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Abstract

It has been conjectured that general relativistic shear-free perfect fluids with a

barotropic equation of state, and such that the energy density, µ, and the pressure,

p, satisfy µ+p ̸= 0, cannot simultaneously be rotating and expanding (or contract-

ing). A survey of the known results about this conjecture is included herein. We

show that the conjecture holds true under either of the following supplementary

conditions: 1) the Weyl tensor is purely magnetic with respect to the flow velocity

vector or 2) dp/dµ = −1/3.

Any hypersurface-homogeneous shear-free perfect fluid which is not space-time

homogeneous and whose acceleration vector is not parallel to the vorticity vector

belongs to one of three invariantly defined classes, labelled A, B and C. It is found

that the Petrov types which are allowed in each class are as follows: for class A,

type I only; for class B, types I, II and III; and for class C, types I, D, II and N.

Two-dimensional pseudo-Riemannian space-times are classified in a manner sim-

ilar to that of the Karlhede classification of four-dimensional general-relativistic

space-times.

In an appendix, the forms differential forms package for the Maple program is

described.
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Chapter 1

Introduction

If I have seen farther it is by standing on

the shoulders of giants.

Sir Isaac Newton

I N THE process of finding physically meaningful solutions to Einstein’s field equa-

tions of general relativity, one is often confronted with the possibility that an appar-

ently new metric describes the same spacetime as that given by an already known

one. The problem is compounded by the fact that the physical properties of a given

metric are unchanged by a coordinate transformation. The detection of the equiv-

alence of two metrics is then a very difficult problem, even if one confines oneself

to local considerations. One way to attack the problem of equivalence is to com-

pute, from each metric, a set of invariants. If the invariants from the first metric

are not equivalent to the invariants from the second metric, then the two metrics

cannot describe the same spacetime. For example, if the Riemann tensor vanishes

for one of the metrics, but not for the other, then the two metrics cannot be equiv-

alent. The problem associated with the equivalence of metrics is therefore reduced

1



CHAPTER 1. INTRODUCTION 2

to that of finding the equivalence of invariants constructed from the metrics. Even

if the question of the equivalence of two particular metrics cannot be completely

settled, partial information can be gained from a study of the invariants. Metrics

can thus be classified. For example, the Petrov classification of the Weyl tensor

and the Segre and Plebansḱı classifications of the Ricci tensors are classification

schemes based on constructing invariants from the Riemann tensor. Another set

of invariants that can be derived from a particular metric is its symmetry group.

It may seem that classifications based on invariants such as the Riemann tensor

and classifications according to symmetry groups have little to do with each other.

However, a deeper examination reveals an amazing interplay between the two ap-

proaches; they are two facets of a very powerful theory. Indeed, they both can be

found using the method of equivalence of Cartan, which is a systematic method

of finding invariants. In particular, when applied to the study of the equivalence

of metrics, Cartan’s method uncovers the results that the relevant invariants for

the orthogonal group of transformation are the Riemann tensor and its derivatives.

Similarly, the invariants for the conformal group of transformations are found to

be the Weyl tensor, a tensor which reduces to the Cotton-York tensor in the three

dimensional case, and their derivatives. Cartan’s method also uncovers the various

symmetry groups of the metrics.

In chapter 2, manifolds with pseudo-Riemannian real analytic metrics are stud-

ied using the method of Cartan. In the context of general relativity, however,

many metrics can describe the same physical spacetime. Ignoring discrete trans-

formations, this internal indeterminacy is encoded in a group of transformations,

the special orthogonal group. The method of equivalence transforms the study of

the original manifold to a new manifold that includes the group of indeterminacy

as well as the original manifold. The invariants given by the method are quanti-
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ties which are defined on the enlarged manifold. We show the well-known result

that the invariants associated with the pseudo-Riemannian metrics (using the spe-

cial orthogonal group) are the Riemann tensor (on the enlarged manifold) and its

derivatives. We then show how these invariants of the enlarged manifold can be

computed by lifting calculations done on the original manifold, which are nothing

more than the classical calculations. We then do similar calculations when the

group of transformations is the conformal group, a group that is larger than the

internal group of indeterminacy. This new equivalence problem has as invariants

(defined on the enlarged manifold) the Weyl tensor, a tensor which reduces to the

Cotton-York in the three dimensional case and their derivatives. In the process, we

uncover a set of one-forms that contain the information of the Ricci tensor. It is

not clear whether any meaning can be given to the particular combinations of Ricci

tensor components that appear in these one-forms. The calculations in chapter 2

are illustrated throughout with explicit calculations for the situation of real analytic

two-dimensional pseudo-Riemannian metrics. We also give a classification, which

appears to be new, of manifolds that possess such metrics. This classification is a

similar to the Karlhede classification, which is a modification to the method of Car-

tan that is better suited for the space-times of general relativity. We also illustrate

the calculation of the invariants for the situation of conformally flat metrics.

In chapter 3, we concentrate on the four-dimensional spacetimes of general rela-

tivity. We show how the structure equations of such manifolds can be obtained us-

ing differential forms. This approach is dual to the method of orthonormal tetrads.

The structure equations involve functions, the kinematic quantities, of which we

present two similar invariant constructions. The differential forms method, or the

orthonormal tetrad method, have the advantage over coordinate methods that the

equations of general relativity become first order differential equations, instead of
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equations of second order. There is a price to be paid, however. The number of

equations is larger, since the set of equations that do not appear with the coordi-

nate methods is the set of Jacobi identities, which are obtained by differentiating

the structure equations. We then give expressions for the Riemann, Ricci and Weyl

tensors in terms of the kinematic quantities. The Einstein field equations are given,

then specialized to the case of a perfect fluid. Since we shall be interested in a fluid

with a barotropic equation of state, the field equations introduce a single function,

the energy density, in addition to the aforementioned kinematic quantities. The

condition that two applications of the exterior derivative to a function must van-

ish gives integrability conditions. With the integrability conditions of the energy

density, the basic equations are then all described.

We also present an invariant determination of an orthonormal tetrad that is well

suited to the study of rotating perfect fluids. This choice implies the vanishing of

many kinematic quantities, thereby simplifying our equations. This tetrad will be

used in chapter 5.

In chapter 4, the Petrov classification of the Weyl tensor is presented in a man-

ner that is slightly different, yet fully equivalent, to the usual method in general

relativity. The approach presented herein focuses on the eigenvalues of a three by

three complex matrix and on the dimensions of their corresponding eigenspaces.

We also present a set of equations to convert between the Newman-Penrose com-

ponents of the Weyl tensor, the components we presented in chapter 3 and the

aforementioned three by three matrix. It is felt that this chapter clarifies the vari-

ous interconnections between the different approaches to the Petrov classification.

In chapter 5, we turn our attention to general relativistic shear-free perfect fluids

with a barotropic equation of state. It has been conjectured that such a fluid cannot

be both rotating and expanding (or contracting). The first result showing a special
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case of the conjecture dates back to 1950. There are no known general relativistic

counter-examples; however there are some in Newtonian gravity. Various special

cases of the conjecture have been proved over the years, though as yet, its validity

in the general case has still not been established. In the first part of chapter 5,

we present a detailed history of the various partial results. We identify various

properties that we feel were critical to the success. We also identify as a recurring

theme the computation of torsion, which enables one to focus on the integrability

conditions that are of lower order than is expected at any particular stage of a

proof. In the second part of chapter 5, we establish the veracity of the conjecture

for the special case when the Weyl tensor is purely magnetic with respect to the

fluid flow. In the last part of the chapter, we show that the conjecture also holds

for the case of a perfect fluid with a barotropic equation of state such that the

derivative of the pressure with respect to the energy density is equal to −1/3. Such

fluids include the coasting universes of inflation theory.

Should the shear-free conjecture hold, then the possible spacetimes that satisfy

the hypotheses of the conjecture can be classified into two broad classes according to

whether they are expanding (or contracting) or not. If their rate of expansion is not

zero, then the shear-free conjecture would force them to be irrotational. This situ-

ation is well understood, all such spacetimes having been classified and examined

by Collins and Wainwright (1983). If, however, the fluid has zero expansion, not

all spacetimes have been identified. There are partial results in the literature. It is

the subject of chapter 6 to find the Petrov types of a subclass of the expansion-free

shear-free rotating spacetimes that has been previously identified. These space-

times are hypersurface-homogeneous without being fully homogeneous. Also, their

vorticity vector is linearly independent of their acceleration vector. The spacetimes

we consider are divided into three cases, the simplest of which has already appeared
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in the literature in a study of rotating spacetimes with a Killing vector parallel to

the axis of rotation. The determination of the Petrov type for each of the three

cases is for the most part fairly straightforward. There are, however, two Petrov

types in one of the cases that are surprisingly difficult to rule out. The question

arises of showing that a particular set of polynomials has no solutions. In theory,

doing so is simple: variables are eliminated one by one until a contradiction results

that a non-zero integer is equal to zero. In practice, the expressions become so

large that even being able to finish the computation is a difficult endeavour. The

order in which the calculations are done is critical. Even so, we had to use various

transformations to reduce the expression sizes. A further complication arises from

the fact that at one point, a particular polynomial factorizes. The manner in which

it does so precludes the use of certain evaluation techniques from the starting point.

One must first use more straightforward methods in order to identify the factors of

this polynomial. Once this is done, the evaluation techniques can be used to reduce

the expression sizes. In spite of the various practical obstacles, it was found pos-

sible to complete the classification task. Various symbolic computation tools were

considered, and tried, in order to resolve the problem of the presence of solutions

to the set of polynomials. One theoretical development which initially appeared to

be promising was the Gröbner bases method due to Buchberger (1985) for which

the grobner package of Maple seemed especially useful. Unfortunately, it could

not handle the polynomials which arose in the present problem. The computations

could not finish, for lack of time. In retrospect, this is not surprising, considering

the number of mathematical tools that were in the end used in order to complete

the problem in a step by step manner.

Finally, we present in appendix A a differential forms package for the Maple

symbolic computation program. The forms package implements the basic opera-
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tions on differential forms and vectors. It also implements higher level functions

such as tools to solve for unknown differential forms, to test whether a particular

differential form is an element of a given differential ideal, to implement an inner

product between differential forms and to compute operations such as the Hodge

star of a differential form. We considered the use of the difforms package provided

with Maple. It soon was apparent that difforms was not adequate for our needs1

and that it would be faster to implement a new differential forms package than to

modify the existing one. The package forms of appendix A was used as the main

computational tool for chapter 5.

We make use of the following conventions, unless indicated otherwise. Indices

are raised and lowered with a metric tensor whose signature is (− + ++). We use

geometric units in which 8πG = c = 1, where G is the Newtonian gravitational

constant and c is the velocity of light in vacuum. The Riemann tensor, Ri
jkℓ,

is defined by vi;ℓ;k − vi;k;ℓ = Ri
jkℓv

j for any C2 vector field v⃗, with the semi-

colon denoting covariant differentiation. The Ricci tensor, Rij, is defined by the

contraction Rij = Rk
ikj, and the Ricci scalar, R, by the contraction R = Ri

i.

1In particular, difforms does not handle vectors which are needed for the Lie derivative and

for the interior product of a vector and a differential form.



Chapter 2

Applications of the Equivalence

Method

Un bon livre devrait toujours former un

véritable lien entre celui qui l’écrit et celui

qui le lit. Laure Conan

I N THIS chapter, the equivalence method of Cartan is used to study the equiva-

lence of pseudo-Riemannian real analytic metrics. The approach of Cartan involves

the transformation of the problem of equivalence on a given manifold to a problem

of equivalence on a new manifold, consisting of the original manifold augmented by

a group of transformations.

We first look at the equivalence of metrics under the action of the orthogonal

group. The application of the theory of Cartan shows that the geometric objects

which allow a decision of whether two metrics are equivalent under this group are

the Riemann tensor and its covariant derivatives up to an order determined by the

method. These geometric objects are defined on the enlarged space. We show that

8



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 9

the appropriate calculations need not be done solely on the enlarged space, but the

main portion can be done on the original manifold. We then look at the equivalence

of two metrics under the conformal group of transformations. We show that some

of the invariant functions given by the method are the Weyl tensor components

that are defined on the enlarged manifold. The other invariants functions are given

by a tensor, which reduces to the Cotton-York tensor in the three-dimensional case.

We then compute explicitly the various geometric objects, given by the method of

Cartan, for the case of conformally flat metrics. In that case, all invariants vanish

when the dimension of the metrics is greater than two.

Throughout our development, we illustrate the method by applying it to the

two-dimensional pseudo-Riemannian real analytic metrics. We demonstrate the

well-known result that all of these spaces are conformally equivalent. We then

investigate the equivalence problem under the orthogonal group. The Riemann

tensor, which in this case is a scalar, is obtained. A classification is provided of

the real analytic two-dimensional pseudo-Riemannian metrics. This classification

appears to be new. It involves the various groups of symmetry of those metrics, but

distinguishes two classes of metrics without symmetry. This example illustrates the

program of classification of spacetime metrics undertaken by a number of authors

such as Karlhede (1980a), Karlhede (1980b), Karlhede and Lindström (1982), Karl-

hede and MacCallum (1982), Bradley and Karlhede (1990), Collins, d’Inverno and

Vickers (1990), Joly and MacCallum (1990), Åman et al. (1991), Koutras (1992)

and Collins et al. (1993). MacCallum (1991) gives a nice review of the progress in

the classification of exact solutions of general relativity and of the computer pro-

grams involved in that classification. An interesting new development, which can

be found in Paiva et al. (1993), is the use of the techniques involved in the Karlhede

classification in order to find limits of spacetimes in a coordinate-free approach.
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We shall often resort to the Cartan Lemma (Cartan, 1945). The statement of

this lemma is as follows:

Lemma 1 (Cartan) Let ω1, . . . , ωp be p one-forms which are linearly independent

pointwise on an n-dimensional manifold M , with p ≤ n. Let η1, . . . , ηp be p one-

forms on M satisfying

ηi ∧ ωi = 0.

Then there exist C∞ functions Aij, with Aij = Aji, such that

ηi = Aijω
j (i = 1, . . . , p).

Here, and throughout this work, we use Einstein’s summation convention. The

proof1 of this lemma is as follows. Since ω1, . . . , ωp are all independent, they form

part of a basis over M . This basis is formed by adjoining p − n independent one-

forms ξ1, . . . , ξp−n. Since for each i (1 ≤ i ≤ p), the one-form ηi is defined over M ,

it can be expanded in this basis; therefore, we obtain ηi = Aijω
j +Bijξ

j, where Aij

and Bij are functions. The condition on ηi translates into Aijω
j∧ωi+Bijξ

j∧ωi = 0.

Since the ξj are all independent of the ωi, and they are all independent pairwise

with each other, then the coefficients of ξj ∧ ωi must all vanish, i.e. Bij = 0 for

all i and for all j. We are left with (Aij − Aji)ω
|i ∧ ωj| = 0, where |i, j| indicates

that i ≤ j. Since ω|i ∧ ωj| are all independent of each other, their coefficients must

vanish, i.e. Aij = Aji.

We note that the method of proof allows us to generalize the Cartan lemma to

conclude that a set of p differential forms, ηi of degree q satisfying

ηi ∧ ωi = 0,

1A similar proof of this lemma is found in Appendix A.
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must also satisfy

ηi = ξij ∧ ωj

for some differential forms ξij of degree q − 1 that obey

ξij ∧ ωj ∧ ωi = 0.

The proof is very similar to that of the standard Cartan lemma. We shall not

introduce a new name for this generalization; the context being clear as to which

version of the lemma is being used. Related to this generalization is the Cartan-

Poincaré lemma, which appears in section VIII.2 of Bryant et al. (1991).2

2.1 Equivalence under the orthonormal group

The purpose of this section is to present a group invariant approach to defining

and calculating the Riemann tensor. This approach is based on that of Cartan

as expounded in Gardner (1989). We generalize the work therein by allowing for

a metric of any signature. We also show explicitly how the calculations on the

enlarged manifold can be done by lifting calculations on the original manifold. The

theory is illustrated by performing the appropriate calculations for two-dimensional

real analytic pseudo-Riemannian metrics, which will be referred to as 1+1 metrics.

A spacetime, in general relativity, is a four-dimensional manifold possessing a

Lorentzian metric with signature −+++. In the tangent space of each point,

therefore, the metric is simply the Minkowski metric ds2 = −dt2+dx2+dy2+dz2.

The metric may always be written as ds2 = gab dx
a ⊗ dxb, whether one is dealing

with a flat geometry in general coordinates, or a non-flat spacetime. This metric,

2I am grateful to R. Gardner for pointing out this lemma.
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since it is not degenerate by hypothesis, can then be diagonalized as ds2 = −(σ0)2+

(σ1)2 + (σ2)2 + (σ3)2.

In general, we shall consider non-degenerate metrics of arbitrary dimension and

signature; they may therefore be expressed as ds2 =
∑

a ηaa(σ
a)2, where ηaa is the

diagonal signature matrix. We shall give greater details of the computations in the

case of the 1+1 metrics. Even though some features of the calculations are absent

for metrics of such a small dimension, they still provide a useful model to keep in

mind because the calculations are comparatively simple, and yet many features of

higher-dimensional problems are indeed present.

The choice of diagonalization is not unique however. If we define ω̄ = Sσ, then

ω̄ is also an acceptable choice for the diagonalization, provided that ω̄tηω̄ = σtησ.

This implies that σtStηSσ = σtησ for all σ. Therefore S must obey the restriction

that StηS = η. This is the definition of the statement that, ignoring reflections, S

belongs to the group SO(p, q,R), where p is the number of plus signs in the signature

and q is the number of minus signs. For spacetimes, the group is SO(3, 1,R).

Because of its importance, this group is also referred to as the Lorentz group. For

1+1 spacetimes, the group is SO(1, 1,R). We shall restrict ourselves to real analytic

transformations.

We now construct a differentiable manifold from the original space-time and the

aforementioned group of transformations. This transforms the problem of equiva-

lence over the space U to a question of equivalence over the space U×G, where G is

the group of which S is a member. In some sense, we are thus simultaneously con-

sidering all possible choices of S. The steps of considering orthogonal frames and

of lifting the problem to a space that includes the group of allowed transformations

form the essence of Cartan’s equivalence method.
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We first consider some calculations for 1+1 metrics, in order to illustrate the

steps of the general case. The group SO(1, 1,R) is easily parametrized; therefore,

we can explicitly give part3 of the basis to the space of differential forms of elements

of U ×G. If we parametrize G by α, then we can define

ω̄0 = (coshα)σ0 + (sinhα)σ1

and

ω̄1 = (sinhα)σ0 + (coshα)σ1,

since −(ω̄0)2 + (ω̄1)2 = −(σ0)2 + (σ1)2. The cobasis elements σ are defined over U

and the cobasis elements ω̄ are defined over U × G, where G =SO(1,1,R). If we

rewrite this in terms of matrices, then ω̄ = Sσ, where

S =

 coshα sinhα

sinhα coshα

 .
We must find the variation of the frames in a small neighbourhood. We start with

the structure equations over U, given as the exterior derivatives of the elements of

the original cobasis σ in terms of themselves. We then look at the implications for

the U ×G space. For the 1+1 case, then, we therefore start with

dσ0 = F1σ
0 ∧ σ1

and

dσ1 = F2σ
0 ∧ σ1.

The structure equations of U ×G are found by the following calculations:

d

 ω̄0

ω̄1

 =

 sinhα coshα

coshα sinhα

 dα ∧

 σ0

σ1

+

3Since U ×G is 3-dimensional, ω̄0 and ω̄1 cannot form a full basis.
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 coshα sinhα

sinhα coshα


 dσ0

dσ1



=

 sinhα coshα

coshα sinhα


 coshα − sinhα

− sinhα coshα

 dα ∧

 ω̄0

ω̄1



+

 coshα sinhα

sinhα coshα


 F1ω̄

0 ∧ ω̄1

F2ω̄
0 ∧ ω̄1

 ,
where the equality ω̄0 ∧ ω̄1 = σ0 ∧ σ1 was used in order to express the results in

terms of forms over U ×G rather than over U. The structure equations over U ×G

are therefore

d

 ω̄0

ω̄1

 =

 0 dα

dα 0

 ∧

 ω̄0

ω̄1

+

 coshαF1 + sinhαF2

sinhαF1 + coshαF2

 ω̄0 ∧ ω̄1.

For metrics of any dimension, the corresponding structure equations are given by

dω̄ = dS ∧ σ + Sdσ,

which is, when expressed over U ×G,

dω̄ = (dSS−1 + ϑ(U, S)) ∧ ω̄, (2.1)

where the terms ϑ(U, S) are linear in ω̄. Differentiating StηS = η gives the following

defining relations for the Lie algebra so(p, q,R) corresponding to the Lie group

SO(p, q,R):

d(St)ηS + StηdS = 0.

In order to use these relations together with the U × G structure equations, we

obtain the following equivalent expression by multiplication on the left by (S−1)t

and on the right by S−1 :

(dSS−1)tη + η(dSS−1) = 0. (2.2)
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This exhibits the rôle of η: if we use it to raise and lower indices, the above line

states that dSS−1, with indices lowered, is antisymmetric .

On the 1+1 space, if we define

Π = dα + (F1 coshα + F2 sinhα)ω̄
0 − (F1 sinhα + F2 coshα)ω̄

1 (2.3)

then the structure equations on U ×G for the 1 + 1 metrics can be rewritten as

d

 ω̄0

ω̄1

 =

 0 Π

Π 0

 ∧

 ω̄0

ω̄1

 . (2.4)

The matrix  0 Π

Π 0


is antisymmetric when the first index is lowered. This indicates that it is an element

of so(1,1,R). The idea behind the definition of Π is to gather, as much as possible,

quantities that can be changed by the group parameter, α.

We observe that, for the 1+1 metrics, there are no longer any terms that are

explicitly quadratic in ω̄. For future reference, such terms will be referred to as

torsion terms, or as the torsion. The requirement that the torsion vanish here, or

equivalently that the torsion be completely absorbed, determines Π uniquely. This

statement is rarely true in the application of the method of equivalence.

For general metrics, we can always write, using an index-free notation, the

structure equations as

dω̄ = ∆ ∧ ω̄, (2.5)

where we recall that ω̄ = Sσ. The matrix ∆ is an n by n matrix of one-forms. The

matrix ∆ can be split, non-uniquely, into a part that is independent of derivatives

of group parameters and a part that does contain derivatives of group parameters.
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In the present paragraph, we show that we can find, using ∆, a uniquely defined

matrix, δ, belonging to so(p, q,R) and such that

dω̄ = δ ∧ ω̄.

In order that the structure equations (2.5) be identical with (2.1), the matrix ∆

must obey the condition

(dSS−1 −∆+ ϑ(U, S)) ∧ ω̄ = 0.

Therefore, we obtain, by using the Cartan Lemma, that

∆− dSS−1 ≡ 0 mod base,

where by “mod base” we mean that the given congruence holds up to a linear

combination of the basis ω̄. From this we can infer that

(∆− dSS−1)tη + η(∆− dSS−1) ≡ 0 mod base.

Taking into account (2.2), this last congruence simplifies to

∆tη + η∆ ≡ 0 mod base.

We thus conclude that there are no derivatives of group parameters in ∆tη + η∆.

Because of that fact, these components of ∆ are called the principal components of

first order4 (Gardner, 1989). The equivalence method approach then suggests that

we perform the expansion ∆ = δ +Ψ, where

ηΨ = 1/2(∆tη + η∆)

4The order refers to the number of times this step of identifying terms independent of group

derivatives in the matrix ∆ is reached in the method of equivalence; for details, see Gardner (1989)
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and

ηδ = 1/2(η∆−∆tη),

to get the structure equations re-expressed as

dω̄ = δ ∧ ω̄ +Ψ ∧ ω̄.

The functions Ψ do not contain derivatives of group parameters, and so they are

expressible in the basis ω. We therefore have

(Ψ)ij = Ψi
jkω̄

k,

for some functions Ψi
jk. Without loss of generality, we can antisymmetrize Ψi

jk on

the lower two indices, since we do not thereby modify the structure equations. We

notice that δtη + ηδ = 0, and so δ satisfies the Lie algebra relations of so(p, q,R).

We try to eliminate as many of the functions Ψ as possible, by modifying δ,without

changing its Lie algebra structure. This step is the absorption of torsion. Let Π

be an n × n matrix of one-forms expressed in the ω̄ basis. Each entry therefore

has n terms. We consider the coefficients in these terms to be the unknowns in the

system of linear equations Π ∧ ω̄ = Ψ ∧ ω̄, and we add the restriction that Π must

obey the condition

Πtη + ηΠ = 0. (2.6)

Note that there are n2(n−1)
2

equations with n2(n−1)
2

unknowns. We perform the

expansion

(Π)ij = Πi
jkω̄

k,

for some functions Πi
jk. After lowering the indices with η, the linear equations to

be satisfied are

Πijkω̄
k ∧ ω̄j = Ψijkω̄

k ∧ ω̄j.
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The coefficients of the independent terms therefore obey

Πijk − Πikj = Ψijk −Ψikj.

The Lie algebra condition (2.6) is

Πijkω̄
k +Πjikω̄

k = 0,

so

Πijk +Πjik = 0.

Together, these imply that

Πijk = −Πjik = −(Πjki +Ψjik −Ψjki)

= Πkji −Ψjik +Ψjki

= (Πkij +Ψkji −Ψkij)−Ψjik +Ψjki

= −Πikj +Ψkji −Ψkij −Ψjik +Ψjki

= −(Πijk +Ψikj −Ψijk) + Ψkji −Ψkij −Ψjik +Ψjki.

This can be simplified due to the antisymmetry Ψijk = −Ψikj. Therefore, the

unknowns Πijk are solved in terms of the torsion coefficients as

Πijk = Ψijk −Ψjik −Ψkij.

The torsion can thus be eliminated by defining φ := δ+Π, to get dω̄ = φ∧ ω̄ with

φtη + ηφ = 0. This determines φ uniquely.

It is rarely the case that all torsion can be made to vanish. Usually only some

torsion terms can be set to zero. This being the case, the next step in the equivalence

method would be to try to use the group G to normalize some of the remaining

torsion terms to particular values. For example, if the group acts by multiplication
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on some torsion terms, then a number of these could be normalized to 1. Requiring

that the normalization be preserved restricts the group G to one of its subgroups.

At this stage, we have that φ and ω̄ are invariants on U × G. Therefore the

group of freedom on this structure consists solely of the identity. When this is

the case, we say that we have an e-structure. The theory of the equivalence of e-

structures now enables us to state that the fundamental invariants of the problem

are given by the functions involved in the structure equations of the e-structure.

These functions, γ, are invariants, in the sense that if Φ is the transformation that

takes U to V , then γ|U = γ|V ◦ Φ. We shall first find these invariants for the 1+1

spacetimes, then we shall do so for general spacetimes. We define Fs to be the set

consisting of the invariants and their covariant derivatives up to order s − 1. We

consider Fs to be lexicographically ordered. The rank ks of Fs at a point p is the

rank of the span of d(Fs) at p. The order of Fs at p is the smallest j for which

kj = kj+1. An e-structure is said to have regular rank ρ at p if the rank of the

Fs of the e-structure is ρ in a neighbourhood of p. We point out that the rank and

the order of an e-structure are invariant quantities. The theory (Gardner, 1989)

allows us to state that if the rank of a regular n-dimensional e-structure is ρ, then

the e-structure admits an (n− ρ)-dimensional symmetry group.

For 1+1 spacetimes, we proceed as follows. From the exterior derivative of the

1+1 structure equations (2.4), we get

0 = d2

 ω̄0

ω̄1

 =

 0 dΠ

dΠ 0

 ∧

 ω̄0

ω̄1

−

 0 Π

Π 0

 ∧

 0 Π

Π 0

 ∧

 ω̄0

ω̄1

 .
One of the relations we thereby obtain is

0 = dΠ ∧ ω̄1.
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This implies that

dΠ = τ ∧ ω̄1, (2.7)

where τ is a 1-form on U ×G. The other relation we obtain is

0 = dΠ ∧ ω̄0 = τ ∧ ω̄1 ∧ ω̄0,

where we have used (2.7). The Cartan lemma then states that τ is a linear combi-

nation of ω̄0 and ω̄1, i.e.

τ = R ω̄0 +R′ ω̄1.

Again using (2.7), the derivative of the connection form Π is therefore

dΠ = R ω̄0 ∧ ω̄1. (2.8)

The function R is the required invariant function. It is just the lifted Riemann

tensor component R0
101.

We now proceed to obtain R explicitly in terms of the functions F1 and F2. If

we expand the derivatives of F1 and F2 in the σ basis (since F1 and F2 are defined

on U), we get

dF1 = F1|σ0σ0 + F1|σ1σ1

and a similar expression for F2. These expressions can be used as definitions for

F1|σ0 , F1|σ1 , F2|σ0 and F2|σ1 . We differentiate equation (2.3) and hence obtain

dΠ = [−F1|σ1 − F2|σ0 + (F1)
2 − (F2)

2]ω̄0 ∧ ω̄1,

after converting the result into the ω̄ basis. (In this case, ω̄0 ∧ ω̄1 is just σ0 ∧ σ1,

but this is rarely true.) Comparison with (2.8) provides us with the result that

R = −F1|σ1 − F2|σ0 + (F1)
2 − (F2)

2, as required.
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We now turn to spacetimes of any dimension. After the absorption of torsion,

the structure equations are

dω̄ = φ ∧ ω̄,

where φ is uniquely determined and obeys the condition

φtη + ηφ = 0.

The exterior derivative of the structure equations is

0 = d2ω̄ = (dφ− φ ∧ φ) ∧ ω̄.

The quantity in parentheses contains the information about the curvature of the

spacetime. This justifies the definition

Θ := dφ− φ ∧ φ, (2.9)

where this curvature two-form is constrained by

0 = Θ ∧ ω̄. (2.10)

We note that the definition of Θ forces it to obey Θtη + ηΘ = 0. By the Cartan

lemma, the constraint (2.10) on Θ implies that it can be expanded in the basis ω̄,

the coefficients being one-forms:

Θi
j = ψi

jk ∧ ω̄k.

The one-forms ψi
jk are not arbitrary since they must satisfy the constraint (2.10)

on Θ. This produces the following equivalence:

0 = Θi
j ∧ ω̄j ⇔ ψi

jk ∧ ω̄k ∧ ω̄j = 0.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 22

A cobasis for a space of dimension n is ω̄1, ω̄2, ..., ω̄n. If we multiply the constraint

on ψ with all possible combinations of n− 2 cobasis forms, we obtain the relations

(noting that most terms in the sum disappear)

(ψi
jk − ψi

kj) ∧ ω̄1 ∧ ω̄2 ∧ · · · ∧ ω̄n = 0,

and therefore ψ is symmetric in the two lower indices, up to linear combinations of

the cobasis, i.e.

ψi
jk ≡ ψi

kj mod base.

Similarly, the antisymmetry of Θ with its indices lowered translates into the follow-

ing antisymmetry of ψ:

Θij = −Θji ⇔ (ψijk + ψjik) ∧ ω̄k = 0,

where the indices are lowered (and raised) using η. Multiplying this constraint with

all possible combinations of n− 1 cobasis forms, we obtain

(ψijk + ψjik) ∧ ω̄1 ∧ ω̄2 ∧ · · · ∧ ω̄n = 0.

We can therefore conclude that the following congruences hold:

ψijk ≡ ψikj ≡ −ψjik ≡ 0 mod base,

which imply that

ψi
jk ≡ 0 mod base.

This shows that ψi
jk can be expanded in the cobasis as follows:

ψi
jk =

1

2
Si

jkℓω̄
ℓ,

for some functions Si
jkℓ. This demonstrates that ψ, and hence Θ, does not contain

derivatives of the group parameters. It therefore follows that

Θi
j =

1

2
Si

jkℓω̄
ℓ ∧ ω̄k.
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The coefficients Si
jkℓ are the fundamental invariants of the problem.

When we take the exterior derivative of Θ, as given by its definition (2.9), we

obtain

dΘ = −dφ ∧ φ+ φ ∧ dφ

= −Θ ∧ φ− φ ∧ φ ∧ φ+ φ ∧Θ+ φ ∧ φ ∧ φ

= −Θ ∧ φ+ φ ∧Θ.

This calculation simply yields the Bianchi identities on U ×G.

The structure equations on U × SO(p, q,R) can be summarized as follows:

dω̄ = φ ∧ ω̄

and

dφ = φ ∧ φ+Θ.

With indices, these become

dω̄i = φi
j ∧ ω̄j

and

dφi
j = φi

k ∧ φk
j +

1

2
Si

jkℓω̄
ℓ ∧ ω̄k,

respectively.

So far, the calculations have been made on U × G. This is more complicated

than calculating on U . Furthermore, the “classical” results do not involve the group

G. We therefore need to find the contribution of G, in order to recover the classical

approach.

We define a left-action on G by multiplication on the left by a constant:

LC : G→ G

S 7→ CS.
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This action on G induces an action (a pull-back) on the cobasis over U ×G:

L∗
Cω̄ = L∗

C(Sσ) = CSσ = Cω̄.

We can determine the induced action on the connection forms φ since pull-backs

commute with exterior differentiation, and since the pull-back of an exterior product

is the exterior product of the pull-back. The sequence of equalities

L∗
Cdω̄ = d(L∗

Cω̄) = d(Cω̄) = Cdω̄ = L∗
C(φ ∧ ω̄) = (L∗

Cφ) ∧ (L∗
Cω̄)

leads to

φ ∧ ω̄ = [C−1(L∗
Cφ)C] ∧ ω̄.

We then conclude that

L∗
Cφ = CφC−1,

after invoking the uniqueness of φ. This type of action is called an adjoint action.

Also, by the uniqueness of φ, C−1(L∗
Cφ)C has the same index symmetries as φ.

The induced action on φ = dSS−1 + ϑU(u, S) leads to

L∗
Cφ = d(CS)(CS)−1 + L∗

CϑU(u,CS),

where, as can be expected, L∗
CϑU(u,CS) means (L∗

CϑU)|(u,CS). Therefore, the action

on ϑU obeys

L∗
CϑU(u,CS) = CϑU(u, S)C

−1.

Pointwise, we can make the choice of C = S−1 , provided, it seems, that we do not

differentiate the results; we shall show in the next paragraph that, actually, we can

perform the differentiation. We thus obtain the equivalent connection forms on U .

With the definition

ϑU(u) := L∗
S−1ϑU(u, S

−1S) = S−1ϑU(u, S)S,
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the connection forms on U and those on U ×G are related by

ϑU(u, S) = SϑU(u)S
−1.

Similarly, the action on Θ obeys

L∗
CΘ(u,CS) = L∗

C(dφ− φ ∧ φ)

= d(CφC−1)− CφC−1 ∧ CφC−1

= C(dφ− φ ∧ φ)C−1

= CΘ(u, S)C−1.

We can therefore define

Θ(u) := L∗
S−1Θ(u, e) = S−1Θ(u, S)S,

which leads to

Θ(u, S) = SΘ(u)S−1.

We now explicitly5 show that we can indeed differentiate on U and obtain the

appropriate quantities, without first going to U ×G and then choosing a particular

value of S. This is of value, since differentiating on U is easier than on U × G.

Once we know the result on U , it is easy to lift the result to U × G. We are then

able to apply the results of the method of equivalence.

We start by showing that we can compute Θ(u) by staying on U . For

dϑU(u)− ϑU(u) ∧ ϑU(u)

= d[S−1ϑU(u, S)S]− S−1ϑU(u, S) ∧ ϑU(u, S)S

= d[S−1φS − S−1dS]− S−1[φ− dSS−1] ∧ [φ− dSS−1]S

5See page 27 ff. for some comments on the calculations on U .
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= −S−1dSS−1 ∧ φS + S−1d(φ)S − S−1φ ∧ dS + S−1dSS−1 ∧ dS

−S−1φ ∧ φS + S−1dSS−1 ∧ φS + S−1φ ∧ dS − S−1dSS−1 ∧ dS

= S−1d(φ)S − S−1φ ∧ φS

= S−1(Θ(u, S))S

= S−1(SΘ(u)S−1)S

= Θ(u),

where the use of the relation d(S−1) = −S−1dSS−1 has been made. We caution

that one needs to be careful with the signs of the exterior derivative and with the

ordering of the various quantities, since matrices do not, in general, commute.

We now compute the Bianchi identities on U :

dΘ(u) = d(S−1Θ(u, S)S)

= −S−1dSS−1 ∧Θ(u, S)S + S−1d(Θ(u, S))S + S−1Θ(U, S) ∧ dS

= −S−1dS ∧Θ(u) + S−1(−Θ(u, S) ∧ φ

+φ ∧Θ(u, S))S +Θ(u) ∧ S−1dS

= −S−1dS ∧Θ(u)− S−1Θ(u, S) ∧ (dSS−1 + ϑ(u, S)S)

+S−1(dSS−1 + ϑ(u, S)) ∧Θ(u, S)S +Θ(u) ∧ S−1dS

= φ(u) ∧Θ(u)−Θ(u) ∧ φ(u).

These are the same equations as on U × G. Further differentiation does not give

anything new.

Finally, we show that we can get ϑ(u) from the cobasis on U :

dσ = d(S−1ω̄) = d(S−1) ∧ ω̄ + S−1dω̄

= −S−1dSS−1 ∧ ω̄ + S−1φ ∧ ω̄
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= −S−1dSS−1 ∧ Sσ + S−1dSS−1 ∧ Sσ + S−1ϑU(u, S) ∧ Sσ

= S−1(SϑU(u)S
−1)S ∧ σ

= ϑU(u) ∧ σ.

In summary, we can calculate ϑU and Θ(u) and the Bianchi identities without

involving G at all. This is exactly the classical calculation, as can be found, for ex-

ample, in Misner, Thorne and Wheeler (1973). The calculations for the equivalence

method, which require the space U×G, can therefore be done by first computing on

U , then lifting to U ×G by change of basis and multiplication by matrices, without

any further differentiations.

This enables us to identify ϑU(u) as the connection one-forms, as found for

example in Misner, Thorne andWheeler (1973), and Θ(u) as the Riemann curvature

two-forms. Expanding them in the cobasis over U , we get

ϑ(u)]ij = Γi
jk σ

k

and

Θ(u)]ij =
1

2
Ri

jkℓ σ
ℓ ∧ σk,

where Γi
jk are the Christoffel symbols and Ri

jkl are the Riemann tensor compo-

nents.

The group SO(p, q,R) is the natural group to use in the study of pseudo-

Riemannian manifolds. Furthermore, it is quite natural to use connections that

render the structure equations to be torsion-free. These natural requirements can

be seen as follows. The exterior derivative operation can be extended to vector-

valued objects. There are more details given in Misner et al. (1973). Given {e⃗a}

a vector basis, define d to be a differentiation such that it is equal to the ordinary

exterior derivative when applied to functions and differential forms, and such that
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de⃗a = e⃗bσ
b
a. On vectors with scalar coefficients, this derivative is then a definition

for covariant differentiation of a vector. This is readily extended to tensor products

of vectors with scalar coefficients by using the product rule. The expressions σb
a are

referred to as a connection. Let {e⃗a} be chosen dual to the cobasis σb; therefore, it

satisfies the bilinear pairing < e⃗a, σ
b >= δba.We need a well defined relation between

the derivative of e⃗a and that of σb. This is obtained by requiring the vanishing of

the derivative the invariantly-defined vector-valued one-form e⃗a⊗σa := P .We thus

require

e⃗c ⊗ σc
a ∧ σa + e⃗a ⊗ dσa = 0,

whence

dσb = −σb
c ∧ σc.

We are thus led to torsion-free space-times. The connection is not uniquely spec-

ified. One natural invariant requirement is that it be chosen so that covariant

differentiation be compatible with the metric; in other words, that the covariant

derivative of the metric vanish. The (dual of) the metric is given by

g =
∑
a

ηaae⃗a ⊗ e⃗a.

Its covariant derivative, which we require to vanish, is given by

0 = dg = ηaae⃗cσ
c
a ⊗ e⃗a + ηaae⃗a ⊗ e⃗cσ

c
a,

which is equivalent to

0 = e⃗cσ
ca ⊗ e⃗a + e⃗a ⊗ e⃗cσ

ca.

It follows then that σac+σca = 0 or, equivalently, σac+σca = 0. These relations are

exactly the defining relations of the Lie algebra so(p, q,R). From previous results

in the present chapter, it is clear that the connection is now uniquely determined.

The fact that the torsion-free connection is that choice of connection which is
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SO(p, q,R)-invariant is exactly6 the reason why the equivalence calculations on

U ×G can be done first on U .

Note that the theory of the method of equivalence confirms the classical theo-

rem that an n-dimensional Riemannian metric is determined up to isometries by

prescribing the Christoffel symbols, the Riemannian curvature tensor and its deriva-

tives up to order n+1+n(n−1)/2. The precise statement of this theorem contains

conditions, on an e-structure, of regularity, equal order, equal rank, and preser-

vation of dependency. We refer to Gardner (1989) for the precise specification of

these conditions. We shall illustrate some of these points when we classify the 1+1

metrics. We further remark that the order stated in the theorem is one more than

the dimension of U ×G. The stated number of differentiations is an upper bound.

Usually much less than this is needed to determine the equivalence of two metrics,

whether or not symmetries are involved.

Since the whole problem of equivalence on U ×G can be completely solved by

reducing to a computation on U × {e} ∼= U , and then multiplying by appropriate

matrices, we might as well choose the representation of U × {e} in such a fashion

as to simplify the computations. This provides a geometric justification for the

usual practice of rotating an orthonormal tetrad so that one eliminates as many

kinematic quantities as possible on U × {e}, since they are invariantly defined on

U ×G.

A standard procedure for classifying metrics involves using an eigenvalue ap-

proach on the Weyl and the Ricci tensors. This approach reduces the group G

to one of its subgroups by choosing invariantly defined frames based on quantities

appearing in the Riemann tensor. As Bradley and Karlhede (1990) remarked, it

6I am grateful to M.A.H. MacCallum for pointing this out.
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is difficult to use the Christoffel symbols directly on U to carry out the appro-

priate reduction, since they are not tensorial in nature. However, on U × G, the

corresponding objects, φ, are tensorial. This gives a further justification for the ap-

proach used in the orthonormal tetrad techniques, where a frame can often be fixed

by requiring that certain combinations of Christoffel symbols be made to vanish.

Since this allows us more possibilities to reduce the group G than by solely using

the Riemann tensor, the number of derivatives required for a classification can be

reduced. For four-dimensional spacetimes, it has been shown that there is an up-

per bound of seven derivatives of the Riemann tensor. A summary of the relevant

results can be found in Collins et al (1993). It appears likely that the upper bound

will be reduced to six; the only situations where that bound of six has not been

proved are the non-vacuum type-N metrics and a class of conformally flat metrics.

In Collins, d’Inverno and Vickers (1990), the question was posed as to whether

one needs to proceed beyond the third derivative. Since then, Koutras (1992) has

answered that query by exhibiting a spacetime that requires four derivatives for its

classification. So far, this is the highest number of differentiations that has been

required for classifying a spacetime. In short the maximum number of necessary

differentiations is at least four, no more than seven and very possibly no more than

six.

2.2 Equivalence under the conformal group

In this section, we study the equivalence of metrics under the conformal group of

transformations CO(p, q,R) = {λS|λ ∈ R∗, S ∈ SO(p, q,R)}, where R∗ represents

the non-zero real numbers. We shall show that the geometric object allowing us to

classify metrics under the conformal group is the Weyl tensor. Unlike the situation
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of the classification under the orthonormal group, a single lift is not sufficient to

solve the problem. This section follows Gardner (1989), who stops after providing

the structure equation on the twice-lifted space with a positive-definite metric. In

the present work, metrics of arbitrary signature are allowed. We compute the action

of the conformal group on the Weyl tensor. Some special cases of the classification

are briefly addressed. We discuss the significance of particular one-forms that were

introduced during the calculation; these contain the Ricci part of the Riemann

tensor. Using the method of calculation discussed in this section, we then show

explicitly the well-known result that, for conformally flat metrics, the Weyl tensor

vanishes.

Let there be a non-degenerate metric given by ds2 = σtησ, where

η = diag(−1,−1, · · · ,−1︸ ︷︷ ︸
q

, 1, 1, · · · , 1︸ ︷︷ ︸
p

).

This metric will be used to raise and lower indices.

The one-forms σ give a coframe for the cotangent space to the base manifold U .

We lift the problem to the space U×G, whereG is, in this case, the conformal group.

We therefore look at the lifted coframe ω = λSσ, where StηS = η, S ∈ SO(p, q,R)

and λ ∈ R∗. The structure equations, which are obtained by differentiating ω,

contain terms that are linear and quadratic in ω. Therefore, they can be expressed

as dω = ∆ ∧ ω, where ∆ is a particular matrix of one-forms.

