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Abstract

It has been conjectured that general relativistic shear-free perfect fluids with a
barotropic equation of state, and such that the energy density, u, and the pressure,
p, satisfy g+ p # 0, cannot simultaneously be rotating and expanding (or contract-
ing). A survey of the known results about this conjecture is included herein. We
show that the conjecture holds true under either of the following supplementary
conditions: 1) the Weyl tensor is purely magnetic with respect to the flow velocity

vector or 2) dp/du = —1/3.

Any hypersurface-homogeneous shear-free perfect fluid which is not space-time
homogeneous and whose acceleration vector is not parallel to the vorticity vector
belongs to one of three invariantly defined classes, labelled A, B and C. It is found
that the Petrov types which are allowed in each class are as follows: for class A,

type I only; for class B, types I, IT and III; and for class C, types I, D, II and N.

Two-dimensional pseudo-Riemannian space-times are classified in a manner sim-
ilar to that of the Karlhede classification of four-dimensional general-relativistic

space-times.

In an appendix, the forms differential forms package for the Maple program is

described.
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Chapter 1

Introduction

If T have seen farther it is by standing on
the shoulders of giants.

Sir Isaac Newton

I N THE process of finding physically meaningful solutions to Einstein’s field equa-
tions of general relativity, one is often confronted with the possibility that an appar-
ently new metric describes the same spacetime as that given by an already known
one. The problem is compounded by the fact that the physical properties of a given
metric are unchanged by a coordinate transformation. The detection of the equiv-
alence of two metrics is then a very difficult problem, even if one confines oneself
to local considerations. One way to attack the problem of equivalence is to com-
pute, from each metric, a set of invariants. If the invariants from the first metric
are not equivalent to the invariants from the second metric, then the two metrics
cannot describe the same spacetime. For example, if the Riemann tensor vanishes
for one of the metrics, but not for the other, then the two metrics cannot be equiv-

alent. The problem associated with the equivalence of metrics is therefore reduced
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to that of finding the equivalence of invariants constructed from the metrics. Even
if the question of the equivalence of two particular metrics cannot be completely
settled, partial information can be gained from a study of the invariants. Metrics
can thus be classified. For example, the Petrov classification of the Weyl tensor
and the Segre and Plebanski classifications of the Ricci tensors are classification
schemes based on constructing invariants from the Riemann tensor. Another set
of invariants that can be derived from a particular metric is its symmetry group.
It may seem that classifications based on invariants such as the Riemann tensor
and classifications according to symmetry groups have little to do with each other.
However, a deeper examination reveals an amazing interplay between the two ap-
proaches; they are two facets of a very powerful theory. Indeed, they both can be
found using the method of equivalence of Cartan, which is a systematic method
of finding invariants. In particular, when applied to the study of the equivalence
of metrics, Cartan’s method uncovers the results that the relevant invariants for
the orthogonal group of transformation are the Riemann tensor and its derivatives.
Similarly, the invariants for the conformal group of transformations are found to
be the Weyl tensor, a tensor which reduces to the Cotton-York tensor in the three
dimensional case, and their derivatives. Cartan’s method also uncovers the various

symmetry groups of the metrics.

In chapter 2, manifolds with pseudo-Riemannian real analytic metrics are stud-
ied using the method of Cartan. In the context of general relativity, however,
many metrics can describe the same physical spacetime. Ignoring discrete trans-
formations, this internal indeterminacy is encoded in a group of transformations,
the special orthogonal group. The method of equivalence transforms the study of
the original manifold to a new manifold that includes the group of indeterminacy

as well as the original manifold. The invariants given by the method are quanti-
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ties which are defined on the enlarged manifold. We show the well-known result
that the invariants associated with the pseudo-Riemannian metrics (using the spe-
cial orthogonal group) are the Riemann tensor (on the enlarged manifold) and its
derivatives. We then show how these invariants of the enlarged manifold can be
computed by lifting calculations done on the original manifold, which are nothing
more than the classical calculations. We then do similar calculations when the
group of transformations is the conformal group, a group that is larger than the
internal group of indeterminacy. This new equivalence problem has as invariants
(defined on the enlarged manifold) the Weyl tensor, a tensor which reduces to the
Cotton-York in the three dimensional case and their derivatives. In the process, we
uncover a set of one-forms that contain the information of the Ricci tensor. It is
not clear whether any meaning can be given to the particular combinations of Ricci
tensor components that appear in these one-forms. The calculations in chapter 2
are illustrated throughout with explicit calculations for the situation of real analytic
two-dimensional pseudo-Riemannian metrics. We also give a classification, which
appears to be new, of manifolds that possess such metrics. This classification is a
similar to the Karlhede classification, which is a modification to the method of Car-
tan that is better suited for the space-times of general relativity. We also illustrate

the calculation of the invariants for the situation of conformally flat metrics.

In chapter 3, we concentrate on the four-dimensional spacetimes of general rela-
tivity. We show how the structure equations of such manifolds can be obtained us-
ing differential forms. This approach is dual to the method of orthonormal tetrads.
The structure equations involve functions, the kinematic quantities, of which we
present two similar invariant constructions. The differential forms method, or the
orthonormal tetrad method, have the advantage over coordinate methods that the

equations of general relativity become first order differential equations, instead of
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equations of second order. There is a price to be paid, however. The number of
equations is larger, since the set of equations that do not appear with the coordi-
nate methods is the set of Jacobi identities, which are obtained by differentiating
the structure equations. We then give expressions for the Riemann, Ricci and Weyl
tensors in terms of the kinematic quantities. The Einstein field equations are given,
then specialized to the case of a perfect fluid. Since we shall be interested in a fluid
with a barotropic equation of state, the field equations introduce a single function,
the energy density, in addition to the aforementioned kinematic quantities. The
condition that two applications of the exterior derivative to a function must van-
ish gives integrability conditions. With the integrability conditions of the energy

density, the basic equations are then all described.

We also present an invariant determination of an orthonormal tetrad that is well
suited to the study of rotating perfect fluids. This choice implies the vanishing of
many kinematic quantities, thereby simplifying our equations. This tetrad will be

used in chapter 5.

In chapter 4, the Petrov classification of the Weyl tensor is presented in a man-
ner that is slightly different, yet fully equivalent, to the usual method in general
relativity. The approach presented herein focuses on the eigenvalues of a three by
three complex matrix and on the dimensions of their corresponding eigenspaces.
We also present a set of equations to convert between the Newman-Penrose com-
ponents of the Weyl tensor, the components we presented in chapter 3 and the
aforementioned three by three matrix. It is felt that this chapter clarifies the vari-

ous interconnections between the different approaches to the Petrov classification.

In chapter 5, we turn our attention to general relativistic shear-free perfect fluids
with a barotropic equation of state. It has been conjectured that such a fluid cannot

be both rotating and expanding (or contracting). The first result showing a special
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case of the conjecture dates back to 1950. There are no known general relativistic
counter-examples; however there are some in Newtonian gravity. Various special
cases of the conjecture have been proved over the years, though as yet, its validity
in the general case has still not been established. In the first part of chapter 5,
we present a detailed history of the various partial results. We identify various
properties that we feel were critical to the success. We also identify as a recurring
theme the computation of torsion, which enables one to focus on the integrability
conditions that are of lower order than is expected at any particular stage of a
proof. In the second part of chapter 5, we establish the veracity of the conjecture
for the special case when the Weyl tensor is purely magnetic with respect to the
fluid flow. In the last part of the chapter, we show that the conjecture also holds
for the case of a perfect fluid with a barotropic equation of state such that the
derivative of the pressure with respect to the energy density is equal to —1/3. Such

fluids include the coasting universes of inflation theory.

Should the shear-free conjecture hold, then the possible spacetimes that satisfy
the hypotheses of the conjecture can be classified into two broad classes according to
whether they are expanding (or contracting) or not. If their rate of expansion is not
zero, then the shear-free conjecture would force them to be irrotational. This situ-
ation is well understood, all such spacetimes having been classified and examined
by Collins and Wainwright (1983). If, however, the fluid has zero expansion, not
all spacetimes have been identified. There are partial results in the literature. It is
the subject of chapter 6 to find the Petrov types of a subclass of the expansion-free
shear-free rotating spacetimes that has been previously identified. These space-
times are hypersurface-homogeneous without being fully homogeneous. Also, their
vorticity vector is linearly independent of their acceleration vector. The spacetimes

we consider are divided into three cases, the simplest of which has already appeared
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in the literature in a study of rotating spacetimes with a Killing vector parallel to
the axis of rotation. The determination of the Petrov type for each of the three
cases is for the most part fairly straightforward. There are, however, two Petrov
types in one of the cases that are surprisingly difficult to rule out. The question
arises of showing that a particular set of polynomials has no solutions. In theory,
doing so is simple: variables are eliminated one by one until a contradiction results
that a non-zero integer is equal to zero. In practice, the expressions become so
large that even being able to finish the computation is a difficult endeavour. The
order in which the calculations are done is critical. Even so, we had to use various
transformations to reduce the expression sizes. A further complication arises from
the fact that at one point, a particular polynomial factorizes. The manner in which
it does so precludes the use of certain evaluation techniques from the starting point.
One must first use more straightforward methods in order to identify the factors of
this polynomial. Once this is done, the evaluation techniques can be used to reduce
the expression sizes. In spite of the various practical obstacles, it was found pos-
sible to complete the classification task. Various symbolic computation tools were
considered, and tried, in order to resolve the problem of the presence of solutions
to the set of polynomials. One theoretical development which initially appeared to
be promising was the Grobner bases method due to Buchberger (1985) for which
the grobner package of Maple seemed especially useful. Unfortunately, it could
not handle the polynomials which arose in the present problem. The computations
could not finish, for lack of time. In retrospect, this is not surprising, considering
the number of mathematical tools that were in the end used in order to complete

the problem in a step by step manner.

Finally, we present in appendix A a differential forms package for the Maple

symbolic computation program. The forms package implements the basic opera-
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tions on differential forms and vectors. It also implements higher level functions
such as tools to solve for unknown differential forms, to test whether a particular
differential form is an element of a given differential ideal, to implement an inner
product between differential forms and to compute operations such as the Hodge
star of a differential form. We considered the use of the difforms package provided
with Maple. It soon was apparent that difforms was not adequate for our needs!
and that it would be faster to implement a new differential forms package than to
modify the existing one. The package forms of appendix A was used as the main

computational tool for chapter 5.

We make use of the following conventions, unless indicated otherwise. Indices
are raised and lowered with a metric tensor whose signature is (— + ++). We use
geometric units in which 87G = ¢ = 1, where G is the Newtonian gravitational
constant and ¢ is the velocity of light in vacuum. The Riemann tensor, R'j,
is defined by v’y — v'ke = R'jpev? for any C? vector field ¢, with the semi-

colon denoting covariant differentiation. The Ricci tensor, R;;, is defined by the

K

contraction I;; = Rkikj, and the Ricci scalar, R, by the contraction R = RY;.

In particular, difforms does not handle vectors which are needed for the Lie derivative and

for the interior product of a vector and a differential form.



Chapter 2

Applications of the Equivalence
Method

Un bon livre devrait toujours former un
véritable lien entre celui qui I’écrit et celui

qui le lit. Laure Conan

I N THIS chapter, the equivalence method of Cartan is used to study the equiva-
lence of pseudo-Riemannian real analytic metrics. The approach of Cartan involves
the transformation of the problem of equivalence on a given manifold to a problem
of equivalence on a new manifold, consisting of the original manifold augmented by

a group of transformations.

We first look at the equivalence of metrics under the action of the orthogonal
group. The application of the theory of Cartan shows that the geometric objects
which allow a decision of whether two metrics are equivalent under this group are
the Riemann tensor and its covariant derivatives up to an order determined by the

method. These geometric objects are defined on the enlarged space. We show that
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the appropriate calculations need not be done solely on the enlarged space, but the
main portion can be done on the original manifold. We then look at the equivalence
of two metrics under the conformal group of transformations. We show that some
of the invariant functions given by the method are the Weyl tensor components
that are defined on the enlarged manifold. The other invariants functions are given
by a tensor, which reduces to the Cotton-York tensor in the three-dimensional case.
We then compute explicitly the various geometric objects, given by the method of
Cartan, for the case of conformally flat metrics. In that case, all invariants vanish

when the dimension of the metrics is greater than two.

Throughout our development, we illustrate the method by applying it to the
two-dimensional pseudo-Riemannian real analytic metrics. We demonstrate the
well-known result that all of these spaces are conformally equivalent. We then
investigate the equivalence problem under the orthogonal group. The Riemann
tensor, which in this case is a scalar, is obtained. A classification is provided of
the real analytic two-dimensional pseudo-Riemannian metrics. This classification
appears to be new. It involves the various groups of symmetry of those metrics, but
distinguishes two classes of metrics without symmetry. This example illustrates the
program of classification of spacetime metrics undertaken by a number of authors
such as Karlhede (1980a), Karlhede (1980b), Karlhede and Lindstrém (1982), Karl-
hede and MacCallum (1982), Bradley and Karlhede (1990), Collins, d’Inverno and
Vickers (1990), Joly and MacCallum (1990), Aman et al. (1991), Koutras (1992)
and Collins et al. (1993). MacCallum (1991) gives a nice review of the progress in
the classification of exact solutions of general relativity and of the computer pro-
grams involved in that classification. An interesting new development, which can
be found in Paiva et al. (1993), is the use of the techniques involved in the Karlhede

classification in order to find limits of spacetimes in a coordinate-free approach.
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We shall often resort to the Cartan Lemma (Cartan, 1945). The statement of

this lemma is as follows:

Lemma 1 (Cartan) Letw', ... ,wP be p one-forms which are linearly independent
pointwise on an n-dimensional manifold M, with p < n. Let m,...,n, be p one-
forms on M satisfying

i Aw = 0.

Then there exist C* functions A;j, with A;; = Aj;, such that
m:Aijwj (Zzl,,p)

Here, and throughout this work, we use Einstein’s summation convention. The

L ..., wP are all independent, they form

proof! of this lemma is as follows. Since w
part of a basis over M. This basis is formed by adjoining p — n independent one-
forms £, ..., &P~ Since for each i (1 < i < p), the one-form ; is defined over M,
it can be expanded in this basis; therefore, we obtain 1, = A;;w’ + B;;&7, where A;;
and B;; are functions. The condition on 7; translates into A;jw? Aw’+ B;;&9 Aw' = 0.
Since the ¢/ are all independent of the w?, and they are all independent pairwise
with each other, then the coefficients of &/ A w* must all vanish, i.e. B;; = 0 for
all 7 and for all j. We are left with (A;; — Aj;)w!’ A w?l = 0, where |4, j| indicates
that ¢ < j. Since w!” A w?l are all independent of each other, their coefficients must

vanish, i.e. A;; = A |
) j j

We note that the method of proof allows us to generalize the Cartan lemma to

conclude that a set of p differential forms, n; of degree ¢ satistying

ni/\wi:07

LA similar proof of this lemma is found in Appendix A.
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must also satisfy
m=&j A’

for some differential forms &;; of degree ¢ — 1 that obey
&j /\(Uj /\wi =0.

The proof is very similar to that of the standard Cartan lemma. We shall not
introduce a new name for this generalization; the context being clear as to which
version of the lemma is being used. Related to this generalization is the Cartan-

Poincaré lemma, which appears in section VIII.2 of Bryant et al. (1991).2

2.1 Equivalence under the orthonormal group

The purpose of this section is to present a group invariant approach to defining
and calculating the Riemann tensor. This approach is based on that of Cartan
as expounded in Gardner (1989). We generalize the work therein by allowing for
a metric of any signature. We also show explicitly how the calculations on the
enlarged manifold can be done by lifting calculations on the original manifold. The
theory is illustrated by performing the appropriate calculations for two-dimensional

real analytic pseudo-Riemannian metrics, which will be referred to as 141 metrics.

A spacetime, in general relativity, is a four-dimensional manifold possessing a
Lorentzian metric with signature — + ++. In the tangent space of each point,
therefore, the metric is simply the Minkowski metric ds? = —dt? + da? + dy? + dz2.
The metric may always be written as ds? = g, dz® ® da’, whether one is dealing

with a flat geometry in general coordinates, or a non-flat spacetime. This metric,

T am grateful to R. Gardner for pointing out this lemma.
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since it is not degenerate by hypothesis, can then be diagonalized as ds? = —(0°)*+
(012 + (02)2 + (0%)2.

In general, we shall consider non-degenerate metrics of arbitrary dimension and
signature; they may therefore be expressed as ds®> = 3, 7aq(0%)?, where 7, is the
diagonal signature matrix. We shall give greater details of the computations in the
case of the 1+1 metrics. Even though some features of the calculations are absent
for metrics of such a small dimension, they still provide a useful model to keep in
mind because the calculations are comparatively simple, and yet many features of

higher-dimensional problems are indeed present.

The choice of diagonalization is not unique however. If we define w = So, then
@ is also an acceptable choice for the diagonalization, provided that &'nw = o'no.
This implies that o' S'nSo = o'no for all o. Therefore S must obey the restriction
that S'nS = n. This is the definition of the statement that, ignoring reflections, S
belongs to the group SO(p, ¢, R), where p is the number of plus signs in the signature
and ¢ is the number of minus signs. For spacetimes, the group is SO(3,1,R).
Because of its importance, this group is also referred to as the Lorentz group. For
1+1 spacetimes, the group is SO(1, 1, R). We shall restrict ourselves to real analytic

transformations.

We now construct a differentiable manifold from the original space-time and the
aforementioned group of transformations. This transforms the problem of equiva-
lence over the space U to a question of equivalence over the space U x GG, where G is
the group of which S is a member. In some sense, we are thus simultaneously con-
sidering all possible choices of S. The steps of considering orthogonal frames and
of lifting the problem to a space that includes the group of allowed transformations

form the essence of Cartan’s equivalence method.
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We first consider some calculations for 141 metrics, in order to illustrate the
steps of the general case. The group SO(1,1,R) is easily parametrized; therefore,
we can explicitly give part® of the basis to the space of differential forms of elements

of U x G. If we parametrize G' by «, then we can define
@" = (cosha)o® + (sinh a)o!

and

@' = (sinh @)o® + (cosha)o?,

since —(@w")? + (0')? = —(0%)? + (¢')?. The cobasis elements o are defined over U

and the cobasis elements w are defined over U x G, where G =SO(1,1,R). If we

rewrite this in terms of matrices, then w = So, where

cosh o sinh «

sinha cosh«

We must find the variation of the frames in a small neighbourhood. We start with
the structure equations over U, given as the exterior derivatives of the elements of
the original cobasis ¢ in terms of themselves. We then look at the implications for

the U x G space. For the 1+1 case, then, we therefore start with
do® = Fie® Aot
and
do! = Fyo' Aot
The structure equations of U x G are found by the following calculations:

@ sinha cosh « o
d = da A +
1 cosha  sinh « ol

€l

3Since U x G is 3-dimensional, @° and @' cannot form a full basis.
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cosha sinh o do?

sinha cosh « do!

sinha cosh« cosha —sinha @°

= da A

cosha sinh o —sinha  cosha w!

cosha sinha Fio® Aot
+

sinha cosh « Foi® Aot

where the equality @ A 0! = 0% A 0! was used in order to express the results in
terms of forms over U x G rather than over U. The structure equations over U x G

are therefore

@Y 0 da @° cosh a F| + sinh a Fy .
d = A + W AW
ot da 0 1 sinh o F} + cosh o Fy

&l

For metrics of any dimension, the corresponding structure equations are given by
dw =dS Ao + Sdo,
which is, when expressed over U x G,
dw = (dSS™ +9(U, S)) A @, (2.1)

where the terms ¥(U, S) are linear in . Differentiating S'nS = n gives the following
defining relations for the Lie algebra so(p, ¢, R) corresponding to the Lie group
SO(p,q,R):

d(S"nS + S'ndS = 0.

In order to use these relations together with the U x G structure equations, we
obtain the following equivalent expression by multiplication on the left by (S~1)*

and on the right by S~!:

(dSS™H'n +n(dSS™) = 0. (2.2)
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This exhibits the role of n: if we use it to raise and lower indices, the above line

states that dSS™!, with indices lowered, is antisymmetric .

On the 141 space, if we define
I = da + (Fy cosha + Fysinh )@ — (Fysinh o + F cosh a)@! (2.3)

then the structure equations on U x G for the 1 + 1 metrics can be rewritten as

@ 0 II @°
d = A : (2.4)
! II o !
The matrix
0 II
IIT 0

is antisymmetric when the first index is lowered. This indicates that it is an element
of so(1,1,R). The idea behind the definition of II is to gather, as much as possible,

quantities that can be changed by the group parameter, «.

We observe that, for the 1+1 metrics, there are no longer any terms that are
explicitly quadratic in @w. For future reference, such terms will be referred to as
torsion terms, or as the torsion. The requirement that the torsion vanish here, or
equivalently that the torsion be completely absorbed, determines IT uniquely. This

statement is rarely true in the application of the method of equivalence.

For general metrics, we can always write, using an index-free notation, the

structure equations as

do = A NG, (2.5)

where we recall that w = So. The matrix A is an n by n matrix of one-forms. The
matrix A can be split, non-uniquely, into a part that is independent of derivatives

of group parameters and a part that does contain derivatives of group parameters.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 16

In the present paragraph, we show that we can find, using A, a uniquely defined

matrix, §, belonging to so(p, ¢, R) and such that
dw =0 AN w.

In order that the structure equations (2.5) be identical with (2.1), the matrix A

must obey the condition
(dSS™' - A+9(U,S) Aw = 0.
Therefore, we obtain, by using the Cartan Lemma, that
A —dSS™' =0 mod base,

where by “mod base” we mean that the given congruence holds up to a linear

combination of the basis w. From this we can infer that
(A —dSS™H)'n+n(A—dSS™) =0 mod base.
Taking into account (2.2), this last congruence simplifies to
A'n+nA =0 mod base.

We thus conclude that there are no derivatives of group parameters in Aln + nA.
Because of that fact, these components of A are called the principal components of
first order? (Gardner, 1989). The equivalence method approach then suggests that

we perform the expansion A = + ¥, where

n¥ =1/2(A' +nA)

4The order refers to the number of times this step of identifying terms independent of group

derivatives in the matrix A is reached in the method of equivalence; for details, see Gardner (1989)
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and

né = 1/2(nA — A'n),

to get the structure equations re-expressed as
do=0Nw+ VA

The functions ¥ do not contain derivatives of group parameters, and so they are
expressible in the basis w. We therefore have

(1)) = W'a”,

J

for some functions W';;. Without loss of generality, we can antisymmetrize ¥*;;, on
the lower two indices, since we do not thereby modify the structure equations. We
notice that 6'n + nd = 0, and so § satisfies the Lie algebra relations of so(p, ¢, R).
We try to eliminate as many of the functions ¥ as possible, by modifying §,without
changing its Lie algebra structure. This step is the absorption of torsion. Let II
be an n X n matrix of one-forms expressed in the @ basis. Each entry therefore
has n terms. We consider the coefficients in these terms to be the unknowns in the
system of linear equations II Aw = ¥ A w, and we add the restriction that IT must
obey the condition

II'n + nll = 0. (2.6)

n—1)

Note that there are % equations with "2(2 unknowns. We perform the

expansion
(11)’

i~k
j:ijwa

for some functions IT';,. After lowering the indices with 7, the linear equations to
be satisfied are

0" A @f = W0f Al
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The coefficients of the independent terms therefore obey
Wijk — Wiy = Wise — Wik
The Lie algebra condition (2.6) is
Hijk@k + Hjik@k - O,
so
Hijk ‘|‘ Hjik == 0
Together, these imply that
Wije = —Mjie = —(Wjri + Wjip — Wing)
= ki — Wik + Vi
= (ki + Wiji — Yiij) — Vjir + Ui
= 1Lk + Wi — Wrij — Vi + Wy
= —(Mijk + Wiry — W) + Viji — Vrig — jir + Vi

This can be simplified due to the antisymmetry W;; = —W;,. Therefore, the

unknowns II;;;, are solved in terms of the torsion coefficients as
ILije = Wijk — Wik — Wij.

The torsion can thus be eliminated by defining ¢ := § 411, to get dw = ¢ A w with
©'n + np = 0. This determines ¢ uniquely.

It is rarely the case that all torsion can be made to vanish. Usually only some
torsion terms can be set to zero. This being the case, the next step in the equivalence
method would be to try to use the group G to normalize some of the remaining

torsion terms to particular values. For example, if the group acts by multiplication
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on some torsion terms, then a number of these could be normalized to 1. Requiring

that the normalization be preserved restricts the group G to one of its subgroups.

At this stage, we have that ¢ and w are invariants on U x G. Therefore the
group of freedom on this structure consists solely of the identity. When this is
the case, we say that we have an e-structure. The theory of the equivalence of e-
structures now enables us to state that the fundamental invariants of the problem
are given by the functions involved in the structure equations of the e-structure.
These functions, 7, are invariants, in the sense that if ® is the transformation that
takes U to V, then v|y = 7|y o ®. We shall first find these invariants for the 1+1
spacetimes, then we shall do so for general spacetimes. We define F§ to be the set
consisting of the invariants and their covariant derivatives up to order s — 1. We
consider F} to be lexicographically ordered. The rank k, of Fy at a point p is the
rank of the span of d(Fy) at p. The order of F at p is the smallest j for which
k; = k;j+1. An e-structure is said to have regular rank p at p if the rank of the
F of the e-structure is p in a neighbourhood of p. We point out that the rank and
the order of an e-structure are invariant quantities. The theory (Gardner, 1989)
allows us to state that if the rank of a regular n-dimensional e-structure is p, then

the e-structure admits an (n — p)-dimensional symmetry group.

For 1+1 spacetimes, we proceed as follows. From the exterior derivative of the

141 structure equations (2.4), we get

, [ @° 0 dII @0 0 II 0 II @°
0=d = A — A A
! dll 0 ! II 0 II 0 ot

One of the relations we thereby obtain is

0=dIlA@.
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This implies that
dll = 7 A @', (2.7)

where 7 is a 1-form on U x G. The other relation we obtain is

where we have used (2.7). The Cartan lemma then states that 7 is a linear combi-
nation of ©@° and @', i.e.

=R+ R &'

Again using (2.7), the derivative of the connection form II is therefore
dll = R A @' (2.8)

The function R is the required invariant function. It is just the lifted Riemann

tensor component R%;;.

We now proceed to obtain R explicitly in terms of the functions F; and F,. If
we expand the derivatives of F} and F» in the ¢ basis (since F} and F; are defined
on U), we get

dFy = Fijp00° + Fyjpio’

and a similar expression for F,. These expressions can be used as definitions for

Fijp0, Fijo1, Fyp0 and Fyp1. We differentiate equation (2.3) and hence obtain
dIl = [—Fllo-l — F2|UO =+ (F1)2 — (F2)2](:)0 A (I_)l7

after converting the result into the @ basis. (In this case, @° A @! is just o® A o,
but this is rarely true.) Comparison with (2.8) provides us with the result that
R = —Fij;1 — Fypo + (F1)? — (F»)?, as required.
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We now turn to spacetimes of any dimension. After the absorption of torsion,
the structure equations are

do = ¢ AW,
where ¢ is uniquely determined and obeys the condition
¢'n+np =0.
The exterior derivative of the structure equations is
0=d*w=(dp—pAp)Aw.

The quantity in parentheses contains the information about the curvature of the

spacetime. This justifies the definition
O:=dp—pAyp, (2.9)
where this curvature two-form is constrained by
0=0Aw. (2.10)

We note that the definition of © forces it to obey ©'n + n© = 0. By the Cartan
lemma, the constraint (2.10) on © implies that it can be expanded in the basis @,

the coefficients being one-forms:
. . .
O =Y’ ANW".

The one-forms wijk are not arbitrary since they must satisfy the constraint (2.10)

on ©. This produces the following equivalence:

0=0A"0 &' A" A =0.
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A cobasis for a space of dimension n is @', @?, ..., @™ If we multiply the constraint
on 1 with all possible combinations of n — 2 cobasis forms, we obtain the relations

(noting that most terms in the sum disappear)
(V' — V) NP AGT A A" =0,

and therefore v is symmetric in the two lower indices, up to linear combinations of
the cobasis, i.e.

ij = @Z)ikj mod base.

Similarly, the antisymmetry of © with its indices lowered translates into the follow-

ing antisymmetry of :
Oij = —6ji & (Vg + Yjir) A" =0,

where the indices are lowered (and raised) using 7. Multiplying this constraint with

all possible combinations of n — 1 cobasis forms, we obtain
(Viji + Vi) N ND* A=+ A" = 0.
We can therefore conclude that the following congruences hold:

VYijr = Yy = —je =0 mod base,

which imply that

Y';x =0 mod base.

This shows that ’QZJijk can be expanded in the cobasis as follows:
S
ik = §S’Ww£,
for some functions S%;xs. This demonstrates that ¢, and hence 0, does not contain
derivatives of the group parameters. It therefore follows that
1

@ij = §Si]‘k@@€ N7
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The coefficients Sijkg are the fundamental invariants of the problem.
When we take the exterior derivative of ©, as given by its definition (2.9), we
obtain
dO = —deAp+pAde
= —OANP—QPAOANP+EANO+OAPAp
= —OANp+pAO.
This calculation simply yields the Bianchi identities on U x G.

The structure equations on U x SO(p, ¢, R) can be summarized as follows:

dvo = pAw

dp = pANp+06.
With indices, these become
do' = ¢*; A&
and
dg'; = @' s A"+ ;Sijkéaje A*,
respectively.

So far, the calculations have been made on U x . This is more complicated
than calculating on U. Furthermore, the “classical” results do not involve the group
G. We therefore need to find the contribution of GG, in order to recover the classical

approach.
We define a left-action on G by multiplication on the left by a constant:
Le : G—G
S— CS.
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This action on G induces an action (a pull-back) on the cobasis over U x G:
Liw = Li(So) =CSo = Cw.

We can determine the induced action on the connection forms ¢ since pull-backs
commute with exterior differentiation, and since the pull-back of an exterior product

is the exterior product of the pull-back. The sequence of equalities
Lidw =d(Liw) =d(Cw) = Cdw = L (¢ Aw) = (Lip) A (Lew)

leads to

oA =[C T LEp)C| A .

We then conclude that
Lt = CpC™,
after invoking the uniqueness of . This type of action is called an adjoint action.

Also, by the uniqueness of ¢, C~'(L¢)C has the same index symmetries as .

The induced action on ¢ = dSS™ + ¥y (u, S) leads to
Lip =d(CS)(CS)™! + Ly (u, CS),

where, as can be expected, Ly ¥y (u, CS) means (Lydy)|w,cs)- Therefore, the action

on Yy obeys

Lidy(u, CS) = Cy(u, S)C.

Pointwise, we can make the choice of C' = S~! | provided, it seems, that we do not
differentiate the results; we shall show in the next paragraph that, actually, we can
perform the differentiation. We thus obtain the equivalent connection forms on U.

With the definition

Iy (u) := Li19y(u, S719) = S~y (u, S)S,
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the connection forms on U and those on U x G are related by
19U(U, S) = SQ?U(U)Sil.
Similarly, the action on © obeys

LeO(u, CS) = Lo(de — oA y)
= d(CpC™) = CpC ' ANCpC~!
= Cldp—pAp)C™
= CO(u,S)C".

We can therefore define
O(u) := Li10(u,e) = S7'0(u, S)S,

which leads to
O(u, S) = SO(u)S™.

We now explicitly® show that we can indeed differentiate on U and obtain the
appropriate quantities, without first going to U x GG and then choosing a particular
value of S. This is of value, since differentiating on U is easier than on U X G.
Once we know the result on U, it is easy to lift the result to U x G. We are then
able to apply the results of the method of equivalence.

We start by showing that we can compute ©(u) by staying on U. For
d’&U(U,) — ﬁU(U) A ﬁU(U)

= d[S "y (u,8)S] — S Wy (u, S) Ay (u,S)S
= d[S7'pS —S7dS] - ST —dSSTH A e —dSSTYS

5See page 27 ff. for some comments on the calculations on U.
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—S71dSS TP A S + S7Md(9)S — STt AdS + ST1dSSTT A dS
—STto NS+ 5SS A S + ST AdS — STHASST AdS
S7td(p)S — STtp A pS

S~1(O(u, S))S

S7H(SO(u)S™H)S

O(u),

where the use of the relation d(S7!) = —S7'dSS™! has been made. We caution

that one needs to be careful with the signs of the exterior derivative and with the

ordering of the various quantities, since matrices do not, in general, commute.

We now compute the Bianchi identities on U:

dO(u)

= d(S7'O(u, 5)S)
= —5 1SS TP AO(u, S)S + STH(O(u, 5))S + STO(U, S) AdS
= —SMSAO) + S H=0O(u, ) A g
+o A O(u, 5))S + O(u) A ST1dS
= —S WS AO) — SO, S) A (dSST" + I(u, S)S)
+871dSS™ +I(u, S)) AO(u, S)S + O(u) A S~dS

= p(u) AO(u) = O(u) A p(u).

These are the same equations as on U x . Further differentiation does not give

anything new.

Finally, we show that we can get ¥(u) from the cobasis on U:

do

= d(S7'w) =d(STHYAw+ S dw

= —SMSSTTAw+SToA®
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= —S7MdSST'ASo+S571dSSTI A So + ST Wy (u, S) A So
= STYSYy(W)S TS Ao

= Jy(u) Ao.

In summary, we can calculate ¥y and ©(u) and the Bianchi identities without
involving GG at all. This is exactly the classical calculation, as can be found, for ex-
ample, in Misner, Thorne and Wheeler (1973). The calculations for the equivalence
method, which require the space U x G, can therefore be done by first computing on
U, then lifting to U x G by change of basis and multiplication by matrices, without

any further differentiations.

This enables us to identify ¥y (u) as the connection one-forms, as found for
example in Misner, Thorne and Wheeler (1973), and O(u) as the Riemann curvature

two-forms. Expanding them in the cobasis over U, we get

I(w)]’; *

i
]:ijO'

and

. 1 .
O()]'; = iszké o' N,
where Fijk are the Christoffel symbols and Rijkl are the Riemann tensor compo-

nents.

The group SO(p,q,R) is the natural group to use in the study of pseudo-
Riemannian manifolds. Furthermore, it is quite natural to use connections that
render the structure equations to be torsion-free. These natural requirements can
be seen as follows. The exterior derivative operation can be extended to vector-
valued objects. There are more details given in Misner et al. (1973). Given {é,}
a vector basis, define d to be a differentiation such that it is equal to the ordinary

exterior derivative when applied to functions and differential forms, and such that
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de, = é,0°,. On vectors with scalar coefficients, this derivative is then a definition
for covariant differentiation of a vector. This is readily extended to tensor products
of vectors with scalar coefficients by using the product rule. The expressions o?, are
referred to as a connection. Let {€,} be chosen dual to the cobasis oy; therefore, it
satisfies the bilinear pairing < &,, 0® >= 6°. We need a well defined relation between
the derivative of €, and that of o;,. This is obtained by requiring the vanishing of
the derivative the invariantly-defined vector-valued one-form é, ® 0 := P. We thus
require
€. ®o‘, No+ée,do® =0,
whence
do® = =6, A oC.

We are thus led to torsion-free space-times. The connection is not uniquely spec-
ified. Omne natural invariant requirement is that it be chosen so that covariant
differentiation be compatible with the metric; in other words, that the covariant

derivative of the metric vanish. The (dual of) the metric is given by
g=> n"é e,
a
Its covariant derivative, which we require to vanish, is given by
0=dg =n"€.0% ® €, + N, ® €.0%,
which is equivalent to
0=2¢€.0"R €, + €, ®e.o“.

It follows then that 0%+ ¢ = 0 or, equivalently, o,. + 0., = 0. These relations are
exactly the defining relations of the Lie algebra so(p, ¢, R). From previous results
in the present chapter, it is clear that the connection is now uniquely determined.

The fact that the torsion-free connection is that choice of connection which is
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SO(p, ¢, R)-invariant is exactly® the reason why the equivalence calculations on

U x G can be done first on U.

Note that the theory of the method of equivalence confirms the classical theo-
rem that an n-dimensional Riemannian metric is determined up to isometries by
prescribing the Christoffel symbols, the Riemannian curvature tensor and its deriva-
tives up to order n+1+4n(n—1)/2. The precise statement of this theorem contains
conditions, on an e-structure, of regularity, equal order, equal rank, and preser-
vation of dependency. We refer to Gardner (1989) for the precise specification of
these conditions. We shall illustrate some of these points when we classify the 141
metrics. We further remark that the order stated in the theorem is one more than
the dimension of U x GG. The stated number of differentiations is an upper bound.
Usually much less than this is needed to determine the equivalence of two metrics,

whether or not symmetries are involved.

