v).


By cofactor expansion along the `-th column of B, we get det(B) = ± det(B′). Note

that the entries in the `-th column of B′ come from the (`+1)-st column of B. In particular,
the �rst ` entries in this column are zeros, and all other entries in this column can be 0 or
−1. Therefore B′ is a block matrix of the form[

C 0
0 D

]
where C is ` × (` − 1) and D is (n − ` − 1) × (n − `). By Lemma 4.14, det(B′) = 0. An
analogous argument applies when replacing only the (`+1)-st column. Therefore, the last
case simply gives a determinant of 0.

Summing the determinants from all three cases, we get

φ∗(W ) = φ∗(W\e)− φ∗(W\{u, v}).

Just like the proof for the edge-deletion recurrence for the weighted characteristic poly-
nomial, our proof for the derivative formula for the weighted characteristic polynomial
is also more complex than the proof for the corresponding identity for the characteristic
polynomial presented in the book by Godsil [10, Theorem 2.1.5]. The addition of vertex
weights requires more careful manipulation of the terms when expanding the weighted char-
acteristic polynomial as the determinant of a matrix, especially when taking derivatives of
the diagonal entries.

4.16 Lemma. Let W be a weighted graph with weight function w, such that W has at least
one vertex, then

d

dx
φ∗(W ) =

∑
i∈V (W )

w(i)xw(i)−1φ∗(W\i).

Proof. Let Sn be the set of all permutations of {1, 2, . . . , n}. Recall that for a matrix M ,
if mij is its ij-entry, then its determinant can be computed by the Leibniz formula:

det(M) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

mi,σ(i)

)
,
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where sgn(σ) is the sign of the permutation. Use ci,j to denote the ij-entry of M − A.
Then we get

d

dx
φ∗(W ) =

d

dx

∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ci,σ(i)

)

=
∑
σ∈Sn

(
sgn(σ)

d

dx

n∏
i=1

ci,σ(i)

)

=
∑
σ∈Sn

sgn(σ)
∑

j∈�x(σ)

w(j)xw(j)−1

 n∏
i=1
i 6=j

ci,σ(i)


 ,

by the chain rule, where �x(σ) is the set of �xed points of σ. We can switch the order
of the summations, but note the permutation must skip the vertex j, so it would be a
permutation of {1, 2, . . . , j − 1, j + 1, . . . , n}, although we �x the values of the sign func.

=
∑

j∈V (W )

∑
σ∈Sn−1

(
sgn(σ)w(j)xw(j)−1

(
n∏
i 6=j

ci,σ(i)

))
=

∑
j∈V (W )

w(j)xw(j)−1φ∗(W\j)

Last but not least, we show that the 1-sum formula holds for the weighted characteristic
polynomial as well.

4.17 Lemma. Suppose W1 and W2 are weighted graphs with weight functions w1 and w2,
such that their underlying unweighted graphs share exactly one vertex, v. Observe that it
is possible that w1(v) 6= w2(v). Let W be the weighted graph on n vertices such that

(a) the underlying unweighted graph of W is the 1-sum of the underlying unweighted graphs
of W1 and W2; and

(b) the weight function w for W satis�es w(x) = w1(x) for x ∈ V (W1)\V (W2) and w(x) =
w2(x) for x ∈ V (W1)\V (W2), and the value of w(v) is a positive integer.
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Then

φ∗(W ) = φ∗(W1\v)φ∗(W2) + φ∗(W1)φ
∗(W2\v)

+ (xw(v) − xw1(v) − xw2(v))φ∗(W1\v)φ∗(W2\v).

Proof. Let A(W ) be the adjacency matrix of W . We may assume that the n × n matrix
M − A(W ) is organized so that its �rst ` rows/columns correspond to W1, with the `-th
row/column corresponding v, and the remaining rows/columns correspond to vertices in
W2\v. Use aij to denote the ij-entry of M − A(W ), and Mi,j to denote the ij-cofactor of
M − A(W ).

We �rst consider the right hand side of the equation in the lemma statement. Observe
φ∗(W1\v)φ∗(W2) is the product of the determinant of two matrices, namely M1−A(W1\v)
andM2−A(W2), whereM1 andM2 are diagonal matrices of appropriate dimensions, whose
diagonal entries are xw(i), such that i is the vertex corresponding to the respective row and
column. The product φ∗(W1\v)φ∗(W2) can also be viewed as the determinant of an n× n
matrix B de�ned as

B :=

[
M1 − A(W1\v) 0

0 M2 − A(W2)

]
,

In other words, B is much like the matrix M − A(W ), with the only di�erences being
that, in B, the entries above and to the left of the ``-entry are all zeros, and the ``-
entry of B is xw2(v), while the ``-entry of M − A(W ) is xw(v). Therefore, if we compute
φ∗(W1\v)φ∗(W2) by applying Laplace's formula to the `-th column of B, the result would
be (∑

j>`

(−1)`+jaj`Mj,`

)
+ xw2(v)M`,`.

Note the latter term of the sum is simply xw2(v)φ∗(W1\v)φ∗(W2\v).
Similarly, φ∗(W1)φ

∗(W2\v) can be considered as the determinant of a corresponding
n× n matrix as well. So

φ∗(W1)φ
∗(W2\v) =

(∑
i<`

(−1)`+iai`Mi,`

)
+ xw1(v)φ∗(W1\v)φ∗(W2\v).

Likewise

φ∗(W ) =

(∑
k 6=`

(−1)`+kak`Mk,`

)
+ xw(v)φ∗(W1\v)φ∗(W2\v).
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Therefore,

φ∗(W1\v)φ∗(W2) + φ∗(W1)φ
∗(W2\v)

= φ∗(W ) + (xw1(v) + xw2(v))φ∗(W1\v)φ∗(W2\v)− xw(v)φ∗(W1\v)φ∗(W2\v).

Just as Schwenk did, we could use the 1-sum formula for the weighted rooted trees
to perform the limb replacement action. With the limb replacement results we proved in
previous sections, we show that almost every weighted tree has a weighted cospectral mate.

4.18 Theorem. Almost every weighted tree is weighted cospectral with another weighted
tree.

Proof. Consider the tree L as shown in Figure 2.2. Let L1 and L2 be the weighted rooted
trees obtained by assigning weight 1 to all vertices in L and assigning a and b as the root,
respectively. Observe that φ∗(L1) = φ∗(L2), and φ∗(L1\a) = φ∗(L2\b).

If L1 is a limb of some weighted rooted tree W , then it indicates the weight of a in
W is 1 as well. We could replace L1 in W by L2, and Lemma 4.17 implies the resulting
weighted rooted tree is weighted cospectral to W . By Corollary 4.5, almost every weighted
rooted tree has L1 as a limb. Since the rooting of the weighted tree does not a�ect its
weighted characteristic polynomial, we conclude that almost every weighted tree is weighted
cospectral with another weighted tree.

Therefore, we have extended Schwenk's result to weighted rooted trees through ana-
lyzing the corresponding generating series and de�ning the weighted characteristic polyno-
mial.
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Chapter 5

Constructing Graphs with Many

Cospectral Vertices and Graphs with

Many Comatching Vertices

In this chapter, our �rst topic of discussion is cospectral vertices within the same graph. In
particular, we will use the various characteristic polynomial recurrences and identities to
provide a step-by-step construction of trees with an arbitrarily large number of cospectral
vertices that are not similar. Further, we will prove that, for any integer k ≥ 2, there
exists a graph that contains k cospectral vertices such that no two of them are pairwise
similar, and almost every tree has a set of k cospectral vertices such that no two of them are
pairwise similar. We also show that the same construction works for creating graphs with
comatching vertices. In addition, one of the intermediate results in the main construction
will be generalized to construct comatching graphs.

The results in this chapter are joint work with Karen Yeats and are under review [36]. In
particular, Theorem 5.1, Theorem 5.2, Theorem 5.3, Corollary 5.4, Theorem 5.5, Theorem
5.6, Theorem 5.7 are joint work.

5.1 1-Vertex Extension

As de�ned in Chapter 1, for a graph G and a set S ⊆ V (G), the 1-vertex extension of G
with respect to S is the graph obtained by adding a vertex to G and connecting the added
vertex to all vertices in S and no other vertex.
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e

f

g

1-vertex extension of G with respect to
{b, f}

Figure 5.1: An example of a graph G and one of its 1-vertex extensions

Figure 5.1 gives an example of a graph G and its 1-vertex extension with respect to the
set S = {b, f}. In the 1-vertex extension, we added a new vertex g, and then connected it
to exactly the vertices in the set S.

1-vertex extension is a practical graph operation that can be used to construct cospec-
tral graphs. Speci�cally, we prove the following result, which is an important step in our
main construction.

5.1 Theorem. Let G be a graph with a set of cospectral vertices A = {a1, a2, · · · , ak}.
Let S1 and S2 be non-empty subsets of A such that |S1| = |S2|, and each component of G
contains at most one vertex in S1 and at most one vertex in S2. For i = 1, 2, let Gi be the
1-vertex extension of G with respect to Si. Then G1 and G2 are cospectral.

Proof. We prove this theorem by induction on the size of S1 and S2. Suppose |S1| = |S2| = 1.
Without loss of generality, let v be connected to ai in Gi, for i = 1, 2. Use eaiv to denote
the edge with ai and v being its endpoints. Each eaiv is a cut-edge and so

φ(G1) = φ(G1\ea1v)− φ(G1\{a1, v})
= xφ(G)− φ(G\a1)

= φ(G2\ea2v)− φ(G\a2)

= φ(G2).

Now assume the theorem statement holds for all |S1| = |S2| ≤ `− 1, where 1 < ` ≤ k.
Without loss of generality, suppose |S1| = |S2| = k, a1 ∈ S1, a2 ∈ S2. Since each component
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a1 b1 a2 b2

Figure 5.2: The graph F with a1, b1, a2, and b2 as cospectral vertices

a1 b2 a1 a2

Figure 5.3: An example of F and its 1-vertex extensions

of G contains at most one vertex in A, eaiv is a cut-edge. By the induction hypothesis,
φ(G1\ea1v) = φ(G2\ea2v).

Note that

φ(G1) = φ(G1\ea1v)− φ(G1\{a1, v})
= φ(G1\ea1v)− φ(G\a1)

= φ(G2\ea2v)− φ(G\a2)

= φ(G2).

