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Abstract

This thesis is concerned with advancing the confrontation between relativistic quantum
information (RQI) and experiment. We investigate the lessons that some present-day
experiments can teach us about the relationship between quantum information, relativistic
motion and gravitation.

First, we look at the insights we can gain within the framework of quantum field theory
in curved spacetimes. Particularly, we propose a generalization of the superconducting
circuit simulation of the dynamical Casimir effect where we consider relativistically moving
boundary conditions following different trajectories. We study the feasibility of extending
the experimental setup to reproduce richer relativistic trajectories.

Next, motivated by recent efforts to describe the gravitational interaction as a classical
channel arising from continuous quantum measurements, we study what types of dynamics
can emerge from a collisional model of repeated interactions between a system and a set
of ancillae. We use these results in the context of gravitational interactions and show how
our general framework recovers the gravitational decoherence model of Kafri, Taylor and
Milburn (KTM).

Finally, we argue that single-atom interference experiments achieving large spatial su-
perpositions can rule out a particular realization of the KTM model where gravitational
interactions act pairwise between massive particles as classical channels, approximating
Newtonian pair-potential at low energies. Our findings counteract the present belief that
gravity-inspired decoherence models cannot be confronted by experiment. Specifically, we
find experimental indications which show that if gravity does reduce to pairwise Newto-
nian interactions between atoms in a non-relativistic limit, these interactions cannot be
fundamentally classical.

Our work shows that state-of-the-art technology can be used as a tool to test the
quantum character of spacetime and that further efforts should be spent in analyzing how
current experimental setups can guide us towards building a complete theory of quantum
gravity.
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Chapter 1

Introduction

1.1 Motivation

Despite their respective individual success, the two pillars of modern physics, general rel-
ativity and quantum theory have not been yet made fully compatible. Each theory inde-
pendently yields predictions that have been tested with high precision, but the question
remains as to how to understand the two of them in the same framework, or how to
formulate a quantum theory of gravity.

For example, one can think of quantum superpositions of macroscopic objects in dif-
ferent positions. Although in principle predicted by quantum theory, we have not yet fully
realized them in experiments. Despite the fast paced progress in experimental control of
large quantum systems, the state-of-the-art of such experiments is at the stage where only
superpositions of a molecule exceeding a mass of 10,000 amu that combines 810 atoms into
one particle have been achieved [7].

On the other hand, general relativity, which has provided accurate predictions used in
a breath of fields from cosmology and astronomy [8] to technology [9], has revealed itself
insufficient to account for phenomena such as black hole radiation [10, 11] or the description
of the very early stages of the Universe [12].

The work presented in this thesis attempts to make progress in a relatively new direction
in the field of relativistic quantum information (RQI). RQI is an emerging and rapidly
growing field that studies how to transmit and process information taking into account
not only quantum but also relativistic aspects of physical systems. It also attempts to
answer the question of how gravity affects quantum systems. We can think of RQI as the
theory that lies at the intersection of Quantum Theory, General Relativity and Information



Theory. By studying the relationship between these fields, it can provide useful tools for
understanding the nature of spacetime.

General Information

Gravitational
Th

Quantum
Physics

Quantum

Gravit
4 Quantum

Information
Quantum Field Theory
in Curved Spacetimes

Figure 1.1: RQI lies at the intersection of General Relativity, Information Theory
and Quantum Theory.

The figure above illustrates where the field of RQI lies. The study of quantum field
theory (QFT) in curved spacetimes lies at the intersection of quantum theory and general
relativity. Its focus is on understanding the quantization of fields in classical gravitational
backgrounds. One of the problems encountered when trying to get a quantum gravity
theory is the different footing of space and time in both theories. In quantum mechanics
time is treated as a parameter whereas space is an observable, contrary to the equal footing
they both receive in general relativity. Even though QFT in curved spacetimes is not a full
quantum gravity theory, its formalism already incorporates quantum theory and general
relativity and is enough to provide explanations to some effects that are not attainable
with just general relativity [12]. For example, it predicts that what an inertial observer
registers as the vacuum, a uniformly accelerated observer will measure a thermal bath of
particles at a temperature proportional to its acceleration. This is the Unruh effect [13]
and it arises as a consequence of the notion of particle not being universal, a concept that
will be explained later in this thesis.



At this intersection also lies the field of gravitational quantum physics, where the focus
of study is on trying to understand the effects of gravity on quantum systems. Some
of the questions in this field pertain to how systems in quantum superposition gravitate
and how gravity collapses quantum states [14, 15, 16, 17]. It also delves into trying to
understand the notion of time [18; 19] and even proposes some models that treat gravity
as fundamentally classical [14, 15, 20, 21, 22, 23, 24, 25, 26].

At the intersection of quantum mechanics and information theory, lies the field of quan-
tum information. Its principal aim is to understand how to store, process and transmit in-
formation using quantum systems with the aim of developing new technologies and achiev-
ing tasks currently impossible with classical systems. For example, while a usual computer
stores its information in bits, a quantum computer stores the information in quantum bits
called qubits, which can be in a superposition of different states and can therefore allow for
more efficient algorithms than its classical counterpart for certain problems[27, 28]. Much
of the efforts in this field are devoted to the study of gate design, error correction, cryp-
tographic tools, quantum key distribution and the study of entanglement to mention just
a few [27, 29]. It is important to emphasize that quantum information usually considers
inertial observers, living in a flat spacetime and moving with non relativistic speeds.

RQI is at the intersection of them all. It provides tools for comprehending the quantum
nature of gravity by understanding how the methods of quantum information are modified
when put into the framework of quantum field theory and also how quantum mechanics
is affected by considering general relativistic effects. The field has made significant con-
tributions to shed light into these questions. For example, early studies in the field led
to the realization that entanglement is an observer dependent property: accelerated ob-
servers find that entanglement degrades with acceleration[30, 31]. It was soon recognized
that considering quantum information protocols with observers in the presence of grav-
ity, accelerating or moving with relativistic speeds leads to new phenomena that could be
exploited to improve such protocols [32, 33, 34].

The field of RQI has rapidly grown over the past years, with many research groups
making significant contributions to the field. Among them are investigations such as the
study of entanglement and entropy between non inertial observers sharing modes of a quan-
tum field [30, 31, 35], the fate of entanglement of quantum fields in expanding spacetimes
[36, 37], gravitational collapses [38] and in the presence of black holes [39, 40, 41, 42].

In late years we have seen the development of techniques based on the study of the
light-matter interaction in relativistic regimes through the use of particle detectors to
probe quantum fields for finite times while undergoing relativistic trajectories or standing
in curved spacetimes [43, 44, 45, 46, 47], the entanglement of moving cavities in non
inertial frames [48, 49, 50] and the consequences all these considerations have in different
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quantum information protocols such as teleportation [51, 52, 53], quantum communication
[54, 55, 56, 57], design of quantum gates through relativistic motion [34, 58, 59], key
distribution [56, 60], entanglement harvesting [61, 62] or metrology [63, 64, 65, 66] among
many others. It has also seen contributions in more foundational studies, from models of
gravitational decoherence [67, 68], to the study of time dilation [69, 70, 71, 72, 73] and the
equivalence principle in quantum systems [72, 74, 75].

The field has matured to a point where the community is devoting considerable efforts
to experimentally test its theoretical predictions. For example, there has been several
experimental proposals to test gravitational effects on interferometric experiments [70, 76].
There are also recent works where circuit quantum electrodynamics (c-QED) setups have
or could be successful in simulating and observing new physical effects proposed by RQI
models. Unruh suggested that Hawking radiation could be observed in a condensed matter
system consisting of sound waves in a fluid with spatially varying velocities, whose equation
of motion can be written in terms of a metric corresponding to that of a non rotating
Black Hole [77]. Consequently, building a system where the propagation velocity can be
modulated leads to an analogue simulator where the Hawking radiation could be observed.
An experiment using a c-QED system has been proposed [78], where by modulating an
external flux on an array of superconducting quantum interfering devices (SQUIDs), a
spatially varying velocity in the system is achieved. Another example relevant to this thesis
is the observation of the dynamical Casimir effect (DCE) in a ¢-QED setup [4, 79, 80].
The DCE states that a moving boundary leads to the creation of particles out of the
vacuum. Key to the observation of this effect is to have a moving boundary with very
high accelerations. By controlling an external flux through a SQUID, a strong driving of
a boundary capable of producing particle creation was experimentally achieved recently.

This thesis is divided into two parts. The first part describes the first theoretical analysis
of exploiting the dynamical Casimir effect to search for particular signatures for various
relativistic motions. The second part is concerned with understanding how decoherence
can affect processes in RQI that might become manifest in experiments. We apply this
analysis to the gravitational force and show how in fact experiment can severely constrain
such approaches.

1.2 Organization

The aim of the first part of the thesis is to present the analysis of the behaviour of oscillatory
boundaries in the context of c-QED. As discussed above, superconducting circuits offer an
ideal testbed for the implementation of this kind of experiment. This idea is reinforced by



the fact that the Unruh effect is strongly connected with the dynamical Casimir effect. As
such, we propose a modification of the settings where the latter is simulated [4, 79, 80] to
study particle creation due to effectively relativistic non inertial trajectories of boundary
conditions beyond the simple sinusoidal trajectories analyzed in previous works.

Part 1 of this theses is divided into three chapters. The aim of the first two chapters
is to provide with the basic background and tools necessary for the understanding of the
results presented in the third chapter.

In Chapter 2 we present a brief review of scalar quantum field theory, with an emphasis
on the concepts relevant to this work. Chapter 3 covers the ingredients on superconducting
quantum circuits required to understand the experimental setup we will work with. Making
use of the material presented in these two chapters, Chapter 4 is dedicated to present our
main results on the simulation of relativistic trajectories using a c-QED setup.

We then switch gears and move on to Part 2. Motivated by recent efforts to model
gravitational interactions as a classical channel arising from continuous measurements, the
second part of this thesis is devoted to the presentation of a general study of the types of
dynamics emergent from an open systems model of repeated interactions, followed by an
application to systems interacting gravitationally. We also discuss some of the consequences
these models would have on different experimental setups as a way to test them.

Part 2 of this thesis is divided into two chapters. They are presented in chronological
order of publication. Consequently, the second chapter builds up on work presented on the
previous chapter, but an effort was made so that each can be read independently without
much referencing.

In Chapter 5 we present our work on a general model of continuous interactions, in-
cluding the different regimes of emergent dynamics. In Chapter 6 we apply the framework
developed in the previous chapter to present a model for gravitational interactions, together
with its experimental implications.

We finish by presenting in Chapter 7 some future directions of our work.
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The observation of the Unruh effect, either directly or in analogue systems, is one of the
experimental cornerstones of quantum field theory in curved spacetimes and relativistic
quantum information. Since field quantization schemes associated with inertial and accel-
erated observers are not equivalent [81], observers uniformly accelerating in what inertial
observers regard as a vacuum will detect a thermal bath of particles [13]. The temperature
T of this thermal bath is predicted to be proportional to the magnitude a of the proper
acceleration of the detector.

Yet generalizations of this effect to other (nonequilibrium) regimes, such as nonuni-
formly accelerated trajectories [82, 83] and short times are not completely understood,
even from a theoretical point of view [44, 45, 47, 79, 84]. Recently it has been shown [45]
that within optical cavities in (141)-dimensions an accelerated detector equilibrates to a
thermal state whose temperature is proportional to its acceleration. Provided the detector
is allowed enough interaction time, this effect holds independently of the cavity bound-
ary conditions [84], though for sufficiently short timescales the temperature decreases with
acceleration in certain parameter regimes [44].

In the classic Unruh Effect a detector with constant acceleration a in an inertial vacuum
measures thermal radiation at the Unruh temperature Ty,

ha

ks Ty = e (1.1)
Amongst the problems one encounters when trying to experimentally detect this effect,
the two main ones are (a) an inability to eternally accelerate anything (hence uniformity
of acceleration cannot always hold) and (b) in practical terms, difficulty in accelerating
a physical detector, such as a 2-level atom, with sufficient control. For these reasons, it
would be extremely useful to have a quantum simulation of these phenomena. However its
implementation requires some care.

The first problem involves overcoming the idealization of uniformity of acceleration
by considering generalizations to nonuniformly accelerating trajectories. Under general
conditions, a particle detector undergoing a general non-inertial trajectory will register a
coloured noise that turns thermal only under the limiting conditions of uniform acceleration
[85]. The natural setting to consider is oscillatory motion, which is more convenient for
experimental implementations and extremely interesting from a theoretical point of view.
A recent analysis of detectors undergoing various kinds of oscillatory motion [47] found
that in general such detectors responded to the vacuum fluctuations of a quantum field
and experienced a constant effective temperature at late times in these out of equilibrium
conditions. Three kinds of oscillatory motion — sinusoidal motion, sinusoidal acceleration
and alternating uniform acceleration — were considered, and the effective temperature for



each was found to depend more strongly on the geometry of the worldline than on the
instantaneous proper acceleration. The behaviour of their steady state temperature was
seen to be more similar to each other than to that of the Unruh temperature of an idealized
uniformly accelerated detector provided the time scale of the detector’s response was longer
than the period of the oscillatory motion.

The second problem, that of the difficulty of (relativistically) accelerating a detector
(even under the restriction to oscillatory motion) can be addressed by considering an
inertial detector and a moving reflective boundary (or mirror). For a mirror that uniformly
accelerates at late times, the detector experiences the same thermal radiation as predicted
in the original Unruh effect. In spite of considerable theoretical support for the Unruh
effect, as yet it lacks direct experimental proof. Experimental explorations of relativistic
particle creation from the vacuum [4, 79, 80] are therefore particularly interesting.

The aim of the first part of this thesis is to present our contribution to the understanding
of these problems by analyzing the feasibility of simulating different relativistic motions
of a boundary using a slight modification of the setup previously used to simulate the
dynamical Casimir effect [4, 79, 80] and to compute their photon emission spectrum. We
dedicate the first two chapters (Chapter 2 and Chapter 3) to provide a general background
on both quantum field theory and superconducting quantum circuits, to the extent needed
for an understanding of our work, which we present in Chapter 4.

The material presented in Chapter 4 derives from [1], in collaboration with Eduardo
Martin-Martinez, Robert B. Mann and Christopher Wilson.



Chapter 2

Scalar quantum field theory

Quantum Field Theory (QFT) is one of the most widely used frameworks in modern
physics. It is most popular for its success in adequately describing elementary particles
and their interactions, but its tools are essential to the description of physical phenomena
in other fields like condensed matter physics [86] and nuclear physics [87] to mention just
a few. Its application yields incredible agreement between its theoretical predictions and
experimental results. QFT combines two of the cornerstone theories in physics: quan-
tum mechanics and special relativity, but its basic objects are quantum fields instead of
particles, which arise as the excited states of these quantum fields. It provides us with
a set of computational methods to calculate the results of particle interactions. For a
comprehensive presentation on QFT, see for example [88, 89].

In this thesis we will only make use of the most basic quantum field in a (1 + 1)
dimensional flat spacetime: a free scalar field obeying the Klein-Gordon equation. We
will study the consequences of considering non-inertial frames of reference for this field.
Although the real world is (3+1) dimensional, much of the basic physics can be understood
from an analysis in one spatial dimension. In particular, a scalar field with a planar moving
boundary effectively becomes a problem in (1 4 1) dimensions.

The organization of this chapter is as follows: In Section 2.1 we present the basic scheme
of the quantization of a scalar field in (1 + 1) dimensional flat spacetime, followed by a
review of the Unruh effect in Section 2.2 and the dynamical Casimir effect in Section 2.3.
We finish by presenting in Section 2.4 the calculation of particular parameters of relativistic
trajectories that will be used in this work.



2.1 Field quantization

We start by considering a scalar field in (1 + 1) dimensional Minkowski spacetime with
metric signature 7, = diag(+1, —1) whose equation of motion follows from the following
action (in units where i = ¢ = k; = 1)

§ =5 [ dudt (06 - (000" — ) (2.1)

with Lagrangian density

L =5 ((09)® = (0:0)* — m*9) (2:2)

DN | —

From this Lagrangian, we obtain the equation of motion for the scalar field, the so
called Klein-Gordon equation

(O+m?) ¢(z,t) =0 (2.3)

where [0 = 9? — 92. To quantize the theory we promote the field ¢ and its canonically
conjugate momenta T = % = 0y¢ to quantum operators ¢, © obeying the equal time
commutation relations

[¢3<x,t),ﬁ(x',t)] = i5(z — )
O, 0), 00 D] = [#et) 7', 6] =0 (2.4)

We can expand the field operators in terms of a set of mode functions ug(x,t), uj(z,t) so
that

~

b t) — / dk [uy(z, )y, + i (x, £)a7 (2.5)
From the equation of motion (2.3) the mode functions wuy(x,t) obey the equation
(O + m?)ug(z,t) =0 (2.6)

We demand that this set of modes forms a complete orthonormal basis with respect to the
inner product defined as

(frg) =i / dx (f*dhg — D f"g) 2.7)
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which is preserved under Klein-Gordon evolution. Therefore, we demand that the modes
obey

(uk,uk/) = 0 (k) - k,)
(up,up) = —0(k—K)
(ug,up) = 0 (2.8)
The time independent operators dki inherit from Equation (2.4) the commutation relations
[y, a] = oK — k)
s ap] = [ ag] =0 (2.9)
We can use the creation and annihilation operators a; and a; respectively to construct

a Fock basis for the Hilbert space. As usual, the vacuum state is defined as the state that
is annihilated by all annihilation operators a,

a;]0) =0 (2.10)

We can construct the state |ny, ng,...), with occupation number n, for the mode k,, by
applying creation operators on the vacuum state as follows

(a
| n1,ng, ...) :H
o

w)"
= 0 2.11
This state corresponds to the quantum state with n; particles with momentum ki, ns

particles with momentum ks and so on. The basis of the Hilbert space consists of the set
of quantum states with all possible occupation numbers n,, for each momentum k,.

Now we turn our attention to the mode functions. One set of solutions to the equation
of motion (2.3) is given by the delocalized plane waves

ug(z,t) o gitkz—wit)

where w? = k? + m?. From Equations (2.8), a normalized set of modes is given by

1 .
up(x, 1) = ———e'krmerd) (2.12)

\/47TOJk

These modes satisfy the relation

dug(z,t)

e —iwug(z,t) (2.13)
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and are called positive frequency modes. The uj(z,t) modes are called negative frequency
modes. Each choice of modes defines a particular set of operators a; , a, as a; = —(uj, g%)
and a, = (ug, 95) and consequently a particular Fock basis. Notice from Equations (2.10),
(2.11) that the notion of particle is defined by the positive frequency modes. Let us analyze

the particular basis defined by the choice of modes in Equation (2.12).