Since the whole problem of equivalence on U x G can be completely solved by
reducing to a computation on U x {e} = U, and then multiplying by appropriate
matrices, we might as well choose the representation of U x {e} in such a fashion
as to simplify the computations. This provides a geometric justification for the
usual practice of rotating an orthonormal tetrad so that one eliminates as many
kinematic quantities as possible on U x {e}, since they are invariantly defined on

Uxd.

A standard procedure for classifying metrics involves using an eigenvalue ap-
proach on the Weyl and the Ricci tensors. This approach reduces the group G
to one of its subgroups by choosing invariantly defined frames based on quantities

appearing in the Riemann tensor. As Bradley and Karlhede (1990) remarked, it

T am grateful to M.A.H. MacCallum for pointing this out.
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is difficult to use the Christoffel symbols directly on U to carry out the appro-
priate reduction, since they are not tensorial in nature. However, on U x G, the
corresponding objects, ¢, are tensorial. This gives a further justification for the ap-
proach used in the orthonormal tetrad techniques, where a frame can often be fixed
by requiring that certain combinations of Christoffel symbols be made to vanish.
Since this allows us more possibilities to reduce the group G than by solely using
the Riemann tensor, the number of derivatives required for a classification can be
reduced. For four-dimensional spacetimes, it has been shown that there is an up-
per bound of seven derivatives of the Riemann tensor. A summary of the relevant
results can be found in Collins et al (1993). It appears likely that the upper bound
will be reduced to six; the only situations where that bound of six has not been
proved are the non-vacuum type-N metrics and a class of conformally flat metrics.
In Collins, d’Inverno and Vickers (1990), the question was posed as to whether
one needs to proceed beyond the third derivative. Since then, Koutras (1992) has
answered that query by exhibiting a spacetime that requires four derivatives for its
classification. So far, this is the highest number of differentiations that has been
required for classifying a spacetime. In short the maximum number of necessary
differentiations is at least four, no more than seven and very possibly no more than

Six.

2.2 Equivalence under the conformal group

In this section, we study the equivalence of metrics under the conformal group of
transformations CO(p, ¢, R) = {AS|A € R*, S € SO(p, ¢, R)}, where R* represents
the non-zero real numbers. We shall show that the geometric object allowing us to

classify metrics under the conformal group is the Weyl tensor. Unlike the situation
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of the classification under the orthonormal group, a single lift is not sufficient to
solve the problem. This section follows Gardner (1989), who stops after providing
the structure equation on the twice-lifted space with a positive-definite metric. In
the present work, metrics of arbitrary signature are allowed. We compute the action
of the conformal group on the Weyl tensor. Some special cases of the classification
are briefly addressed. We discuss the significance of particular one-forms that were
introduced during the calculation; these contain the Ricci part of the Riemann
tensor. Using the method of calculation discussed in this section, we then show
explicitly the well-known result that, for conformally flat metrics, the Weyl tensor

vanishes.

Let there be a non-degenerate metric given by ds? = o'no, where

n = diag(—1,—-1,---,—1,1,1,---,1).

q p

This metric will be used to raise and lower indices.

The one-forms o give a coframe for the cotangent space to the base manifold U.
We lift the problem to the space U X G, where G is, in this case, the conformal group.
We therefore look at the lifted coframe w = ASo, where S'nS =1, S € SO(p, ¢, R)
and A\ € R*. The structure equations, which are obtained by differentiating w,
contain terms that are linear and quadratic in w. Therefore, they can be expressed

as dw = A A w, where A is a particular matrix of one-forms.

We now proceed to determine which entries in A do not contain derivatives of
group parameters. The defining relations of the orthogonal group SO(p, ¢, R) are
S'nS = n. Taking the exterior derivative of these relations gives the defining expres-
sions of the corresponding Lie algebra so(p, ¢, R), that is, ndSS~ + (dSS~1)in = 0.
This implies that the defining relations of the Lie algebra associated with the con-
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formal group C'O(p, ¢, R) obey the condition
nd(AS)(AS) ™! + (A(AS)(AS) 1) = 2dA A1
As a consequence of this, since the structure equations are of the form
dw = d(AS)(AS) ™! A w + terms quadratic in w,
there are no derivatives of the group parameters in the combination
. 2
nA + A'n — —(trace A)n
n

of entries of the matrix A. We say that this combination gives the principal com-
ponents of the first order for the present equivalence problem. They are linear in
w, and so the corresponding parts of the structure equations are quadratic in w.
Consequently, the principal components of first order yield the torsion. The tor-
sion is not necessarily unique for a given problem; by varying the derivatives of the
group, the torsion can change, and sometimes can even be made to vanish. The
other components of A can split into a diagonal part and an antisymmetric part
(once indices are lowered). To summarize, the structure equations can be written
as

dw = (¢ + al,) A w + torsion,

where ¢ is antisymmetric with indices lowered, i.e. it obeys nq?) + qz~5t77 = 0, and

where I, is the n-dimensional identity matrix.

From the equivalence problem under SO(p, ¢, R), we know that all the torsion
can be absorbed into QB In that situation, the absorption was unique. This is not so
in the present situation, since there are more independent group parameters than

needed to do the absorption. We can still vary &. This produces torsion terms,
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which can be absorbed into q~§ Performing that absorption, we conclude that the

structure equations can be written as
dw= (¢ +al,) ANw, (2.11)

where ¢ is antisymmetric with indices lowered, i.e. n¢ + ¢'n = 0, where I,, is the
n-dimensional identity matrix, and where ¢ and « contain group derivatives. There
is no longer any torsion, and so there is no permanent torsion. Unlike the situation
in the previous section, ¢ and « are not uniquely determined. Therefore there is

still some freedom left after making the torsion vanish.

Sufficient conditions for this system to be integrable are provided by the Cartan-
Kahler theorem, which is a geometric generalization of the Cauchy-Kowalewski
theorem. We refer the reader to Bryant et al. (1991) for the statement and proof of
this difficult theorem. However, for a problem such as the one we are dealing with,
the theorem applies whenever the exterior differential system is real analytic and
satisfies the condition of being in involution. This notion of involution is not that of
Frobenius theory. Fortunately, Cartan has provided a simple test which can even be
used as the definition of involution. For the situation we are considering, Cartan’s
test is as follows (for further details, see Gardner (1989)). We start with the matrix
¢ + al, mod base. We construct a set ¥; as follows. We first let 3; be the empty
set. Then we perform the following step as many times as possible: add to ¥; an
element of the matrix, noting the row from which it came, provided that the chosen
element is independent of elements already in ; and provided it did not come from
a row already used. When there are many ways to construct ¥;, we choose one way
amongst those that maximize the cardinality of ;. We then construct ¥;, with
i > 2, in a similar fashion using the matrix ¢+ «l,, mod(baseU¥;UXoU---UX; 4).
The ith Cartan character is defined to be the cardinality of ;. The Cartan
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character is defined to be the integer ¢ = Y, i0;. The system is said to be in

involution if its Cartan character is equal to the degree of freedom in it.

For the case under consideration, we can construct X; using the first column
of ¢ + al,. The elements are all independent, and therefore 01 = n. Note that
(¢4 al, mod base) is an (n—1) x (n— 1) antisymmetric matrix. The next Cartan
characters are then o; = n — j, for j = 2,...,n. The Cartan character is the sum

n(n+1)(

o=3;jo; = s n=1 4 1. The system is in involution if this number is equal

to the degree of freedom in ¢ and «. In order to find this degree of freedom, we

suppose that we can find ¢’ and o/ also satisfying
dw = (¢ + ' I,)) N w, (2.12)
where n¢’ + ¢''n = 0. By subtracting (2.11), we must have

(¢ =¢) + (o —a) [n) Aw = 0.
Putting in the indices, this is just
(¢ =)', + (o) —)0') Aw? =0. (2.13)
Using the Cartan lemma, we deduce that
(¢ — ¢)ij + (o —a)d'y = Al W,

with A’ = A’;. Now, taking the trace, we obtain o/ —a = +A%,wk. By
simple renaming of A% /n by A, we find that o/ = o + A;w'. Substitution into
(2.13), and making use of the fact that (¢/ — ¢) is antisymmetric with indices
lowered, yields that (¢/ — ¢) is now uniquely determined. Explicitly, we obtain
Al = Apd'j + Ao — Amtiny; therefore, (qb’)ij = ¢+ (A4;6' — Aen'nji)w”. The

degree of freedom is then n, which is the number of functions A;. In summary, we
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have involution if and only if

nn+1)(n—1)

1 =n.
6 + n

The solutions to this are n = 1,2, —3. We therefore have involution if and only
if n = 1 or 2, since the solution n = —3 is, of course, extraneous. This is say-
ing that all real analytic one-dimensional metrics are equivalent under conformal
transformations, and that all real analytic two-dimensional metrics (with the same

signature) are equivalent to each other under the action of the conformal group.

In the other cases, that is, when n > 2, the system is not involutive. We are now
faced with another equivalence problem, where the group of indeterminacy is now
the n-dimensional group GV of the functions A;. We therefore lift the equivalence
problem on U x G to an equivalence problem on U x G x G, There is a gain,
since dim G < dim G. Because G is defined to be the group that preserves the
relation dw = (¢ + al,) A w, the lift from U x G to U x G x G also satisfies the
same equation. We therefore keep the same notation; but now, w, a and ¢ indicate
forms over U x G x G, We have computed the derivative of w on U x G; we showed
that it can be made torsion-free on that space. The expression for the derivative of
won U x G x GW is, of course, the same as the one on U x G. However, for the
purpose of the equivalence problem on the lifted space U x G x GV, the derivative
contains only torsion terms, since (¢ + al,) A w does not contain derivatives of
elements of GV, We now require the derivatives of @ and ¢. To compute them, we

first take the exterior derivative of dw, to obtain
0=d*w=[(dp —pA)+dal,]Aw. (2.14)

Let us define
©:=dp—opANop+dal,.
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The trace-free part of © is antisymmetric when its indices are lowered, and so obeys
the relation

2
nO + O'n — “trace©®n = 0. (2.15)
n

Also, © obeys the condition that
OANw=0,
which, by the Cartan lemma, implies that
O=9Aw.

This is, using indices,
e = ij A wP.
The condition (2.15) on © then gives

2
wijk A wk + wjik A\ wk — ; w@ﬂc A wk 771']‘ =0.
If we multiply this equation with all possible combinations of (n — 1) cobasis ele-
ments w, we obtain, by application of the Cartan lemma, that

Yijk = —Vjir + 2€; n;; mod base,

where we define ¢, := %1/)2@,6. In terms of ®, the integrability condition (2.14)
becomes

wijk/\wk/\wj = 0.

If we multiply this relation with all possible combinations of (n—2) cobasis elements

w, we find, after lowering the 7 index, that ¢ also obeys

Yiji = Yir; mod base.
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We can then solve for 1;;,. The solution is
Yijk = €Mk — €Mk + iy + Agjre w",
where A;j, are functions. By back substitution, we obtain that
Oij = € Nw; — € ANw; + nijep N Wk + Aijie wh A W

Without loss of generality, we can assume that A,z is antisymmetric in the last
two indices, i.e.

Aijre + Aija, = 0,
since the symmetric part is cancelled when the antisymmetry in w® A w* is taken
into account. This entails that there are at most n(n—1)/2 independent functions
a;jke for an n-dimensional manifold U. Because ©,; = —0j;, it follows that A;;x, is

antisymmetric in the first two indices, i.e.
Aijre + Ajire = 0.

This reduces the number of independent components of A to n?(n—1)?/4. Further-

more, the requirement that ©;; A w* = 0 imposes the condition
Aifjrg = 0.

In these equations, there are n possibilities for the index i and n(n — 1)(n — 2)/6
possibilities for the other three indices. The number of independent entries in A
is therefore n%(n? — 1)/12. The derivatives of elements of G(!) appear solely in the

various terms ¢;. This allows us to give the structure equations on U x G x GV as

« 0 0 e « 0
df ¢ [=10 0 &) |[A] o |+ dNP+ A .
w 00 0 w (¢ +al,) Nw
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where

[6(e) Awl'; = (€;0° — emmig) A W

and

A= Aijkgwg AL
The last term in these structure equations is the torsion.

We now proceed to eliminate as many torsion terms as possible, using the GV
freedom in €. This proceeds as follows. The functions € and A;;x, are not uniquely

defined. Suppose that € and /L-jkg also satisfy:
O = € Aw; — & Aw; + 0ijex Aw" + Agjrew’ AW
By subtraction of these two equalities on ©;;, it follows that
((Ej — &)k — (& — €)nsk + i (& — &) + (Aijre — Aijie) wg) AwF =0.

If we multiply this last expression by all possible w, with the exception of w?, all the
terms are eliminated except the one with 7;;. By application of the Cartan lemma,
we can conclude that

- m
€r — € = Brmw™,

where the By, are functions. These functions represent a certain amount of freedom
that can be used for eventual removal of torsion. They are not, however, totally

arbitrary, since they must obey the condition
((Bjemk — Bimji + Bremij + (Aijre — Aijkf)) w' AWh =0,
If we exchange ¢ and j and add to the original expression, we obtain

Bkgwe N wk = 0,
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from which one concludes that By, is symmetric. We now proceed to use the

arbitrariness left in Bj,. Now Bj, obeys

Bjmik, — Bjknie — Binjk + Biknje+ (Bre — B )i + (Aijie — Aijie) — (Aijor — Asjor) = 0,

which simplifies to

Bimix — Bjknie — Bimji + Biknje + 2 (Aijre — Aijre) = 0.
If we raise the index ¢ and take the trace on k and 7, we obtain
(n—2) Bje + Bnjo + 2 (Aljig — A'jy) = 0,
where B := B';. If we now raise j and take the trace, we obtain
(n—1)B+ Aii;; — A%, = 0.

We can use the freedom in B to set

po A%
n—1

The remaining freedom in B;; is used to set

—Bnje + 2A%,
n—2

ij - )

which is consistent with the definition of B. In this manner, the freedom in B;;
is used to set the trace of A to vanish, i.e. Aijiﬁ = 0. The other /_lijkl are then
equal to their un-barred versions. When such a choice of Bj, as described above has
been made, we denote the resulting Aijkg by %Wijkg. At this juncture, we note that
W possesses the algebraic symmetries of the Weyl tensor. There are n(n + 1)/2
independent By,. This means that there are n(n+1)(n+2)(n — 3)/12 independent

entries in Wjjge. This means that if U is a three dimensional manifold, W is always
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zero. We also note that now € and W are uniquely defined. Therefore, the group
G®@ of freedom consists solely of the identity element. We thus have a uniquely
defined coframe, or e-structure, on U x G x G x G® given by w, ¢, a and €. In
order to find the fundamental invariants for this equivalence problem, we first need
to ascertain whether this e-structure is in involution. The part of the structure

equations that involve derivatives of the group G is:

o €r N\ wk

¢ij ej/\wz-—ei/\wj
The right hand side has the form of a matrix M (e) multiplied, using exterior mul-
tiplication, by w. The Cartan character from M(e) is easily seen to be non-zero.
However, there is no degree of freedom in the definition of €. It follows that the

system is not in involution whence a prolongation step is needed. The prolongation

is obtained by computing the value of de.

We already have expressions’ for the exterior derivatives of w,¢ and a. The
prolongation step will give the structure equations on U x G x G x G®). We

obtain de by examining the integrability condition of «, which is given by
0 =d’a = d(ep AWF) = dep AW — e A (¢ + ad’y) AWF
= (dek—q/\gbek—ek/\a> A WP,
It follows, by the Cartan lemma, that
dep, = € A @Y + e Ao+ G AW,
where the functions ( are one-forms subject to the restrictionthat

G Aw' AW =0. (2.16)

"We have these derivatives on U x G x GV, but because G is defined to be the group the
preserves the form of those derivatives we need not introduce new notation even though w, ¢,

and e are now defined on the space U x G x GV x G2,
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Exterior multiplication of this last expression by all the other cobasis elements w,

enables us to conclude, through the Cartan lemma, that
Cke = Hpomw™, (2.17)
where Hyy, are functions. Back substitution reveals that
Hijom) = 0. (2.18)
Since we are only interested in ( in so far as it appears in the product
Coo A W' = Hypm w™ A W,

we can, without loss of generality require that G' be antisymmetric in the last two

indices, i.e. Hypy = —Hpme.

The structure equations on U x G x G x G® can be summarized as follows:

dw = (¢+al,) Aw,
dp = oNg—[eAw]+W,

dao = eANw

de = eNp+eNal, +H.

With indices, these become

1
d(bij = (bzk A ¢kj + €; N w; — € N wj + §Wijk€ w@ A wk’ (219)
da = e Awh (2.20)
and

dek = GgAgZﬁzk—f—Ek/\Oé—FHkgmwm/\wZ, (221)
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where

Hyom = —Hime,
Hkgmwk N wk Aw™ =0
and W has the index symmetries of the Weyl tensor.

The fundamental invariants of this equivalence problem are given by W,

Hiy,, and their derivatives.

In this paragraph we exhibit the relation between ¥V and the Weyl tensor. We

first define a left action on the group G as follows:

LY . ¢-a
(A, 8) = (O, ).

The action induced on the cobasis w is
Lg)*wi = Cuw'.
This enables us to define £ as follows:
L(l):_lwi R

from which w® = A¢%. We can consider £° as a quantity defined over the manifold
UxSO(p,q,R), and so we can use the results of the previous section. The structure

equations satisfied by & are then
dg' = @', N E,
and those satisfied by goij are

. . ]
Ao’y = ¢ Nl + §Sljk€°~’e Nt (2:22)
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This enables us to compute the structure equations for the conformal space in terms
of the Riemannian space:
dw' = dAAE + X' AE
= (AW + ') AW
We use the discussion that begins with equation (2.12) above to enable us to identify

a = dI\+ Mt

¢ij = Spij + (Mjéikr - memk)wk,

where M; is a member of G, By differentiation of o, we obtain, after using equa-

tion (2.20) and Cartan’s lemma,
e = dM; + M;¢; + Mo + By, (2.23)
with B;; = Bj;. We can now define a left action on G x G by the following:
L& + GxGW =G xGW
(A, S; M) — (CA\,S; K+ M),

where K = (K1, Ky, ..., K,) and M = (M, M,, ..., M,). It follows that

L(C%);wi = Cu',

Liva = DN+ (K, + M;)Cuw'
and

LRy = @5+ [0 + My)a's = (Ko + Moy Cw”.

We can recover £ and ¢ ; using this action, since

LS\Q_);iMwi — A li=gl
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and
L,\Zf)i—MW’j = ¢
We can also obtain the contribution of the conformal factor:
LYY o =dan
From equation (2.23), we obtain that the induced action on e is as follows:
LEher =AMy, + (K; + M;)(¢') + ad'y) + L&y B Cw,
where Bj, = Bj;. This implies that
L e = My + Biil1.0)€
where we have used the definition
Bjklao) = L(Q)*, v Bk
On the one hand, we have
(2)* dpy = (LG 2)* * 6i7)
= d(¢; + [(K; + M;)§'s — (K¢ + Mo)n“ny A Cw”
= d¢'; +dM; ACw' — dMm™“n;i] A Cw")
+ [(K + M;)d'y — (Ko + Mo nis]C (¢, + ad®n) A w™).

On the other hand, we have, using (2.19), that

(2)* d(sz _

(2)* e (Din N O* 5+ mave; Aw® — mjne; Aw® + Wignew® A w)
{pir + [(Kx + My)nim — (K 4 Mi)ngm] A Cw™} A
N@* s+ (K + M;)8*, — (K¢ + Mo)n*nin] A Cw"}
FnaldM; + (Ko + Mo)(¢; + ad’y) + LE% BjCw™ A Ot
—n[dM; + (Kp + Mo)(8Y; + ad%) + LEy BjCw™| A Cwt

1 e
~|—(§Lg)KWZjM)Cwé A ka.
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If we let C be equal to A= and K be equal to —M, then we obtain

deps; + dAM; A et — dAM; A né®
= i 90;? + [dM; + Bjk’(l,o)fk] A mig€t — [dM; + Bik\u,o)fk] A ﬁjefg

L (2)«
+(§L&221,7Mw’ijkf)€£ N

We can replace dg;; using its value in (2.22). Doing so, we can solve for
L (2)
(iLxl,_MWijk@) = Sijke — Birl.0je + Biel .00 + Birl,.0mie — Biel 1.0y
If we raise ¢, let k =4 and then sum, we obtain
0 =81 — B'ilwoymie + Bjelwoy + Bielo) — nBiel o),

where we have used the fact that WJ’M = 0. This enables us to isolate Bj¢|(1,0) and

so obtain

1

Bj£|(1,0) = ni

—9 [Sijif -

2(:]'_@1)51‘24]. (2.24)

Since S%jk is the Riemann tensor on U x SO(p, ¢, R), it follows that Bj|1,0) is
isomorphic to the Ricci tensor on U x.SO(p, ¢, R), and therefore the trace-free tensor
LE\Q_)T _uWijke is the Weyl tensor on U x SO(p, ¢, R). The quantity ¥V can now be

identified as the matrix of two-forms representing the Weyl tensor on U x G' x G,

From equation (2.23), we obtain by exterior differentiation the following
de; = dM; A (¢7); + M;d¢?, + dM; A a + M; da + d(Byw).
From this value for de;, we deduce that

LS\Z—)?,MQ = dM] VAN QOji + dMZ A dA /\_1 + (dBZ]> |(170) A wj (225)

+ (Bij‘(l,O)) A ((pjk VAN fk + dA )\71 A\ fj) .
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From equation (2.21), one deduces that

Lg\2—):fM€i

= (dM; + Birlao&) A& + (M + Bjil10)€) AdAAT (2.26)
+ (LY _aryHiem) € N €.
Comparing equations (2.25) and (2.26), we obtain the condition

(4Bijlwgy = LG5 v Higm€™) NE =0, (2.27)

We now proceed to compute the action of the group on W, the Weyl tensor.
This is done by taking the exterior derivative of da and d¢, and looking at what
happens to d¥W modulo the cobasis w.

Differentiation of (2.19) yields
1
0 = (¢ip N G + € N WP — € N WPnpr + §Wikpmwp A wm> A Q%‘TIM
1
— i N <¢zm N Gpin™ + €5 N W N — €0 N wPnp; + §sznmwp A wm) ™
+ <6g A ¢£j +e; Na+ e N wz> A W
—€; N\ (gbkg -+ ozé'%) A wfnki
1
t+ei A (08, + ad®) Awhng + S AWigne A AW
1 k k m 0 1 4 4 m
+5 Wik (6%, + ad®n) Aw™ Aw’ — 5 Wikt A (¢ + @d') Aw™,
which simplifies to
0 = (dWijke + 2Wijkeor = W™ jrebim (2.28)
+ M/imkéquj + Mjm5¢mk + VVijkmgme
+ 2ok — 2Giemk;) A w* AW

Multiplying (2.28) with all possible exterior products of (n — 2) different w, we can

conclude that

0 = dWijke + 2Wijpea — W jrobim (2.29)
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+ Wimke®™ ; + Wigmed™ 1, + Wijem®™, mod base.

It follows that W transforms as a tensor under the SO(p, ¢, R) group (through ¢)

and scales as A\? under stretching (through «). This means that

Wiike =S (S™H) (ST (STHIA 2™, (2.30)

J

where W is W evaluated at a fixed choice of the group parameters. Differentiat-

ing (2.30), we obtain

AWie = (dSS™) W™ e — (dSS™H)™ Wiy — (ASS™H™ W' e

m

- (dSS_l)mKWijkm — 2(d)\)\_1)W7;jk£ mod base.

This is equivalent to the congruence (2.29).

Various special cases are apparent. The first special case is if all Wy, vanish.®
Since in that case W = 0, we cannot use it to perform a group reduction in an
invariant way. We shall now analyze this situation in more details. Equation (2.28)
reduces to

2(Cjemmi — Ciomij) A w® A Wt

Using equation (2.17) and remembering that H is symmetric in the last two indices,

this is equivalent to
(nijimp — ﬁle]mn) wk AN wp AN wm = O (231)

Due to the antisymmetry in ¢ and j, there are n(n —1)/2 (exterior) equations. The
number of unknowns, H;;; is n?(n — 1)/2. Consider the sets {i,j} and {m,p}. If

they are equal, the corresponding terms in equation (2.31) vanish either because of

80f course, if the manifold U is three-dimensional, then W is always zero; therefore, this does

not represent any restriction.
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n (when k & {i,j}) or because of the exterior product (when k € {m,p} = {i,j}).
The terms corresponding to the situation when the intersection of {7, j} and {m, p}
is empty imply that H;,,, = Hjm,, = 0. This is because 7 is diagonal and that all
Wk Aw™ AwP, with k € {i,j}, are all independent of the other possibilities. The
value of n(n—1)(n—2)/2 unknowns is thus given. This leave n(n — 1) unknowns to
be found. Note that the step just performed requires the dimension of U be at least
four. The remaining situation is that when the intersection of {4, j} and {m, p} has
one element. Without loss of generality, we can choose m € {i,j} and p & {i,j}.
Taking into account the vanishing of the aforementioned Hj,,,, equation (2.31)

reduces to
(n;;Hiip + niHjjp) 0" Aw' Aw’ =0 (No sum on 4, 7). (2.32)

Each of the n(n—1)/2 such exterior equation imply the vanishing of n—2 coefficients.
There are therefore n(n — 1)(n — 2)/2 such equations which are homogeneous in
H,ip. Note that n(n — 1)(n —2)/2 > n(n — 1) for n > 4. The equality arises only
when n = 4. From the equations implied by equation (2.32), consider the subset
given by

NiiHoop + Moo Hjjp =0, j #0
and

i1 Hazp + M22H11p = 0.

There are n(n — 1) such equation. The determinant of the matrix of coefficient
is easily seen to be, up to a sign, (277((]8_2)77117722)”; therefore, it does not vanish
whence the only solution to H;jj is the trivial solution. We then conclude that the

dimension of U is greater than three, all the functions H;j;, vanish.

We now turn to the 3-dimensional case. In that situation Wi, necessarily

vanishes. There are a maximum of n?(n —1)/2 = 9 components of H%,, due to the

VLA
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antisymmetry in j and k. This maximum is immediately reduced to 8 because of

the single constraint (2.18). Equation (2.28) reduces to
i H jomw™ N whw A — i Hipmw™ A WP AW =0.
Since 7 is diagonal, this equation is equivalent to
Nii H jomw™ N wiw Af =i Hipmw™ N W AW =0 (No sum on 4, j),
which, in turn, is equivalent to
NiiNj; (ngmwm Awiw AN —H ™ A w? A wé) =0 (No sum on ¢,j), (2.33)

The indices i, j are two of three possibles values of indices in a three dimensional
space. Let the index r denote the third one. Since H is antisymmetric in the last
two indices, the previous equation yields that the trace H*;, vanishes. This reduces
the number of components of H';;, to 5. Let the quantity L be defined implicitly
as follows:

Hijpw? AP Aw® = LW A wh A w? (2.34)
Equation (2.33) gives

Nty (Lz‘j _ Lji> O AW A W =0

whence L;; is symmetric. Lowering ¢ in equation (2.34), letting s = 4 and taking

the sum over ¢ yields
Hijkwj AwFw! = Liw® A w! A W

Since the left hand side of this equality vanishes, the quantity L must be trace-free.
The fundamental invariants of this three-dimensional conformal equivalence prob-
lem are the five quantities L;; and their covariant derivatives. Using equation (2.27),
we find that

Lis = Big — Bis,
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where (s, k, () is a cyclic permutation of (0, 1,2) and where the semi-colon denotes
covariant differentation. Given equation (2.24), specialized to the three dimensional
case (i.e. the case where n = 3), we can identify L;s as the Cotton-York, or Weyl-

Schouten, tensor (Kramer et al., 1980).

If all the TW;x, are constants, we have another special case. Since in that case
varying the group does not produce any change in W, then ¥V cannot be used to
perform a reduction of the group in an invariant way. Another way to see this is
that, in this case, the rank of the e—structure on U x G x G is zero. This implies
that there is, for such a space, a group of symmetry with the same dimension as
that of U x G x GM; this is the maximal symmetry group possible. Therefore, there
are no privileged directions; such directions would allow us to do a group reduction.
It is important that W is defined on U x G x G, Constancy of W on U does not
necessarily imply the constancy discussed here. The rest of Cartan’s classification

approach would involve consideration of the rank of dWW, and of further derivatives.

In the process of this calculation, the forms e were introduced. They contain
the non-Weyl part, i.e. the Ricci part, of the Riemann tensor. The particular
combination of Ricci tensor components appearing in € is exactly the combination
that is differentiated in the definition of the Cotton-York tensor, see Kramer et
al. (1980), in the case of the three-dimensional manifolds. The forms e do allow us
to compute the Weyl two-forms directly from the Riemann two-forms without first

exhibiting the Riemann tensor from the two-forms.

2.2.1 Conformally flat metrics

We now present an example which illustrates calculations involving the preceding

theory. The starting point is a metric that is conformally equivalent to a flat metric.
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We proceed to compute the Weyl tensor, and thereby demonstrate the well-known

fact that it is zero. Suppose that
w=z40

where o is a 1 x n array of exact differential forms ¢ = dx, z is a non-zero real

number and Z is a member of SO(p, ¢, R). Then, by differentiation, we have that
(d(z2)(22) ' = ¢ —al) Aw =0.

We define
H:=d(:z2)(z2) ' =dez" T +dZ27.

We can split H into the trace part dzz~! and trace-free part dZZ~!. By application

of the Cartan lemma, we have
¢ +ad’; — H'; = C' b,
for some functions C;;. Taking the trace, it follows that
a=dzz7t + frwh,
where we define fj := %C’sz Back substitution shows that
(9 —dzZ7')'; = Oy,

subject to
(fk(SZJ + Oz]k) wk N wj =0.

The latter expression implies that

Clhj = C'jk = [0k + fid';.
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Now, since Z is a member of SO(p,q,R), then (dZZ71);; = —(dZZ7');;. There-
fore,
Cijk = —Cjik.
We can then solve for C;j;, and obtain
Cijk = —fimjx + [inir-
Therefore
(¢ —dZZ7 ")y = — fimpw® + fimuw”.
Taking the exterior derivative of a, we get
da = (dfk -+ fg(ﬁek + fe()ééek) A WP,
This enables us to compute, using (2.20), that

er = dfy + fo'y + frad'y + G, (2.35)

for some functions Gy, satisfying Gy = Gy,. The non-diagonal connection forms
are

¢'; = (dZ Z_l)ij — " fenr® + fio. (2.36)
The exterior derivative of this last expression is
d¢'; = (AZZ7)' A (AZZ7Y =0t dfmie Aw® =0 fmin(eF, + ad®) AW’
+df; AW+ fi(d + ad’e) AW
Using (2.35) and (2.36), this becomes
dgbij = ¢’ A ¢kj + 6 AW — 0 igem A WF (2.37)
+ (—Gjefsik — fofi0 % + 05en™ Fun fn'k + 1Nk Gone

_nimnszmfj + nimnjkfmfa WA W
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We now examine the last term. We first note that the term with 7y, is symmetric
in k¢, and therefore vanishes when multiplied with w’ A w* and summed over all

possibilities. The coefficients of the independent two-forms w’ A w* simplify to

—Ge' s+ G — [ofi0'% + Frfid e + nien™ fn fa0'k — 0™ fon fu6'e

0" kG e — 1" 050G + 1" Nt fn fo = 1" Njefin S

which we define to be J ijkg. It follows that J is antisymmetric in k¢, and also in
17, when the index i is lowered. Let ¢ = k, then sum. Then raise j, let 57 = ¢, and

sum. The result is
n J—
2

2(1 —n)(G; — 2f"fz-) = J9,;.

It therefore follows that J%;; can be set to zero (without loss of generality) by

letting
n —

G = 5 infi. (2.38)

With back substitution, it follows that we can set J';;, to zero by letting
1 m
Gje = —fifet S Fmnje;

which is consistent with (2.38). Actually, by direct calculation, one can verify that
not only the trace Jijig is translated to zero by the present choice of G, but also

every J'ji, made to vanish. With these choices, we obtain

w' = zZijdxj
¢ij = (dZZ7")y — fmppw” + fimuw®
a = dzz '+ fro®
and

1
e = dfy+ fio'), + frady — fufoot + §fmfm77k€w€u
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where Z € SO(p, ¢, R). Since J';i, = 0, then equation (2.37) becomes
dgbij = ¢' A (ﬁkj +€; A W' — nimnjkem A WP

Thus, using (2.19), we find that, with this choice of metric, the Weyl tensor is zero.

Direct calculation shows that, for the manifolds we are investigating,
de:Q/\qﬁzk—i—Ek/\Oé.

The invariants Hji, are then all equal to zero. This is compatible with the results
of the preceding section, for manifolds U of dimension greater than three, that the

functions H;;, must vanish when the Weyl tensor does so.

In summary, for conformally flat metrics, all the fundamental invariants van-
ish. We can invoke the theory of the equivalence to conclude that all real analytic
pseudo-Riemannian manifolds of dimension greater or equal to four such that their
Weyl tensor vanishes are conformally equivalent. In particular, since flat metrics
have their Weyl tensor equal to zero, all such aforementioned manifolds are confor-
mally flat if and only if they have zero Weyl tensor. Similarly, all three-dimensional
real analytic pseudo-Riemannian manifolds are conformally flat if and only if their
Cotton-York tensor vanishes. Also, all real analytic pseudo-Riemannian manifolds
of dimension one or two are conformally flat. These results are well known, see

Kramer et al. (1980)

2.3 A classification of 1+1 metrics

In this section, we classify real analytic pseudo-Riemannian two-dimensional met-
rics using the method of equivalence of Cartan. Afterwards, we redo the classifica-

tion with a slightly different point of view that emphasizes the physical aspects of
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the various cases. This second classification also illustrates the difference between
the Karlhede classification and that based on the method of Cartan. We recall that
on U x SO(1,1,R), the structure equations are (cf. (2.4) and (2.8)) the e-structure

dw’ = TAW
dw' = MTAW
and

dil = RwWAwl
Taking the exterior derivative of the last equation yields
0=d’MM=dRAw’ A"
By the Cartan lemma, this implies that
dR = Aw’ + Bw', (2.39)

where A and B are functions.

The first case to consider is when the rank (as defined on page 19) of {dR} is
zero. It follows that A and B are both zero, and that R is a constant. In that case,
the derivative of R does not produce any new invariants, and so the rank of this
e-structure is 0 and the order is 0. The dimension of U x SO(1,1,R) is 3. There
is a three-dimensional group of symmetry for these metrics. The dimension of this
group is obtained by subtracting the rank of the e-structure from the dimension of

the space U x SO(1,1,R).

We now suppose that the rank of {dR} is one. The Riemann curvature R is
an invariant function. Therefore, the order of the e-structure is at least one. It is

exactly one if the derivative of R does not produce any new invariants. As a first
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step, we compute the derivatives of A and B from the integrability condition on R,

thereby obtaining
0=d’R=dA AW’ +dBAw' + ATl A w' + BIT A W°.

We can then isolate dA and dB, and obtain

dA = —BI+ Cw’+ Dw!
and
dB = —All+ Du’+ Euw',

where C, D and E are functions. We remark that if A = 0, then dA = 0 implies
B = 0. Conversely, if B = 0, then dB = 0 implies A = 0. Since, in the present
situation, R cannot be constant, we must have that A% + B? # 0. If the order
of the e-structure is one, then the fact that differentiating R does not produce
new invariants means that the rank of {dR,dA,dB} is one. This requires that

dR A dA = 0, which is just

—BAW ATT + ADW A w! + B TI AW — BCWO Aw! = 0.

Since w®, w! and II are independent, this means that B? = 0, or B = 0. Similarly,

dRAdB = 0 implies that A = 0. Now, we have already observed that A%+ B? # 0,
and therefore the case of order one cannot happen. This result can also be obtained
from a group consideration.” Suppose that the order is exactly one. That entails
that the rank must be equal to one whence there is a two-dimensional isometry
group. Also, there is a single invariant on M x . By the preceding this invariant
can be taken to be R. In addition, on M, except at isolated points, the orbits of
the isometry group must be two-dimensional; therefore, R must be constant on M

and thus also on M x G. This is a contradiction.