Hence the theorem statement is true.

Theorem 5.1 applies to any graph with cospectral vertices in di�erent components.
Figure 5.2 gives a forest F with a1, b1, a2 and b2 being cospectral vertices, which is formed
by two copies of Schwenk's tree shown in Figure 2.2. Based on this F , we construct a
pair of cospectral graphs using Theorem 5.1. Each of the two graphs in Figure 5.3 is a
1-vertex extension of the graph F in Figure 5.2, where the extension is done on di�erent
but cospectral vertices.

For the rest of the chapter, we use Theorem 5.1 and 1-vertex extensions to give a
construction of cospectral graphs and a construction of connected graphs with an arbitrarily
large number of cospectral vertices.
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a b

Figure 5.4: A graph with a pair of cospectral vertices a and b

Figure 5.5: A pair of cospectral graphs constructed from the graph in Figure 5.4 using
Theorem 5.1

5.2 1-Vertex Extension Construction for Cospectral Graphs

In this section, we provide another construction for cospectral graphs using 1-vertex exten-
sions, by applying it twice in a row. Although it might not be as widely applicable as the
construction in the previous section, this construction results in a graph for us to use in
order to construct connected graphs with an arbitrary large number of cospectral vertices
in the next section.

Suppose we have a graph F satisfying the following conditions.

• F has exactly c components.

• The components of F are pairwise cospectral.

• There exists distinct sets S1, S2, . . . , Sm ⊆ V (F ) of pairwise cospectral vertices for
some integer m ≥ 1, such that for all 1 ≤ i ≤ m, each Si contains exactly one vertex
from each component of F .

Observe that such a graph F exists. For example, as shown in Figure 5.3, we could
take two disjoint copies of Schwenk's tree in Figure 2.2 as F , with the two isomorphic
components being C1, C2. If we call the pair of cospectral vertices in Ci as ai, bi for i = 1, 2.
Let S1 = {a1, a2}, S2 = {b1, a2}, and S3 = {b1, b2}. This graph satis�es the condition listed
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in the paragraph above with c = 2 and m = 3. Moreover, in this example, the graphs F\Si
are pairwise non-isomorphic. This fact will be further discussed later in this section.

In general, given a graph G and two vertices u, v ∈ G, if G\u ∼= G\v, and u and v
are not in the same orbit, then u and v are a pair of pseudosimilar vertices. Any graph
G with a pair of pseudo-similar vertices can be used to construct F , where F consists
of two copies of G. In this case, c = 2 and m = 3 as well. Herndon and Ellzey gave a
construction for graphs with pairs of pseudo-similar vertices in 1975 [19]. Later, Godsil
and Kocay proved all graphs with a pair of pseudo-similar vertices can be constructed by
Herndon and Ellzey's construction [9]. Therefore, other than our example in the previous
paragraph, there exists a construction for even more graphs satisfying the conditions of F ,
with c = 2 and m = 3. Later in this section, we show our construction can create F with
greater values of c and m.

The reason why we want such a graph F is so that we could do 1-vertex extensions of
F with respect to each set Si, for 1 ≤ i ≤ m. In our construction, these sets would give
a total of m graphs that are 1-vertex extensions of F . By Theorem 5.1, these resulting
graphs are cospectral. Therefore, the existence of such F gives a quick way to construct
m cospectral graphs.

Moreover, the following theorem uses two distinct sets of such S ′is to create two cospec-
tral graph that are even larger, by applying the 1-vertex extension twice in a row.

5.2 Theorem. Let F be a graph with c components that are pairwise cospectral. For
some integer m ≥ 1, suppose we have two distinct sets A1 = {S1

1 , S
1
2 , . . . , S

1
m} and A2 =

{S2
1 , S

2
2 , . . . , S

2
m}, both containing m sets of pairwise cospectral vertices from F , such that

for all 1 ≤ i ≤ m, each S1
i or S2

i contains exactly one vertex from each component of F .

For 1 ≤ i ≤ m and j = 1, 2, let F j
i be the 1-vertex extension of F with respect to Sji ,

with the added vertex being vji . Let Hj be the 1-vertex extension of
⋃m
i=1 F

j
i with respect to

vj1, . . . , v
j
m, with the added vertex being rj. Then H1 and H2 are cospectral.

Proof. We prove this result by induction on m.

When m = 1, let e1 be the only edge r1 is incident to, and let e2 be the only edge r2

is incident to. Then v1
1 and v2

1 are the other end-vertices of e1 and e2, respectively. Figure
5.6 gives a demonstration of the resulting graphs H1 and H2 for the base case.

Note that by Theorem 5.1,

φ(H1\e1) = φ(H2\e2),
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r1

S1
1

F

e1

v1
1

. . .

r2

S1
2

F

e2

v1
2

Figure 5.6: An example demonstrating H1 and H2 constructed during the base case in the
proof of Lemma 5.2

and by construction,
φ(H1\{r1, v

1
1}) = φ(H2\{r2, v

2
1}).

Since e1 and e2 are cut-edges in their corresponding graphs, the edge-deletion recurrence
for the characteristic polynomial gives φ(H1) = φ(H2).

Now suppose the lemma holds when m = n− 1 for some n ≥ 1. We consider the case
where m = n. Let e1 and e2 be edges that connect r1 and r2 to v1

1 and v2
1, respectively.

Figure 5.7 gives a demonstration of the resulting graphs H1 and H2 in the induction step.

Note that by the induction hypothesis and Theorem 5.1,

φ(H1\e1) = φ(H2\e2),

and by the construction,

φ(H1\{r1, v
1
1}) = φ(H2\{r2, v

2
1}).

Then once again Lemma 2.7 (b) gives φ(H1) = φ(H2).

In the lemma above, note that even though A1 and A2 are distinct, they are not
necessarily disjoint. Let us consider the graph in Figure 5.2 as F again. We set A1 =
{{a1, b2}, {a1, a2}} and A2 = {{a1, b2}, {b1, b2}}. Applying the construction in Theorem
5.2, we obtain the two graphs in Figure 5.8.
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. . .

Figure 5.7: An example demonstrating H1 and H2 constructed during the inductive step
in the proof of Lemma 5.2
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a1 b2 a1 a2

a1 b2 b1 b2

Figure 5.8: A pair of cospectral graphs constructed using Theorem 5.2
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Meanwhile, if A1 = {{a1, b2}} and A2 = {{b1, a2}}, then the two graphs resulting from
the construction in Theorem 5.2 would be the same. Just like the previous example, the
original graph L that serves as the components of F is still Schwenk's tree in Figure 2.2. It
is important to recognize these components (copies of L) are indistinguishable, so the sets
A1 = {{a1, b2}} and A2 = {{b1, a2}} would result in isomorphic graphs. In this example,
m = 1 and the underlying graph F has two components, each with two cospectral vertices.
In this case, our construction gives at most three cospectral graphs, using the sets {a1, a2},
{a1, b2}, and {b1, b2}. This is the same as the number of ways of picking two balls from
a bag with two labeled balls with replacement happening each time before the picking
happens. We will revisit this idea after the discussion in the next section, which is about
constructing cospectral vertices.

5.3 1-Vertex Extension Construction for Cospectral Ver-

tices

In this section, we provide a construction for connected graphs with an arbitrarily large
number of pairwise cospectral vertices using Theorem 5.1 and Theorem 5.2. The proof for
the construction has two steps. First, we argue that if a graph F satis�es the conditions
discussed in the last section, then it can be used to construct a connected graph with an
arbitrarily large number of pairwise cospectral vertices. We give an example and some ways
to construct the desired F to show existence of such graphs. Second, we show that taking
the 1-sum of the constructed graph and some other graph would not alter the pairwise
cospectrality of the cospectral vertices in F .

To start, we show that by applying the 1-vertex extension twice in a row on a graph
F with some cospectral vertices and satisfying some additional conditions, a graph with
potentially more cospectral vertices can be constructed.

5.3 Theorem. Let F be a graph with c components that are pairwise cospectral. Suppose
there exists distinct sets S1, S2, . . . , Sm ⊆ V (F ) of pairwise cospectral vertices for some
integer m ≥ 1, such that for all 1 ≤ i ≤ m, each Si contains exactly one vertex from each
component of F .

For 1 ≤ i ≤ m, let Fi be the 1-vertex extension of F with respect to Si, with the added
vertex being vi. Let G be the 1-vertex extension of

⋃m
i=i Fi with respect to v1, . . . , vm, with

the added vertex being r. Then

(a)
⋃m
i=1 N(vm)\r is a set of pairwise cospectral vertices in G; and
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r

S1

F

F1

v1

. . .Sm

F

Fm

vm

. . .

⋃m
i=1N(vm)\r

Figure 5.9: A demonstration of the graph constructed in Theorem 5.3

(b)
⋃m
i=1N(vm)\r is a set of pairwise cospectral vertices in G\r.

Proof. Let u1, u2 ∈
⋃m
i=1 N(vm)\r. The graph constructed using the process described in

Theorem 5.3 is shown in Figure 5.9.

(a) We �rst show that φ(G\u1) = φ(G\u2).

Let 1 ≤ i1, i2 ≤ m such that vi1 is a neighbor of u1 and vi2 is a neighbor of u2. Note
it is possible for i1 = i2. Use e1, e2 to denote the edges between vi1 and r or vi2 and r,
respectively. Figure 5.10 gives a visual demonstration of this, assuming i1 6= i2.

We �rst compare φ(G\{u1, vi1 , r}) to φ(G\{u2, vi2 , r}). For j = 1, 2, observe that

G\{uj, vij , r} =

 m⋃
`=1
` 6=ij

F`

 ∪ (Fij\{vij , uj}).

Since u1 and u2 originally came from cospectral vertices in F , φ(Fi1\{vi1 , u1}) =
φ(Fi2\{vi2 , u2}). Moreover, by Theorem 5.1, the graphs F1, . . . , Fm are pairwise cospec-
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r
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F
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F
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vi2
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Figure 5.10: A demonstration of the choices of u1 and u2, assuming i1 6= i2

tral, so φ
(⋃m

`=1
6̀=i1

F`

)
= φ

(⋃m
`=1
6̀=i2

F`

)
. Therefore,

φ(G\{u1, vi1 , r}) = φ(G\{u2, vi2 , r}).