By performing a Legendre transformation of the Lagrangian in Equation (2.2), the
quantized Hamiltonian is found to be given by

A 1 A N N
A= [ do (@07 + @07 + ) (2.14)

By substituting Equation (2.12) into Equations (2.5) and (2.14), the Hamiltonian above
can be written as

H = /dkwk (Nk + %5(0)) (2.15)

where 0(0) accounts for the infinite spatial volume. The last term is a sum over all modes
of the zero point energies, and therefore, diverges with the volume of the system. However,
for our purposes, we only care about energy differences and in flat spacetime we can ignore
this infinite constant. Here, Nj, = a; ay is the number operator of mode k. Therefore, this
set of modes diagonalizes the Hamiltonian.

The states in Equation (2.11) defined with respect to the particular choice of mode
basis in (2.12) are eigenstates of the Hamiltonian and are therefore stationary states with
definite energy and the corresponding vacuum state is the state of minimum energy. Let
us now choose a different set of orthonormal modes v in terms of which we can expand
the field operator. This choice defines a new set of operators l;f,, which can be used to
construct a different Fock basis.

The set of modes uy, v are related through a linear transformation, called a Bogolyubov
transformation

Vg = /dk(ak/kzuk + Bwruy) (2.16)

The coefficients oy, Bri are called the Bogolyubov coefficients. Using Equation (2.7),
these coefficients are given by

12



Q. = (Uk',uk)
Bk’k = —(’Uk/’u}:,) (217)

The operators &f and l;,f, are then related by a transformation
b, = /dk (ppay — Brwal) (2.18)

iy = / dk’ <ak,k13,;, + 5,:%13;,) (2.19)
with normalization conditions

/dk (Oék/ka:://k - /Bk‘/kﬁlt”k) = 5 (k/ - k”)

/d/f (B — Brwarny) = 0 (2.20)

The vacuum states | 0,) and | 0,) defined by a; and by respectively are different. From
Equation (2.18), we can see that if the Bogolyubov coefficients Sy are nonzero, the vacuum
state | 0,) is no longer annihilated by the annihilation operators l;,;,, so the notion of vacuum
changes and consequently, from Equation (2.11), the notion of particle will also change.
Indeed, the number of b-particles in the vacuum state |0,) is

(M) = (0 b5 b 0a) = / dk| B 25(0) (2.21)

The mean density of b-particles is then

For inertial observers, connected by a Lorentz transformation, the coefficient Sy van-
ishes and different inertial observers agree on the particle content. For non-inertial ob-
servers, non-static or curved spacetimes, the £, Bogolyubov coefficients might not vanish
and the notion of particle is not universal, depending strongly on the observer.

We illustrate this by considering two particular cases, one in which the observer is
undergoing uniform acceleration, giving rise to the Unruh effect, and one in which the field
is terminated by a moving boundary, giving rise to the dynamical Casimir effect.

13



2.2 Unruh effect

An accelerated observer will have a different notion of particle content than its inertial
counterpart. To show this, let us start by considering an observer whose proper time is 7
moving with a trajectory z#(7) = (t(7),z(7)). If t(7) = L sinh(a7) and () = < cosh(ar),
the observer has a constant proper acceleration « and is therefore a uniformly accelerated
observer.

This trajectory motivates us to introduce Rindler coordinates, an appropriate set of
coordinates used to describe uniformly accelerated observers, defined as

1
t = —e" sinh(an)
a

1
x = —e® cosh(an) (2.23)
a

The range of these coordinates is —oo < 7, < 400 and they cover the right-hand
wedge = > |t|, as can be seen from Figure 2.1. The left-hand wedge is covered with
another Rindler coordinate system, differing from the one defined in (2.23) by an overall
minus sign. Both wedges, called Rindler wedges, are causally disconnected.

Observers with constant & = &, called Rindler observers, have proper time %7 and
proper acceleration ae~®°. In the inertial coordinates (¢, ), the trajectory of these ob-
servers is a hyperbola z2 —t? = a~2e%%° as illustrated in Figure 2.1. Rindler observers with
¢ = 0 have a proper time 7 and proper acceleration a. Lines of constant 7 correspond to
straight lines.

In Rindler coordinates, the metric takes the form

ds® = ** (dn® — d&?) (2.24)

For a massless scalar field, the Klein-Gordon equation is now given by
(2-02)p=0 (2.25)

and following a procedure analogous to the one presented in Section 2.1, the normalized
positive frequency modes for the right and left wedges respectively are

14



tn

v

Figure 2.1: Minkowski space, illustrating the left (L) and right (R) Rindler wedges. The
trajectory of uniformly accelerated observers corresponds to lines of constant £ (shown in
blue). Lines of constant 1 correspond to straight lines (shown in red).
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L = K Etwpm) 2.96
v (€, e .
w (&) oo ( )
with wy = |k'| and where the superscript R, L is to indicate that the mode corresponds

to the right and left wedges respectively. These so called Rindler modes (together with its

conjugates) form a complete mode basis in terms of which we can expand the quantum
field

b= /dk/ (Uﬁi)ﬁ + o b 4 BBl + v,f,*l;g) (2.27)

where Bﬁ and lA)ﬁ, are the annihilation operators associated to the right and left Rindler
modes respectively and that define the Rindler vacuum [Og) as

bi|0R) = by |0R) = 0 (2.28)
for all k.

The Bogolyubov coefficients 8%, = —(vf, ux) and 8L, = —(vh, u;) are nonzero and
from Equations (2.18), (2.19), the Rindler vacuum |0g) (which is the vaccum seen by a
Rindler observer) is not the same as the Minkowski vaccum |0ys) (which is the vacuum
seen by an inertial observer). An explicit calculation of these coefficients, together with
Equation (2.22) yields that the number of particles in mode &’ seen by a Rindler observer
is given by

27ka/ —1
Ny = <e 2 1) (2.29)
which corresponds to a Bose-Einstein distribution with temperature

_a
T om
where Ty is the so-called Unruh temperature. We conclude that an accelerated observer will
detect a thermal distribution of particles at a temperature proportional to its acceleration,
as opposed to the zero temperature vacuum that an inertial observer measures [13].

Ty (2.30)
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2.3 Dynamical Casimir effect

We consider a massless scalar field in (14-1) dimensions obeying the Klein-Gordon equation
(2.3) and terminated by a mirror that follows a trajectory z = z(t) for ¢ > 0 and = = 0 for
t < 0. In particular, we demand that the field vanishes at the mirror’s surface. The field
is therefore subject to a moving boundary condition

o(=(t), 1) = 0 (2.31)
for t > 0.
The general solution to the wave equation is
oz, t) = ft+2x)+g(t — ) (2.32)

In order to obey the boundary condition (2.31), the functions f and g cannot be chosen
freely. Indeed, by choosing the function f, the function g has to be such that

g(t = =(1)) = —f(t + =(1)) (2.33)

to guarantee that the field vanishes at the boundary.

We can alternatively work in the null coordinates (u,v), where u =t —z and v =t +x

with line element ds? = —dudv. The wave equation in these coordinates is then
0 0
- =0 2.34

which has the general solution

¢(u,v) = f(v) +g(u) (2.35)

The trajectory in the (u,v) coordinates is now v = p(u), so for the field to vanish at the
moving boundary, the relation between the functions f and g in the null coordinates is

g(u) = —f(p(u)) (2.36)

Notice that at the boundary u = t — z(t) so u can be written purely as a function of
t. We can therefore find a function 7 such that at the boundary ¢ = 7(u) in which case
u = 7(u) — z(7(uw)). With this, we can rewrite Equation (2.33) as

g(u) = —f(u+2z2(7(u))) (2.37)
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and the solution to the wave equation obeying the boundary condition is

o(u,v) = f(v) = f(p(u)) (2.38)

where using (2.36) and (2.37) we identify p(u) = u + 2z(7(u)). Alternatively, from the
definition of 7(u) = u + z(7(u)) we can also write the solution (2.38) as

¢(u,v) = f(v) = f(27(u) —u) (2.39)

We consider the particular case where the mode functions are plane waves moving to
the left that hit the moving boundary. Following the prescription developed in Section 2.1,
the quantum field can be expanded as

d(u,v) = /dk [wr(w, v)a;, + uj(u,v)a) | (2.40)
and the normalized modes ug(u, v) in the light coordinates (u,v) are given by

1
VAaTwy,

up = (e—iwkv o e—iwk(QT(u)—u)) (241)

where wy, = ||

For t <0, 7(u) = v and the modes are

2i sin(wyx)
VATwy,

which are positive frequency modes with respect to Minkowski time ¢, so the presence of
the mirror does not create any particles. However, when the mirror is accelerated, there
will be a sudden change of the mode functions from (2.42) to (2.41). It is this mismatch
that causes the creation of particles: the vacuum defined by the operators associated with
the mode functions (2.42) for ¢ < 0 is no longer the vacuum associated with the mode
functions (2.41) for ¢ > 0 and an inertial observer carrying a detector will detect particles
when the mirror begins to accelerate [90].

e~ wnt (2.42)

U =

2.4 Relativistic trajectories

In this section we show how to calculate the proper time and the proper acceleration of a
given trajectory in the laboratory frame, which will be used in the simulated trajectories
presented in Chapter 4. We work with a metric signature 7, = diag(—1, +1).
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Consider a moving object in a (1 + 1) dimensional flat spacetime. The path of this
object relative to the laboratory frame of reference is described by

at = (t,2(t)) (2.43)

where z(t) describes the trajectory as a function of the rest frame time ¢t. The 4-velocity

v det (dt dzd dt (. d
p_ 40 _ (At dzdt) dt (a2
R (dT’dth ar \Ua (244)

where 7 is the proper time of the object and the 4-acceleration a* is

dut Pt Pz (dt\?  dz d*t
au_“:< Z( )+Z ) (2.45)

~dr \dr? ae \dr dt dr?
Since the velocity satisfies the relation u*u, = —1 then
-1
A dz\?
— | =(1-{— 2.46
(&) -] 2.0

which can be used to find the proper time 7 as a function of the coordinate time t. We use
. . 2 . . . .
this relation to find the term %% present in (2.45) to write the acceleration in terms of the

trajectory z(t) as
—2
d?>z dz\? dz

The proper acceleration a = y/aFa,, is therefore

)]

We will make use of Equations (2.46) and (2.48) later on in Chapter 4.

(NI

d?z

“Tlae
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Chapter 3

Superconducting quantum circuits

Recently, quantum effects are being exploited to create quantum integrated circuits that
exhibit novel properties making use of well-established integrated circuit technologies [91,
92, 93].

Superconducting electronic circuits take advantage of macroscopic quantum coherence
effects [94]. In a normal conductor the charge carriers are electrons, each of which exhibits
quantum phenomena. To obtain the macroscopic behaviour, the average over the micro-
scopic states of the electrons is taken and the observation of quantum effects becomes
impossible. In a superconductor the charge carriers are bound pairs of electrons called
Cooper pairs [95]. These Cooper pairs are bosons that condense into a macroscopic quan-
tum state. Consequently, in a superconductor it is the collective degrees of freedom of the
system that display quantum effects, allowing for their observation even in large circuits.

Due to the macroscopicity of the components of a superconducting electronic circuit,
coupling between them is easy, providing both an advantage for their ease of manipula-
tion and a disadvantage since its hard to isolate them from environmental noise. As in
any quantum system, high coherence is desirable. In order to minimize decoherence it is
necessary to operate at ultra low temperatures so that thermal noise is suppressed. The
superconductivity ensures that the resistance of the material is zero, so that there are
no energy losses due to the transmission of the signal through the system, minimizing
dissipation [94].

The aim of this chapter is to present some of the basic ingredients of quantum integrated
circuits. The organization of this chapter is as follows: In Section 3.1 we present an
important element of superconducting quantum circuits, the Josephson Junction. We then
introduce a method for obtaining the equations of motion of an integrated circuit in Section
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3.2 followed by the procedure to get their quantum mechanical description in Section 3.3.
We finish by presenting in Section 3.4 the experimental setup that we use in our work.

3.1 Josephson junction

One of the elements of quantum integrated circuits utilized in the experimental setup with
which we work is the Josephson junction [96] (which we will sometimes abbreviate as JJ).
It is formed by a structure that consists of two superconductors separated by a barrier.
The physics of these elements is determined by the equations of motion for the current
and the voltage across the JJ. To derive these equations we need the Hamiltonian of the
system. Contrary to normal conductors where the charge carriers are free electrons, in
superconducting materials the charge carriers are pairs of bound electrons called Cooper
pairs. When the two superconductors forming the Josephson junction are brought to-
gether, tunnelling of electrons takes place. Using second order perturbation theory, this
tunnelling process couples states with different numbers of Cooper pairs, giving an effective
Hamiltonian of the form [97]

. ~ B
HJ = _EJ COSQb + TCﬁZ (31)

where ¢ is a parameter that labels the eigenstates. In the first term, F; is the Josephson
energy, which can be written in terms of the resistance of the conductor in the normal
state and the energy gap of the material by using the Ambegaokar-Baratoff relation [98].
In the second term, Fo = % is the charging energy. The Cooper pair number n can be
written in the phase representation as

C—— (3.2)

We can now derive the current I and the voltage V across the junction using Heisenberg
equation of motion
da i [
=< |ha 3.3
dt h [ (3:3)

1. Current in a Josephson Junction
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— The current I is given by I = 26%, so using (3.2) and (3.3)

. —9¢FE i .
I = eallle [cos ¢,ﬁ}
h
—2€Eji |: ~ . 0 :|
= cos ¢, —1—=
h 0o
—9%E .
= g (3.4)
h
By defining the critical current /. as
—26EJ
I.= 3.5
= (35)
we can write the current as R .
I =1.sin¢ (3.6)
2. Voltage across a Josephson Junction
— We again use (3.2) and (3.3) to get
dp  Eci|[ &
dt  2h | 94
 —FEci 0
h 06
Ec .
= —n
h
2le| ~
= =y 3.7
N (37)
so the voltage is )
~ h do
V=—r-— 3.8
2le| dt (3:8)

Equations (3.6) and (3.8) are known as the Josephson relations. The phase parameter
¢ in these relations is related to the total magnetic flux by

6= —zﬂ% (3.9)

with @y the flux quantum defined as &y = ﬁ and ® the total magnetic flux.
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Josephson Junctions act as non linear inductances in parallel with a capacitance, with
L = 492 Indeed from Equations (3.6) and (3.9) we get

o, o
I= 20— 3.10
oL, ( %0) (310)

where we defined L; = %. In the limit where ®/®, < 1 the junction acts as a linear

inductance with current I &~ ®/L;. A common representation of a Josephson junction is
presented in Figure 3.1.

I
Q
N

K Ly

Figure 3.1: Pictorial representation of a Josephson junction as a non linear in-
ductance.

Josephson junctions can be used to form more complex structures like superconducting
quantum interference devices (SQUID) [99, 100]. This structures are formed by a super-
conducting loop containing Josephson junctions. Two particular examples of widely used
SQUIDs are the RF-SQUID, composed of a loop with a single junction and the DC-SQUID,
composed of two junctions (see [101] for a comprehensive review).

3.2 Equations of motion for integrated circuits

In this section we present a method for obtaining the equations of motion of a circuit (see
[94] for a detailed description).

Given an integrated circuit, we identify a branch as a single electrical element of the
circuit as illustrated in Figure 3.2 below.
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Figure 3.2: Branch of a circuit, indicating sign convention for voltage and current.

We define

t

op(t) = / Va(t")dt' (3.11)

—0o0

t
O A (3.12)
The set of Equations (3.11) and (3.12) define the branch variables ¢5(t) and Qs(t), called
the branch flux and the branch charge respectively, as functions of the voltage Vj(t) and
the current I5(t) through the branch.

The analysis of a circuit involves the application of Kirchoft’s laws together with the
constitutive relations of its elements in order to obtain a set of equations that need to
solved. The equations obtained by doing this are not all independent, since not all branch
variables are independent degrees of freedom. The method of nodes provides an efficient
way of analyzing a given lumped element circuit by organizing the same information as
before in a clever and structured set of rules, giving the minimum number of equations
needed to solve it [94]. We shall use this method, which we present next, to obtain the
equations of motion of a given circuit, followed by an example to illustrate its application.

24



Method of nodes

1. Identify all nodes of the circuit, where a node is a point that connects two or
more branches.

2. Choose a reference node to be the ground. The rest of the nodes are called active
nodes.

3. Choose a spanning tree: a collection of branches that access every node and that
contains no loops. This identifies the tree branch fluxes, where closure branches
are left out.

4. The n node flux ®,, is the sum of the branch fluxes along the path that connects
it to the ground. Closure branches can then be expressed as differences between

node fluxes.
O = 5= Sudy (3.13)
tree branches b
eading
ton
where

1 if path follows b with proper orientation
Su = & —1 if path follows b with opposite orientation
0  if path doesn’t follow b

5. For each active node, we equate the sum of currents arriving from the inductive
elements to the sum of currents going into the capacitive elements connected to
that node.

6. Use the constitutive equations for the electric elements, together with the branch
variables definitions (3.11) and (3.12) to express the currents in terms of the
branch fluxes.

7. Use the results from step 4 to write the equations obtained from the previous
step in terms of the node fluxes, finding the equations of motion of the circuit.
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3.2.1 Example: LC resonator

We consider the simple example of an LC resonator. We use the Figure 3.3 below to
illustrate the steps 1 to 3 of the method of nodes.

¢ L | il =L
bc—T lc Ll §§¢L

Figure 3.3: LC resonator indicating the currents ¢~ and 7y, the branch
fluxes ¢¢ and ¢, the ground node @4, the node flux ®;, and the spanning
tree as a purple dotted path.