91 thank M.A.H. MacCallum for noting this line of argument.
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We now turn to the situation when the order is at least two. This means that
dR produces at least one more invariant. There are two situations, depending
on whether the rank of {dR,dA,dB} is two or three. If this rank is three, then
differentiations of A and B cannot produce any new invariants independent of R, A
and B. Therefore the order of the e-structure is two and its rank is three. There is

no symmetry in this structure since its rank is equal to the dimension of the space

U x SO(1,1,R) on which it is defined.

When the rank of {dR,dA, dB} is two, there is a functional relationship between
R, A and B. Their derivatives obey the relation dR A dA A dB = 0. This is

[— (A’ 4+ BH)D + AB(C+ E)] AT AW Aw! =0,

where use has been made of the integrability condition on R. In this situation, B
cannot produce invariants that are not already given by R or A, and so we consider

the integrability condition on A. From d*A4 = 0, we obtain
0=—dBAIl— Bdll +dC Aw’ + Cdw® + dD Aw' + Ddw".

We deduce that

dC = —2DII+ Hu’ + Iw'
and
dD = —(C+ E)ll+ (BR+ 1w’ + Juw',

where H, I and J are functions. If the order of the e-structure is 2 then the rank
of {dR,dA,dB,dC,dD} is equal to the rank of {dR,dA,dB}, which is 2. Since B
is functionally dependent on R and A, it suffices to require that dRAdAAdC =0
and dR A dA A dD = 0. These conditions translate to

0 = (BAI—2D(AD - BD) - B’ H) I A’ Aw'
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and

0 = (BAJ-(AD-BC)(C+E)— B BR+1))IIAw’ Aw'.
Since the order of the e-structure is 2, there is a one-parameter group of sym-
metries. If either of these last two conditions is not satisfied, then the rank of

{dR,dA,dB,dC,dD} is 3. In this case the order is 3 and there is no group of

symmetry.

We summarize these results in table 2.1.

order of the | rank of the | symmetry
e-structure | e-structure
1 0 3-dimensional group
1 1 this situation does not happen
2 2 1-dimensional group
2 3 no symmetry
3 3 no symmetry

Table 2.1: Classification of 141 metrics

We now examine the classification from a slightly different point of view in or-
der to shed more light as to the physical significance of the various cases.!’ Equa-

tion (2.39) can be rewritten as
dR = (Acosha + Bsinha)o® 4 (Asinh a + B cosh a)o?

If dR = 0, we are in the situation with the 3-dimensional isometry group and so the

only invariant of this problem, viz. R, is constant. Hence, we suppose A2+ B? # (.

0T am grateful to M.A.H. MacCallum for his remarks concerning the null versus non-null

characterization of dR.
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If |[A/B| # 1, in other words, when dR is non-null, we can make ' B = 0.
This fixes the group parameter o and hence we are no longer directly working with
the e-structure'? but with a normal-form-structure. Differentiating dR = Aw’, we

obtain

0=d’R=dAAW" + AT A w!,

whence, by the Cartan lemma,
dA = Cw® + Dw!

and

Il = (D/A)w’ + Ew'.

The product
dRAdA = AD W A Wt

vanishes if and only if D = 0, since A = 0 has already been excluded. We first
suppose that D # 0. Both the order and the rank of the normal-form-structure are
equal to two. The invariants of the problem are R and A. There is no isometry in
this situation since the dimension!® of U x G is two. We note that this situation
corresponds to that of order = 2 and rank = 3 in the table 2.1. If D = 0, then
the rank and the order of the normal-form-structure are 1. There is therefore a
one-dimensional isometry group. The only invariant of the problem is R. We note

that this situation corresponds to that of order = 2 and rank = 2 in the table 2.1.

H1f |A/B| < 1 then the discrete transformation (w° w!) — /=1(w!,w) is needed to keep «
real.

12Note that the e in e-structure refers to the group G in U x G x GV, We are reducing the
group G to one of its subgroup G’. We are thus working with U x G’ x G,

BRotating the dyad so that B = 0 reduces the group of indeterminacy to a zero-dimensional

group.
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If |A/B| = 1, then dR is null. It follows that B = +A. We choose to consider
B = A; the situation of B = —A being analogous. We therefore have

dR = A(W° + w').
Differentiation of dR yields
dA = —All + O(u® + wh),
after invoking the Cartan lemma. The rank relation
dANdAR = —A’TI A (W° + w?)

does not vanish since we have already considered the situation of a 3-dimensional

isometry group. Differentiation of dA and the Cartan lemma imply that
1
dC = —2CTL + D(w° + w') + §A(w0 —wh).
The rank test-quantity

dAANdARAAC = —A2RTIA W A w?

cannot vanish. There cannot be any further independent invariant functions. Both
the order and the rank of the present e-structure are equal to 3 whence there are

no isometries.

2.4 Comments

It may now be seen that Cartan’s method of equivalence leads naturally to the
Riemann and Weyl tensor. It also unifies classifications of the metric based on

the Riemann tensor, such as the Petrov classification of the Weyl tensor and the
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Plebanski and Segre classifications of the Ricci tensors, and those based on groups
of symmetry of the metric (see, for example, Kramer et al. (1980), McIntosh et
al. (1981) and Joly and MacCallum (1990)). The works by Karlhede (1980a), Karl-
hede (1980b), Karlhede and Lindstrém (1982), Karlhede and MacCallum (1982),
Bradley and Karlhede (1990), Collins and al. (1990), Joly and MacCallum (1990),
Aman et al. (1991), Koutras (1992) and others follow the method of equivalence
of Cartan, with a modification, known as the Karlhede classification, to be better
suited for the purpose of the study of spacetimes. The equivalence method allows
the various covariant derivatives of the Riemann tensor to play a rdle in the clas-
sification. The last section uses the classification of two-dimensional metrics to
illustrate the classification of higher dimensional metrics and shows the usefulness
of finding normal forms'* to reduce the number of derivatives needed. As a by-
product of the classification with respect to the conformal group, we have found
an efficient way of obtaining the Weyl curvature two-forms, given the Riemann

curvature two-forms.

14This is the essence of the modification of Karlhede to the method of Cartan as applied to

manifolds of general relativity.



Chapter 3

Orthonormal Frame Formalism

All men by nature desire to know.

Aristotle

I N THIS chapter, we focus on the geometry of U, where U is a four-dimensional

Lorentzian manifold. Let the metric be given by

g=ds’ = -’ +o' et +*®@a® + w0 ®ad. (3.1)

3.1 Structure equations

In this section, we describe the structure equations of a Lorentzian spacetime with
an invariantly defined! unit timelike future-pointing vector. These structure equa-
tions enable us to define various kinematic quantities. We shall provide two meth-

ods of giving an interpretation to these kinematic quantities. The method we use is

'We shall concern ourselves with only local considerations. Not all spacetimes admit such a

global unit timelike future-pointing vector field.

62
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closely related to that of MacCallum (1973). Our approach uses differential forms,
whereas MacCallum used the geometrical objects dual to one-forms, namely, vec-

tors.

Let €y be the invariantly defined (locally) unit timelike vector admitted by the
spacetime under consideration. For a perfect fluid spacetime with u + p # 0,
the vector €y can be chosen in an invariant way as the unique future-pointing unit
timelike eigenvector of the Ricci tensor(Ellis, 1971). This eigenvector is the velocity

vector of the fluid flow. In a coordinate basis, €y can be written as

0
oxt’

Let @° be the one-form dual to €. In a coordinate basis, @

—

€ = u

(3.2)

0 can be written as

0¥ = —u; da'. (3.3)
The interior product of @° and &, satisfies

This is consistent with the unit timelike character of the velocity. We complete the

orthonormal cobasis by choosing three covectors
0 = A%da’. (3.5)

The corresponding vector basis elements are

.0
€ = B'a—.
‘ ox’
The condition of orthonormality implies
ey’ = 0%, = B A%, (3.6)
eo]w* = u'A*% =0 (3.7)
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The coordinate cobasis satisfies

dz’ = u'a’ + B,
This is easily verified by substitution into (3.3) and (3.5), followed by simplification
using (3.4) and (3.8).

The fluid flow vector i is given by (3.2) in a coordinate basis and by (+1) €
in the tetrad basis. The corresponding covector u = g(), where g(#) denotes the
contraction of the metric (3.1) with the vector , is given by u; dz’ in coordinates

and by (—1)&° in the tetrad basis.

We now proceed to calculate the various kinematic quantities. This is done by
first computing the structure equations and then identifying their various compo-

nents. The first structure equation is obtained by differentiating (3.3) to obtain
dw® = —du; A da’. (3.9)
Since du; can be expanded in the coordinate cobasis as follows:
du; = ui|jdxj = €, (u;)w?,
equation (3.9) becomes

do® = —du; Ada’ (3.10)
= —du; A (u'@° + B'@®)
= —&,(u;) 0" A (u'@® + B',@”).
The acceleration, @ = 1,0, of the éy—congruence must be perpendicular to the

velocity, since the velocity has unit length. Therefore the acceleration does not

0

have a @” component; it is, however, equal to @ |du = —éy|dw®. Since

g()J d@o = uiég(ui)cvﬁ — Biaéo(ui)@a,
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the acceleration components are given by
iba = _gaJ ébJ d@o = —uié’a(ui) —+ Bia€0<ui).

We next compute the part of the structure equation (3.10) that is independent of

@°. First, we have
€] A = =&, (u) (u'@® + Bl ”) + &;(u;)’ B,
where the sum over j omits 7 = a. Then, we have

€3]En]da’ = —&,(u;)B's + €5(u;) B' 4.

These quantities are antisymmetric and perpendicular to €y, and so they can be
grouped as the one-form 2w,w?, where (a, 3,7) is an even permutation of (1,2, 3).
These kinematic quantities correspond to the (rate of) vorticity of the €y-congru-

ence, as can be seen by noting that

W PAPAND+w @ AP A +ws @ AP A% =
= " Ad°

= uAdu.
The structure equation (3.10) can therefore be written as
A = —1,@° A ©* + 2w,@!* A D,

where by |a| we indicate that o < .

To compute the remaining structure equations, we start by differentiating (3.5),
which gives

dw® = dAY A da' = dAY A (u'@° + BLw®).
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Differentiating (3.7) and (3.6), we obtain dA%u’ = —A%du’ and dA®; B!, =
—AB,dB,, from which we deduce that

do® = —A%es(u)@® A& — A%e(B'g)o? A &P

We examine the part of these structure equations involving the éy—congruence. In

order to do this, we first compute
&, ]do® = — A%, (u)@® — A%E, (Big)d” + A%e;(B,)o.
From this, we obtain the required components, which are
eolé, |dw® = —A%ée, (u') + A% (B",). (3.11)

This can be decomposed into a part that is symmetric in « and v and into a part

that is antisymmetric. The antisymmetric part is given by
1 > (i S (i a (i > (i
5[—Aai€7(u ) + Aviea(u ) + A i€O(B 7) — AVZ-eO(B a)]-

The first two terms in the square brackets are just 2ws with the index raised, where
(cr, B,7) is an even permutation of (1,2,3). The last two terms can be grouped

together to define the vector (2*€,, where
O = +A76y(B.) — Aley(B)),

with (a, 8, ) an even permutation of (1,2, 3). Since we are using metric components
in the orthonormal tetrad, we can lower the index on €2, a space-like quantity,
without changing its value. These terms correspond to the rotation of the é,— axes
with respect to a Fermi-Walker propagated tetrad. The symmetric part of (3.11),
denoted by 6, is given by

1 . . . .
5[FATE () = AV () + A% (B1,) + Aié(Bla)).
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Lowering the upper index of the space-like quantity 6, does not change its value,
since we are using the orthonormal basis. This quantity is the (rate of) expansion

of the éy-congruence.

What has been obtained so far can be summarized by the equation
di® + (0%, + )’ A@Y = —A%E (B )" A&°,

We now wish to interpret the right-hand side of this expression. We choose (ar-

1

bitrarily for now) one unit axis perpendicular to @° and call it @!. The previous

treatment, which was applied to @°, can act as a guide to the situation with !
We temporarily ignore the terms that involve @, since they already have been
interpreted. The following, therefore, can be thought of as involving appropriate
projections onto the space perpendicular to the éy-congruence. Accordingly, we

look at the terms involving @' in the structure equation for @'. The expression
1] — AYé, (Bl Aw™ = =AYy (B )0t + ALea(BY) ot
has components
ealér] — ALie (B0’ Nw® = —AL @1 (B 4) + ALiéa(B'y) =: da,

which represent the spatial part of the acceleration of the é€j-congruence. The

spatial part of the vorticity of this congruence is given by
ggJ ggJ - Alié»v(Bia)(D’y ANw* = —Aligg(Big) + Aligg(BiQ) = —Nn.

The other components of the structure equations involving w! have coefficients

given by

eplél] — Afe (B0 A@™ = —Afe (B'p) + Afép(BY).
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As before, this expression can be decomposed into a symmetric part and an anti-

symmetric part. The symmetric part, which is

1 > i = i > % > % Ls
5[—AAZ'€1<B B) — ABiel(B A) + AAZ'GB(B 1) + ABZBB(A 1)] =. 593,

measures the spatial component of the expansion rate of the é€j-congruence. The
antisymmetric part, which is given by

1 = i = % > % ~ %
5[—AAZ'€1(B B) + ABiel(A B) + AAZ‘GB(B 1) — ABZEB(A 1)] = 59,

measures the spatial component of the angular velocity of the dyad {é, €3} along

the éj-congruence.

The only components of the structure equations that are left to interpret are

those independent of both @° and w!'. They are given by
€pléa] — ANE, (B0 A@® = —AYEa(B'p) + AYEp(B4).
There are only two such terms; the first is
Eyles] — A%, (B'o)" A = —A%&3(B'y) + A%ép(2%) =: —As,
and the second is
& ley| — A%e,(B'o)" Aw® = —A%8y(B'3) + A%é3(B'y) =: —As.

The quantity As measures the projection of the acceleration of the es-congruence

and Ajs, the expansion of the é;-congruence.

Ellis (1971) gives a very clear introduction to the kinematic quantities, t,, 043
and w,, associated with the éy-congruence. The interpretation of the quantities
associated with the éj-congruence, namely d 4, n, Q Oan parallels the similar inter-

pretation of the é€p-congruence quantities, namely tq, Wy, 2o, 0as. There is also a
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parallel with the quantities associated with the €;-congruence, namely A, and As.
The choices of sign in the above definitions of the kinematic quantities have been
made in accordance with those of White and Collins (1984), who first® defined
dA,AA,éAB, Q) and n.

To summarize this section, the structure equations can be written as follows:

dia® = —de@® AG* + 2w, 0l ADP (3.12)
dot = 01@° A@! + (012 + w3 + Q3)@0° A0 + (O13 — wy — Q) A &P

+dy@' N —n@* A@® — ds @ A G (3.13)
do® = (012 — w3 — V)" AD + O @ A0* + (03 + wy + )@ A &P

0390 N? — A3 ® A @ 4 (= — by3) &° A @ (3.14)
and
de® = (013 +wy + ) A + (a3 — wi — 0)@® A @? + O330° A &P

4 (fy3 — VD' AN+ Ay ® AN@® — 033 0° A @Y, (3.15)

where (af7) is an even permutation of (123).

The following is an alternative characterization of the various kinematic quan-
tities. The vector € is invariantly defined, and so the Lie derivative along €; of the
metric is also an invariantly defined quantity. The Lie derivative along ey of the

one-forms w* is given by

L50° = d(6])@®) + &y]da? = —in@t — dew? — isw?,

»Cé‘o@l = Opo'+ (012 + w3 + 93)@2 + (013 — wo — Q2)@3,

Eé‘o(z)z = (912 — W3 — 93)@1 + 022@2 + (023 + wy + Ql)(z)?)

2Similar, although not identical, quantities were previously defined by Greenberg (1970) and
by Harness (1982)
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and

Lo0% = (013 +wy + D)@' + (a3 — wi — 0)@? + 0330,

0

The Lie derivative of the metric is
Leyg = o (@ @ 0" + &% ® 0°) + 20,50" @ &°. (3.16)

We first note that —Lz,&° is invariantly defined. It measures the change in length
along the fluid flow direction as the flow is followed. It measures acceleration since
the fluid flow vector has unit length. The last term of (3.16) measures changes of
spatial length as the fluid flow is followed. The expansion tensor is therefore given
by

1 1
5(@0 ® ") A (Lag) = 5(5609)@(@0 Aw®) @ (@° A &)

= (@ A@*) @ (@0 AGDP).

The expansion scalar, @, is found by considering the propagation of the volume

form, as follows:
0" N N@D? A@® = Lgy@® ANt Aw? AP = (011 + O + 033)0° A @' A@* AP
The following is also an invariant quantity:
@ A d@® = 2w3@® A @' A @? + 2we@° A @ A @' + 20@° A @ A DP.

It does not involve any change of length as seen by an observer travelling with
the flow, since otherwise it would appear in (3.16). Hence it represents the rate of
rotation of the fluid flow. The vorticity vector (with index lowered) can then be

found by

Wa@® = x=w° A d&®,

1
2
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where * is the Hodge® star operator. This operator is a linear operator that obeys

s Nt A = @5,

s Nt A @ = @

s NP Aot = ©&?
and

st NP A = &

The spatial triad rotation, €2,0%, is given by

1
Q0% = — * iwo A (Z(dwb) A wb> .

b

The invariant definition of @° thus implies an invariant characterization of ,@®,
waw® and 0,50% ® &%, At this point, the group of indeterminacy is SO(3,0,R),
representing the possible rotations of the 1 —2 — 3 triad. Using the aforementioned
quantities, it may be possible to define uniquely the direction of €;. For example,
the acceleration vector, the vorticity vector or the triad rotation vector, if they
do not vanish, can each be chosen as this invariant direction. Another choice
of invariant direction can usually be made by examining the eigenvectors of the
expansion tensor, by choosing the eigenvector with the smallest eigenvalue, if the
eigenvalues are all different, or by choosing the eigenvector corresponding to the
non-repeated eigenvalue, if two eigenvalues are equal. The only situation when we
cannot find an invariant direction using the acceleration vector, the vorticity vector,
the triad rotation vector or the expansion tensor is when the acceleration, vorticity,
and triad rotation vectors all vanish, and, at the same time, the expansion tensor

has three equal eigenvalues.

3See also page 93.
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We shall suppose that we can invariantly find @w!. The expression @° A Lz o' is
then an invariant quantity. It corresponds to the acceleration of the €;-congruence,

projected into the 1 — 2 — 3 triad. We can therefore find dy; and d3 by computing
@ A La @' = dy® A D* + ds@® A &P,

The (projected) tensor, "y corresponding to the expansion of the éj-congruence
is computed as follows:

1 A
5 (@ Ae") @ (@AD" ALag=04pE° A& A& @ (@° A@ AGP).

The (projected) vorticity, n, of the €j-congruence obeys

—P AR ARt = ne® Aot AR® AP
The (projected) rotation of the 2-3 dyad with respect to a Fermi-Walker propagated
€1-congruence is given by

—@* At A <Z(dwa) A of“) = (n+20)@° A&t A @ A

(6%
Given an invariantly defined €y, an invariant definition of €; thus enables us to
obtain an invariant characterization of d @?, 04p0” @ ", n and Q. The remaining

indeterminacy is SO(1,0,R), representing the rotations of the 2-3 dyad.

The acceleration of the e€s-congruence, projected in the 2-3 space, is given by

As@?, and is computed using
—P AN@t A Lg@0? = Az@® At AR

The tensor Ayw? corresponding to (projection of) the expansion of the €-congru-

ence is computed as follows:
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3.2 Jacobi identities

The exterior derivative of the structure equations (3.12)—(3.15) provides constraints
on the first order derivatives of the kinematic quantities. They take the form of four
equations in the six-dimensional space with basis @ Aw!, @® A@?, @° A3, o' A@?,
w? A3 and @3 Aw!. There are therefore 24 coefficients that must vanish, although

not all of them are independent. The equations represent the Jacobi identities of

the Lie algebra generated by €y, €1, €5 and é3. These identities are equivalent to

01 As

OpAsy

80 d3

Ood>

9o As

— 052+ 209900 + Qdy — Azlzg + 93055 — 2013 + 21612 — Dabo
+2w3 0 — QA + 2wss + Oyzdy — Oo3 Ay — bads,

— 030023 + Oab33 — nws — 1y — b1z — Qolag + Do + 013055 — 0130
—wBys + wold 4 Dy + D5y — Ay — B30 — Bygws

—033012 + D A — Oa3tts + Wity + ity + G331t + w1 As — Oa3As,
—Qof33 + 0130335 — nQs + 01311 — wotly + w3 + Qs — Oy
+01013 — Orws — D1y — dol + QaQ + O1ofos — Qoiy

161z — Or1ils + 0120 — nws — dabaz — dowr

—dab3 + wiboz — wbss,

—nwy — Qs — b1z — Qoo + Do + O13053 — 015Q — waby + 121
+waQ + O1900 + wabas — o1y + 016015 + Drws + 0102

+dsQ + Qaby + Qi + wathy — 1t — dabaz + dawi — dobas,

— 03 — NS + wsQ + Q30 + D302 — Oowr — Do + Oty

+Q3Q + 019053 + 1 + 0122 — Dty — w1ty — Oagiy

— Ay — wiAs — O3 As + Oty + 02905 + wabog

—022013 — Aslzs — nws,
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don = 03wz + Oawy — Oalhz + Witz + dofdy + 01213 + w3 Az + 01243 + 05823
+05829 — 01312 + Qo Ay + Q3A3 + 03012 + Qotin + Q313
—nbg + d3Q3 + 0111 + wr Ay — 013 A9 + watly + d3ws
—dath3 + dawa — nblzz + d3b12,
Oobzs = Asws — 2w10a3 — Qoity — g + 20930 — Agbry + Qody — wotity (3.17)
—033011 + 01035 — O13113 + O3ty — 20005 + O13ds + A
—03013 + wads — 03y,

1. 1. 1.
a(]wl = —§U3A2 + Qg&)g — QQW?, + 912(,02 — CL)1922 + iuln — 58211,3 — w1933

1. L, .
+013w3 + §U2A3 + 5&3“2,

1. 1. 4 1. 1. .
Oows = §U1d3 + wsbas + 5“29 + 581U3 + w3l + 5“3933

1. 4 1. .
—walbi1 + §U2923 — wallzg + w1l — 5&3“1 — w3, (3.18)
.oA 1, . .oA . oA )
Opws = —§U2922 — wsblag + walblas — 581162 + 5“39 - 5“3923 — wsb — §U1d2
1
+5821:L1 + le2 — w291 -+ w1913, (319)
. 1 1 1 1 . 1 1 .
Oobas = §a3w3 — 552012 — 582913 + Swstis + §d292 — 5912U3 + 01093 (3.20)
1 1 1 1 1 1 1
—§M3A3 + 5912143 -+ 5(9393 — 58292 — 50131@ + 59214.2 — 593143
1 1. A A 1. . A
—533912 - §Q2U2 + 03380 — Q1050 + §Q3U3 + 09311 — wi0s9
1 1 1 1 . A 1 1
—§d393 + §W2A2 + 5913142 — §w2u2 — 093011 — §d3w3 + §d2913
1 A A A 1
+§d2w2 + 9(922 — 9339 + w1933 + §d3(912,
. 1 1 , 1 3 . 1
DY = 018 — —0sw3 — =Oows + Oty + =02013 + —wstis — =dofds
2 2 2 2 2
1. A 3 1 1 1 1 .
—591271,3 — Q@H — 5&)3143 + 5912143 + 58393 + 53292 + 5913162

1 1 1 1 1 A
—592142 — 593143 — 583912 + 592112 + 59303 + 20w — wib
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A A 1 3 1 3 . N
—033023 — 03020 — §d393 — §w2A2 — 5913142 + §W2U2 + 093052

+;d3w3 - ;d25’13 + ;dQWQ + O33053 — wifs3 + ;dsen,
Oobaz = Oty + O1ady + 01022 — A3z — Qads + Quily — 20550 + waity  (3.21)
—01911y — 022011 — Agws + 21093 + 291095 + 0o Q3 — A3Qy
—0Ohtha + Oows — wady,
B3 = 203303 — Dabz3 + 201 Qs — QA3 + O33ds + 2ws03 + 01 Ay
—205 Y + o3 Ay + Asfas + 03 + Qdz — Oy + 2w b3,
Orw; = —wilsy — Oows + daws + wally + Twy + Wity + dsws — wa Ay
—O3w3 — w3 Az — w1é22
and
Oydy = 20wy — 201101 — 2015w + 10 — 201303 — do Ay + 12z — 203w,

+d3A2 + né33 + 82d3.

3.3 Connection

The connection, ¢, is the unique matrix of one-forms that satisfies
do’ = ', A&

and
i + i =0,
where ¢;; = ¥ ;nii, and 7 is the signature matrix n = diag(—1,1,1,1). Solving for

@ ;» We obtain

9001 = —Ulajo — 911@1 + (—WS - 912)@2 + (WQ - 913)@3’
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<P02
9003
8012
<P23
and

9031

= —Q.J,Q(IJO + <w3 — 912)@1 — 922(112 — (923 + wl)w?’,

= —Ug@o — (Wz + 913)@1 + (—923 + wl)oizz — 933@3,
A A 1

= Q30" + do@t + Og9i0® + (093 + 5n)af”,

L1
= Qa0+ (Q - 5n)a)l — A3® + Ayi®

A 1 A
= QQ(DO — dg(Dl + (923 + 571)(;}2 — 033@3.

3.4 Riemann, Ricci and Weyl tensors

The Riemann curvature two-forms are given by

0% = dy", + ¢ . A v}

Explicitly, the various curvature two-forms are

0%

0,

0’

o',

0%

and

RY01@0° A @' 4+ R%100@° A @2 4+ R%1930° A @2

+R% @' A @? 4+ R%930% A @® 4+ RO1510° A @t

R%102@° A @' 4 RY900@° A @2 4+ RP9030° A @°

+R% 100" A @ + R%930° A @® — RO310" A @3,

R%03@° A @' 4+ RO903@° A @2 4+ RY4030° A @°

+(—R%93 — R%31)@' A @ + R3930° A @* 4+ R%3310° A @t
—R%15@° A @' — R%190° A @% + (R195 + R%31)@° A @?
+RY1000" A D% 4+ Rlys@® A@? + Rlogi@! AP,

—R%03@° A @' — RC930° A @* — R5930° A @3

+ R 930" A 0% 4+ R?3030% A 0% + R%33,0° A 0

76

(3.22)
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0%

- —R0131(D0 N (Ijl - Rogglajo N (212 - R0331(DO VAN (223

+RY510 A D% + R%330° A @% + R3510° A @'

7

‘s 0 0 0 0 0 0 0 0 0
The twenty quantities %101, 27102, R 103, [T°112, R123, R 131, V202, R203, 127212,

0 0 0 0 0 1 1 1 2 2 3
R993, R7231, R7303, RV323, R331, R 212, R 923, R 931, R303, R*331, and R°3; are

given by:

0
RlOl =

0
R103 =

—07; + 03 + wi — 07, — tads,
1. . 1. ~ 1, 1. ..
581U2 5 38 + §U1d2 + 5“371 — 013023 + 01380 + 020803 + g

—011012 — wowy — Qa3 — §ﬂ3é23 — 012029 — 5112@22 — 0ob12

1, .
—011Q23 + 5(92%,
1. . 1. 1. 1. 4
—uo) + —O1u3 + —tds — wawy — Opbrs — 0116013 — —tabas
2 2 2 2
o 1. .
+uuz + 533U1 — 0128 4 01182 + Q3093 — 013033 — 05382

—; I9n — 012023 — ; '3é33,

Oaf1 — 2015050 — 91015 — O11dy — Oyws — 2wty — wn)
ooy — dawy + daflos — 2013055 + ;n913 + ;m& + 0159,
0230 + w3 Az + Oaws + 0111 + w1033 + 033023 + wa Ay — 0134,
—;71933 — 0o — O30 + wibay + 012A5 + Osws — ;nem +
05012 — O33003 — 2ty

wsQ + O11dy — dobos + 2013053 — 3035 + 01615 — 2waily

015 — dowy — ;nwg + ;neu + 2015055 — Orws — D361,

—932 — 9%3 — 80922 — 6%2 + U% + w% + wg

—2023012 + 1009 + Oattn + 2001093 + s As,
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0
R 331

1
R 212

1
R 223

1
R 231

1, . o 1. 1.
—020(0 + 533U2 + uzug — §U2A3 + 03380 + Q3612 — 013012 — 5“3142

1, . .2
—013823 — 023092 + §3QU3 — wows + U163 — O33023 — Opbas,

A 1 A 1
—033023 + §w1n — 2012dy — w1023 + 020192 — 01020 — 592371
+é22911 — Oows + Asbs — 922é22 — 2wstly + Agwa + 292397

. A 1
—Oawy + Oowy — Oabag + 03020 — O22013 — 57%03 — Asls3

+A3022 + w3bag + 012053 — 2wrtty — 202345 + 2”912,
;”933 + 01342 — watly + O10a3 — w3 Az — 03012 — Dawo
twstz + dabhz — ;91171 + Q05 + 033053 + 023025 — O30
sz — 0339 + Wwr — wibas,

—03; + w5 + Ug Ay — O35 + 15 — 201003 + 200015 + Dsis
iy O3z + w? — 075 — Db,

—013055 — Dswi — 2witly — Dabzz + Aalos + Oz3015 + 2”913
bz + ;nwz + 2053 A3 — 033 As + D333 + 03623,

1 N A A .
—Asb19 — 592371 — wiba3 + O3023 — Oswa + 205382 — 2wotis

. 1 .
+033033 + Asws — 03613 — iwm — 033011 + 2013d3 + 01033,

—20055 + 13 + 2Qws + 02, — Asds + 62, — dod,

—in2 — 011090 — w3 +d3 + 1025 + 0%,

—wswy + ;agn + Doz + 213 + Agbas + 2093 A5 + O9613
—83é22 — wallag — Ooaws — ndy — A3é22 — O12023 — w112,
—013ws3 + ném — dyAz — é23522 + ;8171 - é33é23 - 81é23
—dsdy + 033 + 011023 — O11w1 + 2Q0ws — 0222 — B0

—013012 — wows + Oads,

78
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R 3 o

R2323 = 82A2 — 933 + Ag -+ 1712 + 2Q1w1 -+ Ag + 922933 — wf
+9§3 — 09033 + 03 A3 — Qn,

R0 = —wywy + w1y + 033010 + D303 + 2w Qg + 2055 A5 + nds

. 1 . .
+wallag + Al — 53371 — 013093 — Agls3 — Oab33 + O33w3

R = —0O110s3 + 01033 — Dsds + 20003 — w} — 1y + d
02, + 62, + 024 + 20wy — inQ — dyAs.

The Ricci tensor, which is a 4 x 4 symmetric tensor, is formed by contracting the
Riemann tensor, i.e. Rg = R'gip. The components of the Ricci tensor are thus
obtained by calculating

Ryy = —R%101 — R%02 — R%303,

Ry = R+ R'op + R,

Ry = R+ R'aiz + R0,

Rys = R's03+ R%131 + R303,

Ryt = —R%10+ R%3,

Ry = R°11s— R'3s,

Ros = —R%31 + R%3,

Ry = R — R,

Riz = R%3— Rl

Rys = R%03 — R'as1.
They are therefore given by

Ry = Oobs3 — 1100y — 1035 — U1y Ay — Byt — Bytiy — Dstig + Doy + Bobas
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Roy

ROQ

R03

R12

R

—} + 07 — U3 4 035 — 2wi + 2035 + 207, — 2ws

+03, — U3 — 2w; + 203, + tady + Usdz — Uz As,

01022 + 01033 + 2053055 + Oa900 — Va5 — V3013 — Daws + Doy
+033033 — win — A3bis — Agws + 2wstis — O

+2015d5 — 033011 — Asbrz + Asw; + 2013d5 — 2wsils,

—03093 + Oall33 — nb13 — 913é23 + 913Q - w2é23 - W2Q

—2015025 + 0011 — 01612 + Dswi — Orws + B33 Ay — 2wty

—011ds — Oz3w; — 33012 — Asbay + 2wyity — 202343

+d3093 — d3zwi + dabas,

—2013035 — Oaba + 2watity + Azbay — w3+ Osfh1 — O3 + 3002
— 0wy + O1wy — 12003 + N1z — O11ds — 015 — 2wyl

—203 Ay + Oypws — 022013 — Assz + d3b3 + dowy + dabz + wsbos,
d3 + 932 — dy Ay — 011033 + 91055 + Oyity — Oofy + 0133 — Oady
—Oyds + 209w, + 12 — 02, 4 d2 + 02, + 2Q30,, + 202, — ;nQ
—209013 — tady — Uzdz — Azdz — 011022 + 2Q3ws,

—;u?ﬁ — 011823 + ;uldQ + ;u:ﬂl — walhs — 012022 + 022823 — (2203

A 1. . 1
—w1bhs — 611012 — 2wy — 03643 + 5821/4 — Opb1a + 53371

1, . A N 1. 4 1. 4 ~
+§81u2 + 033 — Ay — §U2922 - §U3923 + Asl33 — nds
— 033w — 03015 — 2093 A3 + 0130 + gty
1

. 1 1 A 1 1. -
5517«13 — Oalla3 — 53271 + 533111 + 03029 — Opbhs + 5111613 + 51129

. o 1. 4
—A3l33 + 6119 — 011613 — 013053 + Uytg — 5“2923 — 03382

1. 4 1. N
) 3033 — 2w, €3 — 01260 — 5“2” + wsblas + wib12 + A3l

+ndy + Orowy — 2093 A5 — B015 + Qbas,
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Ryy = 12+ A2+ 01035 — Oyblay — 02, — Osdy + B Ay + O3 As + Dt
+iigAs 4 20095 — Asds — 011025 — 20023 + nbyg + 20sws
+62, + ;nQ — 032033 — O + Og9f33 + A2 + 011649
—2Q3015 + d3 + 2Qwy,

Ro3 = —0gba3 — Oodz — ;&n — 033023 + ;5’3?& + ;327503 + 01003

—;ﬂ?,Az — 0139 + dy Az — sz + 01303 + O1ows — ;u2A3
023055 + 011001 + O33055 — 0330 + 022Q — 011055 + dydy
g0 + Qabs — Oo3fz + 0330 + gty — 022 — 20w

and

Ryy = A2+ 01055 — Qoblss — Dsds + Dy Ay + D3 As + Osiis — 201055 + 2Q5ws
—dyAg — 011033 + d2 — 025 + 0%, + 11033 + Uy Ay
+xwﬁ—n$y+@+agﬁm+;n?—%ﬁ%—ﬁn

—{—éggégg + Ag + 2Q w1

The ¢; that absorb the Ricci tensor components from the Riemann curvature two-

forms are given by €; = Bij@j, where B;; = Bj; and where

1 15) 1 1
Boy = —-—Rgs— —Roo— —Ras— —R
00 12333 12Roo 12322 o
1
BOl = _§R017
1
By = —5302,
1
By = —5303,
5 1 1 1
B = —— — S R
11 12311+12333 12Roo—|—12 22,
1
B12 - _§R127
1
Bis = ——-Ris,

2
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5 1
By = 12R22 + 12333 12300 + ERH;
By = —5323
and
1 5 1 1
Bss = _EROO - ER&% + 5322 + ERH-

The Weyl curvature two-forms are given by

WY = W0 A@b + W0 0@ A @? + W0 030° A @3
+WO0 0wt A D% + W0 930°% A @ + WO A @,
W% = W00 A@t + W0a® A @* + Wosa° A @°
W00t A D% + WO 510% A @® — W0t A @3,
WO = WO 030° A @' 4+ W0%030° A @? — (0101 4+ W0h00)0" A &3
+ (W03 — W)@ A@? + W0 iw? AG> + W05 A G,
Wy = W2 Ad' — W00 A@? + (W0 + W03 )@ A &3
—(W°01 + W002)@" A @® + W0i030” A & + W03 A &%,
W2 = W0 9s@® Al — WO 5@° A w? — W0100° A &3

+WO 050t A D% + WO 0107 A @ + W00 A @t

and
ng — —W0131(DO A (Dl . W0231(DO A @2 . W0212(D0 A (IJS
‘i_VVO203@1 A @2 + VVOIOZ(D2 A @3 + W0202@3 A (Dl,
where
1.4 1 1. . 1 1 1 1
wo = ——01099 — =001 — =010 —0pb —0pb — 011 —0sd
101 50122 = 300t 6133+6022+6033+31U1+622
1 1 1 1. . 1. . 1 1
+633d3 + *82142 + *83143 — *82102 — *83103 + §A§ + §A§
1 1 1. 1.
+ 03 6 Ui — 9%1 3 i — 932 d% - 6U3A3
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0
W102 =

1 1 1 1 1 1.4 1
——0 —01,0 —Asds — =Usds — =Uady — =Qn — =)
3 3UJ3+611 22+6 303 3U33 3U22 3 n 3 2Wo
1 1. 4 1 2 1 1~ - 1
— oAy — =110 —n? 4+ 20 — —6950 — 0550 —010
6U2 2 6“1 33+3n +3 1W1 322 33+322 33+611 33

1 1. - 1 1 1. 1
+6d2A2 - 6u1922 — 92913 + gwg - 39%2 - 66?2’3 — 56%3

1 1 1. 2 A 2 2 1
1.4 3. . 1 1 1. . 1. -
—0Oyws + 533923 + 182161 — 530912 - 13371 - 131142 - 532933
0 0 Q) — 20001 — Sindy — ity + i)
W3lo2 — W3li1 — Wally 9 11012 4U1 2 4U3 23 4U3
3 3 1 1 -
+§w2923 + 2w Qs + §w1913 — wowy — th3ba3 + 5933003 + §A2922
R 1 1. 1 1. . 1 3. 4
+053A3 — 5912922 + Zusn — 591193 + B 1U2 + 591391 — ZU2922

1 1 - 1 1 1
+§933912 - §A2933 + §nd3 + 592293 - 592923,

1. 1. - 1 3. . 1. 4 1
—Zal’d;; + 582923 + ngg + Zagn + Zagul — 563922 — 58@613

. 1 1 1 A 1. .
+023A9 + wab1 + wablzs — 591291 - 5922002 + 5143933 - ZUQQ

.oa 3 1. 3 1. .
—ZU3933 — w3l — 5003923 - 1U1d3 + 2w 823 — §w1012 + SUatis
L — 20,10 +199 Brollos — il — ~ 0150
—W3W] — — — = - - — =1 ——
Wi — 508330 — SUnbhs + 502013 12023 — 7 Uty — 5013033
1 1 1 1 - 1
—0119) —Q3095 — —ton — = A3099 — —nd
+2 11 2+2 3023 4u2n 5413022 271 2
) 1 1 1 1 -~ 1=
—wils + = Aglas + O3 A3 + —dslas — —0al33 — —wo ) + —033012
2 2 2 2 2
189+9+1d9 +189 +1é +1 by — L4
9 1012 ™ NU13 9 2U29 B 2U11 5 33Ws3 2W2 23 9 3W1
1 1 1 1 1 A 1
——011dy + =03095 — —03349 — = —015€) — w3t —
50u 2 + 2(93 28— 5U3342 2(93&11‘1‘ 513 w3y + 27%02

3
2
093020 + w3 Az + Oows + 0111 + w133 + O33653 + wa Ay

1

—912é22 - 913é23 - 5(91013,

1 A .
—013A9 — 571933 — O3 — 093020 + w129 + 010 A3 + Dsws

33
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0
14 212

1 A .
—571922 + 03012 — 033023 — 21wy,

. 1 1 1 1 1
—(walty + —nws + §A3933 + 551002 — 581913 + 582001 — nbio

2

1 1 1. 1 1 )

—533@22 + 09345 + §d2923 — 5922002 + §d2w1 + §d3933 + wius
A 1 . 1 1 - 3 A 1. 1 A

—013033 — 5003923 + 533911 - 56039 — 5912923 + 5922913 — 5912Q

1 1 1
—5‘911053 — 5143922 + 532923)7

1. - 1 1. - 1 1 1. . 1
_681022 + 680911 + 581933 — 580922 + 680933 - 631u1 + éazdz

1 1 1 1 1 1 1
——8d——(‘9A——(‘9A —Oylly — —Osliz — — A2 — = A2

30343 b Ao 33+32U2 63u36263

1 1 1 A 1 1.