Now we compare φ((G\u1)\e1) with φ((G\u2)\e2). For j = 1, 2, use Cj to represent
the component of G\vij containing the vertex uj, then

(G\ui)\ei = (G\Fij) ∪ (Fij\Cj) ∪ (Cj\uj).

As discussed above, φ(Fi1\{vi1 , u1}) = φ(Fi2\{vi2 , u2}). Meanwhile, Theorem 5.1 im-
plies φ(Fi1\C1) = φ(Fi2\C2). Then φ(G\Fi1) = φ(G\Fi2) is a result of Theorem 5.2.
Therefore,

φ((G\u1)\e1) = φ((G\u2)\e2).

By Lemma 2.7 (b), the edge-deletion recurrence for the characteristic polynomial,
since φ(G\{u1, vi1 , r}) = φ(G\{u2, vi2 , r}) and φ((G\u1)\e1) = φ((G\u2)\e2), we have
φ(G\u1) = φ(G\u2) after adding the edge e1 and e2 to φ((G\u1)\e1) and φ((G\u2)\e2)
respectively.
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(b) To see u1 and u2 are cospectral vertices in G\r, observe that, for j = 1, 2, we have

G\{uj, r} =

 m⋃
`=1
` 6=i1

F`

 ∪ (Fij\uj) =

 m⋃
`=1
`6=i1

F`

 ∪ (Fij\Cj) ∪ (Fij\{vij , uj}).

In Part (a), we have already proven φ

(⋃m
`=1
` 6=i1

F`

)
= φ

(⋃m
`=1
`6=i2

F`

)
, φ(Fi1\C1) =

φ(Fi2\C2), and φ(Fi1\{vi1 , u1}) = φ(Fi2\{vi2 , u2}). Therefore u1 and u2 are cospec-
tral vertices in G\r.

Theorem 5.3 gives us a way to construct a connected graph with cospectral vertices
using a disconnected graph with cospectral vertices. Moreover, if the graphs Fi are pairwise
non-isomorphic for 1 ≤ i ≤ m, and u1, u2 ∈ ∪mi=1N(vm)\v do not have a common neighbor,
then u1 and u2 would not be similar vertices in G.

As an example, we consider Figure 5.2 as F again, where each of its components is a
copy of L shown in Figure 2.2. As discussed earlier in this section, when c = 2, we can get
three sets of two vertices S1, S2, and S3 such that the resulting F1, F2, and F3 are pairwise
non-isomorphic. Therefore, our extension would generate a connected graph as shown in
Figure 5.11, which has six cospectral vertices lying in four distinct orbits. In general, we
can treat the sets Si as distinct multisets of cospectral vertices in the graphs F . Then if
there exists a connected graph G with k non-similar cospectral vertices, for an arbitrary
positive integer value c ≥ 2 we can construct a connected graph with c

(
k+c−1
c

)
cospectral

vertices, where at least
(
k+c−1
c

)
of them being pairwise non-similar.

This gives us a method to construct connected graphs with an arbitrarily large number
of cospectral vertices, which is our next result. Moreover, since this construction does not
create cycles in the graph, and there exists a tree (Schwenk's tree) with a pair of non-
similar cospectral vertices, we can say that for any integer k ≥ 2, there exists a tree with
k cospectral vertices.

5.4 Corollary. For any k ≥ 2 there exists a connected graph with k cospectral vertices
that are pairwise non-similar.

Proof. Figure 5.11 is a graph with four cospectral vertices that are pairwise non-similar.
Therefore, the statement is certainly true for k = 2, 3 and 4.

We prove the rest of the statement by induction. Assume the statement holds for some
k = n for some n ≥ 4, we prove the statement holds for k = n + 1. Take the c copies of
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L L L L L L

a1 a2 a1 b2 b1 b2F1 F2 F3

Figure 5.11: A graph obtained by applying our construction in Theorem 5.3 to the graph
shown in Figure 5.2

the connected graph with n cospectral vertices that are pairwise non-similar as F , then F
contains at least cn cospectral vertices. If we are to pick sets containing exactly one vertex
from each of the c components of F , where that vertex is one of the n cospectral vertices
in that component, there are at most

(
n+c−1

c

)
choices. We use these choices as the sets

S1, . . . , Sm in the statement of Theorem 5.3, so that m =
(
n+c−1

c

)
.

By the construction in Theorem 5.3, we can obtain a connected graph with at least(
cn+c−1

c

)
cospectral vertices that are pairwise non-similar. Since c = 2 and n ≥ 4,(

2n+ 2− 1

2

)(
n+ 1

2

)
≥ n+ 1.

Therefore, the construction in Theorem 5.3 gives a graph with a least n + 1 cospectral
vertices that are pairwise non-similar.

Therefore, Theorem 5.3 is powerful because it gives a way to construct connected graphs
with an arbitrarily large number of cospectral vertices that are pairwise non-similar. Note
that even though the components of the graph F has been isomorphic in all of the examples
we have shown, they do not need to be isomorphic for the construction in the previous
section and this section to work.

Since the construction in Theorem 5.3 does not introduce any additional cycles to the
graph, if F is a forest, then the resulting graph would be a tree. There exists a forest with
at least two cospectral and non-similar vertices, so the corollary above implies there exists
a tree with k cospectral vertices that are pairwise non-similar, for any k ≥ 2. In particular,
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suppose a rooted tree L with k cospectral vertices that are non-similar is constructed using
Theorem 5.3, such that the vertex r, the vertex added for the last 1-vertex extension in the
construction, is the root of L. Then almost every tree contains the rooted tree L as a limb
[32]. However, would the cospectral vertices in L still be cospectral in the trees containing
L as a limb? The following theorem gives a positive answer to this question.

5.5 Theorem. Let G be a graph. For any integer k ≥ 2, suppose L is a graph with k
cospectral vertices a1, a2, . . ., ak. Moreover, assume there exists a vertex r ∈ L such that
r 6∈ {a1, a2, . . . , ak}, and the vertices a1, a2, . . ., ak are still cospectral vertices in L\r. Let
G′ be the 1-sum of G and L with respect to an arbitrary vertex in G and r. Then the
vertices a1, a2, . . ., ak are cospectral in G′.

Proof. For any 1 ≤ i ≤ k, by Lemma 2.8, we get

φ(G′\ai) = φ(G)φ(L\{ai, r}) + φ(G\v)φ(L\ai)− xφ(G\v)φ(L\{ai, r}).

Given any 1 ≤ j ≤ k, our assumptions guarantee that

φ(L\ai) = φ(L\aj)

and
φ(L\{ai, r}) = φ(L\{aj, r}),

so we get
φ(G′\ai) = φ(G′\aj).

In other words, a1, a2, . . . , ak are cospectral vertices in G′.

Then we obtain the following result immediately.

5.6 Theorem. For any k ≥ 2, almost every tree has k cospectral vertices that are pairwise
non-similar.

Theorem 5.5 implies that we could take the 1-sum of a connected graph with an ar-
bitrarily large number of cospectral vertices resulting from the construction in Theorem
5.3 and any general graph and obtain a larger connected graph with an arbitrarily large
number of cospectral vertices. However, this construction has its limitations, since it still
results in a cut-vertex, while most graphs do not have a cut-vertex. Therefore, our con-
struction does not give any indication of whether almost every graph is cospectral with
another graph.
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This construction would also work for comatching graphs. Suppose a graph G has
a pair of comatching vertices a and b. Recall that the matching polynomial and the
characteristic polynomial coincide for forests. By the 1-sum formula, for any other graph
H and v ∈ V (H), we have Ga·Hv is comatching with Gb·Hv. Since our construction
gives graphs with an arbitrarily large number of comatching vertices, along with the 1-sum
formula, this gives us in�nite sets of arbitrarily large sets of comatching graphs as well.

In Section 4.4, we proved our de�nition of weighted characteristic polynomial preserved
a lot of properties of the characteristic polynomial for unweighted graphs. Consequently,
our construction for cospectral vertices in graphs applies to weighted graphs as well: given
weighted trees or graphs as input, satisfying the hypotheses as before but with weighted
cospectrality in place of cospectrality, each time a 1-vertex extension is used in the construc-
tion simply assign weight 1 to the new vertex. In particular then we can build weighted
graphs L with k weighted cospectral vertices satisfying the conditions for Theorem 5.5.
Then let G be a weighted graph and v ∈ V (G) with any positive integer weight. By
Lemma 4.17, the k weighted cospectral vertices in L are still weighted cospectral in a
weighted graph obtained by identifying v in G and r in L, regardless of the speci�c weight
of the identi�ed vertex. Speci�cally, our results in this section apply to weighted trees as
well.

5.7 Theorem. For any k ≥ 2 almost every weighted tree has k pairwise weighted cospectral
vertices.

5.4 Application to Comatching Graphs

Recall that in Chapter 2, we discussed the connections between the matching polynomi-
als and the characteristic polynomial for graphs. In particular, they both satisfy similar
recurrences, such as the union formula, some version of the edge-deletion recurrence, and
the 1-sum formula. Notice that these are the only recurrences we used to prove most of
the results in the previous sections of this chapter. Consequently, the following analogous
results hold for the matching polynomial.

5.8 Theorem. Let G be a graph with a set of comatching vertices A = {a1, a2, · · · , ak},
with each component of G containing at most one vertex in A. Let S1 and S2 be non-empty
subsets of A such that |S1| = |S2|. For i = 1, 2, let Gi be the 1-vertex extension of G with
respect to Si. Then G1 and G2 are comatching.

5.9 Theorem. Let F be a graph with c components that are pairwise comatching. For
some integer m ≥ 1, suppose we have two distinct sets A1 = {S1

1 , S
1
2 , . . . , S

1
m} and A2 =
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{S2
1 , S

2
2 , . . . , S

2
m}, both containing m sets of pairwise comatching vertices from F , such that

for all 1 ≤ i ≤ m, each S1
i or S2

i contains exactly one vertex from each component of F .

For 1 ≤ i ≤ m and j = 1, 2, let F j
i be the 1-vertex extension of F with respect to Sji ,

with the added vertex being vji . Let Hj be the 1-vertex extension of
⋃m
i=1 F

j
i with respect to

vj1, . . . , v
j
m, with the added vertex being rj. Then H1 and H2 are comatching.