We now proceed to determine which entries in ∆ do not contain derivatives of

group parameters. The defining relations of the orthogonal group SO(p, q,R) are

StηS = η. Taking the exterior derivative of these relations gives the defining expres-

sions of the corresponding Lie algebra so(p, q,R), that is, ηdSS−1+(dSS−1)tη = 0.

This implies that the defining relations of the Lie algebra associated with the con-
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formal group CO(p, q,R) obey the condition

η d(λS)(λS)−1 + (d(λS)(λS)−1)tη = 2dλλ−1 η.

As a consequence of this, since the structure equations are of the form

dω = d(λS)(λS)−1 ∧ ω + terms quadratic in ω,

there are no derivatives of the group parameters in the combination

η∆+∆tη − 2

n
(trace∆)η

of entries of the matrix ∆. We say that this combination gives the principal com-

ponents of the first order for the present equivalence problem. They are linear in

ω, and so the corresponding parts of the structure equations are quadratic in ω.

Consequently, the principal components of first order yield the torsion. The tor-

sion is not necessarily unique for a given problem; by varying the derivatives of the

group, the torsion can change, and sometimes can even be made to vanish. The

other components of ∆ can split into a diagonal part and an antisymmetric part

(once indices are lowered). To summarize, the structure equations can be written

as

dω = (ϕ̃+ α̃In) ∧ ω + torsion,

where ϕ̃ is antisymmetric with indices lowered, i.e. it obeys ηϕ̃ + ϕ̃tη = 0, and

where In is the n-dimensional identity matrix.

From the equivalence problem under SO(p, q,R), we know that all the torsion

can be absorbed into ϕ̃. In that situation, the absorption was unique. This is not so

in the present situation, since there are more independent group parameters than

needed to do the absorption. We can still vary α̃. This produces torsion terms,
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which can be absorbed into ϕ̃. Performing that absorption, we conclude that the

structure equations can be written as

dw = (ϕ+ α In) ∧ ω, (2.11)

where ϕ is antisymmetric with indices lowered, i.e. ηϕ + ϕtη = 0, where In is the

n-dimensional identity matrix, and where ϕ and α contain group derivatives. There

is no longer any torsion, and so there is no permanent torsion. Unlike the situation

in the previous section, ϕ and α are not uniquely determined. Therefore there is

still some freedom left after making the torsion vanish.

Sufficient conditions for this system to be integrable are provided by the Cartan-

Kähler theorem, which is a geometric generalization of the Cauchy-Kowalewski

theorem. We refer the reader to Bryant et al. (1991) for the statement and proof of

this difficult theorem. However, for a problem such as the one we are dealing with,

the theorem applies whenever the exterior differential system is real analytic and

satisfies the condition of being in involution. This notion of involution is not that of

Frobenius theory. Fortunately, Cartan has provided a simple test which can even be

used as the definition of involution. For the situation we are considering, Cartan’s

test is as follows (for further details, see Gardner (1989)). We start with the matrix

ϕ+ αIn mod base. We construct a set Σ1 as follows. We first let Σ1 be the empty

set. Then we perform the following step as many times as possible: add to Σ1 an

element of the matrix, noting the row from which it came, provided that the chosen

element is independent of elements already in Σ1 and provided it did not come from

a row already used. When there are many ways to construct Σ1, we choose one way

amongst those that maximize the cardinality of Σ1. We then construct Σi, with

i ≥ 2, in a similar fashion using the matrix ϕ+αIn mod(base∪Σ1∪Σ2∪· · ·∪Σi−1).

The ith Cartan character is defined to be the cardinality of Σi. The Cartan
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character is defined to be the integer σ =
∑

i iσi. The system is said to be in

involution if its Cartan character is equal to the degree of freedom in it.

For the case under consideration, we can construct Σ1 using the first column

of ϕ + αIn. The elements are all independent, and therefore σ1 = n. Note that

(ϕ+αIn mod base) is an (n−1)× (n−1) antisymmetric matrix. The next Cartan

characters are then σj = n − j, for j = 2, . . . , n. The Cartan character is the sum

σ =
∑

j j σj = n(n+1)(n−1)
6

+ 1. The system is in involution if this number is equal

to the degree of freedom in ϕ and α. In order to find this degree of freedom, we

suppose that we can find ϕ′ and α′ also satisfying

dw = (ϕ′ + α′ In) ∧ ω, (2.12)

where ηϕ′ + ϕ′tη = 0. By subtracting (2.11), we must have

((ϕ′ − ϕ) + (α′ − α) In) ∧ ω = 0.

Putting in the indices, this is just

(
(ϕ′ − ϕ)ij + (α′ − α)δij

)
∧ ωj = 0. (2.13)

Using the Cartan lemma, we deduce that

(ϕ′ − ϕ)ij + (α′ − α)δij = Ai
jk ω

k,

with Ai
jk = Ai

kj. Now, taking the trace, we obtain α′ − α = 1
n
Ai

ik ω
k. By

simple renaming of Ai
ik/n by Ak, we find that α′ = α + Ai ω

i. Substitution into

(2.13), and making use of the fact that (ϕ′ − ϕ) is antisymmetric with indices

lowered, yields that (ϕ′ − ϕ) is now uniquely determined. Explicitly, we obtain

Ai
jk = Akδ

i
j +Ajδ

i
k −Aℓη

ℓiηjk; therefore, (ϕ
′)ij = ϕi

j + (Ajδ
i
k −Aℓη

iℓηjk)ω
k. The

degree of freedom is then n, which is the number of functions Ai. In summary, we
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have involution if and only if

n(n+ 1)(n− 1)

6
+ 1 = n.

The solutions to this are n = 1, 2,−3. We therefore have involution if and only

if n = 1 or 2, since the solution n = −3 is, of course, extraneous. This is say-

ing that all real analytic one-dimensional metrics are equivalent under conformal

transformations, and that all real analytic two-dimensional metrics (with the same

signature) are equivalent to each other under the action of the conformal group.

In the other cases, that is, when n > 2, the system is not involutive. We are now

faced with another equivalence problem, where the group of indeterminacy is now

the n-dimensional group G(1) of the functions Ai. We therefore lift the equivalence

problem on U × G to an equivalence problem on U × G × G(1). There is a gain,

since dimG(1) < dimG. Because G(1) is defined to be the group that preserves the

relation dw = (ϕ+ αIn) ∧ ω, the lift from U ×G to U ×G×G(1) also satisfies the

same equation. We therefore keep the same notation; but now, ω, α and ϕ indicate

forms over U×G×G(1).We have computed the derivative of ω on U×G; we showed

that it can be made torsion-free on that space. The expression for the derivative of

ω on U × G × G(1) is, of course, the same as the one on U × G. However, for the

purpose of the equivalence problem on the lifted space U ×G×G(1), the derivative

contains only torsion terms, since (ϕ + αIn) ∧ ω does not contain derivatives of

elements of G(1). We now require the derivatives of α and ϕ. To compute them, we

first take the exterior derivative of dω, to obtain

0 = d2ω = [(dϕ− ϕ ∧ ϕ) + dα In] ∧ ω. (2.14)

Let us define

Θ := dϕ− ϕ ∧ ϕ+ dα In.
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The trace-free part of Θ is antisymmetric when its indices are lowered, and so obeys

the relation

ηΘ+Θtη − 2

n
traceΘ η = 0. (2.15)

Also, Θ obeys the condition that

Θ ∧ ω = 0,

which, by the Cartan lemma, implies that

Θ = ψ ∧ ω.

This is, using indices,

Θi
j = ψi

jk ∧ ωk.

The condition (2.15) on Θ then gives

ψijk ∧ ωk + ψjik ∧ ωk − 2

n
ψℓ

ℓk ∧ ωk ηij = 0.

If we multiply this equation with all possible combinations of (n − 1) cobasis ele-

ments ω, we obtain, by application of the Cartan lemma, that

ψijk ≡ −ψjik + 2ϵk ηij mod base,

where we define ϵk := 1
n
ψℓ

ℓk. In terms of ψ, the integrability condition (2.14)

becomes

ψi
jk ∧ ωk ∧ ωj = 0.

If we multiply this relation with all possible combinations of (n−2) cobasis elements

ω, we find, after lowering the i index, that ψ also obeys

ψijk ≡ ψikj mod base.
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We can then solve for ψijk. The solution is

ψijk = ϵjηki − ϵiηjk + ϵkηij + Aijkℓ ω
ℓ,

where Aijkℓ are functions. By back substitution, we obtain that

Θij = ϵj ∧ ωi − ϵi ∧ ωj + ηijϵk ∧ ωk + Aijkℓ ω
ℓ ∧ ωk.

Without loss of generality, we can assume that Aijkℓ is antisymmetric in the last

two indices, i.e.

Aijkℓ + Aijℓk = 0,

since the symmetric part is cancelled when the antisymmetry in ωℓ ∧ ωk is taken

into account. This entails that there are at most n3(n−1)/2 independent functions

aijkℓ for an n-dimensional manifold U . Because Θij = −Θji, it follows that Aijkℓ is

antisymmetric in the first two indices, i.e.

Aijkℓ + Ajikℓ = 0.

This reduces the number of independent components of A to n2(n−1)2/4. Further-

more, the requirement that Θij ∧ ωk = 0 imposes the condition

Ai[jkℓ] = 0.

In these equations, there are n possibilities for the index i and n(n − 1)(n − 2)/6

possibilities for the other three indices. The number of independent entries in A

is therefore n2(n2 − 1)/12. The derivatives of elements of G(1) appear solely in the

various terms ϵi. This allows us to give the structure equations on U ×G×G(1) as

d


α

ϕ

ω

 =


0 0 ϵ

0 0 δ(ϵ)

0 0 0

 ∧


α

ϕ

ω

+


0

ϕ ∧ ϕ+A

(ϕ+ αIn) ∧ ω

 ,
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where

[δ(ϵ) ∧ ω]ij = (ϵjδ
i
k − ϵℓη

ℓiηkj) ∧ ωk

and

A = Ai
jkℓω

ℓ ∧ ωk.

The last term in these structure equations is the torsion.

We now proceed to eliminate as many torsion terms as possible, using the G(1)

freedom in ϵ. This proceeds as follows. The functions ϵ and Aijkℓ are not uniquely

defined. Suppose that ϵ̄i and Āijkℓ also satisfy:

Θij = ϵ̄j ∧ ωi − ϵ̄i ∧ ωj + ηij ϵ̄k ∧ ωk + Āijkℓ ω
ℓ ∧ ωk.

By subtraction of these two equalities on Θij, it follows that

(
(ϵ̄j − ϵj)ηik − (ϵ̄i − ϵi)ηjk + ηij(ϵ̄k − ϵk) + (Āijkℓ − Aijkℓ)ω

ℓ
)
∧ ωk = 0.

If we multiply this last expression by all possible ω, with the exception of ωi, all the

terms are eliminated except the one with ηij. By application of the Cartan lemma,

we can conclude that

ϵ̄k − ϵk = Bkmω
m,

where the Bkm are functions. These functions represent a certain amount of freedom

that can be used for eventual removal of torsion. They are not, however, totally

arbitrary, since they must obey the condition

(
(Bjℓηik −Biℓηjk +Bkℓηij + (Āijkℓ − Aijkℓ)

)
ωℓ ∧ ωk = 0.

If we exchange i and j and add to the original expression, we obtain

Bkℓ ω
ℓ ∧ ωk = 0,



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 39

from which one concludes that Bkℓ is symmetric. We now proceed to use the

arbitrariness left in Bkℓ. Now Bjℓ obeys

Bjℓηik−Bjkηiℓ−Biℓηjk+Bikηjℓ+(Bkℓ−Bℓk)ηij+(Āijkℓ−Aijkℓ)−(Āijℓk−Aijℓk) = 0,

which simplifies to

Bjℓηik −Bjkηiℓ −Biℓηjk +Bikηjℓ + 2 (Āijkℓ − Aijkℓ) = 0.

If we raise the index i and take the trace on k and i, we obtain

(n− 2)Bjℓ +Bηjℓ + 2 (Āi
jiℓ − Ai

jiℓ) = 0,

where B := Bi
i. If we now raise j and take the trace, we obtain

(n− 1)B + Āij
ij − Aij

ij = 0.

We can use the freedom in B to set

B =
Aij

ij

n− 1
.

The remaining freedom in Bij is used to set

Bjℓ =
−Bηjℓ + 2Ai

jiℓ

n− 2
,

which is consistent with the definition of B. In this manner, the freedom in Bij

is used to set the trace of A to vanish, i.e. Āi
jiℓ = 0. The other Āi

jkl are then

equal to their un-barred versions. When such a choice of Bjℓ as described above has

been made, we denote the resulting Āi
jkℓ by

1
2
W i

jkℓ. At this juncture, we note that

W possesses the algebraic symmetries of the Weyl tensor. There are n(n + 1)/2

independent Bkℓ. This means that there are n(n+1)(n+2)(n− 3)/12 independent

entries in Wijkℓ. This means that if U is a three dimensional manifold, W is always
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zero. We also note that now ϵ and W are uniquely defined. Therefore, the group

G(2) of freedom consists solely of the identity element. We thus have a uniquely

defined coframe, or e-structure, on U × G × G(1) × G(2) given by ω, ϕ, α and ϵ. In

order to find the fundamental invariants for this equivalence problem, we first need

to ascertain whether this e-structure is in involution. The part of the structure

equations that involve derivatives of the group G(1) is:

d

 α

ϕij

 =

 ϵk ∧ ωk

ϵj ∧ ωi − ϵi ∧ ωj

+ · · · .

The right hand side has the form of a matrix M(ϵ) multiplied, using exterior mul-

tiplication, by ω. The Cartan character from M(ϵ) is easily seen to be non-zero.

However, there is no degree of freedom in the definition of ϵ. It follows that the

system is not in involution whence a prolongation step is needed. The prolongation

is obtained by computing the value of dϵ.

We already have expressions7 for the exterior derivatives of ω, ϕ and α. The

prolongation step will give the structure equations on U × G × G(1) × G(2). We

obtain dϵ by examining the integrability condition of α, which is given by

0 = d2α = d(ϵk ∧ ωk) = dϵk ∧ ωk − ϵℓ ∧ (ϕl
k + αδlk) ∧ ωk

=
(
dϵk − ϵℓ ∧ ϕℓ

k − ϵk ∧ α
)
∧ ωk.

It follows, by the Cartan lemma, that

dϵk = ϵℓ ∧ ϕℓ
k + ϵk ∧ α + ζkℓ ∧ ωℓ,

where the functions ζ are one-forms subject to the restrictionthat

ζkℓ ∧ ωℓ ∧ ωk = 0. (2.16)

7We have these derivatives on U ×G ×G(1), but because G(2) is defined to be the group the

preserves the form of those derivatives we need not introduce new notation even though ω, ϕ, α

and ϵ are now defined on the space U ×G×G(1) ×G(2).



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 41

Exterior multiplication of this last expression by all the other cobasis elements ω,

enables us to conclude, through the Cartan lemma, that

ζkℓ = Hkℓmω
m, (2.17)

where Hkℓm are functions. Back substitution reveals that

H[kℓm] = 0. (2.18)

Since we are only interested in ζ in so far as it appears in the product

ζkℓ ∧ ωℓ = Hkℓm ω
m ∧ ωℓ,

we can, without loss of generality require that G be antisymmetric in the last two

indices, i.e. Hkℓm = −Hkmℓ.

The structure equations on U ×G×G(1) ×G(2) can be summarized as follows:

dω = (ϕ+ αIn) ∧ ω,

dϕ = ϕ ∧ ϕ− [ϵ ∧ ω] +W ,

dα = ϵ ∧ ω

and

dϵ = ϵ ∧ ϕ+ ϵ ∧ αIn +H.

With indices, these become

dωi = (ϕi
j + α δij) ∧ ωj,

dϕij = ϕik ∧ ϕk
j + ϵj ∧ ωi − ϵi ∧ ωj +

1

2
Wijkℓ ω

ℓ ∧ ωk, (2.19)

dα = ϵk ∧ ωk (2.20)

and

dϵk = ϵℓ ∧ ϕℓ
k + ϵk ∧ α +Hkℓm ω

m ∧ ωℓ, (2.21)
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where

Hkℓm = −Hkmℓ,

Hkℓmω
k ∧ ωℓ ∧ ωm = 0

and W has the index symmetries of the Weyl tensor.

The fundamental invariants of this equivalence problem are given by W i
jkℓ,

Hkℓm and their derivatives.

In this paragraph we exhibit the relation between W and the Weyl tensor. We

first define a left action on the group G as follows:

L
(1)
C : G→ G

(λ, S) 7→ (Cλ, S).

The action induced on the cobasis ω is

L
(1)
C

∗
ωi = Cωi.

This enables us to define ξi as follows:

L(1)∗
λ−1ωi = λ−1ωi =: ξi,

from which ωi = λξi. We can consider ξi as a quantity defined over the manifold

U×SO(p, q,R), and so we can use the results of the previous section. The structure

equations satisfied by ξi are then

dξi = φi
j ∧ ξj,

and those satisfied by φi
j are

dφi
j = φi

j ∧ φj
k +

1

2
Si

jkℓω
ℓ ∧ ωk. (2.22)
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This enables us to compute the structure equations for the conformal space in terms

of the Riemannian space:

dωi = dλ ∧ ξi + λφi
j ∧ ξj

= (dλλ−1δij + φi
j) ∧ ωj.

We use the discussion that begins with equation (2.12) above to enable us to identify

α = dλλ−1 +Miω
i

and

ϕi
j = φi

j + (Mjδ
i
k −Mℓη

iℓηjk)ω
k,

where Mi is a member of G(1). By differentiation of α, we obtain, after using equa-

tion (2.20) and Cartan’s lemma,

ϵi = dMi +Mjϕ
j
i +Miα +Bijω

j, (2.23)

with Bij = Bji. We can now define a left action on G×G(1) by the following:

L
(2)
C,K : G×G(1) → G×G(1)

(λ, S;M) 7→ (Cλ, S;K +M),

where K = (K1, K2, . . . , Kn) and M = (M1,M2, . . . ,Mn). It follows that

L
(2)∗
C,Kω

i = Cωi,

L
(2)∗
C,Kα = dλλ−1 + (Ki +Mi)Cω

i

and

L
(2)∗
C,Kϕ

i
j = φi

j + [(Kj +Mj)δ
i
k − (Kℓ +Mℓ)η

iℓηjk]Cω
k.

We can recover ξi and φi
j using this action, since

L
(2)∗
λ−1,−Mω

i = λ−1ωi = ξi
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and

L
(2)∗
λ−1,−Mϕ

i
j = φi

j.

We can also obtain the contribution of the conformal factor:

L
(2)∗
λ−1,−Mα = dλλ−1.

From equation (2.23), we obtain that the induced action on ϵ is as follows:

L
(2)∗
C,Kϵk = dMk + (Ki +Mi)(ϕ

i
k + αδik) + L

(2)∗
C,KBjkCω

j,

where Bjk = Bkj. This implies that

L
(2)∗
λ−1,−Mϵk = dMk +Bjk|(1,0)ξj,

where we have used the definition

Bjk|(1,0) := L
(2)∗
λ−1,−MBjk.

On the one hand, we have

L
(2)∗
C,Kdϕij = d(L

(2)∗
C,Kϕij)

= d(φi
j + [(Kj +Mj)δ

i
k − (Kℓ +Mℓ)η

iℓηjk ∧ Cωk

= dφi
j + dMj ∧ Cωi − dMℓη

iℓηjk] ∧ Cωk)

+ [(Kj +Mj)δ
i
k − (Kℓ +Mℓ)η

iℓηjk]C(ϕ
k
m + αδkm) ∧ ωm).

On the other hand, we have, using (2.19), that

L
(2)∗
C,Kdϕij = L

(2)∗
C,K(ϕik ∧ ϕk

j + ηikϵj ∧ ωk − ηjkϵi ∧ ωk +Wijkℓ ω
k ∧ ωl)

= {φik + [(Kk +Mk)ηim − (Ki +Mi)ηkm] ∧ Cωm} ∧

∧{φk
j + [(Kj +Mj)δ

k
n − (Kℓ +Mℓ)η

kℓηjn] ∧ Cωn}

+ηik[dMj + (Kℓ +Mℓ)(ϕ
ℓ
j + αδℓj) + L

(2)∗
C,KBjkCω

m] ∧ Cωk

−ηjk[dMi + (Kℓ +Mℓ)(ϕ
ℓ
i + αδℓi) + L

(2)∗
C,KBjkCω

m] ∧ Cωk

+(
1

2
L
(2)∗
C,KW

i
jkℓ)Cω

ℓ ∧ Cωk.
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If we let C be equal to λ−1 and K be equal to −M , then we obtain

dφij + dMj ∧ ηiℓξℓ − dMi ∧ ηjkξk

= φik ∧ φk
j + [dMj +Bjk|(1,0)ξk] ∧ ηiℓξℓ − [dMi +Bik|(1,0)ξk] ∧ ηjℓξℓ

+(
1

2
L
(2)∗
λ−1,−MWijkℓ)ξ

ℓ ∧ ξk.

We can replace dφij using its value in (2.22). Doing so, we can solve for

(
1

2
L
(2)∗
λ−1,−MWijkℓ) = Sijkℓ −Bik|(1,0)ηjℓ +Biℓ|(1,0)ηjk +Bjk|(1,0)ηiℓ −Bjℓ|(1,0)ηik.

If we raise i, let k = i and then sum, we obtain

0 = Si
jiℓ −Bi

i|(1,0)ηjℓ +Bjℓ|(1,0) +Bjℓ|(1,0) − nBjℓ|(1,0),

where we have used the fact that W i
jiℓ = 0. This enables us to isolate Bjℓ|(1,0) and

so obtain

Bjℓ|(1,0) =
1

n− 2
[Si

jiℓ −
ηjℓ

2(n− 1)
Siℓ

iℓ]. (2.24)

Since Si
jkℓ is the Riemann tensor on U × SO(p, q,R), it follows that Bjℓ|(1,0) is

isomorphic to the Ricci tensor on U×SO(p, q,R), and therefore the trace-free tensor

L
(2)∗
λ−1,−MWijkℓ is the Weyl tensor on U × SO(p, q,R). The quantity W can now be

identified as the matrix of two-forms representing the Weyl tensor on U ×G×G(1).

From equation (2.23), we obtain by exterior differentiation the following

dϵi = dMj ∧ (ϕj)i +Mj dϕ
j
i + dMi ∧ α +Mi dα + d(Bijω

j).

From this value for dϵi, we deduce that

L
(2)∗
λ−1,−Mϵi = dMj ∧ φj

i + dMi ∧ dλλ−1 + (dBij) |(1,0) ∧ ωj (2.25)

+
(
Bij|(1,0)

)
∧
(
φj

k ∧ ξk + dλλ−1 ∧ ξj
)
.
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From equation (2.21), one deduces that

L
(2)∗
λ−1,−Mϵi =

(
dMj +Bjk|(1,0)ξk

)
∧ φj

i +
(
dMi +Bji|(1,0)ξj

)
∧ dλλ−1(2.26)

+
(
L
(2)∗
(λ−1,−M)Hiℓm

)
ξm ∧ ξℓ.

Comparing equations (2.25) and (2.26), we obtain the condition(
dBij|(1,0) − L

(2)∗
(λ−1,−M)Hijmξ

m
)
∧ ξj = 0. (2.27)

We now proceed to compute the action of the group on W , the Weyl tensor.

This is done by taking the exterior derivative of dα and dϕ, and looking at what

happens to dW modulo the cobasis ω.

Differentiation of (2.19) yields

0 =
(
ϕip ∧ ϕmkη

pm + ϵk ∧ ωpηki − ϵi ∧ ωpηpk +
1

2
Wikpmω

p ∧ ωm
)
∧ ϕℓjη

kℓ

−ϕik ∧
(
ϕℓm ∧ ϕpjη

mp + ϵj ∧ ωmηml − ϵℓ ∧ ωpηpj +
1

2
Wℓjnmω

p ∧ ωm
)
ηkl

+
(
ϵℓ ∧ ϕℓ

j + ϵj ∧ α + ζjℓ ∧ ωℓ
)
∧ ωkηki

−ϵj ∧
(
ϕk

ℓ + αδkℓ
)
∧ ωℓηki

+ϵi ∧
(
ϕk

ℓ + αδkℓ
)
∧ ωℓηkj +

1

2
dWijkℓ ∧ ωk ∧ ωℓ

+
1

2
Wijkℓ

(
ϕk

m + αδkm
)
∧ ωm ∧ ωℓ − 1

2
Wijkℓ ∧

(
ϕℓ

m + αδℓm
)
∧ ωm,

which simplifies to

0 = (dWijkℓ + 2Wijkℓα−Wm
jkℓϕim (2.28)

+Wimkℓϕ
m

j +Wijmℓϕ
m

k +Wijkmϕ
m

ℓ

+ 2ζjℓηki − 2ζiℓηkj) ∧ ωk ∧ ωℓ.

Multiplying (2.28) with all possible exterior products of (n− 2) different ω, we can

conclude that

0 ≡ dWijkℓ + 2Wijkℓα−Wm
jkℓϕim (2.29)
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+Wimkℓϕ
m

j +Wijmℓϕ
m

k +Wijkmϕ
m

ℓ mod base.

It follows that W transforms as a tensor under the SO(p, q,R) group (through ϕ)

and scales as λ2 under stretching (through α). This means that

W i
jkℓ = Si

m(S
−1)rj(S

−1)pk(S
−1)qℓλ

−2W̃m
rqp, (2.30)

where W̃ is W evaluated at a fixed choice of the group parameters. Differentiat-

ing (2.30), we obtain

dW i
jkℓ ≡ (dSS−1)imW

m
jkℓ − (dSS−1)mjW

i
mkℓ − (dSS−1)mkW

i
jmℓ

− (dSS−1)mℓW
i
jkm − 2(dλλ−1)W i

jkℓ mod base.

This is equivalent to the congruence (2.29).

Various special cases are apparent. The first special case is if all W i
jkℓ vanish.

8

Since in that case W = 0, we cannot use it to perform a group reduction in an

invariant way. We shall now analyze this situation in more details. Equation (2.28)

reduces to

2(ζjℓηki − ζiℓηkj) ∧ ωk ∧ ωℓ.

Using equation (2.17) and remembering that H is symmetric in the last two indices,

this is equivalent to

(ηkjHimp − ηkiHjmn)ω
k ∧ ωp ∧ ωm = 0. (2.31)

Due to the antisymmetry in i and j, there are n(n−1)/2 (exterior) equations. The

number of unknowns, Hijk is n2(n − 1)/2. Consider the sets {i, j} and {m, p}. If

they are equal, the corresponding terms in equation (2.31) vanish either because of

8Of course, if the manifold U is three-dimensional, then W is always zero; therefore, this does

not represent any restriction.
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η (when k ̸∈ {i, j}) or because of the exterior product (when k ∈ {m, p} = {i, j}).

The terms corresponding to the situation when the intersection of {i, j} and {m, p}

is empty imply that Himp = Hjmp = 0. This is because η is diagonal and that all

ωk ∧ ωm ∧ ωp, with k ∈ {i, j}, are all independent of the other possibilities. The

value of n(n−1)(n−2)/2 unknowns is thus given. This leave n(n−1) unknowns to

be found. Note that the step just performed requires the dimension of U be at least

four. The remaining situation is that when the intersection of {i, j} and {m, p} has

one element. Without loss of generality, we can choose m ∈ {i, j} and p ̸∈ {i, j}.

Taking into account the vanishing of the aforementioned Himp, equation (2.31)

reduces to

(ηjjHiip + ηiiHjjp)ω
n ∧ ωi ∧ ωj = 0 (No sum on i, j). (2.32)

Each of the n(n−1)/2 such exterior equation imply the vanishing of n−2 coefficients.

There are therefore n(n − 1)(n − 2)/2 such equations which are homogeneous in

Hiip. Note that n(n − 1)(n − 2)/2 ≥ n(n − 1) for n ≥ 4. The equality arises only

when n = 4. From the equations implied by equation (2.32), consider the subset

given by

ηjjH00p + η00Hjjp = 0, j ̸= 0

and

η11H22p + η22H11p = 0.

There are n(n − 1) such equation. The determinant of the matrix of coefficient

is easily seen to be, up to a sign,
(
2η

(n−2)
00 η11η22

)n
; therefore, it does not vanish

whence the only solution to Hijk is the trivial solution. We then conclude that the

dimension of U is greater than three, all the functions Hijk vanish.

We now turn to the 3-dimensional case. In that situation Wijkℓ necessarily

vanishes. There are a maximum of n2(n− 1)/2 = 9 components of H i
jk, due to the
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antisymmetry in j and k. This maximum is immediately reduced to 8 because of

the single constraint (2.18). Equation (2.28) reduces to

ηkiHjℓmω
m ∧ ωkω ∧ℓ −ηkjHiℓmω

m ∧ ωk ∧ ωℓ = 0.

Since η is diagonal, this equation is equivalent to

ηiiHjℓmω
m ∧ ωiω ∧ℓ −ηjjHiℓmω

m ∧ ωj ∧ ωℓ = 0 (No sum on i, j),

which, in turn, is equivalent to

ηiiηjj
(
Hj

ℓmω
m ∧ ωiω ∧ℓ −H i

ℓmω
m ∧ ωj ∧ ωℓ

)
= 0 (No sum on i, j), (2.33)

The indices i, j are two of three possibles values of indices in a three dimensional

space. Let the index r denote the third one. Since H is antisymmetric in the last

two indices, the previous equation yields that the trace Hk
kℓ vanishes. This reduces

the number of components of H i
jk to 5. Let the quantity L be defined implicitly

as follows:

H i
jkω

j ∧ ωk ∧ ωs = Lisω0 ∧ ω1 ∧ ω2. (2.34)

Equation (2.33) gives

ηiiηjj
(
Lij − Lji

)
ω0 ∧ ω1 ∧ ω2 = 0

whence Lij is symmetric. Lowering i in equation (2.34), letting s = i and taking

the sum over i yields

Hijkω
j ∧ ωkωi = Li

iω0 ∧ ω1 ∧ ω2.

Since the left hand side of this equality vanishes, the quantity L must be trace-free.

The fundamental invariants of this three-dimensional conformal equivalence prob-

lem are the five quantities Lij and their covariant derivatives. Using equation (2.27),

we find that

Lis = Bik;ℓ −Biℓ;k,
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where (s, k, ℓ) is a cyclic permutation of (0, 1, 2) and where the semi-colon denotes

covariant differentation. Given equation (2.24), specialized to the three dimensional

case (i.e. the case where n = 3), we can identify Lis as the Cotton-York, or Weyl-

Schouten, tensor (Kramer et al., 1980).

If all the W i
jkℓ are constants, we have another special case. Since in that case

varying the group does not produce any change in W , then W cannot be used to

perform a reduction of the group in an invariant way. Another way to see this is

that, in this case, the rank of the e−structure on U ×G×G(1) is zero. This implies

that there is, for such a space, a group of symmetry with the same dimension as

that of U×G×G(1); this is the maximal symmetry group possible. Therefore, there

are no privileged directions; such directions would allow us to do a group reduction.

It is important that W is defined on U ×G×G(1). Constancy of W on U does not

necessarily imply the constancy discussed here. The rest of Cartan’s classification

approach would involve consideration of the rank of dW , and of further derivatives.

In the process of this calculation, the forms ϵ were introduced. They contain

the non-Weyl part, i.e. the Ricci part, of the Riemann tensor. The particular

combination of Ricci tensor components appearing in ϵ is exactly the combination

that is differentiated in the definition of the Cotton-York tensor, see Kramer et

al. (1980), in the case of the three-dimensional manifolds. The forms ϵ do allow us

to compute the Weyl two-forms directly from the Riemann two-forms without first

exhibiting the Riemann tensor from the two-forms.

2.2.1 Conformally flat metrics

We now present an example which illustrates calculations involving the preceding

theory. The starting point is a metric that is conformally equivalent to a flat metric.
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We proceed to compute the Weyl tensor, and thereby demonstrate the well-known

fact that it is zero. Suppose that

ω = zZσ

where σ is a 1 × n array of exact differential forms σ = dx, z is a non-zero real

number and Z is a member of SO(p, q,R). Then, by differentiation, we have that

(
d(zZ)(zZ)−1 − ϕ− αI

)
∧ ω = 0.

We define

H := d(zZ)(zZ)−1 = dzz−1I + dZZ−1.

We can split H into the trace part dzz−1 and trace-free part dZZ−1. By application

of the Cartan lemma, we have

ϕi
j + αδij −H i

j = Ci
jkω

k,

for some functions Ci
jk. Taking the trace, it follows that

α = dzz−1 + fkω
k,

where we define fk :=
1
n
Ci

ik. Back substitution shows that

(ϕ− dZZ−1)ij = Ci
jkω

k,

subject to

(fkδ
i
j + Ci

jk)ω
k ∧ ωj = 0.

The latter expression implies that

Ci
kj = Ci

jk − fjδ
i
k + fkδ

i
j.
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Now, since Z is a member of SO(p, q,R), then (dZZ−1)ij = −(dZZ−1)ji. There-

fore,

Cijk = −Cjik.

We can then solve for Cijk and obtain

Cijk = −fiηjk + fjηik.

Therefore

(ϕ− dZZ−1)ij = −fiηjkωk + fjηikω
k.

Taking the exterior derivative of α, we get

dα = (dfk + fℓϕ
ℓ
k + fℓαδ

ℓ
k) ∧ ωk.

This enables us to compute, using (2.20), that

ϵk = dfk + fℓϕ
ℓ
k + fℓαδ

ℓ
k +Gkℓω

ℓ, (2.35)

for some functions Gkℓ satisfying Gkℓ = Gℓk. The non-diagonal connection forms

are

ϕi
j = (dZ Z−1)ij − ηℓifℓηjkω

k + fjω
i. (2.36)

The exterior derivative of this last expression is

dϕi
j = (dZZ−1)ik ∧ (dZZ−1)kj − ηℓidfℓηjk ∧ ωk − ηℓifℓηjk(ϕ

k
ℓ + αδkℓ) ∧ ωℓ

+dfj ∧ ωi + fj(ϕ
i
ℓ + αδiℓ) ∧ ωℓ.

Using (2.35) and (2.36), this becomes

dϕi
j = ϕi

k ∧ ϕk
j + ϵj ∧ ωi − ηimηjkϵm ∧ ωk (2.37)

+
(
−Gjℓδ

i
k − fℓfjδ

i
k + ηjℓη

mnfmfnδ
i
k + ηimηjkGmℓ

−ηimηkℓfmfj + ηimηjkfmfℓ
)
ωℓ ∧ ωk.
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We now examine the last term. We first note that the term with ηkℓ is symmetric

in kℓ, and therefore vanishes when multiplied with ωℓ ∧ ωk and summed over all

possibilities. The coefficients of the independent two-forms ωℓ ∧ ωk simplify to

−Gjℓδ
i
k +Gjkδ

i
ℓ − fℓfjδ

i
k + fkfjδ

i
ℓ + ηjℓη

mnfmfnδ
i
k − ηjkη

mnfmfnδ
i
ℓ

+ηimηjkGmℓ − ηimηjℓGmk + ηimηjkfmfℓ − ηimηjℓfmfk,

which we define to be J i
jkℓ. It follows that J is antisymmetric in kℓ, and also in

ij, when the index i is lowered. Let i = k, then sum. Then raise j, let j = ℓ, and

sum. The result is

2(1− n)(Gi
i −

n− 2

2
f ifi) = J ij

ij.

It therefore follows that J ij
ij can be set to zero (without loss of generality) by

letting

Gi
i =

n− 2

2
f ifi. (2.38)

With back substitution, it follows that we can set J i
jiℓ to zero by letting

Gjℓ = −fjfℓ +
1

2
fmfmηjℓ,

which is consistent with (2.38). Actually, by direct calculation, one can verify that

not only the trace J i
jiℓ is translated to zero by the present choice of Gjℓ but also

every J i
jkℓ made to vanish. With these choices, we obtain

ωi = zZ i
jdx

j

ϕij = (dZZ−1)ij − fiηjkω
k + fjηikω

k

α = dzz−1 + fkω
k

and

ϵk = dfk + fℓϕ
ℓ
k + fℓαδ

ℓ
k − fkfℓω

ℓ +
1

2
fmfmηkℓω

ℓ,
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where Z ∈ SO(p, q,R). Since J i
jkℓ = 0, then equation (2.37) becomes

dϕi
j = ϕi

k ∧ ϕk
j + ϵj ∧ ωi − ηimηjkϵm ∧ ωk.

Thus, using (2.19), we find that, with this choice of metric, the Weyl tensor is zero.

Direct calculation shows that, for the manifolds we are investigating,

dϵk = ϵℓ ∧ ϕℓ
k + ϵk ∧ α.

The invariants Hjkℓ are then all equal to zero. This is compatible with the results

of the preceding section, for manifolds U of dimension greater than three, that the

functions Hijk must vanish when the Weyl tensor does so.

In summary, for conformally flat metrics, all the fundamental invariants van-

ish. We can invoke the theory of the equivalence to conclude that all real analytic

pseudo-Riemannian manifolds of dimension greater or equal to four such that their

Weyl tensor vanishes are conformally equivalent. In particular, since flat metrics

have their Weyl tensor equal to zero, all such aforementioned manifolds are confor-

mally flat if and only if they have zero Weyl tensor. Similarly, all three-dimensional

real analytic pseudo-Riemannian manifolds are conformally flat if and only if their

Cotton-York tensor vanishes. Also, all real analytic pseudo-Riemannian manifolds

of dimension one or two are conformally flat. These results are well known, see

Kramer et al. (1980)

2.3 A classification of 1+1 metrics

In this section, we classify real analytic pseudo-Riemannian two-dimensional met-

rics using the method of equivalence of Cartan. Afterwards, we redo the classifica-

tion with a slightly different point of view that emphasizes the physical aspects of
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the various cases. This second classification also illustrates the difference between

the Karlhede classification and that based on the method of Cartan. We recall that

on U ×SO(1, 1,R), the structure equations are (cf. (2.4) and (2.8)) the e-structure

dω0 = Π ∧ ω1

dω1 = Π ∧ ω0

and

dΠ = R ω0 ∧ ω1.

Taking the exterior derivative of the last equation yields

0 = d2Π = dR ∧ ω0 ∧ ω1.

By the Cartan lemma, this implies that

dR = Aω0 +Bω1, (2.39)

where A and B are functions.

The first case to consider is when the rank (as defined on page 19) of {dR} is

zero. It follows that A and B are both zero, and that R is a constant. In that case,

the derivative of R does not produce any new invariants, and so the rank of this

e-structure is 0 and the order is 0. The dimension of U × SO(1, 1,R) is 3. There

is a three-dimensional group of symmetry for these metrics. The dimension of this

group is obtained by subtracting the rank of the e-structure from the dimension of

the space U × SO(1, 1,R).

We now suppose that the rank of {dR} is one. The Riemann curvature R is

an invariant function. Therefore, the order of the e-structure is at least one. It is

exactly one if the derivative of R does not produce any new invariants. As a first
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step, we compute the derivatives of A and B from the integrability condition on R,

thereby obtaining

0 = d2R = dA ∧ ω0 + dB ∧ ω1 + AΠ ∧ ω1 +BΠ ∧ ω0.

We can then isolate dA and dB, and obtain

dA = −BΠ+ Cω0 +Dω1

and

dB = −AΠ+Dω0 + Eω1,

where C,D and E are functions. We remark that if A = 0, then dA = 0 implies

B = 0. Conversely, if B = 0, then dB = 0 implies A = 0. Since, in the present

situation, R cannot be constant, we must have that A2 + B2 ̸= 0. If the order

of the e-structure is one, then the fact that differentiating R does not produce

new invariants means that the rank of {dR, dA, dB} is one. This requires that

dR ∧ dA = 0, which is just

−BAω0 ∧ Π+ ADω0 ∧ ω1 +B2Π ∧ ω1 −BCω0 ∧ ω1 = 0.

Since ω0, ω1 and Π are independent, this means that B2 = 0, or B = 0. Similarly,

dR∧dB = 0 implies that A = 0. Now, we have already observed that A2+B2 ̸= 0,

and therefore the case of order one cannot happen. This result can also be obtained

from a group consideration.9 Suppose that the order is exactly one. That entails

that the rank must be equal to one whence there is a two-dimensional isometry

group. Also, there is a single invariant on M ×G. By the preceding this invariant

can be taken to be R. In addition, on M, except at isolated points, the orbits of

the isometry group must be two-dimensional; therefore, R must be constant on M

and thus also on M ×G. This is a contradiction.

9I thank M.A.H. MacCallum for noting this line of argument.
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We now turn to the situation when the order is at least two. This means that

dR produces at least one more invariant. There are two situations, depending

on whether the rank of {dR, dA, dB} is two or three. If this rank is three, then

differentiations of A and B cannot produce any new invariants independent of R,A

and B. Therefore the order of the e-structure is two and its rank is three. There is

no symmetry in this structure since its rank is equal to the dimension of the space

U × SO(1, 1,R) on which it is defined.

When the rank of {dR, dA, dB} is two, there is a functional relationship between

R,A and B. Their derivatives obey the relation dR ∧ dA ∧ dB = 0. This is

[− (A2 +B2)D + AB(C + E)] ∧ Π ∧ ω0 ∧ ω1 = 0,

where use has been made of the integrability condition on R. In this situation, B

cannot produce invariants that are not already given by R or A, and so we consider

the integrability condition on A. From d2A = 0, we obtain

0 = −dB ∧ Π−BdΠ + dC ∧ ω0 + Cdω0 + dD ∧ ω1 +Ddω1.

We deduce that

dC = −2DΠ+Hω0 + Iω1

and

dD = −(C + E)Π + (BR + I)ω0 + Jω1,

where H, I and J are functions. If the order of the e-structure is 2 then the rank

of {dR, dA, dB, dC, dD} is equal to the rank of {dR, dA, dB}, which is 2. Since B

is functionally dependent on R and A, it suffices to require that dR∧ dA∧ dC = 0

and dR ∧ dA ∧ dD = 0. These conditions translate to

0 =
(
BAI − 2D(AD −BD)−B2H

)
Π ∧ ω0 ∧ ω1
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and

0 =
(
BAJ − (AD −BC)(C + E)−B2(BR + I)

)
Π ∧ ω0 ∧ ω1.

Since the order of the e-structure is 2, there is a one-parameter group of sym-

metries. If either of these last two conditions is not satisfied, then the rank of

{dR, dA, dB, dC, dD} is 3. In this case the order is 3 and there is no group of

symmetry.

We summarize these results in table 2.1.

order of the rank of the symmetry

e-structure e-structure

1 0 3-dimensional group

1 1 this situation does not happen

2 2 1-dimensional group

2 3 no symmetry

3 3 no symmetry

Table 2.1: Classification of 1+1 metrics

We now examine the classification from a slightly different point of view in or-

der to shed more light as to the physical significance of the various cases.10 Equa-

tion (2.39) can be rewritten as

dR = (A coshα +B sinhα)σ0 + (A sinhα +B coshα)σ1

If dR = 0, we are in the situation with the 3-dimensional isometry group and so the

only invariant of this problem, viz. R, is constant. Hence, we suppose A2+B2 ̸= 0.

10I am grateful to M.A.H. MacCallum for his remarks concerning the null versus non-null

characterization of dR.
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If |A/B| ̸= 1, in other words, when dR is non-null, we can make 11 B = 0.

This fixes the group parameter α and hence we are no longer directly working with

the e-structure12 but with a normal-form-structure. Differentiating dR = Aω0, we

obtain

0 = d2R = dA ∧ ω0 + AΠ ∧ ω1,

whence, by the Cartan lemma,

dA = Cω0 +Dω1

and

Π = (D/A)ω0 + Eω1.

The product

dR ∧ dA = ADω0 ∧ ω1

vanishes if and only if D = 0, since A = 0 has already been excluded. We first

suppose that D ̸= 0. Both the order and the rank of the normal-form-structure are

equal to two. The invariants of the problem are R and A. There is no isometry in

this situation since the dimension13 of U × G is two. We note that this situation

corresponds to that of order = 2 and rank = 3 in the table 2.1. If D = 0, then

the rank and the order of the normal-form-structure are 1. There is therefore a

one-dimensional isometry group. The only invariant of the problem is R. We note

that this situation corresponds to that of order = 2 and rank = 2 in the table 2.1.

11If |A/B| < 1 then the discrete transformation (ω0, ω1) 7→
√
−1(ω1, ω0) is needed to keep α

real.

12Note that the e in e-structure refers to the group G(1) in U ×G×G(1). We are reducing the

group G to one of its subgroup G′. We are thus working with U ×G′ ×G(1).

13Rotating the dyad so that B = 0 reduces the group of indeterminacy to a zero-dimensional

group.
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If |A/B| = 1, then dR is null. It follows that B = ±A. We choose to consider

B = A; the situation of B = −A being analogous. We therefore have

dR = A(ω0 + ω1).