1 1. 1. 1 2
_§QSW3 + 6911922 + éAsds + gusds + 6U2d2 + EQ” + §Q2W2

1 . 1. 1. 1 A A 1
—inegg + 91923 — 6U2A2 — 6U1¢933 — 6712 + 9923 — lewl

1 1. - 1 1 1
+*922933 - *922933 — *911933 - d2A2 + U1922 + wg 9%2

6 3 3
1 2 1 1.
1
3 ]. 3933 §d§7
1 . 3. 1 1. .
—Oywy — waws — B13612 + 571922 — 1U3A2 + 592912 + §U3U2

84

1 1, - 1. 1 1 1 1
+ 011023 — —033093 + —1us A3 — 5911601 + 593391 — 5933923 — 5923922

2 2 4

1 1 1 3 1 1. 4 1
——0y0 —Oads + =0 —Oqltyg — =09l — =010 —0
2023+223+41n+4su2 42U3 2123+213W3
1

1 1 PN 1 1 1. 4
—0 — —d3dy — —033050 — —do Az — =013803 — =020
+2 12Wa = 3l — 5 U200 — 5dads — 5ligdis — 5l

1. 1 1. 1~ a
+§U1923 — 592291 — w b33 + 5“1” — wi b + Qzws + 59339,

1 1 1 A 1 1
5922911 — 5933911 + 013d3 — 531922 + 20532 — 5142912 + 5143913

1 1 1 . 1 A 1
—|—§A2w3 — 012ds + 532912 — 592371 — W3lg — 5922922 — Eazw:a
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1 1 . N 1 . 1 1
+§5’1933 - 553002 — wWally — wibhs + 5933933 — 5(93913 + §A3w2
and
A A A A 1
W3 = —(—Q052 + 0330 — w1033 — 01053 — 33025 + 591171 — O3w3 — wa Aoy
+03012 + dows — d3bia — O1wr — O13As — dabi3 + 2watis + é23911

1 ~
+d3(.4.13 — 5”933 — 923022).

These equalities are equivalent to the following ones, taking into account the Jacobi

identities:,

W0 = R+ é(QRoo — 2R11 + Ry + Rs3),
Won = B~ 3R,

W0 = Rio3— ;Rm,

Wi = Rns— ;Rom

WO = RYps,

WO = R+ ;RO&

W02 = R+ é(QRoo + R11 — 2Ry + Ras),
W03 = Rly3 — ;RQB
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3.5 Einstein field equations

For a perfect fluid, with u being the energy density and p being the pressure, the

energy-momentum tensor is given by
T ®o" = pa’ @@’ +pd 0* @@ (3.23)
«

With the sign convention used in (3.22) for the Riemann curvature tensor, the

Einstein field equations are given by

R
Rab - Egab - Agab - Tab'

An equivalent expression is given by

T
Rab = —dap + Egab - Agabu

where T' = T, is the trace of the energy-momentum tensor. It follows then that

the Einstein field equations, for a perfect fluid, are given by

Rop = —4 — 2+ A,

R :R22:R33:—%+

N3

— A,
and

Ry = Rog = Ro3 = R12 = Ri3 = Ro3 = 0.

3.6 Integrability conditions on the energy density

Closely related to the Jacobi identities are the integrability conditions on the energy
density, . They are determined by taking all the commutation relations on p. This

is easily computed using differential forms, by making use of the identity:

d?p = 0.
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We notice that, since p is a function of u, the preceding implies

0=d <dp> . (3.24)

M+ p
Using the contracted Bianchi identities, we obtain
0 =d(p/e” + i) .

The evaluation of this equation implies that a particular two-form must vanish.
Therefore, the six components of this two-form must also vanish, and so

1

Doy = v <—a19PH(M +p) + tgwsp — Usbisp’ + p 20101 — PO + 0
—U3Qap” — Uswop' + UsQ3p” — Uab12D) , (3.25)

Doty = ;, <—i629p”(,u +p) + 12000 — i 010p’ — tywsp' + Wap 0 — ap' O
—3093p" — 1 Qzp’ 4 3’ 4 tzwnp’)

Oz = H (—uz6p” (1 + p) — wrb13p" + Uwep’ — 11’ — tabasp” + 1 Qop’

—|—u3p'26 — U3p'Bs3 + plzaz‘g — u2w1p/) ;

iy = Oylty — 2w30p' + 13Q — 1190y — tizbys — tyds, (3.26)
Doty = —2wbp’ — UgAs + UgAs + D3t + Win

and

Ogtty = —2wplp + tighy + Oritg + iy dy + 3033 + . (3.27)

We note that the quantity being differentiated in (3.24) is the negative of the

differential of the function F' of White and Collins (1984).

3.7 Tetrad determination

The Lorentzian metric (3.1) enables us to construct an orthonormal tetrad with

axes (€, €1, €, €3) in the tangent space of each point of the spacetime. The tetrads
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are not uniquely determined. The group of freedom in their orientation, ignoring
reflections, is the full Lorentz group SO(3,1,R). We now require that the éy—axis
of each tetrad be aligned with the unique future-pointing unit timelike eigenvector
of the energy-momentum tensor (3.23) of a perfect fluid. The vector & is then
the fluid flow velocity vector of the fluid. This restricts the possible tetrads. The
indeterminacy in their definition is now isomorphic to SO(3,0,R), corresponding to
rotations of the spacelike triad (€}, €, €3). The structure equations are now those

given in section 3.1.

We shall study perfect fluids that are shear-free; these are fluids where the

expansion tensor of the fluid possesses the simple form

Oap = géaﬁ- (3.28)

Since the fluids that are of particular interest to us are rotating fluids, we now
choose the €1 —axis in such a way that it is parallel to the vorticity vector of the fluid.
This choice involves solely rotations of the triad (€}, €, €3). Since equation (3.28) is
invariant under such rotations, this choice of €; does not impose any restrictions on
the spacetime. We thus have that wy = w3 = 0. The indeterminacy in the tetrad is
now SO(1,0,R), representing rotations of the dyad (&, €3), together with a possible
reflection €; — —¢) and a reflection in the (2 — 3) space, (€, €3) — (—€,,€3). The
Jacobi identity (3.18), the integrability condition (3.27), the shear-free condition
and the condition that wy = w3 = 0 # w; requires that €23 be zero. Similarly,
equation (3.19), equation (3.26), the shear-free condition and wy = ws = 0 imply

that QQ = 0.

At this point, @ and @' are determined. Let o be a parameter representing

the rotational freedom left in the determination of @? and @3. Let @? and @3 be
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another choice for these directions. The relation between (w?,©3) and (0¥, @¥) is

2/

@ cosa  sina w?

w3’ —sina cosa w3

It follows then that the structure equations for @* and ©* in terms of the kinematic

quantities associated with @? and @ are

0
do? = dano® + 5@0 A@* 4 (wy + QY A ¥
—l—(égg c0s® @ + 2093 cOS v sin av + Bsg sin? a)o' A ¥
+(Aysina — Az cos a)w® A w¥

+ {(0}2 — 033) cos asin a — 4 g3 (sin® @ — cos? a)} o¥ A !

and

0
do® = —daAo? — (w + QN A* + -0 Ao

w

+ {(égg — By) cos asin a — Q + Oas(cos® o — sin? a)} o' A

+(Ay cos a + Azsina)@® A o¥

—I—(—égg sin o + 2093 cos asin a — sz cos? )@ A @t
If we let w] and €2} be the kinematic quantities analogous to w; and €2y, then

2w + W At A A =0t A@® Ade? + @t A@Y A do

= 2da A& A@¥ A@Y 4+ 2(w; + Q)@° At A ALY,

We can therefore require that w| + 2} = 0, provided that we require that dyar +
(w1 + Q) = 0. This result that wy + € can be set to zero also holds in the situation
when the fluid has non-vanishing shear. There is still freedom in the choice of «,

provided that we maintain the constraint that dyae = 0. We compute the effect of
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the rotation on the quantity ézg as follows:

2005'° Nt A A DY = —dw¥ A A @Y +do¥ AR A DY

= 2 ((égg — By5) sin v cos v + a3 (cos® av — sin? a)) DO At ALY NGV

We can set a5 to be zero, by choosing « such that
(A3 — 0a2) sin @ cos a 4 Ba3(cos® ar — sin® ) = 0. (3.29)

Of course, when fay = fo3 = 653 = 0 no constraints are thereby imposed on . Apart
from this special situation, the tetrad {é,} is then completely determined, up to
possible reflections. This is allowed provided that equation (3.29) is propagated
along the fluid flow without introducing new constraints. For the present situation,

equations (3.17), (3.20) and (3.21) reduce to

- 0 - 1 0.
80933 == —5033 + 5816 + gul,
by = —20

ov23 — 3 23
and

A 0 1 0 .
80922 = —5022 + 5810 + g'u,l.

Using these expressions, the differentiation of equation (3.29) along é; yields the
identity 0 = 0. We remark that if the fluid possesses shear, then this differentiation
of (3.29) will, in general, introduce new constraints. We also note that, prior to
setting wy + 1 = 0, we could have set B3 = 0. Propagating this expression in the
fluid flow direction would have forced w; + 21 to vanish, without loss of generality,
except when Oy, = 6s3. The tetrad is now fixed, up to reflection of axes, except
when égg = égg. When it is the case that ézg = égg, remembering that égg = 0 was
imposed, we can still set w; + {2; to zero, but there are no restrictions on «, i.e.

there is the full freedom of rotation of the 2-3 dyad.



Chapter 4

The Petrov classification of the

Weyl tensor

Que diable allait-il faire dans cette galere?

Moliere

IN THIS chapter, we show how the Weyl tensor can be classified using results
from linear algebra. We refer to Grossman (1984) for an elementary introduction
to the concepts from linear algebra that we shall need. In particular, for a two-
dimensional matrix with a double eigenvalue for which the associated eigenspace is
one-dimensional, Grossman (1984) shows how to compute a vector that is linearly
independent of this eigenspace. We use that example in Grossman (1984) as a guide
for our calculations for the cases when the dimension of the eigenspace associated
with a repeated eigenvalue is less than the multiplicity of the eigenvalue. The other
calculations are from the present author. Hungerford (1974) is a more advanced
reference about algebra in general and linear algebra in particular. Kramer et

al. (1980) provide more information about the Petrov classification.

91
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The fluid flow vector may be employed to split the Weyl tensor into two tensors:
the electric part, denoted by E,, and the magnetic part, denoted by H,,. More
information about the electric and magnetic parts of the Weyl tensor can be found
in Kramer et al. (1980) and in Ellis (1971). These tensors are symmetric and trace-
free. Relative to a frame in which €; is defined to be the fluid flow tangent vector,
they satisty Ey, = Hp, = 0 and obey

WY = —Ena® Aet — Baa® Aw? — Bz’ A @B
—Hy@? A& — Hjp@® Aot — Hyso! A &2,

WY = —Epa® At — Epd® A@? — By’ A &P
—H50* N @ — Hoow® N0t — Hoso' A &°

and

WY = —Ep3® Ae' — Bya® A@? — B30’ A &P

—Hy30% A @® — Hos@® A ' — Hsqo' A &P,
Since both the electric part and the magnetic part of the Weyl tensor are trace-free,

it follows that Ej; + Eay + E33 = 0 and Hy; + Has + Hszs = 0. This enables us to

make the identifications:

_ 0
Eyn = =W,
Epn = —W°
12 — 102,
By = —-W°
13 — 103,
Ey = —W°
22 — 2025
Eyy = —WY
23 — 203,
E33 - _Ell_E227
Hy = —W°
11 — 123,

0
Hyy = —Whis,
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Hiz = =W,
Hys = =W,
Hy = —W';

and
Hsy = —Hy — Ho.

Introducing the definitions
W = (0" A@®) @ Wa, (4.1)

and

(@ ®&)] (0" Anh) @ (° Anf)) = (85" = 5in%) @ (S50 — o),
with | (the hook operator) extended by bilinearity, it then follows that the electric
part of the Weyl tensor with respect to the fluid flow is obtained by

Eu@*@a®) = (@° @) W, (4.2)

and the magnetic part of the Weyl tensor with respect to the fluid flow is obtained
by
Hop (0" ®@") = (@° © &°)] ((@" A&®) @ xWap) | (4.3)

where the * operator! is a linear operator that obeys

[\

(W' Aw') = 0TAw,
(@O A = @A
(@ ANDY) = @' AP
@A) = D Ad?

1See also page 71.
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V2k = &+ é,
V22U = & —é,
2m = éi-?:éé
Vom = & +ié,.

This enables us to define the components of the Weyl tensor as follows:

Uy = (kAm) @ (kAm) W,
U, = (kAD®(EAm) W,
Uy = (EAD®@(EAC—m Am) W,
Uy = —(kAD @ (CAmM)W
and

where the exterior product of two vectors, denoted by A is an antisymmetric, as-
sociative and bilinear operation. In terms of the components of the electric and

magnetic parts of the Weyl tensors, we obtain:

1 1
Uy, = §(E11—E22+2H12)+§<H11_H22_2E12)’

1 7
v, = —§(E13 + Hos) + §(E23 — Hy3),
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1 7
Uy = -Egy+-H
2 5 33+2 33,

1 7
Uy = §(E13 — Hi3) + §(E23 + Hi3)

1 7
v, = §(E11—E22—2H12)+§(H11—H22—|—2E12)-

The inverse relations are

1 -
Ey = —(Vo+ Uy — 20, — 2W,),

4

i _ _
By = Z(\I’o—‘h—‘l’o-i-‘h),

1 _ _
Eis = 5(‘1’3—‘If1+\1’3—\1’1),

1 _
Ey = —1(\Ifo+\114+2\112+2\112),

i - _
E23 == 5(‘1’1"‘\1/3—\1/1—\1/3),
i _
H11 = 1(2\112—2\112—\110—\114),

1 _ _
Hyy = Z(\DO — Uy + Uy — Uy),

i _ _
Hyz = 5(‘1’1—‘113—‘1’14“1’3),

H22 - %(‘I’o+\114+2\112—2q/2>

1 _ _
Hyy = —5(\111 + U3+ Uy + U3).

All the information in the Weyl tensor can be regrouped in the matrix () = E+iH,

which is equivalent to

T(Wo + Uy — 20,) (W — Wy) U3 — Uy
Q - %(‘PO — \IJ4) —%<‘IJO -+ \1/4 + 2\112) —Z(\Ill + ‘113>
U, — 0, —i(Ty + Ts) 20,
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This is a symmetric, trace-free complex matrix. Since the trace of a square matrix,
M, is equal to the sum of the eigenvalues of M,? it follows that the sum of the

eigenvalues of () vanishes.

The matrix ) can be classified according to its eigenvalues and eigenvectors.
Let A be an eigenvector of ; therefore, A satisfies the characteristic polynomial of
Q :

K =det(Q — \s) = =X+ [ —2J =0,

with I3 being the three-dimensional identity matrix and the invariants I and J

satisfying:
I =UgU, — 40, U3 + 3(0y)?
and
Uy Uy 0,
J=1 0y U, Uy |=Tglly+ 20,005 — Uy(Ty)* — Ug(T3)* — ()",
U, Uy

For an eigenvalue to be repeated there must be a common zero of K and diC/dA.
Therefore A is a repeated eigenvalue if and only if the resultant of K and diC/dA
with respect to A is zero. We conclude, then, that there is a repeated eigenvalue
if and only if I and J satisfy I® = 27 J?. We say that a spacetime is of Petrov
type I if the eigenvalues are all different, or equivalently, if I? # 27 J2. Since all the
eigenvalues are different, the minimal polynomial of () for Petrov type I is equal
to (Q — MI3)(Q — Aal3)(Q — Asl3) = 0, where A\, Ay and A3 are the three different

eigenvalues.

2This follows since trace(AB)=trace(BA) and a matrix M is similar to a diagonal matrix with

the diagonal elements equal to the eigenvalues of M.
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For @ to admit a triply repeated eigenvalue, K, dK/d\ and d?K/d\? must
possess a common factor. Taking the pairwise resultants with respect to A, and
equating them to zero, it follows that the invariants I and J must both vanish.
The repeated eigenvalue must therefore be zero. We look at the eigenspace be-
longing to the triple eigenvalue zero. This space must be at least one-dimensional,
otherwise there would not be any eigenvectors, and so there would not be any eigen-
values. Suppose that the eigenspace is three-dimensional. Since the dimension of
the eigenspace is the same as the space to which ) applies, then any vector is an

eigenvector of (). In particular, we must have

1 0 0
Qlo|=Q|l 1 |=Q| 0 ]|=0
0 0 1

It follows that the tensor () must vanish, and so the spacetimes that belong to this
class are the conformally flat spacetimes. They are said to belong to the class of

spacetimes of Petrov type O.

If the eigenspace belonging to the triple eigenvalue zero is two-dimensional, we
can choose two independent vectors £ and 75 as a basis for this eigenspace. Choose
a vector w independent of #] and 5. Such a vector must exist, since the eigenspace
is not three-dimensional. The vector Qu cannot be zero, or even proportional to
W, since w cannot be an eigenvector, and so can be expressed in terms of W, £1 and
To:

QU = aw + by + bexs,
where (b1)? 4 (b2)* # 0. We want to show that a = 0. Suppose that a # 0, and
therefore a is not an eigenvalue of Q. It follows that B := (Q — a I3) is invertible.
Therefore

W = by B~ + by B .
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On the other hand, since byz7 + box5 is an eigenvector of (), we have that

B'Q(by7 +boay) = B'0=0
= (I3 “+a B_l)(blx_i + bgffé)
= bll’_i + bgl’_é +a Bil<b1$_i + bg.fé)

= b2 + byxsy + a w,

which is a contradiction since this implies that a = 0. It follows then that, indeed,
a = 0, and so Qw is an eigenvector of ). Note that ) cannot be equal to zero, since
the vector w is not an eigenvector of (). Because every vector Z can be expressed as
a combination of @, 71 and 23, it follows that, VZ, (Q?)% = 0. Therefore the minimal
polynomial of ) for spacetimes belonging to this class is Q*. Such spacetimes are

said to be of Petrov type N.

Now suppose that the eigenspace belonging to the triple eigenvalue zero of () is
one-dimensional. Let Z be a non-trivial eigenvector of ). Every other eigenvector
of () must then be a multiple of Z. Let 1 and y5 be two vectors, independent of
each other and of #, and so y7 and y5 are not eigenvectors of (). Since T, y; and s

form a basis, Qy; can be expressed as

QY1 = aZ + biyi + b2y
Similarly, we obtain

Qys = ¢ + diyi + doys.

By taking ' := dyy; — boys, we see that (2 does not have a component along 5.
Since there is no loss of generality in taking 37 to be this vector 2 and finding an

appropriate vector y5, we can assume that by is equal to zero. For simplicity, we

shall denote b; by b. We then have

(Q — b I3)y; = aZ.
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By the same argument as in the preceding paragraph, the quantity b must be an
eigenvalue of (), and so must equal zero. It follows that QQy; is an eigenvector of ).

We now apply the matrix @) to the vector y5. From the result, we obtain

(Q —dy I3)ys = &' + dvyi.

Let C := @Q — dy I3. We first suppose that d, is not an eigenvalue of (), that is, we

suppose that dy is not zero, whence C' is invertible. It follows that
7 = cO™ 7+ d,C .

Since  is an eigenvector of @), we have that 0 = C71QF = C7YC + dyl3)T =
T+ dyC~'Z, whence C~17 is a multiple of Z. The quantity Qs is an eigenvector of
@, so we must have QQy; = e, for some non-zero constant e. Because () = C'+d» 13,
we obtain eC 17 = y; + doC~ly; therefore, C~1y; belongs to the space spanned
by Z and g7, and so also must y3. This is a contradiction; therefore ds must be
an eigenvalue of (), and so dy must be zero. We thus get that Qus = ¢¥ + diy;.
The quantity d; cannot be equal to zero, since otherwise Q(cy; — ays) = 0, and
so cy1 — ays = fx, for some f. This cannot be, since 31, y5 and ¥ are linearly
independent, whence, (Q?)ys = di7 # 0, and so Q? # 0. However, every vector
w is expressible as a linear combination of 17, y5 and Z, so it must follow that
Vi, (Q3)w = 0. The minimal polynomial of @ is then Q3. Spacetimes belonging to
the present class are said to be of Petrov type III.

We now consider the situation of a double eigenvalue, A. Since the sum of
the eigenvalues must be zero, the non-repeated eigenvalue must be —2\. We have
already handled the situation of a triple eigenvalue, so we can impose the condition
A # 0. Suppose that the eigenspace of the double eigenvalue A is two-dimensional.

Let 271 and 25 be two eigenvectors of ) that form a basis of the eigenspace of .
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Let i/ be an eigenvector that belongs to the eigenvalue —2\. The vector § must be
orthogonal to both 7 and 73, since it belongs to a different eigenvalue. Thus the
vectors 7/, z1 and x5 form a basis for the full space. Let @ be any vector. There

must exist numbers a;, as and b such that
W = a1 o] + ag®y + by
Applying the @ + 2\ I3 operator to w yields

(Q@+2X\ )W = ai(Q — A I3)71 + az(Q — A I3)75 + b(Q + 2\ I3)y
+3a1)\f1 + 3@2/\1’3

= 3a1 7] + 3as\13,

whence,

(Q — A\ L) (Q + 2\ I3)w = 0.

Since @ is arbitrary, the minimal polynomial of @ must be (Q — A I3)(Q + 2\ I3).
Spacetimes that belong to the present class are said to be of Petrov type D.

Now suppose that the eigenspace of the double eigenvalue A has dimension 1. Let
Z and ¢ be non-trivial vectors belonging to the eigenspace of A and —2\ respectively.
The vectors & and gy are orthogonal to each other, since they belong to different
eigenvalues. Let 2" be a vector orthogonal to both Z and 3. The vector 2z’ cannot be

an eigenvector of (). Hence there exist scalar functions a, b and ¢ such that
QzZ=ax + by + cZ.

The functions a and b cannot vanish at the same time, otherwise 2" would be an
eigenvector. Define C' to be equal to ) — cl3. If ¢ is not an eigenvalue, then C' is
invertible, and we obtain

2 = C(ad + by).
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We also have

0 = CHQ-XNL)T=CC+ (c— N7
= 2+C = N7

0 = CHQ+2\I3)ij=C7C + (c+ 2\ I5)7

= y+C 1 c+ 2Ny

It follows that
(c=XN(c+2))Z7=—(c— Nby — a(c+ 2\)7.

Now this is a contradiction, since ¢ is assumed not to be an eigenvalue and Z, ¢ and
7 are independent. Therefore C' is not invertible and so ¢ must be an eigenvalue.

Suppose that ¢ = —2\, and so
(Q+ 2\ I3)Z = aX + by.
Because a matrix must satisfy its characteristic equation, () must satisfy
(Q — X I3)*(Q + 2\ I3) = 0;

however,

(Q =X 13)%(Q + 2\ I3)Z = bA*Y.

In this case, b must be zero. Since
Q(BNZ — af) = 3A(—2AZ + aZ) — a\T = —2\(3% — ai),

we have that 3\Z'— ax is in the eigenspace of —2\ and so must be proportional to

y. This is a contradiction. We thus have ¢ = A, and so

(@ — X\ I3)Z = ai + byj.



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR102

This is compatible with the characteristic equation of (2, and so there are no further
restrictions on a and b, provided that neither a nor b is zero. Let w be any vector.
There are then functions ¢, d and e such that @ = ¢+ dy+ez. We find the minimal

polynomial of () using the following computations:
(Q + 2 I3)W = 3cAT + e(aZ + by + 3\2),

(Q = X I3)(Q + 2\ I3)i = —3ebAj + 3ea\T + 3ebAj = 3ea)\T

and
(Q — X I)*(Q + 2\ L)w = 0.
The minimal polynomial of @ is then (Q — X I3)?(Q + 2\ I3). Spacetimes belonging

to this class are those of Petrov type II.

We can summarize the content of the present section into table 4.1 where the

Petrov type is given by the most restrictive matrix that applies.?

3A similar table appears as table 4.1 of Kramer et al. (1980).
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Petrov | Matrix condition Dimension of
type (use the most restrictive matrix condition | eigenspace
that applies)
I (Q—MI13)(Q—X13)(Q—X313) =0 <A >=1
A1, Ao, Ag all different <A >=1
< A3 >=1
D (Q+3L)(Q—-XI)=0 <—3>=2
<A>=1
IT (Q+3L)2*Q—-N3) =0 <—2>=1
<A>=1
N Q*=0 <0>=2
111 Q*=0 <0>=1
O Q=0 <0>=3
The expression < A > is defined to be the dimension of the
eigenspace associated with the eigenvalue .

Table 4.1: Petrov types.



Chapter 5

The shear-free conjecture

Only a life lived for others is a life worth
while. Albert Einstein

T HERE IS a growing body of evidence that the following conjecture, which we

shall refer to as the shear-free conjecture, is true:

Conjecture 1 A shear-free perfect fluid that obeys a barotropic equation of state,
p = p(u), such that p+p # 0, and satisfying the field equations of general relativity,

1s necessarily either irrotational or expansion-free, i.e., 0 = 0 = wfh = 0.

This conjecture appears to have first appeared in the literature in King (1974).
King attributes it to Treciokas and Ellis (1971).

In the following pages, we present a historical account of the various results
supporting the conjecture. Thereafter, the conjecture is proved for two special

cases. The first case is that when the Weyl tensor is purely magnetic with respect

104
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to the fluid flow vector. The second case is that of a coasting! universe, i.e. one

with the equation of state satisfying dp/du = —1/3.

5.1 Historical survey

In this section, we review the basic results previously obtained with respect to the
shear-free conjecture. Particular attention is paid to features that were critical
to the success of the authors in establishing the veracity of the conjecture under
various hypotheses. Collins (1986) gives a quite extensive discussion on shear-free
fluids in general relativity. In particular, he provides a survey of the literature on

the shear-free conjecture and its consequences.

The first result of which I am aware concerning the shear-free conjecture is
contained in the work of Gdédel (1950). Godel considers spacetimes with a dust
source, i.e. perfect fluids with vanishing pressure. He requires the spacetime to
be spatially homogeneous and rotating, with non-constant energy density. Since
the energy density varies, the space must be expanding. Therefore he requires
that the product wf be non-vanishing. Since the dust is rotating, the flow velocity
cannot be orthogonal to the surfaces of homogeneity, i.e. the spacetime is tilted.
Furthermore, Godel requires that the isometry group must be compact. He shows
that the group must be a three-parameter group that cannot be commutative, and

therefore that it

must be isomorphic (as a group of transformations) with the right (or

left) translations of a 3-space of constant positive curvature, or with

Matter-energy is between attracting and repulsing regimes as can be seen from Raychaudhuri’s

equation.
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these translations plus certain rotations by an angle .

(Gédel, 1950)

It follows then that the spacetime must be a tilted spatially homogeneous spacetime
of Bianchi-Behr type IX. If in addition the metric induced in the 3-spaces of
constant density is positive definite, or, equivalently (Godel, 1950), if the spacetime
contains no closed timelike lines, then the expansion tensor cannot be, at any instant
of time, rotationally symmetric about the axis of rotation. This therefore requires

that the spacetime exhibits shear. Godel considers it very likely that

there exist no rotating spatially homogeneous and expanding solutions
whatsoever in which the ellipsoid of expansion is permanently [Gédel’s

emphasis] rotationally symmetric around w.

Schiicking (1957) generalizes the result of Godel (1950) on the shear-free con-
jecture to general spatially homogeneous dust. Schiicking remarks that shear-free
models with simultaneous expansion and rotation would represent spacetimes that
are intermediate between the isotropically expanding Friedmann models without
rotation and the stationary rotating Godel models without expansion. Schiicking
writes the line element for a spatially homogeneous spacetime with dust in comov-
ing coordinates as follows (with the convention of Gddel (1950) that has Greek

indices running over 0 to 3 and Latin indices running over 1 to 3):
ds® = (dz°)* + 2g0;(27)dz® da’ + gip.(x")dz’ da”.

The velocity is given by
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The length scale R is defined as R* = /=g, where g = det |g,,|. The equation of
continuity and the requirement of spatial homogeneity necessitate that R separates

as

R(z") = S(2°)W (7).

The (00) and the (07) Einstein field equations, since they must hold for arbitrary
27, are then two differential equations for S(z") which are incompatible with each
other under the requirement that both the expansion and the vorticity be non-
zero. Schiicking (1957) mentions that models with both vorticity and expansion
do exist in Newtonian cosmology, as long as one does not neglect the ambiguity?
(which is characteristic of such models) of the boundary conditions. The re-
sult of Schiicking (1957) was generalized by Ellis (1967) to general dust and by
Banerji (1968) for perfect fluids with an equation of state p = (v — 1)u, such that

v # 10/9.

Ellis (1967) studies general relativistic pressure-free matter. The scope of this
work covers much more than the shear-free conjecture; however, we shall restrict
ourselves to that aspect. Ellis proves the conjecture for shear-free dust, i.e. for
fluids without pressure. An immediate consequence of requiring that the pressure
vanish is that the acceleration must also vanish; this is proved using three of the four
contracted Bianchi identities. The framework used is the orthonormal technique.
Ellis proves the conjecture for shear-free dust by showing that a contradiction is
reached after making the hypothesis that neither the expansion nor the vorticity

vanishes. A sketch of the proof follows.

The €y—axis is chosen to be the fluid flow velocity. The €;—axis is chosen to

2The problem is that it is not possible to invariantly separate the inertial and the gravitational

parts of the acceleration. For more details see Ellis (1971).
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be parallel to the vorticity vector. The vectors €5 and €3 have the freedom of ro-
tation through the angle ©®. The propagation of this angle along € is chosen such
that w; + 1 = 0. The Jacobi identities imply that 25 = Q3 = 0. For shear-free
fluids, then, w, + €, = 0, with the convention that Greek indices run over 1 to
3 and Latin indices run over 0 to 3. The propagation along é; of © is chosen in
such a way to set Q) — 653 = 0. The Jacobi identities, some of the Einstein field
equations and the remaining contracted Bianchi identity, which expresses conser-
vation of energy, are then computed and used to find the four derivatives of the
expansion, the e€y— and the €;—derivatives of the vorticity and the €y—derivatives
of Q,cu,dg,dg,n,Ag,Ag,égg,égg,égg and p. The [€p, €] and [€p, €3] commutation re-
lations on w are then used to find the propagation of 0w and Osw along €, where
we denote the €;—derivative by 0;. The propagation along €, of the equations is
then used exclusively as the tool to generate further equations. The three spa-
tial derivatives of 1 and various algebraic constraints are found. It is shown that
B9 + B35 = 0 and n = 0. The propagations along éy; of dyu and of Ozu yield two
equations involving dw and dsw. Propagation of these yields two other such equa-
tions; from these last four equations, the relation dydsw — d3dhw = 0 is deduced.
The propagation along €, of the (11), (22) and (33) field equations produces the

required contradiction.

We note, as did Ellis, that the timelike ey—congruence is the principal feature
of this paper. As White and Collins (1984) observed, the proof of Ellis also holds
for the more general situation when the pressure is constant. Any non-zero con-
stant pressure can be absorbed into the cosmological term A, with the appropriate
adjustment of the definition of the energy density. White and Collins (1984) give
a slightly different proof for this case, but in the same notation as that used in the

present work.
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As a note on the history of the conjecture, we mention that Ellis (1967) asks

the question “under what more general® conditions does such a result* hold?”

Banerji (1968) considers shear-free rotating spatially homogeneous perfect fluid
spacetimes with a gamma law equation of state p = (y—1)u, where y—1 is positive.
He finds that the conjecture holds except possibly when v = 10/9. The method of
study is based on coordinates. Let the surfaces of homogeneity be labelled by
t = constant. The metric is given by ds?> = dt? + 2g4dt dz’ + gipdz® dz®. The
function G = /=g satisfies G/G = 6/3, where the dot () indicates differentiation
along the fluid flow and Latin indices run from 1 to 3. For spatially homogeneous
spacetimes, the function G separates as the product of a function, S, of 2* alone
and a function, W, which is independent of z*. The vorticity must be of the form
w? = AS9 "2 with A being a positive constant. The (00) equation and a particular
combination of the (0«a) field equations give, by integration, an algebraic relation
on the function S. The requirement that 6w # 0 then requires that S be equal to
V/—Et, where E is a negative constant. The requirement that the energy density
not vanish then shows that the only values for vy are v = 1 and v = 10/9. The value
~v = 1 corresponds to dust, for which Schiicking (1957) has shown the veracity of
the shear-free conjecture in the case of spatially homogeneous spacetimes. Banerji
considers “not unlikely” that the case p = p/9 can also be ruled out, but does not

give a proof for this situation.