5.10 Theorem. Let F be a graph with c components that are pairwise comatching. Suppose
there exists distinct sets S1, S2, . . . , Sm ⊆ V (F ) of pairwise comatching vertices for some
integer m ≥ 1, such that for all 1 ≤ i ≤ m, each Si contains exactly one vertex from each
component of F .

For 1 ≤ i ≤ m, let Fi be the 1-vertex extension of F with respect to Si, with the added
vertex being vi. Let G be the 1-vertex extension of

⋃m
i=i Fi with respect to v1, . . . , vm, with

the added vertex being r. Then

(a)
⋃m
i=1 N(vm)\r is a set of pairwise comatching vertices in G; and

(b)
⋃m
i=1 N(vm)\r is a set of pairwise comatching vertices in G\r.

5.11 Theorem. For any k ≥ 2 there exists a connected graph with k comatching vertices
that are pairwise non-similar.

5.12 Theorem. Let G be a graph. For any integer k ≥ 2, suppose L is a graph with k
comatching vertices a1, a2, . . ., ak. Moreover, assume there exists a vertex r ∈ L such that
r 6∈ {a1, a2, . . . , ak}, and the vertices a1, a2, . . ., ak are still comatching vertices in L\r.
Let G′ be the 1-sum of G and L with respect to an arbitrary vertex in G and r. Then the
vertices a1, a2, . . ., ak are comatching G′.

5.13 Theorem. For any k ≥ 2, almost every tree has k comatching vertices that are
pairwise non-similar.

These results imply that we have a construction for connected graphs with an arbitrarily
large number of comatching vertices as well. In addition, note that the edge-deletion
recurrence only applies to the characteristic polynomial when the edge being deleted is a
cut-edge, while the edge-deletion recurrence applies to the matching polynomial regardless
of the choice of the edge. Consequently, we have the following result, which is a stronger
version of Theorem 5.8.

5.14 Theorem. Let G be a graph with a set of comatching vertices A = {a1, a2, · · · , ak}.
Let S1 and S2 be non-empty subsets of A such that |S1| = |S2|. For i = 1, 2, let Gi be the
1-vertex extension of G with respect to Si. Then G1 and G2 are comatching.
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Proof. We prove this theorem by induction on the size of S1 and S2. Suppose |S1| = |S2| = 1.
Let v be connected to ai and aj in G1 and G2, respectively. Then we have

µ(G1, x) = µ(G1\{eaiv}, x)− µ(G1\{ai, v})
= xµ(G, x)− µ(G\ai)
= µ(G2\{eajv})− µ(G\{aj})
= µ(G2, x),

where eaiv denotes the edge with ai and v being its endpoints.

Now assume the theorem statement holds for all |S1| = |S2| ≤ l − 1, where 1 < l ≤ k.
Suppose |S1| = |S2| = 1, ai ∈ S1, aj ∈ S1. Let S ′1 = S1\{ai} and S ′2 = S2\{aj}, and use
G′1, G

′
2 to denote the graphs constructed by the process in the theorem statement, using

the sets S ′1 and S ′2, respectively. By the induction hypothesis, µ(G′1, x) = µ(G′2, x).

Note that

µ(G1, x) = µ(G′1, x)− µ(G1\{ai, v}, x)
= µ(G′1, x)− µ(G\{ai}, x)
= µ(G′2, x)− µ(G\{aj}, x)
= µ(G2, x).

Hence the theorem statement is proven.

Theorem 5.14 is a strong result that can be applied to construct large sets of comatching
graphs. For example, all vertices in a cycles are pairwise comatching. Therefore, given a
cycle C, any 1-vertex extensions of C with respect to a set of vertices S with a �xed size
m are comatching graphs, regardless of the choice of elements in S. Figure 5.12 gives an
example of a pair of comatching graphs using this construction.

In general, for a vertex transitive graph G, all vertices of G can be put in the set A
de�ned in Theorem 5.14. Therefore, this result gives a construction of an in�nite number
of large sets containing pairwise comatching graphs without a cut-vertex. Technically,
the connectivity of the resulting comatching graphs could be arbitrarily high, since we
could apply Theorem 5.14 to complete graphs. This provides yet another construction for
comatching graphs.
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Figure 5.12: A pair of comatching graphs constructed using Theorem 5.14
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Chapter 6

The 2-Sum Construction of Comatching

Graphs

In this chapter, we consider another construction for pairs of comatching graphs, using
2-sums. To do so, we �rst provide a de�nition of the matching polynomial generalized to
multigraphs. We prove that the basic recurrences for the matching polynomial still hold for
the generalized de�nition. Then, we derive an edge contraction recurrence for the matching
polynomial, and use this recurrence to build our 2-sum construction for comatching vertices
and comatching graphs.

6.1 The Generalized Matching Polynomial

Let G be a multigraph with n vertices. Analogous to the case for simple graphs, we de�ne
a matching M in G as a set of pairwise disjoint edges. Note that when G is a graph with
loops, a matching M could include a loop as long as the loop does not share its end-vertex
with any other edge in M . A vertex v ∈ V (G) is saturated by M if v is an end-vertex of
an edge in M . Note that a loop can be disjoint from other edges, so by our de�nition of
matching in Chapter 1, a matching could contain loops. The loop order of M , denoted as
β(M), is the number of edges in M that are loops.

Recall that, when de�ning the matching polynomial for simple graphs, we used p(G, k)
to denote the number of matchings in G with size k, and consequently we de�ned the
matching polynomial as

µ(G, x) =
∑
i

(−1)ip(G, i)xn−2i.
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In 1977, Gutman et al. and Trinajisti¢ de�ned the matching polynomial for multigraphs
in [15] and [33]. We adapt their de�nition in our discussion: Let M(G) be the set of
all matchings in the multigraph G. Recall that in Chapter 1, we de�ned the matching
polynomial of a multigraph G as

µ(G;x, h) =
∑

M∈M(G)

(−1)|M |−β(M)hβ(M)xn−2|M |+β(M).

Observe that the h variable counts the number of loops in M , while the x variable
counts the number of vertices that are not saturated by M . Note the empty set of edges
is a matching, so the leading term of µ(G;x, h) is always xn. Moreover, for any bivariate
polynomial P (x, y), use 〈xiyj, P (x, y)〉 to denote the coe�cient of xiyj in P (x, y). Then
the number of edges in G is

〈hxn−1, µ(G;x, h)〉+ 〈xn−2, µ(G;x, h)〉.

The �rst term of the equation above counts the number of loops in G while the second
term counts the number of non-loop edges in G.

Also note that if h = 0, which implies the graph does not have any loops, then the
generalized matching polynomial for multigraphs is the same as the matching polynomial
for simple graphs.

Before considering the generalized matching polynomial of a given 2-sum, we show that
it satis�es similar recurrences as the matching polynomial for simple graphs does, starting
with the union formula.

6.1 Lemma. Let G and H be multigraphs, then

µ(G ∪H;x, h) = µ(G;x, h)µ(H;x, h).

Proof. Given a matching M ∈ M(G), M consists of a unique matching M1 ∈ G with
β(M1) = a and a unique matching M2 ∈ H with β(M2) = β(M)− a. Then we have

〈hβ(M)x|G∪H|−2|M |+β(M), µ(G ∪H;x, h)〉

=

β(M)∑
a=0

(〈hax|G|−2|M1|+a, µ(G;x, h)〉〈hβ(M)−ax|H|−2|M2|+β(M)−a, µ(H;x, h)〉).

Then µ(G ∪H;x, h) = µ(G;x, h)µ(H;x, h).
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Similarly, the generalized matching polynomial satis�es the vertex-deletion recurrence.

6.2 Lemma. Let G be a multigraph and let u be a vertex of G. Use ` to denote the number
of loops at u, then

µ(G;x, h) = xµ(G\u;x, h) + `hµ(G\u;x, h)−
∑
i∼u

µ(G\{u, i};x, h).

Proof. Let S be the set of matchings in G that contain exactly β(M) = a loops and
|M | − β(M) = b non-loops, then

|S| = (−1)b〈haxn−a−2b, µ(G;x, h)〉.

Meanwhile, given any matching M in S, then the vertex u is either not saturated by M ,
or saturated by M . In the latter case, u could be saturated by a loop in M , or saturated
by a non-loop in M . Therefore, we have the following three cases.

Case 1: If u is not saturated by M , then M induces a matching in G\u, and there are
a total of

(−1)b〈hax(n−1)−a−2b, µ(G\u;x, h)〉
such matchings in S.

Case 2: If u is saturated by a loop, the matching M would induce a matching in G\u
as well, and there are a total of

(−1)b`〈ha−1x(n−1)−(a−1)−2b, µ(G\u;x, h)〉

such matchings in S.

Case 3: If the edge in M incident to u connects u to another vertex i ∈ G, then M\ui
induces a matching in G\{u, i}, and there are a total of

(−1)b−1
∑
i∼u

〈hax(n−2)−a−2(b−1), µ(G\{u, i};x, h)〉

such matchings in S.

Therefore,

(−1)b〈haxn−a−2b, µ(G;x, h)〉 = (−1)b〈hax(n−1)−a−2b, µ(G\u;x, h)〉
+ (−1)b`〈ha−1x(n−1)−(a−1)−2b, µ(G\u;x, h)〉

+ (−1)b−1
∑
i∼u

〈hax(n−2)−a−2(b−1), µ(G\{u, i};x, h)〉.
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Summing the equation above over all possible values of a and b, we get

µ(G;x, h) = xµ(G\u;x, h) + `hµ(G\u;x, h)−
∑
i∼u

µ(G\{u, i};x, h).

Consequently, we obtain the following corollary.

6.3 Corollary. Let G be a graph and suppose u, v ∈ V (G) are comatching vertices in G.
Then the number of loops at u is the same as that at v.

The edge-deletion recurrence is slightly di�erent for the generalized matching polyno-
mial, because a multigraph could have two types of edges: loops and non-loops. The
recurrences for both of these two cases are derived.

6.4 Lemma. Let G be a multigraph and suppose e is a loop in G at some vertex u, then

µ(G;x, h) = µ(G\e;x, h) + hµ(G\u;x, h).