Differentiation of dR yields

dA = −AΠ+ C(ω0 + ω1),

after invoking the Cartan lemma. The rank relation

dA ∧ dR = −A2Π ∧ (ω0 + ω1)

does not vanish since we have already considered the situation of a 3-dimensional

isometry group. Differentiation of dA and the Cartan lemma imply that

dC = −2CΠ+D(ω0 + ω1) +
1

2
A(ω0 − ω1).

The rank test-quantity

dA ∧ dR ∧ dC = −A3RΠ ∧ ω0 ∧ ω1

cannot vanish. There cannot be any further independent invariant functions. Both

the order and the rank of the present e-structure are equal to 3 whence there are

no isometries.

2.4 Comments

It may now be seen that Cartan’s method of equivalence leads naturally to the

Riemann and Weyl tensor. It also unifies classifications of the metric based on

the Riemann tensor, such as the Petrov classification of the Weyl tensor and the
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Plebansḱı and Segre classifications of the Ricci tensors, and those based on groups

of symmetry of the metric (see, for example, Kramer et al. (1980), McIntosh et

al. (1981) and Joly and MacCallum (1990)). The works by Karlhede (1980a), Karl-

hede (1980b), Karlhede and Lindström (1982), Karlhede and MacCallum (1982),

Bradley and Karlhede (1990), Collins and al. (1990), Joly and MacCallum (1990),

Åman et al. (1991), Koutras (1992) and others follow the method of equivalence

of Cartan, with a modification, known as the Karlhede classification, to be better

suited for the purpose of the study of spacetimes. The equivalence method allows

the various covariant derivatives of the Riemann tensor to play a rôle in the clas-

sification. The last section uses the classification of two-dimensional metrics to

illustrate the classification of higher dimensional metrics and shows the usefulness

of finding normal forms14 to reduce the number of derivatives needed. As a by-

product of the classification with respect to the conformal group, we have found

an efficient way of obtaining the Weyl curvature two-forms, given the Riemann

curvature two-forms.

14This is the essence of the modification of Karlhede to the method of Cartan as applied to

manifolds of general relativity.



Chapter 3

Orthonormal Frame Formalism

All men by nature desire to know.

Aristotle

I N THIS chapter, we focus on the geometry of U , where U is a four-dimensional

Lorentzian manifold. Let the metric be given by

g = ds2 = −ω̄0 ⊗ ω̄0 + ω̄1 ⊗ ω̄1 + ω̄2 ⊗ ω̄2 + ω̄3 ⊗ ω̄3. (3.1)

3.1 Structure equations

In this section, we describe the structure equations of a Lorentzian spacetime with

an invariantly defined1 unit timelike future-pointing vector. These structure equa-

tions enable us to define various kinematic quantities. We shall provide two meth-

ods of giving an interpretation to these kinematic quantities. The method we use is

1We shall concern ourselves with only local considerations. Not all spacetimes admit such a

global unit timelike future-pointing vector field.

62



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 63

closely related to that of MacCallum (1973). Our approach uses differential forms,

whereas MacCallum used the geometrical objects dual to one-forms, namely, vec-

tors.

Let e⃗0 be the invariantly defined (locally) unit timelike vector admitted by the

spacetime under consideration. For a perfect fluid spacetime with µ + p ̸= 0,

the vector e⃗0 can be chosen in an invariant way as the unique future-pointing unit

timelike eigenvector of the Ricci tensor(Ellis, 1971). This eigenvector is the velocity

vector of the fluid flow. In a coordinate basis, e⃗0 can be written as

e⃗0 = ui
∂

∂xi
. (3.2)

Let ω̄0 be the one-form dual to e⃗0. In a coordinate basis, ω̄0 can be written as

ω̄0 = −ui dxi. (3.3)

The interior product of ω̄0 and e⃗0 satisfies

1 = e⃗0⌋ω̄0 = −uiui. (3.4)

This is consistent with the unit timelike character of the velocity. We complete the

orthonormal cobasis by choosing three covectors

ω̄α = Aα
idx

i. (3.5)

The corresponding vector basis elements are

e⃗α = Bi
α
∂

∂xi
.

The condition of orthonormality implies

e⃗α⌋ω̄β = δβα = Bi
αA

β
i, (3.6)

e⃗0⌋ω̄α = uiAα
i = 0 (3.7)

and

e⃗α⌋ω̄0 = −Bi
αui = 0. (3.8)
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The coordinate cobasis satisfies

dxi = uiω̄0 +Bi
αω̄

α.

This is easily verified by substitution into (3.3) and (3.5), followed by simplification

using (3.4) and (3.8).

The fluid flow vector u⃗ is given by (3.2) in a coordinate basis and by (+1) e⃗0

in the tetrad basis. The corresponding covector u = g(u⃗), where g(u⃗) denotes the

contraction of the metric (3.1) with the vector u⃗, is given by ui dx
i in coordinates

and by (−1) ω̄0 in the tetrad basis.

We now proceed to calculate the various kinematic quantities. This is done by

first computing the structure equations and then identifying their various compo-

nents. The first structure equation is obtained by differentiating (3.3) to obtain

dω̄0 = −dui ∧ dxi. (3.9)

Since dui can be expanded in the coordinate cobasis as follows:

dui = ui|jdx
j = e⃗a(ui)ω̄

a,

equation (3.9) becomes

dω̄0 = −dui ∧ dxi (3.10)

= −dui ∧ (uiω̄0 +Bi
αω̄

α)

= −e⃗a(ui) ω̄a ∧ (uiω̄0 +Bi
αω̄

α).

The acceleration, u̇ = u̇αω̄
α, of the e⃗0−congruence must be perpendicular to the

velocity, since the velocity has unit length. Therefore the acceleration does not

have a ω̄0 component; it is, however, equal to u⃗⌋du = −e⃗0⌋dω̄0. Since

e⃗0⌋dω̄0 = uie⃗β(ui)ω̄
β −Bi

αe⃗0(ui)ω̄
α,
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the acceleration components are given by

u̇α = −e⃗α⌋e⃗0⌋dω̄0 = −uie⃗α(ui) +Bi
αe⃗0(ui).

We next compute the part of the structure equation (3.10) that is independent of

ω̄0. First, we have

e⃗α⌋dω̄0 = −e⃗α(ui)(uiω̄0 +Bi
βω̄

β) + e⃗j(ui)ω̄
jBi

α,

where the sum over j omits j = α. Then, we have

e⃗β⌋e⃗α⌋dω̄0 = −e⃗α(ui)Bi
β + e⃗β(ui)B

i
α.

These quantities are antisymmetric and perpendicular to e⃗0, and so they can be

grouped as the one-form 2ωγω̄
γ, where (α, β, γ) is an even permutation of (1, 2, 3).

These kinematic quantities correspond to the (rate of) vorticity of the e⃗0-congru-

ence, as can be seen by noting that

ω1 ω̄
0 ∧ ω̄2 ∧ ω̄3 + ω2 ω̄

0 ∧ ω̄3 ∧ ω̄1 + ω3 ω̄
0 ∧ ω̄1 ∧ ω̄2 =

= ω̄0 ∧ dω̄0

= u ∧ du.

The structure equation (3.10) can therefore be written as

dω̄0 = −u̇αω̄0 ∧ ω̄α + 2ωγω̄
|α ∧ ω̄β|,

where by |αβ| we indicate that α ≤ β.

To compute the remaining structure equations, we start by differentiating (3.5),

which gives

dω̄α = dAα
i ∧ dxi = dAα

i ∧ (uiω̄0 +Bi
αω̄

α).
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Differentiating (3.7) and (3.6), we obtain dAα
i u

i = −Aα
idu

i and dAβ
iB

i
α =

−Aβ
idB

i
α, from which we deduce that

dω̄α = −Aα
ie⃗β(u

i)ω̄β ∧ ω̄0 − Aα
ie⃗j(B

i
β)ω̄

j ∧ ω̄β.

We examine the part of these structure equations involving the e⃗0−congruence. In

order to do this, we first compute

e⃗γ⌋dω̄α = −Aα
ie⃗γ(u

i)ω̄0 − Aα
ie⃗γ(B

i
β)ω̄

β + Aα
ie⃗j(B

i
γ)ω̄

j.

From this, we obtain the required components, which are

e⃗0⌋e⃗γ⌋dω̄α = −Aα
ie⃗γ(u

i) + Aα
ie⃗0(B

i
γ). (3.11)

This can be decomposed into a part that is symmetric in α and γ and into a part

that is antisymmetric. The antisymmetric part is given by

1

2
[−Aα

ie⃗γ(u
i) + Aγ

ie⃗α(u
i) + Aα

ie⃗0(B
i
γ)− Aγ

ie⃗0(B
i
α)].

The first two terms in the square brackets are just 2ωβ with the index raised, where

(α, β, γ) is an even permutation of (1, 2, 3). The last two terms can be grouped

together to define the vector Ωαe⃗α, where

Ωα = +Aβ
i e⃗0(B

i
γ)− Aγ

i e⃗0(B
i
β),

with (α, β, γ) an even permutation of (1, 2, 3). Since we are using metric components

in the orthonormal tetrad, we can lower the index on Ω, a space-like quantity,

without changing its value. These terms correspond to the rotation of the e⃗α− axes

with respect to a Fermi-Walker propagated tetrad. The symmetric part of (3.11),

denoted by θαγ is given by

1

2
[−Aα

ie⃗γ(u
i)− Aγ

ie⃗α(u
i) + Aα

ie⃗0(B
i
γ) + Aγ

ie⃗0(B
i
α)].
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Lowering the upper index of the space-like quantity θαγ does not change its value,

since we are using the orthonormal basis. This quantity is the (rate of) expansion

of the e⃗0-congruence.

What has been obtained so far can be summarized by the equation

dω̄β + (θβγ + Ωα)ω̄
0 ∧ ω̄γ = −Aβ

ie⃗γ(B
i
α)ω̄

γ ∧ ω̄α.

We now wish to interpret the right-hand side of this expression. We choose (ar-

bitrarily for now) one unit axis perpendicular to ω̄0 and call it ω̄1. The previous

treatment, which was applied to ω̄0, can act as a guide to the situation with ω̄1.

We temporarily ignore the terms that involve ω̄0, since they already have been

interpreted. The following, therefore, can be thought of as involving appropriate

projections onto the space perpendicular to the e⃗0-congruence. Accordingly, we

look at the terms involving ω̄1 in the structure equation for ω̄1. The expression

e⃗1⌋ − A1
ie⃗γ(B

i
α)ω̄

γ ∧ ω̄α = −A1
ie⃗1(B

i
A)ω̄

A + A1
ie⃗A(B

i
1)ω̄

A

has components

e⃗A⌋e⃗1⌋ − A1
ie⃗γ(B

i
α)ω̄

γ ∧ ω̄α = −A1
ie⃗1(B

i
A) + A1

ie⃗A(B
i
1) =: dA,

which represent the spatial part of the acceleration of the e⃗1-congruence. The

spatial part of the vorticity of this congruence is given by

e⃗3⌋e⃗2⌋ − A1
ie⃗γ(B

i
α)ω̄

γ ∧ ω̄α = −A1
ie⃗2(B

i
3) + A1

ie⃗3(B
i
2) =: −n.

The other components of the structure equations involving ω̄1 have coefficients

given by

e⃗B⌋e⃗1⌋ − AA
i e⃗γ(B

i
α)ω̄

γ ∧ ω̄α = −AA
i e⃗1(B

i
B) + AA

i e⃗B(B
i
1).
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As before, this expression can be decomposed into a symmetric part and an anti-

symmetric part. The symmetric part, which is

1

2
[−AA

ie⃗1(B
i
B)− AB

ie⃗1(B
i
A) + AA

ie⃗B(B
i
1) + AB

ie⃗B(A
i
1)] =:

1

2
θ̂AB,

measures the spatial component of the expansion rate of the e⃗1-congruence. The

antisymmetric part, which is given by

1

2
[−AA

ie⃗1(B
i
B) + AB

ie⃗1(A
i
B) + AA

ie⃗B(B
i
1)− AB

ie⃗B(A
i
1)] =:

1

2
Ω̂,

measures the spatial component of the angular velocity of the dyad {e⃗2, e⃗3} along

the e⃗1-congruence.

The only components of the structure equations that are left to interpret are

those independent of both ω̄0 and ω̄1. They are given by

e⃗B⌋e⃗A⌋ − AA
ie⃗γ(B

i
α)ω̄

γ ∧ ω̄α = −AA
ie⃗A(B

i
B) + AA

ie⃗B(B
i
A).

There are only two such terms; the first is

e⃗2⌋e⃗3⌋ − A3
ie⃗γ(B

i
α)ω̄

γ ∧ ω̄α = −A3
ie⃗3(B

i
2) + A3

ie⃗B(2
i
3) =: −A2,

and the second is

e⃗3⌋e⃗2⌋ − A2
ie⃗γ(B

i
α)ω̄

γ ∧ ω̄α = −A2
ie⃗2(B

i
3) + A2

ie⃗3(B
i
2) =: −A3.

The quantity A2 measures the projection of the acceleration of the e⃗2-congruence

and A3, the expansion of the e⃗2-congruence.

Ellis (1971) gives a very clear introduction to the kinematic quantities, u̇α, θαβ

and ωα, associated with the e⃗0-congruence. The interpretation of the quantities

associated with the e⃗1-congruence, namely dA, n, Ω̂, θ̂AB parallels the similar inter-

pretation of the e⃗0-congruence quantities, namely u̇α, ωα,Ωα, θαβ. There is also a
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parallel with the quantities associated with the e⃗2-congruence, namely A2 and A3.

The choices of sign in the above definitions of the kinematic quantities have been

made in accordance with those of White and Collins (1984), who first2 defined

dA, AA, θ̂AB, Ω̂ and n.

To summarize this section, the structure equations can be written as follows:

dω̄0 = −u̇α ω̄0 ∧ ω̄α + 2ωγ ω̄
|α ∧ ω̄β|, (3.12)

dω̄1 = θ11ω̄
0 ∧ ω̄1 + (θ12 + ω3 + Ω3)ω̄

0 ∧ ω̄2 + (θ13 − ω2 − Ω2)ω̄
0 ∧ ω̄3

+d2 ω̄
1 ∧ ω̄2 − n ω̄2 ∧ ω̄3 − d3 ω̄

3 ∧ ω̄1, (3.13)

dω̄2 = (θ12 − ω3 − Ω3)ω̄
0 ∧ ω̄1 + θ22 ω̄

0 ∧ ω̄2 + (θ23 + ω1 + Ω1)ω̄
0 ∧ ω̄3

+θ̂22ω̄
1 ∧ ω̄2 − A3 ω̄

2 ∧ ω̄3 + (−Ω̂− θ̂23) ω̄
3 ∧ ω̄1 (3.14)

and

dω̄3 = (θ13 + ω2 + Ω2)ω̄
0 ∧ ω̄1 + (θ23 − ω1 − Ω1)ω̄

0 ∧ ω̄2 + θ33 ω̄
0 ∧ ω̄3

+ (θ̂23 − Ω̂)ω̄1 ∧ ω̄2 + A2 ω̄
2 ∧ ω̄3 − θ̂33 ω̄

3 ∧ ω̄1, (3.15)

where (αβγ) is an even permutation of (123).

The following is an alternative characterization of the various kinematic quan-

tities. The vector e⃗0 is invariantly defined, and so the Lie derivative along e⃗0 of the

metric is also an invariantly defined quantity. The Lie derivative along e⃗0 of the

one-forms ω̄a is given by

Le⃗0ω̄
0 = d(e⃗0⌋ω̄0) + e⃗0⌋dω̄0 = −u̇1ω̄1 − u̇2ω̄

2 − u̇3ω̄
3,

Le⃗0ω̄
1 = θ11ω̄

1 + (θ12 + ω3 + Ω3)ω̄
2 + (θ13 − ω2 − Ω2)ω̄

3,

Le⃗0ω̄
2 = (θ12 − ω3 − Ω3)ω̄

1 + θ22ω̄
2 + (θ23 + ω1 + Ω1)ω̄

3

2Similar, although not identical, quantities were previously defined by Greenberg (1970) and

by Harness (1982)
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and

Le⃗0ω̄
3 = (θ13 + ω2 + Ω2)ω̄

1 + (θ23 − ω1 − Ω1)ω̄
2 + θ33ω̄

3.

The Lie derivative of the metric is

Le⃗0g = u̇α(ω̄
0 ⊗ ω̄α + ω̄α ⊗ ω̄0) + 2θαβω̄

α ⊗ ω̄β. (3.16)

We first note that −Le⃗0ω̄
0 is invariantly defined. It measures the change in length

along the fluid flow direction as the flow is followed. It measures acceleration since

the fluid flow vector has unit length. The last term of (3.16) measures changes of

spatial length as the fluid flow is followed. The expansion tensor is therefore given

by

1

2
(ω̄0 ⊗ ω̄0) ∧ (Le⃗0g) :=

1

2
(Le⃗0g)ab(ω̄

0 ∧ ω̄a)⊗ (ω̄0 ∧ ω̄b)

= θαβ(ω̄
0 ∧ ω̄α)⊗ (ω̄0 ∧ ω̄β).

The expansion scalar, θ, is found by considering the propagation of the volume

form, as follows:

θω̄0 ∧ ω̄1 ∧ ω̄2 ∧ ω̄3 = Le⃗0ω̄
0 ∧ ω̄1 ∧ ω̄2 ∧ ω̄3 = (θ11 + θ22 + θ33)ω̄

0 ∧ ω̄1 ∧ ω̄2 ∧ ω̄3.

The following is also an invariant quantity:

ω̄0 ∧ dω̄0 = 2ω3ω̄
0 ∧ ω̄1 ∧ ω̄2 + 2ω2ω̄

0 ∧ ω̄3 ∧ ω̄1 + 2ω1ω̄
0 ∧ ω̄2 ∧ ω̄3.

It does not involve any change of length as seen by an observer travelling with

the flow, since otherwise it would appear in (3.16). Hence it represents the rate of

rotation of the fluid flow. The vorticity vector (with index lowered) can then be

found by

ωαω̄
α = ∗1

2
ω̄0 ∧ dω̄0,
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where ∗ is the Hodge3 star operator. This operator is a linear operator that obeys

∗ω̄0 ∧ ω̄1 ∧ ω̄2 = ω̄3,

∗ω̄0 ∧ ω̄2 ∧ ω̄3 = ω̄1,

∗ω̄0 ∧ ω̄3 ∧ ω̄1 = ω̄2

and

∗ω̄1 ∧ ω̄2 ∧ ω̄3 = ω̄0.

The spatial triad rotation, Ωaω̄
a, is given by

Ωaω̄
a = − ∗ 1

2
ω̄0 ∧

(∑
b

(dω̄b) ∧ ω̄b

)
.

The invariant definition of ω̄0 thus implies an invariant characterization of u̇αω̄
α,

ωαω̄
α and θαβω̄

α ⊗ ω̄β. At this point, the group of indeterminacy is SO(3, 0,R),

representing the possible rotations of the 1− 2− 3 triad. Using the aforementioned

quantities, it may be possible to define uniquely the direction of e⃗1. For example,

the acceleration vector, the vorticity vector or the triad rotation vector, if they

do not vanish, can each be chosen as this invariant direction. Another choice

of invariant direction can usually be made by examining the eigenvectors of the

expansion tensor, by choosing the eigenvector with the smallest eigenvalue, if the

eigenvalues are all different, or by choosing the eigenvector corresponding to the

non-repeated eigenvalue, if two eigenvalues are equal. The only situation when we

cannot find an invariant direction using the acceleration vector, the vorticity vector,

the triad rotation vector or the expansion tensor is when the acceleration, vorticity,

and triad rotation vectors all vanish, and, at the same time, the expansion tensor

has three equal eigenvalues.

3See also page 93.
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We shall suppose that we can invariantly find ω̄1. The expression ω̄0 ∧Le⃗1ω̄
1 is

then an invariant quantity. It corresponds to the acceleration of the e⃗1-congruence,

projected into the 1− 2− 3 triad. We can therefore find d2 and d3 by computing

ω̄0 ∧ Le⃗1ω̄
1 = d2ω̄

0 ∧ ω̄2 + d3ω̄
0 ∧ ω̄3.

The (projected) tensor, θ̂AB, corresponding to the expansion of the e⃗1-congruence

is computed as follows:

1

2

(
(ω̄0 ∧ ω̄1)⊗ (ω̄0 ∧ ω̄1)

)
∧ Le⃗1g = θ̂AB(ω̄

0 ∧ ω̄1 ∧ ω̄A)⊗ (ω̄0 ∧ ω̄1 ∧ ω̄B).

The (projected) vorticity, n, of the e⃗1-congruence obeys

−ω̄0 ∧ ω̄1 ∧ dω̄1 = nω̄0 ∧ ω̄1 ∧ ω̄2 ∧ ω̄3.

The (projected) rotation of the 2–3 dyad with respect to a Fermi-Walker propagated

e⃗1-congruence is given by

−ω̄0 ∧ ω̄1 ∧
(∑

α

(dω̄α) ∧ ω̄α

)
= (n+ 2Ω̂)ω̄0 ∧ ω̄1 ∧ ω̄2 ∧ ω̄3.

Given an invariantly defined e⃗0, an invariant definition of e⃗1 thus enables us to

obtain an invariant characterization of dAω̄
A, θ̂ABω̄

A⊗ ω̄B, n and Ω̂. The remaining

indeterminacy is SO(1, 0,R), representing the rotations of the 2–3 dyad.

The acceleration of the e⃗2-congruence, projected in the 2–3 space, is given by

A3ω̄
3, and is computed using

−ω̄0 ∧ ω̄1 ∧ Le⃗2ω̄
2 = A3ω̄

0 ∧ ω̄1 ∧ ω̄3.

The tensor A2ω̄
2 corresponding to (projection of) the expansion of the e⃗2-congru-

ence is computed as follows:

1

2

(
(ω̄0 ∧ ω̄1 ∧ ω̄2)⊗ (ω̄0 ∧ ω̄1 ∧ ω̄2)

)
∧ Le⃗2g =

A2(ω̄
0 ∧ ω̄1 ∧ ω̄2 ∧ ω̄3)⊗ (ω̄0 ∧ ω̄1 ∧ ω̄2 ∧ ω̄3).
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3.2 Jacobi identities

The exterior derivative of the structure equations (3.12)–(3.15) provides constraints

on the first order derivatives of the kinematic quantities. They take the form of four

equations in the six-dimensional space with basis ω̄0∧ ω̄1, ω̄0∧ ω̄2, ω̄0∧ ω̄3, ω̄1∧ ω̄2,

ω̄2 ∧ ω̄3 and ω̄3 ∧ ω̄1. There are therefore 24 coefficients that must vanish, although

not all of them are independent. The equations represent the Jacobi identities of

the Lie algebra generated by e⃗0, e⃗1, e⃗2 and e⃗3. These identities are equivalent to

∂1A3 = −∂2Ω̂ + 2θ22ω2 + Ω̂d2 − A3θ̂33 + ∂3θ̂22 − 2ω1Ω3 + 2ω1θ12 − ∂2θ̂23

+2ω3Ω1 − Ω̂A2 + 2ω3θ23 + θ̂23d2 − θ̂23A2 − θ̂22d3,

∂0A2 = −∂3θ23 + ∂2θ33 − nω2 − nΩ2 − nθ13 − Ω2θ̂23 + Ω2Ω̂ + θ13θ̂23 − θ13Ω̂

−ω2θ̂23 + ω2Ω̂ + ∂3ω1 + ∂3Ω1 − A2θ22 − θ̂33Ω3 − θ̂33ω3

−θ̂33θ12 + Ω1A3 − θ23u̇3 + ω1u̇3 + Ω1u̇3 + θ33u̇2 + ω1A3 − θ23A3,

∂0d3 = −Ω2θ̂33 + θ13θ̂33 − nΩ3 + θ13u̇1 − ω2u̇1 + ω3Ω̂ + Ω3θ̂23 − ∂3θ11

+∂1θ13 − ∂1ω2 − ∂1Ω2 − d2Ω1 + Ω3Ω̂ + θ12θ̂23 − Ω2u̇1

+nθ12 − θ11u̇3 + θ12Ω̂− nω3 − d3θ33 − d2ω1

−d2θ23 + ω3θ̂23 − ω2θ̂33,

∂0d2 = −nω2 − nΩ2 − nθ13 − Ω2θ̂23 + Ω2Ω̂ + θ13θ̂23 − θ13Ω̂− ω2θ̂23 + θ12u̇1

+ω2Ω̂ + θ12θ̂22 + ω3θ̂22 − ∂2θ11 + ∂1θ12 + ∂1ω3 + ∂1Ω3

+d3Ω1 + Ω3θ̂22 + Ω3u̇1 + ω3u̇1 − θ11u̇2 − d3θ23 + d3ω1 − d2θ22,

∂0A3 = −∂2θ23 − nΩ3 + ω3Ω̂ + Ω3θ̂23 + ∂3θ22 − ∂2ω1 − ∂2Ω1 + θ̂22ω2

+Ω3Ω̂ + θ12θ̂23 + nθ12 + θ12Ω̂− Ω1u̇2 − ω1u̇2 − θ23u̇2

−Ω1A2 − ω1A2 − θ23A2 + θ22u̇3 + θ̂22Ω2 + ω3θ̂23

−θ̂22θ13 − A3θ33 − nω3,
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∂0n = ∂3ω3 + ∂2ω2 − ∂2θ13 + ω3u̇3 + d2Ω2 + θ12u̇3 + ω3A3 + θ12A3 + ∂3Ω3

+∂2Ω2 − θ13u̇2 + Ω2A2 + Ω3A3 + ∂3θ12 + Ω2u̇2 + Ω3u̇3

−nθ22 + d3Ω3 + θ11n+ ω2A2 − θ13A2 + ω2u̇2 + d3ω3

−d2θ13 + d2ω2 − nθ33 + d3θ12,

∂0θ̂33 = A2ω3 − 2ω1θ̂23 − Ω2u̇3 − ∂3ω2 + 2θ23Ω̂− A2θ12 + Ω2d3 − ω2u̇3 (3.17)

−θ̂33θ11 + ∂1θ33 − θ13u̇3 + θ33u̇1 − 2Ω1θ̂23 + θ13d3 + A2Ω3

−∂3θ13 + ω2d3 − ∂3Ω2,

∂0ω1 = −1

2
u̇3A2 + Ω3ω2 − Ω2ω3 + θ12ω2 − ω1θ22 +

1

2
u̇1n− 1

2
∂2u̇3 − ω1θ33

+θ13ω3 +
1

2
u̇2A3 +

1

2
∂3u̇2,

∂0ω2 =
1

2
u̇1d3 + ω3θ23 +

1

2
u̇2Ω̂ +

1

2
∂1u̇3 + ω3Ω1 +

1

2
u̇3θ̂33

−ω2θ11 +
1

2
u̇2θ̂23 − ω2θ33 + ω1θ12 −

1

2
∂3u̇1 − ω1Ω3, (3.18)

∂0ω3 = −1

2
u̇2θ̂22 − ω3θ22 + ω2θ23 −

1

2
∂1u̇2 +

1

2
u̇3Ω̂− 1

2
u̇3θ̂23 − ω3θ11 −

1

2
u̇1d2

+
1

2
∂2u̇1 + ω1Ω2 − ω2Ω1 + ω1θ13, (3.19)

∂0θ̂23 =
1

2
∂3ω3 −

1

2
∂2ω2 −

1

2
∂2θ13 +

1

2
ω3u̇3 +

1

2
d2Ω2 −

1

2
θ12u̇3 + ∂1θ23 (3.20)

−1

2
ω3A3 +

1

2
θ12A3 +

1

2
∂3Ω3 −

1

2
∂2Ω2 −

1

2
θ13u̇2 +

1

2
Ω2A2 −

1

2
Ω3A3

−1

2
∂3θ12 −

1

2
Ω2u̇2 + θ̂33Ω1 − Ω1θ̂22 +

1

2
Ω3u̇3 + θ23u̇1 − ω1θ̂22

−1

2
d3Ω3 +

1

2
ω2A2 +

1

2
θ13A2 −

1

2
ω2u̇2 − θ̂23θ11 −

1

2
d3ω3 +

1

2
d2θ13

+
1

2
d2ω2 + Ω̂θ22 − θ33Ω̂ + ω1θ̂33 +

1

2
d3θ12,

∂0Ω̂ = ∂1Ω1 −
1

2
∂3ω3 −

1

2
∂2ω2 + Ω1u̇1 +

1

2
∂2θ13 +

3

2
ω3u̇3 −

1

2
d2Ω2

−1

2
θ12u̇3 − Ω̂θ11 −

3

2
ω3A3 +

1

2
θ12A3 +

1

2
∂3Ω3 +

1

2
∂2Ω2 +

1

2
θ13u̇2

−1

2
Ω2A2 −

1

2
Ω3A3 −

1

2
∂3θ12 +

1

2
Ω2u̇2 +

1

2
Ω3u̇3 + 2u̇1ω1 − ω1θ̂22
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−θ33θ̂23 − θ23θ̂22 −
1

2
d3Ω3 −

3

2
ω2A2 −

1

2
θ13A2 +

3

2
ω2u̇2 + θ̂23θ22

+
1

2
d3ω3 −

1

2
d2θ13 +

1

2
d2ω2 + θ̂33θ23 − ω1θ̂33 +

1

2
d3θ12,

∂0θ̂22 = θ22u̇1 + θ12d2 + ∂1θ22 − A3θ13 − Ω3d2 + Ω3u̇2 − 2θ23Ω̂ + ω3u̇2 (3.21)

−θ12u̇2 − θ̂22θ11 − A3ω2 + 2ω1θ̂23 + 2Ω1θ̂23 + ∂2Ω3 − A3Ω2

−∂2θ12 + ∂2ω3 − ω3d2,

∂3Ω̂ = 2θ33ω3 − ∂2θ̂33 + 2ω1Ω2 − Ω̂A3 + θ̂33d2 + 2ω2θ23 + ∂1A2

−2ω2Ω1 + θ̂23A3 + A2θ̂22 + ∂3θ̂23 + Ω̂d3 − θ̂23d3 + 2ω1θ13,

∂1ω1 = −ω1θ̂33 − ∂2ω2 + d2ω2 + ω2u̇2 + u̇1ω1 + ω3u̇3 + d3ω3 − ω2A2

−∂3ω3 − ω3A3 − ω1θ̂22

and

∂3d2 = 2Ω2ω3 − 2θ11ω1 − 2θ12ω2 + ∂1n− 2θ13ω3 − d2A3 + nθ̂22 − 2Ω3ω2

+d3A2 + nθ̂33 + ∂2d3.

3.3 Connection

The connection, φ, is the unique matrix of one-forms that satisfies

dω̄i = φi
j ∧ ω̄j

and

φij + φji = 0,

where φij = φk
jηki, and η is the signature matrix η = diag(−1, 1, 1, 1). Solving for

φi
j, we obtain

φ0
1 = −u̇1ω̄0 − θ11ω̄

1 + (−ω3 − θ12)ω̄
2 + (ω2 − θ13)ω̄

3,
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φ0
2 = −u̇2ω̄0 + (ω3 − θ12)ω̄

1 − θ22ω̄
2 − (θ23 + ω1)ω̄

3,

φ0
3 = −u̇3ω̄0 − (ω2 + θ13)ω̄

1 + (−θ23 + ω1)ω̄
2 − θ33ω̄

3,

φ1
2 = Ω3ω̄

0 + d2ω̄
1 + θ̂22ω̄

2 + (θ̂23 +
1

2
n)ω̄3,

φ2
3 = Ω1ω̄

0 + (Ω̂− 1

2
n)ω̄1 − A3ω̄

2 + A2ω̄
3

and

φ3
1 = Ω2ω̄

0 − d3ω̄
1 + (θ̂23 +

1

2
n)ω̄2 − θ̂33ω̄

3.

3.4 Riemann, Ricci and Weyl tensors

The Riemann curvature two-forms are given by

Θa
b = dφa

b + φa
c ∧ φc

b. (3.22)

Explicitly, the various curvature two-forms are

Θ0
1 = R0

101ω̄
0 ∧ ω̄1 +R0

102ω̄
0 ∧ ω̄2 +R0

103ω̄
0 ∧ ω̄3

+R0
112ω̄

1 ∧ ω̄2 +R0
123ω̄

2 ∧ ω̄3 +R0
131ω̄

3 ∧ ω̄1,

Θ0
2 = R0

102ω̄
0 ∧ ω̄1 +R0

202ω̄
0 ∧ ω̄2 +R0

203ω̄
0 ∧ ω̄3

+R0
212ω̄

1 ∧ ω̄2 +R0
223ω̄

2 ∧ ω̄3 −R0
231ω̄

1 ∧ ω̄3,

Θ0
3 = R0

103ω̄
0 ∧ ω̄1 +R0

203ω̄
0 ∧ ω̄2 +R0

303ω̄
0 ∧ ω̄3

+(−R0
123 −R0

231)ω̄
1 ∧ ω̄2 +R0

323ω̄
2 ∧ ω̄3 +R0

331ω̄
3 ∧ ω̄1,

Θ1
2 = −R0

112ω̄
0 ∧ ω̄1 −R0

212ω̄
0 ∧ ω̄2 + (R0

123 +R0
231)ω̄

0 ∧ ω̄3

+R1
212ω̄

1 ∧ ω̄2 +R1
223ω̄

2 ∧ ω̄3 +R1
231ω̄

1 ∧ ω̄3,

Θ2
3 = −R0

123ω̄
0 ∧ ω̄1 −R0

223ω̄
0 ∧ ω̄2 −R0

323ω̄
0 ∧ ω̄3

+R1
223ω̄

1 ∧ ω̄2 +R2
323ω̄

2 ∧ ω̄3 +R2
331ω̄

3 ∧ ω̄1

and
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Θ3
1 = −R0

131ω̄
0 ∧ ω̄1 −R0

231ω̄
0 ∧ ω̄2 −R0

331ω̄
0 ∧ ω̄3

+R1
231ω̄

1 ∧ ω̄2 +R2
331ω̄

2 ∧ ω̄3 +R3
131ω̄

3 ∧ ω̄1.

The twenty quantities R0
101, R

0
102, R

0
103, R

0
112, R

0
123, R

0
131, R

0
202, R

0
203, R

0
212,

R0
223, R

0
231, R

0
303, R

0
323, R

0
331, R

1
212, R

1
223, R

1
231, R

2
323, R

2
331, and R3

131 are

given by:

R0
101 = −θ211 + 2Ω3θ12 − u̇3d3 + ω2

3 + ∂1u̇1 − 2Ω2θ13 − ∂0θ11

−θ213 + u̇21 + ω2
2 − θ212 − u̇2d2,

R0
102 =

1

2
∂1u̇2 −

1

2
u̇3Ω̂ +

1

2
u̇1d2 +

1

2
u̇3n− θ13θ23 + θ13Ω1 + θ22Ω3 + u̇1u̇2

−θ11θ12 − ω2ω1 − Ω2θ23 −
1

2
u̇3θ̂23 − θ12θ22 −

1

2
u̇2θ̂22 − ∂0θ12

−θ11Ω3 +
1

2
∂2u̇1,

R0
103 =

1

2
u̇2Ω̂ +

1

2
∂1u̇3 +

1

2
u̇1d3 − ω3ω1 − ∂0θ13 − θ11θ13 −

1

2
u̇2θ̂23

+u̇1u̇3 +
1

2
∂3u̇1 − θ12Ω1 + θ11Ω2 + Ω3θ23 − θ13θ33 − θ33Ω2

−1

2
u̇2n− θ12θ23 −

1

2
u̇3θ̂33,

R0
112 = ∂2θ11 − 2θ12θ̂22 − ∂1θ12 − θ11d2 − ∂1ω3 − 2ω3u̇1 − ω2Ω̂

+d2θ22 − d3ω1 + d3θ23 − 2θ13θ̂23 +
1

2
nθ13 +

1

2
nω2 + θ13Ω̂,

R0
123 = θ23θ̂22 + ω3A3 + ∂2ω2 + θ11n+ ω1θ̂33 + θ33θ̂23 + ω2A2 − θ13A2

−1

2
nθ33 − ∂2θ13 − θ̂23θ22 + ω1θ̂22 + θ12A3 + ∂3ω3 −

1

2
nθ22 +

∂3θ12 − θ̂33θ23 − 2u̇1ω1,

R0
131 = ω3Ω̂ + θ11d3 − d2θ23 + 2θ13θ̂33 − d3θ33 + ∂1θ13 − 2ω2u̇1

+θ12Ω̂− d2ω1 −
1

2
nω3 +

1

2
nθ12 + 2θ12θ̂23 − ∂1ω2 − ∂3θ11,

R0
202 = −θ222 − θ223 − ∂0θ22 − θ212 + u̇22 + ω2

1 + ω2
3

−2Ω3θ12 + u̇1θ̂22 + ∂2u̇2 + 2Ω1θ23 + u̇3A3,
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R0
203 = −θ22Ω1 +

1

2
∂3u̇2 + u̇3u̇2 −

1

2
u̇2A3 + θ33Ω1 + Ω2θ12 − θ13θ12 −

1

2
u̇3A2

−θ13Ω3 − θ23θ22 +
1

2
∂2u̇3 − ω2ω3 + u̇1θ̂23 − θ33θ23 − ∂0θ23,

R0
212 = −θ23θ̂23 +

1

2
ω1n− 2θ12d2 − ω1θ̂23 + ∂2θ12 − ∂1θ22 −

1

2
θ23n

+θ̂22θ11 − ∂2ω3 + A3θ13 − θ22θ̂22 − 2ω3u̇2 + A3ω2 + 2θ23Ω̂,

R0
223 = −∂2ω1 + θ̂22ω2 − ∂2θ23 + ∂3θ22 − θ̂22θ13 −

1

2
nω3 − A3θ33

+A3θ22 + ω3θ̂23 + θ12θ̂23 − 2ω1u̇2 − 2θ23A2 +
3

2
nθ12,

R0
231 =

1

2
nθ33 + θ13A2 − ω2u̇2 + ∂1θ23 − ω3A3 − ∂3θ12 − ∂2ω2

+ω3u̇3 + d2θ13 −
1

2
θ11n+ Ω̂θ22 + θ̂33θ23 + θ̂23θ22 − θ̂23θ11

+d3θ12 − θ33Ω̂ + u̇1ω1 − ω1θ̂22,

R0
303 = −θ233 + ω2

2 + u̇2A2 − θ223 + u̇23 − 2Ω1θ23 + 2Ω2θ13 + ∂3u̇3

+u̇1θ̂33 + ω2
1 − θ213 − ∂0θ33,

R0
323 = −θ13θ̂23 − ∂3ω1 − 2ω1u̇3 − ∂2θ33 + A2θ22 + θ̂33θ12 +

3

2
nθ13

+ω2θ̂23 +
1

2
nω2 + 2θ23A3 − θ33A2 + θ̂33ω3 + ∂3θ23,

R0
331 = −A2θ12 −

1

2
θ23n− ω1θ̂23 + θ23θ̂23 − ∂3ω2 + 2θ23Ω̂− 2ω2u̇3

+θ33θ̂33 + A2ω3 − ∂3θ13 −
1

2
ω1n− θ̂33θ11 + 2θ13d3 + ∂1θ33,

R1
212 = −2Ω̂θ̂23 + nθ̂23 + 2Ω3ω3 + θ̂222 − A3d3 + θ̂223 − ∂2d2

−1

4
n2 − θ11θ22 − ω2

3 + d22 + ∂1θ̂22 + θ212,

R1
223 = −ω3ω1 +

1

2
∂2n+ ∂2θ̂23 + 2ω1Ω3 + A3θ̂33 + 2θ̂23A2 + θ22θ13

−∂3θ̂22 − ω3θ23 − θ22ω2 − nd2 − A3θ̂22 − θ12θ23 − ω1θ12,

R1
231 = −θ13ω3 + nθ̂22 − d2A3 − θ̂23θ̂22 +

1

2
∂1n− θ̂33θ̂23 − ∂1θ̂23

−d3d2 + θ̂33Ω̂ + θ11θ23 − θ11ω1 + 2Ω2ω3 − θ̂22Ω̂− θ12ω2

−θ13θ12 − ω2ω3 + ∂2d3,
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R2
323 = ∂2A2 − θ̂223 + A2

2 +
3

4
n2 + 2Ω1ω1 + A2

3 + θ̂22θ̂33 − ω2
1

+θ223 − θ22θ33 + ∂3A3 − Ω̂n,

R2
331 = −ω2ω1 + ω1θ13 + θ33θ12 + ∂3θ̂23 + 2ω1Ω2 + 2θ̂23A3 + nd3

+ω2θ23 + A2θ̂22 −
1

2
∂3n− θ13θ23 − A2θ̂33 − ∂2θ̂33 + θ33ω3

and

R3
131 = −θ11θ33 + ∂1θ̂33 − ∂3d3 + 2Ω̂θ̂23 − ω2

2 − nθ̂23 + d23

+θ̂223 + θ213 + θ̂233 + 2Ω2ω2 −
1

4
n2 − d2A2.

The Ricci tensor, which is a 4 × 4 symmetric tensor, is formed by contracting the

Riemann tensor, i.e. Rab = Ri
aib. The components of the Ricci tensor are thus

obtained by calculating

R00 = −R0
101 −R0

202 −R0
303,

R11 = R0
101 +R1

212 +R3
131,

R22 = R0
202 +R1

212 +R2
323,

R33 = R0
303 +R3

131 +R2
323,

R01 = −R0
212 +R0

331,

R02 = R0
112 −R0

323,

R03 = −R0
131 +R0

223,

R12 = R0
102 −R2

331,

R13 = R0
103 −R1

223

and

R23 = R0
203 −R1

231.

They are therefore given by

R00 = ∂0θ33 − u̇1θ̂22 − u̇1θ̂33 − u̇2A2 − ∂1u̇1 − ∂2u̇2 − ∂3u̇3 + ∂0θ11 + ∂0θ22
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−u̇21 + θ211 − u̇23 + θ233 − 2ω2
1 + 2θ223 + 2θ213 − 2ω2

2

+θ222 − u̇22 − 2ω2
3 + 2θ212 + u̇2d2 + u̇3d3 − u̇3A3,

R01 = ∂1θ22 + ∂1θ33 + 2θ23θ̂23 + θ22θ̂22 − ∂2θ12 − ∂3θ13 − ∂3ω2 + ∂2ω3

+θ33θ̂33 − ω1n− A3θ13 − A3ω2 + 2ω3u̇2 − θ̂22θ11

+2θ12d2 − θ̂33θ11 − A2θ12 + A2ω3 + 2θ13d3 − 2ω2u̇3,

R02 = −∂3θ23 + ∂2θ33 − nθ13 − θ13θ̂23 + θ13Ω̂− ω2θ̂23 − ω2Ω̂

−2θ12θ̂22 + ∂2θ11 − ∂1θ12 + ∂3ω1 − ∂1ω3 + θ33A2 − 2ω3u̇1

−θ11d2 − θ̂33ω3 − θ̂33θ12 − A2θ22 + 2ω1u̇3 − 2θ23A3

+d3θ23 − d3ω1 + d2θ22,

R03 = −2θ13θ̂33 − ∂2θ23 + 2ω2u̇1 + A3θ22 − ω3Ω̂ + ∂3θ11 − ∂1θ13 + ∂3θ22

−∂2ω1 + ∂1ω2 − θ12θ̂23 + nθ12 − θ11d3 − θ12Ω̂− 2ω1u̇2

−2θ23A2 + θ̂22ω2 − θ̂22θ13 − A3θ33 + d3θ33 + d2ω1 + d2θ23 + ω3θ̂23,

R11 = d22 + θ̂222 − d2A2 − θ11θ33 + ∂1θ̂22 + ∂1u̇1 − ∂0θ11 + ∂1θ̂33 − ∂2d2

−∂3d3 + 2Ω2ω2 + u̇21 − θ211 + d23 + θ̂233 + 2Ω3θ12 + 2θ̂223 −
1

2
n2

−2Ω2θ13 − u̇2d2 − u̇3d3 − A3d3 − θ11θ22 + 2Ω3ω3,

R12 = −1

2
u̇3Ω̂− θ11Ω3 +

1

2
u̇1d2 +

1

2
u̇3n− ω2θ23 − θ12θ22 + θ22Ω3 − Ω2θ23

−ω1θ13 − θ11θ12 − 2ω1Ω2 − ∂3θ̂23 +
1

2
∂2u̇1 − ∂0θ12 +

1

2
∂3n

+
1

2
∂1u̇2 + ∂2θ̂33 − A2θ̂22 −

1

2
u̇2θ̂22 −

1

2
u̇3θ̂23 + A2θ̂33 − nd3

−θ33ω3 − θ33θ12 − 2θ̂23A3 + θ13Ω1 + u̇1u̇2,

R13 =
1

2
∂1u̇3 − ∂2θ̂23 −

1

2
∂2n+

1

2
∂3u̇1 + ∂3θ̂22 − ∂0θ13 +

1

2
u̇1d3 +

1

2
u̇2Ω̂

−A3θ̂33 + θ11Ω2 − θ11θ13 − θ13θ33 + u̇1u̇3 −
1

2
u̇2θ̂23 − θ33Ω2

−1

2
u̇3θ̂33 − 2ω1Ω3 − θ12Ω1 −

1

2
u̇2n+ ω3θ23 + ω1θ12 + A3θ̂22

+nd2 + θ22ω2 − 2θ̂23A2 − θ22θ13 + Ω3θ23,
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R22 = u̇22 + A2
2 + ∂1θ̂22 − ∂0θ22 − θ222 − ∂2d2 + ∂2A2 + ∂3A3 + ∂2u̇2

+u̇3A3 + 2Ω1θ23 − A3d3 − θ11θ22 − 2Ω̂θ̂23 + nθ̂23 + 2Ω3ω3

+θ̂222 +
1

2
n2 − θ22θ33 − Ω̂n+ θ̂22θ̂33 + A2

3 + u̇1θ̂22

−2Ω3θ12 + d22 + 2Ω1ω1,

R23 = −∂0θ23 − ∂2d3 −
1

2
∂1n− θ33θ23 +

1

2
∂3u̇2 +

1

2
∂2u̇3 + ∂1θ̂23

−1

2
u̇3A2 − θ13Ω3 + d2A3 − nθ̂22 + θ13ω3 + θ12ω2 −

1

2
u̇2A3

+θ̂23θ̂22 + θ11ω1 + θ̂33θ̂23 − θ̂33Ω̂ + θ̂22Ω̂− θ11θ23 + d3d2

+u̇1θ̂23 + Ω2θ12 − θ23θ22 + θ33Ω1 + u̇3u̇2 − θ22Ω1 − 2Ω2ω3

and

R33 = A2
2 + ∂1θ̂33 − ∂0θ33 − ∂3d3 + ∂2A2 + ∂3A3 + ∂3u̇3 − 2Ω1θ23 + 2Ω2ω2

−d2A2 − θ11θ33 + d23 − θ233 + θ̂233 + u̇1θ̂33 + u̇2A2

+2Ω̂θ̂23 − nθ̂23 + u̇23 + 2Ω2θ13 +
1

2
n2 − θ22θ33 − Ω̂n

+θ̂22θ̂33 + A2
3 + 2Ω1ω1.