Ellis (1971) mentions that for conformally flat spacetimes, the Bianchi identities

require that perfect fluids must be shear-free, irrotational and geodesic. In other

3than the conditions of the dust-filled world with homogeneous space sections considered by
Schiicking.
4that 0 #0 =0 = w=10.
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words, they must be the Friedmann-Robertson-Walker models. The result is also
contained implicitly in Stephani (1967b) and (1967a) who investigated conformally
flat solutions of the Einstein field equations for a perfect fluid or an electromagnetic

field.

Treciokas and Ellis (1971) proves the conjecture for the case of a shear-free
fluid with the equation of state p = p/3. The method of proof is coordinate-based.
First, Treciokas and Ellis show that for a shear-free perfect fluid with a barotropic
equation of state and with non-zero vorticity, local co-moving coordinates can be

chosen so that the spacetime metric is

ds® = 71

= w27 (faﬁ(x")dxa da? — v?(2*)(d2® + 2° d(ES)z) ,

v ([ )

(%)
r = exp — .
po U+ D

The convention that Latin indices go from 0 to 3 and that Greek indices go from 1

with v := w/r, where

and

to 3 is used. The only quantities appearing in the metric that depend on time (z°)
are w(z®) and v(w). The authors define W (z%) := wy and X, (z%) := w, — a, W,
where a,(z?) := x?02. The expansion of the fluid vanishes if and only if W does.
The X, are related to the acceleration terms. We note that the exterior derivative
of wis W(dz® 4+ 2? da®) + X, dz™. The critical condition that p = /3 translates
into v = 1. There is then a precise correspondence with the spacetimes (within the
class under consideration) that are conformal to a static spacetime. An outline of

the proof of the conjecture in this case now follows.

The (00) field equation yields an expression for dyW; the (Ov) field equations give

0o X, and the (uv) ones give 0,X,. The only expressions that contain derivatives
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of W are those for 0,X,. They contain the term 9yW. The (00), (Ov) and (23)
field equations are differentiated with respect to the variable z°. The resulting
equations are denoted by (00) o, (0v) ¢ and (23) g, respectively, where (ab) ¢ denotes
differentiation of the (ab) field equation with respect to z°. The (00), equation
yields an expression for 9y0yW. The (0v) o equations are then put in the form of
equations that are linear in X,, with coefficients in which the only dependence on
2 appears in the function w. The determinant of these three equations, considering
X, as the variables, is a polynomial in w with coefficients independent of 2°. By
repeated differentiation with respect to 2°, one can conclude that this determinant
can vanish if and only if all coefficients of the polynomial in w vanish. It is therefore
of critical importance that w appears only in a polynomial fashion. The leading
coefficient, (8119/3)3, cannot vanish, and therefore neither can the determinant. One
can then solve for the variables X,. They appear as the ratio of a polynomial in w of
degree 5 by a polynomial in w of degree 6 (the aforementioned determinant). Then
one solves for W from (23) o and substitutes the result in (00). After multiplication
by a suitable power of the determinant and by a suitable power of a particular time
independent function, Treciokas and Ellis (1971) obtain that a certain polynomial
in w, with coefficients independent of z°, vanishes. The leading coefficient of this
polynomial must then vanish, but this is a contradiction because it is equal to

5(1t0/3)*(8110/3)°, a non-zero quantity.

We note that here as well the derivatives with respect to 2° are extremely
important. The crucial part of this proof is that the authors obtained the vanishing
of quantities that are polynomials in the time-dependent variable. Unfortunately,
this desirable feature does not appear to be generic, and so this method of proof is

unlikely to apply to the full conjecture.

We also note that higher order derivatives are eliminated as soon as possible in
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favour of lower order derivatives. The highest order derivative appearing explicitly

is JpdyW. This corresponds to second order derivatives of the kinematic quantities.

Treciokas and Ellis (1971) also provide an outline of the proof of the conjecture
for the situation when there exists a function g such that the acceleration potential
r and its derivative along the fluid flow 7 are related by 7 = [(r). Except in
the situation of dust, for which, anyway, Ellis (1967) established the truth of the
conjecture, this case of Treciokas and Ellis (1971) is equivalent to the situation
considered by Lang and Collins (1988). This work of Lang and Collins, which will
be examined below, provides the first full published proof, as far as we are aware,

for this situation.

Treciokas and Ellis (1971) mention that they would like to know the precise
conditions for which the requirement of vanishing shear entails that the product w6

vanish. They conjecture that

It is conceivably true for all perfect fluid solutions, or for all perfect

[fluid] solutions with an equation of state of the form p = p(u).

Treciokas and Ellis (1971) also mention that their result does not hold in the cor-
responding Newtonian theory. Furthermore, the condition of vanishing shear does
not impose restrictions on Newtonian spacetimes, unlike in the relativistic theory.
Treciokas and Ellis conjecture that the energy-momentum tensor will be that cor-
responding to a perfect fluid only if the shear vanishes. Collins (1987) uses this
conjecture in a study on the uniqueness of the Friedmann-Robertson-Walker cos-

mological models.

King and Ellis (1973) generalize the work of Banerji (1968) by removing the

conditions on the equation of state. They prove the conjecture for homogeneous
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cosmological models, provided the reasonable condition g + p > 0 holds. The
technique used in this proof is the method of tetrads. Let S(t) represent the surfaces
of homogeneity. Let the vector 77 be the unique future-directed normal vector field
determined by S(t). If the vector 7i does not equal the fluid flow vector, then the
model is said to be tilted. The orthogonal tetrad used by King and Ellis in the
proof of the conjecture is a normalized fluid basis. The vector €j is a future-pointing

1

vector parallel to the fluid flow that has length =", where

t
r(t) :== exp/t (mdt.
0

This factor is included in order to simplify the tetrad form of the conservation
equations. The vector €3 is chosen to be in the 2-plane spanned by « and 7. The
vectors €; and €3 are unit vectors that span the 2-planes orthogonal to 77 and
e3. The freedom of rotation in the definition of €; and €5 is chosen so that the
€o|€1]dw?* connection coefficient vanishes. All the connection coefficients are func-
tions of ¢ only. King and Ellis note that the crux of the proof is that if the fluid does
not possess shear, then the Jacobi identities and the renormalized tilt parameter
A := rtanh 3, where cosh 8 := —g(i, ), can be integrated up to a quadrature,
in terms of a length parameter ¢, which has the same ¢t—dependence as the func-
tion G of Banerji (1968), defined by (/¢ = 6(t)/3, where the dot () represents
the covariant derivative along the fluid flow lines. Three cases arise (i) w?w?® # 0,
(ii) 0 = w® # w? and (iii) 0 = w? # w>. The assumption that wf # 0, together with
the field equations, then yields a contradiction. King and Ellis (1973) describe the
proof as “straightforward and tedious” and therefore do not give details beyond an
outline but refer to King (1973). We have not consulted King (1973), especially
since the work of Lang and Collins (1988), as discussed below, encompasses the
present part of that of King and Ellis (1973). The work of White (1981) relaxes
the condition p + p > 0 by showing that the conjecture is true for spatially homo-
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geneous spacetimes under the more general condition u + p # 0. Incidentally, as a
historical note, Lang and Collins (1988) notice that the work considered by King
and Ellis (1973) is a special case® of one of the situations considered by Treciokas
and Ellis (1971); thereby, an alternative proof of the conjecture for the situation of

King and Ellis (1973) could have been obtained.

King (1974) studies singularities of shear-free perfect fluids. Under certain con-
ditions, such fluids cannot have matter singularities. As a consequence of his result,
he considers very plausible the truth of the shear-free conjecture, attributed by him

to Treciokas and Ellis (1971). King (1974) states the conjecture as follows:

... that either the expansion 6 or the vorticity w must vanish in a shear-

free perfect fluid model, at least for p = p(u) [such that]

0< L <

£/&
Wl

King (1974) thus provides the first allusion in the literature to the conjecture.

White and Collins (1984) show that the shear-free conjecture holds when the
vorticity is parallel to the acceleration, including the degenerate case of geodesic
flow. The method involves the use of the orthonormal tetrad technique in a proof
by contradiction that first assumes that wf # 0. The ey—axis is chosen to be along
the tangent to the flow, normalized so that the flow velocity is unit. The é;—axis

is chosen to be in the common direction of the acceleration and of the vorticity.

The proof splits into two cases. The first case, when the flow is not geodesic,

is the simpler of the two. We note that in the proof, the derivatives in the four

®Defined by 7 = 3(r) in the notation of Treciokas and Ellis (1971).
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directions of 6 and of the acceleration have been isolated as early as possible. Com-
mutation relations have been used on variables. No second order derivatives needed
to be isolated. There was then a crucial propagation of various expressions along

the fluid flow direction.

In the second case, the flow is geodesic. Apart from an integration constant,
this is essentially the situation of dust considered by Ellis (1967). White and
Collins (1984) provide a proof similar to that of Ellis (1967), but in their notation.
This enables a more direct comparison with the non-geodesic case, and clarifies
the role of the intrinsic geometrical quantities. It also enables the direct use of
the intermediate results of White and Collins (1984) in the study of shear-free
perfect fluids that is found in Collins and White (1984). As before, the proof
uses commutation relations on the expansion, the energy density and the vorticity.
As well, differentiation along the flow direction is still crucial; however, a new
feature arises: second order derivatives are calculated (namely Jy0hw and JyOsw)
and eventually eliminated. This is an indication that the geodesic case of the
conjecture is more complex than the first case since second order derivatives are
involved. That second order derivatives are eliminated (algebraically), yielding
equations with only lower order derivatives, is a new feature that will recur in the

proof of other situations.

In the work of Lang and Collins (1988), the rate of expansion is functionally
related to the energy density. This is equivalent to requiring that the fluid obeys a
type of homogeneity proposed by Bonnor and Ellis (1986), namely, the postulate of
uniform thermal history (PUTH). This postulate is based on the assumption that
similar thermodynamic histories imply similar dynamical histories. This requires

that, for example, pressures and densities are not substantially affected by non-
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thermodynamic factors, such as gravitational waves. The postulate is expressed as

follows:

Both density, p and entropy per baryon S are uniform for the funda-
mental observers in the Universe.

(Bonnor and Ellis, 1986).

The framework is that of an orthonormal tetrad aligned as follows. The vector
€p is aligned with the fluid flow, and is unit. The é]—axis is parallel to the vorticity
vector. The other two axes are rotated such that the (projected) shear tensor of
the €1— congruence be diagonal ( 623 = 0 ). The shear-free conjecture is proved by
contradiction, supposing first that wé(u+p) # 0, then showing inconsistency. There
are six different cases to be treated. The first case is when the energy density, p, is
constant. One of the contracted Bianchi identities gives immediately the required

contradiction.

The second case is that when the pressure, p, is constant. This case is basically
covered by Ellis (1967). As mentioned in White and Collins (1984), the constant
can be “absorbed” into the cosmological constant followed by a reinterpretation
of p and p. If this is done, then the proof of Ellis (which was for vanishing p)
carries through without changes. In this situation, the conjecture holds without
any further restrictions on . White and Collins (1984) give a proof very similar to

that of Ellis (1967).

The third case has the acceleration parallel to the vorticity. This has been
treated by White and Collins (1984). At this point, we prove that requiring that,
in a general setting, the acceleration be non-zero and parallel to the vorticity, nec-

essarily implies that the expansion and the energy density are functionally related.
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That this is the situation was not realized by Lang and Collins when they estab-
lished their results. The proof is as follows. Since 1y = 13 = 0 then Oy = O3 = 0,
by the Bianchi identities. Also 050 = 030 = 0 by the commutation relations on g,
given by equation (3.1) of White and Collins (1984). Therefore

dO A dp =0

if and only if
80&81,& — 61980[1 = 0.

Now, dopt = —(pu+p)8 and 01 pu = —(u+p)u/p’ by the contracted Bianchi identities;
o8 = (3/4)n? as in equation (3.3) of White and Collins (1984); and 9,0 = (3/2)nw
by the (01) field equation. Therefore

000011 — 01001 =
= —(3/4)n"(u +p)i/p' + (3/2)nw(p + p)f
= —(3/4)n(u+p)/p x 2wp'0 + (3/2)nw(p + p)o

= 0,

where use has been made of equation (3.5) of White and Collins (1984), viz. 2wp' =
nt. The non-geodesic situation treated in White and Collins (1984) and by Collins

and White (1984) is then a proper subcase of that covered by Lang and Collins,
and therefore obeys PUTH.

After these first three cases, for which the proof of the conjecture is either im-
mediate or has been done in previous work, Lang and Collins now turn to the
main part of the proof. Four torsion expressions are computed. These expressions
were not recognized as such by Lang and Collins (1988), but for much of the present

work, torsion will be a useful notion. It may be explained in loose terms as follows.%

6More will be mentioned about the torsion after the discussion of the sixth case.
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The torsion equations arise from particular combinations of commutation relations.
Normally, commutation relations on algebraic quantities give second order deriva-
tives. The torsions are the combinations that give derivatives of lower order than
expected. In this case, the torsions would be expressions involving derivatives of at
most first order. The four torsions just noted are even more special, since they do

not involve derivatives at all, but only algebraic quantities.

We now examine the fourth, fifth and six cases of the proof. The fourth case
corresponds to constant fluid expansion (¢’ = 0). In the proof, the operator (1/6)0,
is used twice, where 0y is the derivative along €. The proof is completed by noting
that the flow is necessarily geodesic. This case therefore reduces to one already

treated.

The fifth case has the equation of state obeying p’ = 1/9, excluding the situation
covered in the fourth case. It is interesting to note that this rather peculiar equation
of state also appeared as the one exceptional case in the work of Banerji (1968)
that was not treated, although it appears here in a broader context. The operators
(1/0)0y and 0y are used. Also a further torsion equation, involving a first order
derivative, is obtained. This equation enables the authors to solve for dyti3 and
then for dsie. With this, the commutation relation [€p, €1] on @y now becomes a
torsion equation which leads to tetis = 0. The choice is made to set 1y = 0.7
A further torsion equation was then evaluated, yielding a value for 0yi3. This
enables the commutation relation [€p, €] on 3 to become a torsion equation, from
which the conclusion that «; vanishes is obtained. All the preceding results and
the commutation relation [y, €3] on d3 then produce a contradiction, namely that

fw should vanish.

"The other choice of 13 = 0 is completely symmetric, and so there is no loss of generality.
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The sixth case is the general case where (p' — 1/9)0" # 0. The authors start
by obtaining a few expressions involving only functions of u. Then they derive a
homogeneous system of three linear equations (with coefficients being functions of
p only) in 42 w? and p + p. The differential operations used are differentiation
with respect to p and differentiation along the flow vector. The trivial solution
to this linear system is to be rejected, and so the determinant (a function of u
only) must vanish. This determinant takes the form of a bivariate polynomial in
p/ and G (a particular function of u involving p”). The derivatives of G and of
p’ with respect to u were previously calculated and are expressible in terms of G
and p’. Therefore, by differentiating the above bivariate polynomial with respect
to u, another similar polynomial is obtained. In order that they have simultaneous
solutions, their resultant with respect to G must also vanish. This resultant is a
non-trivial univariate polynomial® in p’. Consequently, p’ is a constant. This crucial

step then leads one to the result that @+ p = 0. This is the required contradiction.

In their remarks, Lang and Collins (1988) noted that 6 commutation relations
were applied to 12 variables, leading to 72 equations. There were two combinations
of those commutation relations that were purely algebraic. Normally, commutation
relations on algebraic quantities give expressions with second order derivatives.
There may be combinations involving lower order derivatives, and, as can be seen
in the proof of Lang and Collins, such combinations were also used. We note they
were also used in White and Collins (1984). No further justification was given to this
procedure, other than that it works. It so happens that finding these combinations
is a well defined procedure of the theory of exterior differential systems,’ that of

finding the torsion. We point out that whenever known relations are propagated,

8The resultant is of degree 60, has 53 terms and has some coefficients with over 40 digits!

9For more information about exterior differential systems, see Bryant et al. (1991).
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new torsion expressions may appear. We also note that the cases where the proof is

the most difficult are those where the acceleration is perpendicular to the vorticity.

From equation (4.19) of Ellis (1971) it is immediate that all non-rotating shear-
free perfect fluids must necessarily have a vanishing magnetic part of the Weyl
tensor. In an article by Collins (1984), it is shown that the converse does not
necessarily hold, but that if the fluid is rotating, then the expansion must vanish
(under the usual assumptions of u+p # 0 and a barotropic equation of state). First,
for the case of geodesic flow, the situation is covered by White and Collins (1984)
and by Ellis (1967); this therefore needs no further attention as far as the conjecture

is concerned.

A sketch of the proof of the conjecture for non-geodesic flow with a purely
electric Weyl tensor follows. The tetrad is chosen such that e is along the fluid
flow and is unit. The €]} —congruence is chosen to be parallel to the vorticity. It
is assumed that the vorticity is non-zero. From the (full) Bianchi identities, it
follows that the vorticity vector is an eigenvector'® of the symmetric tensor Eg,
representing the electric part of the Weyl tensor. In the chosen frame, Fy, =
Eiy = Ei13=0 (a=0,1,2,3) and therefore the ey—propagation of Ej; simplifies to
OoE11+0E,; = 0. The eigenvalue corresponding to the vorticity vector is —(1/3)(u+
p); by the choice of tetrad, Fj; must therefore be equal to this eigenvalue. The
conclusion follows from the propagation of E£; and the contracted Bianchi identity

Aopt + (u+p)0 = 0.

Collins then proceeds to examine further the case when the vorticity does not

vanish (and therefore, the expansion must vanish). We note that, in this situation,

10The fact that the vorticity vector is either zero or is an eigenvector of E,;, was independently

noticed by Barnes (1984).
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€y is again distinguished, by being a Killing vector. The process of finding the
torsion is again used (although not in any explicit way), as is the process of isolating
the various derivatives of the acceleration vector components. Two classes appear
according to whether or not the acceleration is parallel to the vorticity. In the first
class, they are not parallel. The tetrad is rotated so that @3 = 0. It follows that €3
is a second Killing vector. The situation where the acceleration is perpendicular to
the vorticity is again distinguished since, in that case, there is a third Killing vector,
namely €]. Because there is a Killing vector parallel to the vorticity vector, such
spacetimes belong to a class of models investigated by Krasiriski (1978). This class
will be studied in more detail as case C' of chapter 6. In the second class, where the
acceleration is parallel to the vorticity, the condition that the acceleration be also
perpendicular to the vorticity (and so, that the acceleration vanish) again arises
as a special case — the vorticity is constant, and so are the pressure and energy
density. This is the Godel solution, generalized to include pressure. This subclass

is also distinguished in that there is a G5 isometry group instead of a Gj.

Carminati (1987) proves the shear-free conjecture for the situation when the
Weyl tensor is of type N. The actual result is stronger than that of the conjecture.
The spacetimes under consideration are shown to have vanishing volume expansion
and necessarily non-vanishing vorticity. The Newman-Penrose (NP) formalism is
used for the calculations. The null tetrad {Z, ii,1m,m} is chosen in the following
manner. The vector ¢ is chosen to be the repeated principal null direction of the
Weyl tensor. By a rotation that leaves v fixed, 77 is made to lie in the two-space
spanned by  and the fluid velocity vector u. Then / and 7 are rescaled so that
@ = (1/v/2)({ + i1). The freedom left in the choice of the tetrad is a multiplication
of the vector m by a complex number with unit modulus. Imposing this choice

of tetrad, the shear-free condition, the barotropic equation of state and the condi-
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tion that the spacetime be of Petrov type N in the Bianchi identities and the NP
equations readily leads to the result that the repeated null congruence of the Weyl
tensor is non-geodesic and that the fluid is necessarily rotating. The assumption
is made that the fluid has non-zero expansion. Three subcases arise, each of which
leads to a contradiction. The first subcase has dp/du # 0 and 1 + 3dp/du # 0.
After some calculations, a contradiction is reached. Derivatives of Weyl tensor com-
ponents were used. The second subcase has dp/du = 0. This case is quickly shown
to be impossible. The remaining rotational freedom of the tetrad is then used to
impose on the NP quantities a and 3 the restriction that @ + 8 = o+ 3. This is a
condition on a component of the acceleration divided by dp/du. The third subcase
has 1+ 3dp/dp = 0. This case is shown to be impossible after some calculations.
The techniques of calculations are similar to that used in the orthonormal tetrad
approach, except that the Bianchi identities are used explicitly. The Weyl tensor
and Ricci tensor components also appear explicitly, instead of being expressed in
terms of the equivalent of the kinematic quantities and their derivatives. Commu-
tation relations on the energy density are used. The various derivatives are applied
to propagate algebraic relations. The highest order derivative appears as the first
derivative of the Weyl tensor components; therefore, second order derivatives of the
kinematic quantities are potentially involved. The result proved is actually even
stronger than showing that the expansion vanishes, which is equivalent to asking
that the NP quantities'! p and p satisfy p — p = 0. Carminati (1987) shows that
both p and p vanish. The extra conditions can be interpreted as constraints on
the kinematic quantities of the 7—congruence, where v is defined as the unit vector

orthogonal to the fluid flow vector, and lying in the two-space spanned by  and .

" The u used here is the NP quantity. It should not be confused with the energy density which

is denoted by u everywhere else in the present work.
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It is of interest to note that the fluid in the spacetimes under consideration must
have non-zero acceleration and vorticity, and that the acceleration is orthogonal to
the vorticity. Carminati (1987) suggests that an avenue for further exploration is to
consider fluids where the acceleration is perpendicular to the vorticity, regardless of
the Petrov type. This would complement the results of White and Collins (1984),

and is very closely related to the spacetimes explored by Krasinski (1978).

In a later article, Carminati (1988) showed that perfect fluid spacetimes of
Petrov type N, for which he had proved that the conjecture holds, are stationary,
possess a three-parameter abelian group of local isometries acting simply transi-
tively on time-like hypersurfaces and possess one Killing vector parallel to the flow
velocity and another parallel to the vorticity vector. The presence of this last
Killing vector entails that spacetimes of Petrov type N must belong to the class
of spacetimes studied by Krasinski (1978), and so must belong to our case C of
chapter 6. Our result that there are no spacetimes within the scope of chapter 6 of
Petrov type N that belong to either our case A or our case B is compatible with

the result of Carminati (1988).

Carminati (1990) proves the conjecture for a subcase of the Petrov type III
spacetimes. The framework for the proof is the Newman-Penrose formalism, which
uses null tetrads. The tetrad is initially chosen as in Carminati (1987). The cases
when the pressure is constant, and when it is equal (up to an additive constant)
to a third of the energy density have already been solved. The conjecture is then
proved for the so-called “aligned” cases. The first aligned case is defined to be
that arising when the acceleration vector lies in the two-space spanned by m and
m. From the [0, 6] commutation relation on the energy density, two classes emerge.

The first class is further divided into two subclasses, according to whether or not the
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vorticity vector has a component along the vector - 1, i.e. depending on whether
or not the vorticity vector lies in the two-space spanned by 7 and 1. The second
class necessarily does not have such a vorticity component. The second aligned case
is when the fluid velocity vector lies in the two-spaces spanned by the principal null

directions of the Weyl tensor. There are three subcases to be considered.

We note that the [§, A] commutation relation was applied to the U5 Weyl tensor
component. Therefore this proof possibly entails the computation of third order
derivatives of kinematic quantities. However, both the d— and the A—derivatives
of W3 were obtained in terms of the kinematic quantities and the energy density.
The result of the commutation relation is an algebraic restriction. The highest
order derivatives that appear explicitly in this work arise from the first derivatives
of Weyl tensor components. These involve second order derivatives of the kinematic
quantities. The situation when dp/du = —1/3 arises as a special case in various

places in the proof.

A spacetime admits a conformal Killing vector, 5 if

Lg’gab = 2¢ Jab,

where EE is the Lie derivative along E The function 1 (z®) is called the conformal
factor. If the second covariant derivatives of 1) do not vanish, then E is called a
proper conformal Killing vector. If the second covariant derivatives of ¢ do vanish,
but the first do not, then 5’ is called a special conformal Killing vector. If 1 is
a non-zero constant then E is a homothetic vector, whereas if 1 is zero, then 5 is
a Killing vector. Coley (1991) has shown that if there exists a conformal Killing
vector parallel to the velocity four-vector, then the shear is necessarily zero. If the
vector is a proper conformal Killing vector, then the expansion is non-zero but the

vorticity vanishes. The same conclusion holds if the vector is a homothetic vector,
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whereas if the vector is a Killing vector, then the expansion must vanish. In all
cases, the conjecture holds. Coley (1991) also gives the necessary changes to extend
the proof of Treciokas and Ellis (1971) to cover situation when the equation of state
is p = /3 + K for any constant K. The original proof of Treciokas and Ellis (1971)

requires K to be zero.

In summary, the shear-free conjecture is known to hold in the following situa-

tions:

1. Spatially homogeneous dust of Bianchi type IX (Gddel, 1950)
2. Spatially homogeneous dust (Schiicking, 1957). This generalizes 1.

3. All dust (Ellis, 1967). This generalizes 2. The validity of this result actually
holds for constant pressure (White and Collins, 1984).

4. Spatially homogeneous spacetimes with equation of state p = (y — 1)u,

~v # 10/9 (Banerji, 1968). This generalizes 2.
5. Conformally flat spacetimes, i.e. spacetimes of Petrov type O (Ellis, 1971).

6. Perfect fluid with p = /3 (this includes a relativistic gas) and claim of a
proof for PUTH (Treciokas and Ellis, 1971).

7. All spatially homogeneous spacetimes with p + p > 0 (King and Ellis, 1973).

This generalizes 4.

8. Perfect fluids with acceleration parallel to the vorticity and with p + p # 0;
this includes the case of constant pressure (White and Collins, 1984). This

generalizes 3.
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10.

11.

12.

13.

14.

15.

. Perfect fluids that obey PUTH and with p+ p # 0 (Lang and Collins, 1988).

This generalizes 7 and has as a proper subcase the non-geodesic portion of 8.

Perfect fluids with a Weyl tensor which is purely electric with respect to the
fluid (Collins, 1984).

Petrov type N spacetimes (Carminati, 1987).
“Aligned” Petrov type III spacetimes (Carminati, 1990).'2

Fluids with a conformal Killing vector parallel to the velocity, together with

the extension of 6 to cover p = /3 + constant(Coley, 1991).

In this work, we show that the conjecture also holds for perfect fluids with a

Weyl tensor which is purely magnetic with respect to the fluid.

Also in this work, we show that the conjecture holds for coasting universes,

i.e. universes that obey p = —u/3 + constant.

5.2 Shear-free conjecture for spaces with a purely

magnetic Weyl tensor

In this section, we shall examine the spacetimes that not only satisfy the hypotheses

of the shear-free conjecture, but also satisfy the extra constraint that the electric

part of the Weyl tensor with respect to the fluid flow vector vanishes. We shall

prove that for such fluids, the shear-free conjecture is valid. The proof presented

12Carminati has recently informed us that he has extended this result to all Petrov type III

spacetimes.
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hereinafter is by contradiction, first assuming that neither the vorticity nor the

expansion vanishes.

For a perfect fluid with an equation of state that satisfies p’ = 0, it is already
known that the conjecture holds, regardless of further conditions on the Weyl tensor.
The validity of the conjecture was shown for case p = 0 by Ellis (1967). White and
Collins (1984) showed that with a small modification, the proof of Ellis is valid for
the pressure equal to any constant value. Treciokas and Ellis (1971) have proved
the conjecture for the case when p = p1/3. Coley (1991) has extended this result to
p = u/3+ K, with K being any constant. As a result of the foregoing discussion, we
can therefore assume throughout the remainder of this chapter that the equation

of state is such that p'(3p’ — 1) # 0.

For shear-free perfect fluids, with the ¢y—axis along the fluid flow velocity, the
e1-axis along the vorticity vector, and the é3-axis and e3-axis such that égg can be

set to zero, the Riemann curvature two-forms are:

0 . . 00 . P W
R = u2d2+u3d3+?—81u1—u1+f (n" An7)

9
o o Usn .
+ (Uz 02 — tig Uty — 37 B 82U1> " A
Ug N . .45 -
+ (22 — O3y + 13 033 — U3 U1> (770 A 773)
00
+ <d3w — ;) (n* An?)

+ (2 7:1,1 w — u}égg — u}égg> (772 VAN 7’}3)

050
+ <—; —dy W) (771 N 773)7
RY = (Ugﬂ — Uy dy — % — O1tg — Uy ul) (n° An')

62 ) . ot ., s 2\ /0 A .2
—+ 5—82u2—U3A3+?—U2_U1022_W (77 /\77)
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+ (31(«0 + Wé33> (n* An®),

RY% — (—igitn — Dritg — 1o O+ u22n i dg) (A )
+ (—82u3 — U3 Uy + “12" - 2(;9 — Oow + Uy As) (" A )
+<a§0+692—w2—83113—u§—ﬂ2142—ﬂ1é33> (n” A1)
+ (—wém — 310J> (' An?)
+ <83w+a§9+2u3w> (n* A )
+ <a;9 — w;) (n" An?),

R, — (—aodz—dgw—egz—%dz)( "An')
+ (5 — b — 9?2 - 0;”) (n° )

9 A A
03029 — % +don — Az b33+ As 922) (n* An?)

A A oin  wo A AA
933Q+83d2—1+—d2d3—d3A2_n933_‘9229>(771/\773)a

92 2 R R
+ < — do® + Oody + nz +d3 Az — 016 — 9§2> (n' An?)
( R



CHAPTER 5. THE SHEAR-FREE CONJECTURE 129

6 A 0
3—82(_;&.)—’-80143—21'[,2(,0—;63) (770/\772)

6 A
2 —80A2 —83w— T2 —2’1.1/3(4.)) (770/\773)

a A o 0 ~ "
+ <QA2—Qd2+922d3+d2n+81A3—;TL+aQQ—|—A36’22> (7]1/\7]2)

N 02
+ 3(,02—}-@71—83143—(92142—}-5

A oA 3n?
—099 033 — s As® - A22> (n* An?)

L 9 ) . .
+<(339—933d2—;n+QA3—31A2+nd3—Qd3—A2933)(771/\773)
and
0d 0
ng = (dgw—;—;—ﬁod:g) (770/\7]1)

. 0 15
+ <w822—u1w+6n+;n> (n° An?)

wn Qul ~ 9933 0 3
T 005 — 2 ) (g0 A
+<2 + 3 Oo33 3 >(77 n°)

~ A Om A oA wb A 1 9
+ ang—QQQQ—FT—FeggQ—?—i‘n@gg—dgdg—dgAg (77 /\7])

Osn A 5 A
+ <nd3 — % + Ap O30 — Oall33 — Ay 933) (n* A )

92 2 R R
+ <9 + dg AQ — d32 + nz — 61933 - 9?2)3 + 83d3> (7’/1 VAN 7’/3)

Specializing the results of chapter 3, we find that the Einstein field equations, the
Jacobi identities, the commutation relations on the acceleration potential and the

contracted Bianchi identities are equivalent to the following thirty-three equations:

) 60 p? —6u p"0p—200p —6up"0p+9p wn
ot = , , (5.1)
6p
30p"dop+0isp + 31U pup” 0 —30,0p% — 301y p”

8u - )
02 3p,
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Aotz
Aow
don

Aods
Bods

BpAs

o As
XY

Ao

a0 é33

Dopt

D1y

81w
00

8171

01 A
01A3
81,&

Doy

3Usp" 0p —30usp® +0usp — 3050 p +31uspp” 0

3p
2w

/0_7
pw 3

_on

37

3 3 3

00 0in 0

3 3 3

Oia 04y 0

3 3 3

00, bin 04,

3 3 3

AV

37

Oir 00 | wn

3 3 27

Oir 00, wn

3 3 27

. . 3p .92 92 . . .9 .N
U2d2+U3d3+800+?—U1+§—82U2—U3A3—U2—U1922
—2w2—83u3—u§—u2142—u1é33—A+%,
ulw—wégg—wé337

3wn

2’

2wl - . . . A A
T—2U3U2—U1R+QU3A2—283U2+29339—|—283d2

—QéQQQ—Qdeg —2d3A2 —2né33+2p’w9,

QdQ - é22 ds — a2Q — A é33 + a:’,9A22 - QA2>

(1t +p)in
p/

Uy dy + iy Oy — 13 Q0 + Dy, (5.2)

)
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827:1,3 = uln — iLg A2 +83u2 — 2p'w€ +?l2A3,

2050
02w = 33 —|—d2w—2u2w,

82n = 281?13 —u2n+2u2§2—|—2u1d3—1—QU3u1—1—2(%@22

+2d2n—2A3é33+2A3é22

P n?  0yf

Oydy = 5—337:03—1—1-7—U§+81é22+g—w2—d3A3

1y B33 — tin Ay + do? + 62,
Oady = 2130y + g1 — 23 Ag + 2 0501y — 2053 Q) — D3dy + 2 0y Q)

+2d2 d3 + dg AQ + négg — 2p'w@ — néQQ + d2 Ag,
3n? 2000 6*

Dy Ay = —83u3—82u2+p—7+ 3 +§—u2A2—u§—agA3
— A+ w? — 3 Ay — 01 O + Qe — 09 035 — As® — A — 02 — 11y 033,
a2,u = —W>
O3ty = Oty + g Q + g dy + U3 Os3, (5.3)
Osn = —2i9tly — Uzn — 20y dy + 2113 Q — 2 0y11s + 2 nds
12 Ay Oyy — 285035 — 2 Ay Oy,
Osds = 5—82112—7;12+a§9+81é33+g—w2—u3A3
— 1y O + é§3 + d3® — 3 — dy Ay,
Ozw = dgw—2820—2u3w
and
Dyt — _(N"‘p%?)%.

The requirement that the electric part of the Weyl tensor vanish is equivalent to

the following equations:

-2 0° 2 . 3p . — K
809 = 3u3—§+3w —|—383u3—7+3u2A2+3u1933—§+A,

Oty = 3 — 11y dy — ”‘;—” g, (5.4)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 132

ity = —lig iy — Tip € “22" — 1y ds, (5.5)
Ootiy = U2 — iz Ay — U2 — 1y Oag + Ostig + iy Ay + 1y O3

and

O3ty = iz Ay — “12" + P/ wh — s iy

The contact form representing the derivative of 1y is therefore

(3u2p”9p+3u2up”9 — 30,09 — 301, p” —i—@i@p’) n°
du, = — 3 (5.6)

+ <U3§2 — ’[Ll d2 - L;n - 112 Ul) 771

+ (13 — ity A — 3 — i1 O3n + Dy + 11 Ag + 1y B3)
+<—u2u3—12+U3A2+p'w9)173

and the contact form representing the derivative of 3 is

diy — (—6113])”01)—2p’9u3+6961;3;p’2—6u3up”9—|—6339p'2> 0 (5.7)

~ 1
+(—u1i63— u2§2+§u2n— ﬁldg) 771
1
+(—UQU3+ agAg— p’w9+2u1n> 772

+ 83113 773.

Adding the exterior derivative of (5.6) multiplied by n°An?, to the exterior derivative
of (5.7) multiplied by n° A n?, taking into account all the previous information, we
obtain

(égz - é33> PP Ant AP AR =0.
The operation just performed is equivalent to adding together the [€}, €] commu-
tator applied to iy and the [€3, €;] commutator on 7g. This particular combination

ensures that no second derivatives appear. Such an operation is called ‘finding the



CHAPTER 5. THE SHEAR-FREE CONJECTURE 133

non-absorbable torsion’. Now since the vorticity, w, does not vanish by hypothesis,
we conclude that

Oy = Os3. (5.8)
Evaluation of the following seven torsion expressions:
n —+ 2[_)2, gg]dg - 2[51, é)B]é227
Az — [€p, 53]é22 + [€o, 52]Q + %[517 €a)w,
[ .