Steps

e Steps 1-3: The spanning tree is highlighted in purple and the ground and active
nodes are indicated as ®, and ®; respectively. The tree branch flux is ¢; and the
closure branch flux is ¢¢.

e Step 4: the node flux ®; is ®; = ¢,. For this simple example, the closure branch
flux is simply ¢ = 4.

e Step 5: at the active node ®q, the currents obey the relation
— i =g (3.14)

e Step 6: we write the currents through the inductor and the capacitor respectively as

i = o
L L
o = % = OV = Coc (3.15)
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e Step 7: using Equations (3.14) and (3.15), the equation of motion for the node flux
(I)l is
y o
Cdh, = —f (3.16)
Since the Josephson junction is a non linear inductance in parallel with a capacitance,
we can apply the same procedure as for the LC resonator, with iy, now being given by
Equation (3.10). The equation of motion is then

. D, )
b =— in | 27— q
C oL, sin < ’/T(I)O) (3.17)

3.3 Hamiltonian of a circuit

Given the Lagrangian of a system, we can use the Euler-Lagrange equations to find its
equations of motion. The equation of motion for the LC resonator (3.16) suggests that we
can write the following Lagrangian for the system

1 . 1
=-C9* — —P* 1
L 20 5T (3.18)
where we dropped the node index. We can now define the variable conjugate to ® as
oL .
0P
and use it to write the Hamiltonian as
QQ (I)2
=—4+ — 2
H 5C + 5 (3.20)

We notice this is the Hamiltonian for a simple harmonic oscillator with resonance

frequency wrc = \/% We can quantize the system by promoting the classical variables

(®, Q) to quantum variables (®, Q) obeying the equal time canonical commutation relations

(@, Q] =ik (3.21)

In the case of a Josephson junction, Equation (3.17) suggests that we can write the

Lagrangian as
1. Dp\* 1 o
=20 — (%) = (1-cos|2r— 22
L 26’ <27r) LJ( cos(ﬂq)())) (3.22)
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and Hamiltonian

! oo \> 1 P
H= %cf + <%) i (1 — cos (zwa})) (3.23)

which can be written in terms of the Josephson energy as
H = 1Q2+E 1 2y (3.24)
=50 J cos | 2w B, .

3.4 Experimental setup

A transmission line (TL) is a structure designed to carry high frequency electromagnetic
signals from one place to another with minimal losses. The size of transmission lines is
a substantial fraction of the wavelength of the signal or larger [102]. A particular type
of transmission line is the coplanar waveguide (CPW), which consists of three conductors
printed on the same plane of a substrate and separated by a small gap, constant along the
length of the line [103].

The experimental setup used to observe the dynamical Casimir effect [4, 79, 80], and
used in this work, consists of a CPW terminated by a SQUID. A short fragment of a TL
can be modelled as a lumped element circuit, so the line is modelled as an infinite number
of lumped element circuits. In particular, we will be working with a lossless line where the
resistance is zero. The equivalent circuit representation is presented in Figure 3.4.

LoA.’L‘ LoA.’E

s T
CoAz  CoAz CoAz
i Az i

Figure 3.4: Equivalent circuit representation of the CPW setup as presented in
[4], with Cjy and Ly the capacitance and inductance per unit length. Here, ®; is
the flux at node 7 and ®;; are the fluxes at the Josephson junctions.

Using the method of nodes presented in Subsection 3.2, we calculate the Lagrangian of
the system to be

o0

B 1 : 9 (‘I)i+1 _(I)i)2 CJ,j d 2 D
L= 5 ; (AxCo(q)z) ArL, +]§:2 5 (®;)° + Ejjcos(2m B, )| (3.25)
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where Ly and Cj are the respective inductance and capacitance per unit length of the CPW,
Cyj, E;; and ®;; are the capacitance, Josephson energy and flux of the j-th junction in
the SQUID, and ®; is the dynamical flux at node 7. Note that ®; = ®;.

If size of the loop of the SQUID is small enough, then ®;; — ®;5 = ®er. We are
considering a symmetric SQUID, so Cj; = Cjo = Cy/2 and Ejy = E;9 = E;. The SQUID
is operated in the phase regime, and it is assumed that its plasma frequency is much greater
than any other frequencies in the circuit so that %é < 1, where ®; = (&, +P;5)/2 is the
effective flux. The following Lagrangian is obtained

[e.e]

1 : ((I)z’ 1— q)i)z 1 . 1 /2w 2
) AzCo(®;)? — 2 ) + =093 — = [ == ) Ej(Pext) P 2
L ; ( l'CO( Z) AI’LO + ZCJ 7 > \ 3 J( ext) 2 (3 6)

[\]

where E;(®ex) = 2| COS(TF%;“” is the tuneable Josephson energy. Note that the effective

capacitance for the first node is CyAz + C; which becomes C; in the limit of Ax — 0.

The Hamiltonian of the system is consequently given by

Io= [ (P)? (B — D)2\  1P2 1 [21\° )
== “CL oy (2] B (B ® 2
=3 ; (AxCO AL, 20, 72 \a, 7(Pext) &y (3.27)
with or

the conjugate variable to ®,.

The system is quantized by promoting the classical variables (®;, P;) to quantum vari-
ables (®;, P;) obeying the canonical commutation relations

(&, P = s (3.29)

We use Heinsenberg equation of motion on P; to get

P1 - qu.)l
i T
= 5 PH]
21 2 1 ((I)Q—(I)l)
= —FE;(® — ) - ———F— )
7 ( ext)<q>0) T A (3.30)
which in the continuous limit of Az — 0 becomes
. o\ 2 1 0®(z,t)
C;P(0,t — | E;()®(0,1) + — ’ =0 3.31
0+ (5) meon - 0] (3.31)
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where ®;(t) = ®(x,t) and E;(t) = Ej|Pex(t)|. This equation plays the role of the boundary
condition on the field in the CPW. It is noticed that this boundary can be tuned by an
externally applied magnetic flux.

Furthermore, the dynamical fluxes away from the SQUID and in the continuum limit
Ax — 0 follow the Klein-Gordon equation

o? , 0?

with propagating velocity v = 1/4/CpLy.

30



Chapter 4

Dynamical Casimir effect in circuit
QED for nonuniform trajectories

In this chapter, we present our results on the simulation of relativistic moving boundaries.
This is achieved by utilizing the setup presented in Section 3.4 of the previous chapter, a
coplanar waveguide (CPW) terminated by a superconducting quantum interference device
(SQUID), which is used to simulate a trajectory described by = = z(t), where ¢ is the
coordinate time in the laboratory frame.

An experimental simulation of a moving boundary naturally involves oscillatory mo-
tions. As discussed on the introduction to Part 1 of this thesis, the relativistic trajectories
that we aim to simulate are the ones considered in [47], where a study of the response of
a moving detector to a quantum field was presented. These trajectories are: sinusoidal
motion (SM), sinusoidal acceleration (SA), and alternating uniform acceleration (AUA).

The experimental setup used for the observation of the dynamical Casimir effect [79]
already simulates a sinusoidal motion, so we explore how to modify the settings to achieve
more general moving boundaries. We point out that the trajectories we consider have a
very similar spatial shape, so it would be interesting to analyze if even under this scenario
their generated spectrums are distinguishable.

This chapter is organized as follows: We start by reviewing in Section 4.1 the different
relativistic moving boundary conditions that we investigate. In Section 4.2 we compute the
number of photon quanta emitted for a general trajectory and discuss how to interpret these
in the context of circuit QED. In Section 4.3 we discuss the choice of input parameters,
followed by a presentation of our results in Sections 4.4 and 4.5, where we compute the
output number of photons for each trajectory and discuss how this differs for different
relativistic trajectories. Finally, our conclusions are presented in Section 4.6.
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4.1 Relativistic trajectories and moving boundaries

In this section we present the relativistic trajectories that we wish to simulate. Namely,
we discuss sinusoidal motion (SM), sinusoidal acceleration (SA), and alternating uniform
acceleration (AUA).

The periodic boundary motion we simulate is in one dimension, and we define its
directional proper acceleration as its (positive definite) proper acceleration multiplied by
the sign of the spatial component of the 4-acceleration. We denote the periodicity of the
motion as wy, anticipating that the external driving flux that will be used to simulate these
trajectories has the same natural frequency, as we will see in detail later on.

In the following, we use Equations (2.46) and (2.48) derived in Section 2.4 to calculate
the proper time 7 and the proper acceleration a for each trajectory, given that we know
the form of the trajectory in the laboratory frame.

For each trajectory, the time averaged proper acceleration is

T(t=27/wy)
/ dra(r)

(t=0)

a= T(t=27wy) (41)
/ dr
7(¢t=0)
where 7 is the proper time.
4.1.1 Sinusoidal motion
Sinusoidal motion is one for which the 4-position of the boundary is given by
Z§M (t) - <t7 07 07 —R COS((JJdt)) (42)

where R is the oscillation amplitude, and wy is the oscillation frequency in coordinate time.
In order for the motion to remain subluminal we must have Rwy < 1 in units with ¢ = 1.
The proper time 7 of the boundary is 7 = w; ' E(wgt, (R;’d)2), where E(¢,m) is an elliptic
integral of the second kind. The directional proper acceleration is

cos wyt
aay (t) = Rw?
su(®) T(1 — (Bea)2gin? wyt)3/2

whereas the proper acceleration agy,(t) = |agy(t)|. Note that for Rw,; < 1 the acceleration
is proportional to the position, as expected for nonrelativistic motion. The oscillation
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period is ¢, = 27w /wy (or 7, = wcflE@W» (R;Jd

acceleration (over one oscillation period) is:

)?) in proper-time). The time-averaged proper

. vwdtanh_l(R;"d). (43)

B (%)

4.1.2 Sinusoidal acceleration

Sinusoidal acceleration (SA) (employed in a experimental proposal by Chen and Tajima
[104], in which a particle of mass m and charge e is placed at one of the magnetic nodes
of an EM standing wave with frequency wy and ampitud Ej) is described by the worldline

250 cos(wat)

26, (t) = |t,0,0, — Y arcsin (4.4)

w, 2
4 1+4(i>

Vwyg
with directional proper acceleration
aga(t) = 2a coswgt

where a = % has units of acceleration and the proper time of the boundary 7 is related
to the coordinate time t by 7(t) = w; ' F(wat, —4a?/v®w?), where F(¢,m) is the elliptic
integral of the first kind. The oscillation period of this worldline is ¢, = 27 /w, or a proper
time period of 7, = w;lF (27, —4a? /v*w?3). The time-averaged proper acceleration reads
vwgsinh ™! (2L>

Vwq

i = . <7T/2’ » <%)2) (4.5)

and for low accelerations (|a| < vwy) and nonrelativistic velocities we obtain zga ~ zsy.

4.1.3 Alternating uniform acceleration

For Alternating Uniform Acceleration (AUA) the trajectory of the boundary (parametrized
in the accelerated observer’s proper time) is

2
2 (1) = [% [sinh% (7‘ — %) + 2n sinh %] ,0,0,

(—1)"0? a nT, " ar,

— [COSh; (7’ 7) +{(=1)" — 1} cosh E} (4.6)
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and so it experiences constant acceleration a that periodically alternates in sign

adyua(T) = <asinh% |:7' — %} ,0,0, (—1)"acosh% [7’ - %]) . (4.7)

where n(7) = floor (3—; + %), with floor(z) the largest integer less than or equal to z. We

consequently have a = a.

We illustrate in Figure 4.1 the position (top figure) and proper acceleration (bottom
figure) as functions of time of these trajectories.

4.2 cQED setup

To simulate these boundary motions we make use of the setup [4] (illustrated in Figure 2
of [4]) and which we also presented in Figure 3.4 of Chapter 3, where a SQUID modulates
the boundary condition of a Coplanar Waveguide (CPW). The CPW is at < 0 and the
SQUID is at = = 0.

Following the procedure presented in Section 3.4, the dynamical flux away from the
SQUID respects the Klein-Gordon equation (see Equation (3.32))
2 , 0

with propagating velocity v = 1/4/CyLg, where Cjy and Ly are the capacitance and induc-
tance per unit length of the CPW.

The equation of motion at the boundary (see Equation (3.31)) is

- om\ > 1 0®(z,1)
0 = C;9(0,t — | E;(t)®(0,t) + — ’
0+ (5) meon« 200
1 (I)O 2 (9(1)(1:, t)
~ ®(0,t — ) —= 4.9
00+ 75 ® (%) ar |, (4.9)
where &, = Q—he is the magnetic flux quantum, C'; is the capacitance of the symmetric

SQUID, which has a small enough loop (so that self-inductance is neglected) and operates
in the phase regime, and E;(t) = Ej(Pex(t)) is the tunable Josephson energy whose
arbitrary time dependence can be given by controlling ®.., the external flux threading
through the SQUID. The second equality follows under the assumption that the SQUID
plasma frequency is much larger than any other frequencies in the circuit. This boundary
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Figure 4.1: (Top) Trajectory’s position as a function of time. (Bottom) Trajectory’s direc-
tional acceleration as a function of time. In both cases the trajectories are distinguished as
follows: Sinusoidal motion (red dashed), Sinusoidal Acceleration (blue dotted), Alternating
Uniform Acceleration (green dot-dashed). The average acceleration for all trajectories is

a=1.2x10"Ym/s? and the driving frequency is wy/27 = 28 GHz.
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can be tuned by the externally applied magnetic flux. All this assumptions and conditions
are being recalled from Section 3.4.

Remember that for a field terminated by a moving mirror, we would have the boundary
condition
o(t, Z(t)) =0 (4.10)
where Z(t) is some prescribed trajectory.

Note that the above equation can be written in the approximate form

olta)  +(2— (222

=0 820 r=2Z9

=0 (4.11)

upon expanding Equation (4.10) about the origin, where Z(t) = Zy — 2(t) with z(t) < Zj.
Equation (4.9) plays the role of the boundary condition on the flux field in the CPW,
and is designed to simulate the boundary condition (4.11). We remark that the bound-
ary condition (4.9) does not exactly correspond to a Dirichlet condition, and instead is
similar to it only in an approximate way. In principle identifying this simulation with
the original perfect-mirror Dirichlet boundary condition employed in the classic literature
on the dynamical Casimir effect [90, 105, 106] can be problematic. This is because the
condition (4.9) well approximates a pure Dirichlet condition at a moving boundary only
when |dz(t)/dt| < ¢ [107].

In our case this is not a concern for two reasons. First, the dynamical Casimir effect
does not require strict use of a Dirichlet condition; indeed it occurs for a general set of
time dependent boundary conditions near relativistic regimes [108]. Second, the bound-
ary condition (4.11) (which is faithfully approximated by (4.9) for field frequencies much
smaller than the SQUID plasma frequency [109]) produces the same particle spectrum (at
leading order) as the pure Dirichlet condition. Writing V' = wt + k,x and U = wt — k,x,
the full solution to (4.8) that respects (4.10) is given by

o(t,z) = f(V) = f(p+(U)) + 9(U) — g(p-(V)) (4.12)
where wt + k24 (t) = pe(wt F kyz+(t)) in the case of two boundaries with trajectories
V =p,.(U) and U = p_(V), respectively determined in terms of the prescribed boundary
motions x = z4(t). We shall set f(V) = 0 as there is neither a left boundary nor incoming
right-propagating signals, and write z_(t) = 2(t).

The general method for interpreting this equation (for left-moving modes that are
reflected from the boundary) is to write (4.12) as

[hZ, d '
(2, 1) . 0/ w am —z( koatwt) 4 g (w)e —i(kwztwt) +H.c) (4.13)
s
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where Zy = /Lo/Cy is the characteristic impedance and k, = |w|/v is the wave vector.
The subscripts out and in in the operators stand for the direction in which the signals are
propagating, with ay,(w) = [dUg(U)e™*Y and we interpret aou(w) = [ dVg(p_(V))e™".
Rather than directly computing this latter integral, we shall obtain aq.(w) by requiring
the field (4.13) to satisfy the boundary condition (4.9). After a Fourier transformation this
yields

0— (i—”) / Z duog(w, o) [O(w) (@l + ) + O(~w)(a™, + a™)T]
k.

Ly

/
W, W ,/'ﬁ: /thJ Jeilwmw)t (4.15)

Consider an arbitrary driving motion F;,(t) with Fourier decomposition

(a — a®y") (4.14)

w’ w

—w?Cy(a” + a®") +i

where

a
E;(t) = 30 + Z a, cos(wgnt) + Z by, sin(wgnt) (4.16)
Writing the trigonometric functions as complex exponentials, we get

d(w—w)

/
g(w, ') = il [@

jwl [ 2
+ Z%ﬂ(é(u}—w’—wdn)+5(w—w’+wdn))

+ Z %(5@) —w' —wgn) — 0(w — ' +wgn)) (4.17)

and inserting (4.17) into (4.14), then gives
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2 .
0= j GO/ \/E )(al2 + ag™) + 0(—w)(a, + a2 | 6(w — o)

—w' —wgn) + §(w — W' + wgn))dw

+222 / \E )(ai2 + aZ) + 0(-w) (0, +a2%)T] x

Ow—w' —wgn) — 6w —w —i—wdn))dw}

. ku |
—W2C5(a + a®) + z’Li’(agl, — a2
0

which after integrating becomes

2
"o (%> [ag 06) (@l + a") + 0(~w) (" + a2%)'|
ol 2

an | t
+ Z <m [0(w" + wan) (a1 n + 00 n)

+0(—w _wdn)( Elw wdn—}—a?ﬁ,_wdnﬁ]

||
+ |w/ _ de| [9((“) - wdn)( Ay’ —wyn + az}ut wdn)

+0(— W'+ wdn)( a4y + aguug’erdn)T] )

bn '] ¢
! Zn: 2i <W [0(" + wan) (@ n + 02 0n)

+0( w —de)( ;w wdn—{_aglg/*wdnﬂ]

/ .
SN N N YR O 100 SO B

|w,_de| w'—wgn W' —wgn

+0( W'+ wdn)( A +wgn + aglg”rwdn)q >:|

) ko
—w2C(a + at) 4 i~2
Lo

(aci,.l;l’ _ aout)
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Assuming w’ > 0 then (—w') = 0 and 0(—w’ — wyn) = 0. Also, we assume the SQUID
plasma frequency is large (Jw|?C; < 1) so that we neglect the term with C; and find

0 = a™(1+ikyL2%) + a2 (1 — ik, L%)

in out
+ Z (\/ W — nwde(w - led) (aw—nwd + aw—nwd)

+ L9(nwd—w)(ai“ L Fas )

nwy — w nwq—w nwq—w

w in out

+ w ~+ nwy <aw+nwal + anr"‘*’d)

bn w in out
! ; CL_(]Z (_ V w_—nwde(w - nwdxawfnwd + aW*”‘”c)

w .

