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Abstract

In this thesis I map out two approaches that are foundational to studying black hole
thermodynamics in de Sitter spacetime. The first is to understand the “thermodynamic
volume” of cosmological horizons in isolation. Fortunately a broad class of exact solutions
having only a cosmological horizon exists: Eguchi-Hanson de Sitter solitons. 1 carried
out the first study of thermodynamic volume associated with the cosmological horizon for
Eguchi-Hanson de Sitter solitons in general dimensions. This work illustrated that the
cosmological volume is a well-defined concept, and that cosmological horizons indeed have
meaningful thermodynamic properties.

The second approach is to move on and include black hole horizons. My first step
along this path is to understand the phase transitions of thermalons: objects that describe
a transition from a black hole in Anti de Sitter spacetime to one in de Sitter spacetime. This
indicated that asymptotically de Sitter black holes do have phase transitions which inspired
my second project where I exploit a class of exact hairy black hole solutions to Einstein
gravity with conformally coupled scalar fields to overcome the two-horizon problem. By
adding hair to the black hole, the thermodynamic equilibrium could be maintained between
the two horizons. These solutions make it possible to explore a range of black hole phase
transitions in de Sitter spacetime. I found that this hairy charge black hole system, and
the de Sitter space surrounding it, undergo a “Reverse” Hawking-Page phase transition
within the grand-canonical ensemble. This is the first approach that successfully addressed
the two-horizon problem whilst including all contributions of energy from every part of the
system.
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Chapter 1

Introduction

Over the past forty years a great number of studies found evidence of an important rela-
tionship between quantum theory, gravity and thermodynamics. This evidence is manifest
in the behaviour of black holes and their connections to quantum physics.

Black holes, however, are peculiar objects. Classically, it is easy to compare them to
‘monstrous’ sponges: they swallow everything, not even light can escape them, but emit
nothing. Yet from the perspective of an observer outside the horizon, when taking quantum
mechanical effects into account, they seem strangely ordinary: they obey, like any regular
matter system, a set of thermodynamics laws [1] governed by an entropy S, a temperature
T and an energy E proportional respectively to the horizon’s area A, its surface gravity k,
and its mass M.

The progress made in understanding the precise way black hole thermodynamics works
generated a whole new set of techniques for analysing the behaviour of black holes. Some of
those techniques came from better understanding the classical theory of general relativity;
others are rooted to how quantum field theory behaves on a black hole background. Other
studies led to one of the most puzzling dilemmas in physics: how the process of black
hole radiation results in a loss of information. In other words, physical information can
permanently be lost in a black hole, which contradicts a fundamental concept of quantum
theory: Unitarity [2, 3]. The latter implies that information is conserved in the sense
that the value of a wave function, whose evolution is determined by a unitary operator,
of a physical system at one point in time should be enough to determine its value at any
other point in time. This is known as the information paradoz [1]. This problem has
yet to be resolved [5, 6, 7]. It was proved that black hole entropy is the Noether charge
associated with diffeomorphism symmetry [3] and that gravitational laws appear to have



a deep connection with thermodynamics laws [9, 10]. Additionally, it was found that the
negative cosmological constant induces a black hole phase behaviour [11], later leading to
exploiting black holes as holographic systems dual to systems in conformal field theories
[12, 13, 14], quantum chromodynamics [15], and condensed matter physics [16, 17].

In recent years, the subject of black hole thermodynamics rose to the spotlight with
the reconsideration of the role of the cosmological constant, A, leading to the introduction
of pressure, and thus a new notion of volume for a black hole. Black hole phase behaviour,
similar to that of everyday physical systems, was unveiled. Some manifestations included
triple point phase behaviour analogous to that in water, while others exhibited Van der
Waals fluid-type phase transitions. Subsequent work indicated that black holes could be
treated as heat engines. This subfield has come to be known as black hole chemistry [18, 19].

In this context, our knowledge of the thermodynamic behaviour of asymptotically de
Sitter (dS) black holes, for which A > 0, is significantly more sparse [20, 21, 22, 23 2/,
, 20] than our knowledge of their AdS cousins. Yet their importance to cosmology and
to a posited duality between gravity in de Sitter space and conformal field theory [27]
make them important objects of investigation. However this is a complex problem, since
the absence of a Killing vector that is everywhere timelike outside the black hole horizon
renders a good notion of the asymptotic mass questionable. Furthermore, the presence of
both a black hole and a cosmological horizon yields two distinct temperatures, suggesting
that the system is in a non-equilibrium state.