The ϵi that absorb the Ricci tensor components from the Riemann curvature two-

forms are given by ϵi = Bijω̄
j, where Bij = Bji and where

B00 = − 1

12
R33 −

5

12
R00 −

1

12
R22 −

1

12
R11,

B01 = −1

2
R01,

B02 = −1

2
R02,

B03 = −1

2
R03,

B11 = − 5

12
R11 +

1

12
R33 −

1

12
R00 +

1

12
R22,

B12 = −1

2
R12,

B13 = −1

2
R13,
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B22 = − 5

12
R22 +

1

12
R33 −

1

12
R00 +

1

12
R11,

B23 = −1

2
R23

and

B33 = − 1

12
R00 −

5

12
R33 +

1

12
R22 +

1

12
R11.

The Weyl curvature two-forms are given by

W0
1 = W 0

101ω̄
0 ∧ ω̄1 +W 0

102ω̄
0 ∧ ω̄2 +W 0

103ω̄
0 ∧ ω̄3

+W 0
112ω̄

1 ∧ ω̄2 +W 0
123ω̄

2 ∧ ω̄3 +W 0
131ω̄

3 ∧ ω̄1,

W0
2 = W 0

102ω̄
0 ∧ ω̄1 +W 0

202ω̄
0 ∧ ω̄2 +W 0

203ω̄
0 ∧ ω̄3

+W 0
212ω̄

1 ∧ ω̄2 +W 0
131ω̄

2 ∧ ω̄3 −W 0
231ω̄

1 ∧ ω̄3,

W0
3 = W 0

103ω̄
0 ∧ ω̄1 +W 0

203ω̄
0 ∧ ω̄2 − (W 0

101 +W 0
202)ω̄

0 ∧ ω̄3

+(−W 0
123 −W 0

231)ω̄
1 ∧ ω̄2 +W 0

112ω̄
2 ∧ ω̄3 +W 0

212ω̄
3 ∧ ω̄1,

W1
2 = −W 0

112ω̄
0 ∧ ω̄1 −W 0

212ω̄
0 ∧ ω̄2 + (W 0

123 +W 0
231)ω̄

0 ∧ ω̄3

−(W 0
101 +W 0

202)ω̄
1 ∧ ω̄2 +W 0

103ω̄
2 ∧ ω̄3 +W 0

203ω̄
1 ∧ ω̄3,

W2
3 = −W 0

123ω̄
0 ∧ ω̄1 −W 0

131ω̄
0 ∧ ω̄2 −W 0

112ω̄
0 ∧ ω̄3

+W 0
103ω̄

1 ∧ ω̄2 +W 0
101ω̄

2 ∧ ω̄3 +W 0
102ω̄

3 ∧ ω̄1

and

W3
1 = −W 0

131ω̄
0 ∧ ω̄1 −W 0

231ω̄
0 ∧ ω̄2 −W 0

212ω̄
0 ∧ ω̄3

+W 0
203ω̄

1 ∧ ω̄2 +W 0
102ω̄

2 ∧ ω̄3 +W 0
202ω̄

3 ∧ ω̄1,

where

W 0
101 = −1

6
∂1θ̂22 −

1

3
∂0θ11 −

1

6
∂1θ̂33 +

1

6
∂0θ22 +

1

6
∂0θ33 +

1

3
∂1u̇1 +

1

6
∂2d2

+
1

6
∂3d3 +

1

3
∂2A2 +

1

3
∂3A3 −

1

6
∂2u̇2 −

1

6
∂3u̇3 +

1

3
A2

2 +
1

3
A2

3

+
1

6
θ233 −

1

6
u̇23 −

1

3
θ211 +

1

3
u̇21 −

1

6
θ̂222 −

1

6
d22 −

1

6
u̇3A3
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−1

3
Ω3ω3 +

1

6
θ11θ22 +

1

6
A3d3 −

1

3
u̇3d3 −

1

3
u̇2d2 −

1

3
Ω̂n− 1

3
Ω2ω2

−1

6
u̇2A2 −

1

6
u̇1θ̂33 +

1

3
n2 +

2

3
Ω1ω1 −

1

3
θ22θ33 +

1

3
θ̂22θ̂33 +

1

6
θ11θ33

+
1

6
d2A2 −

1

6
u̇1θ̂22 − Ω2θ13 +

1

3
ω2
3 −

1

3
θ212 −

1

6
θ̂233 −

1

3
θ213

+
1

3
ω2
2 +

1

6
θ222 −

1

6
u̇22 −

2

3
θ̂223 + Ω3θ12 −

2

3
ω+
1

2

3
θ223 −

1

6
d23,

W 0
102 = −∂0ω3 +

1

2
∂3θ̂23 +

3

4
∂2u̇1 −

1

2
∂0θ12 −

1

4
∂3n− 1

4
∂1u̇2 −

1

2
∂2θ̂33

−ω3θ22 − ω3θ11 − ω2Ω1 −
1

2
θ11θ12 −

1

4
u̇1d2 −

3

4
u̇3θ̂23 +

1

4
u̇3Ω̂

+
3

2
ω2θ23 + 2ω1Ω2 +

3

2
ω1θ13 − ω2ω1 − θ13θ23 +

1

2
θ33ω3 +

1

2
A2θ̂22

+θ̂23A3 −
1

2
θ12θ22 +

1

4
u̇3n− 1

2
θ11Ω3 +

1

2
u̇1u̇2 +

1

2
θ13Ω1 −

3

4
u̇2θ̂22

+
1

2
θ33θ12 −

1

2
A2θ̂33 +

1

2
nd3 +

1

2
θ22Ω3 −

1

2
Ω2θ23,

W 0
103 = −1

4
∂1u̇3 +

1

2
∂2θ̂23 + ∂0ω2 +

1

4
∂2n+

3

4
∂3u̇1 −

1

2
∂3θ̂22 −

1

2
∂0θ13

+θ̂23A2 + ω2θ11 + ω2θ33 −
1

2
θ12Ω1 −

1

2
θ22ω2 +

1

2
A3θ̂33 −

1

4
u̇2Ω̂

−3

4
u̇3θ̂33 − ω3Ω1 −

3

2
ω3θ23 −

1

4
u̇1d3 + 2ω1Ω3 −

3

2
ω1θ12 +

1

2
u̇1u̇3

−ω3ω1 −
1

2
θ33Ω2 −

1

2
θ11θ13 +

1

2
θ22θ13 − θ12θ23 −

3

4
u̇2θ̂23 −

1

2
θ13θ33

+
1

2
θ11Ω2 +

1

2
Ω3θ23 −

1

4
u̇2n− 1

2
A3θ̂22 −

1

2
nd2,

W 0
112 = −ω1u̇3 +

1

2
A2θ22 + θ23A3 +

1

2
d3θ23 −

1

2
∂2θ33 −

1

2
ω2Ω̂ +

1

2
θ̂33θ12

−1

2
∂1θ12 + nθ13 +

1

2
d2θ22 +

1

2
∂2θ11 +

1

2
θ̂33ω3 +

1

2
ω2θ̂23 −

1

2
d3ω1

−1

2
θ11d2 +

1

2
∂3θ23 −

1

2
θ33A2 −

1

2
∂3ω1 +

1

2
θ13Ω̂− ω3u̇1 +

1

2
nω2

−θ12θ̂22 −
3

2
θ13θ̂23 −

1

2
∂1ω3,

W 0
123 = θ23θ̂22 + ω3A3 + ∂2ω2 + θ11n+ ω1θ̂33 + θ33θ̂23 + ω2A2

−θ13A2 −
1

2
nθ33 − ∂2θ13 − θ̂23θ22 + ω1θ̂22 + θ12A3 + ∂3ω3
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−1

2
nθ22 + ∂3θ12 − θ̂33θ23 − 2u̇1ω1,

W 0
131 = −(ω2u̇1 +

1

2
nω3 +

1

2
A3θ33 +

1

2
∂1ω2 −

1

2
∂1θ13 +

1

2
∂2ω1 − nθ12

−1

2
∂3θ22 + θ23A2 +

1

2
d2θ23 −

1

2
θ̂22ω2 +

1

2
d2ω1 +

1

2
d3θ33 + ω1u̇2

−θ13θ̂33 −
1

2
ω3θ̂23 +

1

2
∂3θ11 −

1

2
ω3Ω̂− 3

2
θ12θ̂23 +

1

2
θ̂22θ13 −

1

2
θ12Ω̂

−1

2
θ11d3 −

1

2
A3θ22 +

1

2
∂2θ23),

W 0
202 = −1

6
∂1θ̂22 +

1

6
∂0θ11 +

1

3
∂1θ̂33 −

1

3
∂0θ22 +

1

6
∂0θ33 −

1

6
∂1u̇1 +

1

6
∂2d2

−1

3
∂3d3 −

1

6
∂2A2 −

1

6
∂3A3 +

1

3
∂2u̇2 −

1

6
∂3u̇3 −

1

6
A2

2 −
1

6
A2

3

+
1

6
θ233 −

1

6
u̇23 +

1

6
θ211 −

1

6
u̇21 −

1

6
θ̂222 −

1

6
d22 +

1

3
u̇3A3

−1

3
Ω3ω3 +

1

6
θ11θ22 +

1

6
A3d3 +

1

6
u̇3d3 +

1

6
u̇2d2 +

1

6
Ω̂n+

2

3
Ω2ω2

−1

2
nθ̂23 + Ω1θ23 −

1

6
u̇2A2 −

1

6
u̇1θ̂33 −

1

6
n2 + Ω̂θ̂23 −

1

3
Ω1ω1

+
1

6
θ22θ33 −

1

6
θ̂22θ̂33 −

1

3
θ11θ33 −

1

3
d2A2 +

1

3
u̇1θ̂22 +

1

3
ω2
3 −

1

3
θ212

+
1

3
θ̂233 +

2

3
θ213 −

2

3
ω2
2 −

1

3
θ222 +

1

3
u̇22 +

1

3
θ̂223 − Ω3θ12

+
1

3
ω2
1 −

1

3
θ223 +

1

3
d23,

W 0
203 = −∂0ω1 − ω2ω3 − θ13θ12 +

1

2
nθ̂22 −

3

4
u̇3A2 +

1

2
Ω2θ12 +

1

2
u̇3u̇2

+
1

2
θ11θ23 −

1

2
θ̂33θ̂23 +

1

4
u̇2A3 −

1

2
θ11ω1 +

1

2
θ33Ω1 −

1

2
θ33θ23 −

1

2
θ23θ22

−1

2
∂0θ23 +

1

2
∂2d3 +

1

4
∂1n+

3

4
∂3u̇2 −

1

4
∂2u̇3 −

1

2
∂1θ̂23 +

1

2
θ13ω3

+
1

2
θ12ω2 −

1

2
d3d2 −

1

2
θ̂23θ̂22 −

1

2
d2A3 −

1

2
θ13Ω3 −

1

2
θ̂22Ω̂

+
1

2
u̇1θ̂23 −

1

2
θ22Ω1 − ω1θ33 +

1

2
u̇1n− ω1θ22 + Ω3ω2 +

1

2
θ̂33Ω̂,

W 0
212 =

1

2
θ̂22θ11 −

1

2
θ̂33θ11 + θ13d3 −

1

2
∂1θ22 + 2θ23Ω̂− 1

2
A2θ12 +

1

2
A3θ13

+
1

2
A2ω3 − θ12d2 +

1

2
∂2θ12 −

1

2
θ23n− ω3u̇2 −

1

2
θ22θ̂22 −

1

2
∂2ω3
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+
1

2
∂1θ33 −

1

2
∂3ω2 − ω2u̇3 − ω1θ̂23 +

1

2
θ33θ̂33 −

1

2
∂3θ13 +

1

2
A3ω2

and

W 0
231 = −(−Ω̂θ22 + θ33Ω̂− ω1θ̂33 − ∂1θ23 − θ̂33θ23 +

1

2
θ11n− ∂3ω3 − ω2A2

+∂3θ12 + d2ω2 − d3θ12 − ∂1ω1 − θ13A2 − d2θ13 + 2ω2u̇2 + θ̂23θ11

+d3ω3 −
1

2
nθ33 − θ̂23θ22).

These equalities are equivalent to the following ones, taking into account the Jacobi

identities:,

W 0
101 = R0

101 +
1

6
(2R00 − 2R11 +R22 +R33),

W 0
102 = R0

102 −
1

2
R12,

W 0
103 = R0

103 −
1

2
R13,

W 0
112 = R0

112 −
1

2
R02,

W 0
123 = R0

123,

W 0
131 = R0

131 +
1

2
R03,

W 0
202 = R0

202 +
1

6
(2R00 +R11 − 2R22 +R33),

W 0
203 = R0

203 −
1

2
R23

and

W 0
231 = R0

231.
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3.5 Einstein field equations

For a perfect fluid, with µ being the energy density and p being the pressure, the

energy-momentum tensor is given by

Tabω̄
a ⊗ ω̄b = µω̄0 ⊗ ω̄0 + p

∑
α

ω̄α ⊗ ω̄α. (3.23)

With the sign convention used in (3.22) for the Riemann curvature tensor, the

Einstein field equations are given by

Rab −
R

2
gab − Λgab = Tab.

An equivalent expression is given by

Rab = −Tab +
T

2
gab − Λgab,

where T = T a
a is the trace of the energy-momentum tensor. It follows then that

the Einstein field equations, for a perfect fluid, are given by

R00 = −µ
2
− 3p

2
+ Λ,

R11 = R22 = R33 = −µ
2
+ p

2
− Λ,

and

R01 = R02 = R03 = R12 = R13 = R23 = 0.

3.6 Integrability conditions on the energy density

Closely related to the Jacobi identities are the integrability conditions on the energy

density, µ. They are determined by taking all the commutation relations on µ. This

is easily computed using differential forms, by making use of the identity:

d2µ = 0.
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We notice that, since p is a function of µ, the preceding implies

0 = d

(
dp

µ+ p

)
. (3.24)

Using the contracted Bianchi identities, we obtain

0 = d
(
p′θω̄0 + u̇αω̄

α
)
.

The evaluation of this equation implies that a particular two-form must vanish.

Therefore, the six components of this two-form must also vanish, and so

∂0u̇1 =
1

p′

(
−u̇1θp′′(µ+ p) + u̇2ω3p

′ − u̇3θ13p
′ + p′

2
∂1θ11 − p′θu̇1 + p′

2
θu̇1

−u̇3Ω2p
′ − u̇3ω2p

′ + u̇2Ω3p
′ − u̇2θ12p

′) , (3.25)

∂0u̇2 =
1

p′

(
−u̇2θp′′(µ+ p) + p′

2
∂2θ − u̇1θ12p

′ − u̇1ω3p
′ + u̇2p

′2θ − u̇2p
′θ22

−u̇3θ23p′ − u̇1Ω3p
′ + u̇3Ω1p

′ + u̇3ω1p
′)

∂0u̇3 =
1

p′
(−u̇3θp′′(µ+ p)− u̇1θ13p

′ + u̇1ω2p
′ − u̇2Ω1p

′ − u̇2θ23p
′ + u̇1Ω2p

′

+u̇3p
′2θ − u̇3p

′θ33 + p′
2
∂3θ − u̇2ω1p

′
)
,

∂1u̇2 = ∂2u̇1 − 2ω3θp
′ + u̇3Ω̂− u̇2θ̂22 − u̇3θ̂23 − u̇1d2, (3.26)

∂2u̇3 = −2ω1θp
′ − u̇3A2 + u̇2A3 + ∂3u̇2 + u̇1n

and

∂3u̇1 = −2ω2θp
′ + u̇2θ̂23 + ∂1u̇3 + u̇1d3 + u̇3θ̂33 + u̇2Ω̂. (3.27)

We note that the quantity being differentiated in (3.24) is the negative of the

differential of the function F of White and Collins (1984).

3.7 Tetrad determination

The Lorentzian metric (3.1) enables us to construct an orthonormal tetrad with

axes (e⃗0, e⃗1, e⃗2, e⃗3) in the tangent space of each point of the spacetime. The tetrads
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are not uniquely determined. The group of freedom in their orientation, ignoring

reflections, is the full Lorentz group SO(3,1,R). We now require that the e⃗0−axis

of each tetrad be aligned with the unique future-pointing unit timelike eigenvector

of the energy-momentum tensor (3.23) of a perfect fluid. The vector e⃗0 is then

the fluid flow velocity vector of the fluid. This restricts the possible tetrads. The

indeterminacy in their definition is now isomorphic to SO(3,0,R), corresponding to

rotations of the spacelike triad (e⃗1, e⃗2, e⃗3). The structure equations are now those

given in section 3.1.

We shall study perfect fluids that are shear-free; these are fluids where the

expansion tensor of the fluid possesses the simple form

θαβ =
θ

3
δαβ. (3.28)

Since the fluids that are of particular interest to us are rotating fluids, we now

choose the e⃗1−axis in such a way that it is parallel to the vorticity vector of the fluid.

This choice involves solely rotations of the triad (e⃗1, e⃗2, e⃗3). Since equation (3.28) is

invariant under such rotations, this choice of e⃗1 does not impose any restrictions on

the spacetime. We thus have that ω2 = ω3 = 0. The indeterminacy in the tetrad is

now SO(1,0,R), representing rotations of the dyad (e⃗2, e⃗3), together with a possible

reflection e⃗1 7→ −e⃗1 and a reflection in the (2− 3) space, (e⃗2, e⃗3) 7→ (−e⃗2, e⃗3). The

Jacobi identity (3.18), the integrability condition (3.27), the shear-free condition

and the condition that ω2 = ω3 = 0 ̸= ω1 requires that Ω3 be zero. Similarly,

equation (3.19), equation (3.26), the shear-free condition and ω2 = ω3 = 0 imply

that Ω2 = 0.

At this point, ω̄0 and ω̄1 are determined. Let α be a parameter representing

the rotational freedom left in the determination of ω̄2 and ω̄3. Let ω̄2′ and ω̄3′ be
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another choice for these directions. The relation between (ω̄2, ω̄3) and (ω̄2′, ω̄3′) is ω̄2′

ω̄3′

 =

 cosα sinα

− sinα cosα


 ω̄2

ω̄3

 .
It follows then that the structure equations for ω̄2′ and ω̄3′ in terms of the kinematic

quantities associated with ω̄2 and ω̄3 are

dω̄2′ = dα ∧ ω̄3′ +
θ

3
ω̄0 ∧ ω̄2′ + (ω1 + Ω1)ω̄0 ∧ ω̄3′

+(θ̂22 cos
2 α + 2θ̂23 cosα sinα + θ̂33 sin

2 α)ω̄1 ∧ ω̄2′

+(A2 sinα− A3 cosα)ω̄
2′ ∧ ω̄3′

+
[
(θ̂22 − θ̂33) cosα sinα− Ω̂ + θ̂23(sin

2 α− cos2 α)
]
ω̄3′ ∧ ω̄1

and

dω̄3′ = −dα ∧ ω̄2′ − (ω1 + Ω1)ω̄0 ∧ ω̄2′ +
θ

3
ω̄0 ∧ ω̄3′

+
[
(θ̂33 − θ̂22) cosα sinα− Ω̂ + θ̂23(cos

2 α− sin2 α)
]
ω̄1 ∧ ω̄2′

+(A2 cosα + A3 sinα)ω̄
2′ ∧ ω̄3′

+(−θ̂22 sin2 α + 2θ̂23 cosα sinα− θ̂33 cos
2 α)ω̄3′ ∧ ω̄1.

If we let ω′
1 and Ω′

1 be the kinematic quantities analogous to ω1 and Ω1, then

2(ω′
1 + Ω′

1)ω̄
0 ∧ ω̄1 ∧ ω̄2′ ∧ ω̄3′ = ω̄1 ∧ ω̄2′ ∧ dω̄2′ + ω̄1 ∧ ω̄3′ ∧ dω̄3′

= 2dα ∧ ω̄1 ∧ ω̄2′ ∧ ω̄3′ + 2(ω1 + Ω1)ω̄
0 ∧ ω̄1 ∧ ω̄2′ ∧ ω̄3′.

We can therefore require that ω′
1 + Ω′

1 = 0, provided that we require that ∂0α +

(ω1+Ω1) = 0. This result that ω1+Ω1 can be set to zero also holds in the situation

when the fluid has non-vanishing shear. There is still freedom in the choice of α,

provided that we maintain the constraint that ∂0α = 0. We compute the effect of
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the rotation on the quantity θ̂23 as follows:

2θ̂23
′ω̄0 ∧ ω̄1 ∧ ω̄2′ ∧ ω̄3′ = −dω̄2′ ∧ ω̄0 ∧ ω̄2′ + dω̄3′ ∧ ω̄0 ∧ ω̄3′

= 2
(
(θ̂33 − θ̂22) sinα cosα + θ̂23(cos

2 α− sin2 α)
)
ω̄0 ∧ ω̄1 ∧ ω̄2′ ∧ ω̄3′.

We can set θ̂23 to be zero, by choosing α such that

(θ̂33 − θ̂22) sinα cosα + θ̂23(cos
2 α− sin2 α) = 0. (3.29)

Of course, when θ̂22 = θ̂23 = θ̂33 = 0 no constraints are thereby imposed on α. Apart

from this special situation, the tetrad {e⃗a} is then completely determined, up to

possible reflections. This is allowed provided that equation (3.29) is propagated

along the fluid flow without introducing new constraints. For the present situation,

equations (3.17), (3.20) and (3.21) reduce to

∂0θ̂33 = −θ
3
θ̂33 +

1

3
∂1θ +

θ

3
u̇1,

∂0θ̂23 = −θ
3
θ̂23

and

∂0θ̂22 = −θ
3
θ̂22 +

1

3
∂1θ +

θ

3
u̇1.

Using these expressions, the differentiation of equation (3.29) along e⃗0 yields the

identity 0 = 0. We remark that if the fluid possesses shear, then this differentiation

of (3.29) will, in general, introduce new constraints. We also note that, prior to

setting ω1 + Ω1 = 0, we could have set θ̂23 = 0. Propagating this expression in the

fluid flow direction would have forced ω1 +Ω1 to vanish, without loss of generality,

except when θ̂22 = θ̂33. The tetrad is now fixed, up to reflection of axes, except

when θ̂22 = θ̂33. When it is the case that θ̂22 = θ̂33, remembering that θ̂23 = 0 was

imposed, we can still set ω1 + Ω1 to zero, but there are no restrictions on α, i.e.

there is the full freedom of rotation of the 2-3 dyad.



Chapter 4

The Petrov classification of the

Weyl tensor

Que diable allait-il faire dans cette galère?

Molière

I N THIS chapter, we show how the Weyl tensor can be classified using results

from linear algebra. We refer to Grossman (1984) for an elementary introduction

to the concepts from linear algebra that we shall need. In particular, for a two-

dimensional matrix with a double eigenvalue for which the associated eigenspace is

one-dimensional, Grossman (1984) shows how to compute a vector that is linearly

independent of this eigenspace. We use that example in Grossman (1984) as a guide

for our calculations for the cases when the dimension of the eigenspace associated

with a repeated eigenvalue is less than the multiplicity of the eigenvalue. The other

calculations are from the present author. Hungerford (1974) is a more advanced

reference about algebra in general and linear algebra in particular. Kramer et

al. (1980) provide more information about the Petrov classification.

91
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The fluid flow vector may be employed to split the Weyl tensor into two tensors:

the electric part, denoted by Eab, and the magnetic part, denoted by Hab. More

information about the electric and magnetic parts of the Weyl tensor can be found

in Kramer et al. (1980) and in Ellis (1971). These tensors are symmetric and trace-

free. Relative to a frame in which e⃗0 is defined to be the fluid flow tangent vector,

they satisfy E0a = H0a = 0 and obey

W0
1 = −E11ω̄

0 ∧ ω̄1 − E12ω̄
0 ∧ ω̄2 − E13ω̄

0 ∧ ω̄3

−H11ω̄
2 ∧ ω̄3 −H12ω̄

3 ∧ ω̄1 −H13ω̄
1 ∧ ω̄2,

W0
2 = −E12ω̄

0 ∧ ω̄1 − E22ω̄
0 ∧ ω̄2 − E23ω̄

0 ∧ ω̄3

−H12ω̄
2 ∧ ω̄3 −H22ω̄

3 ∧ ω̄1 −H23ω̄
1 ∧ ω̄2

and

W0
3 = −E13ω̄

0 ∧ ω̄1 − E23ω̄
0 ∧ ω̄2 − E33ω̄

0 ∧ ω̄3

−H13ω̄
2 ∧ ω̄3 −H23ω̄

3 ∧ ω̄1 −H33ω̄
1 ∧ ω̄3.

Since both the electric part and the magnetic part of the Weyl tensor are trace-free,

it follows that E11 + E22 + E33 = 0 and H11 + H22 + H33 = 0. This enables us to

make the identifications:

E11 = −W 0
101,

E12 = −W 0
102,

E13 = −W 0
103,

E22 = −W 0
202,

E23 = −W 0
203,

E33 = −E11 − E22,

H11 = −W 0
123,

H12 = −W 0
131,
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H13 = −W 0
112,

H23 = −W 0
212,

H22 = −W 0
231

and

H33 = −H11 −H22.

Introducing the definitions

W = (ω̄a ∧ ω̄b)⊗Wab, (4.1)

and

(e⃗a ⊗ e⃗b)⌋
(
(ηc ∧ ηd)⊗ (ηe ∧ ηf )

)
:= (δcaη

d − δdaη
c)⊗ (δebη

f − δfb η
e),

with ⌋ (the hook operator) extended by bilinearity, it then follows that the electric

part of the Weyl tensor with respect to the fluid flow is obtained by

Eab(ω̄
a ⊗ ω̄b) = (ω̄0 ⊗ ω̄0)⌋W , (4.2)

and the magnetic part of the Weyl tensor with respect to the fluid flow is obtained

by

Hab(ω̄
a ⊗ ω̄b) = (ω̄0 ⊗ ω̄0)⌋

(
(ω̄a ∧ ω̄b)⊗ ∗Wab

)
, (4.3)

where the ∗ operator1 is a linear operator that obeys

∗(ω̄0 ∧ ω̄1) = ω̄2 ∧ ω̄3,

∗(ω̄0 ∧ ω̄2) = ω̄3 ∧ ω̄1,

∗(ω̄0 ∧ ω̄3) = ω̄1 ∧ ω̄2,

∗(ω̄1 ∧ ω̄2) = ω̄0 ∧ ω̄3,

1See also page 71.
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∗(ω̄2 ∧ ω̄3) = ω̄0 ∧ ω̄1

and

∗(ω̄3 ∧ ω̄1) = ω̄0 ∧ ω̄2.

We define the null vectors k⃗, ℓ⃗, m⃗ and ⃗̄m in such a way that they satisfy:

√
2k⃗ = e⃗0 + e⃗3,

√
2ℓ⃗ = e⃗0 − e⃗3,

√
2m⃗ = e⃗1 − ie⃗2

and
√
2 ⃗̄m = e⃗1 + ie⃗2.

This enables us to define the components of the Weyl tensor as follows:

Ψ0 = (k⃗ ∧ m⃗)⊗ (k⃗ ∧ m⃗)⌋W ,

Ψ1 = (k⃗ ∧ ℓ⃗)⊗ (k⃗ ∧ m⃗)⌋W ,

Ψ2 = (k⃗ ∧ ℓ⃗)⊗ (k⃗ ∧ ℓ⃗− m⃗ ∧ ⃗̄m)⌋W ,

Ψ3 = −(k⃗ ∧ ℓ⃗)⊗ (ℓ⃗ ∧ ⃗̄m)⌋W

and

Ψ4 = (ℓ⃗ ∧ ⃗̄m)⊗ (ℓ⃗ ∧ ⃗̄m)⌋W ,

where the exterior product of two vectors, denoted by ∧ is an antisymmetric, as-

sociative and bilinear operation. In terms of the components of the electric and

magnetic parts of the Weyl tensors, we obtain:

Ψ0 =
1

2
(E11 − E22 + 2H12) +

i

2
(H11 −H22 − 2E12),

Ψ1 = −1

2
(E13 +H23) +

i

2
(E23 −H13),
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Ψ2 =
1

2
E33 +

i

2
H33,

Ψ3 =
1

2
(E13 −H23) +

i

2
(E23 +H13)

and

Ψ4 =
1

2
(E11 − E22 − 2H12) +

i

2
(H11 −H22 + 2E12).

The inverse relations are

E11 =
1

4
(Ψ0 +Ψ4 − 2Ψ2 − 2Ψ̄2),

E12 =
i

4
(Ψ0 −Ψ4 − Ψ̄0 + Ψ̄4),

E13 =
1

2
(Ψ3 −Ψ1 + Ψ̄3 − Ψ̄1),

E22 = −1

4
(Ψ0 +Ψ4 + 2Ψ2 + 2Ψ̄2),

E23 =
i

2
(Ψ̄1 + Ψ̄3 −Ψ1 −Ψ3),

H11 =
i

4
(2Ψ2 − 2Ψ̄2 −Ψ0 −Ψ4),

H12 =
1

4
(Ψ0 −Ψ4 + Ψ̄0 − Ψ̄4),

H13 =
i

2
(Ψ1 −Ψ3 − Ψ̄1 + Ψ̄3),

H22 =
i

4
(Ψ0 +Ψ4 + 2Ψ2 − 2Ψ̄2)

and

H23 = −1

2
(Ψ1 +Ψ3 + Ψ̄1 + Ψ̄3).

All the information in theWeyl tensor can be regrouped in the matrixQ = E+iH,

which is equivalent to

Q =


1
2
(Ψ0 +Ψ4 − 2Ψ2)

i
2
(Ψ0 −Ψ4) Ψ3 −Ψ1

i
2
(Ψ0 −Ψ4) −1

2
(Ψ0 +Ψ4 + 2Ψ2) −i(Ψ1 +Ψ3)

Ψ3 −Ψ1 −i(Ψ1 +Ψ3) 2Ψ2

 .
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This is a symmetric, trace-free complex matrix. Since the trace of a square matrix,

M, is equal to the sum of the eigenvalues of M ,2 it follows that the sum of the

eigenvalues of Q vanishes.

The matrix Q can be classified according to its eigenvalues and eigenvectors.

Let λ be an eigenvector of Q; therefore, λ satisfies the characteristic polynomial of

Q :

K = det(Q− λI3) = −λ3 + λI − 2J = 0,

with I3 being the three-dimensional identity matrix and the invariants I and J

satisfying:

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3(Ψ2)
2

and

J =

∣∣∣∣∣∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣∣∣∣∣∣
= Ψ0Ψ2Ψ4 + 2Ψ1Ψ2Ψ3 −Ψ4(Ψ1)

2 −Ψ0(Ψ3)
2 − (Ψ2)

3.

For an eigenvalue to be repeated there must be a common zero of K and dK/dλ.

Therefore λ is a repeated eigenvalue if and only if the resultant of K and dK/dλ

with respect to λ is zero. We conclude, then, that there is a repeated eigenvalue

if and only if I and J satisfy I3 = 27 J2. We say that a spacetime is of Petrov

type I if the eigenvalues are all different, or equivalently, if I3 ̸= 27 J2. Since all the

eigenvalues are different, the minimal polynomial of Q for Petrov type I is equal

to (Q− λ1I3)(Q− λ2I3)(Q− λ3I3) = 0, where λ1, λ2 and λ3 are the three different

eigenvalues.

2This follows since trace(AB)=trace(BA) and a matrix M is similar to a diagonal matrix with

the diagonal elements equal to the eigenvalues of M.
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For Q to admit a triply repeated eigenvalue, K, dK/dλ and d2K/dλ2 must

possess a common factor. Taking the pairwise resultants with respect to λ, and

equating them to zero, it follows that the invariants I and J must both vanish.

The repeated eigenvalue must therefore be zero. We look at the eigenspace be-

longing to the triple eigenvalue zero. This space must be at least one-dimensional,

otherwise there would not be any eigenvectors, and so there would not be any eigen-

values. Suppose that the eigenspace is three-dimensional. Since the dimension of

the eigenspace is the same as the space to which Q applies, then any vector is an

eigenvector of Q. In particular, we must have

Q


1

0

0

 = Q


0

1

0

 = Q


0

0

1

 = 0.

It follows that the tensor Q must vanish, and so the spacetimes that belong to this

class are the conformally flat spacetimes. They are said to belong to the class of

spacetimes of Petrov type O.

If the eigenspace belonging to the triple eigenvalue zero is two-dimensional, we

can choose two independent vectors x⃗1 and x⃗2 as a basis for this eigenspace. Choose

a vector w⃗ independent of x⃗1 and x⃗2. Such a vector must exist, since the eigenspace

is not three-dimensional. The vector Qw⃗ cannot be zero, or even proportional to

w⃗, since w⃗ cannot be an eigenvector, and so can be expressed in terms of w⃗, x⃗1 and

x⃗2 :

Qw⃗ = aw⃗ + b1x⃗1 + b2x⃗2,

where (b1)
2 + (b2)

2 ̸= 0. We want to show that a = 0. Suppose that a ̸= 0, and

therefore a is not an eigenvalue of Q. It follows that B := (Q− a I3) is invertible.

Therefore

w⃗ = b1B
−1x⃗1 + b2B

−1x⃗2.
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On the other hand, since b1x⃗1 + b2x⃗2 is an eigenvector of Q, we have that

B−1Q(b1x⃗1 + b2x⃗2) = B−1 0 = 0

= (I3 + a B−1)(b1x⃗1 + b2x⃗2)

= b1x⃗1 + b2x⃗2 + a B−1(b1x⃗1 + b2x⃗2)

= b1x⃗1 + b2x⃗2 + a w⃗,

which is a contradiction since this implies that a = 0. It follows then that, indeed,

a = 0, and so Qw⃗ is an eigenvector of Q. Note that Q cannot be equal to zero, since

the vector w⃗ is not an eigenvector of Q. Because every vector x⃗ can be expressed as

a combination of w⃗, x⃗1 and x⃗2, it follows that, ∀x⃗, (Q2)x⃗ = 0. Therefore the minimal

polynomial of Q for spacetimes belonging to this class is Q2. Such spacetimes are

said to be of Petrov type N.

Now suppose that the eigenspace belonging to the triple eigenvalue zero of Q is

one-dimensional. Let x⃗ be a non-trivial eigenvector of Q. Every other eigenvector

of Q must then be a multiple of x⃗. Let y⃗1 and y⃗2 be two vectors, independent of

each other and of x⃗, and so y⃗1 and y⃗2 are not eigenvectors of Q. Since x⃗, y⃗1 and y⃗2

form a basis, Qy⃗1 can be expressed as

Qy⃗1 = ax⃗+ b1y⃗1 + b2y⃗2.

Similarly, we obtain

Qy⃗2 = cx⃗+ d1y⃗1 + d2y⃗2.

By taking z⃗ := d2y⃗1 − b2y⃗2, we see that Qz⃗ does not have a component along y⃗2.

Since there is no loss of generality in taking y⃗1 to be this vector z⃗, and finding an

appropriate vector y⃗2, we can assume that b2 is equal to zero. For simplicity, we

shall denote b1 by b. We then have

(Q− b I3)y⃗1 = ax⃗.
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By the same argument as in the preceding paragraph, the quantity b must be an

eigenvalue of Q, and so must equal zero. It follows that Qy⃗1 is an eigenvector of Q.

We now apply the matrix Q to the vector y⃗2. From the result, we obtain

(Q− d2 I3)y⃗2 = cx⃗+ d1y⃗1.

Let C := Q− d2 I3. We first suppose that d2 is not an eigenvalue of Q, that is, we

suppose that d2 is not zero, whence C is invertible. It follows that

y⃗2 = cC−1x⃗+ d1C
−1y⃗1.

Since x⃗ is an eigenvector of Q, we have that 0 = C−1Qx⃗ = C−1(C + d2I3)x⃗ =

x⃗+ d2C
−1x⃗, whence C−1x⃗ is a multiple of x⃗. The quantity Qy⃗2 is an eigenvector of

Q, so we must have Qy⃗1 = ex⃗, for some non-zero constant e. Because Q = C+d2I3,

we obtain eC−1x⃗ = y⃗1 + d2C
−1y⃗1; therefore, C

−1y⃗1 belongs to the space spanned

by x⃗ and y⃗1, and so also must y⃗2. This is a contradiction; therefore d2 must be

an eigenvalue of Q, and so d2 must be zero. We thus get that Qy⃗2 = cx⃗ + d1y⃗1.

The quantity d1 cannot be equal to zero, since otherwise Q(cy⃗1 − ay⃗2) = 0, and

so cy⃗1 − ay⃗2 = fx⃗, for some f. This cannot be, since y⃗1, y⃗2 and x⃗ are linearly

independent, whence, (Q2)y⃗2 = d1x⃗ ̸= 0, and so Q2 ̸= 0. However, every vector

w⃗ is expressible as a linear combination of y⃗1, y⃗2 and x⃗, so it must follow that

∀w⃗, (Q3)w⃗ = 0. The minimal polynomial of Q is then Q3. Spacetimes belonging to

the present class are said to be of Petrov type III.

We now consider the situation of a double eigenvalue, λ. Since the sum of

the eigenvalues must be zero, the non-repeated eigenvalue must be −2λ. We have

already handled the situation of a triple eigenvalue, so we can impose the condition

λ ̸= 0. Suppose that the eigenspace of the double eigenvalue λ is two-dimensional.

Let x⃗1 and x⃗2 be two eigenvectors of Q that form a basis of the eigenspace of λ.
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Let y⃗ be an eigenvector that belongs to the eigenvalue −2λ. The vector y⃗ must be

orthogonal to both x⃗1 and x⃗2, since it belongs to a different eigenvalue. Thus the

vectors y⃗, x⃗1 and x⃗2 form a basis for the full space. Let w⃗ be any vector. There

must exist numbers a1, a2 and b such that

w⃗ = a1x⃗1 + a2x⃗2 + by⃗.

Applying the Q+ 2λ I3 operator to w⃗ yields

(Q+ 2λ I3)w⃗ = a1(Q− λ I3)x⃗1 + a2(Q− λ I3)x⃗2 + b(Q+ 2λ I3)y⃗

+3a1λx⃗1 + 3a2λx⃗2

= 3a1λx⃗1 + 3a2λx⃗2,

whence,

(Q− λ I3)(Q+ 2λ I3)w⃗ = 0.

Since w⃗ is arbitrary, the minimal polynomial of Q must be (Q− λ I3)(Q+ 2λ I3).

Spacetimes that belong to the present class are said to be of Petrov type D.

Now suppose that the eigenspace of the double eigenvalue λ has dimension 1. Let

x⃗ and y⃗ be non-trivial vectors belonging to the eigenspace of λ and −2λ respectively.

The vectors x⃗ and y⃗ are orthogonal to each other, since they belong to different

eigenvalues. Let z⃗ be a vector orthogonal to both x⃗ and y⃗. The vector z⃗ cannot be

an eigenvector of Q. Hence there exist scalar functions a, b and c such that

Qz⃗ = ax⃗+ by⃗ + cz⃗.

The functions a and b cannot vanish at the same time, otherwise z⃗ would be an

eigenvector. Define C to be equal to Q − cI3. If c is not an eigenvalue, then C is

invertible, and we obtain

z = C−1(ax⃗+ by⃗).
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We also have

0 = C−1(Q− λ I3)x⃗ = C−1[C + (c− λ)I3]x⃗

= x+ C−1(c− λ)x⃗

and

0 = C−1(Q+ 2λ I3)y⃗ = C−1[C + (c+ 2λ)I3]y⃗

= y + C−1(c+ 2λ)y⃗.

It follows that

(c− λ)(c+ 2λ)z⃗ = −(c− λ)by⃗ − a(c+ 2λ)x⃗.

Now this is a contradiction, since c is assumed not to be an eigenvalue and x⃗, y⃗ and

z⃗ are independent. Therefore C is not invertible and so c must be an eigenvalue.

Suppose that c = −2λ, and so

(Q+ 2λ I3)z⃗ = ax⃗+ by⃗.

Because a matrix must satisfy its characteristic equation, Q must satisfy

(Q− λ I3)
2(Q+ 2λ I3) = 0;

however,

(Q− λ I3)
2(Q+ 2λ I3)z⃗ = bλ2y⃗.

In this case, b must be zero. Since

Q(3λz⃗ − ax⃗) = 3λ(−2λz⃗ + ax⃗)− aλx⃗ = −2λ(3x⃗− ax⃗),

we have that 3λz⃗ − ax⃗ is in the eigenspace of −2λ and so must be proportional to

y⃗. This is a contradiction. We thus have c = λ, and so

(Q− λ I3)z⃗ = ax⃗+ by⃗.
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This is compatible with the characteristic equation of Q, and so there are no further

restrictions on a and b, provided that neither a nor b is zero. Let w⃗ be any vector.

There are then functions c, d and e such that w⃗ = cx⃗+dy⃗+ez⃗.We find the minimal

polynomial of Q using the following computations:

(Q+ 2λ I3)w⃗ = 3cλx⃗+ e(ax⃗+ by⃗ + 3λz⃗),

(Q− λ I3)(Q+ 2λ I3)w⃗ = −3ebλy⃗ + 3eaλx⃗+ 3ebλy⃗ = 3eaλx⃗

and

(Q− λ I3)
2(Q+ 2λ I3)w⃗ = 0.

The minimal polynomial of Q is then (Q−λ I3)
2(Q+2λ I3). Spacetimes belonging

to this class are those of Petrov type II.

We can summarize the content of the present section into table 4.1 where the

Petrov type is given by the most restrictive matrix that applies.3

3A similar table appears as table 4.1 of Kramer et al. (1980).
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Petrov Matrix condition Dimension of

type (use the most restrictive matrix condition eigenspace

that applies)

I (Q− λ1 I3)(Q− λ2 I3)(Q− λ3 I3) = 0 < λ1 >= 1

λ1, λ2, λ3 all different < λ2 >= 1

< λ3 >= 1

D (Q+ λ
2
I3)(Q− λ I3) = 0 < −λ

2
>= 2

< λ >= 1

II (Q+ λ
2
I3)

2(Q− λ I3) = 0 < −λ
2
>= 1

< λ >= 1

N Q2 = 0 < 0 >= 2

III Q3 = 0 < 0 >= 1

O Q = 0 < 0 >= 3

The expression < λ > is defined to be the dimension of the

eigenspace associated with the eigenvalue λ.

Table 4.1: Petrov types.



Chapter 5

The shear-free conjecture

Only a life lived for others is a life worth

while. Albert Einstein

T HERE IS a growing body of evidence that the following conjecture, which we

shall refer to as the shear-free conjecture, is true:

Conjecture 1 A shear-free perfect fluid that obeys a barotropic equation of state,

p = p(µ), such that µ+p ̸= 0, and satisfying the field equations of general relativity,

is necessarily either irrotational or expansion-free, i.e., σ = 0 ⇒ ωθ = 0.