. 9 . in out 1

A / —HWd —w (nwd w)(a’nwdfw + anwd*“’)

W in out 4.20

+ rnwd(aw—i-nwd + aw-l-nwd) ( ' )

Do\’ 1 /2
Lh=—) — (= 4.21
w=(50) +(2) (1.21)

Equation (4.20) is the general relation determining a®** in terms of @ for an arbitrary
driving force. We can solve this equation perturbatively by writing

out _ out + Z out a” + Zbou'ﬁ : ) (422)

where we require ¢* < 1 and b’; < 1 and where a2 b are the coefficients in the

where

and we have set W’ — w.

an )

perturbation series that we will determine. Here O(2) means second order in a,/ay and
b, /ag With this, the Oth order term is

0=a"(1 + ik, LY%) + a2t (1 — ik, L) (4.23)
yielding
ou 1 + Zk Le in in
a/wot — TkwL;aw = R(w)aw (424)
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Using (4.24) and upon imposing the requirement that k,L% < 1 (R(w) ~ —e2k«Ler),
which gives an upper bound on frequencies where our treatment is valid, the 1st order term
is

out QZLeff \/—\/_70( . ) i(kw+kw—nwy) Lo 4
ao = w — nwgb(w — nwy)e A5 oy
i(kw—knwy—w)Lo% ,int
—Vw/nwg — wh(nwg — w)e’l a—leng it

+Vw /o F nwgeibuthotna) Lngin, (4.25)
and similarly

bout .

kw+ko—nw Lo
Vor/w — nwgh(w — nwg)e ket DLegin. "
+\/a\/nwd7—w0(nwd _w) i(kw—Fnwy— w)LeHangfw
"‘\/a\/MG (othutng) Leﬁanrnwd] (4.26)

lod
v

Substituting Equations (4.24), (4.25) and (4.26) into (4.22), we finally get

a2t = R(w)al

" p by,
T Z ( [a_ W, w — nwy) — Za_OP*(w,w - nwd)] et bina) o,

22Leﬁ[

where we substituted &k, =

. b
" |:a_:)LP (w’ nwq — (.U) - Zal_zp(w7 nwq — w>:| ke e W)Leﬁaiz:rd—w

n by,
+ {Q—P(w, w~+nwy) —i—P(w,w + nwd)] (k“’+k“+"”d)Leffaw+nwd) (4.27)
Qg Qo

where we have defined

P, o) = Qiigﬂ\/ﬂ\/me(w'w(w") (4.28)

If the initial photon population of the field is given by that of a thermal bath of
temperature T: 7" = (exp(fw/kyT) — 1)~", then

2

L A(L0%)? a b
—out o 2 —in eff n -Yn | —in
’R( )‘ n, + 02 En U.)(’CA.) - nwd‘) a_O + ZCL_O T —nwy|
2 2
Qp, bn an -bn _in
Fw(nwg — w)|— +i—| O(nwy — w) + w(w +nwg)|— —i—| 0y, | (4.29)
ag Qo Qo Qo
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Requiring that k,T < hwg, we neglect terms containing the small factor 7'
obtaining

A = | R(w)

4 LO 2 .
(Ler) Z [|an + by, |2 (w]w — MWy + W (N — w)O(nwg — w))} (4.30)

finally

w+nwgq?

EIPNE
and upon using
a :
E;(t) = 50 + Z a, cos(wgnt) + Z by, sin(wgnt)
= EY 4+ 6E,(t) (4.31)

we compute an effective length

do\? 1 1 Do\ 2 1 1 0
Leg = [ =2 S (1) IV ) ) 4.32
i (27r> E,;(t) Lo <27r) EY+6E,(t) Ly °f 4 (4.32)
with SE, (1)
J
5Leﬁ.«:Lgﬂ< 70 > (4.33)

If we want to simulate a trajectory with a position given by x = Z(t), then upon
comparison with (4.11) we obtain

0

_ Ly (4.34)

and given z(t) and its Fourier coefficients {dg, ém, bm } we find

CNLO == 0

_ 4 (D

m = L(] 27'(' m

~ 4 Dy

b = bim 4.35
LQ (27T> ( )

Recall that the external driving field as a function of the external flux is given by
E;(t) =2E)]| cos <7@e—’“> |. Consequently

B (t) = 20 cos~! (EQ‘;E?) (4.36)



so the external flux as a function of the desired trajectory is

Dexi(t) = % cos ™! (% (1 + ZL(—Q)) (4.37)

The last expression provides us with the time dependent externally applied flux required
to obtain the trajectory z(t) to be simulated.

4.3 Parameters for relativistic trajectories

In this section we suggest physically relevant parameters for the relativistic trajectories SM,
SA, and AUA (described in Section 4.1) and compute the number of photons produced for
each. From Equations (4.2), (4.4) and (4.6), we see that each trajectory has a characteristic
acceleration parameter (generically denoted A) that will roughly determine the scale of the
proper acceleration. Respectively A is Rw? for SM, « for SA and a for AUA.

The time averaged proper acceleration for each trajectory is calculated using Equation
(4.1), as presented in Section 4.1. We reproduce these in Table 4.1 for convenience. We
notice that a is a monotonically increasing function of the accelerating parameter A for
fixed frequency. For fixed A and varying frequency, a is monotonically increasing for SM
and monotonically decreasing for SA.

SM SA AUA

vwg tanh ™! fiwg vwgsinh ™1 (24—
v

vwyg

a
R2w2 2
d T _ o
E( v2 ) F(27 4(’”“’(1) )

Table 4.1: Time averaged proper accelerations for the three trajectories studied. F(¢,m)
and E(¢p, m) are elliptic integrals of the first and second kind respectively.

As an estimator of how relativistic the trajectory is we can compare at with the effective
speed of light v. If at < v the trajectory would be significantly relativistic. For a realistic

propagation velocity of photons in the waveguide of v = %c = .4c¢ [4], this means that
at = ‘_’j—: ~ 2cor di—Z% ~ 1, so if 2 ~ O(10") Hz, then @ ~ O(10'7) ms~2. We remark

that by w, wgy we mean angular frequencies, that is 27, where v is the linear frequency.

The values of the parameters employed in [4] are summarized in Table 4.2. These
parameters yield a proper acceleration for the sinusoidal motion simulated in [4] of a =
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9.054 x 10! ms~2, then a 2 = 0.419. For this acceleration and the oscillation period
considered, nelther the SA nor AUA trajectories will yield any significant difference with
the simple sinusoidal motion as we will see in Section 4.5.

SM
% 18GHz
ES =% 13E,

&)

aq 1
E; | L(3)
1. 1.25 uA
Cy 90 fF
v Ace
Z0 550

w,/27 | 37.3GHz

Table 4.2: Parameters used in [4].

In order to obtain significant differences between the SM and the other two trajectories
we need to work with larger a so as to reach speeds that are closer to the effective speed
of light, and thus have larger contributions from higher than first order Fourier coefficients
n (4.16). We are constrained by the fact that the speed of the wall cannot be faster than
the speed of light. Both the SA and AUA trajectories already incorporate this constraint
by construction, but in the case of sinusoidal motion, not every value of the characteristic
acceleration parameter is possible. In this case we will have the constraint

Rwd < (438)

This means that for a maximum driving frequency of $2 = 40 GHz, and v = .4¢, then
R < A775mm.

We therefore impose three requirements in choosing our parameters. First, we set
a(A,wg) =20 x 10'® ms~2 and fix the same driving frequency wy for the trajectories. Next
we select the characteristic acceleration parameter A and driving frequency wy such that
we retain the higher order contributions for the SA and AUA trajectories while ensuring
that —J > 0.1. Finally, we maximize the quantity M so as to maximally amplify the
contrlbutlon of the motions. The first criterion pr0V1des a point of comparison between

trajectories, the second gives a region on the plane (A,w;) in which we can perform the
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experiment, and the third selects the parameters in which the trajectory is ‘maximally
relativistic’ given the other constraints.

We find these criteria imply that o = 13.725 x 10'® ms=2 for the SA motion and
a = 20 x 10'® ms™2 for the AUA motion and a driving frequency of 54 = 14.6 GHz
for both trajectories. For the SM, in order to keep the driving frequency less than the
plasma frequency and still achieve an average acceleration of 20 x 10'® ms=2 we would
need R > .398mm, and the greater the R, the smaller the required driving frequency. Due
to Equation (4.38), R < .4775mm, and to achieve the desired acceleration the minimum
driving frequency is 5¢ = 31.7 GHz. This driving frequency is much bigger than the
frequency needed for SA and AUA. For this reason we shall first consider these two cases,
presenting the analogous results for the sinusoidal case at the end of this work with the
parameters used in [4] (presented in Table 4.2).

We summarize in Table 4.3 the experimentally controlled parameters for the cases we
subsequently analyze, unless otherwise specified.

SA AUA
a 20 x 10"¥ms2 20 x 10"®¥ms—2
A a=13.725 x 10®¥ ms™? | a =20 x 10'®* ms—?
wq/2m 14.6 GHz 14.6 GHz
EY = b3 0.1002E; 0.1006E;
1 4 4
E; L. (52) L (52)
1. 1.25 uA 1.25 pA
Cy 90 fF 90 fF
v Ac Ac
Z0 550 550
ws/2m 37.3 GHz 37.3 GHz

Table 4.3: Parameters used for each trajectory.

4.4 Results

With the parameters presented in Table 4.3, the Fourier coefficients for the SA and AUA
trajectories are non vanishing but are quickly suppressed as n increases. We present them
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in Figure 4.2. In both cases we find that we get an exponential suppression, and so can
safely consider only the first 3 Fourier coefficients.

-24 | i

10 2 AUA

n = SA
-26 | . i
s 10 -

10—28 I : ¢ g ,
10—30 i o -

0 5 10 15 20 25

Figure 4.2: Fourier coefficients of the SA trajectory (blue squares) and AUA trajectory
(green circles).

Using Equation (4.30) we can calculate the output number of photons as a function of
the frequency w and of the driving frequency w,. Fixing the driving frequency as in Table
4.3, we calculate ngyi(w) for different external temperatures. In Figure 4.3, we illustrate
results for various values of the temperature of the thermal bath for each motion. We see
that second order contributions are in principle detectable, as depicted in the insets.

In Figures 4.4 and 4.5 we calculate nqy(w) (for two different fixed driving frequencies)
and oy (wg) (for two different fixed frequencies) respectively for two different temperatures
of the thermal bath. For comparison purposes, we present both trajectories together. We
can see that even though small, there is a difference in the statistics for different trajectories.

We see from Figures 4.4 and 4.5 that the different relativistic motions are indeed distin-
guishable from their spectrum, with the distinction becoming more pronounced at larger
values of wy. The maximum of the curve in figure 4.4 occurs at values w = nwy/2. An
analytic expression for determining the maxima of the curves in Figure 4.5 can be given
in terms of elliptic functions; we shall not reproduce it here.
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Figure 4.3: Plots comparing n.,; at differing thermal bath temperatures 7" = 0K (solid),
T = 25 mK(dashed) and 7" = 50 mK(dotted) and fixed wy/27 = 14.6GHz as a function of
w/wy for SA trajectory (top) and AUA trajectory (bottom). The average acceleration for
both trajectories is @ = 20 x 10'® ms~2. The insets show detail for the second maximum.
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Figure 4.4: Output number of photons for varying frequency w and fixed driving frequencies
wy as indicated in the figure. The solid lines correspond to AUA trajectory and the dashed
lines to SA trajectory, where both have the same average acceleration a = 20 x 10'8 ms=2
for wy/2m = 15 GHz and @ = 21.9 x 10'® ms™2 for wy/27 = 5 GHz, and for T=0 K (top)
and T=25 mK (bottom), where 7" is the temperature of the thermal bath.
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Figure 4.5: Output number of photons for varying driving frequency wy and fixed frequen-
cies w as indicated in the figure. The solid lines correspond to AUA trajectory and the
dashed lines to SA trajectory, where both have the same average acceleration a = 20 x 10*®
ms~2 and for T=0 K (top) and T=25 mK (bottom), where T is the temperature of the
thermal bath.
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Finally we compute the output number of photons as a function of a. Note that for
AUA, the average acceleration is only a function of the acceleration parameter while for
both SM and SA, due to the relativistic nature of the trajectories, the average proper accel-
eration depends nontrivially on the characteristic acceleration parameter and the driving
frequency (periodicity of the motion).

Consequently there are two ways of having a variation in the acceleration. We can
either fix the characteristic acceleration parameter and vary the driving frequency wy or
we can fix the driving frequency w,; and vary the characteristic acceleration parameter. We
will consider the case where we vary the acceleration by varying the acceleration parameter
A, since this is the variable that carries the units of acceleration. The result is presented
in Figure 4.6, where we set the driving frequency to 5¢ = 14.6 GHz. We notice that the

2
output number of particles is an increasing monotonic function of the average acceleration.

4.5 Sinusoidal motion and the dynamical Casimir ef-
fect

Turning now to the SM case, this is essentially the same as that considered in the dynamical
Casimir effect [79, 80, 4]. To order Rw, we are unable to produce any distinctly relativistic
effects for this motion as discussed in Section 4.3. As such, the DCE provides a cross-check
on our approach. We set all the parameters to be the same as specified in [4] (presented
in Table 4.2). These parameters give an effective length L% = .44 mm and a modulation
R = 0Leg = .11 mm. With these parameters, we obtain the output number of photons
calculated in [4].

To compare the three trajectories, we set the driving frequency for SA and AUA to be
the same as the Sinusoidal case and we modulate the acceleration parameter such that the
average acceleration is the same for the three of them, which is @ = 9.054 x 107 ms~2 as
in [4]. In Figure 4.7 we present the result for neu(w) as a function of 2 and in Figure 4.8
for nyy as a function of a. We notice that for this relatively small value of the acceleration,
the output photon spectra for SA and SM is very similar, whereas the spectra for AUA
is smaller. We also notice that the additional Fourier coefficients make noticeable changes
in the output spectra only for higher values of the acceleration, as indicated in Figure 4.3

and in contrast to Figure 4.7.
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Figure 4.6: Output number of photons for varying a for fixed driving frequency wy/2m =
14.6GHz and varying the characteristic acceleration parameter A for different frequencies
w as indicated in the plots, where the solid lines correspond to AUA trajectory and the
dashed lines to SA trajectory, at T=0 mK (top) and T=25 mK (bottom), where 7" is the
temperature of the thermal bath.
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4.6 Conclusions

We have seen that the dynamical Casimir effect yields different particle creation distribu-
tions depending on the trajectory of the moving boundary condition. Despite the limita-
tions concerning the Dirichlet boundary condition inherent to the cQED implementation
that we point out in this work, we have shown that a simulation of this effect in a su-
perconducting circuit can distinguish different particle creation spectra due to different
kinds of relativistic oscillatory motion (all of them yielding very similar periodic boundary
trajectories as shown in Figure 4.1).

To relate our results to the phenomenology of the Unruh effect we can associate the
average number of observed particles created by the time-dependence of the boundaries to
a temperature estimator. This can be done by relating the observed output flux density
t0 noyt in the same way as in [4]. Doing so yields a temperature estimator proportional to
the average number of created particles T o< fuunoyg/ks. This temperature estimator could
be compared with the temperature perceived by an accelerated Unruh-DeWitt detector
following the same trajectories we impose in our moving boundaries.

These results may be helpful in shedding some light on a long debated question: How
much can the dynamical Casimir effect be discussed in terms of the same physical phenom-
ena behind the Unruh effect as seen by a freely accelerating particle detector? One might
argue that all moving boundary condition effects are basically manifestations of the DCE;,
and as such this should also be the case of an accelerated atom. However the point of this
study is the acceleration of the moving boundary conditions, and whether or not this picks
up new features of the type expected from the Unruh effect for particle detectors with
the same trajectories as studied in [47]. As we can see from our results, the temperature
estimator does not really follow the simple behaviour of the response of particle detectors
predicted in [47], which may be suggesting that, beyond constant acceleration, the DCE
may not be so easy to relate to the Unruh effect, possibly because of these nonequilibrium
effects showing up in very different ways for particle detectors and accelerating mirrors.
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Figure 4.7: Plot comparing n., at a thermal bath temperature of T" = 0K and fixed
wg/2m = 18GHz as a function of w/wy for Sinusoidal trajectory (red dashed), SA trajectory
(blue dotted) and AUA trajectory (green dot-dashed). The average acceleration for all the
motions is @ = 9.054 x 107 ms™2. The inset shows detail for the difference between

Sinusoidal and SA.
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There is currently firm experimental evidence that macroscopic systems interact gravita-
tionally [110]. On the other hand, quantum phenomena such as the superposition principle
is exhibited by many systems [111, 112, 113, 114, 115, 116, 117, 118]. However there is a
lack of direct observation of quantum gravitational phenomena [119] and at present there
is no fully satisfactory consistent theory of quantum gravity [120].

These concerns have led to the question of whether gravity remains classical at a fun-
damental level, giving rise to a host of gravity-inspired modifications to quantum me-
chanics models built on the hypothesis of fundamentally classical gravity [14, 15, 20, 21,
22, 23, 24, 25, 26]. Such models include mechanisms that collapse the wavefunction of
sufficiently massive objects to avoid non-classical states of the gravitational field at macro-
scopic scales, where classicality is understood as the lack of coherent spatial superposition
[15, 121, 122, 123].

Recently a continuous measurement with feedback model was proposed where repeated
interactions between two systems with a set of common ancillae results in an effective
long range interaction between them [67, 68, 124]. This emerging force is accompanied by
dissipation terms that ensure that the resulting dynamics are classical, where classicality
here is understood as the inability of the resulting interaction to increase entanglement
between the systems.

The application of this model to gravity by Kafri, Taylor and Milburn (KTM) [67, 68]
aims to enforce classicality of gravitational interactions and predicts decoherence in the
position basis of the CM of systems that interact gravitationally, with a decoherence rate
of just the right amount so that the emergent interactions cannot increase entanglement
between pairs of masses. So far the model produces an approximately Newtonian potential,
which raises a series of questions like: What are the assumptions of the model? Can such
assumptions be generalized? Is it possible to attain any kind of dynamics? Can we generate
an exact Newtonian potential? How are the interactions and the decoherence rates related?

Motivated by these questions, we dedicate Chapter 5 to present our study on the type
of dynamics that can emerge from a quantum collisional model where a system undergoes
repeated interactions with a Markovian environment [2]. We quantify the decoherence that
arises with the induced potential and show that for local linear interactions this decoherence
is lower bounded. We also discuss how, by admitting more general interactions, a larger
class of effective evolutions can emerge with arbitrarily low decoherence. While there are
many studies of collisional models of an open system [125, 126, 127, 128, 129, 130], our
focus is on the nature of the emergent interactions and its relation to decoherence.