The thermodynamics of black holes in asymptotically de Sitter spacetime will be the
general topic of this thesis. The purpose of this chapter is to provide a general introduction
and summarize some key concepts, some of which will be thoroughly studied in later chap-
ters. As some of the work done employs Lovelock theory of gravity, I start this chapter by
briefly introducing these theories and their importance to gravitational physics. Further-
more, all of the work done in this thesis concerns asymptotically de Sitter spacetimes, the
main reason why I will give an overview of the geometry of de Sitter spacetime and discuss
some of its key concepts with regards to black holes and cosmology. I will then give an
outline to the approaches taken in this thesis.

1.1 A Gravity Overview: from Einstein to Lovelock

One of the most inspiring scientific accomplishments in the 20" century was Einstein’s
theory of general relativity [28]. It was a result of the urgent need to harmonize the relation
between Newton’s laws of gravitational interaction and the theory of special relativity



[29]. It was simultaneously, yet independently, studied by both Albert Einstein and David
Hilbert; hence the name of its Einstein-Hilbert action.

The Einstein-Hilbert (EH) action of a spacetime with cosmological constant' A coupled

to matter reads .

Tica = —— [ d'z/=g(R—2A) + Lpu - 1.1
=4 = Touq | CEVTIE=28) & Do (1.1)
It gives rise to the field equations

guv<ga57 Jap,ys gaﬁ,'y)\) = 87TT,uz/ , (12)

where the tensor on the left hand side, namely the Einstein tensor, is symmetric and
conserved

g",=0. (1.3)
However, the right hand side tensor, namely the stress-energy tensor, is symmetric.

In his famous work in 1971, Lovelock [31] generalized Einstein theory of relativity in
higher dimensions. He obtained the most general formal expression of G*” in terms of pow-
ers of the the Riemann curvature tensor while maintaining its symmetric and conserved
properties. Miraculously, this tensor is quasi-linear in the second derivatives of the met-
ric without any higher derivatives. Additionally, in four dimensions (or less), these field
equations coincide with the Einstein field equations

1
R, — §gMVR + Ag, =87GT,, , (1.4)

with the constant of proportionality being carefully chosen to reproduce the Newtonian
limit.

The phenomenological relevance of the Lovelock class of gravity theories is debatable
as they only exist in higher dimensions. However they provide an intriguing framework
from the theoretical perspective for multiple reasons: as the higher dimensional “siblings”
to Einstein’s general relativity “family”, they permit the exploration in higher dimensions
of very interesting objects such as Black holes , gravitational collapse and even cosmology.
Lovelock gravity theories provide many useful and unique perspectives for studying black
holes: their formation, their existence, their thermodynamics, and much more.

!The cosmological constant was first introduced by Einstein [30] to describe a stationary universe.
Thereafter, he described it as his “greatest blunder” when the expansion of the universe was proven with
the observation of the Hubble redshift. The concept of the cosmological constant was later revived when
numerous observations, such as the discovery of the cosmic acceleration, proved that it is greater than
Zero.



Lovelock theories of gravity are the most general gravitational theories in higher-

dimensional spacetimes that have field equations of second order. The action for Lovelock

gravity in d dimensions can be written in terms of bulk and boundary terms? as

~ 16nG ki: d— 2k (/ Li = /BM Qk) (1.5)

where the {c;} are coupling constants,

Lr = €ayay R A - - A\ RIE1926 A 02641 AL A 4 (1.6)

with A the standard wedge product for differential forms and
1
O = k/ d€€q,..q0™ % NFBW N - N FRTIE N O LA e (1.7)
0

Here e® = e dx" is the vielbein 1-form, R® = dw® + w A w® is the curvature 2-form
(w® being the torsionless Levi-Civita spin connection), and F% = R® + (£ —1)6", A G
with #?° being the second fundamental form related to the extrinsic curvature via 0% =
(n®K® —nPK® )ec and £ is the parameter of integration of ranging between 0 and 1 [33].

Note that G is the Newton constant in d spacetime dimensions and {c;} is a set of
coupling constants with length dimensions ¢2*~Y ¢ being a length scale related to the
cosmological constant, with k& being a positive integer given by

d—1

b= [151] us

The zeroth, first, second and third terms in (1.5) correspond, respectively, to the cos-
mological term, the Einstein-Hilbert action, the Gauss-Bonnet gravity and the third order
(cubic) Lovelock gravity. The coupling constants are chosen so that ¢y = £72 and ¢; = 1
correspond to the usual normalization of the zeroth and first terms with the cosmological
constant costumed to satisfy 2A = —(d — 1)(d — 2)/¢%. A is also easily incorporated with
either a negative (cg = —¢72), a vanishing (cy = 0) or a positive (¢ = £72?). The Gauss
Bonnet term governed by ¢, = AM? gives rise to the first non-trivial Lovelock term that
contributes just for d > 4 with A being the Gauss-Bonnet coupling constant.