Proof. Let S be the set of matchings in G that contain exactly β(M) = a loops and
|M | − β(M) = b non-loops, then

|S| = (−1)b〈haxn−a−2b, µ(G;x, h)〉.

For any M ∈ S, if e is in M , then M\e is a matching in G\u. There are

(−1)b〈ha−1x(n−1)−(a−1)−2b, µ(G\u;x, h)〉

such matchings in S.

If e is not in M , then M is a matching in G\e as well, and there are

(−1)b〈haxn−a−2b, µ(G\e)〉

such matchings in S.

Thus

(−1)b〈haxn−a−2b, µ(G;x, h)〉 = (−1)b〈ha−1x(n−1)−(a−1)−2b, µ(G\u;x, h)〉
+ (−1)b〈haxn−a−2b, µ(G\e;x, h)〉.

Summing this equation over all possible values of a and b, we get

µ(G;x, h) = µ(G\e;x, h) + hµ(G\u;x, h),

if e is a loop on the vertex u ∈ G.
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6.5 Lemma. Let G be a multigraph and suppose e = {u, v} is an edge in G that is not a
loop, then

µ(G;x, h) = µ(G\e;x, h)− µ(G\{u, v};x, h).

Proof. Let S be the set of matchings in G that contain exactly β(M) = a loops and
|M | − β(M) = b non-loops, then

|S| = (−1)b〈haxn−a−2b, µ(G;x, h)〉.

For any matching M ∈ S, if e is not in M , then M\e forms a matching in G\e. There
are

(−1)b〈haxn−a−2b, µ(G\e;x, h)〉

such matchings in S.

If e is in M , then M\e forms a matching in G\{u, v}. There are

(−1)b−1〈haxn−a−2(b−1), µ(G\{u, v};x, h)〉

such matchings in S.

This analysis implies

(−1)b〈haxn−a−2b, µ(G;x, h)〉 = (−1)b〈haxn−a−2b, µ(G\e;x, h)〉
+ (−1)b−1〈haxn−a−2(b−1), µ(G\{u, v};x, h)〉.

Summing this equation over all possible values of a and b, we get

µ(G;x, h) = µ(G\e;x, h)− µ(G\{u, v};x, h)

if e = uv is an edge of G that is not a loop.

Last but not least, we prove the derivative formula for the generalized matching poly-
nomial.

6.6 Lemma. Let G be a multigraph with at least one vertex, then

∂

∂x
µ(G;x, h) =

∑
i∈V (G)

µ(G\i;x, h).
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Proof. Let S be the set of matchings in G that contain exactly β(M) = a loops and
|M | − β(M) = b non-loops, then

|S| = (−1)b〈haxn−a−2b, µ(G;x, h)〉.

We may assume a+ 2b < n, then note that

〈haxn−a−2b−1,
∂

∂x
µ(G;x, h)〉) = (−1)b(n− a− 2b)|S|.

Observe that (n− a− 2b)|S| counts the number of ways of �rst choosing a matching in S,
and then choose a vertex i that is not saturated by this matching. Alternatively, we could
pick the vertex i �rst, and then pick a matching with a loops and b non-loop edges in G\i.
Therefore,

〈haxn−a−2b−1,
∂

∂x
µ(G;x, h)〉 = (−1)b(n− a− 2b)|S| = 〈haxn−a−2b−1,

∑
i∈V (G)

µ(G\i;x, h)〉.

So we have
∂

∂x
µ(G;x, h) =

∑
i∈V (G)

µ(G\i;x, h).

We also observe that the 1-sum formula still holds for the generalized matching poly-
nomial, because its proof only requires the vertex-deletion recurrence.

6.7 Lemma. Let G1, G2 be multigraphs. Suppose G is the 1-sum of G1 and G2 with the
shared vertex being v. Then

µ(G;x, h) = µ(G1\v;x, h)µ(G2;x, h)+µ(G1;x, h)µ(G2\v;x, h)−xµ(G1\v;x, h)µ(G2\v;x, h).

Therefore, we can see that the generalized matching polynomial has a lot of properties
in common with the matching polynomial. For the rest of this chapter, we will use some
of these recurrences to work towards our 2-sum construction of comatching vertices and
comatching graphs.
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Figure 6.1: An edge contraction on a simple graph could result in a multigraph.

6.2 Edge-Contraction Recurrence

In this section, we discuss what happens to the matching polynomial of a graph G when
an edge e in G is contracted. Speci�cally, we provide an edge-contraction recurrence for
the matching polynomial. We use G/e to denote the graph formed by contracting the edge
e in G.

Even though we are discussing the matching polynomial in the context of multigraphs
in this chapter, this recurrence applies to simple graphs as well. However, it is necessary
to discuss multigraphs, because when an edge e = {u, v} in a simple graph G is contracted,
if u and v have a common neighbor w, then there would be two edges connecting w to the
new vertex uv formed due to the contraction. The simplest example of this is shown in
Figure 6.1. Since edge contraction of simple graphs could result in multigraphs, this must
be discussed in the context of multigraphs.

Below is the edge-contraction recurrence we derived.

6.8 Theorem. Let G be a multigraph and u, v ∈ V (G) such that there is an edge e between
u and v. Suppose there are a total of ` edges between vertices u and v, then

µ(G/e;x, h) = µ(G\u;x, h)+µ(G\v;x, h)−xµ(G\{u, v};x, h)+(`−1)h(µ(G\{u, v};x, h)).

Proof. Use w ∈ G/e to denote the new vertex formed by the two end vertices of e during the
contraction of e. For each matching M in G, we consider the set of edges M ′ in G/e, such
thatM ′ contains all edges inM , where the edges with one of u and v as an end-vertex now
has w as that end-vertex instead, and edges between u and v (other than the contracted
edge) become a loop on w. In other words, each matching in G corresponds to such a
set of edges M ′ in G/e (not necessarily a matching), although this correspondence is not
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necessarily one-to-one since a set of edges in G/e could correspond to multiple matchings
that contain e in G. We consider when M ′ would be a matching in G/e.

For every matching M in G/e, there are two cases: either both u and v are saturated
by e, or at most one of u and v is saturated. In the �rst case, the corresponding M ′ is a
matching in G/e only if there exists an edge e′ 6= e inM that connects u to v. In the second
case, the corresponding set M ′ is a matching in G/e. Moreover, note that all matchings in
G/e can be obtained by this correspondence from at least one matching in G.

When both u and v are saturated by the matching M , observe that the edge e′ in M
that connects u to v would become a loop on w in G/e. Since there are a total of ` edges
between u and v, there are `− 1 choices for e′ in G/e. Any matching in G/e that include
such a loop is a matching in H\w, which is the same multigraph as G\{u, v}. Therefore,
these matchings can be counted as (`− 1)h(µ(G\{u, v};x, h)).

Now we do the counting for the second case. In G, the matchings with u saturated can
be counted by

µ(G;x, h)− xµ(G\u;x, h),
the matchings with v saturated can be counted by

µ(G;x, h)− xµ(G\v;x, h),

and the matchings with at least one of u and v saturated can be counted by

µ(G;x, h)− x2µ(G\{u, v};x, h).

By the inclusion-exclusion principle, the matchings with both u and v saturated in G can
be counted by

µ(G;x, h)−xµ(G\u;x, h)+µ(G;x, h)−xµ(G\v;x, h)−(µ(G;x, h)−x2µ(G\{u, v};x, h))
= µ(G;x, h)− xµ(G\u;x, h)− xµ(G\v;x, h) + x2µ(G\{u, v};x, h).

Then the matchings in G where u and v are not both saturated can be counted by

µ(G;x, h)− (µ(G;x, h)− xµ(G\u;x, h)− xµ(G\v;x, h) + x2µ(G\{u, v};x, h))
= xµ(G\u;x, h) + xµ(G\v;x, h)− x2µ(G\{u, v};x, h).

Consequently, the matching polynomial of G/e is

µ(G/e;x, h)

=
1

x
(xµ(G\u;x, h) + xµ(G\v;x, h)− x2µ(G\{u, v};x, h)) + (`− 1)h(µ(G\{u, v};x, h))

= µ(G\u;x, h) + µ(G\v;x, h)− xµ(G\{u, v};x, h) + (`− 1)h(µ(G\{u, v};x, h)).
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Moreover, using this edge-contraction recurrence, we easily obtain the following vertex-
identi�cation recurrence.

6.9 Corollary. Let H be a multigraph such that u and v are non-adjacent vertices in H.
Let G be the multigraph obtained by identifying u and v in H. Then

µ(G;x, h) = µ(H\u;x, h) + µ(H\v;x, h)− xµ(H\{u, v};x, h).

Proof. Add an edge between u and v, then apply Theorem 6.8.

Note that when u and v are in di�erent components in G, Corollary 6.9 gives the 1-sum
formula, as expected. In the next section, we use the vertex-identi�cation recurrence in
our 2-sum construction for comatching vertices and comatching graphs.

6.3 Comatching Constructions by 2-Sum

In this section, we give a 2-sum construction for comatching graphs. To begin, we show
that, if we have a pair of graphs each with a pair of comatching vertices, then by taking a
2-sum with respect to the pair of comatching vertices, we would create a new graph with
a pair of comatching vertices.

6.10 Theorem. Let G be the 2-sum of the multigraphs G1 and G2 with V (G1)∩ V (G2) =
{u, v}. Suppose u and v are comatching vertices in both G1 and G2. Then u and v are
comatching vertices in G.

Proof. Observe that G\u is the 1-sum of G1\u and G2\u with respect to v. Then by the
1-sum formula,

µ(G\u;x, h) = µ(G1\u;x, h)µ(G2\{u, v};x, h) + µ(G1\{u, v};x, h)µ(G2\u;x, h)
− µ(G1\{u, v};x, h)µ(G2\{u, v};x, h).

Moreover, since u and v are comatching vertices in G1 and G2, by de�nition we have
µ(G1\u;x, h) = µ(G1\v;x, h) and µ(G2\u;x, h) = µ(G2\v;x, h), so
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Figure 6.2: The 2-sum construction for cospectral vertices

µ(G\u;x, h) = µ(G1\v;x, h)µ(G2\{u, v};x, h) + µ(G1\{u, v};x, h)µ(G2\v;x, h)
− µ(G1\{u, v};x, h)µ(G2\{u, v};x, h) = µ(G\v;x, h).