This conjecture appears to have first appeared in the literature in King (1974).

King attributes it to Treciokas and Ellis (1971).

In the following pages, we present a historical account of the various results

supporting the conjecture. Thereafter, the conjecture is proved for two special

cases. The first case is that when the Weyl tensor is purely magnetic with respect

104
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to the fluid flow vector. The second case is that of a coasting1 universe, i.e. one

with the equation of state satisfying dp/dµ = −1/3.

5.1 Historical survey

In this section, we review the basic results previously obtained with respect to the

shear-free conjecture. Particular attention is paid to features that were critical

to the success of the authors in establishing the veracity of the conjecture under

various hypotheses. Collins (1986) gives a quite extensive discussion on shear-free

fluids in general relativity. In particular, he provides a survey of the literature on

the shear-free conjecture and its consequences.

The first result of which I am aware concerning the shear-free conjecture is

contained in the work of Gödel (1950). Gödel considers spacetimes with a dust

source, i.e. perfect fluids with vanishing pressure. He requires the spacetime to

be spatially homogeneous and rotating, with non-constant energy density. Since

the energy density varies, the space must be expanding. Therefore he requires

that the product ωθ be non-vanishing. Since the dust is rotating, the flow velocity

cannot be orthogonal to the surfaces of homogeneity, i.e. the spacetime is tilted.

Furthermore, Gödel requires that the isometry group must be compact. He shows

that the group must be a three-parameter group that cannot be commutative, and

therefore that it

must be isomorphic (as a group of transformations) with the right (or

left) translations of a 3-space of constant positive curvature, or with

1Matter-energy is between attracting and repulsing regimes as can be seen from Raychaudhuri’s

equation.
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these translations plus certain rotations by an angle π.

(Gödel, 1950)

It follows then that the spacetime must be a tilted spatially homogeneous spacetime

of Bianchi-Behr type IX. If in addition the metric induced in the 3-spaces of

constant density is positive definite, or, equivalently (Gödel, 1950), if the spacetime

contains no closed timelike lines, then the expansion tensor cannot be, at any instant

of time, rotationally symmetric about the axis of rotation. This therefore requires

that the spacetime exhibits shear. Gödel considers it very likely that

there exist no rotating spatially homogeneous and expanding solutions

whatsoever in which the ellipsoid of expansion is permanently [Gödel’s

emphasis] rotationally symmetric around ω.

Schücking (1957) generalizes the result of Gödel (1950) on the shear-free con-

jecture to general spatially homogeneous dust. Schücking remarks that shear-free

models with simultaneous expansion and rotation would represent spacetimes that

are intermediate between the isotropically expanding Friedmann models without

rotation and the stationary rotating Gödel models without expansion. Schücking

writes the line element for a spatially homogeneous spacetime with dust in comov-

ing coordinates as follows (with the convention of Gödel (1950) that has Greek

indices running over 0 to 3 and Latin indices running over 1 to 3):

ds2 = (dx0)2 + 2g0i(x
j)dx0 dxi + gik(x

µ)dxi dxk.

The velocity is given by

uµ =
dxµ

ds
= δµ0 .
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The length scale R is defined as R3 =
√
−g, where g = det |gµν |. The equation of

continuity and the requirement of spatial homogeneity necessitate that R separates

as

R(xr) = S(x0)W (xj).

The (00) and the (0i) Einstein field equations, since they must hold for arbitrary

xj, are then two differential equations for S(x0) which are incompatible with each

other under the requirement that both the expansion and the vorticity be non-

zero. Schücking (1957) mentions that models with both vorticity and expansion

do exist in Newtonian cosmology, as long as one does not neglect the ambiguity2

(which is characteristic of such models) of the boundary conditions. The re-

sult of Schücking (1957) was generalized by Ellis (1967) to general dust and by

Banerji (1968) for perfect fluids with an equation of state p = (γ − 1)µ, such that

γ ̸= 10/9.

Ellis (1967) studies general relativistic pressure-free matter. The scope of this

work covers much more than the shear-free conjecture; however, we shall restrict

ourselves to that aspect. Ellis proves the conjecture for shear-free dust, i.e. for

fluids without pressure. An immediate consequence of requiring that the pressure

vanish is that the acceleration must also vanish; this is proved using three of the four

contracted Bianchi identities. The framework used is the orthonormal technique.

Ellis proves the conjecture for shear-free dust by showing that a contradiction is

reached after making the hypothesis that neither the expansion nor the vorticity

vanishes. A sketch of the proof follows.

The e⃗0−axis is chosen to be the fluid flow velocity. The e⃗1−axis is chosen to

2The problem is that it is not possible to invariantly separate the inertial and the gravitational

parts of the acceleration. For more details see Ellis (1971).
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be parallel to the vorticity vector. The vectors e⃗2 and e⃗3 have the freedom of ro-

tation through the angle Θ. The propagation of this angle along e⃗0 is chosen such

that ω1 + Ω1 = 0. The Jacobi identities imply that Ω2 = Ω3 = 0. For shear-free

fluids, then, ωα + Ωα = 0, with the convention that Greek indices run over 1 to

3 and Latin indices run over 0 to 3. The propagation along e⃗1 of Θ is chosen in

such a way to set Ω̂ − θ̂23 = 0. The Jacobi identities, some of the Einstein field

equations and the remaining contracted Bianchi identity, which expresses conser-

vation of energy, are then computed and used to find the four derivatives of the

expansion, the e⃗0− and the e⃗1−derivatives of the vorticity and the e⃗0−derivatives

of θ, ω, d2, d3, n, A2, A3, θ̂22, θ̂23, θ̂33 and µ. The [e⃗0, e⃗2] and [e⃗0, e⃗3] commutation re-

lations on ω are then used to find the propagation of ∂2ω and ∂3ω along e⃗0, where

we denote the e⃗i−derivative by ∂i. The propagation along e⃗0 of the equations is

then used exclusively as the tool to generate further equations. The three spa-

tial derivatives of µ and various algebraic constraints are found. It is shown that

θ̂22 + θ̂33 = 0 and n = 0. The propagations along e⃗0 of ∂2µ and of ∂3µ yield two

equations involving ∂2ω and ∂3ω. Propagation of these yields two other such equa-

tions; from these last four equations, the relation d2∂3ω − d3∂2ω = 0 is deduced.

The propagation along e⃗0 of the (11), (22) and (33) field equations produces the

required contradiction.

We note, as did Ellis, that the timelike e⃗0−congruence is the principal feature

of this paper. As White and Collins (1984) observed, the proof of Ellis also holds

for the more general situation when the pressure is constant. Any non-zero con-

stant pressure can be absorbed into the cosmological term Λ, with the appropriate

adjustment of the definition of the energy density. White and Collins (1984) give

a slightly different proof for this case, but in the same notation as that used in the

present work.
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As a note on the history of the conjecture, we mention that Ellis (1967) asks

the question “under what more general3 conditions does such a result4 hold?”

Banerji (1968) considers shear-free rotating spatially homogeneous perfect fluid

spacetimes with a gamma law equation of state p = (γ−1)µ, where γ−1 is positive.

He finds that the conjecture holds except possibly when γ = 10/9. The method of

study is based on coordinates. Let the surfaces of homogeneity be labelled by

t = constant. The metric is given by ds2 = dt2 + 2g4idt dx
i + gikdx

i dxk. The

function G =
√
−g satisfies Ġ/G = θ/3, where the dot (̇) indicates differentiation

along the fluid flow and Latin indices run from 1 to 3. For spatially homogeneous

spacetimes, the function G separates as the product of a function, S, of x4 alone

and a function, W, which is independent of x4. The vorticity must be of the form

ω2 = AS6γ+2, with A being a positive constant. The (00) equation and a particular

combination of the (0α) field equations give, by integration, an algebraic relation

on the function S. The requirement that θω ̸= 0 then requires that S be equal to
√
−Et, where E is a negative constant. The requirement that the energy density

not vanish then shows that the only values for γ are γ = 1 and γ = 10/9. The value

γ = 1 corresponds to dust, for which Schücking (1957) has shown the veracity of

the shear-free conjecture in the case of spatially homogeneous spacetimes. Banerji

considers “not unlikely” that the case p = µ/9 can also be ruled out, but does not

give a proof for this situation.

Ellis (1971) mentions that for conformally flat spacetimes, the Bianchi identities

require that perfect fluids must be shear-free, irrotational and geodesic. In other

3than the conditions of the dust-filled world with homogeneous space sections considered by

Schücking.

4that θ ̸= 0 = σ ⇒ ω = 0.
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words, they must be the Friedmann-Robertson-Walker models. The result is also

contained implicitly in Stephani (1967b) and (1967a) who investigated conformally

flat solutions of the Einstein field equations for a perfect fluid or an electromagnetic

field.

Treciokas and Ellis (1971) proves the conjecture for the case of a shear-free

fluid with the equation of state p = µ/3. The method of proof is coordinate-based.

First, Treciokas and Ellis show that for a shear-free perfect fluid with a barotropic

equation of state and with non-zero vorticity, local co-moving coordinates can be

chosen so that the spacetime metric is

ds2 =
1

w2(xa)

(
fαβ(x

σ)dxα dxβ − v2(xa)(dx0 + x2 dx3)2
)
,

with v := w/r, where

w := exp

(∫ µ

µ0

dµ

3(µ+ p)

)
and

r := exp

(∫ p

p0

dp

µ+ p

)
.

The convention that Latin indices go from 0 to 3 and that Greek indices go from 1

to 3 is used. The only quantities appearing in the metric that depend on time (x0)

are w(xa) and v(w). The authors define W (xa) := w,0 and Xα(x
a) := w,a − aαW,

where aν(x
σ) := x2δ3ν . The expansion of the fluid vanishes if and only if W does.

The Xa are related to the acceleration terms. We note that the exterior derivative

of w is W (dx0 + x2 dx3) +Xα dx
α. The critical condition that p = µ/3 translates

into v = 1. There is then a precise correspondence with the spacetimes (within the

class under consideration) that are conformal to a static spacetime. An outline of

the proof of the conjecture in this case now follows.

The (00) field equation yields an expression for ∂0W ; the (0ν) field equations give

∂0Xν and the (µν) ones give ∂µXν . The only expressions that contain derivatives
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of W are those for ∂µXν . They contain the term ∂0W. The (00), (0ν) and (23)

field equations are differentiated with respect to the variable x0. The resulting

equations are denoted by (00),0, (0ν),0 and (23),0, respectively, where (ab),0 denotes

differentiation of the (ab) field equation with respect to x0. The (00),0 equation

yields an expression for ∂0∂0W . The (0ν),0 equations are then put in the form of

equations that are linear in Xν , with coefficients in which the only dependence on

x0 appears in the function w. The determinant of these three equations, considering

Xν as the variables, is a polynomial in w with coefficients independent of x0. By

repeated differentiation with respect to x0, one can conclude that this determinant

can vanish if and only if all coefficients of the polynomial in w vanish. It is therefore

of critical importance that w appears only in a polynomial fashion. The leading

coefficient, (8µ0/3)
3, cannot vanish, and therefore neither can the determinant. One

can then solve for the variables Xν . They appear as the ratio of a polynomial in w of

degree 5 by a polynomial in w of degree 6 (the aforementioned determinant). Then

one solves for W from (23),0 and substitutes the result in (00). After multiplication

by a suitable power of the determinant and by a suitable power of a particular time

independent function, Treciokas and Ellis (1971) obtain that a certain polynomial

in w, with coefficients independent of x0, vanishes. The leading coefficient of this

polynomial must then vanish, but this is a contradiction because it is equal to

5(µ0/3)
2(8µ0/3)

9, a non-zero quantity.

We note that here as well the derivatives with respect to x0 are extremely

important. The crucial part of this proof is that the authors obtained the vanishing

of quantities that are polynomials in the time-dependent variable. Unfortunately,

this desirable feature does not appear to be generic, and so this method of proof is

unlikely to apply to the full conjecture.

We also note that higher order derivatives are eliminated as soon as possible in
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favour of lower order derivatives. The highest order derivative appearing explicitly

is ∂0∂0W. This corresponds to second order derivatives of the kinematic quantities.

Treciokas and Ellis (1971) also provide an outline of the proof of the conjecture

for the situation when there exists a function β such that the acceleration potential

r and its derivative along the fluid flow ṙ are related by ṙ = β(r). Except in

the situation of dust, for which, anyway, Ellis (1967) established the truth of the

conjecture, this case of Treciokas and Ellis (1971) is equivalent to the situation

considered by Lang and Collins (1988). This work of Lang and Collins, which will

be examined below, provides the first full published proof, as far as we are aware,

for this situation.

Treciokas and Ellis (1971) mention that they would like to know the precise

conditions for which the requirement of vanishing shear entails that the product ωθ

vanish. They conjecture that

It is conceivably true for all perfect fluid solutions, or for all perfect

[fluid] solutions with an equation of state of the form p = p(µ).

Treciokas and Ellis (1971) also mention that their result does not hold in the cor-

responding Newtonian theory. Furthermore, the condition of vanishing shear does

not impose restrictions on Newtonian spacetimes, unlike in the relativistic theory.

Treciokas and Ellis conjecture that the energy-momentum tensor will be that cor-

responding to a perfect fluid only if the shear vanishes. Collins (1987) uses this

conjecture in a study on the uniqueness of the Friedmann-Robertson-Walker cos-

mological models.

King and Ellis (1973) generalize the work of Banerji (1968) by removing the

conditions on the equation of state. They prove the conjecture for homogeneous
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cosmological models, provided the reasonable condition µ + p > 0 holds. The

technique used in this proof is the method of tetrads. Let S(t) represent the surfaces

of homogeneity. Let the vector n⃗ be the unique future-directed normal vector field

determined by S(t). If the vector n⃗ does not equal the fluid flow vector, then the

model is said to be tilted. The orthogonal tetrad used by King and Ellis in the

proof of the conjecture is a normalized fluid basis. The vector e⃗0 is a future-pointing

vector parallel to the fluid flow that has length r−1, where

r(t) := exp
∫ t

t0

dp/dt

µ+ p
dt.

This factor is included in order to simplify the tetrad form of the conservation

equations. The vector e⃗3 is chosen to be in the 2-plane spanned by u⃗ and n⃗. The

vectors e⃗1 and e⃗2 are unit vectors that span the 2-planes orthogonal to n⃗ and

e⃗3. The freedom of rotation in the definition of e⃗1 and e⃗2 is chosen so that the

e⃗0⌋e⃗1⌋dω̄2 connection coefficient vanishes. All the connection coefficients are func-

tions of t only. King and Ellis note that the crux of the proof is that if the fluid does

not possess shear, then the Jacobi identities and the renormalized tilt parameter

λ := r tanh β, where cosh β := −g(u⃗, n⃗), can be integrated up to a quadrature,

in terms of a length parameter ℓ, which has the same t−dependence as the func-

tion G of Banerji (1968), defined by ℓ̇/ℓ = θ(t)/3, where the dot (̇) represents

the covariant derivative along the fluid flow lines. Three cases arise (i) ω2ω3 ̸= 0,

(ii) 0 = ω3 ̸= ω2 and (iii) 0 = ω2 ̸= ω3. The assumption that ωθ ̸= 0, together with

the field equations, then yields a contradiction. King and Ellis (1973) describe the

proof as “straightforward and tedious” and therefore do not give details beyond an

outline but refer to King (1973). We have not consulted King (1973), especially

since the work of Lang and Collins (1988), as discussed below, encompasses the

present part of that of King and Ellis (1973). The work of White (1981) relaxes

the condition µ+ p > 0 by showing that the conjecture is true for spatially homo-
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geneous spacetimes under the more general condition µ + p ̸≡ 0. Incidentally, as a

historical note, Lang and Collins (1988) notice that the work considered by King

and Ellis (1973) is a special case5 of one of the situations considered by Treciokas

and Ellis (1971); thereby, an alternative proof of the conjecture for the situation of

King and Ellis (1973) could have been obtained.

King (1974) studies singularities of shear-free perfect fluids. Under certain con-

ditions, such fluids cannot have matter singularities. As a consequence of his result,

he considers very plausible the truth of the shear-free conjecture, attributed by him

to Treciokas and Ellis (1971). King (1974) states the conjecture as follows:

... that either the expansion θ or the vorticity ω must vanish in a shear-

free perfect fluid model, at least for p = p(µ) [such that]

0 ≤ dp

dµ
≤ 1

3
.

King (1974) thus provides the first allusion in the literature to the conjecture.

White and Collins (1984) show that the shear-free conjecture holds when the

vorticity is parallel to the acceleration, including the degenerate case of geodesic

flow. The method involves the use of the orthonormal tetrad technique in a proof

by contradiction that first assumes that ωθ ̸= 0. The e⃗0−axis is chosen to be along

the tangent to the flow, normalized so that the flow velocity is unit. The e⃗1−axis

is chosen to be in the common direction of the acceleration and of the vorticity.

The proof splits into two cases. The first case, when the flow is not geodesic,

is the simpler of the two. We note that in the proof, the derivatives in the four

5Defined by ṙ = β(r) in the notation of Treciokas and Ellis (1971).
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directions of θ and of the acceleration have been isolated as early as possible. Com-

mutation relations have been used on variables. No second order derivatives needed

to be isolated. There was then a crucial propagation of various expressions along

the fluid flow direction.

In the second case, the flow is geodesic. Apart from an integration constant,

this is essentially the situation of dust considered by Ellis (1967). White and

Collins (1984) provide a proof similar to that of Ellis (1967), but in their notation.

This enables a more direct comparison with the non-geodesic case, and clarifies

the rôle of the intrinsic geometrical quantities. It also enables the direct use of

the intermediate results of White and Collins (1984) in the study of shear-free

perfect fluids that is found in Collins and White (1984). As before, the proof

uses commutation relations on the expansion, the energy density and the vorticity.

As well, differentiation along the flow direction is still crucial; however, a new

feature arises: second order derivatives are calculated (namely ∂0∂2ω and ∂0∂3ω)

and eventually eliminated. This is an indication that the geodesic case of the

conjecture is more complex than the first case since second order derivatives are

involved. That second order derivatives are eliminated (algebraically), yielding

equations with only lower order derivatives, is a new feature that will recur in the

proof of other situations.

In the work of Lang and Collins (1988), the rate of expansion is functionally

related to the energy density. This is equivalent to requiring that the fluid obeys a

type of homogeneity proposed by Bonnor and Ellis (1986), namely, the postulate of

uniform thermal history (PUTH). This postulate is based on the assumption that

similar thermodynamic histories imply similar dynamical histories. This requires

that, for example, pressures and densities are not substantially affected by non-



CHAPTER 5. THE SHEAR-FREE CONJECTURE 116

thermodynamic factors, such as gravitational waves. The postulate is expressed as

follows:

Both density, ρ and entropy per baryon S are uniform for the funda-

mental observers in the Universe.

(Bonnor and Ellis, 1986).

The framework is that of an orthonormal tetrad aligned as follows. The vector

e⃗0 is aligned with the fluid flow, and is unit. The e⃗1−axis is parallel to the vorticity

vector. The other two axes are rotated such that the (projected) shear tensor of

the e⃗1− congruence be diagonal ( σ̂23 = 0 ). The shear-free conjecture is proved by

contradiction, supposing first that ωθ(µ+p) ̸= 0, then showing inconsistency. There

are six different cases to be treated. The first case is when the energy density, µ, is

constant. One of the contracted Bianchi identities gives immediately the required

contradiction.

The second case is that when the pressure, p, is constant. This case is basically

covered by Ellis (1967). As mentioned in White and Collins (1984), the constant

can be “absorbed” into the cosmological constant followed by a reinterpretation

of µ and p. If this is done, then the proof of Ellis (which was for vanishing p)

carries through without changes. In this situation, the conjecture holds without

any further restrictions on θ. White and Collins (1984) give a proof very similar to

that of Ellis (1967).

The third case has the acceleration parallel to the vorticity. This has been

treated by White and Collins (1984). At this point, we prove that requiring that,

in a general setting, the acceleration be non-zero and parallel to the vorticity, nec-

essarily implies that the expansion and the energy density are functionally related.
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That this is the situation was not realized by Lang and Collins when they estab-

lished their results. The proof is as follows. Since u̇2 ≡ u̇3 ≡ 0 then ∂2µ = ∂3µ = 0,

by the Bianchi identities. Also ∂2θ = ∂3θ = 0 by the commutation relations on µ,

given by equation (3.1) of White and Collins (1984). Therefore

dθ ∧ dµ = 0

if and only if

∂0θ∂1µ− ∂1θ∂0µ = 0.

Now, ∂0µ = −(µ+p)θ and ∂1µ = −(µ+p)u̇/p′ by the contracted Bianchi identities;

∂0θ = (3/4)n2 as in equation (3.3) of White and Collins (1984); and ∂1θ = (3/2)nω

by the (01) field equation. Therefore

∂0θ∂1µ− ∂1θ∂0µ =

= −(3/4)n2(µ+ p)u̇/p′ + (3/2)nω(µ+ p)θ

= −(3/4)n(µ+ p)/p′ × 2ωp′θ + (3/2)nω(µ+ p)θ

= 0,

where use has been made of equation (3.5) of White and Collins (1984), viz. 2ωp′θ =

nu̇. The non-geodesic situation treated in White and Collins (1984) and by Collins

and White (1984) is then a proper subcase of that covered by Lang and Collins,

and therefore obeys PUTH.

After these first three cases, for which the proof of the conjecture is either im-

mediate or has been done in previous work, Lang and Collins now turn to the

main part of the proof. Four torsion expressions are computed. These expressions

were not recognized as such by Lang and Collins (1988), but for much of the present

work, torsion will be a useful notion. It may be explained in loose terms as follows.6

6More will be mentioned about the torsion after the discussion of the sixth case.
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The torsion equations arise from particular combinations of commutation relations.

Normally, commutation relations on algebraic quantities give second order deriva-

tives. The torsions are the combinations that give derivatives of lower order than

expected. In this case, the torsions would be expressions involving derivatives of at

most first order. The four torsions just noted are even more special, since they do

not involve derivatives at all, but only algebraic quantities.

We now examine the fourth, fifth and six cases of the proof. The fourth case

corresponds to constant fluid expansion (θ′ = 0). In the proof, the operator (1/θ)∂0

is used twice, where ∂0 is the derivative along e⃗0. The proof is completed by noting

that the flow is necessarily geodesic. This case therefore reduces to one already

treated.

The fifth case has the equation of state obeying p′ = 1/9, excluding the situation

covered in the fourth case. It is interesting to note that this rather peculiar equation

of state also appeared as the one exceptional case in the work of Banerji (1968)

that was not treated, although it appears here in a broader context. The operators

(1/θ)∂0 and ∂0 are used. Also a further torsion equation, involving a first order

derivative, is obtained. This equation enables the authors to solve for ∂2u̇3 and

then for ∂3u̇2. With this, the commutation relation [e⃗0, e⃗1] on u̇2 now becomes a

torsion equation which leads to u̇2u̇3 = 0. The choice is made to set u̇2 = 0.7

A further torsion equation was then evaluated, yielding a value for ∂1u̇3. This

enables the commutation relation [e⃗0, e⃗1] on u̇3 to become a torsion equation, from

which the conclusion that u̇1 vanishes is obtained. All the preceding results and

the commutation relation [e⃗0, e⃗2] on d3 then produce a contradiction, namely that

θω should vanish.

7The other choice of u̇3 = 0 is completely symmetric, and so there is no loss of generality.
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The sixth case is the general case where (p′ − 1/9)θ′ ̸= 0. The authors start

by obtaining a few expressions involving only functions of µ. Then they derive a

homogeneous system of three linear equations (with coefficients being functions of

µ only) in u̇2, ω2 and µ + p. The differential operations used are differentiation

with respect to µ and differentiation along the flow vector. The trivial solution

to this linear system is to be rejected, and so the determinant (a function of µ

only) must vanish. This determinant takes the form of a bivariate polynomial in

p′ and G (a particular function of µ involving p′′). The derivatives of G and of

p′ with respect to µ were previously calculated and are expressible in terms of G

and p′. Therefore, by differentiating the above bivariate polynomial with respect

to µ, another similar polynomial is obtained. In order that they have simultaneous

solutions, their resultant with respect to G must also vanish. This resultant is a

non-trivial univariate polynomial8 in p′. Consequently, p′ is a constant. This crucial

step then leads one to the result that µ+ p = 0. This is the required contradiction.

In their remarks, Lang and Collins (1988) noted that 6 commutation relations

were applied to 12 variables, leading to 72 equations. There were two combinations

of those commutation relations that were purely algebraic. Normally, commutation

relations on algebraic quantities give expressions with second order derivatives.

There may be combinations involving lower order derivatives, and, as can be seen

in the proof of Lang and Collins, such combinations were also used. We note they

were also used in White and Collins (1984). No further justification was given to this

procedure, other than that it works. It so happens that finding these combinations

is a well defined procedure of the theory of exterior differential systems,9 that of

finding the torsion. We point out that whenever known relations are propagated,

8The resultant is of degree 60, has 53 terms and has some coefficients with over 40 digits!

9For more information about exterior differential systems, see Bryant et al. (1991).
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new torsion expressions may appear. We also note that the cases where the proof is

the most difficult are those where the acceleration is perpendicular to the vorticity.

From equation (4.19) of Ellis (1971) it is immediate that all non-rotating shear-

free perfect fluids must necessarily have a vanishing magnetic part of the Weyl

tensor. In an article by Collins (1984), it is shown that the converse does not

necessarily hold, but that if the fluid is rotating, then the expansion must vanish

(under the usual assumptions of µ+p ̸= 0 and a barotropic equation of state). First,

for the case of geodesic flow, the situation is covered by White and Collins (1984)

and by Ellis (1967); this therefore needs no further attention as far as the conjecture

is concerned.

A sketch of the proof of the conjecture for non-geodesic flow with a purely

electric Weyl tensor follows. The tetrad is chosen such that e⃗0 is along the fluid

flow and is unit. The e⃗1−congruence is chosen to be parallel to the vorticity. It

is assumed that the vorticity is non-zero. From the (full) Bianchi identities, it

follows that the vorticity vector is an eigenvector10 of the symmetric tensor Eab,

representing the electric part of the Weyl tensor. In the chosen frame, E0a =

E12 = E13 = 0 (a = 0, 1, 2, 3) and therefore the e⃗0−propagation of E11 simplifies to

∂0E11+θE11 = 0. The eigenvalue corresponding to the vorticity vector is−(1/3)(µ+

p); by the choice of tetrad, E11 must therefore be equal to this eigenvalue. The

conclusion follows from the propagation of E11 and the contracted Bianchi identity

∂0µ+ (µ+ p)θ = 0.

Collins then proceeds to examine further the case when the vorticity does not

vanish (and therefore, the expansion must vanish). We note that, in this situation,

10The fact that the vorticity vector is either zero or is an eigenvector of Eab was independently

noticed by Barnes (1984).
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e⃗0 is again distinguished, by being a Killing vector. The process of finding the

torsion is again used (although not in any explicit way), as is the process of isolating

the various derivatives of the acceleration vector components. Two classes appear

according to whether or not the acceleration is parallel to the vorticity. In the first

class, they are not parallel. The tetrad is rotated so that u̇3 = 0. It follows that e⃗3

is a second Killing vector. The situation where the acceleration is perpendicular to

the vorticity is again distinguished since, in that case, there is a third Killing vector,

namely e⃗1. Because there is a Killing vector parallel to the vorticity vector, such

spacetimes belong to a class of models investigated by Krasiński (1978). This class

will be studied in more detail as case C of chapter 6. In the second class, where the

acceleration is parallel to the vorticity, the condition that the acceleration be also

perpendicular to the vorticity (and so, that the acceleration vanish) again arises

as a special case – the vorticity is constant, and so are the pressure and energy

density. This is the Gödel solution, generalized to include pressure. This subclass

is also distinguished in that there is a G5 isometry group instead of a G4.

Carminati (1987) proves the shear-free conjecture for the situation when the

Weyl tensor is of type N. The actual result is stronger than that of the conjecture.

The spacetimes under consideration are shown to have vanishing volume expansion

and necessarily non-vanishing vorticity. The Newman-Penrose (NP) formalism is

used for the calculations. The null tetrad {ℓ⃗, n⃗, m⃗, ⃗̄m} is chosen in the following

manner. The vector ℓ⃗ is chosen to be the repeated principal null direction of the

Weyl tensor. By a rotation that leaves ℓ⃗ fixed, n⃗ is made to lie in the two-space

spanned by ℓ⃗ and the fluid velocity vector u⃗. Then ℓ⃗ and n⃗ are rescaled so that

u⃗ = (1/
√
2)(ℓ⃗+ n⃗). The freedom left in the choice of the tetrad is a multiplication

of the vector m⃗ by a complex number with unit modulus. Imposing this choice

of tetrad, the shear-free condition, the barotropic equation of state and the condi-
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tion that the spacetime be of Petrov type N in the Bianchi identities and the NP

equations readily leads to the result that the repeated null congruence of the Weyl

tensor is non-geodesic and that the fluid is necessarily rotating. The assumption

is made that the fluid has non-zero expansion. Three subcases arise, each of which

leads to a contradiction. The first subcase has dp/dµ ̸≡ 0 and 1 + 3 dp/dµ ̸≡ 0.

After some calculations, a contradiction is reached. Derivatives of Weyl tensor com-

ponents were used. The second subcase has dp/dµ = 0. This case is quickly shown

to be impossible. The remaining rotational freedom of the tetrad is then used to

impose on the NP quantities α and β the restriction that ᾱ+ β = α+ β̄. This is a

condition on a component of the acceleration divided by dp/dµ. The third subcase

has 1 + 3 dp/dµ = 0. This case is shown to be impossible after some calculations.

The techniques of calculations are similar to that used in the orthonormal tetrad

approach, except that the Bianchi identities are used explicitly. The Weyl tensor

and Ricci tensor components also appear explicitly, instead of being expressed in

terms of the equivalent of the kinematic quantities and their derivatives. Commu-

tation relations on the energy density are used. The various derivatives are applied

to propagate algebraic relations. The highest order derivative appears as the first

derivative of the Weyl tensor components; therefore, second order derivatives of the

kinematic quantities are potentially involved. The result proved is actually even

stronger than showing that the expansion vanishes, which is equivalent to asking

that the NP quantities11 ρ and µ satisfy ρ̄ − µ = 0. Carminati (1987) shows that

both ρ and µ vanish. The extra conditions can be interpreted as constraints on

the kinematic quantities of the v⃗−congruence, where v⃗ is defined as the unit vector

orthogonal to the fluid flow vector, and lying in the two-space spanned by ℓ⃗ and n⃗.

11The µ used here is the NP quantity. It should not be confused with the energy density which

is denoted by µ everywhere else in the present work.
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It is of interest to note that the fluid in the spacetimes under consideration must

have non-zero acceleration and vorticity, and that the acceleration is orthogonal to

the vorticity. Carminati (1987) suggests that an avenue for further exploration is to

consider fluids where the acceleration is perpendicular to the vorticity, regardless of

the Petrov type. This would complement the results of White and Collins (1984),

and is very closely related to the spacetimes explored by Krasiński (1978).

In a later article, Carminati (1988) showed that perfect fluid spacetimes of

Petrov type N, for which he had proved that the conjecture holds, are stationary,

possess a three-parameter abelian group of local isometries acting simply transi-

tively on time-like hypersurfaces and possess one Killing vector parallel to the flow

velocity and another parallel to the vorticity vector. The presence of this last

Killing vector entails that spacetimes of Petrov type N must belong to the class

of spacetimes studied by Krasiński (1978), and so must belong to our case C of

chapter 6. Our result that there are no spacetimes within the scope of chapter 6 of

Petrov type N that belong to either our case A or our case B is compatible with

the result of Carminati (1988).

Carminati (1990) proves the conjecture for a subcase of the Petrov type III

spacetimes. The framework for the proof is the Newman-Penrose formalism, which

uses null tetrads. The tetrad is initially chosen as in Carminati (1987). The cases

when the pressure is constant, and when it is equal (up to an additive constant)

to a third of the energy density have already been solved. The conjecture is then

proved for the so-called “aligned” cases. The first aligned case is defined to be

that arising when the acceleration vector lies in the two-space spanned by m⃗ and

¯⃗m. From the [δ, δ̄] commutation relation on the energy density, two classes emerge.

The first class is further divided into two subclasses, according to whether or not the
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vorticity vector has a component along the vector ℓ⃗− n⃗, i.e. depending on whether

or not the vorticity vector lies in the two-space spanned by m⃗ and ¯⃗m. The second

class necessarily does not have such a vorticity component. The second aligned case

is when the fluid velocity vector lies in the two-spaces spanned by the principal null

directions of the Weyl tensor. There are three subcases to be considered.

We note that the [δ,∆] commutation relation was applied to the Ψ3 Weyl tensor

component. Therefore this proof possibly entails the computation of third order

derivatives of kinematic quantities. However, both the δ− and the ∆−derivatives

of Ψ3 were obtained in terms of the kinematic quantities and the energy density.

The result of the commutation relation is an algebraic restriction. The highest

order derivatives that appear explicitly in this work arise from the first derivatives

of Weyl tensor components. These involve second order derivatives of the kinematic

quantities. The situation when dp/dµ = −1/3 arises as a special case in various

places in the proof.

A spacetime admits a conformal Killing vector, ξ⃗ if

Lξ⃗gab = 2ψ gab,

where Lξ⃗ is the Lie derivative along ξ⃗. The function ψ(xa) is called the conformal

factor. If the second covariant derivatives of ψ do not vanish, then ξ⃗ is called a

proper conformal Killing vector. If the second covariant derivatives of ψ do vanish,

but the first do not, then ξ⃗ is called a special conformal Killing vector. If ψ is

a non-zero constant then ξ⃗ is a homothetic vector, whereas if ψ is zero, then ξ⃗ is

a Killing vector. Coley (1991) has shown that if there exists a conformal Killing

vector parallel to the velocity four-vector, then the shear is necessarily zero. If the

vector is a proper conformal Killing vector, then the expansion is non-zero but the

vorticity vanishes. The same conclusion holds if the vector is a homothetic vector,
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whereas if the vector is a Killing vector, then the expansion must vanish. In all

cases, the conjecture holds. Coley (1991) also gives the necessary changes to extend

the proof of Treciokas and Ellis (1971) to cover situation when the equation of state

is p = µ/3+K for any constant K. The original proof of Treciokas and Ellis (1971)

requires K to be zero.

In summary, the shear-free conjecture is known to hold in the following situa-

tions:

1. Spatially homogeneous dust of Bianchi type IX (Gödel, 1950)

2. Spatially homogeneous dust (Schücking, 1957). This generalizes 1.

3. All dust (Ellis, 1967). This generalizes 2. The validity of this result actually

holds for constant pressure (White and Collins, 1984).

4. Spatially homogeneous spacetimes with equation of state p = (γ − 1)µ,

γ ̸= 10/9 (Banerji, 1968). This generalizes 2.

5. Conformally flat spacetimes, i.e. spacetimes of Petrov type O (Ellis, 1971).

6. Perfect fluid with p = µ/3 (this includes a relativistic gas) and claim of a

proof for PUTH (Treciokas and Ellis, 1971).

7. All spatially homogeneous spacetimes with µ+ p > 0 (King and Ellis, 1973).

This generalizes 4.

8. Perfect fluids with acceleration parallel to the vorticity and with µ + p ̸= 0;

this includes the case of constant pressure (White and Collins, 1984). This

generalizes 3.
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9. Perfect fluids that obey PUTH and with µ+ p ̸= 0 (Lang and Collins, 1988).

This generalizes 7 and has as a proper subcase the non-geodesic portion of 8.

10. Perfect fluids with a Weyl tensor which is purely electric with respect to the

fluid (Collins, 1984).

11. Petrov type N spacetimes (Carminati, 1987).

12. “Aligned” Petrov type III spacetimes (Carminati, 1990).12

13. Fluids with a conformal Killing vector parallel to the velocity, together with

the extension of 6 to cover p = µ/3 + constant(Coley, 1991).

14. In this work, we show that the conjecture also holds for perfect fluids with a

Weyl tensor which is purely magnetic with respect to the fluid.

15. Also in this work, we show that the conjecture holds for coasting universes,

i.e. universes that obey p = −µ/3 + constant.

5.2 Shear-free conjecture for spaces with a purely

magnetic Weyl tensor

In this section, we shall examine the spacetimes that not only satisfy the hypotheses

of the shear-free conjecture, but also satisfy the extra constraint that the electric

part of the Weyl tensor with respect to the fluid flow vector vanishes. We shall

prove that for such fluids, the shear-free conjecture is valid. The proof presented

12Carminati has recently informed us that he has extended this result to all Petrov type III

spacetimes.
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hereinafter is by contradiction, first assuming that neither the vorticity nor the

expansion vanishes.

For a perfect fluid with an equation of state that satisfies p′ = 0, it is already

known that the conjecture holds, regardless of further conditions on the Weyl tensor.

The validity of the conjecture was shown for case p = 0 by Ellis (1967). White and

Collins (1984) showed that with a small modification, the proof of Ellis is valid for

the pressure equal to any constant value. Treciokas and Ellis (1971) have proved

the conjecture for the case when p = µ/3. Coley (1991) has extended this result to

p = µ/3+K, with K being any constant. As a result of the foregoing discussion, we

can therefore assume throughout the remainder of this chapter that the equation

of state is such that p′(3p′ − 1) ̸= 0.

For shear-free perfect fluids, with the e⃗0−axis along the fluid flow velocity, the

e⃗1-axis along the vorticity vector, and the e⃗2-axis and e⃗3-axis such that θ̂23 can be

set to zero, the Riemann curvature two-forms are:

R0
1 =

(
u̇2 d2 + u̇3 d3 +

∂0θ

3
− ∂1u̇1 − u̇21 +

θ2

9

)
(η0 ∧ η1)

+
(
u̇2 θ̂22 − u̇2 u̇1 −

u̇3 n

2
− ∂2u̇1

)
(η0 ∧ η2)

+
(
u̇2 n

2
− ∂3u̇1 + u̇3 θ̂33 − u̇3 u̇1

)
(η0 ∧ η3)

+

(
d3 ω − ∂2θ

3

)
(η1 ∧ η2)

+
(
2 u̇1 ω − ωθ̂22 − ωθ̂33

)
(η2 ∧ η3)

+

(
−∂3θ

3
− d2 ω

)
(η1 ∧ η3),

R0
2 =

(
u̇3 Ω̂− u̇1 d2 −

u̇3 n

2
− ∂1u̇2 − u̇2 u̇1

)
(η0 ∧ η1)

+

(
θ2

9
− ∂2u̇2 − u̇3A3 +

∂0θ

3
− u̇22 − u̇1 θ̂22 − ω2

)
(η0 ∧ η2)
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+

(
2ωθ

3
− u̇3 u̇2 −

u̇1 n

2
+ u̇3A2 + ∂0ω − ∂3u̇2

)
(η0 ∧ η3)

+

(
∂1θ

3
− ωn

2

)
(η1 ∧ η2)

+

(
2 u̇2 ω − ∂3θ

3
+ ∂2ω

)
(η2 ∧ η3)

+
(
∂1ω + ωθ̂33

)
(η1 ∧ η3),

R0
3 =

(
−u̇3 u̇1 − ∂1u̇3 − u̇2 Ω̂ +

u̇2 n

2
− u̇1 d3

)
(η0 ∧ η1)

+

(
−∂2u̇3 − u̇3 u̇2 +

u̇1 n

2
− 2ωθ

3
− ∂0ω + u̇2A3

)
(η0 ∧ η2)

+

(
∂0θ

3
+
θ2

9
− ω2 − ∂3u̇3 − u̇23 − u̇2A2 − u̇1 θ̂33

)
(η0 ∧ η3)

+
(
−ωθ̂22 − ∂1ω

)
(η1 ∧ η2)

+

(
∂3ω +

∂2θ

3
+ 2 u̇3 ω

)
(η2 ∧ η3)

+

(
∂1θ

3
− ωn

2

)
(η1 ∧ η3),

R1
2 =

(
−∂0d2 − d3 ω − θ u̇2

3
− θ d2

3

)
(η0 ∧ η1)

+

(
ωn

2
− ∂0θ̂22 −

θ θ̂22
3

+
θ u̇1
3

)
(η0 ∧ η2)

+

(
u̇1 ω − ωθ̂33 −

∂0n

2
− θ n

6

)
(η0 ∧ η3)

+

(
θ2

9
− d2

2 + ∂2d2 +
n2

4
+ d3A3 − ∂1θ̂22 − θ̂222

)
(η1 ∧ η2)

+

(
∂3θ̂22 −

∂2n

2
+ d2 n− A3 θ̂33 + A3 θ̂22

)
(η2 ∧ η3)

+

(
θ̂33 Ω̂ + ∂3d2 −

∂1n

2
+
ωθ

3
− d2 d3 − d3A2 − nθ̂33 − θ̂22 Ω̂

)
(η1 ∧ η3),

R2
3 =

(
∂0n

2
− u̇1 ω − θ Ω̂

3
− ∂0Ω̂ +

θ n

6
− ∂1ω

)
(η0 ∧ η1)
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+

(
θ A3

3
− ∂2ω + ∂0A3 − 2 u̇2 ω − θ u̇3

3

)
(η0 ∧ η2)

+

(
θ u̇2
3

− ∂0A2 − ∂3ω − θ A2

3
− 2 u̇3 ω

)
(η0 ∧ η3)

+

(
Ω̂A2 − Ω̂ d2 + θ̂22 d3 + d2 n+ ∂1A3 −

∂2n

2
+ ∂2Ω̂ + A3 θ̂22

)
(η1 ∧ η2)

+

(
3ω2 + Ω̂n− ∂3A3 − ∂2A2 +

θ2

9

−θ̂22 θ̂33 −
3n2

4
− A3

2 − A2
2

)
(η2 ∧ η3)

+

(
∂3Ω̂− θ̂33 d2 −

∂3n

2
+ Ω̂A3 − ∂1A2 + nd3 − Ω̂ d3 − A2 θ̂33

)
(η1 ∧ η3)

and

R1
3 =

(
d2 ω − θ d3

3
− θ u̇3

3
− ∂0d3

)
(η0 ∧ η1)

+

(
ωθ̂22 − u̇1 ω +

θ n

6
+
∂0n

2

)
(η0 ∧ η2)

+

(
ωn

2
+
θ u̇1
3

− ∂0θ̂33 −
θ θ̂33
3

)
(η0 ∧ η3)

+

(
∂2d3 − θ̂22 Ω̂ +

∂1n

2
+ θ̂33 Ω̂− ωθ

3
+ nθ̂22 − d2 d3 − d2A3

)
(η1 ∧ η2)

+

(
nd3 −

∂3n

2
+ A2 θ̂22 − ∂2θ̂33 − A2 θ̂33

)
(η2 ∧ η3)

+

(
θ2

9
+ d2A2 − d3

2 +
n2

4
− ∂1θ̂33 − θ̂233 + ∂3d3

)
(η1 ∧ η3).