Using the tools developed in our simple model of repeated interactions, in Chapter 6
we examine the assumptions and conditions that give rise to the KTM model described

55



above. We furthermore generalize the model to composite systems and show that recent
single-atom interferometric experiments achieving large spatial superpositions [5, 6] present
strong evidence against the KTM model. Since the lower bound of the KTM decoherence
rate lies at the border that differentiates theories where the gravitational interaction of low
energy particles is classical or quantum, our results are highly relevant to the understanding
of the nature of gravitation, suggesting that gravity cannot be described as pairwise local
classical channels connecting massive particles.

The material presented in Chapters 5 and 6 derives from [2] and [3] respectively, in
collaboration with Natacha Altamirano, Robert B. Mann and Magdalena Zych.
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Chapter 5

Continuous quantum measurements

The study of a system involves the study of its dynamics. Classical systems are determin-
istic in the sense that their physical description at a given time is well defined and unique.
This is not true for quantum systems, where the system can be in a coherent quantum
superposition of multiple states at the same time. The dynamics of a quantum system
are dictated by Heisenberg equation and the system is said to evolve unitarily. However,
when a system is opened to the outside world, the system undergoes interactions with
the environment —i.e. other systems whose dynamics we want to neglect— which subjects
the system to decoherence. This is because the joint system-environment forms a closed
system and together they undergo unitary evolution; but after tracing out the latter, the
final state of the system may not be given by a unitary transformation of its initial state
27, 131, 132)].

Much effort has been devoted to the study of open quantum systems (see for example
[125, 126, 127, 128, 133]). For instance, in the quantum information processing community,
the interactions of a quantum system with its environment introduce unwanted noise. It is
of central importance to understand these noise processes for building quantum information
processing systems [134, 135].

In this chapter, we present our study on continuous measurements of a quantum sys-
tem with a set of ancillae and the consequence these interactions have on its dynamics.
The organization of this chapter is as follows: in Section 5.1 we give a brief presentation
of quantum measurements discussing both projective measurements in 5.1.1 and general
measurements in 5.1.2. We then present in Section 5.2 an open dynamics model of re-
peated interactions between a system and a set of independent ancillae. By considering
different model parameters, such as state preparation, choice of the operators acting on
the joint system and the interaction strengths, we obtain different limits for the dynamics
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of the quantum system, from effective unitary in 5.2.1 to finite decoherence in 5.2.2. In
Section 5.3 we generalize the model to a sequence of repeated interactions. We show how
to recover unitary dynamics in 5.3.1 and how coherent-feedback of the quantum system
can emerge in 5.3.2. In Section 5.4, by considering subsystems interacting with a set of
common ancillae, we find the conditions under which effective interaction terms between
them can arise, accompanied by dissipation whose lower bound we calculate. Finally, we
present some discussion and conclusions in Section 5.5

5.1 Single shot measurements

The traditional presentation of quantum measurement is that of a projective measurement,
in which the state of the system after the measurement collapses to one of the eigenstates
of the observable that is measured [136]. The modern concept of quantum measurement
dispenses with this description: a measurement is described as a quantum operation on the
state of the system, with outcomes distributed according to a “Positive-Operator-Valued-
Measure” (POVM) [137]. In the following, we give a brief presentation of both concepts
(see e.g. [27, 138] for a comprehensive presentation).

5.1.1 Projective measurements

We start by presenting projective measurements. Suppose we want to measure an observ-
able A. The spectral theorem allows us to write the associated operator A as

L= all, (5.1)

where 11, = 3. a,i)(a,i |~ with |a,i) the basis for the Hilbert space of the system such
that A|a,i) = a|a,i) — form a set of orthogonal projectors where II,IT, = d,41I,. Note
that for convenience we have assumed a discrete spectrum. If the eigenvalues of A are
non-degenerate, then II, = |a){(a|. When a measurement of A is performed, the result is
one of the eigenvalues of A. If the state of the system S is described by the density matrix
ps, the normalized state of the system after a time T, during which we measured A and
obtained result a, is given by

ps(t+T) =

Haps( )1;[ (52)

Tr [ aPs )]
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We call this the conditional state of the system, where the system is projected into a
subspace of the total Hilbert space.

We can also measure A and ignore the measurement outcome. In this case the state of
the system is

ps(t+T) = Tapa(t)IL, (5.3)

and we call it the unconditional state of the system, which is generally a mixed state.

The above description of quantum measurement is also called von Neumann measure-
ment and it is the traditional first presentation of a quantum measurement [136].

5.1.2 General measurements

Realistically, the measurement of an observable of a system is not described by a projec-
tive measurement. A more accurate description of a measurement involves an interaction
between the system and its environment [27, 138]. We can think of this process as having a
closed system that is opened and subject to measurement. The environment consists of all
systems interacting with the system whose observable we want to measure. We illustrate
this process in the quantum circuit diagram presented in Figure 5.1.

ps ——  ~ [ Elps]

0

pGTL’U

Figure 5.1: Quantum circuit diagram illustrating a quantum operation £ on the state of
the system p, via a unitary interaction V' with an environment pe,,.

In Figure 5.1, £ is a quantum operation over the initial state of the system S and pq,

Penv are the density matrices of the system and the environment respectively. Note that
we assume that they start in an initially uncorrelated state.
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There are an infinite number of degrees of freedom that one could consider for the
environment. We employ a cutoff and consider the environment to consist of a second
quantum system, which we call a meter or ancilla (peny = pm). The joint state of the
system and the meter at time ¢ is described by the density matrix ps,. We want to
analyze the state of the system after it interacts with the meter during a finite time T
after which the latter is projectively measured. We will consider the same two scenarios
we considered before: one in which we look at the measurement result and one in which
we don’t.

The joint system evolves under the Hamiltonian Hom so the state of the joint system
after an interaction time T is

pem(t +T) = V(T) pam()VI(T) (5.4)
where

V(T) = Texp( _ % /t o Hsm(t)dt) (5.5)

We assume that at time ¢ the system and the meter are initially uncorrelated, so pg,(t) =
ps(t)pm(t), where ps(t), pm(t) are the state of the system and the meter respectively at
time ¢t. The unnormalized state of the joint system after measuring an observable R of the
meter and getting a result r is

psn(t +T) = |7)(r [V (T)ps () pen () VI (T) | ) (1| (5.6)

where we performed an operation 1, ® II, = 1, ® | r)(r| over the state of the joint system
at time ¢t + 7', with {| 7)} an orthonormal basis for the Hilbert space of the meter. For
simplicity we have assumed non-degenerate eigenvalues of the operator R associated with
the observable R. Assuming the ancilla is in a pure state p,(t) = | ¢ (t))(¢m(t) |, Equation
(5.6) is then

pom(t +T) = [ 1) [V(T)] dm (£)) 5 (£) (b (6) V(D) 7) 1| (5.7)

We define the operators M, = (r |V (T)| ¢n(t)). These are operators acting on the system
and whose properties we will analyze later. With this definition, the normalized state of
the joint system is

M, p ()M}

ey DI 58)
P,

where the probability of the measurement result being r after measuring the observable R

is P, ="Tr <[| r)(r| ® 1] V(T)ps(t)pm(t)f/T(T)> = Trs <MlMTpS(t)>, with Trg the partial

trace over the system.
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Tracing (5.8) over the state of the meter, we get the state of the system,

M, ps(t) M
WO+ T) = MM, (5.9)
TrS (MIMrps(t)>

We call (5.9) the conditional state of the system, since it is conditioned on obtaining
measurement result r for the meter. If we discard the measurement result, the unconditional
state of the system is

ps(t+T) =" M,p(t)M] (5.10)

In order to preserve the trace, the system operators M, must obey the the relation

> MM, =1 (5.11)

r

We define the new operators E.=M IM , which from (5.11), obey the completeness
relation ) F, = 1. We notice that the probability of the measurement outcomes are

~

determined by these new operators, since P, = Trg (E,,ps(t)) The complete set {ET}

is known as the “Positive-Operator-Valued-Measure” (POVM). To gain some intuition on
this abstract formulation of quantum measurements, we proceed by presenting an example.

Example

In this example, we take the meter to be a measuring apparatus with a needle whose
position z is the observable we will measure. For simplicity, we assume that the free
evolution of the system and the meter are trivial and that they interact via the following
Hamiltonian

Hom = g()S @ P (5.12)

where ¢(t) is the interaction strength. Here S is an operator on the system and P is the
momentum operator of the needle. The joint state thus evolves under

- (—%g@@ p) (5.13)

where under the assumption that g(¢) is continuous and differentiable over the interaction

period (t,t 4+ T'), we used the mean value theorem to define g := % tt+T g(t)dt.
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We can write the state of the meter in the position basis as
om) = [ o] )iz (5.14)

We consider the special case of a Gaussian meter, i.e. one in which the wavefunction
#(x) is a Gaussian function with mean p and variance o2 such that

1 (z — p)?
o(x) = Wexp (_T (5.15)
The system operators M, are given by
M, = {z, |1 ¢,,)
= (z, — g5 |bm) (5.16)

which can also be written as M, = ¢(z, — gS). Considering 1 = 0 for simplicity, they

become A
- 1 (x, — g9)?
M, = Wexp <_T (5.17)

To understand their effect on the system, we assume the state of the system is pure and
we write it in the basis of the S operator as

() =) il sq) (5.18)
where S| s;) = s;] s;). The conditional state of the system is

i) = G S (-2 s (5.19)

and after the measurement, the needle is now in state | x,.) with probability
1 2 (zr — gsi)?
P = (2ro?)i2 Z |hi|"exp (_T (5.20)

Denoting the variance of the eigenvalues as 0%, if 02 > %, the above probability

distribution becomes a normal distribution centred at g >, |1;]%s;, which is proportional to
the average of the eigenvalues of S and the change in the state of the system is negligible in
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this limit. Therefore, you gain partial access to the state of the system without significantly
perturbing it. In the limiting case where 02 — 0o, the system is not perturbed but there
is also no information gain.

The process described in this example, with gaussian distributions where the standard
deviation is larger than the difference between the eigenvalues of the system, is what is
known as a weak measurement [139].

5.2 Continuous measurements: general model

With the single-shot weak measurement method we gain some information about the sys-
tem without disturbing it too much. Can we do many of these measurements to keep
gaining information about the system? What is the effect on its state? Motivated by
these questions, we study the types of dynamics that can emerge from a simple model
of continuous interactions. The setup is as follows: we consider a system S and a set of
n identically prepared ancillae M,., » = 1,...,n. Note that from now on, we talk about
ancillas as opposed to meters to emphasize the generality of the model, but their physical
meaning is the same. Initially, the system is uncorrelated with the ancillae, couples to the
first one for a time 7, decouples, then couples to the second one for time 7, decouples, and
so on. This process repeats n times, one time for each ancilla, as illustrated in Figure 5.2
and can be thought of as a sequence of n of the single-shot measurements described above.
This is equivalent to a collisional model [125, 126, 127, 128] of an open system, modelling
interaction with a Markovian environment with relaxation time 7. During an 7" cycle the
joint system S ® M, evolves under the Hamiltonian

?:[smr - 7:[0 + gr(t>7:[l - gO + MO + gT(t>‘§ ® M7 (521>

where S acts only on the system, My acts only on the ancilla and g,(t) is the interaction
strength, which is the same for each cycle (g.(t) = ¢,41(t + 7)). To simplify notation,
we call 7—20 = 30 + M 0 the free Hamiltonian, containing only the free evolution of the
subsystems and H; := — S ® M the interaction Hamiltonian. The latter is 1dentlca1 at each
cycle: the same operators S and M act on S and M, for each r. After the r* interaction
the joint state of the system and the respective ancilla is

psmr( rl) = U (7 )psmr@r‘)U:[(T)» (5'22)
where
R i tr+T7
U(1) = 'Texp( -z Hsm, (t)dt) . (5.23)
tr
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Figure 5.2: Quantum circuit illustrating time evolution of a system S undergoing repeated
interactions with n ancillae. p, is the initial state of the system and p,,,, ¢ = 1,...,n — of
the " ancilla. During each step the system and the respective ancilla interact during a
time 7, after which they decouple and the ancilla is discarded. This process is equivalent
to performing n repeated single-shot measurements of the system, each one with a fresh
meter. For identical p,,,, the ancillae are also equivalent to a Markovian environment
with relaxation time 7. In the limit 7 — 0 the process describes a continuous quantum
measurement of the system, or a memoryless collisional model of the system’s environment.

We are interested in studying the dynamics of the system p; in the limit of continuous
interactions. We thus want the interaction time during each cycle to be vanishingly small
while keeping a finite duration of the total interaction time. We achieve this by taking the
limit:

n — oo, 7— 0, such that lim nr="T, (5.24)

n—o00,7—0

where T' is the fixed finite total interaction time. In the context of single-shot measure-
ments, this translates into doing infinitely many measurements of the observable S on the
system, infinitely often, during a finite time interval 7. From an open systems interpreta-
tion, this describes a memoryless environment.

We assume that the ancillae are identically prepared, so the final state ofAthe system is
described by n iterations of a superoperator V(7)[ps] := Tra{U(7)(ps ® pn)UT (1)}, where
Trpq denotes the partial trace over the ancilla degrees of freedom, and p,, is the initial
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state of the ancilla. The final state of the system after a time 7' is then

pu(T) = Elpu(0)] = fim v () .00, (5:25)

This quantum operation is generally not unitary. The resulting dynamics in the continuous
limit gives rise to a Markovian master equation, which we derive next.

If the interaction strength g, () is continuous and differentiable in the interval (., t,.+7)
we can use the mean value theorem to get

tr+1 R

Heom dt = (Ho + gH)T, (5.26)

tr

where g= 1 ["77 g,(t) dt.

T Jt,

Under certain restrictions on the interaction strength g.(t), described in Appendix A,
the density matrix of the system at time ¢, can be written as

putt) = (14 32 P ) oty (5.27)

where P,, is the super-operator consisting of m commutators:

~

Pulpa)] = oy (= ) (L e Bt D (5.29

where H = Ho + g?f{, ;. Here, (A), denotes the trace over the degrees of freedom of the
rth_ancilla. Note that Equation (5.27) applies in particular for switching functions that
are symmetric in time and applies to recent gravitational decoherence models [24, 67, 68],
where we aim to apply results of this work.

We expand Equation (5.27) using Equation (5.28) to get

2

plta) = pultat) = 7180+ GOD)S. pulty)] + oI, M) (S, . 1)
— 2 (1B [B0.ptan)]) + SAD)S, B0: b)) + 501 S 5.1 ) )
= GBS 18, pultu )] + - (5.29)
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where (M My = Tr M{M *om} for k € N. The equation of motion for the system at time T
is obtained by taking the limit

pu(T) = Gim Leltn) = Pslbnn)

T—0,n—00 T

(5.30)

Equations (5.29) and (5.30) define a general quantum master equation for a system
that undergoes repeated interactions with a set of identically prepared ancillae. We note
that the coefficients of the commutators of the operators acting on the system consist of
products of expectation values of operators acting on the ancillae and powers of the time
interval 7 and of the interaction strength g. Consequently different types of dynamics for
the system emerge, depending on the preparation of the ancillae, the operators acting on
them, and the interaction strength g(¢). In what follows we present two particular limits
of the emergent dynamics: effective unitarity and finite decoherence.

5.2.1 Effective unitarity

The evolution of a system is unitary if the dynamics follow the Heisenberg equation

?

p=—7lH.0] (5.31)

where H is a Hermitian operator. From Equation (5.29), one can see that if higher order
terms oc 7F for k > 2 are small in comparison to the first order term, then the evolution is
effectively unitary. This can be expressed as
k=k/nrk
T M
i Ty g (5.32)
=0 7'§< M >
The terms that contain at least one Sy or M, are multiplied by a factor 7" with &’ < k.

In the limit 7 — 0, these terms are small compared to lower order ones, which are multiplied
by 7¥' ¥, and the limiting behaviour is met.

Under the conditions in Equation (5.32), the master equation becomes

. (AP — A
Ps = _ﬁ[80+‘:8ap8]a (533)
where we defined R
Ei= lin% g(M). (5.34)
T—>



and the evolution of the system is approximately unitary. Then, by controlling the prepara-
tion of the ancilla and its coupling to the system, different potentials =S can be generated.
This result is commensurate with the one presented in [129].

We highlight that in the weak interaction regime, where lim;_,o7g = 0 and for fixed
moments (M*), the master equation immediately follows Equation (5.33).

In the strong interaction regime, where lim, .o 7g = C with C' = 1 for simplicity, the
conditions in Equation (5.32) become
lim (M*) /(M) — 0 (5.35)

7—0

and to ensure that = stays finite, we need a 7-dependent state preparation of the ancillae.
For example, we can choose an instantaneous interaction between the system and the

ancilla, where the interaction strength is a delta function in time, such that g = % and

~

therefore lim, ,y7g = 1. To keep = finite, (M) has to be o 7, with its higher moments
obeying Equation (5.35). An example of a suitable choice is an ancilla with a Gaussian
distribution over the eigenvalues of M with a T-dependent mean and variance given by ur
and (o7)2 respectively, with p and o constants. In this case, (M) = ur and (M*) x %,
so the limit in Equation (5.35) vanishes and = = p. This choice gives an effective unitary
evolution for the system, subject to a potential uS .

5.2.2 Finite decoherence

We now analyze the limit of finite decoherence, in the case where in Equation (5.29) only
terms up to second order remain relevant. Together with = defined in Equation (5.34), we
define the constants

T = lim 7g%(M?)
7—0
Tg(ilM, M)

M = llir(l) 57 (5.36)
and assume all higher order terms vanish in the considered limit.
Using Equations (5.29), (5.30),(5.34) and (5.36), the master equation is
) i A r . .
(0 = — 1180 + (= WD), ] — 555,18, 1], (537

We can see that in addition to =, a new term M contributes to the unitary part of the
evolution, provided that the commutator [M M o] doesn’t vanish. The new double com-
mutator o< I' gives rise to decoherence of the system. Notice that this master equation has
the form of the usual Born-Markov master equation [131].
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An example where this can be achieved in the weak interaction regime (lim,_,o 7g = 0),
is a Gaussian meter with fixed (M ) = Z/g and with a 7-dependent second order moment
(M*) =T /7. In the strong interaction regime (lim,_,o 7§ = 1), a suitable choice is given by
a Gaussian meter with 7-dependent mean =7 and 7-dependent variance o = 't — (=7)2.