?3]$2 — [éo, 6_’2]922 - %[51, e3lw,

?l

€0, €2]Ag + [, €3] A3 — %[527 €s)w

provides relations equivalent to the following equalities:

9w?p' ds + pu i3 + piis

0 = )
0, s , (5.9)
9.0 — _9w2p’d2—|—pu2+,uu2

K 3p w

. A ~ 1
(91d2 = 5022d2—5’111612—37:61u2+3622a2+d39+§n’a3

+8922PU2 +4n,uu3+8é22,uu2 —4U1]?UQ —4U1 ,UUQ +47’LpU3
18 w?p/ ’

~ A 1 N
61d3 = - <d29-5€22d3+5a1d3+2nﬂ2+3ﬂ1ﬂ3—3922ﬂ3

+ —8é2guu3+4npu2+4n,uu2 —Séggpﬂ3+4u1ﬂﬂ3+4ﬂlpﬂ3
18 w?p/ ’
/ 3 . A 2
Osdy = d3A2—3p6w—§u1n+2622n+§w9+d3d2

2d2,uu3 — 2d3pU2 —2d3,uu2 —|—2d2pU3
+ ;
18 w?p/

. 1 .
Dby = — <2 nis + Uy do — Oag do
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L 201y iy + 27 plig + 3nputiy — 2099 ity — 20a9 11y + 3npity
18w?p/
and

~ 1 . . ~
83822 = 57111,2 — Uy d3 + (922 d3

| 2 i + 3npita + 3npu s + 2 0o plis — 201 Pty + 2690 pu 1
18 w?p! ‘

Evaluation of the following five combinations of commutation relations:

[€0, €1]0 + 3[€]1, €] ug,
[€0, €2]6 — 3[é1, ex)uy + %[50, 3w,
[€0, €3]0 — 3[é1, €3]ty — %[50, o]w,
(€5, €3]y
and
[€0, €1]us + p'[E1, €3]0

yields the following equalities:

p" = (12p’ Gy pp” Pty + 54 p 0 p pwids + 18 pPiy wids

+2 970 g + 2P0 pls + 540 pp” wids

=54y pwlds — G iy p° ity — 6 iy p°piy

+6p 0y 2" i + 69 iy P pPus + 12win P01 — 36 wity p 0 1s
+18 wity P20 iy + 36 wite P20 pp iy — 18 wite p" 0 Pyt

+18 wity p20 Py + 9tis P wn + 36 wity P s P O 1

—18wite P O pity + 36 wp” O pp' g 1y + 27 s p” pp' w?n

+27 i p pupwn — 27p’4w2nu2)/ (18 witg 0 p' iy (p + u)2) ,

b — i (p+p+18w?p)
2 18 w2p/ ’
0 i, (18 Wi — 18 p 2w + 6w + '+ 18w?p" p + p'p)

9w3p’ (3p' —1) ’
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dy = — (27¢9w2p"pu3 — 2743 p* w20 — dwpity + 20 P piis — dwpn i
+270 W?p" iy + 9w?p’ O 1s + 9wp’ pis
+9wp g + 260 p" pusz)/ (27w3p' (3p — 1))

and

dy = — (27 dp p*w20 — 9w 01ty — 270w 11ty — 270 W2 piis
+9wup iz —20p piy — 20 p iy — 4wpis
+H9wp pits — dwpis)/ (270% (39— 1)),

where the assumption that ;% # 0 has been made. We recall also we can assume

that the equation of state satisfies p/(3p’ — 1) # 0. The [é, €3]u; commutation

relation then provides

" (3p -1
3(1+p)
The torsion expression
Y o O/ R/ AP, 3 . L
€0, 2]ty — [0, €1]Tn + ?[607 €s)dy — ?[607 €s)ds — T[ez, éslw

implies that

1

/—_7
p = 6

This is inconsistent with equation (5.10). We must therefore have that iy = 0.

We now consider the case that 1; does not vanish. It follows then that 7, must
be equal to zero. Differentiation of 1y = 0 along €y yields that 0:0 = 0, which is
equivalent to

9w?p' ds + uz(p+p) =0 (5.11)

by the relation (5.9). Subtracting the [€], €34, commutation relation from the

[€5, €3]y commutation relation is equivalent to

4
—3(1 — 3p')dsw? + (—9—p, + 1)uz(p + p) = 0. (5.12)
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Elimination of d3 between equations (5.11) and (5.12) then requires that
Usw’p' (1 +p) = 0.

from which it follows that 73 = 0. Since 1, also vanishes, we are therefore in the
situation when the acceleration is parallel to the vorticity. The shear-free conjecture

was proved for that situation by White and Collins (1984).

Henceforth, we assume that 4 is zero. Differentiation of 1; = 0 along €, as
given by equation (5.1), implies that n = 0. Furthermore, differentiation along é,, as
given by equation (5.2), together with the Weyl tensor constraint (5.4) implies that
Uisf9s = 0, and differentiation along €3, as given by equation (5.3), together with
the Weyl tensor constraint (5.5) and with the equality (5.8) implies that 73055 = 0.
If Bop # 0, then both 1, and 3 are equal to zero; therefore, the situation is that for
which White and Collins (1984) proved that the shear-free conjecture holds. Hence,

we assume that 1, = égg =0.

The following five torsion expressions:

2[y, &) — 2[éy, @] As + [E1, Ew,

(—3(203 + @3)p*[eb, Ealda — Gsitsp*[Eo, €51y — 3(i3 + 203)p'° [, &3]
—3(13 + u3)p*[Es, Eslw + udp! (€, Es)ily — tatizp’ [Eo, Esls
+isp' (€0, s]is) / (Ow? (5 +143))
p/[f?z, 53]d2
and

P’ [52, é'3]653

imply, respectively,

ody = Qds,
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didy = —Qdy,
2p/'(27p”° — 6p/ — 1
)= _2p/(27p” —6p )7 (5.13)
3 w+p
Las(p + p) + 9p'dzw?
D = =
3 pPw
and

_EUQ(/,L + p) + 9p’d2w2
3 pw '

(939 =

Differentiation of p” with respect to u gives

g2 P (27p" — 6p' — 1)(162p"* — 21p' + 1)
9 (k+p)? '

The combination of commutation relations [€y, €]ty + 3p’[€p, €2]da implies that

(1 + p) (6itisp’ + 2dstiop’ — 2dotisp’ — 36p  tatis + 2uptis) — 180p°w?®  (5.14)
—324p" tiyw?ds + 54p tow?ds + 181sw?dsp’ + 54p"° 012w + 54p'°0w®

—194452p" 0w + 48602p" 0w = 0;
that of [€p, €3]us + 3p/[€p, €3]ds results in

(,u -+ p)(—QdQU3p/ — 2212113 + 36]7/2712’&3 - 6’&21.1,3]?/ + 2d3ﬂ2pl) - 54]7/27:L3w2d2 (515)
+48612p"° w + 5ap’*Oidw — 1944402p" Ow

—180p"*w? + 54p"*0w® — 18uswdop’ + 324p wizdy = 0,
and that of 2[50, gz]dg + 2[50, gg]dg + [52, 53]w gives
(1 + p)(—2datis + 2ds31s) — 180w’y + 540p*w® = 0. (5.16)

Dividing the difference of equation (5.14) and p’ times equation (5.16) by 3p’ — 1
yields

— 2y (324u2p’39w + 54dsp”*w? + 270p *tiw + (6p + Ditg(pu + p) + 9d3p’w2> —0
(5.17)
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Subtracting p’ times equation (5.16) from equation (5.15) and dividing the result
by 3p’ — 1 yields

2itg (—3241i5p” b + 5Adp*w? — 270p 3w + (6p + )i (1 + p) + 9dap'w®) = 0.
(5.18)
Now, p’ cannot be equal to —1/6, as can be seen by substitution into equation (5.13).
This enables us to divide the difference of 43 times equation (5.17) and w3 times

equation (5.18) by the product wst3(6p" + 1). Doing so gives the relation
— 18usw?dsp’ — 18tpw?dap’ — 2uip — 2U3p — 2usp — 203 = 0. (5.19)
The combination of commutation relations
3ugl€p, Exlw — 2us|ép, €3]0 — 3us|ép, €3]w — 21us|éy, €260

is equivalent to

—w ((—27p’ + 81p"*)w? (tiady + tiads) + (9p' — 4) (i + 62) ( + p)) =0. (5.20)
Subtracting w(9p’ — 4) times equation (5.19) from twice equation (5.20) yields

—18w?p (t13d3 + tiady) = 0,

from which we deduce that uady + usds = 0. Equation (5.19) then simplifies and
becomes:

—2(i3 + 3) (1 + p) =0,
i.e. Uy = ug = 0, and so the acceleration is parallel to the vorticity. By White and

Collins (1984), the validity of the conjecture holds in this case also.
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5.3 Perfect fluids with an equation of state that
obeys dp/dp = —3

We now prove the conjecture for the special situation of a general relativistic perfect
fluid with a barotropic equation of state that satisfies dp/du = —1/3. We show that
the requirement that neither the vorticity, w, nor the expansion, ¢, vanish leads to a
contradiction. While this equation is admittedly rather unphysical in the context of
standard general relativity, it does represent an interesting limiting case for which
the validity of the shear-free conjecture has heretofore not been established, as far
as we are aware. Some further discussion of the physical relevance of this equation

of state will be provided at the end of the present section.

We use an orthonormal tetrad with the ep—axis along the fluid flow velocity,
the e;—axis along the vorticity vector, and the e;—axis and e3—axis such that égg
is set to zero. The Einstein field equations, the Jacobi identities, the commutation
relations on the acceleration potential and the contracted Bianchi identities are
obtained by setting p’ = —1/3 in the thirty-three equalities beginning with equa-
tion (5.1), where the prime (') denotes differentation with respect to the energy

density, pu.
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The combinations of commutation relations

—

—2[€ép, €3]ds + [€p, €1]n + 2[€p, €3]u2,
(€0, €2]n — 2[€p, €3]y — 2[é, 92,

&0
€y, &]n + 2[é0, &ty + 2[€p, E2)0s3,
€y, Ex]tiy + [€p, E3]tis — 2[€y, Ex]ity + 3[Eo, @] Ay + 3[E0, 5] As — [E2, E5)w,
€y, €]t + [0, Ea]tis — 2[E0, E3]tis + 3[Eo, €1)022 — 3[E0, Ea]ds — [E2, E5]w
and

—

[€0, €111 — 2[€p, €]te + [0, €3]34+ 3[€D, 51]é33 — 3lép, €3]ds — [€a, €5]w

are equivalent to the following equalities:

0 = (8/3)0usiiy + (4/3)3050 + (4/3)Ds01, (5.21)

0 = —(4/3)i, 050 — (8/3)0uigtiy — 2wniis, (5.22)

0 = (4/3)u1050 + (8/3)01tiy + 2ntiow, (5.23)

0 = (4/3)015 + (4/3)120,0 — (16/3)w?d — (8/3)0u3 (5.24)
+(4/3)003 — 4iqwn + (4/3)0501s,

0 = (4/3)015 + (4/3)1120,0 + (8/3)w?0 + (4/3)073 (5.25)
—(8/3)0u3 + 2uywn — (8/3)03013

and
0 = —(8/3)0u5 — (8/3)12050 + (8/3)w?d + (4/3)0u7 (5.26)

+(4/3)003 + 2uywn + (4/3)03013.

We compute the resultant with respect to 036 of equation (5.21) and equation (5.22).
We then eliminate 0»0 from the result, using the resultant with equation (5.23).
We thus obtain

U3ty (3wn + 201) = 0. (5.27)
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Similarly, we compute the resultant with respect to 036 of equation (5.22) and
equation (5.24). We then eliminate 00 from the result, using the resultant with
equation (5.23). Thus, we get

202120 + 8ulw?6 + 40ut + 200202 + 6udwn (5.28)

+3u1wnu§ + SU%ulnw = 0.

Elimination of n between equation (5.27) and equation (5.28) using the resultant
yields
U3t w0 = 0, (5.29)

whereby ;1513 = 0. Adding twice equation (5.24) to equation (5.25) results in
2015 + 2119050 — 4w — 2002 — 3iwn = 0, (5.30)
whereas subtraction of equation (5.24) from equation (5.25) yields
40?0 + 2007 — 2073 + 3iywn — 20503 = 0. (5.31)

We eliminate 0»6 between equations (5.30) and (5.23), and eliminate 036 between
equations (5.31) and (5.22) to obtain

2011015 + 4y w0 + 2005 + 3ufwn + 3iuznw = 0 (5.32)
and

4w + (16/3)0u; + 200310, + 3ujwn + 3wniy = 0, (5.33)

respectively.

We now look at the three cases implied by equation (5.29). The first case has
t3 = 0. Equations (5.21) and (5.22) show that if 050 is not equal to zero, then
the flow is geodesic. However, this is not compatible with the requirement that

/ E—

p' = —1/3, since geodesic flow implies that p’ = 0. It follows therefore that 930 = 0.
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The sum of the resultant of equations (5.23) and (5.24), with respect to 026, and

twice the resultant of equations (5.23) and (5.25), with respect to 0»6, reduces to
3 (3wn + 2604,) = 0. (5.34)

The situation of uy = 43 = 0 was covered by White and Collins (1984), who showed
that the shear-free conjecture holds in this case. We can thus suppose that sy # 0.
The resultant of equations (5.23) and (5.25) with respect to 026 subtracted from
the resultant of equations (5.23) and (5.24) with respect to 0»6 simplifies to

11 (2073 + 3twn + 4w?6) = 0. (5.35)

Eliminating n between equations (5.34) and (5.35) yields

uiw? = 0,
whence 1, = 0. Propagation of 1, = 0 along the fluid flow implies the vanishing of

n. Equation (5.31) then gives that wf = 0 and so the shear-free conjecture holds.

The second case implied by equation (5.29) has 1y = 0 # 3. Since our choice of
tetrad and the structure equations (3.12) (to 3.15) are invariant under the discrete
symmetry €5 — €3, €3 — —€s, S0 also are our equations. In particular this implies
that 1o = 0 # ug is equivalent to the situation of @3 = 0 # 1y which we treated
in the preceding paragraph. Thus, the shear-free conjecture holds for the present

case as well.

The third, and last, case implied by equation (5.29) has @; = 0 # tst3. Propa-
gation of u; = 0 along the fluid flow, given by equation (3.25), entails that n = 0.
The resultant of equations (5.21) and (5.30) with respect to 026 simplifies to

Ottty + 2t3w?0 + 03015 = 0. (5.36)
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The resultant of equations (5.31) and (5.36) with respect to d30 becomes
w?0(u3 +u3) =0,

which is a contradiction. The shear-free conjecture therefore holds in this third

case as well.

The situation of p’ = —1/3 includes spacetimes that obey a gamma-law of state
p = (y — Dp with v = 2/3. These spacetimes are generally regarded as non-
physical since 7y is usually restricted to lie between 1 and 2. Other conditions which
are frequently imposed on the equation of state are p+p > 0 and p + 3p > 0 (see
Ellis (1971) for more details). The case where v = 2/3 is then a limiting case of
the second condition. There are further spacetimes where v = 2/3 is a limiting
value. Raychaudhuri’s equation, which is the (00) Einstein field equation, is given

by Ellis (1971) as being
. 1
30/0 = 2(w® — o) + ul, — 5(” + 3p) + A,

where ¢ is a length scale obeying E/E = 6/3. From this equation, it is readily
apparent that matter-energy is in some sense attractive when p + 3p > 0 and
repulsive when g 4 3p > 0. The limiting situation, when p + 3p = 0 reduces to
v = 2/3 for a gamma-law of state. To clarify further the role of u + 3p, we shall
discuss Raychaudhuri’s equation in situations of especial physical interest. If we
consider the situation of a static star model filled with a perfect fluid (and the
cosmological constant taken to be zero), then Raychaudhuri’s equation, which is

the (00) Einstein field equation, reduces to

i, = (1/2)(u + 3p),

as given by Ellis (1971). For the Friedman-Robertson-Walker solutions, Raychaud-
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huri’s equation becomes, as given by Ellis (1973),

R 1
PR— — —A:
35 5kt 3p) 0,

with 3R /R being the expansion 6. When the cosmological constant is zero, v = 2/3
again represents a special situation, being a critical value that separates accelerating
universes from decelerating universes. In the Einstein static solution, which is a
Friedmann-Robertson-Walker model with 8 = 0, the cosmological constant obeys
A = (1/2)(p+3p), and therefore changes sign at v = 2/3. The value vy = 2/3 is also
a limiting case of Godel’s universe, generalized to include pressure (Ellis, 1973),

since such spacetimes obey

2w? + A = 1(u+ 3p)

gy A (5.37)

Spacetimes with p’ = —1/3 are a genuine special case of the shear-free conjec-
ture. This can be seen, for example, by computing the combination of commutation
relations

— €5, €3]0 + 3[én, e2)us — 3[ep, €3]ts,

which gives
(1+3p) ((3/2)wn® + 03050 — 02050 + 00 A5 — D045 — 2000w) = 0. (5.38)

We note that when p’ = —1/3, equation (5.38) becomes a trivial torsion equa-
tion. Other non-torsion expressions become non-trivial torsion expressions when
p' = —1/3. An example of this situation is given by the combination of commutation
relations

—2[ép, €3]ds + [€p, €1]n + 2[é}, €3]ua,
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which is

(14 3p") (—(1/3)03050 + (2/3)0pfw — (2/3)D5iz0 + (2/3)050Az — (1/2)wn’
+(2/3) Agitg0 — (1/3)0in + (2/3)p'0%w)

+(2/3>U39U2 — 6]9,9122113 — 4p/639ﬂ2 — 4p/213029

+P”<%;/+P) <2u3329 - 200is + 29050 — 22 | Gy

i — 2Asis — 2w0°p)

+ (pﬂ(;j P° pm(;;;r p)2> (2initgh) = 0. (5.39)
Equation (5.39) becomes a torsion equation when p’ = —1/3, and reduces to equa-

tion (5.21). There is thus a substantial reduction in computational work.

It is of interest to note that p’ = —1/3 was obtained as an intermediate result
in parts of previous proofs of the conjecture. For example, it appears in White and

Collins (1984), in Carminati (1987) and in Carminati (1990),

In three of the cases'® discussed by Collins and White (1984), the matter neces-
sarily obeys the equation of state u+3p—2A = 0. Collins and White (1984) mention
that this equation of state is physically unreasonable, but point out that such an
equation of state, with u + 3p = constant, occurs for a class of solutions due to
Wahlquist (1968), of which a limiting case, with ;4 3p = 0, is due to Vaidya (1977).
These solutions are of Petrov type D with a shear-free, expansion-free, rotating and
accelerating fluid flow. They admit an abelian G5 isometry group acting on timelike

orbits.

While v = 2/3 may be unphysical in the context of standard general relativistic

cosmology, it is certainly not so in the context of inflationary cosmology. Ellis (1990)

13Labelled by ITAAii, ITTAAi and IITAAii by Collins and White (1984)
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mentions that, for Friedmann-Robertson-Walker models, the value v = 2/3 is a crit-
ical one which separates decelerating models from accelerating models. Universes
with v = 2/3 are called coasting universes. Accelerating models, called inflationary
models, violate the usual inequalities on the energy. If the cosmological constant
is positive, a non-interacting mixture of matter, radiation and the cosmological
constant would evolve from a radiation-dominated universe (y ~ 4/3) to a matter-
dominated universe (7 & 1), then asymptotically to a universe dominated by the
cosmological constant (7 — 0). There will therefore be a point when the critical
value of v = 2/3 is attained. Coasting universes can be obtained in terms of a scalar
field solution, but not by any known simple matter. In particular, there exists a
coasting generalized version of the Milne universe. The classical Milne universe is
empty; however, the scalar field allows the generalized version to be non-empty.
Coasting universes solve, in a weak sense, the horizon problem, which relates to
the following question: why do two widely separated regions of the sky have sim-
ilar background radiation when not enough time, classically, has elapsed for these
regions to be causally related? The coasting universes allow for the possibility of a
mechanism that would ensure that all such regions be indeed causally related, but
do not guarantee in general the existence of such mechanisms (which is why it is

only in a weak sense that coasting universes solve the horizon problem).



Chapter 6

Rotating non-expanding
shear-free
hypersurface-homogeneous

spacetimes

On rencontre sa destinée souvent par des
chemins qu’on prend pour I'éviter.

Jean de la Fontaine

W E consider a perfect-fluid shear-free spacetime that is rotating but not ex-
panding. The particular class of spacetimes we shall examine was first described by
Collins (1988); however, we provide a different characterization. The vector €y is
chosen to be the normalized velocity vector which can be taken as the unique unit
time-like future-pointing eigenvector of the Ricci tensor, provided that the energy

density, i, and the pressure, p, are such that y+p # 0. Suppose that the spacetime

147
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admits a unique exact unit space-like covector that is annihilated by éy. Let €] be
the vector that corresponds to this covector via the metric. The above conditions
require the vanishing of the kinematic quantities 0,3, ws + €2, ws 4 €23, da, d3 and
n, which appear in equations (3.12) to (3.15). We rotate the é;— and é€3—axes by

an angle © as follows:

€y > cosOe, + sin Ocs
and

€3 +— —sinO¢ey + cos Ocs.
This rotation is used so that ws is set to zero at a point. We are then free to
make w3 vanish on a hypersurface transverse to the fluid flow. Propagation of ws
along &y, given by the Jacobi identity 3.19 simplified using equation (3.26), shows
that ws is then zero everywhere provided that wo(w; + €2;) vanishes. Now this is
easily ensured, since under the aforementioned rotation, w; + £2; transforms by the

formula

wl—f—er—)wl—I—Ql—l—(%@.

By choosing the rotation so that 9,© = —(w; + 1), we can ensure that w; + € is

zero and thus also the same applies to ws.
The structure equations now obey:
do® = —u® A @t — 4’ A 0? — uz® A @3
+2,@% A @2 4 2w A @,
do! = 0,

d? = Oyt A@? — As® A@® + (—Q — 0y3)0° A&

di® = (B3 — Q)0 A@? + Asw® A @° — O530° A&
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Since @' is exact, it defines (locally) a coordinate function, z. We require that all
the kinematic quantities, the pressure, p, and the energy density, i, be non-constant
functions of z only. Because of this, Osp = 03p = 0, and therefore 15 = 13 = 0. Since
p is a non-constant function of x, the acceleration does not vanish, and so u; is not
equal to zero. The (01) field equation simplifies to Azws = 0; the (02) field equation
to wg(égg—i—fl) = 0; the (12) field equation to Ag(égg —égg) +2A3053 + 2w, Qy = 0; and
the (13) field equation to Ag(égg — égd) — 245093 = 0. If wy = 0 then the vorticity
and the acceleration are parallel, in which case, the situation has been studied by
Collins and White (1984). The relevant situation here is case III of Collins and
White (1984), since we require shear-free non-expanding rotating fluids. If instead
we require that wy # 0, then we have A3 = 0 and Q) = —0y3. We are now in
the situation studied by Collins (1988), in which the spacetime is hypersurface-
homogeneous (the orbits of the isometry group being given by {z = constant}),

and we shall be concerned with this in the remainder of this chapter.

For ease of comparison, since Collins (1988) uses the notation of MacCal-

lum (1973), we shall make use of the following quantities:

No3 = (é33 — 922)/2,
a; = —(égg —+ égz)/2,
ag = —A2/2
and
Nngs = —2é23.
The inverse relations are:
é22 = —(a1 + na3),

33 = N9z — ai,
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AQ = —2@2
and

égg = —n33/2.

The structure equations are therefore given by:

d® = —@® Ao+ 2w A D3 4 2w A &P
do! = 0,
dwo® = —(a; +nes)o' A@?
and
do® = —ngaw’ AD? — 2000 A @ + (a1 — ngs)@® A @'

We note that the tetrad is now uniquely determined. The (13) field equation now
simplifies to

asnzz =0, (6.1)

whereas the (12) field equation simplifies to
2a9M93 — wiwe = 0. (6.2)
One combination of the Einstein field equations gives the constraint
4wt — w3 + 8uyay + 4(p — A) — 4aT — 16a3 + 4njy + njs = 0. (6.3)

The remaining Einstein field equations, Jacobi identities and contracted Bianchi

identities give the propagation along é; of the quantities as follows:

oW1 = Wwr + 2wiaq + 2woas,
(91(4}2 = w2(—2ﬂ1 -+ 93 + (ll),

Oty = —A—+(3/2)p+ (1/2)u — 2w? — 2w2 — 0 + 2iyay,
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drar = (1/2)p+ (1/2)p — wi — 2w5 + tyay + n3s + ai + (1/4)n3s,

Oray = as(ngg + ay),
Oings = —tings + 2a1nas + (1/2)n35 + w3,
Oings = ng3(—uy + 2a1 — 2ng3),
op = —w(p+p)
and
OA = 0.

The quantity A is the cosmological constant. Therefore, the only quantity for
which there is not a propagation equation is the energy density p. These equations

reproduce the results of Collins (1988).

As noted by Collins (1988), the quantity w; vanishes if and only if the quantity
as does. The proof is as follows. Suppose that w; = 0. Propagation of w; entails
that woas = 0. Since we are operating under the assumption that wy # 0, then
ay = 0. Conversely, if we assume that as = 0, equation (6.2) implies that w; = 0.
Therefore requiring that as = 0 is equivalent to requiring that the vorticity be
orthogonal to the acceleration for the spacetimes under consideration. We note
that, since wy does not vanish, the quantity ns3 cannot vanish. If ngz did vanish,

the propagation of ny3 would imply that nz3 and ws both vanish.

Because of equation (6.1), there are three cases to be considered. The first case,
which we shall refer to as case A, has n33 = 0 # as. Since as # 0, it follows that
wy # 0. Therefore, case A has ns3 = 0 # wiwaasnagtiy. Colling (1988) has identified
that spacetimes belonging to case A admit a G3 isometry group of Bianchi-Behr
type VI, with h = —1 (i.e. Bianchi type III). Also, there is a Killing vector which

is not parallel to the fluid velocity vector and orthogonal to the vorticity vector.

The second case resulting from equation (6.1), case B, has as = 0 # ns3. By
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the discussion above, requiring as = 0 is equivalent to requiring w; = 0. Therefore,
case B has the constraints as = wy = 0 # n3znazwatiy. Collins (1988) has found that
spacetimes in case B admit a G3 isometry group of Bianchi type I and that there
is a Killing vector which is independent of the fluid velocity vector and orthogonal

to the vorticity vector.

The third case, case C, has nzgz3 = ay = 0. By the preceding discussion, case
C has the constraints ng3 = as = w; = 0 # wanozty. Collins (1988) has identified
that the spacetimes which belong to case C'admit a (G5 isometry group of Bianchi
type I. They have a Killing vector which is independent of the velocity vector and
orthogonal to the vorticity. Furthermore, case C'is the only case where there is
an additional Killing vector which is parallel to the vorticity; this is equivalent for
the spacetimes under consideration to having a Killing vector which is independent
of the velocity vector and which lies in the 2-surfaces spanned by the velocity
vector and the vorticity vector. Spacetimes belonging to case C' coincide with the

spacetimes studied by Krasinski (1978).

We now wish to further the study of those spacetimes started by Collins (1988).
We shall be interested in finding which Petrov types of the Weyl tensor are allowed
in each of the three cases identified above. More information about the Petrov
classification can be found in chapter 4. The Weyl tensor can be decomposed into
two matrices with the help of the velocity vector, €y. The electric part of the Weyl
tensor, with respect to €y, is given by the (real) 3 x 3 trace-free symmetric matrix

E,3 where the entries satisfy:

En = —(2/3)A+p+ (1/3)p — 2w? — wi + 2iyay,
Ey = Ey = —wowr,

Eis = FE3 =0,
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Eyp = —tiay +wi —tings + (1/3)A = (1/2)p — (1/6)u,

Eyy = E3 = —(1/2)iings

Byy = —(Ey+ Ey) = (1/3)A — (1/2)p — (1/6)p + w? + w2 — dyay + iy nas.

The magnetic part of the Weyl tensor, with respect to &, is' also a (real) 3 x 3

trace-free symmetric matrix H,3 with entries given by:
Hiyi = 2uwi + 2weas + 2wiaq,
Hyy = Hy = wy(ngs + ay),
Hiz = Hz = (1/2)wanss,
Hy = —iqw; —wi(ar + nas),

Hys = Hsy = —(1/2)ng3w1

Hss = —(Hy + Hy) = —thw) — wiay — 2waas + winas.

Some properties of spacetimes with F,, = 0 as well as for spacetimes with H,, = 0

can be found in chapter 5.

We form the complex matrix Q. = E.p + 1H,s. The Petrov type can be
found by looking at the elementary divisors and multiplicities of the eigenvalues of
Q (Kramer et al., 1980).2 We shall follow the matrix criteria given in Kramer et
al. (1980) to determine the allowed Petrov types for each of the three cases identified
above, i.e. for case A: nzgz = 0,as # 0; nogwiwaty # 0., case B: n33 # 0,a9 = 0;

wi = 0, nggwatty # 0. and case C: n33 = 0,a9 = 0;wy; = 0, nggwsty # 0.

These cases can be regrouped in the specialization diagram given in table (6.1)

1Strictly speaking, H, is a tensor which is isomorphic to the 3 x 3 matrix given above.

2See also chapter 4.
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that appears on page 154.

Case A Case B
N33, dz 7 0 nsz # 0,a3 =0
W1CU21117123 7é 0 w1 = O, 7’@3&)2111 7& 0

N /

Case C

nzz =az =0

w1 = 0, nagwatly 7’é 0

Table 6.1: Specialization diagram

6.1 Case A: N3z — 0, as 7é O; n23w1w2u1 7é 0.

The propagation equations for case A are

oia; =
Oias =
oy =
Ow, =
Ojwy =
O1ngg =
Op =
and

A =

(1/2)p + (1/2)p — w? — 2w3 + a1 + naz + a,

az(ng3 + ay),

—A+(3/2)p+ (1/2)p — 2w} — 2w3 — 02 + 2uya,

Uiwy + 2wiay + 2wqas,

wa (=211 + no3 + ay),

—AN+p+2u1a1 — Uynos + wf + 2a1n93 — af — 4a§ + ngg,

—ty (p + p)

0.

154
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There are also the further two constraints:

A= —a] +p+ 200 +wi — 4a; — wi + ni, (6.4)
and
Wol1 — 2(127123 = 0. (65)
The matrix @ is
Qu Q2 0
Q=] Q: Q»n 0 |,
0 0 Qs

where

Qu = (2/3)ai + (1/3)p + (2/3)iar — (8/3)wi + (8/3)a3 — (1/3)w;
—(2/3)n35 + (1/3)p + i(201w; + 2wag + 2wiay),

Q12 = —wowi + i(wana3 + waay),

Q= —(1/3)iar + (4/3)wi — dunss — (1/3)ai — (1/6)p — (4/3)a3

—(1/3)ws + (1/3)n35 — (1/6)p + i(tgwr + wiar + wingg),

Q3 = —(Qu + Q)
= —(1/3)ai — (1/6)p — (1/3)inas + (4/3)wi — (4/3)a3 + (2/3)w;

+(1/3)n§3 — (1/6),& + ﬂlngg + i(—ulwl — wia; — 2&)2@2 + CU17L23).

We immediately find that there are no spacetimes of Petrov type O, since the

real part of (012 does not vanish, and so the matrix ) cannot vanish.

In order that the Petrov type be N, the matrix @ must satisfy Q? = 0 with

@ # 0. Therefore, ()33 must vanish. The real part of (J33 provides an expression for
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the energy density:
p= —2uya; + 6iyngg — p + 8wi + 4w + 2n3, — 2a] — 8as.

This is then used to reexpress Q2 without x. The constraint (6.5) gives an expression

for
%)

a9 — .
27123

The imaginary part of (Q?)1s, which is
2 2 : 2\
—wle(almg — n23 + U1N23 + WQ) = 0,

yields an expression for 1 :

2 2
) 1Moz — Nog + W5
Uy = — .
UDE}

The imaginary part of (Q?)y is
2u)1n23 (CUQ — 2’)123)(&)2 + 2n23)(a1n23 — ngg + w%) = O

Since u; is constrained to be non-zero, it follows that ws = £2ns3. For both sit-
uations, using the expressions just obtained for ;,ws and as, we find from the

expression for p that pu+ p = 0. There are therefore no type N solutions.

For Petrov type III, the matrix condition is @Q* = 0 with Q* # 0. In type III,
all three eigenvalues must be equal to zero. Since (@) is trace-free and symmetric,
and since the vector (0,0,1) is an eigenvector of @, it follows that ) must be of

the form

B
—A

o T =
o o o
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The characteristic polynomial is then L(L?— A*— B?) = 0. For L = 0 to be a triple
root, it follows that A? + B? = 0, and so A = +Bi. But this implies that Q? must

be zero. Therefore there are no type III spacetimes in case A.

For Petrov types II and D, there is a (non-zero) double eigenvalue. From the
structure of the matrix @), it is immediate that ()33 is an eigenvalue, with associated
eigenvector (0,0, 1). Since the trace of a matrix is equal to the sum of its eigenvalues,
there are two cases to consider for the present situation, depending on whether or

not (Y33 is the repeated eigenvalue.

We first consider the situation when ()33 is the double eigenvalue. The matrix

@ — Q33 I3, with I3 denoting the three-dimensional identity matrix, is given by

2E1 + Ex +i(2Hy; + Hy) Eiy+iHy 0
Q = E12 + ’ing 2E22 + E11 -+ Z(QHQQ + HH) 0
0 0 0

One of the possible eigenvectors belonging to the eigenvalue Q33 is (0,0, 1). There
will be another such eigenvector, linearly independent of (0,0, 1) if and only if the

determinant

2F11 + Eao + i(2H11 + Hao) Ei1s +iHo
Eis+1Hy9 2F9 + E1q + i(2Hs + Hiy)

vanishes. If this last determinant does vanish, then the Petrov type is D, otherwise,
the Petrov type is II. On the other hand, the quantity —2()33 is also an eigenvalue,
which entails that the determinant of ) + 2()33 I3 must vanish, i.e.

—Ey —2E9 +i(—Hyy — 2H) By +iH, 0
E12 + ing _E22 — 2E11 + ’i(—HQQ — 2H11) 0 = 0.
0 0 Q33
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This is precisely the condition that the Petrov type be D, since (J33 # 0. Since
the determinant is a complex valued quantity, its vanishing actually represents
two conditions. The vanishing of the real part of the determinant gives the first

condition:

1
. 2 . 2 -2 2.
- (,U + p) (u1n23 + 5&12) —U1a1Wy — 2u1a1n23 — 2a1u1n23
22 14w?a 8a3t 3wt 10
+2wsnezar + 14witings — SastiNag + 3wyt Nag + 10waaswinas
2
—bwiaiwaay + 6wiaineg + w2 12a2w2 + 2n23u1

The second condition is attained by requiring that the imaginary part of the deter-

minant be equal to zero:

2 2 2
(1t + p)(woas — winag) — 8azwineg — 2a7wiNeg + 2awaas
A2 3 2 2 4 5,2 6112
FAUINH3W1 — SUIWIW; — W1A1W5 + dWyw1Tleg — bUTWTo3
—10w2a2u1n23 + 27.111(11&)2012 - 277/;3(,02012 + 8&)?7123 - 8&)%&]2(12

— 81y a1w1 N3 + 8asws — bwiag + 2nyawy = 0. (6.7)
We eliminate 1 + p between equations (6.6) and (6.7) to obtain:

. 4 4
— 203n3,w1 — ajwsay + 6wiainis + (3/2)iwiws + (1/2)wiaiw;
4 .32 2 3 3,2 - 3 2
—(3/2)wawings + 6U Wi NGy — N3qWsas + 6wingsty — winggws
+wlwdas + nd.wiw? + 8adwd + 2wia 2win3, — 18a2winqsw?
1W2 a2 23W1W) oWy 202 — 2W1iTly3 oW1 Th23Wy
+6u1w1w§a2 12w1a1w2a2n23 + 6w1a1w2a2 + 6u1a1w1n23

3 2.2 2.2 2 2
—2W5N93a1a2 + 2wyN55a1W1 + 12waa0w NS5 + ajwiNg3wW;

.2 2 -2 2 2. 2.2
—4unyswiws + 6 wiwsnes + 4dwiaiwytyneg + Bwaaot Nyg

+8w§’a201n23—12w%w2a2u1n23 = 0. (68)
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Equation (6.8) is then differentiated three times. Each time, equation (6.4) is
used to eliminate A, and then equation (6.7) is used to eliminate pu + p. The three
equations thus obtained have 109, 291 and 648 terms respectively. Since the exact
expressions are not very illuminating in themselves, they, as well as other long
equations, will be omitted from the present text. Sufficient details, however, will
be provided so that any omitted equation can be calculated.> The main problem to
control is that the intermediate calculations become quite large. The order in which
the operations are performed and the various projections that are used turn out
to be critical in being able to complete the calculations. The steps are as follows.
Factor every polynomials that are obtained. Each factor corresponds to a branch in
the calculations. The main reason for keeping the polynomials factor-free is to keep
their sizes down. Denote equation (6.5) by T1; equation (6.8) by T2; and the three
successive derivatives of equation (6.8) by T3, T4 and T5. Equations (T1-T5) are
polynomial equations that are homogeneous. We set ng3 = 1 in equations (T1-T5),
thereby breaking the homogeneity of the equations. This is equivalent to replacing
each variable by itself divided by ms3. We therefore are working in a projective
space. This reduces the size of the equations that are to come, since we obtain real
numbers where polynomials in ny3 would have appeared. The projective forms of
equations are labelled by T1a-T5a. Equation (T1a) is used to eliminate ay from
the other equations, using the resultant. The variable ay has been chosen since it

appears as the variable of lowest degree.