Specializing the results of chapter 3, we find that the Einstein field equations, the

Jacobi identities, the commutation relations on the acceleration potential and the

contracted Bianchi identities are equivalent to the following thirty-three equations:

∂0u̇1 =
6 θ u̇1 p

′2 − 6 u̇1 p
′′ θ p− 2 θ u̇1 p

′ − 6 u̇1 p
′′ θ µ+ 9 p′2ωn

6 p′
, (5.1)

∂0u̇2 = −3 θ p′′ u̇2 p+ θ u̇2 p
′ + 3 u̇2 µ p

′′ θ − 3 ∂2θ p
′2 − 3 θ u̇2 p

′2

3 p′
,
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∂0u̇3 = −3 u̇3 p
′′ θ p− 3 θ u̇3 p

′2 + θ u̇3 p
′ − 3 ∂3θ p

′2 + 3 u̇3 µ p
′′ θ

3 p′
,

∂0ω = p′ ωθ − 2ωθ

3
,

∂0n = −θ n
3
,

∂0d2 = −∂2θ
3

− θ d2
3

− θ u̇2
3
,

∂0d3 = −∂3θ
3

− θ u̇3
3

− θ d3
3
,

∂0A2 =
θ u̇2
3

− θ A2

3
+
∂2θ

3
,

∂0A3 =
∂3θ

3
+
θ u̇3
3

− θ A3

3
,

∂0Ω̂ = −θ Ω̂
3
,

∂0θ̂22 =
θ u̇1
3

− θ θ̂22
3

+
ωn

2
,

∂0θ̂33 =
θ u̇1
3

− θ θ̂33
3

+
ωn

2
,

∂0µ = −θ µ− θ p,

∂1u̇1 = u̇2 d2 + u̇3 d3 + ∂0θ +
3 p

2
− u̇21 +

θ2

3
− ∂2u̇2 − u̇3A3 − u̇22 − u̇1 θ̂22

−2ω2 − ∂3u̇3 − u̇23 − u̇2A2 − u̇1 θ̂33 − Λ +
µ

2
,

∂1ω = u̇1 ω − ωθ̂22 − ωθ̂33,

∂1θ =
3ωn

2
,

∂1n =
2ωθ

3
− 2 u̇3 u̇2 − u̇1 n+ 2 u̇3A2 − 2 ∂3u̇2 + 2 θ̂33 Ω̂ + 2 ∂3d2

−2 θ̂22 Ω̂− 2 d2 d3 − 2 d3A2 − 2nθ̂33 + 2 p′ ωθ,

∂1A2 = ∂2θ̂33 + ∂3Ω̂− θ̂33 d2 − Ω̂ d3 + Ω̂A3 − A2 θ̂22,

∂1A3 = Ω̂ d2 − θ̂22 d3 − ∂2Ω̂− A3 θ̂33 + ∂3θ̂22 − Ω̂A2,

∂1µ = −(µ+ p) u̇1
p′

,

∂2u̇1 = u̇1 d2 + u̇2 θ̂22 − u̇3 Ω̂ + ∂1u̇2, (5.2)
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∂2u̇3 = u̇1 n− u̇3A2 + ∂3u̇2 − 2 p′ ωθ + u̇2A3,

∂2ω =
2 ∂3θ

3
+ d2 ω − 2 u̇2 ω,

∂2n = 2 ∂1u̇3 − u̇2 n+ 2 u̇2 Ω̂ + 2 u̇1 d3 + 2 u̇3 u̇1 + 2 ∂3θ̂22

+2 d2 n− 2A3 θ̂33 + 2A3 θ̂22

∂2d2 =
p

2
− ∂3u̇3 −

n2

4
+
∂0θ

3
− u̇23 + ∂1θ̂22 +

µ

2
− ω2 − d3A3

−u̇1 θ̂33 − u̇2A2 + d2
2 + θ̂222,

∂2d3 = 2 u̇3 u̇2 + u̇1 n− 2 u̇3A2 + 2 ∂3u̇2 − 2 θ̂33 Ω̂− ∂3d2 + 2 θ̂22 Ω̂

+2 d2 d3 + d3A2 + nθ̂33 − 2 p′ ωθ − nθ̂22 + d2A3,

∂2A2 = −∂3u̇3 − ∂2u̇2 + p− 3n2

4
+

2 ∂0θ

3
+
θ2

3
− u̇2A2 − u̇23 − ∂3A3

−Λ + ω2 − u̇3A3 − u̇1 θ̂22 + Ω̂n− θ̂22 θ̂33 − A3
2 − A2

2 − u̇22 − u̇1 θ̂33,

∂2µ = −(µ+ p) u̇2
p′

,

∂3u̇1 = ∂1u̇3 + u̇2 Ω̂ + u̇1 d3 + u̇3 θ̂33, (5.3)

∂3n = −2 u̇2 u̇1 − u̇3 n− 2 u̇1 d2 + 2 u̇3 Ω̂− 2 ∂1u̇2 + 2nd3

+2A2 θ̂22 − 2 ∂2θ̂33 − 2A2 θ̂33,

∂3d3 =
p

2
− ∂2u̇2 −

n2

4
+
∂0θ

3
+ ∂1θ̂33 +

µ

2
− ω2 − u̇3A3

−u̇1 θ̂22 + θ̂233 + d3
2 − u̇22 − d2A2,

∂3ω = d3 ω − 2 ∂2θ

3
− 2 u̇3 ω

and

∂3µ = −(µ+ p) u̇3
p′

.

The requirement that the electric part of the Weyl tensor vanish is equivalent to

the following equations:

∂0θ = 3 u̇23 −
θ2

3
+ 3ω2 + 3 ∂3u̇3 −

3 p

2
+ 3 u̇2A2 + 3 u̇1 θ̂33 −

µ

2
+ Λ,

∂1u̇2 = u̇3 Ω̂− u̇1 d2 −
u̇3 n

2
− u̇2 u̇1, (5.4)
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∂1u̇3 = −u̇3 u̇1 − u̇2 Ω̂ +
u̇2 n

2
− u̇1 d3, (5.5)

∂2u̇2 = u̇23 − u̇3A3 − u̇22 − u̇1 θ̂22 + ∂3u̇3 + u̇2A2 + u̇1 θ̂33

and

∂3u̇2 = u̇3A2 −
u̇1 n

2
+ p′ ωθ − u̇3 u̇2.

The contact form representing the derivative of u̇2 is therefore

du̇2 = −

(
3 u̇2 p

′′ θ p+ 3 u̇2 µ p
′′ θ − 3 ∂2θ p

′2 − 3 θ u̇2 p
′2 + θ u̇2 p

′
)
η0

3 p′
(5.6)

+
(
u̇3 Ω̂− u̇1 d2 −

u̇3 n

2
− u̇2 u̇1

)
η1

+
(
u̇23 − u̇3A3 − u̇22 − u̇1 θ̂22 + ∂3u̇3 + u̇2A2 + u̇1 θ̂33

)
η2

+
(
−u̇2 u̇3 −

u̇1 n

2
+ u̇3A2 + p′ ωθ

)
η3

and the contact form representing the derivative of u̇3 is

du̇3 =

(
−6 u̇3 p

′′ θ p− 2 p′ θ u̇3 + 6 θ u̇3 p
′2 − 6 u̇3 µ p

′′ θ + 6 ∂3θ p
′2

6 p′

)
η0 (5.7)

+
(
− u̇1 u̇3 − u̇2 Ω̂ +

1

2
u̇2 n− u̇1 d3

)
η1

+
(
− u̇2 u̇3 + u̇2A3 − p′ωθ +

1

2
u̇1 n

)
η2

+ ∂3u̇3 η
3.

Adding the exterior derivative of (5.6) multiplied by η0∧η3, to the exterior derivative

of (5.7) multiplied by η0 ∧ η2, taking into account all the previous information, we

obtain (
θ̂22 − θ̂33

)
ω2(η0 ∧ η1 ∧ η2 ∧ η3) = 0.

The operation just performed is equivalent to adding together the [⃗e1, e⃗2] commu-

tator applied to u̇2 and the [e⃗3, e⃗1] commutator on u̇3. This particular combination

ensures that no second derivatives appear. Such an operation is called ‘finding the
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non-absorbable torsion’. Now since the vorticity, ω, does not vanish by hypothesis,

we conclude that

θ̂22 = θ̂33. (5.8)

Evaluation of the following seven torsion expressions:

[e⃗1, e⃗2]n+ 2[e⃗2, e⃗3]d2 − 2[e⃗1, e⃗3]θ̂22,

[e⃗0, e⃗1]A3 − [e⃗0, e⃗3]θ̂22 + [e⃗0, e⃗2]Ω̂ + 1
2
[e⃗1, e⃗2]ω,

[e⃗0, e⃗1]A2 − [e⃗0, e⃗3]Ω̂− [e⃗0, e⃗2]θ̂22 − 1
2
[e⃗1, e⃗3]ω,

[e⃗2, e⃗3]d3 +
1
2
[e⃗1, e⃗3]n+ [e⃗1, e⃗2]θ̂22,

[e⃗0, e⃗2]n− 2[e⃗0, e⃗2]θ̂22,

and

[e⃗0, e⃗2]A2 + [e⃗0, e⃗3]A3 − 1
2
[e⃗2, e⃗3]ω

provides relations equivalent to the following equalities:

∂2θ =
9ω2p′ d3 + µ u̇3 + pu̇3

3 p′ ω
, (5.9)

∂3θ = −9ω2p′ d2 + pu̇2 + µ u̇2
3 p′ ω

,

∂1d2 = 5 θ̂22 d2 − 5 u̇1 d2 − 3 u̇1 u̇2 + 3 θ̂22 u̇2 + d3 Ω̂ +
1

2
nu̇3

+
8 θ̂22 pu̇2 + 4nµ u̇3 + 8 θ̂22 µ u̇2 − 4 u̇1 pu̇2 − 4 u̇1 µ u̇2 + 4npu̇3

18ω2p′
,

∂1d3 = −
(
d2 Ω̂− 5 θ̂22 d3 + 5 u̇1 d3 +

1

2
nu̇2 + 3u̇1 u̇3 − 3 θ̂22 u̇3

+
−8 θ̂22 µ u̇3 + 4npu̇2 + 4nµ u̇2 − 8 θ̂22 pu̇3 + 4 u̇1 µ u̇3 + 4 u̇1 pu̇3

18ω2p′

)
,

∂3d2 = d3A2 − 3p′θω − 3

2
u̇1 n+ 2 θ̂22 n+

2

3
ω θ + d3 d2

+
2 d2 µ u̇3 − 2 d3 pu̇2 − 2 d3 µ u̇2 + 2 d2 pu̇3

18ω2p′
,

∂2θ̂22 = −
(
1

2
nu̇3 + u̇1 d2 − θ̂22 d2
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+
2 u̇1 µ u̇2 + 2 u̇1 pu̇2 + 3nµ u̇3 − 2 θ̂22 pu̇2 − 2 θ̂22 µ u̇2 + 3npu̇3

18ω2p′

)
and

∂3θ̂22 =
1

2
nu̇2 − u̇1 d3 + θ̂22 d3

+
−2 u̇1 µ u̇3 + 3npu̇2 + 3nµ u̇2 + 2 θ̂22 pu̇3 − 2 u̇1 pu̇3 + 2 θ̂22 µ u̇3

18ω2p′
.

Evaluation of the following five combinations of commutation relations:

[e⃗0, e⃗1]θ + 3[e⃗1, e⃗2]u̇2,

[e⃗0, e⃗2]θ − 3[e⃗1, e⃗2]u̇1 +
3
2
[e⃗0, e⃗3]ω,

[e⃗0, e⃗3]θ − 3[e⃗1, e⃗3]u̇1 − 3
2
[e⃗0, e⃗2]ω,

[e⃗2, e⃗3]u̇1

and

[e⃗0, e⃗1]u̇2 + p′[e⃗1, e⃗2]θ

yields the following equalities:

p′′′ =
(
12 p′ u̇1 µ p

′′ pu̇3 + 54 p′
2
u̇1 p

′′ pω2d3 + 18 p′
3
u̇1 ω

2d3

+2 p′
2
u̇1 µ u̇3 + 2 p′

2
u̇1 pu̇3 + 54 p′

2
u̇1 µ p

′′ ω2d3

−54 u̇1 p
′4ω2d3 − 6 u̇1 p

′3µ u̇3 − 6 u̇1 p
′3pu̇3

+6 p′ u̇1 µ
2p′′ u̇3 + 6 p′ u̇1 p

′′ p2u̇3 + 12ωu̇1 p
′3θ u̇2 − 36ωu̇1 p

′4θ u̇2

+18ωu̇2 p
′′2θ µ2u̇1 + 36ωu̇2 p

′′2θ pµ u̇1 − 18ωu̇2 p
′′ θ p′ µ u̇1

+18ωu̇2 p
′′2θ p2u̇1 + 9 u̇2 p

′3ω2n+ 36ωu̇1 p
′2u̇2 p

′′ θ µ

−18ωu̇2 p
′′ θ p′ pu̇1 + 36ωp′′ θ pp′

2
u̇2 u̇1 + 27 u̇2 p

′′ pp′
2
ω2n

+27 u̇2 p
′′ µ p′

2
ω2n− 27 p′

4
ω2nu̇2

)/ (
18ωu̇2 θ p

′ u̇1 (p+ µ)2
)
,

θ̂22 =
u̇1 (p+ µ+ 18ω2p′)

18ω2p′
,

n =
θ u̇1

(
18ω2p′′ µ− 18 p′2ω2 + 6ω2p′ + p′ µ+ 18ω2p′′ p+ p′ p

)
9ω3p′ (3 p′ − 1)

,
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d2 = −
(
27 θ ω2p′′ pu̇3 − 27 u̇3 p

′2ω2θ − 4wpu̇2 + 2 θ p′ pu̇3 − 4ωµ u̇2

+27 θ ω2p′′ µ u̇3 + 9ω2p′ θ u̇3 + 9ωp′ pu̇2

+9ωp′ µ u̇2 + 2 θ p′ µ u̇3)/
(
27ω3p′ (3 p′ − 1)

)
and

d3 = −
(
27 u̇2 p

′2ω2θ − 9ω2p′ θ u̇2 − 27 θ ω2p′′ µ u̇2 − 27 θ ω2p′′ pu̇2

+9ωµ p′ u̇3 − 2 θ p′ pu̇2 − 2 θ p′ µ u̇2 − 4wpu̇3

+9ωp′ pu̇3 − 4ωµ u̇3)/
(
27ω3p′ (3 p′ − 1)

)
,

where the assumption that u̇1u̇2 ̸= 0 has been made. We recall also we can assume

that the equation of state satisfies p′(3p′ − 1) ̸= 0. The [e⃗0, e⃗3]u̇1 commutation

relation then provides

p′′ =
p′ (3 p′ − 1)

3(µ+ p)
. (5.10)

The torsion expression

[e⃗0, e⃗2]u̇2 − [e⃗0, e⃗1]u̇1 +
3p′

2
[e⃗0, e⃗2]d2 −

3p′

2
[e⃗0, e⃗3]d3 −

3p′

4
[e⃗2, e⃗3]ω

implies that

p′ = −1

6
.

This is inconsistent with equation (5.10). We must therefore have that u̇1u̇2 = 0.

We now consider the case that u̇1 does not vanish. It follows then that u̇2 must

be equal to zero. Differentiation of u̇2 = 0 along e⃗0 yields that ∂2θ = 0, which is

equivalent to

9ω2p′ d3 + u̇3(µ+ p) = 0 (5.11)

by the relation (5.9). Subtracting the [e⃗1, e⃗3]u̇1 commutation relation from the

[e⃗2, e⃗3]u̇2 commutation relation is equivalent to

− 3(1− 3p′)d3ω
2 + (− 4

9p′
+ 1)u̇3(µ+ p) = 0. (5.12)
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Elimination of d3 between equations (5.11) and (5.12) then requires that

u̇3ω
2p′(µ+ p) = 0.

from which it follows that u̇3 = 0. Since u̇2 also vanishes, we are therefore in the

situation when the acceleration is parallel to the vorticity. The shear-free conjecture

was proved for that situation by White and Collins (1984).

Henceforth, we assume that u̇1 is zero. Differentiation of u̇1 = 0 along e⃗0, as

given by equation (5.1), implies that n = 0. Furthermore, differentiation along e⃗2, as

given by equation (5.2), together with the Weyl tensor constraint (5.4) implies that

u̇2θ̂22 = 0, and differentiation along e⃗3, as given by equation (5.3), together with

the Weyl tensor constraint (5.5) and with the equality (5.8) implies that u̇3θ̂22 = 0.

If θ̂22 ̸= 0, then both u̇2 and u̇3 are equal to zero; therefore, the situation is that for

which White and Collins (1984) proved that the shear-free conjecture holds. Hence,

we assume that u̇1 = θ̂22 = 0.

The following five torsion expressions:

2[e⃗0, e⃗3]Ω̂− 2[e⃗0, e⃗1]A2 + [e⃗1, e⃗3]ω,

3[e⃗1, e⃗2]ω − 2[e⃗1, e⃗3]θ,(
−3(2u̇22 + u̇23)p

′2[e⃗0, e⃗2]d2 − 6u̇2u̇3p
′2[e⃗0, e⃗3]d2 − 3(u̇22 + 2u̇23)p

′2[e⃗0, e⃗3]d3

−3(u̇22 + u̇23)p
′2[e⃗2, e⃗3]ω + u̇23p

′[e⃗0, e⃗2]u̇2 − 2u̇2u̇3p
′[e⃗0, e⃗3]u̇2

+u̇22p
′[e⃗0, e⃗3]u̇3) / (θω

2(u̇22 + u̇23)) ,

p′[e⃗2, e⃗3]d2

and

p′[e⃗2, e⃗3]d3

imply, respectively,

∂1d2 = Ω̂d3,
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∂1d3 = −Ω̂d2,

p′′ = −2

3

p′(27p′2 − 6p′ − 1)

µ+ p
, (5.13)

∂2θ =
1

3

u̇3(µ+ p) + 9p′d3ω
2

p′ω

and

∂3θ = −1

3

u̇2(µ+ p) + 9p′d2ω
2

p′ω
.

Differentiation of p′′ with respect to µ gives

p′′′ =
2

9

p′(27p′2 − 6p′ − 1)(162p′2 − 21p′ + 1)

(µ+ p)2
.

The combination of commutation relations [e⃗0, e⃗2]u̇2 + 3p′[e⃗0, e⃗2]d2 implies that

(µ+ p)(6u̇2u̇3p
′ + 2d3u̇2p

′ − 2d2u̇3p
′ − 36p′

2
u̇2u̇3 + 2u̇2u̇3)− 18θp′

2
ω3 (5.14)

−324p′
3
u̇2ω

2d3 + 54p′
2
u̇2ω

2d3 + 18u̇2ω
2d3p

′ + 54p′
2
θu̇22ω + 54p′

3
θω3

−1944u̇22p
′4θω + 486u̇22p

′3θω = 0;

that of [e⃗0, e⃗3]u̇3 + 3p′[e⃗0, e⃗3]d3 results in

(µ+ p)(−2d2u̇3p
′ − 2u̇2u̇3 + 36p′

2
u̇2u̇3 − 6u̇2u̇3p

′ + 2d3u̇2p
′)− 54p′

2
u̇3ω

2d2 (5.15)

+486u̇23p
′3θω + 54p′

2
θu̇23ω − 1944u̇23p

′4θω

−18θp′
2
ω3 + 54p′

3
θω3 − 18u̇3ω

2d2p
′ + 324p′

3
ω2u̇3d2 = 0,

and that of 2[e⃗0, e⃗2]d2 + 2[e⃗0, e⃗3]d3 + [e⃗2, e⃗3]ω gives

(µ+ p)(−2d2u̇3 + 2d3u̇2)− 18θω3p′ + 54θp′
2
ω3 = 0. (5.16)

Dividing the difference of equation (5.14) and p′ times equation (5.16) by 3p′ − 1

yields

− 2u̇2
(
324u̇2p

′3θω + 54d3p
′2ω2 + 27θp′

2
u̇2ω + (6p′ + 1)u̇3(µ+ p) + 9d3p

′ω2
)
= 0

(5.17)
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Subtracting p′ times equation (5.16) from equation (5.15) and dividing the result

by 3p′ − 1 yields

2u̇3
(
−324u̇3p

′3θω + 54d2p
′2ω2 − 27θp′

2
u̇3ω + (6p′ + 1)u̇2(µ+ p) + 9d2p

′ω2
)
= 0.

(5.18)

Now, p′ cannot be equal to−1/6, as can be seen by substitution into equation (5.13).

This enables us to divide the difference of u̇23 times equation (5.17) and u̇22 times

equation (5.18) by the product u̇2u̇3(6p
′ + 1). Doing so gives the relation

− 18u̇3ω
2d3p

′ − 18u̇2ω
2d2p

′ − 2u̇23µ− 2u̇23p− 2u̇22p− 2u̇22µ = 0. (5.19)

The combination of commutation relations

3u̇3[e⃗0, e⃗2]ω − 2u̇3[e⃗0, e⃗3]θ − 3u̇2[e⃗0, e⃗3]ω − 2u̇2[e⃗0, e⃗2]θ

is equivalent to

− ω
(
(−27p′ + 81p′

2
)ω2(u̇2d2 + u̇3d3) + (9p′ − 4)(u̇22 + u̇23)(µ+ p)

)
= 0. (5.20)

Subtracting ω(9p′ − 4) times equation (5.19) from twice equation (5.20) yields

−18ω3p′(u̇3d3 + u̇2d2) = 0,

from which we deduce that u̇2d2 + u̇3d3 = 0. Equation (5.19) then simplifies and

becomes:

−2(u̇23 + u̇22)(µ+ p) = 0,

i.e. u̇2 = u̇3 = 0, and so the acceleration is parallel to the vorticity. By White and

Collins (1984), the validity of the conjecture holds in this case also.
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5.3 Perfect fluids with an equation of state that

obeys dp/dµ = −1
3

We now prove the conjecture for the special situation of a general relativistic perfect

fluid with a barotropic equation of state that satisfies dp/dµ = −1/3.We show that

the requirement that neither the vorticity, ω, nor the expansion, θ, vanish leads to a

contradiction. While this equation is admittedly rather unphysical in the context of

standard general relativity, it does represent an interesting limiting case for which

the validity of the shear-free conjecture has heretofore not been established, as far

as we are aware. Some further discussion of the physical relevance of this equation

of state will be provided at the end of the present section.

We use an orthonormal tetrad with the e⃗0−axis along the fluid flow velocity,

the e⃗1−axis along the vorticity vector, and the e⃗2−axis and e⃗3−axis such that θ̂23

is set to zero. The Einstein field equations, the Jacobi identities, the commutation

relations on the acceleration potential and the contracted Bianchi identities are

obtained by setting p′ = −1/3 in the thirty-three equalities beginning with equa-

tion (5.1), where the prime (′) denotes differentation with respect to the energy

density, µ.
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The combinations of commutation relations

−2[e⃗0, e⃗3]d2 + [e⃗0, e⃗1]n+ 2[e⃗0, e⃗3]u̇2,

[e⃗0, e⃗2]n− 2[e⃗0, e⃗3]u̇1 − 2[e⃗0, e⃗3]θ̂22,

[e⃗0, e⃗3]n+ 2[e⃗0, e⃗2]u̇1 + 2[e⃗0, e⃗2]θ̂33,

[e⃗0, e⃗2]u̇2 + [e⃗0, e⃗3]u̇3 − 2[e⃗0, e⃗2]u̇1 + 3[e⃗0, e⃗2]A2 + 3[e⃗0, e⃗3]A3 − [e⃗2, e⃗3]ω,

[e⃗0, e⃗1]u̇1 + [e⃗0, e⃗2]u̇2 − 2[e⃗0, e⃗3]u̇3 + 3[e⃗0, e⃗1]θ̂22 − 3[e⃗0, e⃗2]d2 − [e⃗2, e⃗3]ω

and

[e⃗0, e⃗1]u̇1 − 2[e⃗0, e⃗2]u̇2 + [e⃗0, e⃗3]u̇3 + 3[e⃗0, e⃗1]θ̂33 − 3[e⃗0, e⃗3]d3 − [e⃗2, e⃗3]ω

are equivalent to the following equalities:

0 = (8/3)θu̇3u̇2 + (4/3)u̇3∂2θ + (4/3)∂3θu̇2, (5.21)

0 = −(4/3)u̇1∂3θ − (8/3)θu̇3u̇1 − 2ωnu̇3, (5.22)

0 = (4/3)u̇1∂2θ + (8/3)θu̇1u̇2 + 2nu̇2ω, (5.23)

0 = (4/3)θu̇22 + (4/3)u̇2∂2θ − (16/3)ω2θ − (8/3)θu̇21 (5.24)

+(4/3)θu̇23 − 4u̇1ωn+ (4/3)∂3θu̇3,

0 = (4/3)θu̇22 + (4/3)u̇2∂2θ + (8/3)ω2θ + (4/3)θu̇21 (5.25)

−(8/3)θu̇23 + 2u̇1ωn− (8/3)∂3θu̇3

and

0 = −(8/3)θu̇22 − (8/3)u̇2∂2θ + (8/3)ω2θ + (4/3)θu̇21 (5.26)

+(4/3)θu̇23 + 2u̇1ωn+ (4/3)∂3θu̇3.

We compute the resultant with respect to ∂3θ of equation (5.21) and equation (5.22).

We then eliminate ∂2θ from the result, using the resultant with equation (5.23).

We thus obtain

u̇3u̇2u̇1(3ωn+ 2θu̇1) = 0. (5.27)
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Similarly, we compute the resultant with respect to ∂3θ of equation (5.22) and

equation (5.24). We then eliminate ∂2θ from the result, using the resultant with

equation (5.23). Thus, we get

2u̇22u̇
2
1θ + 8u̇21ω

2θ + 4θu̇41 + 2θu̇23u̇
2
1 + 6u̇31ωn

+3u̇1ωnu̇
2
3 + 3u̇22u̇1nω = 0.

(5.28)

Elimination of n between equation (5.27) and equation (5.28) using the resultant

yields

u̇3u̇2u̇
3
1ω

3θ = 0, (5.29)

whereby u̇1u̇2u̇3 = 0. Adding twice equation (5.24) to equation (5.25) results in

2θu̇22 + 2u̇2∂2θ − 4ω2θ − 2θu̇21 − 3u̇1ωn = 0, (5.30)

whereas subtraction of equation (5.24) from equation (5.25) yields

4ω2θ + 2θu̇21 − 2θu̇23 + 3u̇1ωn− 2∂3θu̇3 = 0. (5.31)

We eliminate ∂2θ between equations (5.30) and (5.23), and eliminate ∂3θ between

equations (5.31) and (5.22) to obtain

2u̇1θu̇
2
2 + 4u̇1ω

2θ + 2θu̇31 + 3u̇21ωn+ 3u̇22nω = 0 (5.32)

and

4u̇1ω
2θ + (16/3)θu̇31 + 2θu̇23u̇1 + 3u̇21ωn+ 3ωnu̇23 = 0, (5.33)

respectively.

We now look at the three cases implied by equation (5.29). The first case has

u̇3 = 0. Equations (5.21) and (5.22) show that if ∂3θ is not equal to zero, then

the flow is geodesic. However, this is not compatible with the requirement that

p′ = −1/3, since geodesic flow implies that p′ = 0. It follows therefore that ∂3θ = 0.
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The sum of the resultant of equations (5.23) and (5.24), with respect to ∂2θ, and

twice the resultant of equations (5.23) and (5.25), with respect to ∂2θ, reduces to

u̇22(3ωn+ 2θu̇1) = 0. (5.34)

The situation of u̇2 = u̇3 = 0 was covered by White and Collins (1984), who showed

that the shear-free conjecture holds in this case. We can thus suppose that u̇2 ̸= 0.

The resultant of equations (5.23) and (5.25) with respect to ∂2θ subtracted from

the resultant of equations (5.23) and (5.24) with respect to ∂2θ simplifies to

u̇1(2θu̇
2
1 + 3u̇1ωn+ 4ω2θ) = 0. (5.35)

Eliminating n between equations (5.34) and (5.35) yields

u̇22u̇1ω
2θ = 0,

whence u̇1 = 0. Propagation of u̇1 = 0 along the fluid flow implies the vanishing of

n. Equation (5.31) then gives that ωθ = 0 and so the shear-free conjecture holds.

The second case implied by equation (5.29) has u̇2 = 0 ̸= u̇3. Since our choice of

tetrad and the structure equations (3.12) (to 3.15) are invariant under the discrete

symmetry e⃗2 7→ e⃗3, e⃗3 7→ −e⃗2, so also are our equations. In particular this implies

that u̇2 = 0 ̸= u̇3 is equivalent to the situation of u̇3 = 0 ̸= u̇2 which we treated

in the preceding paragraph. Thus, the shear-free conjecture holds for the present

case as well.

The third, and last, case implied by equation (5.29) has u̇1 = 0 ̸= u̇2u̇3. Propa-

gation of u̇1 = 0 along the fluid flow, given by equation (3.25), entails that n = 0.

The resultant of equations (5.21) and (5.30) with respect to ∂2θ simplifies to

θu̇3u̇
2
2 + 2u̇3ω

2θ + ∂3θu̇
2
2 = 0. (5.36)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 143

The resultant of equations (5.31) and (5.36) with respect to ∂3θ becomes

ω2θ(u̇23 + u̇22) = 0,

which is a contradiction. The shear-free conjecture therefore holds in this third

case as well.

The situation of p′ = −1/3 includes spacetimes that obey a gamma-law of state

p = (γ − 1)µ with γ = 2/3. These spacetimes are generally regarded as non-

physical since γ is usually restricted to lie between 1 and 2. Other conditions which

are frequently imposed on the equation of state are µ+ p > 0 and µ+ 3p > 0 (see

Ellis (1971) for more details). The case where γ = 2/3 is then a limiting case of

the second condition. There are further spacetimes where γ = 2/3 is a limiting

value. Raychaudhuri’s equation, which is the (00) Einstein field equation, is given

by Ellis (1971) as being

3ℓ̈/ℓ = 2(ω2 − σ2) + u̇a;a −
1

2
(µ+ 3p) + Λ,

where ℓ is a length scale obeying ℓ̇/ℓ = θ/3. From this equation, it is readily

apparent that matter-energy is in some sense attractive when µ + 3p > 0 and

repulsive when µ + 3p > 0. The limiting situation, when µ + 3p = 0 reduces to

γ = 2/3 for a gamma-law of state. To clarify further the rôle of µ + 3p, we shall

discuss Raychaudhuri’s equation in situations of especial physical interest. If we

consider the situation of a static star model filled with a perfect fluid (and the

cosmological constant taken to be zero), then Raychaudhuri’s equation, which is

the (00) Einstein field equation, reduces to

u̇a;a = (1/2)(µ+ 3p),

as given by Ellis (1971). For the Friedman-Robertson-Walker solutions, Raychaud-
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huri’s equation becomes, as given by Ellis (1973),

3
R̈

R
+

1

2
(µ+ 3p)− Λ = 0,

with 3Ṙ/R being the expansion θ.When the cosmological constant is zero, γ = 2/3

again represents a special situation, being a critical value that separates accelerating

universes from decelerating universes. In the Einstein static solution, which is a

Friedmann-Robertson-Walker model with θ = 0, the cosmological constant obeys

Λ = (1/2)(µ+3p), and therefore changes sign at γ = 2/3. The value γ = 2/3 is also

a limiting case of Gödel’s universe, generalized to include pressure (Ellis, 1973),

since such spacetimes obey

2ω2 + Λ = 1
2
(µ+ 3p)

1
2
(µ− p) = −Λ.

(5.37)

Spacetimes with p′ = −1/3 are a genuine special case of the shear-free conjec-

ture. This can be seen, for example, by computing the combination of commutation

relations

−[e⃗2, e⃗3]θ + 3[e⃗0, e⃗2]u̇3 − 3[e⃗0, e⃗3]u̇2,

which gives

(1 + 3p′)
(
(3/2)ωn2 + ∂3∂2θ − ∂2∂3θ + ∂2θA3 − ∂3θA2 − 2∂0θω

)
= 0. (5.38)

We note that when p′ = −1/3, equation (5.38) becomes a trivial torsion equa-

tion. Other non-torsion expressions become non-trivial torsion expressions when

p′ = −1/3. An example of this situation is given by the combination of commutation

relations

−2[e⃗0, e⃗3]d2 + [e⃗0, e⃗1]n+ 2[e⃗1, e⃗3]u̇2,
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which is

(1 + 3p′)
(
−(1/3)∂3∂2θ + (2/3)∂0θω − (2/3)∂3u̇2θ + (2/3)∂3θA2 − (1/2)ωn2

+(2/3)A2u̇3θ − (1/3)θu̇1n+ (2/3)p′θ2ω
)

+(2/3)u̇3θu̇2 − 6p′θu̇2u̇3 − 4p′∂3θu̇2 − 4p′u̇3∂2θ

+
p′′(µ+ p)

p′

(
2u̇3∂2θ + 2θ∂3u̇2 + 2u̇2∂3θ − 2

u̇3u̇2θ

p′
+ 6u̇2u̇3θ

+nu̇1θ − 2A2u̇3θ − 2ωθ2p′
)

+

(
p′′2(µ+ p)2

p′3
− p′′′(µ+ p)2

p′2

)
(2u̇2u̇3θ) = 0. (5.39)

Equation (5.39) becomes a torsion equation when p′ = −1/3, and reduces to equa-

tion (5.21). There is thus a substantial reduction in computational work.

It is of interest to note that p′ = −1/3 was obtained as an intermediate result

in parts of previous proofs of the conjecture. For example, it appears in White and

Collins (1984), in Carminati (1987) and in Carminati (1990),

In three of the cases13 discussed by Collins and White (1984), the matter neces-

sarily obeys the equation of state µ+3p−2Λ = 0. Collins and White (1984) mention

that this equation of state is physically unreasonable, but point out that such an

equation of state, with µ + 3p = constant, occurs for a class of solutions due to

Wahlquist (1968), of which a limiting case, with µ+3p = 0, is due to Vaidya (1977).

These solutions are of Petrov type D with a shear-free, expansion-free, rotating and

accelerating fluid flow. They admit an abelian G2 isometry group acting on timelike

orbits.

While γ = 2/3 may be unphysical in the context of standard general relativistic

cosmology, it is certainly not so in the context of inflationary cosmology. Ellis (1990)

13Labelled by IIAAii, IIIAAi and IIIAAii by Collins and White (1984)
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mentions that, for Friedmann-Robertson-Walker models, the value γ = 2/3 is a crit-

ical one which separates decelerating models from accelerating models. Universes

with γ = 2/3 are called coasting universes. Accelerating models, called inflationary

models, violate the usual inequalities on the energy. If the cosmological constant

is positive, a non-interacting mixture of matter, radiation and the cosmological

constant would evolve from a radiation-dominated universe (γ ≈ 4/3) to a matter-

dominated universe (γ ≈ 1), then asymptotically to a universe dominated by the

cosmological constant (γ → 0). There will therefore be a point when the critical

value of γ = 2/3 is attained. Coasting universes can be obtained in terms of a scalar

field solution, but not by any known simple matter. In particular, there exists a

coasting generalized version of the Milne universe. The classical Milne universe is

empty; however, the scalar field allows the generalized version to be non-empty.

Coasting universes solve, in a weak sense, the horizon problem, which relates to

the following question: why do two widely separated regions of the sky have sim-

ilar background radiation when not enough time, classically, has elapsed for these

regions to be causally related? The coasting universes allow for the possibility of a

mechanism that would ensure that all such regions be indeed causally related, but

do not guarantee in general the existence of such mechanisms (which is why it is

only in a weak sense that coasting universes solve the horizon problem).



Chapter 6

Rotating non-expanding

shear-free

hypersurface-homogeneous

spacetimes

On rencontre sa destinée souvent par des

chemins qu’on prend pour l’éviter.

Jean de la Fontaine

W E consider a perfect-fluid shear-free spacetime that is rotating but not ex-

panding. The particular class of spacetimes we shall examine was first described by

Collins (1988); however, we provide a different characterization. The vector e⃗0 is

chosen to be the normalized velocity vector which can be taken as the unique unit

time-like future-pointing eigenvector of the Ricci tensor, provided that the energy

density, µ, and the pressure, p, are such that µ+p ̸= 0. Suppose that the spacetime

147
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admits a unique exact unit space-like covector that is annihilated by e⃗0. Let e⃗1 be

the vector that corresponds to this covector via the metric. The above conditions

require the vanishing of the kinematic quantities θαβ, ω2 + Ω2, ω3 + Ω3, d2, d3 and

n, which appear in equations (3.12) to (3.15). We rotate the e⃗2− and e⃗3−axes by

an angle Θ as follows:

e⃗2 7→ cosΘe⃗2 + sinΘe⃗3

and

e⃗3 7→ − sinΘe⃗2 + cosΘe⃗3.

This rotation is used so that ω3 is set to zero at a point. We are then free to

make ω3 vanish on a hypersurface transverse to the fluid flow. Propagation of ω3

along e⃗0, given by the Jacobi identity 3.19 simplified using equation (3.26), shows

that ω3 is then zero everywhere provided that ω2(ω1 + Ω1) vanishes. Now this is

easily ensured, since under the aforementioned rotation, ω1 +Ω1 transforms by the

formula

ω1 + Ω1 7→ ω1 + Ω1 + ∂0Θ.

By choosing the rotation so that ∂0Θ = −(ω1 +Ω1), we can ensure that ω1 +Ω1 is

zero and thus also the same applies to ω3.

The structure equations now obey:

dω̄0 = −u̇1ω̄0 ∧ ω̄1 − u̇2ω̄
0 ∧ ω̄2 − u̇3ω̄

0 ∧ ω̄3

+2ω1ω̄
2 ∧ ω̄3 + 2ω2ω̄

3 ∧ ω̄1,

dω̄1 = 0,

dω̄2 = θ̂22ω̄
1 ∧ ω̄2 − A3ω̄

2 ∧ ω̄3 + (−Ω̂− θ̂23)ω̄
3 ∧ ω̄1

and

dω̄3 = (θ̂23 − Ω̂)ω̄1 ∧ ω̄2 + A2ω̄
2 ∧ ω̄3 − θ̂33ω̄

3 ∧ ω̄1.
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Since ω̄1 is exact, it defines (locally) a coordinate function, x.We require that all

the kinematic quantities, the pressure, p, and the energy density, µ, be non-constant

functions of x only. Because of this, ∂2p = ∂3p = 0, and therefore u̇2 = u̇3 = 0. Since

p is a non-constant function of x, the acceleration does not vanish, and so u̇1 is not

equal to zero. The (01) field equation simplifies to A3ω2 = 0; the (02) field equation

to ω2(θ̂23+Ω̂) = 0; the (12) field equation to A2(θ̂22− θ̂33)+2A3θ̂23+2ω1Ω2 = 0; and

the (13) field equation to A3(θ̂22 − θ̂33) − 2A2θ̂23 = 0. If ω2 = 0 then the vorticity

and the acceleration are parallel, in which case, the situation has been studied by

Collins and White (1984). The relevant situation here is case III of Collins and

White (1984), since we require shear-free non-expanding rotating fluids. If instead

we require that ω2 ̸= 0, then we have A3 = 0 and Ω̂ = −θ̂23. We are now in

the situation studied by Collins (1988), in which the spacetime is hypersurface-

homogeneous (the orbits of the isometry group being given by {x = constant}),

and we shall be concerned with this in the remainder of this chapter.

For ease of comparison, since Collins (1988) uses the notation of MacCal-

lum (1973), we shall make use of the following quantities:

n23 := (θ̂33 − θ̂22)/2,

a1 := −(θ̂33 + θ̂22)/2,

a2 := −A2/2

and

n33 := −2θ̂23.

The inverse relations are:

θ̂22 := −(a1 + n23),

θ̂33 := n23 − a1,
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A2 := −2a2

and

θ̂23 := −n33/2.

The structure equations are therefore given by:

dω̄0 = −u̇1ω̄0 ∧ ω̄1 + 2ω1ω̄
2 ∧ ω̄3 + 2ω2ω̄

3 ∧ ω̄1,

dω̄1 = 0,

dω̄2 = −(a1 + n23)ω̄
1 ∧ ω̄2

and

dω̄3 = −n33ω̄
1 ∧ ω̄2 − 2a2ω̄

2 ∧ ω̄3 + (a1 − n23)ω̄
3 ∧ ω̄1.

We note that the tetrad is now uniquely determined. The (13) field equation now

simplifies to

a2n33 = 0, (6.1)

whereas the (12) field equation simplifies to

2a2n23 − ω1ω2 = 0. (6.2)

One combination of the Einstein field equations gives the constraint

4ω2
1 − 4ω2

2 + 8u̇1a1 + 4(p− Λ)− 4a21 − 16a22 + 4n2
23 + n2

33 = 0. (6.3)

The remaining Einstein field equations, Jacobi identities and contracted Bianchi

identities give the propagation along e⃗1 of the quantities as follows:

∂1ω1 = u̇1ω1 + 2ω1a1 + 2ω2a2,

∂1ω2 = ω2(−2u̇1 + n23 + a1),

∂1u̇1 = −Λ + (3/2)p+ (1/2)µ− 2ω2
1 − 2ω2

2 − u̇21 + 2u̇1a1,



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 151

∂1a1 = (1/2)p+ (1/2)µ− ω2
1 − 2ω2

2 + u̇1a1 + n2
23 + a21 + (1/4)n2

33,

∂1a2 = a2(n23 + a1),

∂1n23 = −u̇1n23 + 2a1n23 + (1/2)n2
33 + ω2

2,

∂1n33 = n33(−u̇1 + 2a1 − 2n23),

∂1p = −u̇1(µ+ p)

and

∂1Λ = 0.

The quantity Λ is the cosmological constant. Therefore, the only quantity for

which there is not a propagation equation is the energy density µ. These equations

reproduce the results of Collins (1988).

As noted by Collins (1988), the quantity ω1 vanishes if and only if the quantity

a2 does. The proof is as follows. Suppose that ω1 = 0. Propagation of ω1 entails

that ω2a2 = 0. Since we are operating under the assumption that ω2 ̸= 0, then

a2 = 0. Conversely, if we assume that a2 = 0, equation (6.2) implies that ω1 = 0.

Therefore requiring that a2 = 0 is equivalent to requiring that the vorticity be

orthogonal to the acceleration for the spacetimes under consideration. We note

that, since ω2 does not vanish, the quantity n23 cannot vanish. If n23 did vanish,

the propagation of n23 would imply that n33 and ω2 both vanish.

Because of equation (6.1), there are three cases to be considered. The first case,

which we shall refer to as case A, has n33 = 0 ̸= a2. Since a2 ̸= 0, it follows that

ω1 ̸= 0. Therefore, case A has n33 = 0 ̸= ω1ω2a2n23u̇1. Collins (1988) has identified

that spacetimes belonging to case A admit a G3 isometry group of Bianchi-Behr

type V Ih with h = −1 (i.e. Bianchi type III). Also, there is a Killing vector which

is not parallel to the fluid velocity vector and orthogonal to the vorticity vector.

The second case resulting from equation (6.1), case B, has a2 = 0 ̸= n33. By
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the discussion above, requiring a2 = 0 is equivalent to requiring ω1 = 0. Therefore,

case B has the constraints a2 = ω1 = 0 ̸= n33n23ω2u̇1. Collins (1988) has found that

spacetimes in case B admit a G3 isometry group of Bianchi type I and that there

is a Killing vector which is independent of the fluid velocity vector and orthogonal

to the vorticity vector.

The third case, case C, has n33 = a2 = 0. By the preceding discussion, case

C has the constraints n33 = a2 = ω1 = 0 ̸= ω2n23u̇1. Collins (1988) has identified

that the spacetimes which belong to case C admit a G3 isometry group of Bianchi

type I. They have a Killing vector which is independent of the velocity vector and

orthogonal to the vorticity. Furthermore, case C is the only case where there is

an additional Killing vector which is parallel to the vorticity; this is equivalent for

the spacetimes under consideration to having a Killing vector which is independent

of the velocity vector and which lies in the 2-surfaces spanned by the velocity

vector and the vorticity vector. Spacetimes belonging to case C coincide with the

spacetimes studied by Krasiński (1978).

We now wish to further the study of those spacetimes started by Collins (1988).

We shall be interested in finding which Petrov types of the Weyl tensor are allowed

in each of the three cases identified above. More information about the Petrov

classification can be found in chapter 4. The Weyl tensor can be decomposed into

two matrices with the help of the velocity vector, e⃗0. The electric part of the Weyl

tensor, with respect to e⃗0, is given by the (real) 3× 3 trace-free symmetric matrix

Eαβ where the entries satisfy:

E11 = −(2/3)Λ + p+ (1/3)µ− 2ω2
1 − ω2

2 + 2u̇1a1,

E12 = E21 = −ω2ω1,

E13 = E31 = 0,
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E22 = −u̇1a1 + ω2
1 − u̇1n23 + (1/3)Λ− (1/2)p− (1/6)µ,

E23 = E32 = −(1/2)u̇1n33

and

E33 = −(E11 + E22) = (1/3)Λ− (1/2)p− (1/6)µ+ ω2
1 + ω2

2 − u̇1a1 + u̇1n23.

The magnetic part of the Weyl tensor, with respect to e⃗0, is
1 also a (real) 3 × 3

trace-free symmetric matrix Hαβ with entries given by:

H11 = 2u̇1ω1 + 2ω2a2 + 2ω1a1,

H12 = H21 = ω2(n23 + a1),

H13 = H31 = (1/2)ω2n33,

H22 = −u̇1ω1 − ω1(a1 + n23),

H23 = H32 = −(1/2)n33ω1

and

H33 = −(H11 +H22) = −u̇1ω1 − ω1a1 − 2ω2a2 + ω1n23.

Some properties of spacetimes with Eab = 0 as well as for spacetimes with Hab = 0

can be found in chapter 5.

We form the complex matrix Qαβ := Eαβ + iHαβ. The Petrov type can be

found by looking at the elementary divisors and multiplicities of the eigenvalues of

Q (Kramer et al., 1980).2 We shall follow the matrix criteria given in Kramer et

al. (1980) to determine the allowed Petrov types for each of the three cases identified

above, i.e. for case A: n33 = 0, a2 ̸= 0; n23ω1ω2u̇1 ̸= 0., case B: n33 ̸= 0, a2 = 0;

ω1 = 0, n23ω2u̇1 ̸= 0. and case C: n33 = 0, a2 = 0;ω1 = 0, n23ω2u̇1 ̸= 0.