Example
Let us present a concrete example. We work in the strong interaction regime (g = 1/7)
and take M to be the momentum operator over the ancillae (M Pm)- For simplicity, we

assume trivial free evolution for the ancillae (M o = 0) and consider that these are prepared
in a Gaussian state | ¢) with wave function

1 (z — p)?
6(0) = (a1 0) = e (- (5.38)
that is, a Gaussian ancilla with mean p and variance o2. In this case we have

(M) = (pm) = 0

~ h2
M?) = (p2) = — 5.39
() = (32 = (5.30)
We substitute this in Equations (5.34) and (5.36) to get
==0
M =0
. 1R
P=lim (5.40)

In order to keep I finite, the variance has to be such that lim,_,o70? = D, with D a
constant. This gives a master equation

p(t) = —;L[SO,P] - _[37 [57 ,0]]7 (5'41)

In the context of quantum measurements, this is equivalent to considering a Gaussian meter
with a 7-dependent variance that gets infinitely broad in the continuous limit. The resulting
system dynamics exhibit finite decoherence, due to noise introduced by the measurements,
but with no modifications to the unitary part. If we choose S = z, our Equation (5.41)
reduces to a continuous position measurement derived in ref. [140].
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5.3 Generalization to multiple observables

We now generalize the previous model to the case where an interaction is composed of p sub-
interactions, each of duration 7 = 7/p. In the context of measurements, this corresponds to
measuring multiple observables of the system. An illustration of this extension is presented
in Figure 5.3.

Ps — R | | ps(t)

3 / /
P _ | e | B
| | | | >
/ /
0] T 2T PT
Figure 5.3: Quantum circuit diagram illustrating the first cycle, composed of p sub-cycles,

of the interaction between a system S and an ancilla. At the end of the cycle, the ancilla
is discarded. The process is repeated n times, each with a fresh ancilla.

Analogously to the previous section, the 7" cycle evolves under the Hamiltonian
smT = HO + Z gz (542)

where ¢;(t) is the interaction strength of the i sub-cycle. The free Hamiltonian Hy is

defined as before and the interaction Hamiltonian of the it" sub- Cycle is 7—[ = S, ® M;,
where S; and M;, i = 1, ..., p act only on the system S and on the 7 ancﬂla respectively.
The density matrix of the joint system at time ¢, is given by

1

Psm(tri1) = H :Osm H (5.43)

=p

.

where

; tr+7 R .
Ui(t") = Texp (—%/ (Ho + gz‘(ﬂ?‘[f)dt) (5.44)
tr

As before, we assume the switching function g¢;(¢) is continuous in its support the i'" sub-

cycle of length 7/, and use the mean value theorem to get g; = & fo g;(t)dt. We expand
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Equation (5.43) at time ¢, in powers of 7 and trace over the ancillae degrees of freedom to
get

pltn) = p—z{%T'[Swgw»Si,m - ;;2 Z@—@ﬂ{{éo, [So. ]
+ . MJ)[SO> [S’ pl] + gi(M z>[Sz>[50> ]]+§i<[Mi>Mo]>[SuP]
;& J(<[Mi,MjJ>[si,éjp+pé] ({1, N[5, 18 ,pn)}}+--- (5.45)

where we defined p = p(t,-1).

Equation (5.45) is a generalization of Equation (5.29) to a series of p repeated interac-
tions from which we obtain the equation of motion of the system S at time T

5.3.1 Effective unitarity

The conditions for effective unitarity given in Equation (5.32) directly generalize to the
multiple observables scenario. The master equation is now given by

. ' I~ =
pt) = —— S 52: (5.46)
where R
=, = lim g;(M;). (5.47)
7'—0
The system evolves effectively unitary and is subject to an average potentlal 1 P =:9;.

Just as in the single observable case, in the weak interaction regime, effectlve unitarity
is a generic feature of the system’s dynamics. In the strong interaction regime, effective
unitarity can be achieved by having a 7-dependent state preparation of the ancillae.

5.3.2 Feedback

We now consider the conditions under which in Equation (5.45) only terms up to second
order contribute to the system dynamics. Together with =; in Equation (5.47), we define
I S TP
Iy = lIim ZTlgigﬂ{Mi, M;})

~ 1 N
M;j = Thino an" '9:9;(i[ M, Mj]) (5.48)
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and assume that all higher order terms vanish in the considered limit. To better illustrate
the emergence of feedback-control of the system, we analyze the particular case of two
sequential interactions (p = 2). From Equations (5.30) and (5.45) (with 7 = 277), the
master equation is

, T 1_ - . 1_ - P~ A s R
p(t) == —ﬁ[SO + (551 - MIO)S1 + (5:2 - 3M20)52,p} — ﬁMm[S% Slp+ pSl]
1 AN 1 A oA
- o > TulS:, (i pll - +5T12(S2. (51, 01]) (5.49)
1=1,2

where in defining Mw, Mzo we introduced the convention gy = 1.

Similar to the case of one interaction, in this case terms o ]\;[,-0 contribute to the unitary
dynamics if the commutators [M o M o] don’t vanish. The double commutators o I';; give
rise to decoherence of the system at a finite rate. We notice that there is a new term
o M, that didn’t appear before. This term can contribute to the unitary part of the
system dynamics, and in particular, it can allow for the feedback-control of the system.

After the first interaction of the system and the ancilla via a Hamiltonian 5”2 @ M i
the state of the meter is translated in the basis complementary to the eigenbasis of M, by
a magnitude that depends on the state of the system. The second interaction S ;i ® M j
will now transform the state of the system depending on the position of the meter, which
carries a dependence on the system’s gi—eigenvalue. This procedure results in an operation
on the system that depends on its quantum state: a coherent-feedback [138, 141, 142, 143].
The feedback term, proportional to M, is at most of the same order as the also arising
decoherence terms, proportional to I';;. This is a consequence of the inequality

(g1 M — iGa M) (g1 My + igoM5)) > 0. (5.50)

which gives a lower bound on the dissipation introduced in the system independently of the
state of the ancillae, the interaction regime or the repetition rate. Note that if M; and M j
are a canonically conjugate pair of operators, then [M i M ;] oc il and the feedback-control
doesn’t depend on the state of the ancillae.

Let us consider the particular case in which in Equation (5.49) we take Sy o 51+ BO
for [O, S 1] # 0. If 5 = 0, the feedback over the system contributes to the unitary dynamics
as a quadratic potential in S;. For B # 0, the feedback can take the form of a dissipative
force and contributes to the decoherence of the system.

We want to highlight that the bound on dissipation coming from Equation (5.50) holds
under the assumption that only measurements that are linear in the system operators can
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be realized by the ancillae. If interactions of the form V@M, for arbitrary system operators
V' are allowed, potential terms oc (M)V can be induced and noise-free feedback could be
realized. For example, if Sy oc 5%, a quadratic potential arises already in the effective
unitarity regime.

Equation (5.49) is valid when the quantities =;, I';;, M;; ;; remain finite in the limit

7/ — 0, while contributions from higher moments vanish. We now present an example
where these conditions are satisfied.

Example

For illustrative purposes, we build up on the example presented in Section 5.2.2. We again
assume trivial free evolution for the ancillae (M o = 0) and take the first operator acting on
the ancilla to be the momentum operator (M 1 = Pm) while the second operator is taken
to be the position operator ( M,y = Zm). We consider that the ancillae are prepared in a
state | ¢) with a Gaussian wave function as in Equation (5.38). In this case we calculate

~

(Mo) = 0,
(1) = () =0.
(M2) = (&m)=p
(0, ALY) = 2= 27;‘
({Ma, Ms}) = 2(32) =2 (o” +M)
<{]\A{17J\A{2}> - <{xmapm}>
<i[M1;M2]> = <[pm7xm]> (551)

= = 0 Vi
_ : 1 /—2h2
tn = }}Lnogmﬁ
I'y, = lim Tg
7' —0
Mlg = lim 7_9192 (552)
/=0 4

We assume that the first interaction is instantaneous, so that g; = %, and that in the
second interaction go is fixed and finite. The non-vanishing terms are then
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n* 1

T =
" 8 T’1£n>0 T'o?
32
[y = Zlim 7/0?
7' =0
My = 2 (5.53)

4

In order to keep the above quantities finite, the variance has to be such that lim,_,7'0? =

D, with D a finite constant. The variance is then a 7-dependent quantity that grows with
the repetition rate. Therefore, in the continuous limit the Gaussian becomes infinitely
broad. Taking g» = 1 for simplicity, the master equation (5.49) in this example becomes

§0) = {80, (0)] — (85, S1(t) + p(1)S)]
R N ) = N ) (5.54)

In particular, if S, = 2, so that in the first sub-cycle a measurement of the position is
performed, the master equation is

pO) = —l80,0(0)] = o182, doplt) + (1))
— 5l [ pO]) — 518 (8, 0(0)] (5.55)

This master equation was obtained in [140], where a model for a sequence of weak
position measurements followed by a feedback mechanism was presented. By choosing S,
to be the position operator Z,, a harmonic potential arises as feedback, with accompanying
decoherence in the position basis.

5.4 Measurement-induced dynamics for composite sys-
tems

We now extend the previous model to the case of composite systems, in the simplest case
where the system is bipartite. We now have n steps, each with p sub-steps, and during
each sub-step the composite system interacts with an ancilla that is discarded at the end of
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cach step. During the " sub-step, the most general system operator acting on subsystems
$1, S can be written as

Z ;S5 @S2 (5.56)

with ¢; real coefficients. The operators S; % are operators acting on subsystem sj, with
k =1,2. We focus on the particular case where each ancilla interacts with one subsystem
at a time, and does so only once per step. Under these assumptions, we can apply the
model for multiple observables derived in Section 5.3 with p = 2. The systems operators
acting on the 7™ sub-step in Equation (5.56) are now

S] - stl ®282
Asl

So=1"®855, (5.57)

where Z™ is the identity operator on the Hilbert space of subsystem s;. This means that
the ancilla interacts with subsystem s; during the first sub-step and with subsystem s
during the second sub-step.

The total Hamiltonian acting during the r** step is

~(2 A A ~AS ~ ~S ~ ~
1 =S+ ST 91" @ N+ g () ® 8 ® M, (5.58)

where the label (2) in the exponent of H indicates that it is a two sub-step process, in
accordance with Equation (5.42). The operators M; act on the r™ ancillae in the same
way as before and g;(t) is the interaction strength during the i sub-step. Notice that
for simplicity, we have assumed that the ancillae have trivial free evolution (since M, #0
would give terms analogous to those discussed in Section 5.3).

The different regimes that emerge from this process are analogous to the ones discussed
for the case of a single system. However the terms in the resulting master equation have
a different physical interpretation. Since the operators contained in those terms act on
different subsystems, they will in general cause the emergence of interactions between
them. We use the master equation for a 2 sub-step process given in Equation (5.45) with
the system operators of Equation (5.56) to get the master equation of the composite system

p'Sl,SQ(T) _ _%[Sﬂ‘i‘ Z 2_,1518271081,82] +%M12[ Ssl 51,52 +ps1,52$’i1]
i=1,2
1 A81 Si 81,82 1 51 51,52
~ o > TS S5 )] - ﬁrm[ 19T 7)) (5.59)
i=1,2
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with Z;, T';; and M;; as defined in Equations (5.47) and (5.48). Here p*»*2 is the joint state
of subsystems s; and s,.

In analogy with the discussion presented in Section 5.3 for the single system case, the
master equation (5.59) contains terms o Z; that contribute to the unitary evolution of
the composite system and which can arise with negligible decoherence, terms oc I';; that
produce finite rate decoherence and a term oc Mo, whose physical interpretation is different
to the one given in the case of a single system. This term has the form

o G1ga{[Ma, M1])[S52, S p™% + p*o257] (5.60)

Note that in the commutator we have terms connecting different subsystems and can
therefore give rise to effective interactions that can generate forces between them. Note
that these forces can exist without the subsystems ever interacting directly with each
other and are present just because of their interaction with common ancillae. Within the
feedback interpretation, this can be thought of as an ancilla measuring system s; and then
acting on system s, based on the result of the previous measurement.

We note that the above effective interactions cannot arise without inducing dissipation
over the system of at least the same magnitude, in the same way that feedback is accompa-
nied by dissipation in the case of a single sysem. In the present scenario, the lower bound
on the magnitude of the induced decoherence also follows from the inequality (5.50). We
emphasize that this conclusion does not hold if more general interactions are allowed. For
example, if the ancillae can simultaneously interact with both subsystems, so that the
system operators have the general form presented in Equation (5.56), then potential terms
of the form ~ =; > i cjgf; ® 5‘53 can arise even at the effective unitarity regime, with no
dissipation. Such interaction terms can even entangle the subsystems.

In the next chapter we shall present an example that makes use of the formalism
developed here.

5.5 Conclusions

By considering a general model of repeated interactions of a system with ancillae in the
continuous limit, we presented the conditions that give rise to different dynamics of the
system. Therefore, by appropriately choosing the parameters of the model, namely ancillae
state preparation, interaction strength and operators on the joint system-ancillae, the
former can evolve unitarily or be subject to an effective potential with finite decoherence.

We also presented an extension of the model to the case where an interaction is com-
posed of many different subinteractions and showed the emergence of feedback-control over
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the system. Lastly, we demonstrated how interaction-free interactions between subsystems
can be realized by letting the systems interact with common ancillae.

Finally, we discussed the observation that under the assumptions that only local linear
interactions can be realized, the feedback and induced interactions terms are accompa-
nied by decoherence, lower bounded by the magnitude of the emergent unitary potentials.
However, if more general interactions are allowed, arbitrary potentials can arise free of
decoherence.
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Chapter 6

Gravity as a classical channel

We now consider the model presented in Chapter 5 in the context of gravitational inter-
actions. Let us start by considering two masses m; and ms in equilibrium at a distance d
apart along the z-axis. We define x; to be the small displacement of the centre of mass
my, from its equilibrium position, with z; < d. The classical Newtonian potential energy

between them is Vy = —%, which to second order in the relative displacement is
mymse ($2 - 951) ($2 - $1)2
VW~ -G 1—
N d ( i@
The quantized Hamiltonian of the system is then approximated by
2 A 1Mo (j:Q — Ii’l) (i’% + i’%) mqme . .

where S is the free evolution of each mass and with #; the operator associated to the
displacement of the centre of mass m; from its equilibrium position. The potential contains
local terms in z; and %5 and an interaction term o ;2 connecting both masses. It is
natural to assume that the joint quantum system evolves under this Hamiltonian, but
doing so would allow for the creation of entanglement between its parts, in contradiction
to experimental results to date, where macroscopic systems behave classically. The lack
of direct observation of quantum gravitational phenomena [119] has led to the speculation
that gravity is fundamentally classical.

To discuss classical behaviour, we first need a notion of classicality. In [15, 121, 122,
123] the authors understand classicality as the suppression of spatial superpositions of
macroscopic states whereas in [67, 68, 124], an interaction is understood to be classical if
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it doesn’t allow for the creation of entanglement and yet the expected classical dynamics
are recovered.

To enforce such notions, different mechanisms that introduce noise into the system
and that inhibit quantum effects are proposed. In [124], a condition that tests if a force
emerging from a channel can generate entanglement is derived. If the condition is not
met, quantum information is transmitted and the associated force is not classical in the
sense that is allows for the creation of entanglement. The KTM model uses this result and
provides such a mechanism [67, 68]. It postulates the existence of gravitational ancillae
that interact continuously with two systems in a process following the one we presented in
Chapter 5. An approximately Newtonian interaction between the systems emerges from
the model, accompanied by lower bounded decoherence terms. Such noise terms, which
arise as a consequence of the interactions between the system and the ancillae, allow for
the emergence of classicality.

In this chapter, we present our work on continuous interactions in the gravitational
sector. We organize it as follows: In Section 6.1 we derive the KTM model as a special
case of our continuous interactions model presented in Chapter 5. In Section 6.2 we present
an extension of the KTM model to systems composed of elementary subsystems. With the
two models at hand, in Subsection 6.3 we consider a test mass in the presence of the Earth
and derive some observational consequences of the models and we then test them agains
atom interference experiments using large momentum transfer (LMT). In Section 6.4 we
give an application of the model to torsion balance experiments. We end the chapter by
presenting some discussion and conclusions in Section 6.5.

6.1 KTM model

In this section, we present the derivation of the KTM model. Since the aim is to obtain a
gravitational interaction between the subsystems, it is natural to consider a symmetrized
version of the model presented in Section 5.4 of Chapter 5, where a set of ancillae interact
with two subsystems in a continuous manner. In the present case, a second ancillae is
added, which interacts with sy in the first sub-step and with s; in the second sub-step. In
general, we can visualize the resulting process through the circuit in Figure 6.1.

The process is as follows: we consider a bipartite system composed of subsystems s, so
which interact with a pair of ancillae my, ms (equivalently, we can think of the ancilla as a
composite system with subsystems mj, ms). As in the previous chapter, we are looking for
a continuous limit of a discrete in time protocol whose one step of duration 7 is composed
of two sub-steps, each of length 7/ = 7/2. During the first sub-step subsystem s; interacts
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Figure 6.1: Composite system comprising subsystems si, sy prepared in the states p°t, p
interacting with ancillae my, mo, initially in the states p™, p™2. If each ancilla interacts
with only one subsystem at a time, the resulting effective interaction between the subsys-
tems is always accompanied by decoherence.

with ancilla m; and subsystem s, interacts with ancilla my. In the second sub-step this
is interchanged: s; interacts with my and sy with m;. Then the ancillae are discarded
and the step repeats, a total of n times, each time with a pair of fresh ancillae. We can
visualize the process through the circuit in Figure 6.1.