Since computing a resultant entails computing a determinant of a matrix* with

3The use of a symbolic calculator proves to be essential.

4This is the Sylvester matrix.
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dimension® twice® the degree” of the variable which is to be eliminated, it is im-
portant to keep the degrees as low as possible. If there are several variables to be
eliminated, the first tendency might be to start by eliminating the higher degree
variables. That it is actually better to start with the lower degree variables is eas-
ily seen by thinking about three bivariate equations, linear in one variable, but of
degree ten, say, in the second variable. If one eliminates the linear variable, one
would get two equations of at most twentieth degree in the second variable. The
numerical coefficients are of the order of magnitude of the product of the largest
coefficient in each of the polynomials. The determinant of a matrix of dimension
40 would be computed. On the other hand, starting with elimination of the higher
degree variable, one would compute the determinant of two matrices of dimension
20, with terms linear in the remaining variable. This would yield two polynomials
whose potential degree is 20. The numerical coefficients are of potential order of
magnitude of the product raised to the twentieth power of the largest coefficient
in each of the polynomials. As in the first approach, the determinant of a matrix
of order 40 would need to be computed. The big difference is that the numerical
coefficients are bigger in the second approach. This effect is magnified the more

variables there are.®

5The dimension of a square matrix is defined to be the number of rows (or columns) of the
matrix.

6There is another method of computing the resultant. It involves computing the determinant
of a Bezout matrix which has dimension equal to the maximum degree of the polynomials. Its
entries are, however, more complicated than in the Sylvester matrix. In either case, the point
that the needed expressions cannot be computed in the straightforward way still holds.

"This is for polynomials in which the degree of the unknown is the same. The exact dimension
of the matrix for two polynomials is equal to the sum of their degrees.

8 As an example of this effect, let us suppose that we are given the three polynomial equations

tzt +(t+ 1)z +3 =0, (t+2)z* + (t+2)22 +4 = 0 and z* + ¢ + 3 = 0. Eliminating ¢ first, followed
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Equation T11 is obtained from equations Tla and T2a by taking the resultant
with respect to ay followed by a division by w;. Equation T12 is obtained from
Tla and T3a, with a division by w?. Equation T13 is obtained from T1la and T4a,
followed by a division by w?. Lastly, equation T14 is obtained from equations Tia
and T5a followed by a division by w{. Since w; and wy only appear with even degree
in equations T11 to T14, it is worthwile to replace w? and w3 by new variables, W;
and Wy, respectively. Now variable W is the variable of least degree in T11-T14.
We then use equation T11 to eliminate W from the other equations. Equation T21 is
obtained from equations T11 and T12, together with a division by (W,—2)?. We shall
consider later the situation when W5 — 2 = 0, which is equivalent to w3 — 2n2,; = 0,
but for now, we assume that this factor does not vanish. Equation T22 is obtained
from equations T11 and T13, and a division by (W, — 2)? = 0. Equation T23 is
obtained from equations T11 and T14, and a division by (W, — 2)3. It is important
that these factors of W5 — 2 be removed, otherwise resultants with respect to Wy
would be zero, indicating the presence of W5 —2 as a common factor, but not telling
us any information about other possible common factors involving variables other
than W5. Next, the resultant T31 of T21 and T22 with respect to a; is calculated.
It has

(211 + Wo)* (31 + 2Wy — 2)10(Wy — 4)2° (W, — 2)H Wab (6.9)

as factors. We remove from the resultant these factors, whose possible vanishing
we shall consider later, and denote the result by T31a. The next step would be
to compute the resultant of T21 and T23 with respect to a;. This, however, is a

lengthy calculation. It is not clear that it can be carried out, and the step following

by x gives —72145632. This is close to (3 x 4)72. Doing the elimination in the opposite ordering
gives 6087102333217026742804309262336. This is about (3 x 4)?8-5. That these numbers do not

equal to zero indicates that there are no common zeros to the polynomials.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 162

the elimination of a; certainly could not be computed directly.” A small prime
number is chosen; the value 19 is adequate.'® We replace W, by this small prime in
T21, T23 and T31a. Then, the resultant of the modified T21 and T23 with respect
to a; is computed, and the result is labelled by T32. Then T41 is computed by
taking the resultant with respect to a; of T32 and the modified T31a. If we had not
removed the factors given by (6.9) from T31, we would have found that T41 is zero.
Therefore, at least some of the factors of (6.9) are common to the two resultants T31
and T32. Since these factors needed to be identified, it was not possible to set W5

to be the chosen prime from the outset.!’ Having removed the factors (6.9) from

9We may consider an estimate of the magnitude of the calculation, as follows. Equation T31 is
already of degree 35 in w1 and of degree 75 in Wy, implying that equation T31a is of degree 15 in
41 and of degree 24 in Ws. Equation T32 has a higher degree than T31. Even if the factors (6.9)
are divisors of equation T32, the corresponding equation T32a would be of at least degree 15 in
and of degree 24 in W5. Eliminating 71 between T31a and T32a involves finding the determinant of
a matrix of dimension 30 with entries being polynomials in Wy with degree of the order of 24. The
result would be a polynomial in W5 with degree of the order of 24 x 30. The numerical coefficients
in T31 are of the order of 10%° to 108°. The polynomial in W, would then have coefficients of the
order of 10%0%39  Roughly, we then have 700 terms with coefficients of 1200 digits. This is 0.8
megabytes just to give the coefficients. In terms of time, it took about 7000 seconds to compute
equation T31 on the machine jeeves.uwaterloo.ca which is a DECsystem 5500 running Ultrix
4.2a and is about 30 times faster than a VAX780. Calculation of T32 would take even longer. It is
clear that the resultant between T31a and T32 should not be attempted, since the required time
behaves as the cube of the dimension of the matrix whose determinant we compute; and this is
assuming the fortuitous case that the coefficients do not increase in magnitude, an assumption we
already know does not hold.

10Tt is not required that the number be a prime number. For more information, see the following
footnote.

1 Actually, given a bound on the degree of relevant polynomials, it is possible to do the eval-

uation at enough prime values to be able to find the actual factors. For our purposes, such a
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T31, the value of T41 is not zero, but rather an integer comprising 5304 digits.'?
This value is the value of the full resultant T41 when evaluated at W5 equal to the
chosen prime 19. Since the number obtained is not zero, we know that the full value
of the resultant T41 is a polynomial in W5. Equating this polynomial to zero, we
can conclude that W5 has to be a constant. In terms of the original variables, we
can then conclude that ws is proportional to ny3. The constant of proportionality

cannot be zero, and has to be finite, since the product wyne3z cannot be zero.

Taking into account the various common factors already identified, the present
situation therefore subdivides into 3 cases. The first subcase has wy = Angs, with A
a non-zero constant. The second subcase has w2 = —211n93 and the third subcase

has 3u1n93 + 2w3 — 2n3, = 0.

The first subcase has
Wy — ATL23 = 0. (610)

Equation (6.10) is used to eliminate no3. Equation (6.5) becomes
2a9 — w1 A =0. (6.11)
Equation (6.11) is used to eliminate w;. Differentiation of equation (6.10) gives
— Aty — Aay — A%wy +ws = 0. (6.12)
Equation (6.12) is used to eliminate a;. Equation (6.8) becomes

aow3 (8 A*wyti? + 8A*WS + 3202 A%wy — 56a2A%wy — 14A503

calculation turned out to be unnecessary. The reason for choosing prime numbers is that it is
then easier to compute the value of the actual factors.

12This value of 5304 is of the same order of magnitude as the 1200 we arrived at in the pre-
vious footnote. We may regard this as illustrating that our method of estimating such values is

reasonably accurate.
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+28a3 A%wy — 8Aw3iy — 4A%wqa3 + TASwS — APwS + 2452w,

—2A% w3 — A%2wy + 10470 w3) = 0.(6.13)
Equation (6.13) is used to eliminate ;. Equation (T3) then becomes

—a3 AP (A — 2)T(A 4 2)7(A? — 2)2(T2w3 AMa3 + 48w3 APal
—480A%w3a3 + 128w, — 384A%w; + 30wy A® — 404A%W5 + 9wy AP
+648 A%wy + 144ay A + 768 A%asws — 192A%w3a;

+1152A%5 — 576 A%a) — 288A%a5)(4a; + wiA%)? = 0.

It follows then that either ws is proportional to as or A is equal to 2, —2, v/2 or —v/2.
Differentiating wo, — Bas = 0, with B a non-zero constant, one gets —21u, Bas = 0,
a contradiction. If wy = 2n93 or wy = —2nag, then differentiation of equation (6.12)
shows that u +p = 0, a contradiction. If w3 = 2n3;, then differentiation of equa-
tion (6.12) gives that u + p = 4(a3 + n3;). Differentiation of w3 — 2n3, = 0 implies
that nog + a3 + 4 = 0. Equation (6.7) then gives 4\/§a2n§3(n23 + a;) = 0, whence
N9z + a; = 0. This in turn implies that 7, = 0, a contradiction. There are therefore

no spacetimes that belong to the first subcase.

The second subcase has

wg -+ 2@17123 =0. (614)

Differentiation of equation (6.14) gives
—2u1w2 +2a1w2 —|—2n23a1 6n23w1 +8a2n23 2n?2’3+n23(,u+p)—4n23u%+4n23u1a1 =0.
(6.15)

The variable 1, is eliminated between equations (6.14) and (6.15), and factors of

nog are removed from the result. This gives

— 2n3s + 2a] — 6w; + 8a3 + pu+p=0. (6.16)
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We use equation (6.16) to remove u, equation (6.14) to remove @ and equation (6.5)

to eliminate wy from equations (6.6), (6.7) and T3. We thus obtain

8N (—wings + 3wia; + 2a3ngswi — 6aswia + 2aini, (6.17)
+4ainisar + 2a3n03a7 — 4dagngs) = 0,
8nis (W) — 2a5w] + 6asniswi + 6asnoswia; — dagns, — dagngza;) = 0. (6.18)

and the equation that arises from T3. The resultant of equations (6.17) and (6.18)

with respect to aq is

— 8192w;2 + 38912a§w§0 73728a2n23w1 + 245'760%%@1

+163840a5n3,w7 — 32768a,’n3; = 0, (6.19)

after division by nijw;a2. The resultant of the transformed T3 and equation (6.17)

with respect to a; becomes

— 21w + 166a5w° — 510wiPay — 324w ®a3ns, + 2100w;asns,
+756w;,%as — 1296w *agny, — 5132w an3, — 536w as
+144w2al0 + 8640w 2aSni, + 5560w 2adn2, — 1696wi%alln?

1 %2 1 %2723 1 %2723 1 %2 %23
—24624w;1%a3n5, + 38688wdas’ny; — 1728wias*na, + 1600wlas*ni,

—36064wlay’ny, — 384wiaz’nas + 19904wiay ng,

—6016a3°n9,w? + 768a3°ngy; = 0,

after division by nifwia3(w? — 2a3). The resultant of equations (6.19) and (6.20)
with respect to n3, is
—67108864a5w1°(3w;® — 88wia3 + 371wlay — 534wias + 324wial — 72a30)

(wy — a2)3(w1 + a2)3(3wf — 2a§)3(wf — 2a§)3 = 0.
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We thus conclude that wy is proportional to as and so we set
w1 = Bas, (6.20)
with B being a non-zero constant. Differentiation of equation (6.20) gives
w1 Bas + Basay + 2wsas — Bagneg = 0,
which is equivalent to
— 2B%a; + 2B%ng3 — 4ngz = 0, (6.21)

after elimination of ay with equation (6.20) and of wy with equation (6.5). The

derivative of (6.21) is equivalent to
— B*a3 — wj + 2B%a; + B*w; = 0. (6.22)
Differentiation of (6.22) leads to
16B*a5u3(B — 1)*(B +1)*(B* - 2)*> = 0,

which shows that B must be equal to 1, —1, V2 or —/2. Substitution of these four
values into equation (6.22) leads to contradictions in all cases. There are therefore

no spacetimes that belong to the second subcase.

The third subcase has
3t ng3 + 2ws — 2n35 = 0,

which we shall refer to as being equation P1. We shall refer to equation (6.5) as
equation P2, equation (6.6) as P3, equation (6.7) as P4, the derivative of P1 as P5
and T3 as P6. We compute P13 as the resultant of P1 and P3 with respect to
1. Similarly we compute P14, P15 and P16 as the resultants with P1 of P4, P5
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and P6 with respect to 7. Then P123, P124, P125 and P126 are obtained as
the resultants of P2 with, respectively, P13, P14, P15 and P16 with respect to wy.
Then, P1235 is obtained from the resultant of P123 and P125 with respect to pu.
Also, P1245 is obtained from the resultant of P124 and P125 with respect to pu.
Lastly, P12456 is obtained by taking the resultant of P126 and P1245 with respect
to a;. Whenever they appear, we shall remove common factors of powers of nay3, as
and wy. We let wy be equal to the prime number ' 17 and take the resultant modulo

7 with respect to ny3 of P12345 and P12456. The answer is

5(2a5” + 4ay’ + 2a3" + a3’ + 4a3® + 2a3® + 5a3’ + a3’ + a3’ + 3a3’
+6a32 + 6aS° + 6aS® + 6a5* + 4a5® + 2a5’ + 2a$? + 2a3° + 5a?

+3a5" + a3° + a5’ + 443" +205°)° = Omod 7,

This shows that ws is proportional to a,. Differentiation of wy — Aas = 0, where A
is a non-zero constant, shows that —2; Aas, = 0. This is a contradiction. We can

then conclude that there are no case A spacetimes of Petrov type D.

We now consider the case when ()33 is the non-repeated eigenvalue of (). Since
the eigenvalues of () must sum to zero, the repeated eigenvalue is —(1/2)Qs3. The

matrix @ + (1/2)Qs3 I3, which is

(1/2)[E11 — Fos + i(Hyy — Has)] Eyo + iHpo 0
Eyo + iHio — (1/2)[E11 — Eyo + 1(Hyy — Hy)] 0 )
0 0 (3/2)Qs3

implies that the eigenvectors associated with —(1/2)Qs3 are orthogonal to (0,0, 1).

The requirement that the eigenspace of —(1/2)Q33 be two-dimensional requires that

13The numbers 7 and 17 are arbitrary. They were chosen because they were small and because

we could obtain the results we sought. Most positive integers would have been appropriate.
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the submatrix
(1/2)[E11 — Fag + Z.(I—Ill - HQQ)] Eis+1Hqs
Eiy +iHy —(1/2)[Eyy — Egg + i(H11 — Haa))

(6.23)

be scalar, i.e. a multiple of the identity matrix. However, if the matrix (6.23) is
scalar, then F,o, which is —wjws,, vanishes. This is a contradiction, whence the
Petrov type must be II. Since —Q33/2 is an eigenvalue, the determinant of the

matrix (6.23) must be zero. This determinant factors as:
(1/2)ai + (1/4)p + (1/2)inay — 2w} + 2a5 — (1/2)n5 + (1/4)p
+(3/2)itwy + iwaag + (3/2)iwrar + (1/2)t1n93 + (1/2)iwings
+i(—wowy + iwanaeg + iwsay ) (6.24)
times
(1/2)ai + (1/4)p + (1/2)inay — 207 + 2a5 — (1/2)n3s + (1/4)
+(3/2)itwy + iwaas + (3/2)iwrar + (1/2)t1n93 + (1/2)iwinos
—i(—wowy + iwenag + iweay). (6.25)
We first suppose that the first factor (6.24) is equal to zero. The vanishing of
the real part of (6.24) gives a value for pu :
(1/2)td1a1 + (1/2)01n93 — wangs — waay
+(1/4)p+ (1/4)p — 2w? — (1/2)n35 + (1/2)ai + 245 = 0. (6.26)
The vanishing of the imaginary part of (6.24) gives
(3/2)twy + waag + (3/2)wra; — wewy + (1/2)wingg = 0. (6.27)

The derivative of equation (6.27) is equivalent to

32, 23 2 2
wi (w1 + ag)(wias + wiwy + 2w;aswi

. 2.3 o 2 2 2 3 2
—3lwiweas — wiay — 3Ujwiwaas — 2wiaswy — 3ayw;) = 0, (6.28)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 169

where equation (6.4) is used to eliminate A, equation (6.26) is used to eliminate
i, equation (6.27) is used to eliminate a; and equation (6.5) is used to eliminate
nogz. There are therefore two possibilities, according to whether or not w; + a, = 0.
If wy + as is indeed equal to zero, equation (6.5) gives that wy + 2ny3 = 0. Equa-
tion (6.27) gives that a; + 11 + 3ng3 = 0. In turn, equation (6.26) gives u+p =0, a
contradiction. Therefore wy + as # 0. Equation (6.28), divided by wy(w; + as), will
be used to eliminate ;. Furthermore, equation (6.28) is differentiated. The result

is equivalent to

19683 o 4 6561 o, , 720 o o, 243 .

D) w1y 3—2w1a2w2 + B—lewz + ?wlwﬂg

o2 0tag - 2 wtadd — D ot - T ot

el + gutadud - utadud + eutadul
—Qgggw%ag‘wg‘ zggagwéwl + 73229613 5 = 0. (6.29)

Equation (6.29) is used to eliminate w;. The result of differentiating equation (6.29)
implies that
asBws?(343w; + 234a3w; — 8laz)(ws + 4a3)® = 0. (6.30)

This implies that ws is proportional to as. Propagation of this proportionality re-

lation yields a contradiction.

If the factor (6.24) is not equal to zero, then, for the spacetime to be of Petrov
type I, the factor (6.25) must be zero. The same steps as in the preceding paragraph
are followed, replacing the factor (6.24) by the factor (6.25). Two cases appear,
according as w;+as vanishes or not. If w;+ay does vanish, a contradiction is reached
in the same manner as that above. If w; + ay is not zero, the same steps as in the
preceding paragraph lead to exactly the same equation (6.30) that was obtained in

the first subcase. It follows then that ws is proportional to as. Propagation of that
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proportionality relation leads to a contradiction. There are therefore no Petrov

type II solutions in case A.

If there are spacetimes in case A, they must be of Petrov type I.

6.2 Case B: ng3 #0,a9 = 0; w; = 0, nogwot; # 0.

For case B, the propagation equations are

Oiay = (1/2)p+ (1/2)p — 2w3 + taay + n3s + a7 + (1/4)n3s,

oty = —A+(3/2)p+ (1/2)u — 2w5 — a7 + 2ua;,
Oiwy = —2U1Wy + wanoz + waay,
Oinog = —A—+p+201a1 — neg + 2a1n93 — i + (3/4)n3s + nd,
Oinzs = —ungs + 2n3za; — 2n3znas,
op = —(p+p)
and
oA = 0.

The cosmological constant, A satisfies
A= (1/4)n3; + p+ 2ta; — a] — wi + nas.
The matrix @ is of the form

Qll Q12 Q13
Q12 Q22 Q23 ’
Q13 Q33 Q33
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where

Qu = —(1/6)n2+ (1/3)p+ (2/3)inay + (2/3)a? — (1/3)w?
—(2/3)n35 + (1/3)p,

Qi = iws(nos + a),

Quiz = (1/2)iwanss,

Q= —(1/3)inay — tyngs + (1/12)n2, — (1/6)p — (1/3)a
—(1/3)w3 + (1/3)n3s — (1/6)p,

Q2 = —(1/2)uinz;

and

QRszs = —(Qu+ Q2)
= (1/12)n3; — (1/6)p — (1/3)inar — (1/3)a] + (2/3)w)

+(1/3)n35 — (1/6) 1+ ti1nas.

The possibility of a Petrov type O spacetime is rejected because that would
require that the matrix ) vanish. This cannot be so since the imaginary part of

(13 is necessarily nonzero.

A Petrov type N spacetime requires that ? = 0 with @ # 0. The expression in
<Q2>13 =01is

(1/24)iwynss(dws — n3g — 4nsg + 2p — Stya; + 4a3 + 2u) = 0,
from which p is isolated:
p=(1/2)n3; — p + dia; — 2a] — 2w3 + 2n3,. (6.31)
The expression (Q?)s3 = 0 becomes, after division by ns3

— (1/2)wings — (1/2)wiay + wia; — (1/2)0w; = 0. (6.32)
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The resultant, with respect to a; of equation (6.32) with the equation (Q?);; = 0

is, after division by w3, equal to

4
4wS + 1601 n93wy — dwyTld — winas — 1603 n3ws + 160in55w5

Multiplication of equation (6.31) by 8[u?—(1/2)w3]? yields, after taking into account
equations (6.32) and (6.33), that

8(u+p)lig — (1/2)w3]* =0,
whence
wy = 247.
Substitution into equation (6.32) reveals that nag 4+ 4; = 0. Differentiation of nq3 +
11 = 0 then yields n3; — 443 = 0. Propagation of n3; — 447 = 0 implies that @, = 0.
This is a contradiction in case B, since ngz # 0. There are therefore no spacetimes

in case B that belong to Petrov type N.

The matrix condition for a spacetime to belong to Petrov type II1 is Q® = 0 with
Q? # 0. A direct calculation shows that there are only two independent components

in Q3. The entry (Q%);3 = 0, which is

— 4+ p)? + (—1601a1 4 4n2y — 1662 + 8w?2 + 1612,) (1 + p)

+96wangza; + 8nssiyar + 1611wy + 320 a1n55 — Ny — 16n3,

—16a; — 16wy + 8winjis + 8njsai — 8n3yns, — 16ujas

—3201a} + 64a3w; + 32a3n5; + 32wins, — 4811 no3ws
—12uin3, — 48uin3, = 0, (6.33)

can provide a value for the energy density, since the coefficient of the highest power

of u therein cannot vanish. We take the resultant of (Q*)1; = 0 and equation (6.33)
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with respect to p. Differentiation of the result does not yield anything new. There

can be solutions of Petrov type III, but some constraints must be met.

For spacetimes to be of Petrov type D, their Weyl tensor must be such that the
matrix equation M = (Q +\/2 I3)(Q — A I3) = 0 must be satisfied. The condition
M3 = 0, which is

1/24dwonss (4w§ — n3y — 4n3, — 8iyay + 4ai +2(p +p) — 6)\) =0,
produces a value for \, viz.,
A= —(1/6)ng5 — (4/3)inar + (2/3)ai + (2/3)wy — (2/3)nzs + (1/3)(n+ p).
Then, the equation M5 = 0 reduces to
—(1/4)woi(dwings + dwiar + nigty — 4iyas + 4nsqty) = 0,

which will be used to eliminate nz3. We deduce that ny3 + 77 = 0 from equation
MQQ = 0, which is
(t1/2)(noz + a1)(p +p) = 0.

The condition M;; = 0 now simplifies to

—(tings + (1/2)w3) (1 +p) = 0.

Differentiation of a; 4+ nyo3 = 0 leads to 4+ p = 0, a contradiction. There can

therefore not be any case B solutions that are of Petrov type D.

Petrov type II spacetimes have a Weyl tensor that obeys the matrix condition
N :=(Q+ )2 I3)*(Q — X I3) = 0, yet do not satisfy the condition for Petrov type
D. The equation given by N3 = 0, i.e.

(1/96)&]2”33@[—36)\2 - 96&);’”23@1 - 8n§3u1a1 - ].6111@1&)5
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—3201a1n25 4+ N3y + 1603, + 16a] + 16w; — 8win2, — 8nisa’

+8n2sn3s + 16uTa? + 32007 — 64aiws — 32ain3, — 32wini,
+481 93wy + 120303, + 48105 n3,(— 16135 — 8w) + 16a]

—4n3, + 1600a1)(n+p) +4(u+p)?] = 0, (6.34)

provides an expression for A\2. Multiplying this expression by \ gives the value of \3.
Substitution of the equalities for A? and A% into the matrix N results in a diagonal
matrix. It turns out that this matrix is a scalar matrix; in other words, the three
non-trivial entries are actually equal, and so N is now proportional to the identity
matrix. The resultant of this non-trivial entry of N and equation (6.34) with respect
to A yields an equation with 923 terms. This equation can be considered a definition
for the energy density, i, except when all the coefficients of the various powers of
vanish or when there are no real-valued solutions for p. We now turn our attention
to the situation when it is indeed the case that this equation of 923 terms has its
coefficients of the various powers of p vanishing. The highest power of pn is 4. We

require the vanishing of the corresponding coefficient, viz.
— (1/12)03n3; — (1/3)uings — (1/12)wsy — (1/3)t1ma3w; = 0. (6.35)

We shall use equation (6.35) to eliminate ns3. The derivative of equation (6.35)

becomes

W3 (201 n93 + wW3)[ws + 4l nozwi + 4uia? + 2(u + p)id]
2443

=0 (6.36)

The term 24193 + w3 cannot vanish, otherwise equation (6.35) would imply that
—(u3n3;)/12 = 0, a contradiction. Equations (6.35) and (6.36) determine a value
for p, viz.

p=—p—2a; + (1/2)n3; + 2n3;.
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We now return to the equation with 923 terms. The vanishing of the coefficient of

1 therein simplifies to
w3 (—211a; + w3)? (2t ng3 + w3) = 0,

after making use of equation (6.35) to eliminate ns3. Since we have already ruled
out the possibility that 213n93 + w3 = 0, we must have that w3 = 21,a;. Differen-
tiating w3 — 2u1a; = 0 implies that no3 + a; = 0. Equation (6.35) now reduces to
—(1/12)42n3; = 0, a contradiction. There can therefore be solutions of Petrov type
I1, provided that an expression with 923 terms (mentioned above) yields a value

for p.

In summary, there are no solutions in case B that are of Petrov types D, N or

O. If there are spacetimes in case B, they must be of Petrov types I, II or III.

6.3 Case C: N33 = O, a9 = 0; W1 = O, 77@3002’&1 7é 0.

For this situation, the propagation equations reduce to

dar = (1/2)(p+ p) — 2w + tiar + n3; + ai,

Oty = —A+(3/2)p+ (1/2)p — 2wi — @3 + 2iyay,
Oiwy = —2Uwa + waNas + waay,
Oings = —A+p+ 2Uyay — tings + 201093 — a2 + ns,
Op = —u(p+p)
and
oA = 0.

Equation (6.3) can be used to solve for A, giving

A= —wj; +p+ 20a; — af + ni;.
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The matrix @ is

Qu Qiz 0
Q=1 Qu Qn 0 [,
0 0 Qs3
where
Qu = —(1/3)ws + (1/3)(p+ 1) + (2/3)tnar + (2/3)a; — (2/3)n3s,
Q12 = iwa(nas +a1),
Qe = —(1/3)inar — wngs — (1/3)w? — (1/3)a? + (1/3)n2; — (1/6)(p + 1)

QRsz = —(Qu+ Q)
= (2/3)wi — (1/3)inar — (1/3)al + (1/3)n,
—(1/6)( + p) + t1nas. (6.37)
For Petrov type O, the matrix condition is that ) be equal to zero. Since wy
does not vanish, we must have nog + a; = 0. The quantity Q)17 — QQ22, which equals

(1/2)(p + p), must also be zero, since @) vanishes; however, this is a contradiction.

There are therefore no Petrov type O solutions in case C.

There are also no spacetimes of Petrov type III since the vector (0,0,1) is a
non-null eigenvector of ). The proof that there are no Petrov type III spacetimes

in case C'is identical to that presented for case A, and therefore is omitted here.

In order that a spacetime be of Petrov type N, the matrix () must satisfy Q% = 0
with Q # 0. The entry (Q?);; = 0 can be used to find a value for y:

p = 4dws — p — 201a; — 2a7 + 2n34 + 613193, (6.38)
The only remaining independent entry in Q% = 0 is given by

(w2a1 + WaMo3 + w% + 2u1n23)(—w2a1 — WaTlo3 + w% —+ 2d1n23) = 0. (639)
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The propagation of this equation does not yield any new restrictions. Therefore

there can be type N spacetimes in case C.

For Petrov type II or type D there is a non-zero repeated eigenvalue. Because
of the structure of @, one of the eigenvalues is F33. The vector (0,0,1) is one
eigenvector associated with the eigenvalue Fs3. Since () is trace-free, the sum of the
eigenvalues must be zero. Therefore, there are two cases to consider, depending on

whether or not FEjs3 is the repeated eigenvalue.

Suppose that the repeated value is indeed E33.The matrix () — E33 I3 is
2F11 + Ex iHyo 0
iHo Ei1+2FEy» 0
0 0 0
Since the vector (0,0,1) is an eigenvector belonging to the eigenvalue FEs3, the
dimension of the eigenspace of () associated with Ej33 is either two or one according
as (2E1; + Fa)(E11 + 2Ey) + HE, vanishes or not, whence the Petrov type is D or
I1, respectively. However, —2Fj33 is the non-repeated eigenvalue, and so the matrix

Q + 2E33 137 which is

—FE —2Ey 1H 9 0
0 0 3Fs3

must be singular. The expression (Ey; + 2F)(2F); + Eg) + H3, must then vanish,
whence the Petrov type must be D. Explicitly, the equation

(EH —|— 2E22)(2E11 + EQQ) + H122 — 0
is given by

~(iamag + (1/2)w5) (e + p) i + i (Sianag —thar + 2ny + Iwar) o

+’L‘L177,23(—2’L‘L1a1 — 2&% + 2”%3 + 27:1,17123) = 0.
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This gives a definition for u, unless its coefficient vanishes, i.e. unless 2193+ w3 =
0. Supposing that, indeed, 2i3n93 + w? = 0, then equation (6.40) implies that
no3+a; = 0, and the requirement that this is propagated now shows that y+p = 0,
which is a contradiction. There can therefore be case C'spacetimes of Petrov type

D; however, some constraints need to be satisfied.

Now suppose that the repeated eigenvalue is not Fs3; it must then be —FE33/2.

Therefore, the matrix @ + (E33/2)13 is

(B — Ey)/2 iHyo 0
iHo (B2 — E11)/2 0
0 0 3FE33/2

Since —Fj33/2 is an eigenvalue, the determinant of this matrix must be zero, forcing
4H?Z, — (E11 — Eg)? = 0. This is equivalent to

(p+ p — dwsay + 2uqaq + 2(1% — dwanog + 2U1n93 — 2n§3) X (6.41)

X(p + p + dwoay + 241a1 + 203 + dwanes + 2uines — 2n3,) = 0,

which gives two possible values for p. If Hi; = 0 and Ej; = Fas then the dimension
of the eigenspace associated with —F33/2 is two, whence the Petrov type is D;
otherwise, the dimension is one, whence the Petrov type is II. If the Petrov type
is D, then the condition His = 0 implies that ns3 + a; = 0, and the condition
E11 = Ey necessitates that (1/2)(p+ p) + @1 (nes + a1) + (a1 + naz)(ag — ngg) = 0.
Together, these two conditions imply that p + p = 0, which is a contradiction, and
thus the spacetimes must be of Petrov type II.

In summary, spacetimes of Petrov type III and O are not allowed in case C. The

other Petrov types are allowed but under the presence of certain constraints.
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6.4 Summary

The only spacetimes allowed in case A must be of Petrov type 1. Spacetimes that
belong to case B cannot belong to Petrov types O, N, or D. There can be solutions
of type I. There can also be solutions of Petrov type III, but some constraints
have to be met. There can also be solutions of type II, provided that a particular
equation of 923 terms contains terms involving u. If the coefficients of p all vanish
in that particular equation, then there are no solutions. We note that since the
Petrov types O and D are ruled out, spacetimes with a purely electric Weyl tensor
that belong to either of class A or of class B must be of Petrov type I (see Kramer
et al. (1980) who mention the fact that if the matrix @ is real, the only allowed

Petrov types are O, D and I).

For spacetimes that belong to case C. there are no solutions of Petrov types
O and III. There can be solutions of Petrov type N. In these spacetimes, the fluid
has the energy given by equation (6.38) and the solutions are subject to the con-
straint (6.39). There can also be Petrov type D solutions. They have (33, given
by equation (6.37), as a double eigenvalue. The energy density is given implicitly
by equation (6.40) and the quantity 21193 + w3 cannot vanish. Furthermore, there
can be Petrov type II solutions. They have (J33 as the non-repeated eigenvalue.
The energy density must satisfy equation (6.41). The quantities wy(n9g + a1) and
(1/6)(p + ) + w1 (ay + no3) + a3 — n2; cannot both vanish on an open set. There

can also be solutions of type I.

The results we have obtained for Petrov type N are compatible with those
obtained by Carminati (1988), who showed that Petrov type N shear-free perfect
fluids with a barotropic equation of state must belong to the class studied by

Krasinski (1978), and therefore must belong to our case C.
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There are no spacetimes within the class we are studying that are conformally
flat, i.e. of Petrov type O. This, of course, is compatible with Ellis (1971) who at-
tributes to Triimper!? the result that conformally flat spacetimes with a barotropic
equation of state must be shear-free, geodesic and irrotational and so must belong

to the Friedmann-Robertson-Walker models.

Kramer et al. (1980) mention that they were not aware of the existence of any
perfect fluid solutions of Petrov type III. A superficial search of the literature did
not reveal any solutions other than the work of Allnutt (1981) which uncovered a
perfect fluid of Petrov type III that possesses non-zero shear. Carminati (1990)
mentions the article of Allnutt and adds that, as far as he is aware, there are no
known shear-free perfect fluid solutions of Petrov type III. We have demonstrated
the possible existence of such spacetimes in our case B, although they are subject

to rather complicated (yet readily accessible) constraints.

We have summarized the previous results in table (6.2) appearing on page 181.

Ellis does not give an exact reference.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES

Petrov Type | Case A Case B Case C
I Allowed Allowed Allowed
D Disallowed | Disallowed | Allowed
II Disallowed | Allowed Allowed
N Disallowed | Disallowed | Allowed
I11 Disallowed | Allowed Disallowed
O Disallowed | Disallowed | Disallowed

Table 6.2: Allowed Petrov Types

181



Appendix A

The forms Maple package for

differential forms

De la discussion jaillit la lumiere.

Proverbe francais

T HE Maple package forms is a collection of programs for calculations involving
differential forms and their dual vectors. Maple V or Maple V release 2 is required

in order to use it. A standard reference about Maple is Char et al. (1991).
The following functions are provided:
adjoint_d: compute the adjoint differential, or coderivative of a form.
cartan_lemma: solve for unknown forms
cauchy_char: compute the Cauchy characteristic of a differential ideal
d: compute the exterior derivative

derived_ideal: compute the derived ideal of a differential ideal

182
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express_base: express a form over a basis

form coeffs: find the coefficients of forms
form_to_vec: take a basic form to a basic vector!
form part: find the non scalar part of a term

hodge_star: apply on a form the hodge star operator with respect to an inner

product
hook: compute the interior product of a form by a vector
in_ideal: verify if a form belongs to given differential ideal
inner product: compute an inner product between two forms
item map: apply an operation to elements of nested structures
laplace beltrami: apply a generalized Laplacian to a form
lie: compute the lie derivative of a form
linear_divisors: compute the linear divisors of a form
linear_solve: solve linear equations; extends solve(..., linear)
mod_ideal: finds a representative of a form modulo a differential ideal
scalar part: find the coefficient of a basic form

standard form: regroup forms according to basic forms

LA basic form is a nform, a form or a dform. A basic vector is a nvector, a vector or a

dvector.
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subs_form: substitute forms in other forms; extends subs ()
vec_scalar_part: find the coefficient of a multivector term
vec_subs: substitute multivectors. extends subs()
vec_to_form: take a basic vector to a basic form
vec_wedge: compute the exterior multiplication of vectors
vector_part: find the multivector part of a term

wdegree: find the degree of a form

wedge: compute the exterior multiplication of forms

In order to use the forms package, it must first be loaded in Maple via the with ()

facility.