These cases can be regrouped in the specialization diagram given in table (6.1)

1Strictly speaking, Hab is a tensor which is isomorphic to the 3× 3 matrix given above.

2See also chapter 4.
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that appears on page 154.

Case A

n33, a2 ̸= 0

ω1ω2u̇1n23 ̸= 0

Case B

n33 ̸= 0, a2 = 0

ω1 = 0, n23ω2u̇1 ̸= 0

Case C

n33 = a2 = 0

ω1 = 0, n23ω2u̇1 ̸= 0

@
@@R

�
��	

Table 6.1: Specialization diagram

6.1 Case A: n33 = 0, a2 ̸= 0; n23ω1ω2u̇1 ̸= 0.

The propagation equations for case A are

∂1a1 = (1/2)p+ (1/2)µ− ω2
1 − 2ω2

2 + u̇1a1 + n2
23 + a21,

∂1a2 = a2(n23 + a1),

∂1u̇1 = −Λ + (3/2)p+ (1/2)µ− 2ω2
1 − 2ω2

2 − u̇21 + 2u̇1a1

∂1ω1 = u̇1ω1 + 2ω1a1 + 2ω2a2,

∂1ω2 = ω2(−2u̇1 + n23 + a1),

∂1n23 = −Λ + p+ 2u̇1a1 − u̇1n23 + ω2
1 + 2a1n23 − a21 − 4a22 + n2

23,

∂1p = −u̇1(µ+ p)

and

∂1Λ = 0.
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There are also the further two constraints:

Λ = −a21 + p+ 2u̇1a1 + ω2
1 − 4a22 − ω2

2 + n2
23 (6.4)

and

ω2ω1 − 2a2n23 = 0. (6.5)

The matrix Q is

Q =


Q11 Q12 0

Q12 Q22 0

0 0 Q33

 ,
where

Q11 = (2/3)a21 + (1/3)p+ (2/3)u̇1a1 − (8/3)ω2
1 + (8/3)a22 − (1/3)ω2

2

−(2/3)n2
23 + (1/3)µ+ i(2u̇1ω1 + 2ω2a2 + 2ω1a1),

Q12 = −ω2ω1 + i(ω2n23 + ω2a1),

Q22 = −(1/3)u̇1a1 + (4/3)ω2
1 − u̇1n23 − (1/3)a21 − (1/6)p− (4/3)a22

−(1/3)ω2
2 + (1/3)n2

23 − (1/6)µ+ i(u̇1ω1 + ω1a1 + ω1n23),

and

Q33 = −(Q11 +Q22)

= −(1/3)a21 − (1/6)p− (1/3)u̇1a1 + (4/3)ω2
1 − (4/3)a22 + (2/3)ω2

2

+(1/3)n2
23 − (1/6)µ+ u̇1n23 + i(−u̇1ω1 − ω1a1 − 2ω2a2 + ω1n23).

We immediately find that there are no spacetimes of Petrov type O, since the

real part of Q12 does not vanish, and so the matrix Q cannot vanish.

In order that the Petrov type be N, the matrix Q must satisfy Q2 = 0 with

Q ̸= 0. Therefore, Q33 must vanish. The real part of Q33 provides an expression for
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the energy density:

µ = −2u̇1a1 + 6u̇1n23 − p+ 8ω2
1 + 4ω2

2 + 2n2
23 − 2a21 − 8a22.

This is then used to reexpress Q2 without µ. The constraint (6.5) gives an expression

for

a2 =
ω1ω2

2n23

.

The imaginary part of (Q2)12, which is

−ω2
1ω2(a1n23 − n2

23 + u̇1n23 + ω2
2) = 0,

yields an expression for u̇1 :

u̇1 = −a1n23 − n2
23 + ω2

2

n23

.

The imaginary part of (Q2)22 is

2ω1n23(ω2 − 2n23)(ω2 + 2n23)(a1n23 − n2
23 + ω2

2) = 0.

Since u̇1 is constrained to be non-zero, it follows that ω2 = ±2n23. For both sit-

uations, using the expressions just obtained for u̇1, ω2 and a2, we find from the

expression for µ that µ+ p = 0. There are therefore no type N solutions.

For Petrov type III, the matrix condition is Q3 = 0 with Q2 ̸= 0. In type III,

all three eigenvalues must be equal to zero. Since Q is trace-free and symmetric,

and since the vector (0, 0, 1) is an eigenvector of Q, it follows that Q must be of

the form 
A B 0

B −A 0

0 0 0

 .
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The characteristic polynomial is then L(L2−A2−B2) = 0. For L = 0 to be a triple

root, it follows that A2 + B2 = 0, and so A = ±Bi. But this implies that Q2 must

be zero. Therefore there are no type III spacetimes in case A.

For Petrov types II and D, there is a (non-zero) double eigenvalue. From the

structure of the matrix Q, it is immediate that Q33 is an eigenvalue, with associated

eigenvector (0, 0, 1). Since the trace of a matrix is equal to the sum of its eigenvalues,

there are two cases to consider for the present situation, depending on whether or

not Q33 is the repeated eigenvalue.

We first consider the situation when Q33 is the double eigenvalue. The matrix

Q−Q33 I3, with I3 denoting the three-dimensional identity matrix, is given by

Q =


2E11 + E22 + i(2H11 +H22) E12 + iH12 0

E12 + iH12 2E22 + E11 + i(2H22 +H11) 0

0 0 0

 .

One of the possible eigenvectors belonging to the eigenvalue Q33 is (0, 0, 1). There

will be another such eigenvector, linearly independent of (0, 0, 1) if and only if the

determinant∣∣∣∣∣∣∣
2E11 + E22 + i(2H11 +H22) E12 + iH12

E12 + iH12 2E22 + E11 + i(2H22 +H11)

∣∣∣∣∣∣∣
vanishes. If this last determinant does vanish, then the Petrov type is D, otherwise,

the Petrov type is II. On the other hand, the quantity −2Q33 is also an eigenvalue,

which entails that the determinant of Q+ 2Q33 I3 must vanish, i.e.∣∣∣∣∣∣∣∣∣∣∣
−E11 − 2E22 + i(−H11 − 2H22) E12 + iH12 0

E12 + iH12 −E22 − 2E11 + i(−H22 − 2H11) 0

0 0 Q33

∣∣∣∣∣∣∣∣∣∣∣
= 0.
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This is precisely the condition that the Petrov type be D, since Q33 ̸= 0. Since

the determinant is a complex valued quantity, its vanishing actually represents

two conditions. The vanishing of the real part of the determinant gives the first

condition:

− (µ+ p)(u̇1n23 +
1

2
ω2
2)− u̇1a1ω

2
2 − 2u̇21a1n23 − 2a21u̇1n23

+2ω2
2n23a1 + 14ω2

1u̇1n23 − 8a22u̇1n23 + 3ω2
2u̇1n23 + 10ω2a2ω1n23

−6ω1a1ω2a2 + 6ω2
1a1n23 + ω4

2 − 12a22ω
2
2 + 2n3

23u̇1

+3ω2
1ω

2
2 − 2ω2

1n
2
23 + 2n2

23ω
2
2 − 6u̇1ω1ω2a2 + 2u̇21n

2
23 = 0. (6.6)

The second condition is attained by requiring that the imaginary part of the deter-

minant be equal to zero:

(µ+ p)(ω2a2 − ω1n23)− 8a22ω1n23 − 2a21ω1n23 + 2a21ω2a2

+4u̇1n
2
23ω1 − 3u̇1ω1ω

2
2 − ω1a1ω

2
2 + 5ω2

2ω1n23 − 6u̇21ω1n23

−10ω2a2u̇1n23 + 2u̇1a1ω2a2 − 2n2
23ω2a2 + 8ω3

1n23 − 8ω2
1ω2a2

−8u̇1a1ω1n23 + 8a32ω2 − 6ω3
2a2 + 2n3

23ω1 = 0. (6.7)

We eliminate µ+ p between equations (6.6) and (6.7) to obtain:

− 2u̇21n
3
23ω1 − a21ω

3
2a2 + 6ω3

1a1n
2
23 + (3/2)u̇1ω1ω

4
2 + (1/2)ω1a1ω

4
2

−(3/2)ω4
2ω1n23 + 6u̇31ω1n

2
23 − n2

23ω
3
2a2 + 6ω3

1n
2
23u̇1 − ω3

1n23ω
2
2

+ω2
1ω

3
2a2 + n3

23ω1ω
2
2 + 8a32ω

3
2 + 2ω5

2a2 − 2ω3
1n

3
23 − 18a22ω1n23ω

2
2

+6u̇1ω1ω
2
2a

2
2 − 12ω2

1a1ω2a2n23 + 6ω1a1ω
2
2a

2
2 + 6u̇21a1ω1n

2
23

−2ω3
2n23a1a2 + 2ω2

2n
2
23a1ω1 + 12ω2a2ω

2
1n

2
23 + a21ω1n23ω

2
2

−4u̇1n
2
23ω1ω

2
2 + 6u̇21ω1ω

2
2n23 + 4ω1a1ω

2
2u̇1n23 + 8ω2a2u̇

2
1n

2
23

+8ω3
2a2u̇1n23 − 12ω2

1ω2a2u̇1n23 = 0. (6.8)
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Equation (6.8) is then differentiated three times. Each time, equation (6.4) is

used to eliminate Λ, and then equation (6.7) is used to eliminate µ+ p. The three

equations thus obtained have 109, 291 and 648 terms respectively. Since the exact

expressions are not very illuminating in themselves, they, as well as other long

equations, will be omitted from the present text. Sufficient details, however, will

be provided so that any omitted equation can be calculated.3 The main problem to

control is that the intermediate calculations become quite large. The order in which

the operations are performed and the various projections that are used turn out

to be critical in being able to complete the calculations. The steps are as follows.

Factor every polynomials that are obtained. Each factor corresponds to a branch in

the calculations. The main reason for keeping the polynomials factor-free is to keep

their sizes down. Denote equation (6.5) by T1; equation (6.8) by T2; and the three

successive derivatives of equation (6.8) by T3, T4 and T5. Equations (T1-T5) are

polynomial equations that are homogeneous. We set n23 = 1 in equations (T1-T5),

thereby breaking the homogeneity of the equations. This is equivalent to replacing

each variable by itself divided by n23. We therefore are working in a projective

space. This reduces the size of the equations that are to come, since we obtain real

numbers where polynomials in n23 would have appeared. The projective forms of

equations are labelled by T1a-T5a. Equation (T1a) is used to eliminate a2 from

the other equations, using the resultant. The variable a2 has been chosen since it

appears as the variable of lowest degree.

Since computing a resultant entails computing a determinant of a matrix4 with

3The use of a symbolic calculator proves to be essential.

4This is the Sylvester matrix.
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dimension5 twice6 the degree7 of the variable which is to be eliminated, it is im-

portant to keep the degrees as low as possible. If there are several variables to be

eliminated, the first tendency might be to start by eliminating the higher degree

variables. That it is actually better to start with the lower degree variables is eas-

ily seen by thinking about three bivariate equations, linear in one variable, but of

degree ten, say, in the second variable. If one eliminates the linear variable, one

would get two equations of at most twentieth degree in the second variable. The

numerical coefficients are of the order of magnitude of the product of the largest

coefficient in each of the polynomials. The determinant of a matrix of dimension

40 would be computed. On the other hand, starting with elimination of the higher

degree variable, one would compute the determinant of two matrices of dimension

20, with terms linear in the remaining variable. This would yield two polynomials

whose potential degree is 20. The numerical coefficients are of potential order of

magnitude of the product raised to the twentieth power of the largest coefficient

in each of the polynomials. As in the first approach, the determinant of a matrix

of order 40 would need to be computed. The big difference is that the numerical

coefficients are bigger in the second approach. This effect is magnified the more

variables there are.8

5The dimension of a square matrix is defined to be the number of rows (or columns) of the

matrix.

6There is another method of computing the resultant. It involves computing the determinant

of a Bezout matrix which has dimension equal to the maximum degree of the polynomials. Its

entries are, however, more complicated than in the Sylvester matrix. In either case, the point

that the needed expressions cannot be computed in the straightforward way still holds.

7This is for polynomials in which the degree of the unknown is the same. The exact dimension

of the matrix for two polynomials is equal to the sum of their degrees.

8As an example of this effect, let us suppose that we are given the three polynomial equations

tx4+(t+1)x+3 = 0, (t+2)x4+(t+2)x2+4 = 0 and x4+ t+3 = 0. Eliminating t first, followed
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Equation T11 is obtained from equations T1a and T2a by taking the resultant

with respect to a2 followed by a division by ω1. Equation T12 is obtained from

T1a and T3a, with a division by ω2
1. Equation T13 is obtained from T1a and T4a,

followed by a division by ω3
1. Lastly, equation T14 is obtained from equations T1a

and T5a followed by a division by ω4
1. Since ω1 and ω2 only appear with even degree

in equations T11 to T14, it is worthwile to replace ω2
1 and ω2

2 by new variables, W1

and W2, respectively. Now variable W1 is the variable of least degree in T11-T14.

We then use equation T11 to eliminateW1 from the other equations. Equation T21 is

obtained from equations T11 and T12, together with a division by (W2−2)2.We shall

consider later the situation when W2 − 2 = 0, which is equivalent to ω2
2 − 2n2

23 = 0,

but for now, we assume that this factor does not vanish. Equation T22 is obtained

from equations T11 and T13, and a division by (W2 − 2)2 = 0. Equation T23 is

obtained from equations T11 and T14, and a division by (W2 − 2)3. It is important

that these factors of W2 − 2 be removed, otherwise resultants with respect to W2

would be zero, indicating the presence ofW2−2 as a common factor, but not telling

us any information about other possible common factors involving variables other

than W2. Next, the resultant T31 of T21 and T22 with respect to a1 is calculated.

It has

(2u̇1 +W2)
4(3u̇1 + 2W2 − 2)10(W2 − 4)20(W2 − 2)11W 6

2 u̇
6
1 (6.9)

as factors. We remove from the resultant these factors, whose possible vanishing

we shall consider later, and denote the result by T31a. The next step would be

to compute the resultant of T21 and T23 with respect to a1. This, however, is a

lengthy calculation. It is not clear that it can be carried out, and the step following

by x gives −72145632. This is close to (3× 4)7.2. Doing the elimination in the opposite ordering

gives 6087102333217026742804309262336. This is about (3 × 4)28.5. That these numbers do not

equal to zero indicates that there are no common zeros to the polynomials.
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the elimination of a1 certainly could not be computed directly.9 A small prime

number is chosen; the value 19 is adequate.10 We replace W2 by this small prime in

T21, T23 and T31a. Then, the resultant of the modified T21 and T23 with respect

to a1 is computed, and the result is labelled by T32. Then T41 is computed by

taking the resultant with respect to a1 of T32 and the modified T31a. If we had not

removed the factors given by (6.9) from T31, we would have found that T41 is zero.

Therefore, at least some of the factors of (6.9) are common to the two resultants T31

and T32. Since these factors needed to be identified, it was not possible to set W2

to be the chosen prime from the outset.11 Having removed the factors (6.9) from

9We may consider an estimate of the magnitude of the calculation, as follows. Equation T31 is

already of degree 35 in u̇1 and of degree 75 in W2, implying that equation T31a is of degree 15 in

u̇1 and of degree 24 in W2. Equation T32 has a higher degree than T31. Even if the factors (6.9)

are divisors of equation T32, the corresponding equation T32a would be of at least degree 15 in u̇1

and of degree 24 in W2. Eliminating u̇1 between T31a and T32a involves finding the determinant of

a matrix of dimension 30 with entries being polynomials in W2 with degree of the order of 24. The

result would be a polynomial in W2 with degree of the order of 24×30. The numerical coefficients

in T31 are of the order of 1040 to 1080. The polynomial in W2 would then have coefficients of the

order of 1040×30. Roughly, we then have 700 terms with coefficients of 1200 digits. This is 0.8

megabytes just to give the coefficients. In terms of time, it took about 7000 seconds to compute

equation T31 on the machine jeeves.uwaterloo.ca which is a DECsystem 5500 running Ultrix

4.2a and is about 30 times faster than a VAX780. Calculation of T32 would take even longer. It is

clear that the resultant between T31a and T32 should not be attempted, since the required time

behaves as the cube of the dimension of the matrix whose determinant we compute; and this is

assuming the fortuitous case that the coefficients do not increase in magnitude, an assumption we

already know does not hold.

10It is not required that the number be a prime number. For more information, see the following

footnote.

11Actually, given a bound on the degree of relevant polynomials, it is possible to do the eval-

uation at enough prime values to be able to find the actual factors. For our purposes, such a
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T31, the value of T41 is not zero, but rather an integer comprising 5304 digits.12

This value is the value of the full resultant T41 when evaluated at W2 equal to the

chosen prime 19. Since the number obtained is not zero, we know that the full value

of the resultant T41 is a polynomial in W2. Equating this polynomial to zero, we

can conclude that W2 has to be a constant. In terms of the original variables, we

can then conclude that w2 is proportional to n23. The constant of proportionality

cannot be zero, and has to be finite, since the product ω2n23 cannot be zero.

Taking into account the various common factors already identified, the present

situation therefore subdivides into 3 cases. The first subcase has ω2 = An23, with A

a non-zero constant. The second subcase has ω2
2 = −2u̇1n23 and the third subcase

has 3u̇1n23 + 2ω2
2 − 2n2

23 = 0.

The first subcase has

ω2 − An23 = 0. (6.10)

Equation (6.10) is used to eliminate n23. Equation (6.5) becomes

2a2 − ω1A = 0. (6.11)

Equation (6.11) is used to eliminate ω1. Differentiation of equation (6.10) gives

− Au̇1 − Aa1 − A2ω2 + ω2 = 0. (6.12)

Equation (6.12) is used to eliminate a1. Equation (6.8) becomes

a2ω
2
2(8A

4ω2u̇
2
1 + 8A4ω3

2 + 32a22A
2ω2 − 56a22A

4ω2 − 14A6ω3
2

calculation turned out to be unnecessary. The reason for choosing prime numbers is that it is

then easier to compute the value of the actual factors.

12This value of 5304 is of the same order of magnitude as the 1200 we arrived at in the pre-

vious footnote. We may regard this as illustrating that our method of estimating such values is

reasonably accurate.
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+28a22A
6ω2 − 8A5ω2

2u̇1 − 4A8ω2a
2
2 + 7A8ω3

2 − A10ω3
2 + 2A6u̇21ω2

−2A9u̇1ω
2
2 − A8u̇21ω2 + 10A7u̇1ω

2
2) = 0. (6.13)

Equation (6.13) is used to eliminate u̇1. Equation (T3) then becomes

−a72A22ω15
2 (A− 2)7(A+ 2)7(A2 − 2)2(72ω2

2A
10a22 + 48ω2

2A
8a22

−480A6ω2
2a

2
2 + 128ω4

2 − 384A2ω4
2 + 30ω4

2A
8 − 404A6ω4

2 + 9ω4
2A

10

+648A4ω4
2 + 144a42A

10 + 768A2a22ω
2
2 − 192A4ω2

2a
2
2

+1152A4a42 − 576A6a42 − 288A8a42)(4a
2
2 + ω2

2A
2)2 = 0.

It follows then that either ω2 is proportional to a2 or A is equal to 2,−2,
√
2 or −

√
2.

Differentiating ω2 − Ba2 = 0, with B a non-zero constant, one gets −2u̇1Ba2 = 0,

a contradiction. If ω2 = 2n23 or ω2 = −2n23, then differentiation of equation (6.12)

shows that µ + p = 0, a contradiction. If ω2
2 = 2n2

23, then differentiation of equa-

tion (6.12) gives that µ+ p = 4(a22 + n2
23). Differentiation of ω2

2 − 2n2
23 = 0 implies

that n23 + a1 + u̇1 = 0. Equation (6.7) then gives 4
√
2a2n

2
23(n23 + a1) = 0, whence

n23 + a1 = 0. This in turn implies that u̇1 = 0, a contradiction. There are therefore

no spacetimes that belong to the first subcase.

The second subcase has

ω2
2 + 2u̇1n23 = 0. (6.14)

Differentiation of equation (6.14) gives

−2u̇1ω
2
2+2a1ω

2
2+2n23a

2
1−6n23ω

2
1+8a22n23−2n3

23+n23(µ+p)−4n23u̇
2
1+4n23u̇1a1 = 0.

(6.15)

The variable u̇1 is eliminated between equations (6.14) and (6.15), and factors of

n23 are removed from the result. This gives

− 2n2
23 + 2a21 − 6ω2

1 + 8a22 + µ+ p = 0. (6.16)
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We use equation (6.16) to remove µ, equation (6.14) to remove u̇1 and equation (6.5)

to eliminate ω2 from equations (6.6), (6.7) and T3. We thus obtain

8n3
23ω1(−ω4

1n23 + 3ω4
1a1 + 2a22n23ω

2
1 − 6a22ω

2
1a1 + 2a22n

3
23 (6.17)

+4a22n
2
23a1 + 2a22n23a

2
1 − 4a42n23) = 0,

8n3
23(ω

6
1 − 2a22ω

4
1 + 6a22n

2
23ω

2
1 + 6a22n23ω

2
1a1 − 4a42n

2
23 − 4a42n23a1) = 0. (6.18)

and the equation that arises from T3. The resultant of equations (6.17) and (6.18)

with respect to a1 is

− 8192ω1
12 + 38912a22ω

10
1 − 73728a22n

2
23ω

8
1 + 245760a42n

2
23ω

6
1

−57344a42ω
8
1 − 303104a62n

2
23ω

4
1 + 24576a62ω

6
1

+163840a82n
2
23ω

2
1 − 32768a102 n

2
23 = 0, (6.19)

after division by n10
23ω1a

2
2. The resultant of the transformed T3 and equation (6.17)

with respect to a1 becomes

− 21ω22
1 + 166a22ω

20
1 − 510ω18

1 a
4
2 − 324ω18

1 a
2
2n

2
23 + 2100ω16

1 a
4
2n

2
23

+756ω16
1 a

6
2 − 1296ω14

1 a
4
2n

4
23 − 5132ω14

1 a
6
2n

2
23 − 536ω14

1 a
8
2

+144ω12
1 a

10
2 + 8640ω12

1 a
6
2n

4
23 + 5560ω12

1 a
8
2n

2
23 − 1696ω10

1 a
10
2 n

2
23

−24624ω10
1 a

8
2n

4
23 + 38688ω8

1a
10
2 n

4
23 − 1728ω8

1a
12
2 n

2
23 + 1600ω6

1a
14
2 n

2
23

−36064ω6
1a

12
2 n

4
23 − 384ω4

1a
16
2 n

2
23 + 19904ω4

1a
14
2 n

4
23

−6016a162 n
4
23ω

2
1 + 768a182 n

4
23 = 0,

after division by n17
23ω1a

2
2(ω

2
1 − 2a22). The resultant of equations (6.19) and (6.20)

with respect to n2
23 is

−67108864a42ω
10
1 (3ω10

1 − 88ω8
1a

2
2 + 371ω6

1a
4
2 − 534ω4

1a
6
2 + 324ω2

1a
8
2 − 72a102 )

(ω1 − a2)
3(ω1 + a2)

3(3ω2
1 − 2a22)

3(ω2
1 − 2a22)

3 = 0.
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We thus conclude that ω1 is proportional to a2 and so we set

ω1 = Ba2, (6.20)

with B being a non-zero constant. Differentiation of equation (6.20) gives

u̇1Ba2 +Ba2a1 + 2ω2a2 −Ba2n23 = 0,

which is equivalent to

− 2B2a1 + 2B2n23 − 4n23 = 0, (6.21)

after elimination of a2 with equation (6.20) and of ω2 with equation (6.5). The

derivative of (6.21) is equivalent to

−B4a22 − ω2
2 + 2B2a22 +B2ω2

2 = 0. (6.22)

Differentiation of (6.22) leads to

16B4a42u̇
2
1(B − 1)2(B + 1)2(B2 − 2)2 = 0,

which shows that B must be equal to 1,−1,
√
2 or −

√
2. Substitution of these four

values into equation (6.22) leads to contradictions in all cases. There are therefore

no spacetimes that belong to the second subcase.

The third subcase has

3u̇1n23 + 2ω2
2 − 2n2

23 = 0,

which we shall refer to as being equation P1. We shall refer to equation (6.5) as

equation P2, equation (6.6) as P3, equation (6.7) as P4, the derivative of P1 as P5

and T3 as P6. We compute P13 as the resultant of P1 and P3 with respect to

u̇1. Similarly we compute P14, P15 and P16 as the resultants with P1 of P4, P5
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and P6 with respect to u̇1. Then P123, P124, P125 and P126 are obtained as

the resultants of P2 with, respectively, P13, P14, P15 and P16 with respect to ω1.

Then, P1235 is obtained from the resultant of P123 and P125 with respect to µ.

Also, P1245 is obtained from the resultant of P124 and P125 with respect to µ.

Lastly, P12456 is obtained by taking the resultant of P126 and P1245 with respect

to a1. Whenever they appear, we shall remove common factors of powers of n23, a2

and ω2.We let ω2 be equal to the prime number 13 17 and take the resultant modulo

7 with respect to n23 of P12345 and P12456. The answer is

5(2a402 + 4a322 + 2a342 + a362 + 4a382 + 2a282 + 5a242 + a262 + a302 + 3a202

+6a222 + 6a662 + 6a682 + 6a642 + 4a582 + 2a602 + 2a622 + 2a502 + 5a522

+3a542 + a562 + a422 + 4a442 + 2a462 )2 ≡ 0 mod 7.

This shows that ω2 is proportional to a2. Differentiation of ω2 −Aa2 = 0, where A

is a non-zero constant, shows that −2u̇1Aa2 = 0. This is a contradiction. We can

then conclude that there are no case A spacetimes of Petrov type D.

We now consider the case when Q33 is the non-repeated eigenvalue of Q. Since

the eigenvalues of Q must sum to zero, the repeated eigenvalue is −(1/2)Q33. The

matrix Q+ (1/2)Q33 I3, which is
(1/2)[E11 − E22 + i(H11 −H22)] E12 + iH12 0

E12 + iH12 − (1/2)[E11 − E22 + i(H11 −H22)] 0

0 0 (3/2)Q33

 ,

implies that the eigenvectors associated with −(1/2)Q33 are orthogonal to (0, 0, 1).

The requirement that the eigenspace of −(1/2)Q33 be two-dimensional requires that

13The numbers 7 and 17 are arbitrary. They were chosen because they were small and because

we could obtain the results we sought. Most positive integers would have been appropriate.
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the submatrix (1/2)[E11 − E22 + i(H11 −H22)] E12 + iH12

E12 + iH12 −(1/2)[E11 − E22 + i(H11 −H22)]

 (6.23)

be scalar, i.e. a multiple of the identity matrix. However, if the matrix (6.23) is

scalar, then E12, which is −ω1ω2, vanishes. This is a contradiction, whence the

Petrov type must be II. Since −Q33/2 is an eigenvalue, the determinant of the

matrix (6.23) must be zero. This determinant factors as:

(1/2)a21 + (1/4)p+ (1/2)u̇1a1 − 2ω2
1 + 2a22 − (1/2)n2

23 + (1/4)µ

+(3/2)iu̇1ω1 + iω2a2 + (3/2)iω1a1 + (1/2)u̇1n23 + (1/2)iω1n23

+i(−ω2ω1 + iω2n23 + iω2a1) (6.24)

times

(1/2)a21 + (1/4)p+ (1/2)u̇1a1 − 2ω2
1 + 2a22 − (1/2)n2

23 + (1/4)µ

+(3/2)iu̇1ω1 + iω2a2 + (3/2)iω1a1 + (1/2)u̇1n23 + (1/2)iω1n23

−i(−ω2ω1 + iω2n23 + iω2a1). (6.25)

We first suppose that the first factor (6.24) is equal to zero. The vanishing of

the real part of (6.24) gives a value for µ :

(1/2)u̇1a1 + (1/2)u̇1n23 − ω2n23 − ω2a1

+(1/4)µ+ (1/4)p− 2ω2
1 − (1/2)n2

23 + (1/2)a21 + 2a22 = 0. (6.26)

The vanishing of the imaginary part of (6.24) gives

(3/2)u̇1ω1 + ω2a2 + (3/2)ω1a1 − ω2ω1 + (1/2)ω1n23 = 0. (6.27)

The derivative of equation (6.27) is equivalent to

ω1(ω1 + a2)(9ω
3
1a

2
2 + ω2

2ω
3
1 + 2ω2

2a2ω
2
1

−3u̇1ω
2
1ω2a2 − 9ω2

1a
3
2 − 3u̇1ω1ω2a

2
2 − 2ω2

2a
2
2ω1 − 3a32ω

2
2) = 0, (6.28)
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where equation (6.4) is used to eliminate Λ, equation (6.26) is used to eliminate

µ, equation (6.27) is used to eliminate a1 and equation (6.5) is used to eliminate

n23. There are therefore two possibilities, according to whether or not ω1 + a2 = 0.

If ω1 + a2 is indeed equal to zero, equation (6.5) gives that ω2 + 2n23 = 0. Equa-

tion (6.27) gives that a1+ u̇1+3n23 = 0. In turn, equation (6.26) gives µ+ p = 0, a

contradiction. Therefore ω1 + a2 ̸= 0. Equation (6.28), divided by ω1(ω1 + a2), will

be used to eliminate u̇1. Furthermore, equation (6.28) is differentiated. The result

is equivalent to

− 19683

32
ω6
1a

4
2 +

6561

32
ω6
1a

2
2ω

2
2 +

729

32
ω6
1ω

4
2 +

243

8
ω5
1ω

4
2a2

+
19683

16
ω5
1a

5
2 −

2187

8
ω5
1a

3
2ω

2
2 −

2673

32
ω4
1ω

4
2a

2
2 −

24057

32
ω4
1a

4
2ω

2
2

−19683

32
ω4
1a

6
2 +

2187

16
ω3
1a

5
2ω

2
2 −

729

4
ω3
1a

3
2ω

4
2 +

6561

16
ω2
1a

6
2ω

2
2

−2673

32
ω2
1a

4
2ω

4
2 +

243

8
a52ω

4
2ω1 +

729

32
a52ω

4
2 = 0. (6.29)

Equation (6.29) is used to eliminate ω1. The result of differentiating equation (6.29)

implies that

a782 ω
32
2 (343ω4

2 + 234a22ω
2
2 − 81a42)(ω

2
2 + 4a22)

6 = 0. (6.30)

This implies that ω2 is proportional to a2. Propagation of this proportionality re-

lation yields a contradiction.

If the factor (6.24) is not equal to zero, then, for the spacetime to be of Petrov

type II, the factor (6.25) must be zero. The same steps as in the preceding paragraph

are followed, replacing the factor (6.24) by the factor (6.25). Two cases appear,

according as ω1+a2 vanishes or not. If ω1+a2 does vanish, a contradiction is reached

in the same manner as that above. If ω1 + a2 is not zero, the same steps as in the

preceding paragraph lead to exactly the same equation (6.30) that was obtained in

the first subcase. It follows then that ω2 is proportional to a2. Propagation of that
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proportionality relation leads to a contradiction. There are therefore no Petrov

type II solutions in case A.

If there are spacetimes in case A, they must be of Petrov type I.

6.2 Case B: n33 ̸= 0, a2 = 0; ω1 = 0, n23ω2u̇1 ̸= 0.

For case B, the propagation equations are

∂1a1 = (1/2)p+ (1/2)µ− 2ω2
2 + u̇1a1 + n2

23 + a21 + (1/4)n2
33,

∂1u̇1 = −Λ + (3/2)p+ (1/2)µ− 2ω2
2 − u̇21 + 2u̇1a1,

∂1ω2 = −2u̇1ω2 + ω2n23 + ω2a1,

∂1n23 = −Λ + p+ 2u̇1a1 − u̇1n23 + 2a1n23 − a21 + (3/4)n2
33 + n2

23,

∂1n33 = −u̇1n33 + 2n33a1 − 2n33n23,

∂1p = −u̇1(µ+ p)

and

∂1Λ = 0.

The cosmological constant, Λ satisfies

Λ = (1/4)n2
33 + p+ 2u̇1a1 − a21 − ω2

2 + n2
23.

The matrix Q is of the form 
Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q33 Q33

 ,
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where

Q11 = −(1/6)n2
33 + (1/3)p+ (2/3)u̇1a1 + (2/3)a21 − (1/3)ω2

2

−(2/3)n2
23 + (1/3)µ,

Q12 = iω2(n23 + a1),

Q13 = (1/2)iω2n33,

Q22 = −(1/3)u̇1a1 − u̇1n23 + (1/12)n2
33 − (1/6)p− (1/3)a21

−(1/3)ω2
2 + (1/3)n2

23 − (1/6)µ,

Q23 = −(1/2)u̇1n33

and

Q33 = −(Q11 +Q22)

= (1/12)n2
33 − (1/6)p− (1/3)u̇1a1 − (1/3)a21 + (2/3)ω2

2

+(1/3)n2
23 − (1/6)µ+ u̇1n23.

The possibility of a Petrov type O spacetime is rejected because that would

require that the matrix Q vanish. This cannot be so since the imaginary part of

Q13 is necessarily nonzero.

A Petrov type N spacetime requires that Q2 = 0 with Q ̸= 0. The expression in

(Q2)13 = 0 is

(1/24)iω2n33(4ω
2
2 − n2

33 − 4n2
23 + 2p− 8u̇1a1 + 4a21 + 2µ) = 0,

from which µ is isolated:

µ = (1/2)n2
33 − p+ 4u̇1a1 − 2a21 − 2ω2

2 + 2n2
23. (6.31)

The expression (Q2)23 = 0 becomes, after division by n33

− (1/2)ω2
2n23 − (1/2)ω2

2a1 + u̇21a1 − (1/2)u̇1ω
2
2 = 0. (6.32)
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The resultant, with respect to a1 of equation (6.32) with the equation (Q2)11 = 0

is, after division by ω2
2, equal to

4ω6
2 + 16u̇1n23ω

4
2 − 4ω4

2u̇
2
1 − ω4

2n
2
33 − 16u̇31n23ω

2
2 + 16u̇21n

2
23ω

2
2

+4ω2
2n

2
33u̇

2
1 − 16u̇41n

2
23 − 4u̇41n

2
33 = 0.

Multiplication of equation (6.31) by 8[u̇21−(1/2)ω2
2]

2 yields, after taking into account

equations (6.32) and (6.33), that

8(µ+ p)[u̇21 − (1/2)ω2
2]

2 = 0,

whence

ω2
2 = 2u̇21.

Substitution into equation (6.32) reveals that n23 + u̇1 = 0. Differentiation of n23 +

u̇1 = 0 then yields n2
33− 4u̇21 = 0. Propagation of n2

33− 4u̇21 = 0 implies that u̇1 = 0.

This is a contradiction in case B, since n33 ̸= 0. There are therefore no spacetimes

in case B that belong to Petrov type N.

The matrix condition for a spacetime to belong to Petrov type III is Q3 = 0 with

Q2 ̸= 0. A direct calculation shows that there are only two independent components

in Q3. The entry (Q3)13 = 0, which is

− 4(µ+ p)2 + (−16u̇1a1 + 4n2
33 − 16a21 + 8ω2

2 + 16n2
23)(µ+ p)

+96ω2n23a1 + 8n33u̇1a1 + 16u̇1a1ω2 + 32u̇1a1n
2
23 − n4

33 − 16n4
23

−16a41 − 16ω4
2 + 8ω2

2n
2
33 + 8n2

33a
2
1 − 8n2

33n
2
23 − 16u̇21a

2
1

−32u̇1a
3
1 + 64a21ω

2
2 + 32a21n

2
23 + 32ω2

2n
2
23 − 48u̇1n23ω

2
2

−12u̇21n
2
33 − 48u̇21n

2
23 = 0, (6.33)

can provide a value for the energy density, since the coefficient of the highest power

of µ therein cannot vanish. We take the resultant of (Q3)11 = 0 and equation (6.33)
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with respect to µ. Differentiation of the result does not yield anything new. There

can be solutions of Petrov type III, but some constraints must be met.

For spacetimes to be of Petrov type D, their Weyl tensor must be such that the

matrix equation M := (Q+λ/2 I3)(Q−λ I3) = 0 must be satisfied. The condition

M13 = 0, which is

1/24iω2n33

(
4ω2

2 − n2
33 − 4n2

23 − 8u̇1a1 + 4a21 + 2(µ+ p)− 6λ
)
= 0,

produces a value for λ, viz.,

λ = −(1/6)n2
33 − (4/3)u̇1a1 + (2/3)a21 + (2/3)ω2

2 − (2/3)n2
23 + (1/3)(µ+ p).

Then, the equation M12 = 0 reduces to

−(1/4)ω2i(4ω
2
2n23 + 4ω2

2a1 + n2
33u̇1 − 4u̇1a

2
1 + 4n2

23u̇1) = 0,

which will be used to eliminate n33. We deduce that n23 + u̇1 = 0 from equation

M22 = 0, which is

(u̇1/2)(n23 + a1)(µ+ p) = 0.

The condition M11 = 0 now simplifies to

−(u̇1n23 + (1/2)ω2
2)(µ+ p) = 0.

Differentiation of a1 + n23 = 0 leads to µ + p = 0, a contradiction. There can

therefore not be any case B solutions that are of Petrov type D.

Petrov type II spacetimes have a Weyl tensor that obeys the matrix condition

N := (Q+ λ/2 I3)
2(Q− λ I3) = 0, yet do not satisfy the condition for Petrov type

D. The equation given by N13 = 0, i.e.

(1/96)ω2n33i[−36λ2 − 96ω2
2n23a1 − 8n2

33u̇1a1 − 16u̇1a1ω
2
2
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−32u̇1a1n
2
23 + n4

33 + 16n4
23 + 16a41 + 16ω4

2 − 8ω2
2n

2
33 − 8n2

33a
2
1

+8n2
33n

2
23 + 16u̇21a

2
1 + 32u̇1a

2
1 − 64a21ω

2
2 − 32a21n

2
23 − 32ω2

2n
2
23

+48u̇1n23ω
2
2 + 12u̇21n

2
33 + 48u̇21n

2
23(−16n2

23 − 8ω2
2 + 16a21

−4n2
33 + 16u̇1a1)(µ+ p) + 4(µ+ p)2] = 0, (6.34)

provides an expression for λ2.Multiplying this expression by λ gives the value of λ3.

Substitution of the equalities for λ2 and λ3 into the matrix N results in a diagonal

matrix. It turns out that this matrix is a scalar matrix; in other words, the three

non-trivial entries are actually equal, and so N is now proportional to the identity

matrix. The resultant of this non-trivial entry ofN and equation (6.34) with respect

to λ yields an equation with 923 terms. This equation can be considered a definition

for the energy density, µ, except when all the coefficients of the various powers of µ

vanish or when there are no real-valued solutions for µ. We now turn our attention

to the situation when it is indeed the case that this equation of 923 terms has its

coefficients of the various powers of µ vanishing. The highest power of µ is 4. We

require the vanishing of the corresponding coefficient, viz.

− (1/12)u̇21n
2
33 − (1/3)u̇21n

2
23 − (1/12)ω4

2 − (1/3)u̇1n23ω
2
2 = 0. (6.35)

We shall use equation (6.35) to eliminate n33. The derivative of equation (6.35)

becomes

ω2
2(2u̇1n23 + ω2

2)[ω
4
2 + 4u̇1n23ω

2
2 + 4u̇21a

2
1 + 2(µ+ p)u̇21]

24u̇31
= 0 (6.36)

The term 2u̇1n23 + ω2
2 cannot vanish, otherwise equation (6.35) would imply that

−(u̇21n
2
33)/12 = 0, a contradiction. Equations (6.35) and (6.36) determine a value

for µ, viz.

µ = −p− 2a21 + (1/2)n2
33 + 2n2

23.
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We now return to the equation with 923 terms. The vanishing of the coefficient of

µ3 therein simplifies to

ω2
2(−2u̇1a1 + ω2

2)
2(2u̇1n23 + ω2

2) = 0,

after making use of equation (6.35) to eliminate n33. Since we have already ruled

out the possibility that 2u̇1n23 + ω2
2 = 0, we must have that ω2

2 = 2u̇1a1. Differen-

tiating ω2
2 − 2u̇1a1 = 0 implies that n23 + a1 = 0. Equation (6.35) now reduces to

−(1/12)u̇21n
2
33 = 0, a contradiction. There can therefore be solutions of Petrov type

II, provided that an expression with 923 terms (mentioned above) yields a value

for µ.

In summary, there are no solutions in case B that are of Petrov types D, N or

O. If there are spacetimes in case B, they must be of Petrov types I, II or III.

6.3 Case C: n33 = 0, a2 = 0;ω1 = 0, n23ω2u̇1 ̸= 0.

For this situation, the propagation equations reduce to

∂1a1 = (1/2)(p+ µ)− 2ω2
2 + u̇1a1 + n2

23 + a21,

∂1u̇1 = −Λ + (3/2)p+ (1/2)µ− 2ω2
2 − u̇21 + 2u̇1a1,

∂1ω2 = −2u̇1ω2 + ω2n23 + ω2a1,

∂1n23 = −Λ + p+ 2u̇1a1 − u̇1n23 + 2a1n23 − a21 + n2
23,

∂1p = −u̇1(µ+ p)

and

∂1Λ = 0.

Equation (6.3) can be used to solve for Λ, giving

Λ = −ω2
2 + p+ 2u̇1a1 − a21 + n2

23.
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The matrix Q is

Q =


Q11 Q12 0

Q12 Q22 0

0 0 Q33

 ,
where

Q11 = −(1/3)ω2
2 + (1/3)(p+ µ) + (2/3)u̇1a1 + (2/3)a21 − (2/3)n2

23,

Q12 = iω2(n23 + a1),

Q22 = −(1/3)u̇1a1 − u̇1n23 − (1/3)ω2
2 − (1/3)a21 + (1/3)n2

23 − (1/6)(p+ µ)

and

Q33 = −(Q11 +Q22)

= (2/3)ω2
2 − (1/3)u̇1a1 − (1/3)a21 + (1/3)n2

23

−(1/6)(µ+ p) + u̇1n23. (6.37)

For Petrov type O, the matrix condition is that Q be equal to zero. Since ω2

does not vanish, we must have n23 + a1 = 0. The quantity Q11 −Q22, which equals

(1/2)(µ+ p), must also be zero, since Q vanishes; however, this is a contradiction.

There are therefore no Petrov type O solutions in case C.

There are also no spacetimes of Petrov type III since the vector (0, 0, 1) is a

non-null eigenvector of Q. The proof that there are no Petrov type III spacetimes

in case C is identical to that presented for case A, and therefore is omitted here.

In order that a spacetime be of Petrov type N, the matrix Q must satisfy Q2 = 0

with Q ̸= 0. The entry (Q2)11 = 0 can be used to find a value for µ:

µ = 4ω2
2 − p− 2u̇1a1 − 2a21 + 2n2

23 + 6u̇1n23. (6.38)

The only remaining independent entry in Q2 = 0 is given by

(ω2a1 + ω2n23 + ω2
2 + 2u̇1n23)(−ω2a1 − ω2n23 + ω2

2 + 2u̇1n23) = 0. (6.39)
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The propagation of this equation does not yield any new restrictions. Therefore

there can be type N spacetimes in case C.

For Petrov type II or type D there is a non-zero repeated eigenvalue. Because

of the structure of Q, one of the eigenvalues is E33. The vector (0, 0, 1) is one

eigenvector associated with the eigenvalue E33. Since Q is trace-free, the sum of the

eigenvalues must be zero. Therefore, there are two cases to consider, depending on

whether or not E33 is the repeated eigenvalue.

Suppose that the repeated value is indeed E33.The matrix Q− E33 I3 is
2E11 + E22 iH12 0

iH12 E11 + 2E22 0

0 0 0

 .
Since the vector (0, 0, 1) is an eigenvector belonging to the eigenvalue E33, the

dimension of the eigenspace of Q associated with E33 is either two or one according

as (2E11 +E22)(E11 + 2E22) +H2
12 vanishes or not, whence the Petrov type is D or

II, respectively. However, −2E33 is the non-repeated eigenvalue, and so the matrix

Q+ 2E33 I3, which is
−E11 − 2E22 iH12 0

iH12 −2E11 − E22 0

0 0 3E33

 ,

must be singular. The expression (E11+2E22)(2E11+E22)+H
2
12 must then vanish,

whence the Petrov type must be D. Explicitly, the equation

(E11 + 2E22)(2E11 + E22) +H2
12 = 0

is given by

−(u̇1n23 + (1/2)ω2
2)(µ+ p) + ω4

2 + ω2
2(3u̇1n23 − u̇1a1 + 2n2

23 + 2n23a1)

+u̇1n23(−2u̇1a1 − 2a21 + 2n2
23 + 2u̇1n23) = 0.