During each sub-step, the bipartite interaction between subsystem s;, j = 1,2 and
ancilla my, k = 1,2 is given by
HP™ = g;(1)S:% @ M;™, (6.2)
where S; is an operator acting on subsystem s;, M, is an operator acting on the ancilla my,
and g¢;(t) the interaction strength. The index ¢ = 1, ...,4 labels the bipartite interactions,
with ¢ = 1 corresponding to the interaction between s; and m; and ¢ = 2 between s
and msy, both happening during the first sub-step. Likewise, i = 3 corresponds to an
interaction between s; and ms and ¢ = 4 between sy and m;, both happening during the
second sub-step. For simplicity, we assume that the ancillae have trivial free evolution,
since incorporating it would simply add terms analogous to those already found in Section
5.3. Therefore, the total Hamiltonian during the r*" step is
~ (2 ~ ~ ~ ~ ~
”Hi - So 4+ g1(t)S1°r @ M™ + go(t)52°2 @ My™
+ g3(t>5351 ® M3m2 + g4(t) ® 5482 ® M4m1 (63)
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where S is the system’s free Hamiltonian and the exponent (2) indicates that it is a two
sub-steps process. Notice that unlike in Equation (5.58), we have only explicitly written
the non trivial interactions. Following the same derivation as in the previous chapter, the
master equation describing the dynamics of the subsystems at time 7' is

—=m1 —m2 —ms2 —mi1

T A =7 =02 =2 =m
-51,52 T - _ - S 1 Ssl 3 Ssl 2 SSQ 4 S2 S1,52
7 ~ N N A ~ N N A
b L (NSy Sy ]+ NRSTL ST 4 )
1

(TRl 153, )+ PR3 (55 ]
FTE IS 195, ) 4 TR ISP, 87, 07])

1 ma [ Qs1 Js2 81,82 mir&se 1&S1 81,82
- ﬁ<r23[37[27p’]]+F14[47[517p7H) (6.4)

212

with p**2 the joint state of both subsystems and where we have suppressed the redundant
identity operators. The definitions for the finite constants =!**, MZ”“ and [’ Z”“ are the same
as in the previous chapter, but we present them again here for convenience

= = lim g (M™)

i
7'—=0

m . 1 / Srm Srm
Fijk = }}%ZT%%({MZ‘ kan 1

~ 1 N N
mE o __ : P S my my
M'LJ - 7!‘,1£n>0 4h7— glg.] <Z[M’L ) M] ]> (65)

The analysis of the terms in the master equation (6.4) is the same as the one presented
for Equation (5.59). The first line contains terms that yield effective unitary evolution.
The third and fourth lines are decoherence terms for each subsystem, and the final line
contains terms that introduce ‘cross-decoherence’ between the subsystems. The second
line contains the terms

M2 (S5, S52 ™% + p™o S3] + MRS, S3p°%2 + p*°257] (6.6)
Remember that these terms connect the two subsystems and thus introduce effective in-
teractions that can generate forces between them. Consequently, two systems interacting

only with common ancillae develop an effective interaction with each other. Here, the
discussion about the magnitude of the induced decoherence applies as well: the magnitude
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of the above effective interactions is at most of the same order as that of the induced deco-
herence, which follows from the inequality (5.50). If more general interactions are allowed,
the induced terms could entangle the subsystems. Therefore, the assumption of bipartite
interactions for the gravitational example as presented in [67, 68, 124] is essential.

Since our main aim was to keep the terms in Equation (6.6), we need the commutators
(M, M,™)) and ([Ms" 7, My *]) to be non vanishing. For simplicity, we choose the
ancillae operators to be the momentum operators during the first sub-step and the position
operators during the second sub-step, so

o mi m2 o mi

M,™ =p™ My, " =pm My =" M, =i™ (6.7)
We assume that the ancillae are prepared in a Gaussian state as in Equation (5.38), with
p = 0 for simplicity. Using Equations (5.51) and assuming instantaneous interactions for
g2 and g; (such that g; = % for i = 1,2) and constant interactions for g3 and g4 (such that
g; = xi for i = 3,4), then we get the following master equation

. log i Gs1 Qs s s Qs Gs2 Qs s2 Qs
P == 2150, 0] = <X3[ 31 557 P71 A pP PSS 4 xal SR, ST 4 2511]>

D Os Os 51,8 Os Os 51,8
- (15, 1850 o)) + 31552, 1932, o7

1 Sis oS 51,8 as oS 51,8
— <o (ISP, 183 ) + (83, 1557, )

(6.8)
where o2 is chosen such that D = lim,_,o 7/0? remains finite. If we choose the subsystem

operators Sfl = 2351 and 5‘52 = QSZZ and set y3 = x4 = K, then this equation becomes

. K . . A A . .
10'81732 — %[50,081’52] _ ;h ([ ;1’ Sizpsl,SQ + psl,szsiz] + [ 22,S§1p51752 + pSLSQS;l])
KZD bis Gis 51,5 Os Os 51,5
= S (185,185, o) + (83, 153, 7))

1 &s Gis 51,8 Qs Qs 51,8
— 5 (185,185 o) + 1532, (52, 7))
?

2
_ [S' + K S5 852 sus2] KD + 1 [Asl [Asl sus2]] 4 [5'82 [5'82 s1.82]]
A 0 3 04,0 4h2 AD 3 3,0 4 > 4 5P

The process then induces a potential term K 5’;_3;15’32 that contributes to the unitary

dynamics of the joint system. We now make a connection to the case of two interacting
masses presented at the beginning of the chapter. We assign s; to be the mass m; and s
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to be the mass my and we choose S8 = Z1 and 332 = Iy, with z; the operator associated
with the displacement of mass m;. The induced potential term is then K125, so by setting
K to be

m1m2

K =2G

(6.9)

we recover the last term of Equation (6.1). Notlce that K = g’; g With F' the grav-
itational force between the masses. We also remember that an 1nteract10n of the form
xV® M with V acting on the system and M acting on the ancillae, adds to the dy-
namics of the system an effective unitary term o< (M >V, with arbitrary low decoherence.

Therefore, by adding during the second sub-step an interaction

mi1me .’i‘%

~ - 2.2
T ~ mime i) Xy A
-G 1+ —=+— I —G 1l——=4+—= m 6.10
T (14240 (1-24%)s (610

d d d?

with Z; acting on subsystem s;, the effective unitary term becomes V x and we obtain an
approximate Newtonian potential between the two subsystems. The dynamics of the joint
system is given by

. Z A ~ KQD 1 - ~ S1,8 S - 51,8
P = —E[So + Vi, p ] — ( TR E) ([Z1, [T1, p°02)] + [T2, [T2, p°0]])  (6.11)

(with Vi as in Equation (6.1)) which yields the quadratic potential for an induced grav-
itational interaction (with noise) studied in [67], taking Sy to be the sum of harmonic
oscillator Hamiltonians for each subsystem.

The diagonal elements of each particle decays at a rate T'xry = f(D)(Ax)?, with
Az = (z; — ;) the superposition size of state of the particle and where f(D) is given by

1/1 K°D
D)=-1|—= A2
1= (5+ %) (6.12)
We notice that Equation (6.12) has a minimum at D = 2 where f = £ so the minimum
decay rate for the KTM model is
= —(A 1
KTM 2h( x)? (6.13)

This minimum rate violates the condition in [124] and therefore the interaction is clas-
sical. It is important to highlight that if the decoherence was slightly smaller, the emerging
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interaction would be quantum, in the sense that entanglement generation would be possi-

ble.

6.2 Extension to composite systems

We now extend the previous model to macroscopic systems, that is, where the subsystems
are themselves composed of other elementary subsystems. We consider the interaction of
two 3-dimensional composite systems s; and sy with total masses M; and M respectively,
with subsystem s; consisting of N; elementary subsystems and subsystem s; consisting
of Ny elementary subsystems. The classical Newtonian potential energy between any two
constituents of masses m; and m;, with 4,7 = 1,2,..., Ny + N, is given by

m;mnm;

|75

Vi =G

(6.14)

with 775; the vector joining their positions. Similarly to what we did in the previous section,
we write 75 = CZ;‘]‘ +Z;+Z;, with d:-j the vector that joined their positions initially and Z;, 7
the displacement of mass m,;, m; respectively. We focus in the particular case where the
subsystem s; is a test mass and the subsystem s, consists of a macroscopic mass interacting
with the test mass and which we assume to be well localized. We also assume a) that the
bodies are rigid, such that all the constituents of a subsystem are displaced in a way that
preserves the distances between them and b) that there is a distinguished direction defined
by the coherent displacements of the test mass. An illustration of this is presented in
Figure 6.2.

It is convenient to decompose the vector d:j along the orthogonal axes defined by the
direction of the displacement of the test mass. Writing 7; = z;é with é the unit vector in
the direction of such displacement, then we can write d:-j = dyjé + d}jél where é is the
unit vector in the orthogonal direction to e. With this, the potential V;; to second order
in the displacement can be written as

v —Gm;m;
i =
(dly + i+ ,)° + (d5)
\/ j J ” j AV (6.15)
1 dl dz ) dz
~ —Gmimj X (d— — d—;(mz + J:j) + ( 9) d52( y) (xz + xj)2>
ij ij 1j

where d;; = (dl'j)2 + (d)2.
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Figure 6.2: A pair of components m; and m; belonging to the test mass s; and the
source mass sy respectively. The vector d;; joining their positions is decomposed into two

ij» where d” lies along the direction of the
spatial superposition of s;. The displacement of the mass m; from its initial position is
x;, whose values span all locations between which the particle can be superposed. Note
that the assumption of rigidity implies that each constituent of s; is displaced by the same
amount.

orthogonal vectors with components dy and d;-

This potential has a similar form to the one given in Equation (6.1). We can therefore
follow a procedure analogous to the one presented in the previous section: Each pair (i,j)
interacts with a set of gravitational ancillae prepared in a Gaussian state as in Equation
(5.38), in a two sub-step process with the first sub- step X T ® pml + a:] ® Pm; and the
second sub-step given by K;;z; ® 2™ + K;;2; ® 2™ + Y, @ Imi —|—Y ®Iml, with Y( ) a
local interaction acting only on mass m;(;. Bach pair would then evolve according to the
master equation

pij = ——[50 + i+ Y+ Kididy, i) = Uiy ([, [0, p3]] + (85, 125, 031]]) (6.16)
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where I';; = 41D + IihQ . By defining K;; and }7, as

i (6.17)

. 1 I | L
Y, = —-Gm;m; <2di d3 T + = z; (6.18)
the unitary part of the evolution is approximately a Newtonian interaction between m;

and m,;. The master equation for the total system with /Ny + N, constituents is then given
by

Ni+No N1+N2
Prot = —% [Ho + Z Vijs brot]  — Z sz([fi, 24, prot]] + (25, [i’japtot“>- (6.19)
i<j 1<

with p;,; the density matrix of the total system.

In general, we can write the displacement of constituent i as &; = 7y + 2}, with ]
its displacement relative to the centre of mass of the system s, to which it belongs and
with 7 the displacement of that centre of mass. Figure 6.3 shows an illustration of this
definition, for the case of rigid and non-rigid bodies. With this, we can write [Z;, [Z;, piot]] =
[T‘Ak, [flmptot]] + ["2’;, [‘%,27 ptot]] + [fk, [i’;,ptot]] + [.f’z, [’f’k, Ptot]L with k£ =1 for ¢ S N1 and kK =2
for ¢+ > Nj.

From our assumption of rigidity, all constituents of a body remain at the same fixed
distance from its centre of mass and therefore the relative displacements are negligible (see
Figure 6.3 a)). Furthermore, all the displacements z; are the same as the displacement of
the centre of mass of the body they belong to. We then trace over the relative degrees
of freedom and keep the centres of mass positions of s; and so, resulting in the following
master equation (in performing the trace, for simplicity one can assume that the centre of
mass of s; coincides with the position of one of its particles)

Z, ) N1 N1+N2
p5182 = ﬁ[HO + ‘/7 p3152] —2 Z Fij[fla [fla p8182 —2 Z ij r27 7A27p8182]]
i<j=1 Ni<i<j
N N, (6.20)
- Z Z ( 1, Tla pslsQH + [f27 [7227/)8152]])
i=1 j=Ni+1

where V = Zf\ngQ Vij = _Gldﬁlﬁiz\ and M; and M,y are the total masses of s; and ss
respectively.
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a) rigid body b) non-rigid body

Figure 6.3: Displacement z; of the i*" constituent of a) rigid body, b) non-rigid body. For
a rigid body each constituent remains at the same distance (dashed arrow) from from the
centre of mass (black diamond), and its displacement is the same as that of the centre of
mass: x; = r1. For a non-rigid body, the displacement of a constituent can differ from that
of the centre of mass: x; = ry + . This work only considers case a).

Finally, tracing over the degrees of freedom of sy, the dynamics of the centre of mass
of s; are given by

i N1 N1 Ni+N»
1581 = _ﬁ[HO + V7 p81] - (2 Z Fij + Z Z FU) [fla [f17p81]]7 (6'21)
i<j=1 i=1 j=Ny+1

The unitary term approximates the Newtonian potential between two point masses M;
and M, as in Equation (6.11). However the non unitary term now contains contributions
from all the constituents of the systems. Each pair of elementary constituents contributes
to the total decoherence. This includes pairs belonging to the same system (first sum in
coefficient of the non unitary term) and pairs belonging to different systems (second two
sums in coefficient of the non unitary term).

We note that I';; is the decoherence rate for a pair (7,j) evolving under Equation
(6.16), so it is natural to take the minimum decoherence rate for each pair (as in Equation
(6.13)). We note that these gravitational ancillae could work such as to minimize noise
with some other mechanism, but we consider this pairwise minimization to be the natural
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minimization when extending the model to many such pairs and we will therefore work
under this assumption. In this case, the master equation (6.21) becomes

) (RS S,
Psl - _ﬁ[HO + V7 psl] - Dmin[/’nl? [Tla psl]]7 (622)

where D,,;,, is given by

Dy = % ( S K+ \Kijy> | (6.23)

i#jESs1 1€51 jES2

with K;; as defined in Equation (6.17). The total decay rate of subsystem s; is now given
by o
L = DypinAx®. (6.24)

with Ax the superposition size.

Finally, we note that in general we cannot approximate the mass distribution to be
continuous, since doing so would introduce divergences coming from pairs belonging to
the same body. To keep this contributions finite, we need to introduce a definition for
the fundamental constituents of the system. Since we assumed that the total mass of the
body is the sum of the masses of its constituents, a natural proposal for this fundamental
constituents is that they are defined as the smallest constituents between which the binding
energy contribution to the total mass can be neglected. We will consider atoms as such
fundamental constituents when discussing macroscopic objects.

6.3 Test mass in Earth’s gravitational field

We now apply this model to a pair of systems, where s; is an atom in an interferometer
and s, is the Earth. The atom will therefore be in a superposition of different distances
to the Earth, which is well localized, and the assumptions of our model are valid in this
scenario.

The dynamics of the atom are given by

: i .
Ps; = —ﬁ[Ho + ‘/, psl] - Dmin[ra [Tv pSlH? (625)

with V' as defined before and where we now use 7 to describe the operator associated to
the displacement of the atom.
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Since N7 = 1, in calculating D,,;, we do not have contributions connecting s; with itself,
but only terms connecting s; with sy. These are given by pairs (1, j), each contributing a
term K;, with j the total number of atoms in the Earth. Equation (6.23) in this case is
then

Klj

j€Earth

In specifying the function K;; we defined the distances d! ; and dfj as d}» = d!jé%—dfjéL.

We can furthermore decompose é* in terms of the fixed orthogonal unit vectors é; and é5
as ¢+ = (&) + &), so that dy; = di;é + dijet + dizes, with di? = di® + di?%. The

13 1y 15
function K, can be expressed as
Ky = my f (dl,, di  di7) (6.27)
with f defined as

o - i)

(@5 + di? + )3

f(dl diy dai7) == 2Gm, (6.28)

Calculating this quantity would involve calculating a function of approximately 10°°
distances (one for each atom) in a specific configuration and summing them all. We
therefore try to avoid this calculation and instead give it a lower bound.

6.3.1 Lower bound of total decoherence

To calculate the lower bound, we note that the contribution from each atom of the Earth
will increase the decoherence rate of the test mass, so the decoherence coming from con-
sidering only a portion of the Earth will be less than the total decoherence. Moreover, in
a region C where f (defined above) as a function of the distance variables (dg I dfjl : dfj"’) is
convex, the following inequalities hold
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m4
>0 Ky 2 Ky = mey sLf (ddidi)
jcearth jec jec €
> mef (Z e (d!j,df;,df;))

jec
= mef (dhae A Ay, ) (6.29)

where m¢ is the mass of the region C and (dgMc, dé}wc, défwc) are its centre of mass co-
ordinates. This centre of mass can therefore be used to give a lower bound on the total
decoherence.

The function f (dgMC, dé}%, déﬁwc) is convex only in the region where |d!j| < |dg;1/2.
For simplicity, we take C to be the portion of the Earth where |d!j| < |de , which lies

within the volume where f is convex (since |d{;|/2 < |dy;]). This region is a cone of height
R and support of area mR? together with a half ball of radius R as shown in Figure 6.4.

Assuming a constant mass density, the mass m¢ is equal to %m g and its centre of mass
lies within the axis defined by the superposition, at a distance of %R from the top surface,
with mg and R the mass and radius of the Earth respectively. Using these quantities, and
Equations (6.24), (6.26) and (6.29), we get

~ . Az (%mE)ml 3 6 3 Ax mimeg LB
man o, — — — R = .
Pkt 2 2h (2G (¢R)? ) (4) (7) 2h <2G R3 ) Pt (6.30)

with '3, defined as
LB 3 6 ’ min
Igru = 1 ? IRt (6-31)

The decoherence rate I'EB,, is a lower bound on I'}J%% | the total decoherence rate of an
atom due to the presence of the Earth, and is proportional to the decoherence rate of the
original KTM model applied to the centres of mass of the systems, with the proportionality

(in this case ~ .47) related to the geometry of the bodies.

For convenience, we define the decoherence rate I'{1y, as

Gm1m2
hR3

for C' =1, we recover the original KTM minimum decoherence rate and for C' = 0.47 we
recover the lower bound for the macroscopic extension.

Iy =C Az? (6.32)
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Figure 6.4: Region C (coloured in green) used to give a lower bound on the total decoherence
rate of the atom, defined by the portion of the Earth where its constituents of mass m;
obey the inequality |d¥j\ < |dy;|. Tt is formed by a cone and a half ball, with total mass
3mpg, and with a centre of mass located a distance %R from the top surface, where mg and

1
R are the mass and radius of the Earth respectively.

6.3.2 Atomic fountain tests of the KTM model

Using the results obtained in the previous subsection, we now use atomic fountain exper-
iments to test the KTM model. From Equation (6.25), the magnitude of the off-diagonal
elements of the atom is

V(t) = [(r1 s 72)(8)] = |11 [pey | r2) (0) | o & Prsn (1) (6.33)

with Az the atom superposition size. Note that the larger the superposition size, the
smaller the magnitude of V' is. Here r; and ry have a different meaning than in the
previous section; in this case they represent different radial displacements of the atom.

We use recent results using large momentum transfer (LMT) interferometers [5, 6] that
allow the realization of large wave packet separations. In LMT interferometers, an atomic
cloud is vertically lunched and subject to a sequence of N Z-optical pulses implementing a
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beam splitter that places the atoms in a superposition of wave packets with a momentum
difference of 2Nhk, where k is the laser wave-number. The wave packets are allowed
to separate vertically during a time 7', at which point a sequence of m-pulses reverses
their momentum and at time 27" the packets physically overlap and interfere in a final
beam splitter, implemented by N Z-pulses. The spatial separation of the wave packets
in the interferometer is Az(t) = 2Nhkt/m for t < T, reaching a maximum separation of
2NhET /m and then symmetrically decreasing for ¢ > T" until they overlap at ¢t = 27.