Figure 6.2 gives an example of the construction in Theorem 6.10. The original two
graphs each have a pair of comatching vertices a and b. By taking their 2-sum with respect
to a and b, we constructed a bigger graph where a and b are still comatching vertices.

Next, we show that if the two vertices being summed in the 2-sum are switched in one
of the subgraphs, the resulting 2-sum is comatching with the original 2-sum.

6.11 Theorem. Let G1 and G2 be multigraphs with V (G1)∩ V (G2) = {u, v}. Let G′2 be a
graph isomorphic to G2, such that

V (G′2) = V (G2),
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and

E(G′2) =


E(G2)\

⋃
i∼u
in G2

{i, u}

 \ ⋃
j∼v
in G2

{j, v}

⋃
 ⋃

i∼u
in G2

{i, v}

⋃
 ⋃

j∼v
in G2

{j, u}

 .

Then the 2-sum of G1 and G2 and the 2-sum of G1 and G′2 have the same matching
polynomial if and only if u and v are comatching vertices in at least one of G1 and G2.

Proof. Let G be the 2-sum of G1 and G2 and G′ be the 2-sum of G1 and G′2. Let H be the
1-sum of G1 and G2 with respect to the vertex u, such that we refer to the vertex v in G1

and G2 as v1 and v2 in H, respectively.

Apply Lemma 6.9 to H, and we see that

µ(G;x, h) = µ(H\v1;x, h) + µ(H\v2;x, h)− xµ(H\{v1, v2};x, h)
= [µ(G1\v;x, h)µ(G2\u;x, h) + µ(G1\{u, v};x, h)µ(G2;x, h)

− xµ(G1\{u, v};x, h)µ(G2\u;x, h)]
+ [µ(G1;x, h)µ(G2\{u, v};x, h) + µ(G1\u);x, hµ(G2\v;x, h)
− xµ(G1\u;x, h)µ(G2\{u, v};x, h)]
− x[µ(G1\v;x, h)µ(G2\{u, v};x, h) + µ(G1\{u, v};x, h)µ(G2\v;x, h)
− xµ(G1\{u, v};x, h)µ(G2\{u, v};x, h)].

Similarly, the matching polynomial of G′ is

µ(G′;x, h) = [µ(G1\v;x, h)µ(G2\v;x, h) + µ(G1\{u, v};x, h)µ(G2;x, h)

− xµ(G1\{u, v};x, h)µ(G2\v;x, h)]
+ [µ(G1;x, h)µ(G2\{u, v};x, h) + µ(G1\u;x, h)µ(G2\u;x, h)
− xµ(G1\u;x, h)µ(G2\{u, v};x, h)]
− x[µ(G1\v;x, h)µ(G2\{u, v};x, h) + µ(G1\{u, v};x, h)µ(G2\u;x, h)
− xµ(G1\{u, v};x, h)µ(G2\{u, v};x, h)].
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a

b

a

b

Figure 6.3: These two graphs are comatching.

Taking the di�erence of µ(G;x, h) and µ(G′;x, h), we get

µ(G;x, h)− µ(G′;x, h)
= µ(G1\v;x, h)[µ(G2\u;x, h)
− µ(G2\v;x, h)]− xµ(G1\{u, v};x, h)[µ(G2\u;x, h)− µ(G2\v;x, h)]
+ µ(G1\u;x, h)[µ(G2\v;x, h)− µ(G2\u;x, h)]
− xµ(G1\{u, v};x, h)[µ(G2\v;x, h)− µ(G2\u;x, h)]

= [µ(G1\v;x, h)− µ(G\u;x, h)][µ(G2\u;x, h)− µ(G2\v;x, h)].

Thus µ(G;x, h) − µ(G′;x, h) = 0 if and only if µ(G1\v;x, h) − µ(G1\u;x, h) = 0 or
µ(G2\u;x, h)− µ(G2\v;x, h) = 0.

Therefore, if the two shared vertices u and v are switched in one of the subgraphs
forming the 2-sum, the resulting 2-sum would be comatching to the original 2-sum. In
other words, we have found a construction for pairs of comatching graphs using 2-sums.

An example of this construction is shown in Figure 6.3. The two underlying subgraphs
are the same as the two underlying subgraphs in Figure 6.2, with a and b being comatching
vertices in both of these subgraphs. There are two ways of forming the 2-sum using the
pair of comatching vertices in these two subgraphs. The two resulting 2-sums are not
isomorphic because the pairs of comatching vertices are not similar in either of the two
subgraphs. These two 2-sums are comatching.

Observe that this construction could be used along with Theorem 5.3, which is one of
our main results in Chapter 5 giving a construction for connected graphs with an arbitrarily
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large number of comatching vertices that are not pairwise similar. With two of such graphs
constructed, we could pick any combination of pairs of comatching vertices from each of
them and take the 2-sum accordingly. This gives a construction for arbitrarily large sets
of comatching graphs.

The idea used in Theorem 6.11 can be applied to compute the matching polynomial
of a k-sum recursively. In particular, suppose G is a k-sum of G1 and G2 with respect
to the set {v1, v2, · · · , vk}. To compute the matching polynomial of G, we �rst consider
the graphs H, a (k − 1)-sum of G1 and G2 with respect to the set {v1, v2, · · · , vk−1}. We
refer to the vertices in G1 and G2 corresponding to vk as u1 and u2, respectively. If the
matching polynomial of H, H\u1, H\u2, and H\{u1, u2} are known, then we could apply
the vertex-identi�cation recurrence to u1 and u2 and obtain the matching polynomial of G.
Observe thatH, H\u1, H\u2, andH\{u1, u2} are (k−1)-sums of known graphs. Therefore,
if we have the matching polynomials of some speci�c (k − 1)-sums, we can compute the
matching polynomial of a k-sum accordingly. This implies that the matching polynomial
of a k-sum can be computed recursively.

One might ask, could we use this to extend the 2-sum construction for comatching
graphs to a k-sum construction for comatching graphs? The answer is no. To see why, let
us assume the set of vertices {v1, v2, · · · , vk} are pairwise comatching in both G1 and G2.
Suppose all the (k − 1)-sums H of G1 and G2, produced by summing all (k − 1)-subsets
{v1, v2, · · · , vk}, are pairwise comatching graphs. As we discussed, the matching polynomial
of G depends on H, H\u1, H\u2, and H\{u1, u2}. In particular, H\u1 can be considered
as the (k − 1)-sum of G1\u1 and G2. There is no guarantee that the vertices in the set
{v1, v2, · · · , vk−1} are still pairwise comatching inG1\u1. Therefore, the assumption for this
argument no longer holds if we were to apply this recursively. Consequently, this recursive
way to computing the matching polynomial of k-sums does not lead to a construction for
comatching graphs.

Even though we discussed the 2-sum construction for comatching vertices and comatch-
ing graphs in the context of multigraphs, we could still apply these constructions to simple
graphs. In fact, if we take the 2-sum of two simple graphs G1 and G2 with respect to the
vertex set {a, b}, then the resulting 2-sum is a simple graph as long as a and b are not
adjacent in at least one of G1 and G2. Understanding this is important in our exploration
of the proportion of graphs that are comatching to some other graphs, because this big
question can only be considered in the context of simple graphs. Therefore, with a small
restriction, our construction can be applied to simple graphs and it gives larger simple
graphs than the ones we start with.
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Chapter 7

Future Directions

In this chapter, we conclude our discussion of cospectral and comatching graphs and ver-
tices by pointing out several directions for future research.

7.1 Other Known Recurrences

Recall that we used a number of recurrences of the matching polynomial to obtain our
main constructions. We found the vertex-identi�cation recurrence, which was particularly
powerful in our discussion of 2-sums. In our research, we have also found the following
recurrences: The vertex-splitting recurrence and the edge-subdivision recurrence.

Figure 7.1 illustrates the vertex splitting operation by showing a graph G and a graph
H obtained from splitting the vertex v in G into vertices v1 and v2 in H.

7.1 Lemma. Let G be a connected graph with vertex v. Let H be the graph constructed
from splitting the vertex v into two vertices v1, v2, such that N(v1) ∪ N(v2) = N(v) and
N(v1) ∩N(v2) = ∅. v1 and v2 are not neighbors. Then

µ(H) =
∑

a∈N(v1)

∑
b∈N(v2)

µ(G\{v, a, b}) + xµ(G).

Proof. All matchings in G are still matchings in H, so they contribute the term

xµ(G)
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v

G

v1

v2

H

Figure 7.1: A graph G and a graph H obtained from splitting a vertex in G.

to the matching polynomial of H.

Any matching M in H that are not a matching in G must saturate both v1 and v2.
Then v, as well as two neighbors of v in G, one is a neighbor of v1 in H and the other a
neighbor of v2 in H, are not saturated by M\e in G. These matchings contribute∑

a∈N(v1)

∑
b∈N(v2)

µ(G\{v, a, b})

to the matching polynomial of H. Thus with these possibilities being disjoint we get

µ(H) =
∑

a∈N(v1)

∑
b∈N(v2)

µ(G\{v, a, b}) + xµ(G).

7.2 Lemma. Let G be a graph and e = uv be an edge in G. Let G′ be the graph obtained
from subdividing the edge e. Then

µ(G′) = xµ(G) + xµ(G\{u, v})− µ(G\{u})− µ(G\{v}).

Proof. Let eu and ev be the two edges in G′ that connect ve to u and v, respectively. Note
that any matching in G′ is formed by lifting matchings in G in exactly one of the following
three ways.

(a) A matching in G containing the edge e could form a matching in G′ by replacing e
with eu or ev. Such matchings in G are counted by µ(G) − µ(G\e) = −µ(G\{u, v}).
Accounting for the one additional vertex in G′, we get that these matchings contribute

−2µ(G\{u, v})

to µ(G′).
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(b) Consider a matching in G that does not contain e, and u and v are both saturated or
both unsaturated. These matchings still form matchings in G′, and they contribute

x(µ(G\e)− xµ(G\{u})− xµ(G\{v}) + 2x2µ(G\{u, v})

to µ(G′).