> with(forms):

In the Maple examples below, it is useful the remember that the ordering of
terms in a sum, of factors in a product and elements in a set are session dependent.
The output of each example may thus be different from that shown in the present

document.

Let V be a real vector space of dimension n, and V* its dual space. Elements

of V' are called vectors; those of V*, covectors or 1-forms.

A.1 Differential forms

Any non-compound Maple expression is a differential form of degree 0. We shall

refer to such forms as O-forms. Compound Maple expressions are quantities like
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sets, lists, expression sequences and so on. From 0-forms, one can get differential
forms of degree 1, or 1-forms, by using the exterior derivative operation d(). For

example,

> Fl:=x*xy+3x*z;

F1 :=xy+ 3z

is a O-form.

> dF1:=d(F1);
dF1 := dform(1, x) y + x dform(1l, y) + 3 dform(1l, z)

As one can see, the exterior derivative operates on O-forms as a differential operator
and produces a 1-form. The notation dform(1,x) represents a closed 1-form with
name x. This name is used to distinguish between various differential forms and
should be either a Maple name or a Maple indexed? name. By definition, closed
forms are differential forms whose exterior derivative is zero. One can use those

dform expressions to build other 1-forms.

> F2:=xxd(y)+t*d(2);
F2 := x dform(1l, y) + t dform(1l, z)

One can use the standard addition of Maple to add differential forms together.

> dF1+3%F2;
dform(1, x) y + 4 x dform(1, y) + 3 dform(1, z) + 3 t dform(1, z)

Like terms are combined using the standard_form() operation.

> standard_form(dF1+3*F2);

dform(1, x) y + (3 + 3 t) dform(1, z) + 4 x dform(1, y)

2There is no extra support for forms with indexed names. Further development of the forms

package could involve index symmetries and also Einstein’s summation convention.
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The coefficient multiplying a basic form can be obtained with the scalar_part()

function. The basic form itself is obtained using the form part() function.

> scalar_part (3*x*d(y));

> form_part (3*x*d(y));
dform(1, y)

Two differential forms can be multiplied together. However, since the multiplication
of differential forms is not necessarily commutative, the multiplication provided by
Maple cannot® be used. The appropriate multiplication, the exterior multiplication,

is obtained through the wedge() operation.*

> standard_form(wedge (dF1,F2));
y x wedge(dform(l, x), dform(1l, y))
+ (x t - 3 x) wedge(dform(1l, y), dform(l, z))
+ y t wedge(dform(1l, x), dform(1l, z))

The notation wedge (dform(1,y), dform(1,z)) means that the differential forms
that are arguments to the wedge() function are multiplied together using exterior
multiplication. The wedge() operation is distributive. Scalar functions (0-forms)

move out of form(). The ordering within the square brackets is unique during a

3Even if one could “overload” the * operator of Maple, it is arguably better to have a different
notation for each type of multiplication. For an example to ponder about, consider the design of a
system that could handle tensor multiplication of exterior multiplications of arrays of quaternion-
valued differential forms. The Gauss package for Maple, see Gruntz et al. (1993), is a suitable
environment for such a system.

4Unfortunately, this associative operator cannot be made into an infix operator if it has
more than two arguments without the appearance of extraneous parentheses. However doing
alias(‘&" ‘=wedge); will make give an infix operator for the exterior product of two differential

forms.
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Maple session, but can change from one session to another.

> standard_form(wedge (F2,dF1));
- vy x wedge(dform(1, x), dform(l, y))
+ (3 x - x t) wedge(dform(1l, y), dform(l, z))
- y t wedge(dform(1, x), dform(1l, z))

The wedge() and the d() operations are then appropriate tools to construct differ-

ential forms of various degrees.

> F3:=standard_form(wedge (wedge (F2,dF1) ,d(x)));
F3 := (3 x - x t) wedge(dform(1l, x), dform(1l, y), dform(1l, z))

The degree of a differential form is obtained by wdegree(). Note that for the

answer of wdegree() to be valid, each term of its argument must be of the same

form-degree.’

> wdegree(F3) ;
3

The set of p-forms, or forms of degree p, is denoted by AP(V*). The exterior algebra
of V* is the graded algebra

AV =NHeNvHe e NV,

where A\°(V*) is the set of real (complex) valued functions and A'(V*) is the cov-
ector space V*. Exterior multiplication is associative and distributive, but not

commutative. It satisfies the relation

alf= (—1)(pq)ﬁ Ao, o€ /\p(V*),ﬁ € /\q(V*).

SThere is a question of efficiency behind this design. Assuming that the argument of wdegree()
is homogeneous in degree allows for a constant time calculation. Without that assumption, every
term would need to be checked, therefore checking the form-degree would be an operation with
a cost linear in the number of input terms. A test for checking degree-homogeneity of fm1 is
evalb(nops (map (wdegree, convert(fml,set)))=1). The forms package can otherwise handle

forms of non-homogeneous degree; in particular, exterior multiplication is handled correctly.
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The operation subs_form() is used to substitute forms into other forms. The
function subs() of Maple is not adequate, since it does not preserve the canonical
forms that the forms package uses. Since the first step that subs_form() performs
is to use Maple’s subs() command, the rules governing the use of subs() also

apply here.

> standard_form(subs_form(d(z)=3*x*d(t)+d(u), F3));
2
- 3x (-3 + t) wedge(dform(1, t), dform(1l, x), dform(l, y))

- x (- 3 + t) wedge(dform(1l, u), dform(1l, x), dform(1l, y))

The various coefficients of a differential form are obtained with the function

form coeffs().°

> form_coeffs(dF1,{d(x),d(y),d(z)});
X, ¥, 3

Note that the form which is passed as a first argument to form coeffs() must
be constructible from the elements in the (optional) second argument, otherwise
an error will be reported. This is quite useful because normally the results of
form_coeffs() are only useful if the elements of the second argument are indepen-
dent. For example, if one knows that z is a function of x and y, then the derivative

of z would be expressible in terms of d(x) and d(y).

> dz:=d(z(x,y));
/ d \ / d \
dz := |--—- z(x, y)| dform(1, x) + |-——- z(x, y)| dform(1, y)
\ dx / \ dy /

6Note that the order can vary. An expression sequence is returned to be consistent with the

coeffs () function of Maple.
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The coefficients” in dF1 would then be
> form_coeffs(dF1,{d(x),d(y)});

Error, (in form_coeffs) Non basis form(s) present:, {dform(1,z)}

The error message signals that we assumed that the form dF1 can be constructed
solely with d(x) and d(y). We first have to express dz in terms of d(x) and d(y),

and substitute the result into dF1.
> dF1_a:=subs_form(d(z)=dz,dF1);

/ d \
dFi_a := dform(1, x) y + x dform(1, y) + 3 |---- z(x, y)| dform(1, x)
\ dx /
/ d \
+ 3 |-——- z(x, y)| dform(1, y)
\ dy /

One can then find the coefficients which were being sought.

> form_coeffs(dFl_a,{d(x),d(y)});
/ d \ / d \
x+3 |-——-z(x, I, y+3 |-—— z(x, I
\ dy / \ dx /

Sometimes it is useful to express a one-form with respect to a basis. This may
happen, for example, when one wants to express the derivative of a function (i.e.
the contact equation). Very often, one needs to invent new names for the various
coefficients. The function express_base() was written to simplify this. It takes a
form and a basis, and returns an equality where the left-hand side is the form, and
the right hand-side is the expanded version of it. An optional third argument gives

a method for constructing the names for the coefficients.

"Note that some releases of Maple would have returned D[1] (z) (x,y) as the form of the

coefficients of dz.
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As an example, we can expand d(z) in terms of d(x) and d(y) using the

express_base() facility.

> substitutions:={express_base(d(z),{d(x),d(y)})};
substitutions := {dform(1, z) = z_x dform(1l, x) + z_y dform(1, y)}

> dF1_b:=subs_form(substitutions,dF1);

dF1_b := dform(1l, x) y + x dform(1, y) + 3 z_x dform(1, x) + 3 z_y dform(1, y)

> form_coeffs(dF1_b,{d(x),d(y)});

y+3z.x, x+3z_y

Of course, the expression for d(z) can be constructed using the facilities of Maple:

> substitutions_2:={d(z)=zx*d(x)+zy*d(y)};
substitutions_2 := {dform(1l, z) = zx dform(1, x) + zy dform(l, y)}

> dF1_c:=standard_form(subs_form(substitutions_2,dF1));
dFl_c := (x + 3 zy) dform(1l, y) + (y + 3 zx) dform(1, x)

The optional third argument to express_base() is a function that will be called
with three arguments: a name, a base element and a number. It should return a
name constructed with this information. For example proc(name,base_element,

ind) could return on (F,dform(1,x),3) something like F_x or F3.

> substitutions_3:=express_base(d(z), [d(x),d(y)],<name[ind] |name,base,ind>);

substitutions_3 := dform(l, z) = z[1] dform(l, x) + z[2] dform(l, y)

> dF1_d:=standard_form(subs_form(substitutions_3,dF1));
dF1_d := (x + 3 z[2]) dform(1, y) + (y + 3 z[1]) dform(1, x)

The differential forms seen so far have been constructed with the exterior deriva-
tive, d(), of functions and forms and with the exterior multiplication, wedge, of
forms. It is quite useful to be able to use differential forms without necessarily hav-

ing to construct them out of scalar functions. The notation nform(degree, name)
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is used to specify a differential form.

> F4:=nform(3,w);
F4 := nform(3, w)
> dF4:=d(F4);
dF4 := dform(4, w)
> d2dF4:=d(dF4) ;
d2dF4 := 0
> wedge (F4,F2), wedge(F2,F4);
x wedge(nform(3, w), dform(1l, y)) + t wedge(nform(3, w), dform(1l, z)),
- x wedge(nform(3, w), dform(1l, y)) - t wedge(nform(3, w), dform(1, z))

A.2 Vectors and multivectors

A vector is an object which is dual to a one-form. In the package forms, ba-
sic vectors are nvector(namel), which is dual to form(1, namel), and
dvector (namel), which is dual to dform(1,namel). Vectors are formed by linear

combinations (over the maple expressions) of basic vectors.

> V1:=dvector (x)+3*z*dvector (y)-u*dvector(z) ;
V1 := dvector(x) + 3 z dvector(y) - u dvector(z)
> V2:=-dvector(x)+2xx*dvector (y)+3*uxdvector(z) ;
V2 := - dvector(x) + 2 x dvector(y) + 3 u dvector(z)
> V3:=nvector (wl);
V3 := nvector(wl)
> V4:=expand (V1+3*x*V2) ;
V4 := dvector(x) + 3 z dvector(y) - u dvector(z) - 3 x dvector(x)
2

+ 6 x dvector(y) + 9 x u dvector(z)

Vectors can be multiplied together with vec_wedge(). The notation for the

vec_wedge of basic vectors is vector([list of basis vectors|).

> vec_wedge(V1,V2);
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2 x vec_wedge(dvector(x), dvector(y))

+ 2 u vec_wedge(dvector(x), dvector(z))
+ 3 z vec_wedge(dvector(x), dvector(y))
+ 9 z u vec_wedge(dvector(y), dvector(z))
+ 2 u x vec_wedge(dvector(y), dvector(z))

The set of p-vectors, formed by the sum of terms that are the exterior products of

p vectors, is denoted by AP(V'). The exterior algebra of V* is the graded algebra

AV =NV)aN V) e aN'(V),

where A(V) is the real (complex) valued functions and A'(V) is the vector field V.
The exterior multiplication is associative and distributive, but not commutative. It

satisfies the relation
EAn=(-1)rpng e N'(V)ne N'(V).

Two functions® help in the construction of vectors, namely, form to_vec() and
vec_to_form(). The function form to_vec() takes a basic form, and returns the

corresponding basic vector. The function vec_to_form() does the opposite.

> form_to_vec(nform(1,wl));

nvector (wl)
> form_to_vec(d(x));

dvector (x)
> vec_to_form(dvector(y));

dform(1, y)

> vec_to_form(nvector(w2));

8These functions are used for formal manipulations. They are not intended to mathematically
convert between forms and vectors via a pairing such as < €,,n” >= §%. For such a conversion,

the function hook(), in conjunction with solve(), is more suitable.
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nform(1, w2)

One can find the scalar function multiplying a basic vector with the function

vec_scalar_part(). The basic vector is returned with the function vector_part().

> vec_scalar_part (3*x*nvector(wl));

3 x

> vector_part (3*x*nvector (wl));

nvector (wl)

For the same reason why one should not do substitutions in forms using the
Maple subs() function, but rather with the forms-package subs_form(), the same

situation holds for vectors. The function vec_subs() is provided to do the work.

> vec_subs(dvector(z)=y*dvector (x)+x*dvector(y), vec_wedge(V1,V2));
2x M +2uxhl+3z%1-9zuyhl-2uxyhl
W= vec_wedge (dvector(x), dvector(y))

Let v; be elements of V and w? be elements of V*. One can define a pairing
< v;,w’ > which is linear in each argument and is a real (or complex) number.
If v; is chosen to be dual to w?, then < v;,w’ > is equal to 5f This pairing is
extended to elements of AP(V) and AP(V*) as follows: Let & := vy A--- A v, and
a:=w! A+ AwP. The pairing < £, a > is defined to be the determinant of the
matrix MZJ =< v;,w’ >. The definition of this pairing is then extended using
linearity in both arguments. If the degree of the multivector is higher than the

degree of the form, the pairing is defined to be zero.

Given £ € V, the interior product (£]) of £ with a p-form, giving a (p — 1)-form,

is defined implicitly as follows:

<néla>=<&An,a> Vne /\p(V),a € /\p(V*)
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The function hook() is the implementation in the forms package of the inner prod-

uct.

> F5:=axwedge (d(x),d(y))+b*wedge (d(y) ,d(z))+c*wedge(d(z),d(x));
F5 := a wedge(dform(1l, x), dform(1l, y))
+ b wedge(dform(1l, y), dform(1, z))
- ¢ wedge(dform(1, x), dform(1l, z))

> V5:=form_to_vec(d(x));

V5 := dvector(x)

> V6:=form_to_vec(d(y));

V6 := dvector(y)

> hook(V5,F5);
a dform(1l, y) - ¢ dform(1, =z)

> hook(vec_wedge(V5,V6) ,F5);

A.3 Higher level functions

The higher level functions are functions that build upon the basic differential ex-
terior algebra functions we have seen so far. Bryant et al. (1991) provide more

information about the concepts involve.

Suppose that nform(p, ) is a p-form. The space of linear divisors of nform(p, )
is the set of one-forms whose exterior product with nform(p, &) vanish. This space

is calculated with the function linear divisors().

> linear_divisors(wedge(d(x), d(y)), DIV);
DIV[1] dform(1, x) + DIV[2] dform(l, y), {0}, {DIV[1], DIV[2]}
> F6:=wedge( d(x)+3*d(y), wedge ( d(uw), d(t) ) + wedge( d(x), d(z) ) );
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F6 := - wedge(dform(l, x), dform(1l, t), dform(1l, u))
- 3 wedge(dform(1l, y), dform(1, t), dform(1l, u))
- 3 wedge(dform(1l, x), dform(1, y), dform(1l, z))

> linear_divisors(F6, divisor);

1/3 divisor[1] dform(1l, x) + divisor[1] dform(1, y), {}, {divisor[1]}

> linear_divisors(a*wedge (d(x),d(y))+b*wedge(d(t),d(z)), DIV);
o, {+, {3

The second argument to linear divisors() is a name which will be used in con-
structing the arbitrary parameters in the answer. The function linear divisors()
returns a sequence of three expressions. The answer is given by the first expression
parametrized by all possible values of the parameters given in the third expression.
The second expression is the set of relations, if any, that must be equal to zero
for the answer to be valid. Note that all the basic forms appearing in the first

argument of linear divisors() are assumed to be independent.

A subring Z C A(V*) is called an ideal if every element « of Z is of homogeneous
degree and if v € Z implies that aAS € Z for all 8 € A(V*). Furthermore, 7 is called
a differential ideal if Z is closed under exterior differentiation, i.e. if the exterior
derivative of every element of Z belongs to Z. For the forms package, differential
ideals are represented by a set of differential forms that will be used as generators

for the ideal.

> Ideall:={d(y)-p*d(x)};
Ideall := {dform(1l, y) - p dform(1l, x)}

> Ideal2:=Ideall union map(d, Ideall);
Ideal2 :=
{wedge(dform(1, x), dform(1l, p)), dform(1l, y) - p dform(1l, x)}

> Ideal3:=Ideal2 union {d(H(x,y,p))};
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Ideal3 := {wedge(dform(1l, x), dform(1, p)),

dform(1, y) - p dform(1l, x),

/ a \ /4 \
|---- H(x, y, p)| dform(1, x) + |---- H(x, y, p)| dform(l, y)
\ dx / \ dy /
/ 4 \
+ |---- H(x, y, p)| dform(1, p) ¥
\ dp /

Given an ideal Z, the Cauchy characteristic space of Z is the set of vectors whose
interior product with all the members of 7 is itself a member of Z. This space is

calculated with the function cauchy_char().

> cauchy_char(Ideall, CC);
CC[1] dvector(x)
________________ + CC[1] dvector(y), {}, {CC[11}

> cauchy_char(Ideal2, CC);

0, {}, {3
> cauchy_char(Ideal3,CC);
/ d \
ccl1] |---- H(x, y, p)| p dvector(y)
\ dp /
S TS TT ST oo oo oo + CC[1] dvector(p)
/ d \ / d \
|-——— H(x, y, p)| + |-—— H(x, y, p)l p

\ dx /N dy /
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/ d \
ccl1] |---- H(x, y, p)| dvector(x)
\ dp /
T TTTTTTTTTTTTTTTooossoooooooo—ooo—oo—ooo , {¥, {ccl11}
/ d \ / 4 \
|---- H(x, y, p)| + |-—— H(x, y, Pl p
\ dx / \ dy /

The interpretation of the answer and of the second argument of the function

cauchy char() is similar to what was described for the linear divisors.’

The retracting subspace of the differential ideal Z is the annihilator of the
Cauchy characteristic space of Z (i.e. all the differential one-forms whose inte-
rior products by members of the Cauchy characteristic space of Z vanish). This

space is calculated with the function retraction().

> retraction(Ideall,RR);
RR[1] dform(1, y)
e + RR[1] dform(1, x), {}, {RR[1]}
p

> retraction(Ideal2,RR);
0, {0}, {>

> retraction(Ideal3,RR);

RR[2] dform(1l, y) + RR[1] dform(1l, p) +

9In particular, the answer to cauchy_char(Ideall) may vary by overall factors which could
be included in CC[1]. It is not clear which is the best strategy as to which factors should be

absorbed. Part of the problem is to avoid removing factors which could become zero.
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/ / d \ \

| |---- H(x, y, p)| p RR[2] |

| \ dp /

| = + RR[1]|
|/ 4 \ / d \ I

| |-——— H(x, y, p)| + |-—— H(x, vy, pI| p I
\ \ dx /  \ dy / /
// 4 \ / d AN

[|--—- H(x, y, p)| + |-—— H(x, y, p)| pl dform(1, x)
\\ dx /N dy /7

// d \
/ |-—— H(x, y, pI, {1,
/  \dp /

{RR[2], RR[1]}

> map(simplify,standard_form("[1]));
RR[2] dform(1l, y) + RR[1] dform(1l, p) - dform(1l, x) (

/ 4 \ / d \
|---- H(x, y, p)| p RR[2] - RR[1] |---- H(x, y, p)| P
\ dp / \ dy /
/ d N\ /7 d \
- RR[1] |---- H(x, y, pI) / |-—— H(x, y, p)I
\ dx / / \dp /

The function in_ideal() tests whether a particular differential form is a member

of a given differential ideal.

> in_ideal(d(x), Ideall);

false
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> in_ideal(wedge(d(x),d(y)), Ideall);

true

The (first-)derived system of an ideal Z is the set of elements of Z whose ex-
terior derivative is also a member of Z. This is calculated by the function

derived_ideal().

> Ideald:={d(y)-p*d(x), d(p)-q*d(x)};
Ideal4 := {dform(1l, y) - p dform(1l, x), dform(1l, p) - q dform(1l, x)}

> derived_ideal(Ideal4);
{dform(1, y) - p dform(1, x)}, {}

> derived_ideal( derived_ideal(Ideal4d)[1] );
3, {3

The derived_ideal() function has an optional second argument that is used to

give to derived_ideal() the expressions for the various derivatives.

> derived_ideal ({nform(1,a) ,nform(1,b)},
> {d(nform(1,a))=wedge(nform(1l,a), nform(1l,b) ),
> d(nform(1,b))=wedge( nform(1l,a), nform(1,c))} );

{nform(1, b), nform(1, a)}, {0}

> derived_ideal ({nform(1,a) ,nform(1,b)},

\"

{d(nform(1,a))=wedge(nform(1,a), nform(1l,b) ),
d(nform(1,b))=wedge( nform(1l,c), nform(l,e))} );

\4

{nform(1, a)}, {}

The answer consists of a sequence of two sets: the derived ideal and the set of

quantities that have been assumed to vanish.

A very useful result in exterior differential algebra is the following. Let M be an
n—dimensional manifold. Let {w’} be a set of p independent one-forms, where p<n.

(The independence condition is determined by requiring that the exterior product
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of all p of these 1-forms gives a non-zero result.) Suppose that we have a set of p one-
forms {#'} over that same manifold M satisfying >-%_; 6 Aw’ = 0. Then Cartan’s
lemma states that there are p(p + 1)/2 functions A;;, with A;; = Aj;, such that
0; = A;jw’. The method of proof ' is to complete the set of functions w’ to a basis
of T*M by adjoining (n —p) one-forms a®. Since the one-forms ¢ € T* M, they can
be expanded uniquely in this constructed basis: §° = A;;w’ + B;,a®. We substitute
this in the condition on %, to obtain A;;w’ Aw’+ Bj,a® Aw' = 0. Since the functions

w' and the a® are all pairwise independent, it follows that Aijj — Ajy = Big = 0.

The proof is instructive, since it allows us to extend the lemma. Suppose we
have a set of exterior algebraic equalities involving the one-forms of a basis of
T*M and other one-forms that are taken as unknowns but members of T*M. We
can expand these unknown one-forms with respect to the basis, with the various
coefficients left as unknown functions. These expansions are substituted in the
given equalities. We then put the result in standard order and equate to zero all
the coefficients of the basic forms. We then solve for as many unknown functions as
possible. The relations that we are left with, not involving the unknown functions,
cannot be made to vanish. They determine quantities known by the collective term
of the non-absorbable torsion. (For systems satisfying the hypothesis of the Cartan

lemma, all the the torsion can be absorbed).

Now, substituting the solved functions into the unknown one-forms gives us the
answer we seek. We may have some functions that are still undetermined (in the
standard Cartan lemma, these are the coefficients of the symmetric p x p matrix
A;;). Depending on the problem that is being solved, these parameters may have an

interpretation (for example in the method of equivalence, they may represent the

10T here is a similar proof on page 10. The present proof is included in order that this appendix

be self-contained.
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parameters of the subgroup involved in the prolongation step of the algorithm). The
torsion is obtained by substituting the solved one-forms into the original problem

and simplifying.

> cartan_lemma( wedge(nform(1,F[1]),d(x))+wedge(nform(1,F[2]),d(y)),
> {dx),d(y}, P);
[{nform(1, F[1]) = P[2] dform(1l, y) + P[3] dform(1l, x),
nform(1, F[2]) = P[1] dform(1l, y) + P[2] dform(1l, x)},
{p(3], P[1]1, P[2]}]

> F7:=wedge(nform(1,G), d(x)) + wedge(d(y),3*d(z));
F7 := wedge(nform(1l, G), dform(1l, x)) - 3 wedge(dform(1l, z), dform(1l, y))

> ans:=cartan_lemma( F7, {d(x), d(y), d(z) }, P);
ans := [{nform(1, G) = P[1] dform(1, x)}, {P[1]}]

> torsion:=subs_form(ans[1], F7);

torsion := - 3 wedge(dform(1l, z), dform(1l, y))

> cartan_lemma( {F7, wedge(d(z),d(x))}, {d(x), d(y)}, P);
[{nform(1, G) = - 3 P[2] dform(1, y) + P[1] dform(1l, x),
dform(1, z) = P[2] dform(1, x)}, {P[1], P[2]1}]

Given a set of differential forms, one can construct an ideal Z using these dif-
ferential forms as generators with the multiplication operator being the exterior
product. The mod_ideal() function of a differential form w finds a representative

for the equivalence!! class w + Z.

> mod_ideal(d(p),Ideald);
q dform(1, x)

> mod_ideal (wedge(d(p),d(y)) ,Ideald);

" The actual representative can change from a Maple session to another. However, if w is in

the ideal, then the result of mod_ideal() is guaranteed to be 0.
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> mod_ideal (d(x),Ideald);
dform(1, x)

> mod_ideal(d(y),Ideald);
p dform(1, x)

> mod_ideal (wedge(d(p),d(z)) ,Ideald);
- q wedge(dform(1l, z), dform(l, x))

Let L be an n-dimensional space of differential one-forms with an inner product:

g:LxL—R

We can extend this inner product to an inner product over the exterior algebra

on L

g: /\ L x /\ L—R
as follows. First, if the two arguments of the inner product have different wedge
degree, then the answer is zero. Second, since the inner product is linear in each

argument, we need only consider simple p-forms. Let a and 8 be expanded in

one-forms as @« = al A--- AaP, and f = B A--- A SP. Then
g(a, B) = det (g(a’, 7))

The function inner product() calculates the inner product between two differ-

ential forms given an orthonormal basis, and a signature list'?, which defaults to

12The signature list gives the diagonal of the inner product between all the elements of the
orthonormal basis — this is not always positive if we allow pseudo-Riemannian bases such as the

ones appearing in relativity.
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all begin equal to one.

> inner_product (d(x)+3*d(y), -d(x)+4xd(y), [d(x),d(y)]);
11

> inner_product(d(x)+3*d(y), -d(x)+4*d(y), [d(x),d(y)],[-1,11);
13

> inner_product( wedge(d(x),d(y)), wedge(d(x),d(z)), [d(x), d(y), d(z)]1);
0

> inner_product( wedge(d(x),d(y)), wedge(d(x),d(y)), [dx), d(y), d(=)1);
1

Given L, a differential forms space (of dimension n) with an inner product g,
and given an orientation on L, we can define an operator x taking p-forms into
(n — p)-forms. This operator is called the (Hodge) star operator. Let o be the

volume form on L.

Let a be a p-form Then *« is the unique (n — p)-form that satisfies

a B =g(xa,f)o

for all (n — p)-forms .

The function hodge_star() calculates this operation. It takes as arguments the
differential form operated upon, an orthonormal basis and (optional) a signature

list.

> hodge_star(d(x), [d(x),d(y),d(z)]1);
- wedge(dform(1, z), dform(1, y))

> hodge_star (wedge (d(y),d(z)), [d(x),d(y),d(z)]);
dform(1, x)

> hodge_star(d(x), [d(x),d(y),d(=)],[-1,1,1]);
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- wedge(dform(1, z), dform(1l, y))

> hodge_star(wedge(d(y),d(z)), [d(x),d(y),d(=)],[-1,1,11);
- dform(1, x)

> hodge_star(d(x)+2*d(y), [d(x),d(y)]1);
dform(1, y) - 2 dform(1, x)

When we have a space on which the Hodge star operator can be defined, then
from the exterior derivative, one can construct another differential operator ¢ taking

a p-form to a (p — 1)-form as follows:
dov = (=1)"P )y d %

The name adjoint_d comes from the following property. If a is a p-form, and [ is

a p + 1-form, and ¢ is the inner product on the space then,

g(da, B) = g(a,dp).

This operator is also known as the co-differential.

> adjoint_d(y*d(x), [d(x),d(y),d(z)1);

> adjoint_d((x*y)*d(x), [d(x),d(y),d(z)]);
-y

We now have all the ingredients to define an operator A that generalizes the
Laplacian operator on functions (actually, minus one times the Laplacian operator).
It is defined as

A:=dod+dod.

This operator is known as the Laplace-Beltrami operator. It also is known as the

harmonic operator. The function laplace beltrami() implements this operator.
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It takes as arguments the differential form on which the operator is applied, the

orthonormal basis and a contact set.

The contact set is there for the following reason. Between the application of
the second differentiation in each term of the Laplace-Beltrami operator, one has
to take into account the expansion of the first differentiation in the space A L,

otherwise, the star operator cannot be applied.

> basis:=[d(x),d(y),d(z)]:
> contact:={express_base(d(f), [d(x),d(y),d(z)]1)}:
> contact:=contact union map(express_base, {d(f_x),d(f_y),d(f_z)},basis);

contact := {dform(1, f) = f_x dform(1, x) + f_y dform(1l, y) + f_z dform(l, z),

dform(1, f_x) = f_x_x dform(1, x) + f_x_y dform(l, y) + f_x_z dform(1l, z),

dform(1, f_y) = f_y_x dform(1, x) + f_y_y dform(1, y) + f_y_z dform(1l, z),
dform(1, f_z) = f_z_x dform(l, x) + f_z_y dform(l, y) + f_z_z dform(1l, z)}

> laplace_beltrami(f,basis,contact);

-fxx-fyy-~f_z.z

The Lie derivative of a differential form with respect to a vector is obtained
using the lie() operation. The first argument is the vector in the direction of
which the derivative is applied. The second argument is the differential form to be
differentiated. An optional argument is used to specify the exterior derivatives of

the various quantities.

> f1:=x*d(y)+y~2*d(z);
2
f1 := x dform(1, y) + y dform(1l, z)

> lie(dvector(y),f1);
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2 y dform(1, z)

> alias(a=nform(1l,a_),b=nform(1,b_), Avec=nvector(a_));

I, a, b, Avec

> lie(Avec,a+3%b,{d(a)=7*wedge(a,b) ,d(b)=9*wedge(a,b)});
34 b

A.4 Utility functions

It is often the case that a function’s natural argument is a single item (as opposed
to a matrix, equality, set, list, etc.). If we apply that function to a composite
object, such as a set, the natural thing to do would be to apply the function to
each individual member of the composite object. For example, taking the exterior
derivative of a matrix is just the matrix of exterior derivatives applied to each

member of the matrix.

Maple provides an operation to do this: map(). Unfortunately, this works only
at a depth of one level. The function item map() generalizes map() to work to
any desired depth. The first argument of item map() is a function. The second
argument is a list containing all the other arguments to the function. The third
argument specifies which “slot” needs to be expanded (by default, the first slot is
the one that is expanded). The fourth argument (optional) is a set of types over
which item map() is recursively invoked, and the last argument specifies the depth

of recursion (default is infinite).

> item_map(d,[ { [ax=bx+cx], [ [d(cx) = exxd(fx)]] } ] );
{[dform(1, ax) = dform(1l, bx) + dform(1, cx)],

[[0 = - wedge(dform(1, fx), dform(l, ex))]1]}
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> item_map(fn, [ { [ax=bx+cx], [ [d(cx) = ex*d(fx)1] } 1,1, {list,set, =1},2 );
{[fn(ax = bx + cx)], [fn([dform(1l, cx) = ex dform(1, fx)]1)]1}

> item_map(fn, [ { [ax=bx+cx], [ [d(cx) = ex*d(fx)1] } 1,1, {list,set, ="},3 );

{[[fn(dform(1, cx) = ex dform(1l, fx))]], [fn(ax) = fn(bx + cx)]}

> item_map(fn, [ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]1] } 1,1, {list,set},3 );

{[fn(ax = bx + cx)], [[fn(dform(1l, cx) = ex dform(1l, fx))]1}

The function linear_solve() is an extension to the Maple function solve(. . .,
linear). It returns the set of expressions that have been assumed to be equal to

zero in order that the solution set be valid.

> solve({x-a,x-b},{x});
# Note NULL result. This indicates no solution
> linear_solve({x-a,x-b},{x});
[{x = a}, {a - b}]

# This is interpreted as : the solution is x=a, provided a-b=0.

A.5 Points to keep in mind

While forms used with the forms package can be inhomogeneous in degree, it is
important important to realize that some of the functions require homogeneity. For
example, the wdegree() function will return the degree of only one of the terms
and will assume that all the other terms will have the same degree. Functions such
as addition, d(), wedge(), subs_form() will work with inhomogeneous forms. Any
functions that are described in the higher level functions section must be assumed

to require homogeneous forms.

It is also recommended that the exterior derivative be used to construct ex-

pressions involving dform. The wedge() operator is to be used to multiply forms



APPENDIX A. THE FORMS MAPLE PACKAGE 208

together.

Giving a set of independent basic forms to form_coeffs() will detect the cases
when a dependent form is present in the first argument. The second argument is
optional, and its omission will cause form_coeffs() to assume that every basic form

is independent. If this is not the case, then too many coefficients will be returned.

A.6 Making forms laconic

The package has been designed to be rather verbose. The main reasons are to
avoid clashes with other Maple names, to avoid obtuse abbreviations and to avoid
ambiguity. Since Maple provides an aliasing facility, it is easy to replace long
expressions with shorter ones. Here are a few hints to use Maple’s alias() function

effectively.

The normal syntax is alias(short=long) where long is a long expression,
and short is a name that will be used to abbreviate long. For example,
alias(alpha=nform(2,alpha_)) can be used to define a two-form with name
alpha. It is recommended that different names be used on the two sides of the
equality in the alias() expression. This is why an underscore was appended to
alpha. The reason for this recommendation is because the expression op(2,alpha)
returns alpha_. If the “internal” name had been alpha, then op(2,alpha) could
not be visually distinguished from alpha. It is important to note that long will
not be evaluated, and cannot itself use abbreviations. Therefore, in order to give

an alias for the derivative of alpha, use

> alias(alpha=nform(2,alpha_)):
> eval(subs(dalpha_=d(alpha), ’alias(dalpha=dalpha_)’)):

The alias() statements must come in the order shown.
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The expression alias(V=wedge) ; can be used to shorten input of data. A better

solution to shorten the output is to use the neutral operators of Maple, together

with functions to transform expressions. This is done by making the definitions

>

>

>

shorten:=proc(item)

eval (subs (*wedge’=proc() &~ (args) end, item))
end:
lengthen:=proc(item)

eval (subs (" &~ =wedge, item))

end:

An example showing the use of the preceding definitions is

eval (subs(_dx=d(x), _dy=d(y), _dt=d(t), ’alias(dx=_dx, dy=_dy, dt=_dt)’)):
A:=t*wedge (dx,dy) +x*wedge (dx,dt) ;
A := - t wedge(dy, dx) - x wedge(dt, dx)

shorten(A) ;
-t (dy & dx) - x (dt &~ dx)

lengthen(");
- t wedge(dy, dx) - x wedge(dt, dx)

shorten(d("));
&~ (dy, dt, dx)

Note that the forms package does not use the &~ operator. It is therefore necessary

to use lengthen() before applying any forms operation to expressions involving

&~
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A.7 Extensibility

Various functions have facilities to extend their domain of definition. The exterior
derivative function, d(), allows for the following. If the function ‘forms/d/alpha‘
exists, then d (alpha(args)) will be the result to the call ‘forms/d/alpha‘(args).
If the function ‘forms/d2/alpha‘ exists, then d(alpha(args)) will result in a call
to ‘forms/d2/alpha‘(alpha(args),fm). The function ‘forms/d2/alpha‘ must

give the result of the differentiation of ‘alpha(args) ¢ wedged with the form ‘fm°.

Likewise, the function lie() applied to a function fn() will call the function
‘forms/lie/f¢, if it exists, with arguments: the direction vector followed by the
original arguments to the function £ and then followed by the structure equations

that were passed as third argument to the lie() function.

A.8 Vector-valued differential forms

Vector-valued differential forms are necessary for moving frame calculations. Under
the operation of d(), the vector parts of a differential form are assumed to behave
as a scalar. Their exterior derivatives multiply the form parts on the left. The
derivative of a vector, say nvector (A), is given a name suitable for substitution via

subs_form(). This substitution must take place prior to a further differentiation.

> d(nvector(AA));
nform(1, D_nvector (AA))

> d(nvector (AA)*nform(1,WW)) ;
wedge (nform(1, D_nvector(AA)), nform(l, WW)) + nvector(AA) dform(2, WW)
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A.9 Further information

An advanced study of differential forms can be found in Bryant et al. (1991). An
excellent reference is Flanders (1963). Gardner (1989) applies differential forms
to the problem of equivalence. Exterior differential systems are the subject of

Cartan (1945).
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