The interferometric visibility is defined as the magnitude of the off diagonal elements
of the state of the atom after the interferometric sequence, so from Equation (6.33), it is
given by V(27"). From our discussion in Subsection 6.3.1, the maximum visibility allowed
by the KTM model is therefore

Ghmp

_[2r c _2 273
V%ﬁ =c Jo o dtTgoy — e 30— 58 CNE)*T (634)

with Ty as defined in Equation (6.32), where C' = 1 for the original model and C' = 0.47
for the multi particle extension.

We calculate ViZA%; for both the original KTM model (C' = 1) and for the multi particle
extension (C' = 0.47) as well as for an arbitrary downscaling of the decoherence rate
(C' = 0.1) using the parameters of the atomic fountain experiments with 8"Rb atoms
reported in [5] and [6]. The values of these parameters are mg = 6 - 10 kg; R = 6 - 103
km, 2 =58 ™m0 1y =14-10"% kg (*Rb); T = 1.15 s and N = {1,3,4,5,6} in Ref. [(]
and T'=1.04 s and N = {1,8,15,30,45} in Ref. [5], resulting in superposition sizes of up
to 8.2 cm and 54 cm respectively.

In Figure 6.5 we present the predicted maximum visibility together with the visibilities
measured in their experiments. The plots show the visibility in a logarithmic scale in
the vertical axes and the LMT order (2Rhk) in the horizontal axes. We notice that their
reported visibilities are larger than those predicted by the KTM model in all LMT orders.
Even if the downscale correction is taken into account, the predicted visibilities are smaller
than the ones reported by factors ranging from ~ 2.5 to ~ 10'8. Notice that this difference
grows with the LMT order or equivalently, with larger spatial superpositions. The model
of gravity as a classical channel is therefore incompatible with the experimental data.

6.4 Application to torsion balance experiments

We now apply the KTM model to torsion balance experiments. These experiments mea-
sure the gravitational constant G by detecting the torque produced by the gravitational
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Figure 6.5: Comparison of the visibility predicted by the original KTM model (red squares),
its multi particle extension (pink diamonds), and a reduced KTM correction (blue triangles)
with the visibilities measured in two atom fountain experiments: [5] (black dots) in the
top figure and [6] (black stars) in the bottom figure, both in a logarithmic scale and as a
function of the LMT order. The insets shows the data in a linear scale, where in the case
of [5], the reported errors are included.
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attraction between massive objects on the balance. The experimental setup (see [144, 145])
consists of a set of small test masses of mass m in a 4-fold configuration, suspended by
a thin strip and a set of large source masses of mass M, also in a 4-fold configuration as
illustrated in Figure 6.6.

8

Figure 6.6: Setup of the torsion balance experiment: 4 small test masses m and 4 large
source masses M in a 4-fold configuration. The gravitational attraction between them
produces a torque that is measured to calculate the gravitational constant G.

We first show how the gravitational potential in this setup can emerge from the repeated
interactions model. The Hamiltonian of the system is

=3 S (84 37) + Y Vi, (6.35)
7 4,7

where ¢ runs over all the masses in the experiment and V;; denotes the Newtonian gravi-
tational potential between pairs of bodies, with each body regarded as a pointlike object
located at its centre of mass.

Since all bodies in the balance are in the same plane, we can write the above Hamiltonian
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in polar coordinates as
H=2m (7*2 + r29'2> oM (1%2 + RW) +3°v;
.3

= 2mr®0” + 2MR*3* + )V (6.36)

i<J

where the second line follows from the rigidity of the balance arms. Here (7,0) and (R, ")
are the distance to the axis of rotation and the angle that a mass makes to an arbitrary
fixed axis in the plane of the masses, for the small and large bodies respectively (see Figure
6.6). Since the potential V;; depends only on the variable a = v — 6, the Hamiltonian can
be written as

_mr?+ MR? I AGmM N AGmM
~ dmr? MR e 4(mr? + MR?)  \/r2 + R? +2rRcosa 12+ R2+ 2rRsina
4GmM 4GmM 4Gm?  4GM?*  Gm? GM?
+ + — + + +
V2 4+ R2—2rRcosa 12+ R2—2rRsina  2r V2R r R

(6.37)

where p, is the conjugate momentum to o and p¢ is the conjugate momentum to the

2 2
; = mrif+MR"y
variable ¢ = "Z:”gi M}}; .

The relevant variable is the small deviations of the angle o away from its equilibrium
value ag. Writing o = ag + da, where da < ag, the Hamiltonian can be approximated as

2 2
pa pE 2
H = B) c(o e 6.38
g Az argy TP C0a) (6.38)
where I .4 = % is the reduced moment of inertia and

B_ 23: AGmMrRsin(og + (n+ 1)7/2)
o1 (12 4+ R? — 2rRsin(ap + n7r/2))g

o i 2GmMrRsin(ag + nmw/2) n Z 6GmMr?R?sin?(ag + (n + 1)7/2)
o1 (r?2 4+ R? — 2rRsin(ap + n7r/2))% w1 (r2 4+ R? —2rRsin(ay + mr/Q))%
(6.39)
and we have dropped the irrelevant constant terms from (6.37).
Since (6a)? = 672 + 060% — 20066, the master equation for this setup is obtained from

Equation (6.11), with £ — d&, and K = —2C. Writing D = 2_25’ we obtain
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o ! ﬁi+ Pe + BG4+ C6a> ¢ +1 [6&,[66, p]]  (6.40)
P Th 2L T Atm? £ MR2) YT RO Ty (O el ‘

The continuous interaction process would introduce additional noise to the measure-
ment of G. Indeed, from Equation (6.40), the time averaged variance of da is

h 1
var(d&) = i ffT (6 + E) s (6.41)

with var(da) = ((0&)?) — (da)? and T the timescale over which the experiment takes place.
For example, the total error in GG for the Cavendish experiment would now given by

&_(5(AO&)+5_]{3_ 5%4_5_7”4_4%4_4%_55}{“_5@4_ @
G A« k M m Ty T R,. R, acr Te
(6.42)

where Aa := [((d&))| the mean, and §(Aa) := y/var(d&) the standard deviation. The
meaning of the various quantities in the previous equation is explained in [144] (see Equa-
tion (11.10) of [144] )

We can therefore use the error in the measurement of G to constrain the effect intro-
duced by the KTM model. From Equation (6.42), the minimal constraint is given by

(6.43)

Aa

‘5(Aa)
G

\AG\
<

We use the parameters reported in [145] to estimate the size of §(A«). These parameters
are m = 1.2 kg, M = 11 kg, r = 120 mm, R = 214 mm, and oy = 18.9°, yielding
Ig = 8.35 x 1073 kg m?. Upon substituting these values on Equation (6.41), we get

1
var(da) = 1.58 x 1077 (e + —) s (6.44)
€

which upon substitution into Equation (6.43), gives

= \/1.58 x 10337 (e + 1) < ‘ﬁl ~ 1076
€ G

1
=T (e + —) <~ 6 x 10% (6.45)
€

' 5(Aa)
Aa
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for Aa ~ 1 radian. For an experiment on the order of 1 day = 3600 x 24 = 86400 seconds,

then ,
<e+ —) <~ 7x10%
€

and the decoherence rate satisfies

C 1
— - <~ 3. 100,
2ﬁ(6+6>_ 3.7x 10

To get this bound, we assumed for simplicity that the masses were pointlike, but sim-
ilarly to the previous sections, a calculation involving the compositeness of the bodies in
the torsion balance will add a geometrical factor of order unity to the decoherence rate.
Since the above constraint is much weaker than that provided by the atomic fountain
experiments we will not pursue this any further.

6.5 Conclusions

We have demonstrated how by choosing specific parameters of the model of continuous
repeated interactions presented in Chapter 5 the KTM model of gravitational Newtonian
interactions is recovered [67, 68]. We furthermore show an extension of the model to
consider the contributions stemming from the constituents of massive bodies.

In the KTM model, gravity is therefore modelled as a channel connecting pairwise
constituents of massive bodies, with arising decoherence of just the right magnitude so
that the resulting dynamics are classical, where the classical regime is understood as an
incapability of interactions to entangle systems. The importance of this model is that its
minimum noise saturates the condition for having only classical communication [124]. In
other words the limit that separates theories where interactions are mediated by a channel
that can or cannot generate entanglement coincides with the minimum noise limit of the
KTM model.

We discussed the observable implications the model would have on interferometric ex-
periments and show that the visibilities attained in recent experiments using atom inter-
ferometers with large momentum transfer [5, 6] are larger than the maximum visibilities
predicted by the model, or equivalently, the measured decoherence rate is smaller than the
minimum rate of the KTM model.

Our results strongly suggest that if gravitational interactions are mediated by a pairwise
channel, then they can in principle entangle particles. While the experiments analyzed
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do not prove that gravity is capable of conveying entanglement, they provide a strong
argument against the hypothesis that it is fundamentally incapable of doing so.
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Chapter 7

Outlook

In the first part of this thesis we discussed how circuit quantum electrodynamics tech-
nologies can provide analogue-simulators of physical systems where relativistic regimes are
achievable. In particular, we take advantage of the setup used for the detection of the
dynamical Casimir effect [79, 80, 4], where fast modulation of a boundary was realized,
in contrast with other experimental systems where relativistic regimes are hard to attain.
We show that the simulation of different periodic boundary trajectories is experimentally
feasible with state-of-the-art technology, yielding a particle creation spectra that allows for
their differentiation.

For future work it would be interesting to analyze if the setup can be modified to allow
for the simulation of Neumann boundary conditions and how this modifies the results,
comparing the observations with theoretical predictions [146, 147]. Another possible future
direction is to analyze the concrete experimental feasibility of simulating moving cavities.
This could be achieved by terminating the CPW with two SQUIDs and subjecting both of
them to the same flux so that they move in synchrony and the length of the cavity remains
fixed. Once these experimental testbeds are developed, they can be applied to theoretical
proposals such as the ones discussed in [148, 149, 150].

In the second part of this thesis we discussed how a model of continuous repeated
interactions can be used to describe an extensive range of phenomena, including effective
potentials in the evolution of a system, feedback-control over it and the emergence of
non-local interactions between systems mediated by ancillae. We also spelled out the
assumptions and conditions required to recover different dynamics of a system, providing
particular examples to illustrate each regime.

For future investigations it would be interesting to analyze the consequences of the
model beyond the Markovian approximation [151, 152]. For example, interactions between
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the ancillae could be incorporated [153] or one could consider the effect of having initial
correlations, either between the ancillae [154] or between the system and the ancillae [155].

We also explained how the KTM model of Newtonian gravity is recovered from the
continuous interactions model and derived its minimum decoherence rate. Such rate is
below the decoherence observed in recent interferometric experiments, suggesting that
gravity is not a pairwise classical channel. We point out that one of the experimental
results we base our conclusions on [5] has been a source of controversy (although our
conclusions still hold considering [6]). It is therefore important to perform additional tests
of the KTM model. For example, to relax our assumption of uniform mass distribution of
the Earth, one could perform interferometric tests in the presence of high density masses
acting as a source of the gravitational field, utilizing setups as the ones already used in
[156, 157, 158] with minimal modifications. It would also be interesting to probe the model
in other non interferometric systems.

Another important investigation would be to explore if the model of continuous inter-
actions can generate an exact Newtonian potential. To recover the second order approx-
imation, we considered ancillae prepared in a Gaussian distribution where the first and
second order moments contributed to the dynamics but where all higher order moments
vanished. To get an exact potential, one would need to retain terms higher than second
order. This could be achieved by for example, analyzing if there exists a preparation of
the ancillae with non vanishing higher order terms contributing to the effective unitary
evolution that sum up to reproduce the Newtonian potential.

Additional explorations would contemplate the possibility of generating general rela-
tivistic gravity as an effective interaction with ancillae. Some first steps in this direction
were already taken in [159], where the model results in decoherence of the state of a
Friedman-Robertson-Walker universe, manifesting itself as a time-dependent dark energy
fluid filing spacetime. Further studies of the effects of a collisional model in cosmological
scenarios would be intriguing, for example, one could ask if it modifies the inflationary
model.

Even though in this thesis we explore the implications of the continuous measurement
model in the gravitational sector, the model itself has varying applications in different areas
like quantum control [160] and quantum thermodynamics. Recent studies have suggested
that energy transport in photosynthetic organisms could be assisted by noise [161, 162, 163].
It would be interesting to explore the implications of the model in this type of systems.
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Appendix A

Magnus expansion and higher order
corrections

In this Appendix we discuss the condition on the terms in the total Hamiltonian and
the switching function ¢(t) under which Equation (5.27) holds. To do so, we make use
of the Magnus expansion, an elegant method introduced by Wilhelm Magnus that gives
an exponential representation of the solution of a first order homogeneous linear ordinary
differential equation, as presented below.

A.0.1 Magnus expansion

Magnus proposal was to write the evolution operator in Equation (5.23) as an exponential

| —

U(r) = exp(Qr)) =1+ Y —=Q%7), (A1)

I

|
with Q(7) as a series expansion

Q(r) = i (_ %)mgzmm, (A2)

m=1
This last expression is the so called Magnus expansion. The first three elements of the
series are
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M = /Hsmr(tl)dth
10 T t1
Qz = 5/ dtl/ dt2[Hsmr<t1)7H5mT<t2)]’ (A3>
0 0

QS = é/OT dtl/o1dt2/0thg([Hsmr(t1>a[Hsmr(tZ)aHsmr(tS)H
+[Hsmr (t3)7 [Hsmr (t2)> 7'[smr (tl)]])

Note that € is of order 7%. Substituting Equation (A.2) into Equation (A.1) gives, in-
cluding only up to second order terms in 7

. i 1 1
If we now define i ]
Ql - ;Ql, QQ - §Q27 (A5)
the evolution operator can be written as
~ IT ~ 72 T2 -

We use Equation (5.26) to write an explicit form of the operator Q, as

~ 1 T ~ N N

Q1 - ; / Hsmr (t)dt - Ho + QH] = H 5 (A?)

0

where A is the Hamiltonian in Equation (5.28).

Equations (5.27) and (5.28) are equivalent to an expansion of Equation (A.6) in powers

of 7 that neglects terms €2, relative to the terms QF.

The terms Qk will contribute if the Hamiltonian does not commute with itself at dif-
ferent times or for specific forms of the switching function. For example, the term €25 is
given by

1 T t1
QQ X 5 / dtl / dtQ[Hsmr (t1)7 HSmr (tQ)] ) (A8)
0 0

— [Ho T / Lty / dtalg(t) — 9(t1)] (A.9)
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which vanishes if the free Hamiltonian and the interaction Hamiltonian commute. It will
also vanish if the integrals of the switching functions are zero (if g(t) = g(7—t) in one cycle,
at this order) which is the case in all the cases considered in this work, where the interaction
strength is either constant or a highly peaked Gaussian symmetric in the duration of the
cycle.

A.0.2 Higher order corrections

In our work, we are considering scenarios where the parameter g and the preparation of
the ancillae can depend on 7. Therefore, we need to examine whether higher order terms
in the expansion of the evolution superoperator (5.28) can give contributions of order 7 to
the master equation (5.30).

The term of order 7% in the series in Equation (5.28) is

~

(-5 LI (A-10)

It contains terms with up to k& commutators of S and S, with ps. The power of g in each
term is given by the number of S operators in the commutator. Consequently, no terms
with only Sg operators will contribute beyond the lowest order k£ = 1.

For example, let us consider potentially relevant terms of order 73
i\ 3 o 3 o
(- F) Pt = (- ) #OPB S50 (A

(‘ %)392<[ﬁu [H 1, [Mo, ll]) = (— %)392<[M2,Mo]>[§, [S,04],  (A12)

(‘ %)357@907 (A (Mo, Al = (— %)39<W,M01>[s“o, S.adl (A13)
<_ %>3§<[ﬁ1, (Mo, Mo, A1y = (_ %)39(W07 (Mo, MID[S, ), (A.14)

Equation (5.36) guarantees that terms of the form (A.13) will not contribute. Also,
terms with k£ commutators as in Equation (A.11) will be of order

TRGm(M™) (A.15)
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where 0 < m < k and m is the number of ,Si operators in the commutator. If the condition
in Equation (5.32) is met, the terms 75" (M*) vanish in the considered limit. Terms as in
Equation (A.14) for an arbitrary order k are

g ([My, [My, ...[Mo, M)]))[S, ps] . (A.16)

which have (k — 1) commutators between M, and M. These terms vanish in the strong
coupling limit (lim,_,o7g = 1) but could survive for finite g, for example, if [Mo, M] = AM.
We shall not consider these cases in the present work.

Finally, let us note that in the gravitational interactions scenario presented in this work,
expressions like the ones in Equations (A.12)-(A.14) and in particular all expressions in
Equation (A.16) for & > 2 vanish.

117



	List of Tables
	List of Figures
	Introduction
	Motivation
	Organization

	I 
	Scalar quantum field theory
	Field quantization
	Unruh effect
	Dynamical Casimir effect
	Relativistic trajectories

	Superconducting quantum circuits
	Josephson junction
	Equations of motion for integrated circuits
	Example: LC resonator

	Hamiltonian of a circuit
	Experimental setup

	Dynamical Casimir effect in circuit QED for nonuniform trajectories
	Relativistic trajectories and moving boundaries
	Sinusoidal motion
	Sinusoidal acceleration
	Alternating uniform acceleration

	cQED setup
	Parameters for relativistic trajectories
	Results
	Sinusoidal motion and the dynamical Casimir effect
	Conclusions


	II 
	Continuous quantum measurements
	Single shot measurements
	Projective measurements
	General measurements

	Continuous measurements: general model
	Effective unitarity
	Finite decoherence

	Generalization to multiple observables
	Effective unitarity
	Feedback

	Measurement-induced dynamics for composite systems
	Conclusions

	Gravity as a classical channel
	KTM model
	Extension to composite systems
	Test mass in Earth's gravitational field
	Lower bound of total decoherence
	Atomic fountain tests of the KTM model

	Application to torsion balance experiments
	Conclusions

	Outlook
	Bibliography
	Appendices
	Magnus expansion and higher order corrections
	Magnus expansion
	Higher order corrections