(c) The only matchings in G that have not been considered are the ones where exactly
one of u and v saturated. They can be lifted to matchings in G′ in two ways, because
they already form matchings in G, and one of the edges eu and ev can be added
to these matchings to obtain a proper matching in G′. These matchings contribute
xµ(G\{u}) + xµ(G\{v})− 2x2µ(G\{u, v}) to µ(G), so they contribute

(xµ(G\{u}) + xµ(G\{v})− 2x2µ(G\{u, v}))(x− 1

x
)

to µ(G′).

Summing the contributions of the three cases together, we obtain that

µ(G′) = xµ(G) + xµ(G\{u, v})− µ(G\{u})− µ(G\{v}).

Just like the other recurrences used in this thesis, the vertex-splitting recurrence and
the edge-subdivision recurrence are results that can be applied to obtain the matching
polynomial after a certain graph operation. The edge-subdivision recurrence is particularly
interesting because Yan and Yeh has a construction for comatching graphs using pairs of
d-regular comatching graphs and edge subdivisions [37]. My question is, could we use these
recurrences to create more constructions for comatching graphs?

7.2 Graphs Comatching with Their Complements

Other than �nding constructions for sets of comatching graphs, we also computed speci�c
examples of pairs of comatching graphs. In particular, we computed the matching poly-
nomial for all graphs over no more than nine vertices. For each n = 4 to 9, we partition
the set of graphs over n vertices to sets of comatching graphs. We give the percentage of
graphs with a comatching mate in Table 7.1. For n = 4− 9, the percentage of graphs with
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n 4 5 6 7 8 9
Number of graphs 11 34 156 1044 12346 274668
Number of graphs

with a
comatching

mate

2 16 100 884 11388 269125

Persentage of graphs
with a

comatching
mate

18% 47% 64% 85% 92% 98%

Table 7.1: For n = 4 to 9, we computed the percentage of graphs with a comatching mate.

n 4 5 6 7 8 9
Size of largest comatching sets 2 2 4 13 32 188

Number of largest sets 1 8 2 2 1 1

Table 7.2: For each of n = 4−9, we computed the size of largest sets of comatching graphs
over n vertices, and the number of largest sets.

a comatching mate increases as n increases. The size of largest sets of comatching graphs
for each of the n values are also shown in Table 7.2.

For any graph G, recall that Theorem 2.5 tells us the matching polynomial of G can be
determined by the matching polynomial of its complement. Moreover, if two graphs G1 and
G2 are comatching, then their complements G1 and G2 are comatching as well. Therefore,
if there exists a set of k graphs that are pairwise-comatching, then their complements form
a set of k pairwise comatching graphs as well. However, observe that in Table 7.2 there is
only one largest set of comatching graphs for n = 8 and n = 9. This implies that each graph
in these two sets is comatching to its complement, and therefore must have n(n−1)

4
edges.

There are only 10 self-complementary graphs over 8 vertices and 36 self-complementary
graphs over 9 vertices [22]. Therefore, most of the graphs in these largest comatching sets
are not self-complementary yet are comatching to their complements. On the other hand,
there are 1646 graphs over 8 vertices with 14 edges and 34040 graphs over 9 vertices with
18 edges [26], so the graphs in the largest comatching set(s) for n = 8 and n = 9 are only
a small proportion of graphs with n(n−1)

4
edges.

Based on this data, it would be interesting to further explore the following questions:
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• For any n ≥ 8 such that n ≡ 0 or 1 mod 4, is there always exactly 1 largest set of
pairwise comatching graphs, with n(n−1)

4
edges? Note that a graph could possibly

have same number of edges as its complement only if n ≡ 0 or 1 mod 4, which is why
we are considering only these n values.

• When is a non-self-complementary graph comatching with its complement?

• What is the proportion of graphs comatching with its complement out of all non-self-
complementary graphs with n vertices and n(n−1)

4
edges, for n ≡ 0 or 1 mod 4?

• For any n ≡ 0 or 1 mod 4, do proportions of graphs with n(n−1)
4

edges being in the
largest comatching set(s) increase or decrease as n approaches in�nity?

• Does this lead to a construction for comatching graphs?

7.3 1-Vertex Extensions and the Matching Coe�cient

Matrix

To construct comatching pairs of graphs, one method we introduced was through 1-vertex
extension, i.e. extending a graph by one vertex in two di�erent ways. In particular, for a
given graph G, suppose there exist two disjoint sets V1, V2 ∈ V (G) such that∑

i∈V1

µ(G\i) =
∑
i∈V2

µ(G\i).

Let G1 and G2 be 1-vertex extensions of G with respect to V1 and V2, respectively. We
can see that G1 and G2 are comatching by applying the vertex-deletion recurrence to their
matching polynomials. In other words, if the sets V1 and V2 exist, we could use 1-vertex
extensions of G to construct a pair of comatching graphs.

For a graph G with n vertices, its matching coe�cient matrix , a concept suggested by
Chris Godsil, is the n×bn

2
c matrix such that the rows correspond to the vertices of G. For

row i, the bn
2
c are the coe�cients of µ(G\i), sorted from coe�cient of xn to the constant

term. This matrix is unique up to permutations of rows.

For any graph G, use MG to denote its matching coe�cient matrix and rG to denote
the rank of MG. When the graph under discussion is clear from context, the subscript
is omitted. Observe that the sets V1 and V2 exist for G if and only if MGx = 0 has a
non-trivial solution, where each entry of that solution are one of 1, −1, or 0.
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n 9 10 11 12 13 14 15 16
Number of Graphs with Solution(s) 61 56 18 10 4 3 0 0
Number of Graphs with Extension(s) 60 55 18 10 4 3 0 0

Table 7.3: Number of graphs with 1,−1, 0 solutions and number of graphs with comatching
extensions for n = 9− 16.

Even though V1 and V2 are disjoint, the extensions based on them could still be iso-
morphic to each other. Therefore, if a graph G has a pair of non-isomorphic comatching
extensions, then MGx = 0 necessarily has a non-trivial solution with each entry being 1,
−1, or 0, although it is not su�cient. For each such solution, let A be the set of vertices
with entries 1, B be the set of vertices with entries −1, and C be the set of vertices with
entries 0. Then form V1 and V2 by setting V1 = A ∪ S and V2 = B ∪ S for some S ⊆ C.
Observe that each 1, −1, 0 solution corresponds to 2|C| choices for V1 and V2.

We experimented to explore the proportion of graphs with non-isomorphic one vertex
extensions. For n = 9 − 16, we generated 100 graphs from all graphs over n vertices
at random. Computations were performed to see how many of their matching coe�cient
matrices have non-trivial 1, −1, 0 solutions, and how many such solutions would give a
pair of non-isomorphic comatching graphs. The results are shown in Table 7.3.

As n increases, the computation results suggest the proportion of graphs whose match-
ing coe�cient matrices with non-trivial 1,−1, 0 solutions decreases. It indicates that, if
almost every graph has a comatching mate, then these comatching pairs are unlikely to
be formed by one-vertex extensions. However, due to computational limitations, the ex-
periment can only be performed on relatively small graphs, so these results may not be
representative of larger graphs. Even so, it would be interesting to explore if there is a
speci�c type of graphs that this construction applies to.

Meanwhile, the matching coe�cient matrix is still interesting to consider because it is
a tool to learn about matching-related properties of a graph. Let A(x) be a n× n matrix
polynomial over C with rank r ≤ n. Let di(x) be the greatest common divisor of all i× i
minors of A(x). De�ne d0 ≡ 1. Since any minor of order i ≥ 2 can be expressed as a linear
combinations of minors of order i− 1, di−1(x) is a factor of di(x). Consider the quotients
αi =

di(x)
di−1(x)

for 1 ≤ i ≤ r. They are called the elementary divisors of A(x). For simplicity,
we refer to the elementary divisors of the matching coe�cient matrix of a graph G as the
matching elementary divisors of G. Then we have the simple observation below.

7.3 Observation. Let G be a vertex transitive graph, then its matching elementary divisors
are α1 = 1 and αi = 0 for 2 ≤ i ≤ r.
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Other than vertex transitive graphs, the matching elementary divisors of the matching
coe�cient matrices of several classes of graphs are known. Consider the star graphs K1,n−1,
n ≥ 2. Their coe�cient matrices M has the form

M =


1 0 0 · · · 0
1 n− 2 0 · · · 0
...

...
... . . . ...

1 n− 2 0 · · · 0

 .

Clearly, any i× i minor with i ≥ 3 is zero, so the i-th determinant divisor and matching
elementary divisor are 0 for i ≥ 3. Observe that d1 = (M) = 1, and d2(M) = n− 2, since
only the upper left 2 × 2 minor is non-zero. Therefore, the matching elementary divisors
of K1,n−1 are 1 and n− 2.

Moreover, for m > n, we can prove that the matching elementary divisors of Km,n are
1 and m− n.

7.4 Lemma. For m > n, the matching elementary divisors of Km,n are 1 and m− n.

Proof. The argument above easily generalizes to Km,n with m > n. Note that Km−1,n

has i!
(
m−1
i

)(
n
i

)
matchings with size i and Km,n−1 has i!

(
m
i!

)(
n−1
i!

)
matchings with size i.

Therefore, its coe�cient matrix is

M =



1 mn−m · · · (n− 1)!
(
m−1
n−1

)(
n
n

)
n!
(
m−1
n

)
0 · · · 0

...
... . . . ...

...
... . . . ...

1 mn−m · · · (n− 1)!
(
m−1
n−1

)(
n
n

)
n!
(
m−1
n

)
0 · · · 0

1 mn− n · · · (n− 1)!
(
m
n−1

)
0 0 · · · 0

...
... . . . ...

...
... . . . ...

1 mn− n · · · (n− 1)!
(
m
n−1

)
0 0 · · · 0


.

Since M has rank 2, Km,n has two non-zero matching elementary divisors, with the �rst
being 1. To obtain its second matching elementary divisor, we consider the non-zero 2× 2
minors of M .

There are two types of non-zero 2×2 minors ofM . The �rst time contains entries from
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the i-th column and the (n+ 1)-th column, where i < n.

det

∣∣∣∣i!(m−1
i

)(
n
i

)
n!
(
m−1
n

)
i!
(
m
i

)(
n−1
i

)
0

∣∣∣∣
= − i!(n− 1)!n!(m− 1)!

i!(n− 1− i)!n!(m− 1− n)!