(6.40)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 178

This gives a definition for µ, unless its coefficient vanishes, i.e. unless 2u̇1n23+ω
2
2 =

0. Supposing that, indeed, 2u̇1n23 + ω2
2 = 0, then equation (6.40) implies that

n23+a1 = 0, and the requirement that this is propagated now shows that µ+p = 0,

which is a contradiction. There can therefore be case C spacetimes of Petrov type

D; however, some constraints need to be satisfied.

Now suppose that the repeated eigenvalue is not E33; it must then be −E33/2.

Therefore, the matrix Q+ (E33/2)I3 is
(E11 − E22)/2 iH12 0

iH12 (E22 − E11)/2 0

0 0 3E33/2


Since −E33/2 is an eigenvalue, the determinant of this matrix must be zero, forcing

4H2
12 − (E11 − E22)

2 = 0. This is equivalent to

(p+ µ− 4ω2a1 + 2u̇1a1 + 2a21 − 4ω2n23 + 2u̇1n23 − 2n2
23)×

×(p+ µ+ 4ω2a1 + 2u̇1a1 + 2a21 + 4ω2n23 + 2u̇1n23 − 2n2
23) = 0,

(6.41)

which gives two possible values for µ. If H12 = 0 and E11 = E22 then the dimension

of the eigenspace associated with −E33/2 is two, whence the Petrov type is D;

otherwise, the dimension is one, whence the Petrov type is II. If the Petrov type

is D, then the condition H12 = 0 implies that n23 + a1 = 0, and the condition

E11 = E22 necessitates that (1/2)(µ+ p) + u̇1(n23 + a1) + (a1 + n23)(a1 − n23) = 0.

Together, these two conditions imply that µ+ p = 0, which is a contradiction, and

thus the spacetimes must be of Petrov type II.

In summary, spacetimes of Petrov type III and O are not allowed in case C. The

other Petrov types are allowed but under the presence of certain constraints.
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6.4 Summary

The only spacetimes allowed in case A must be of Petrov type I. Spacetimes that

belong to case B cannot belong to Petrov types O, N, or D. There can be solutions

of type I. There can also be solutions of Petrov type III, but some constraints

have to be met. There can also be solutions of type II, provided that a particular

equation of 923 terms contains terms involving µ. If the coefficients of µ all vanish

in that particular equation, then there are no solutions. We note that since the

Petrov types O and D are ruled out, spacetimes with a purely electric Weyl tensor

that belong to either of class A or of class B must be of Petrov type I (see Kramer

et al. (1980) who mention the fact that if the matrix Q is real, the only allowed

Petrov types are O, D and I).

For spacetimes that belong to case C, there are no solutions of Petrov types

O and III. There can be solutions of Petrov type N. In these spacetimes, the fluid

has the energy given by equation (6.38) and the solutions are subject to the con-

straint (6.39). There can also be Petrov type D solutions. They have Q33, given

by equation (6.37), as a double eigenvalue. The energy density is given implicitly

by equation (6.40) and the quantity 2u̇1n23+ω
2
2 cannot vanish. Furthermore, there

can be Petrov type II solutions. They have Q33 as the non-repeated eigenvalue.

The energy density must satisfy equation (6.41). The quantities ω2(n23 + a1) and

(1/6)(p + µ) + u̇1(a1 + n23) + a22 − n2
23 cannot both vanish on an open set. There

can also be solutions of type I.

The results we have obtained for Petrov type N are compatible with those

obtained by Carminati (1988), who showed that Petrov type N shear-free perfect

fluids with a barotropic equation of state must belong to the class studied by

Krasiński (1978), and therefore must belong to our case C.
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There are no spacetimes within the class we are studying that are conformally

flat, i.e. of Petrov type O. This, of course, is compatible with Ellis (1971) who at-

tributes to Trümper14 the result that conformally flat spacetimes with a barotropic

equation of state must be shear-free, geodesic and irrotational and so must belong

to the Friedmann-Robertson-Walker models.

Kramer et al. (1980) mention that they were not aware of the existence of any

perfect fluid solutions of Petrov type III. A superficial search of the literature did

not reveal any solutions other than the work of Allnutt (1981) which uncovered a

perfect fluid of Petrov type III that possesses non-zero shear. Carminati (1990)

mentions the article of Allnutt and adds that, as far as he is aware, there are no

known shear-free perfect fluid solutions of Petrov type III. We have demonstrated

the possible existence of such spacetimes in our case B, although they are subject

to rather complicated (yet readily accessible) constraints.

We have summarized the previous results in table (6.2) appearing on page 181.

14Ellis does not give an exact reference.
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Petrov Type Case A Case B Case C

I Allowed Allowed Allowed

D Disallowed Disallowed Allowed

II Disallowed Allowed Allowed

N Disallowed Disallowed Allowed

III Disallowed Allowed Disallowed

O Disallowed Disallowed Disallowed

Table 6.2: Allowed Petrov Types



Appendix A

The forms Maple package for

differential forms

De la discussion jaillit la lumière.

Proverbe français

T HE Maple package forms is a collection of programs for calculations involving

differential forms and their dual vectors. Maple V or Maple V release 2 is required

in order to use it. A standard reference about Maple is Char et al. (1991).

The following functions are provided:

adjoint d: compute the adjoint differential, or coderivative of a form.

cartan lemma: solve for unknown forms

cauchy char: compute the Cauchy characteristic of a differential ideal

d: compute the exterior derivative

derived ideal: compute the derived ideal of a differential ideal

182
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express base: express a form over a basis

form coeffs: find the coefficients of forms

form to vec: take a basic form to a basic vector1

form part: find the non scalar part of a term

hodge star: apply on a form the hodge star operator with respect to an inner

product

hook: compute the interior product of a form by a vector

in ideal: verify if a form belongs to given differential ideal

inner product: compute an inner product between two forms

item map: apply an operation to elements of nested structures

laplace beltrami: apply a generalized Laplacian to a form

lie: compute the lie derivative of a form

linear divisors: compute the linear divisors of a form

linear solve: solve linear equations; extends solve(..., linear)

mod ideal: finds a representative of a form modulo a differential ideal

scalar part: find the coefficient of a basic form

standard form: regroup forms according to basic forms

1A basic form is a nform, a form or a dform. A basic vector is a nvector, a vector or a

dvector.
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subs form: substitute forms in other forms; extends subs()

vec scalar part: find the coefficient of a multivector term

vec subs: substitute multivectors. extends subs()

vec to form: take a basic vector to a basic form

vec wedge: compute the exterior multiplication of vectors

vector part: find the multivector part of a term

wdegree: find the degree of a form

wedge: compute the exterior multiplication of forms

In order to use the forms package, it must first be loaded in Maple via the with()

facility.

> with(forms):

In the Maple examples below, it is useful the remember that the ordering of

terms in a sum, of factors in a product and elements in a set are session dependent.

The output of each example may thus be different from that shown in the present

document.

Let V be a real vector space of dimension n, and V ∗ its dual space. Elements

of V are called vectors; those of V ∗, covectors or 1-forms.

A.1 Differential forms

Any non-compound Maple expression is a differential form of degree 0. We shall

refer to such forms as 0-forms. Compound Maple expressions are quantities like
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sets, lists, expression sequences and so on. From 0-forms, one can get differential

forms of degree 1, or 1-forms, by using the exterior derivative operation d(). For

example,

> F1:=x*y+3*z;

F1 := x y + 3 z

is a 0-form.

> dF1:=d(F1);

dF1 := dform(1, x) y + x dform(1, y) + 3 dform(1, z)

As one can see, the exterior derivative operates on 0-forms as a differential operator

and produces a 1-form. The notation dform(1,x) represents a closed 1-form with

name x. This name is used to distinguish between various differential forms and

should be either a Maple name or a Maple indexed2 name. By definition, closed

forms are differential forms whose exterior derivative is zero. One can use those

dform expressions to build other 1-forms.

> F2:=x*d(y)+t*d(z);

F2 := x dform(1, y) + t dform(1, z)

One can use the standard addition of Maple to add differential forms together.

> dF1+3*F2;

dform(1, x) y + 4 x dform(1, y) + 3 dform(1, z) + 3 t dform(1, z)

Like terms are combined using the standard form() operation.

> standard_form(dF1+3*F2);

dform(1, x) y + (3 + 3 t) dform(1, z) + 4 x dform(1, y)

2There is no extra support for forms with indexed names. Further development of the forms

package could involve index symmetries and also Einstein’s summation convention.
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The coefficient multiplying a basic form can be obtained with the scalar part()

function. The basic form itself is obtained using the form part() function.

> scalar_part(3*x*d(y));

3 x

> form_part(3*x*d(y));

dform(1, y)

Two differential forms can be multiplied together. However, since the multiplication

of differential forms is not necessarily commutative, the multiplication provided by

Maple cannot3 be used. The appropriate multiplication, the exterior multiplication,

is obtained through the wedge() operation.4

> standard_form(wedge(dF1,F2));

y x wedge(dform(1, x), dform(1, y))

+ (x t - 3 x) wedge(dform(1, y), dform(1, z))

+ y t wedge(dform(1, x), dform(1, z))

The notation wedge(dform(1,y), dform(1,z)) means that the differential forms

that are arguments to the wedge() function are multiplied together using exterior

multiplication. The wedge() operation is distributive. Scalar functions (0-forms)

move out of form(). The ordering within the square brackets is unique during a

3Even if one could “overload” the ∗ operator of Maple, it is arguably better to have a different

notation for each type of multiplication. For an example to ponder about, consider the design of a

system that could handle tensor multiplication of exterior multiplications of arrays of quaternion-

valued differential forms. The Gauss package for Maple, see Gruntz et al. (1993), is a suitable

environment for such a system.

4Unfortunately, this associative operator cannot be made into an infix operator if it has

more than two arguments without the appearance of extraneous parentheses. However doing

alias(‘&^‘=wedge); will make give an infix operator for the exterior product of two differential

forms.
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Maple session, but can change from one session to another.

> standard_form(wedge(F2,dF1));

- y x wedge(dform(1, x), dform(1, y))

+ (3 x - x t) wedge(dform(1, y), dform(1, z))

- y t wedge(dform(1, x), dform(1, z))

The wedge() and the d() operations are then appropriate tools to construct differ-

ential forms of various degrees.

> F3:=standard_form(wedge(wedge(F2,dF1),d(x)));

F3 := (3 x - x t) wedge(dform(1, x), dform(1, y), dform(1, z))

The degree of a differential form is obtained by wdegree(). Note that for the

answer of wdegree() to be valid, each term of its argument must be of the same

form-degree.5

> wdegree(F3);

3

The set of p-forms, or forms of degree p, is denoted by
∧p(V ∗). The exterior algebra

of V ∗ is the graded algebra

∧
(V ∗) :=

∧0
(V ∗)⊕

∧1
(V ∗)⊕ · · · ⊕

∧n
(V ∗),

where
∧0(V ∗) is the set of real (complex) valued functions and

∧1(V ∗) is the cov-

ector space V ∗. Exterior multiplication is associative and distributive, but not

commutative. It satisfies the relation

α ∧ β = (−1)(pq)β ∧ α, α ∈
∧p

(V ∗), β ∈
∧q

(V ∗).

5There is a question of efficiency behind this design. Assuming that the argument of wdegree()

is homogeneous in degree allows for a constant time calculation. Without that assumption, every

term would need to be checked, therefore checking the form-degree would be an operation with

a cost linear in the number of input terms. A test for checking degree-homogeneity of fm1 is

evalb(nops(map(wdegree, convert(fm1,set)))=1). The forms package can otherwise handle

forms of non-homogeneous degree; in particular, exterior multiplication is handled correctly.
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The operation subs form() is used to substitute forms into other forms. The

function subs() of Maple is not adequate, since it does not preserve the canonical

forms that the forms package uses. Since the first step that subs form() performs

is to use Maple’s subs() command, the rules governing the use of subs() also

apply here.

> standard_form(subs_form(d(z)=3*x*d(t)+d(u), F3));

2

- 3 x (- 3 + t) wedge(dform(1, t), dform(1, x), dform(1, y))

- x (- 3 + t) wedge(dform(1, u), dform(1, x), dform(1, y))

The various coefficients of a differential form are obtained with the function

form coeffs().6

> form_coeffs(dF1,{d(x),d(y),d(z)});

x, y, 3

Note that the form which is passed as a first argument to form coeffs() must

be constructible from the elements in the (optional) second argument, otherwise

an error will be reported. This is quite useful because normally the results of

form coeffs() are only useful if the elements of the second argument are indepen-

dent. For example, if one knows that z is a function of x and y, then the derivative

of z would be expressible in terms of d(x) and d(y).

> dz:=d(z(x,y));

/ d \ / d \

dz := |---- z(x, y)| dform(1, x) + |---- z(x, y)| dform(1, y)

\ dx / \ dy /

6Note that the order can vary. An expression sequence is returned to be consistent with the

coeffs() function of Maple.
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The coefficients7 in dF1 would then be

> form_coeffs(dF1,{d(x),d(y)});

Error, (in form_coeffs) Non basis form(s) present:, {dform(1,z)}

The error message signals that we assumed that the form dF1 can be constructed

solely with d(x) and d(y). We first have to express dz in terms of d(x) and d(y),

and substitute the result into dF1.

> dF1_a:=subs_form(d(z)=dz,dF1);

/ d \

dF1_a := dform(1, x) y + x dform(1, y) + 3 |---- z(x, y)| dform(1, x)

\ dx /

/ d \

+ 3 |---- z(x, y)| dform(1, y)

\ dy /

One can then find the coefficients which were being sought.

> form_coeffs(dF1_a,{d(x),d(y)});

/ d \ / d \

x + 3 |---- z(x, y)|, y + 3 |---- z(x, y)|

\ dy / \ dx /

Sometimes it is useful to express a one-form with respect to a basis. This may

happen, for example, when one wants to express the derivative of a function (i.e.

the contact equation). Very often, one needs to invent new names for the various

coefficients. The function express base() was written to simplify this. It takes a

form and a basis, and returns an equality where the left-hand side is the form, and

the right hand-side is the expanded version of it. An optional third argument gives

a method for constructing the names for the coefficients.

7Note that some releases of Maple would have returned D[1](z)(x,y) as the form of the

coefficients of dz.
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As an example, we can expand d(z) in terms of d(x) and d(y) using the

express base() facility.

> substitutions:={express_base(d(z),{d(x),d(y)})};

substitutions := {dform(1, z) = z_x dform(1, x) + z_y dform(1, y)}

> dF1_b:=subs_form(substitutions,dF1);

dF1_b := dform(1, x) y + x dform(1, y) + 3 z_x dform(1, x) + 3 z_y dform(1, y)

> form_coeffs(dF1_b,{d(x),d(y)});

y + 3 z_x, x + 3 z_y

Of course, the expression for d(z) can be constructed using the facilities of Maple:

> substitutions_2:={d(z)=zx*d(x)+zy*d(y)};

substitutions_2 := {dform(1, z) = zx dform(1, x) + zy dform(1, y)}

> dF1_c:=standard_form(subs_form(substitutions_2,dF1));

dF1_c := (x + 3 zy) dform(1, y) + (y + 3 zx) dform(1, x)

The optional third argument to express base() is a function that will be called

with three arguments: a name, a base element and a number. It should return a

name constructed with this information. For example proc(name,base element,

ind) could return on (F,dform(1,x),3) something like F x or F3.

> substitutions_3:=express_base(d(z),[d(x),d(y)],<name[ind]|name,base,ind>);

substitutions_3 := dform(1, z) = z[1] dform(1, x) + z[2] dform(1, y)

> dF1_d:=standard_form(subs_form(substitutions_3,dF1));

dF1_d := (x + 3 z[2]) dform(1, y) + (y + 3 z[1]) dform(1, x)

The differential forms seen so far have been constructed with the exterior deriva-

tive, d(), of functions and forms and with the exterior multiplication, wedge, of

forms. It is quite useful to be able to use differential forms without necessarily hav-

ing to construct them out of scalar functions. The notation nform(degree, name)
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is used to specify a differential form.

> F4:=nform(3,w);

F4 := nform(3, w)

> dF4:=d(F4);

dF4 := dform(4, w)

> d2dF4:=d(dF4);

d2dF4 := 0

> wedge(F4,F2), wedge(F2,F4);

x wedge(nform(3, w), dform(1, y)) + t wedge(nform(3, w), dform(1, z)),

- x wedge(nform(3, w), dform(1, y)) - t wedge(nform(3, w), dform(1, z))

A.2 Vectors and multivectors

A vector is an object which is dual to a one-form. In the package forms, ba-

sic vectors are nvector(name1), which is dual to form(1, name1), and

dvector(name1), which is dual to dform(1,name1). Vectors are formed by linear

combinations (over the maple expressions) of basic vectors.

> V1:=dvector(x)+3*z*dvector(y)-u*dvector(z);

V1 := dvector(x) + 3 z dvector(y) - u dvector(z)

> V2:=-dvector(x)+2*x*dvector(y)+3*u*dvector(z);

V2 := - dvector(x) + 2 x dvector(y) + 3 u dvector(z)

> V3:=nvector(w1);

V3 := nvector(w1)

> V4:=expand(V1+3*x*V2);

V4 := dvector(x) + 3 z dvector(y) - u dvector(z) - 3 x dvector(x)

2

+ 6 x dvector(y) + 9 x u dvector(z)

Vectors can be multiplied together with vec wedge(). The notation for the

vec wedge of basic vectors is vector([list of basis vectors]).

> vec_wedge(V1,V2);
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2 x vec_wedge(dvector(x), dvector(y))

+ 2 u vec_wedge(dvector(x), dvector(z))

+ 3 z vec_wedge(dvector(x), dvector(y))

+ 9 z u vec_wedge(dvector(y), dvector(z))

+ 2 u x vec_wedge(dvector(y), dvector(z))

The set of p-vectors, formed by the sum of terms that are the exterior products of

p vectors, is denoted by
∧p(V ). The exterior algebra of V ∗ is the graded algebra

∧
(V ) :=

∧0
(V )⊕

∧1
(V )⊕ · · · ⊕

∧n
(V ),

where
∧0(V ) is the real (complex) valued functions and

∧1(V ) is the vector field V .

The exterior multiplication is associative and distributive, but not commutative. It

satisfies the relation

ξ ∧ η = (−1)(pq)η ∧ ξ, ξ ∈
∧p

(V ), η ∈
∧q

(V ).

Two functions8 help in the construction of vectors, namely, form to vec() and

vec to form(). The function form to vec() takes a basic form, and returns the

corresponding basic vector. The function vec to form() does the opposite.

> form_to_vec(nform(1,w1));

nvector(w1)

> form_to_vec(d(x));

dvector(x)

> vec_to_form(dvector(y));

dform(1, y)

> vec_to_form(nvector(w2));

8These functions are used for formal manipulations. They are not intended to mathematically

convert between forms and vectors via a pairing such as < e⃗a, η
b >= δba. For such a conversion,

the function hook(), in conjunction with solve(), is more suitable.
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nform(1, w2)

One can find the scalar function multiplying a basic vector with the function

vec scalar part(). The basic vector is returned with the function vector part().

> vec_scalar_part(3*x*nvector(w1));

3 x

> vector_part(3*x*nvector(w1));

nvector(w1)

For the same reason why one should not do substitutions in forms using the

Maple subs() function, but rather with the forms-package subs form(), the same

situation holds for vectors. The function vec subs() is provided to do the work.

> vec_subs(dvector(z)=y*dvector(x)+x*dvector(y), vec_wedge(V1,V2));

2 x %1 + 2 u x %1 + 3 z %1 - 9 z u y %1 - 2 u x y %1

%1 := vec_wedge(dvector(x), dvector(y))

Let vi be elements of V and wj be elements of V ∗. One can define a pairing

< vi, w
j > which is linear in each argument and is a real (or complex) number.

If vi is chosen to be dual to wi, then < vi, w
j > is equal to δji . This pairing is

extended to elements of
∧p(V ) and

∧p(V ∗) as follows: Let ξ := v1 ∧ · · · ∧ vp and

α := w1 ∧ · · · ∧ wp. The pairing < ξ, α > is defined to be the determinant of the

matrix M j
i :=< vi, w

j >. The definition of this pairing is then extended using

linearity in both arguments. If the degree of the multivector is higher than the

degree of the form, the pairing is defined to be zero.

Given ξ ∈ V, the interior product (ξ⌋) of ξ with a p-form, giving a (p− 1)-form,

is defined implicitly as follows:

< η, ξ⌋α >=< ξ ∧ η, α > ∀η ∈
∧p

(V ), α ∈
∧p

(V ∗)
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The function hook() is the implementation in the forms package of the inner prod-

uct.

> F5:=a*wedge(d(x),d(y))+b*wedge(d(y),d(z))+c*wedge(d(z),d(x));

F5 := a wedge(dform(1, x), dform(1, y))

+ b wedge(dform(1, y), dform(1, z))

- c wedge(dform(1, x), dform(1, z))

> V5:=form_to_vec(d(x));

V5 := dvector(x)

> V6:=form_to_vec(d(y));

V6 := dvector(y)

> hook(V5,F5);

a dform(1, y) - c dform(1, z)

> hook(vec_wedge(V5,V6),F5);

a

A.3 Higher level functions

The higher level functions are functions that build upon the basic differential ex-

terior algebra functions we have seen so far. Bryant et al. (1991) provide more

information about the concepts involve.

Suppose that nform(p, α) is a p-form. The space of linear divisors of nform(p, α)

is the set of one-forms whose exterior product with nform(p, α) vanish. This space

is calculated with the function linear divisors().

> linear_divisors(wedge(d(x), d(y)), DIV);

DIV[1] dform(1, x) + DIV[2] dform(1, y), {0}, {DIV[1], DIV[2]}

> F6:=wedge( d(x)+3*d(y), wedge ( d(u), d(t) ) + wedge( d(x), d(z) ) );
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F6 := - wedge(dform(1, x), dform(1, t), dform(1, u))

- 3 wedge(dform(1, y), dform(1, t), dform(1, u))

- 3 wedge(dform(1, x), dform(1, y), dform(1, z))

> linear_divisors(F6, divisor);

1/3 divisor[1] dform(1, x) + divisor[1] dform(1, y), {}, {divisor[1]}

> linear_divisors(a*wedge(d(x),d(y))+b*wedge(d(t),d(z)), DIV);

0, {}, {}

The second argument to linear divisors() is a name which will be used in con-

structing the arbitrary parameters in the answer. The function linear divisors()

returns a sequence of three expressions. The answer is given by the first expression

parametrized by all possible values of the parameters given in the third expression.

The second expression is the set of relations, if any, that must be equal to zero

for the answer to be valid. Note that all the basic forms appearing in the first

argument of linear divisors() are assumed to be independent.

A subring I ⊂ ∧
(V ∗) is called an ideal if every element α of I is of homogeneous

degree and if α ∈ I implies that α∧β ∈ I for all β ∈ ∧(V ∗). Furthermore, I is called

a differential ideal if I is closed under exterior differentiation, i.e. if the exterior

derivative of every element of I belongs to I. For the forms package, differential

ideals are represented by a set of differential forms that will be used as generators

for the ideal.

> Ideal1:={d(y)-p*d(x)};

Ideal1 := {dform(1, y) - p dform(1, x)}

> Ideal2:=Ideal1 union map(d, Ideal1);

Ideal2 :=

{wedge(dform(1, x), dform(1, p)), dform(1, y) - p dform(1, x)}

> Ideal3:=Ideal2 union {d(H(x,y,p))};
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Ideal3 := {wedge(dform(1, x), dform(1, p)),

dform(1, y) - p dform(1, x),

/ d \ / d \

|---- H(x, y, p)| dform(1, x) + |---- H(x, y, p)| dform(1, y)

\ dx / \ dy /

/ d \

+ |---- H(x, y, p)| dform(1, p) }

\ dp /

Given an ideal I, the Cauchy characteristic space of I is the set of vectors whose

interior product with all the members of I is itself a member of I. This space is

calculated with the function cauchy char().

> cauchy_char(Ideal1, CC);

CC[1] dvector(x)

---------------- + CC[1] dvector(y), {}, {CC[1]}

p

> cauchy_char(Ideal2, CC);

0, {}, {}

> cauchy_char(Ideal3,CC);

/ d \

CC[1] |---- H(x, y, p)| p dvector(y)

\ dp /

- --------------------------------------- + CC[1] dvector(p)

/ d \ / d \

|---- H(x, y, p)| + |---- H(x, y, p)| p

\ dx / \ dy /
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/ d \

CC[1] |---- H(x, y, p)| dvector(x)

\ dp /

- ---------------------------------------, {}, {CC[1]}

/ d \ / d \

|---- H(x, y, p)| + |---- H(x, y, p)| p

\ dx / \ dy /

The interpretation of the answer and of the second argument of the function

cauchy char() is similar to what was described for the linear divisors.9

The retracting subspace of the differential ideal I is the annihilator of the

Cauchy characteristic space of I (i.e. all the differential one-forms whose inte-

rior products by members of the Cauchy characteristic space of I vanish). This

space is calculated with the function retraction().

> retraction(Ideal1,RR);

RR[1] dform(1, y)

- ----------------- + RR[1] dform(1, x), {}, {RR[1]}

p

> retraction(Ideal2,RR);

0, {0}, {}

> retraction(Ideal3,RR);

RR[2] dform(1, y) + RR[1] dform(1, p) +

9In particular, the answer to cauchy char(Ideal1) may vary by overall factors which could

be included in CC[1]. It is not clear which is the best strategy as to which factors should be

absorbed. Part of the problem is to avoid removing factors which could become zero.
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/ / d \ \

| |---- H(x, y, p)| p RR[2] |

| \ dp / |

|- --------------------------------------- + RR[1]|

| / d \ / d \ |

| |---- H(x, y, p)| + |---- H(x, y, p)| p |

\ \ dx / \ dy / /

// d \ / d \ \

||---- H(x, y, p)| + |---- H(x, y, p)| p| dform(1, x)

\\ dx / \ dy / /

/ / d \

/ |---- H(x, y, p)|, {},

/ \ dp /

{RR[2], RR[1]}

> map(simplify,standard_form("[1]));

RR[2] dform(1, y) + RR[1] dform(1, p) - dform(1, x) (

/ d \ / d \

|---- H(x, y, p)| p RR[2] - RR[1] |---- H(x, y, p)| p

\ dp / \ dy /

/ d \ / / d \

- RR[1] |---- H(x, y, p)|) / |---- H(x, y, p)|

\ dx / / \ dp /

The function in ideal() tests whether a particular differential form is a member

of a given differential ideal.

> in_ideal(d(x), Ideal1);

false
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> in_ideal(wedge(d(x),d(y)), Ideal1);

true

The (first-)derived system of an ideal I is the set of elements of I whose ex-

terior derivative is also a member of I. This is calculated by the function

derived ideal().

> Ideal4:={d(y)-p*d(x), d(p)-q*d(x)};

Ideal4 := {dform(1, y) - p dform(1, x), dform(1, p) - q dform(1, x)}

> derived_ideal(Ideal4);

{dform(1, y) - p dform(1, x)}, {}

> derived_ideal( derived_ideal(Ideal4)[1] );

{}, {}

The derived ideal() function has an optional second argument that is used to

give to derived ideal() the expressions for the various derivatives.

> derived_ideal({nform(1,a),nform(1,b)},

> {d(nform(1,a))=wedge(nform(1,a), nform(1,b) ),

> d(nform(1,b))=wedge( nform(1,a), nform(1,c))} );

{nform(1, b), nform(1, a)}, {0}

> derived_ideal({nform(1,a),nform(1,b)},

> {d(nform(1,a))=wedge(nform(1,a), nform(1,b) ),

> d(nform(1,b))=wedge( nform(1,c), nform(1,e))} );

{nform(1, a)}, {}

The answer consists of a sequence of two sets: the derived ideal and the set of

quantities that have been assumed to vanish.

A very useful result in exterior differential algebra is the following. LetM be an

n−dimensional manifold. Let {ωi} be a set of p independent one-forms, where p<n.

(The independence condition is determined by requiring that the exterior product
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of all p of these 1-forms gives a non-zero result.) Suppose that we have a set of p one-

forms {θi} over that same manifold M satisfying
∑p

i=1 θ
i ∧ ωi = 0. Then Cartan’s

lemma states that there are p(p + 1)/2 functions Aij, with Aij = Aji, such that

θi = Aijω
j. The method of proof 10 is to complete the set of functions ωi to a basis

of T ∗M by adjoining (n−p) one-forms αa. Since the one-forms θi ∈ T ∗M , they can

be expanded uniquely in this constructed basis: θi = Aijω
j +Biaα

a. We substitute

this in the condition on θi, to obtain Aijω
j∧ωi+Biaα

a∧ωi = 0. Since the functions

ωi and the αa are all pairwise independent, it follows that Aij − Aji = Bia = 0.

The proof is instructive, since it allows us to extend the lemma. Suppose we

have a set of exterior algebraic equalities involving the one-forms of a basis of

T ∗M and other one-forms that are taken as unknowns but members of T ∗M . We

can expand these unknown one-forms with respect to the basis, with the various

coefficients left as unknown functions. These expansions are substituted in the

given equalities. We then put the result in standard order and equate to zero all

the coefficients of the basic forms. We then solve for as many unknown functions as

possible. The relations that we are left with, not involving the unknown functions,

cannot be made to vanish. They determine quantities known by the collective term

of the non-absorbable torsion. (For systems satisfying the hypothesis of the Cartan

lemma, all the the torsion can be absorbed).

Now, substituting the solved functions into the unknown one-forms gives us the

answer we seek. We may have some functions that are still undetermined (in the

standard Cartan lemma, these are the coefficients of the symmetric p × p matrix

Aij). Depending on the problem that is being solved, these parameters may have an

interpretation (for example in the method of equivalence, they may represent the

10There is a similar proof on page 10. The present proof is included in order that this appendix

be self-contained.
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parameters of the subgroup involved in the prolongation step of the algorithm). The

torsion is obtained by substituting the solved one-forms into the original problem

and simplifying.

> cartan_lemma( wedge(nform(1,F[1]),d(x))+wedge(nform(1,F[2]),d(y)),

> {d(x),d(y)}, P);

[{nform(1, F[1]) = P[2] dform(1, y) + P[3] dform(1, x),

nform(1, F[2]) = P[1] dform(1, y) + P[2] dform(1, x)},

{P[3], P[1], P[2]}]

> F7:=wedge(nform(1,G), d(x)) + wedge(d(y),3*d(z));

F7 := wedge(nform(1, G), dform(1, x)) - 3 wedge(dform(1, z), dform(1, y))

> ans:=cartan_lemma( F7, {d(x), d(y), d(z) }, P);

ans := [{nform(1, G) = P[1] dform(1, x)}, {P[1]}]

> torsion:=subs_form(ans[1], F7);

torsion := - 3 wedge(dform(1, z), dform(1, y))

> cartan_lemma( {F7, wedge(d(z),d(x))}, {d(x), d(y)}, P);

[{nform(1, G) = - 3 P[2] dform(1, y) + P[1] dform(1, x),

dform(1, z) = P[2] dform(1, x)}, {P[1], P[2]}]

Given a set of differential forms, one can construct an ideal I using these dif-

ferential forms as generators with the multiplication operator being the exterior

product. The mod ideal() function of a differential form ω finds a representative

for the equivalence11 class ω + I.
> mod_ideal(d(p),Ideal4);

q dform(1, x)

> mod_ideal(wedge(d(p),d(y)),Ideal4);

11The actual representative can change from a Maple session to another. However, if ω is in

the ideal, then the result of mod ideal() is guaranteed to be 0.
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0

> mod_ideal(d(x),Ideal4);

dform(1, x)

> mod_ideal(d(y),Ideal4);

p dform(1, x)

> mod_ideal(wedge(d(p),d(z)),Ideal4);

- q wedge(dform(1, z), dform(1, x))

Let L be an n-dimensional space of differential one-forms with an inner product:

g : L× L→ R

We can extend this inner product to an inner product over the exterior algebra

on L

g :
∧
L ×

∧
L→ R

as follows. First, if the two arguments of the inner product have different wedge

degree, then the answer is zero. Second, since the inner product is linear in each

argument, we need only consider simple p-forms. Let α and β be expanded in

one-forms as α = α1 ∧ · · · ∧ αp, and β = β1 ∧ · · · ∧ βp. Then

g(α, β) = det
(
g(αi, βj)

)

The function inner product() calculates the inner product between two differ-

ential forms given an orthonormal basis, and a signature list12, which defaults to

12The signature list gives the diagonal of the inner product between all the elements of the

orthonormal basis – this is not always positive if we allow pseudo-Riemannian bases such as the

ones appearing in relativity.
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all begin equal to one.

> inner_product(d(x)+3*d(y), -d(x)+4*d(y), [d(x),d(y)]);

11

> inner_product(d(x)+3*d(y), -d(x)+4*d(y), [d(x),d(y)],[-1,1]);

13

> inner_product( wedge(d(x),d(y)), wedge(d(x),d(z)), [d(x), d(y), d(z)]);

0

> inner_product( wedge(d(x),d(y)), wedge(d(x),d(y)), [d(x), d(y), d(z)]);

1

Given L, a differential forms space (of dimension n) with an inner product g,

and given an orientation on L, we can define an operator ∗ taking p-forms into

(n − p)-forms. This operator is called the (Hodge) star operator. Let σ be the

volume form on L.

Let α be a p-form Then ∗α is the unique (n− p)-form that satisfies

α ∧ β = g(∗α, β)σ

for all (n− p)-forms β.

The function hodge star() calculates this operation. It takes as arguments the

differential form operated upon, an orthonormal basis and (optional) a signature

list.

> hodge_star(d(x),[d(x),d(y),d(z)]);

- wedge(dform(1, z), dform(1, y))

> hodge_star(wedge(d(y),d(z)),[d(x),d(y),d(z)]);

dform(1, x)

> hodge_star(d(x),[d(x),d(y),d(z)],[-1,1,1]);
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- wedge(dform(1, z), dform(1, y))

> hodge_star(wedge(d(y),d(z)),[d(x),d(y),d(z)],[-1,1,1]);

- dform(1, x)

> hodge_star(d(x)+2*d(y),[d(x),d(y)]);

dform(1, y) - 2 dform(1, x)

When we have a space on which the Hodge star operator can be defined, then

from the exterior derivative, one can construct another differential operator δ taking

a p-form to a (p− 1)-form as follows:

δα = (−1)(np+n+1) ∗ d ∗ α.

The name adjoint d comes from the following property. If α is a p-form, and β is

a p+ 1-form, and g is the inner product on the space then,

g(dα, β) = g(α, δβ).

This operator is also known as the co-differential.

> adjoint_d(y*d(x),[d(x),d(y),d(z)]);

0

> adjoint_d((x*y)*d(x),[d(x),d(y),d(z)]);

- y

We now have all the ingredients to define an operator ∆ that generalizes the

Laplacian operator on functions (actually, minus one times the Laplacian operator).

It is defined as

∆ := d ◦ δ + δ ◦ d.

This operator is known as the Laplace-Beltrami operator. It also is known as the

harmonic operator. The function laplace beltrami() implements this operator.
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It takes as arguments the differential form on which the operator is applied, the

orthonormal basis and a contact set.

The contact set is there for the following reason. Between the application of

the second differentiation in each term of the Laplace-Beltrami operator, one has

to take into account the expansion of the first differentiation in the space
∧
L,

otherwise, the star operator cannot be applied.

> basis:=[d(x),d(y),d(z)]:

> contact:={express_base(d(f),[d(x),d(y),d(z)])}:

> contact:=contact union map(express_base, {d(f_x),d(f_y),d(f_z)},basis);

contact := {dform(1, f) = f_x dform(1, x) + f_y dform(1, y) + f_z dform(1, z),

dform(1, f_x) = f_x_x dform(1, x) + f_x_y dform(1, y) + f_x_z dform(1, z),

dform(1, f_y) = f_y_x dform(1, x) + f_y_y dform(1, y) + f_y_z dform(1, z),

dform(1, f_z) = f_z_x dform(1, x) + f_z_y dform(1, y) + f_z_z dform(1, z)}

> laplace_beltrami(f,basis,contact);

- f_x_x - f_y_y - f_z_z

The Lie derivative of a differential form with respect to a vector is obtained

using the lie() operation. The first argument is the vector in the direction of

which the derivative is applied. The second argument is the differential form to be

differentiated. An optional argument is used to specify the exterior derivatives of

the various quantities.

> f1:=x*d(y)+y^2*d(z);

2

f1 := x dform(1, y) + y dform(1, z)

> lie(dvector(y),f1);
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2 y dform(1, z)

> alias(a=nform(1,a_),b=nform(1,b_), Avec=nvector(a_));

I, a, b, Avec

> lie(Avec,a+3*b,{d(a)=7*wedge(a,b),d(b)=9*wedge(a,b)});

34 b

A.4 Utility functions

It is often the case that a function’s natural argument is a single item (as opposed

to a matrix, equality, set, list, etc.). If we apply that function to a composite

object, such as a set, the natural thing to do would be to apply the function to

each individual member of the composite object. For example, taking the exterior

derivative of a matrix is just the matrix of exterior derivatives applied to each

member of the matrix.

Maple provides an operation to do this: map(). Unfortunately, this works only

at a depth of one level. The function item map() generalizes map() to work to

any desired depth. The first argument of item map() is a function. The second

argument is a list containing all the other arguments to the function. The third

argument specifies which “slot” needs to be expanded (by default, the first slot is

the one that is expanded). The fourth argument (optional) is a set of types over

which item map() is recursively invoked, and the last argument specifies the depth

of recursion (default is infinite).

> item_map(d,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ] );

{[dform(1, ax) = dform(1, bx) + dform(1, cx)],

[[0 = - wedge(dform(1, fx), dform(1, ex))]]}
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> item_map(fn,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ],1, {list,set,`=`},2 );

{[fn(ax = bx + cx)], [fn([dform(1, cx) = ex dform(1, fx)])]}

> item_map(fn,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ],1, {list,set,`=`},3 );

{[[fn(dform(1, cx) = ex dform(1, fx))]], [fn(ax) = fn(bx + cx)]}

> item_map(fn,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ],1, {list,set},3 );

{[fn(ax = bx + cx)], [[fn(dform(1, cx) = ex dform(1, fx))]]}

The function linear solve() is an extension to the Maple function solve(...,

linear). It returns the set of expressions that have been assumed to be equal to

zero in order that the solution set be valid.

> solve({x-a,x-b},{x});

# Note NULL result. This indicates no solution

> linear_solve({x-a,x-b},{x});

[{x = a}, {a - b}]

# This is interpreted as : the solution is x=a, provided a-b=0.

A.5 Points to keep in mind

While forms used with the forms package can be inhomogeneous in degree, it is

important important to realize that some of the functions require homogeneity. For

example, the wdegree() function will return the degree of only one of the terms

and will assume that all the other terms will have the same degree. Functions such

as addition, d(), wedge(), subs form() will work with inhomogeneous forms. Any

functions that are described in the higher level functions section must be assumed

to require homogeneous forms.

It is also recommended that the exterior derivative be used to construct ex-

pressions involving dform. The wedge() operator is to be used to multiply forms
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together.

Giving a set of independent basic forms to form coeffs() will detect the cases

when a dependent form is present in the first argument. The second argument is

optional, and its omission will cause form coeffs() to assume that every basic form

is independent. If this is not the case, then too many coefficients will be returned.

A.6 Making forms laconic

The package has been designed to be rather verbose. The main reasons are to

avoid clashes with other Maple names, to avoid obtuse abbreviations and to avoid

ambiguity. Since Maple provides an aliasing facility, it is easy to replace long

expressions with shorter ones. Here are a few hints to use Maple’s alias() function

effectively.

The normal syntax is alias(short=long) where long is a long expression,

and short is a name that will be used to abbreviate long. For example,

alias(alpha=nform(2,alpha_)) can be used to define a two-form with name

alpha. It is recommended that different names be used on the two sides of the

equality in the alias() expression. This is why an underscore was appended to

alpha. The reason for this recommendation is because the expression op(2,alpha)

returns alpha_. If the “internal” name had been alpha, then op(2,alpha) could

not be visually distinguished from alpha. It is important to note that long will

not be evaluated, and cannot itself use abbreviations. Therefore, in order to give

an alias for the derivative of alpha, use

> alias(alpha=nform(2,alpha_)):

> eval(subs(dalpha_=d(alpha), ’alias(dalpha=dalpha_)’)):

The alias() statements must come in the order shown.
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The expression alias(V=wedge); can be used to shorten input of data. A better

solution to shorten the output is to use the neutral operators of Maple, together

with functions to transform expressions. This is done by making the definitions

> shorten:=proc(item)

> eval(subs(’wedge’=proc() &^(args) end, item))

> end:

> lengthen:=proc(item)

> eval(subs(`&^`=wedge, item))

> end:

An example showing the use of the preceding definitions is

> eval(subs(_dx=d(x), _dy=d(y), _dt=d(t), ’alias(dx=_dx, dy=_dy, dt=_dt)’)):

> A:=t*wedge(dx,dy)+x*wedge(dx,dt);

A := - t wedge(dy, dx) - x wedge(dt, dx)

> shorten(A);

- t (dy &^ dx) - x (dt &^ dx)

> lengthen(");

- t wedge(dy, dx) - x wedge(dt, dx)

> shorten(d("));

&^(dy, dt, dx)

Note that the forms package does not use the &^ operator. It is therefore necessary

to use lengthen() before applying any forms operation to expressions involving

&^.



APPENDIX A. THE FORMS MAPLE PACKAGE 210

A.7 Extensibility

Various functions have facilities to extend their domain of definition. The exterior

derivative function, d(), allows for the following. If the function ‘forms/d/alpha‘

exists, then d(alpha(args)) will be the result to the call ‘forms/d/alpha‘(args).

If the function ‘forms/d2/alpha‘ exists, then d(alpha(args)) will result in a call

to ‘forms/d2/alpha‘(alpha(args),fm). The function ‘forms/d2/alpha‘ must

give the result of the differentiation of ‘alpha(args)‘ wedged with the form ‘fm‘.

Likewise, the function lie() applied to a function fn() will call the function

‘forms/lie/f‘, if it exists, with arguments: the direction vector followed by the

original arguments to the function f and then followed by the structure equations

that were passed as third argument to the lie() function.

A.8 Vector-valued differential forms

Vector-valued differential forms are necessary for moving frame calculations. Under

the operation of d(), the vector parts of a differential form are assumed to behave

as a scalar. Their exterior derivatives multiply the form parts on the left. The

derivative of a vector, say nvector(A), is given a name suitable for substitution via

subs form(). This substitution must take place prior to a further differentiation.

> d(nvector(AA));

nform(1, D_nvector(AA))

> d(nvector(AA)*nform(1,WW));

wedge(nform(1, D_nvector(AA)), nform(1, WW)) + nvector(AA) dform(2, WW)
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A.9 Further information

An advanced study of differential forms can be found in Bryant et al. (1991). An

excellent reference is Flanders (1963). Gardner (1989) applies differential forms

to the problem of equivalence. Exterior differential systems are the subject of

Cartan (1945).
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Birkäuser, Boston.

Harness, R. S. (1982). Space-times homogeneous on a time-like hypersurface. J.

Phys. A, 15:135–151.

Hungerford, T. W. (1974). Algebra. Springer-Verlag, New York.

Joly, G. C. and MacCallum, M. A. H. (1990). Computer-aided classification of the

Ricci tensor in general relativity. Class. Quantum Grav., 7:541–556.

Karlhede, A. (1980a). On a coordinate-invariant description of Riemannian mani-

folds. Gen. Rel. Grav., 12:963–970.

Karlhede, A. (1980b). A review of the geometrical equivalence of metrics in general

relativity. Gen. Rel. Grav., 12:693–707.



BIBLIOGRAPHY 216

Karlhede, A. and Lindström, U. (1982). Finding space-time geometries without

using a metric. Gen. Rel. Grav., 15:597–610.

Karlhede, A. and MacCallum, M. A. H. (1982). On determining the isometry group

of a Riemannian space. Gen. Rel. Grav., 14:673–982.

King, A. R. (1973). Cosmological models and their singularities. PhD thesis, Uni-

versity of Cambridge.

King, A. R. (1974). Generalized shear-free singularities. Gen. Rel. Grav., 5:371–

377.

King, A. R. and Ellis, G. F. R. (1973). Tilted homogeneous cosmological models.

Commun. math. Phys., 31:209–242.

Koutras, A. (1992). A spacetime for which the Karlhede invariant classification

requires the fourth covariant derivative of the Riemann tensor. Class. Quantum

Grav., 9:L143–L145.

Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980). Exact Solutions

of Einstein’s Field Equations. Cambridge University Press, Cambridge.
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Gödel (1950) 105

King and Ellis (1973) 112

King (1974) 114

purely magnetic Weyl tensor 126

Schücking (1957) 106

statement 104

summary 125

Treciokas and Ellis (1971) 110

White and Collins (1984) 114

(1988) Lang and Collins 115

spacetimes 11

coasting 146

conformally flat 9, 97

Einstein static 144

FRW 143, 146

gamma-law 143
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