(
m

i

)
= −(n− 1) · · · (n− i)(m− 1) · · · (m− n)

(
m

i

)

The other type of non-zero 2× 2 minors of M takes distinct entries from the (i+1)-th
and the (j + 1)-th column. Without loss of generality we may assume i < j < n.

det

∣∣∣∣∣i!
(
m−1
i

)(
n
i

)
j!
(
m−1
j

)(
n
j

)
i!
(
m
i

)(
n−1
i

)
j!
(
m
j

)(
n−1
j

)∣∣∣∣∣
= i!j!

((
m− 1

i

)(
n

i

)(
n− 1

j

)(
m

j

)
−
(
n− 1

i

)(
m− 1

j

)(
m

i

)(
n

j

))
=

(m− 1)!n!(n− 1)!m!

i!j!(m− 1− i)!(n− i)!(n− 1− j)!(m− j)!

− (m− 1)!n!(n− 1)!m!

i!j!(m− 1− j)!(n− j)!(n− 1− i)!(m− i)!

=
(m− 1)!n!(n− 1)!m!

i!j!(m− 1− i)!(n− i)!(n− 1− j)!(m− j)!
[(n− 1− i) · · · (n− j)(m− i) · · · (m− j + 1)

−(m− 1− i) · · · (m− j)(n− i) · · · (n− j + 1)]

=
(m− 1)!n!(n− 1)!m!(n− 1− i) · · · (n− j + 1)(m− 1− i) · · · (m− j + 1)

i!j!(m− 1− i)!(n− i)!(n− 1− j)!(m− j)!
[(n− j)(m− i)

−(n− i)(m− j)]

=
(m− 1)!n!(n− 1)!m!(n− 1− i) · · · (n− j + 1)(m− 1− i) · · · (m− j + 1)(i− j)(m− n)

i!j!(m− 1− i)!(n− i)!(n− 1− j)!(m− j)!

Note that m− n is a divisor of both types of minors. Moreover,

det

∣∣∣∣1 mn−m
1 mn− n

∣∣∣∣ = −(m− n).
Therefore, m− n is the other matching elementary divisor of M .
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Vertex transitive graphs clearly have a matching coe�cient matrix with rank 1. It
remains to prove or disprove that all graphs with rank 1 coe�cient matrices are vertex
transitive. Meanwhile, we have the following result, which says the graphs and its comple-
ment have the same matching elementary divisors.

7.5 Lemma. Let G be a graph and use G to denote its complement. Then G and G have
the same matching elementary divisors.

Proof. We prove the lemma by showing MḠ =MGT , where T is an
(
bn

2
c+ 1

)
×
(
bn

2
c+ 1

)
matrix with | det(T )| = 1.

Recall that

µ(Kn) =

bn
2
c∑

a=0

(−1)a n!

a!(n− 2a)!2a
xn−2a.

Theorem 2.5 gives µ(G) =
∑bn

2
c

i=0 p(G, i)µ(Kn−2i), then we get the following.

µ(G) =

bn
2
c∑

i=0

bn
2
c∑

a=0

p(G, i)(−1)a (n− 2i)!

a!(n− 2a− 2i)!2a
xn−2a−2i.

Use 〈xα, P (x)〉 to denote the coe�cient of xα in P (x), where P (x) is a polynomial in
x. For any 0 ≤ bn

2
c, consider 〈xn−2j, µ(G)〉.

〈xn−2j, µ(G)〉 =
j∑
i=0

(−1)j−ip(G, i) (n− 2i)!

(j − i)!(n− 2j)!2j−i

=

j∑
i=0

(−1)jp(G, i) (n− 2i)!

(j − i)!(n− 2j)!2j−i
〈xn−2i, µ(G)〉

Let T be the
(
bn

2
c+ 1

)
×
(
bn

2
c+ 1

)
matrix such that

[〈xn, µ(G)〉 〈xn−2, µ(G)〉 · · · 〈xn−2bn
2
c, µ(G)〉]

=[〈xn, µ(G)〉 〈xn−2, µ(G)〉 · · · 〈xn−2bn
2
c, µ(G)〉]T.
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Then based on the discussion above, the ij-th entry of T is

Tij =

{
0 i > j;

(−1)j−1 (n−2i+2)!
(j−i)!(n−2j+2)!2j−i i ≤ j.

In particular, note T is upper-triangular, and all diagonal entries of T are ±1, so
| det(T )| = 1. Moreover, the entries of T only depends on n, and does not depend on
the structure of the graph G at all. Use Tn to denote such a matrix T for graphs over n
vertices.

Let M be the matching coe�cient matrix of a graph G, and let M be the matching
coe�cient matrix of G, thenM =MTn−1. Let S(M), S(M) denote the Smith Normal form
of M , M , respectively. Then S(M) = S(M)S(T ). Since | det(Tn−1)| = 1, we may conclude
S(M) = S(M), which implies G and G has the same matching elementary divisors.

This discussion about matching coe�cient matrix and matching elementary divisor lead
to the following questions.

• Could we characterize the graphs with two non-isomorphic comatching extensions?

• Are the ranks of the matching coe�cient matrices of a pair of comatching graphs
always equal?

• Do a pair of comatching graphs always have the same matching elementary divisors?

• We computed the matching coe�cient matrix and matching elementary divisors for
paths up to 16 vertices. All these matrices have the maximum rank possible and
have all 1's as matching elementary divisors. Is this true for all paths? What about
other basic graphs such as cycles or wheels?

7.4 The Rook Polynomial

As we mentioned in Chapter 1, the rook polynomial is an alternatively version of the
matching polynomial for bipartite graphs. For a bipartite graph G, the rook polynomial of
G is de�ned as is de�ned as

R(G, x) =
∑
i

p(G, k)xi.
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Figure 7.2: A board

This polynomial arose from Riodian's research in restricted permutations [30]. It is
called the rook polynomial because Riodian originally considered such permutation prob-
lems as placing non-attacking rooks on a chess board that is not necessarily square-shaped.
Note two rooks are non-attacking if they are not in the same row or the same column.
Any such board corresponds to a bipartite graph, where each row and each column is a
vertex, and there is an edge between a vertex representing a row and a vertex representing
a column if there is a cell at a corresponding position in the map. Then each k-matching
in the bipartite graph corresponds to a unique way to place k non-attacking rooks on the
board. For example, the board in Figure 7.2 corresponds to the graph K1,3. and its rook
polynomial is R(K1,3, x) = 1 + 3x. In general, we can see that

µ(G) = xm+nR(G, x−2).

Two boards are rook equivalent if their corresponding bipartite graphs have the same
rook polynomial. Note that rotation, re�ection, and permutations of rows and columns
are operations that preserve rook equivalence, because the corresponding bipartite graph is
unchanged. As one might suspect, there exist boards that are rook equivalent such that one
could not start from one of the equivalent boards, and obtain another one of the equivalent
boards using these operations. The smallest non-trivial pair of rook equivalent boards B1

and B2 are shown in Figure 7.3. However, the bipartite graphs G1 and G2 corresponding
to these two boards are not comatching, because one of them have �ve vertices and the
other one has four.

Meanwhile, the fact that the two graphs G1 and G2 that these two boards correspond
to are rook equivalent implies that p(G1, k) = p(G2, k) for all non-negative integers k,
and we say these graphs are matching equivalent . The di�erence in number of vertices
caused the matching polynomials to be di�erent, but we have µ(G1) = xµ(G2). In other
words, the graphs G1 and G2 ∪K1 are comatching. Generally speaking, if we have a pair
of rook equivalent boards whose corresponding graphs are not comatching, then we can
obtain a pair of comatching graphs by adding an appropriate number of vertices to one of
them. Therefore, understanding constructions for pairs of rook equivalent boards is of our
research interest.

Being one of the �rst individuals to study rook equivalence, Riodian proved some basic
observations about rook equivalent boards. For example, given a pair of rook equivalent
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Figure 7.3: The smallest non-trivial pair of rook equivalent boards B1(left) and B2(right)

boards, he constructed a pair of larger rook equivalent boards by attaching a rectangular
board with a number of rows that is no less than the number of rows of both of the
original pair of rook equivalent boards. To understand this construction using matching
polynomials, we observe that the bipartite complement of the graphs corresponding to the
original pair of boards and that of the constructed pair of boards are the same. Godsil
proved that the matching polynomial of a bipartite graph is determined by its bipartite
complement [10, Theorem 1.3.1]. Therefore, with some additions or subtraction of vertices
if necessary, we can see that, if the graphs corresponding to the original pair of boards are
matching equivalent, then the constructed pair of boards are rook equivalent.

Several others have also provided various constructions for rook equivalent boards. In
1970, Foata and Schüzenberger proved that all Ferrers boards are rook equivalent to exactly
one strictly decreasing Ferrers board [6]. Five years later, Goldman, Joichi, and White
gave an alternative proof of the same result [29]. In 1986, Garsia and Remmel gave a
characterization of rook equivalent Ferrers boards [7]. In more recent years, the more
signi�cant result in this direction was due to Bloom and Saracino's result in 2018 and
2019, where then proved rook equivalence implies Wilf equivalence and vice versa [2, 3].

Here, we would like to ask,

• What do these results imply in terms of graphs theory and comatching graphs?

• Could we extend these results to general graphs that are not necessarily bipartite?

These are some questions to be further explored.
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Implicit Function Theorem

Below is a version Implicit Function Theorem stated as Theorem 1.3.1 in [23]. For more
information about the Implicit Function Theorem, please refer to [23].

Theorem ([23]). Let F be a real-valued continuously di�erentiable function de�ned in a
neighborhood (X0, Y0) ∈ R2. Suppose that F satis�es two conditions.

F(X0, Y0) = Z0,

∂F
∂Y

(X0, Y0) 6= 0.

Then there exists open intervals U and V , with X0 ∈ U , Y0 ∈ V , and a unique function
F : U → V satisfying

F(X0, F (X0)) = Z0, for all X ∈ U,

and this function F is continuously di�erentiable with

∂Y

∂X
(Y0) = F ′(X0) = −

[
∂F
∂X

(X0, Y0)

/
∂F
∂Y

(X0, Y0)

]
.
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