A simple example is the cubic Lovelock theory . Its action is

1 (d—5)! (d="7)
= —— [dzy=g |R—2A AP L Por 1.9
oG | “F [ Ta—a M et g e (19
2Here I follow the notation of [32] for consistency with the work done in chapter 4
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where the quadratic lagrangian, defined only for d > 4, and the cubic lagrangian, defined
only for d > 6, are

Lo=R?>— 4R, R" + R, R"" | (1.10)
L3=R*+3RR"* Rop., — 12RR™ Ry, + 24R" P Roy Rgy + 16R* Ry R,

+24R"*° Rogyo R P + 8R™, R, R” 5+ 2Rap,e R'PRY,, . (1.11)

In some parts of this thesis I will make use of these phenomenal gravity theories mainly
in the context of de Sitter spacetime. I shall introduce this framework in the next section.

1.2 A promenade in de Sitter Land

Usually in general relativity, one doesn’t need to (and maybe even can’t) define manifolds
and curvature by embedding them in higher dimentional spacetime, but rather simply
define them intrinsically. However, de Sitter spacetime , a maximally symmetric spacetime
of constant positive cosmological constant, can intuitively and easily be embedded. Its
embedding can be presented as follows: a d dimensional de Sitter spacetime is equivalent
to an hyperbola embedded in a d + 1 dimensional Minkowski spacetime. Its embedding
space metric reads

One can simply view de Sitter space of length ¢ as a hypersurface defined by
X, XM= (1.13)
The induced metric of this surface can be written as
2 r? 2 dr® 2 1002
dS =—11- ﬁ dt + m —+r de_2, (1.14)
ZZ

when using the following coordinates:

Xo = V2 — r?2sinh (%) , X1 = V{2 —r2cosh (%) . X =Ty (1.15)

Note that d2%_, denotes the line element on a (d — 2)-dimensional sphere and fi;, while
satisfying i ,&? = 1, represents the angular coordinates of the sphere such that, for
example,

fl1 = sin@sin ¢ Sin ... SiN ¢pg_3,  flo = sin fsin ¢y Sin ¢ps... COS Pg_3 . (1.16)
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Recently, de Sitter spacetime became of high interest to the study of our universe.
First, as a spacetime having positive cosmological constant, de Sitter space is of great
importance to cosmology. For example, its importance is manifested in the early universe
during cosmic inflation as many inflationary models are approximately de Sitter space. In
other words, it is simpler to conduct some analysis on the early universe’s inflation era
in de Sitter space rather than a more realistic inflationary universe. Second, given the
proposal for holographic duality between de Sitter space and conformal field theory has
been suggested [27], there is further reason to study black hole thermodynamics in de Sitter
(dS) spacetime. This proposal “conjectured that a fully quantum theory, including gravity,
in pure de Sitter space with a fixed cosmological constant has a certain dual representation
as a conformally invariant Euclidean field theory on the boundary of de Sitter space” [34].

Motivated by the above, I shall study the thermodynamics of black holes in asymptoti-
cally de Sitter spacetime. These black holes, however, are burdened with problems that are
absent for their AdS cousins: first, an asymptotically de Sitter black hole has two-horizons,
an event horizon and a cosmological horizon, which created a non-equilibrium state for any
observer living between the horizons. Second, concept of mass for this system is somewhat
blurry due to the lack of a global timelike Killing vector outside the black hole. Third,
isolated de Sitter black holes evaporate due to Hawking radiation which makes them, un-
like their AdS cousins where reflecting boundary conditions at co ensure thermal stability,
thermally “unstable”. These are the main reason why de Sitter spacetime remains not well
understood despite its resemblance to our universe.

In this thesis I shall present an ensemble of studies to this end that are outlined as
follows:

In chapter 2, I review some of the recent developments of black hole thermodynamics in
the phase space where the cosmological constant is regarded as a thermodynamic variable
equivalent to pressure, also known as the extended thermodynamic phase space. 1 start by
giving an overview on the standard approaches to study the thermodynamics of black holes.
Then I review the black hole thermodynamics in extended thermodynamic phase space and
discuss the “thermodynamic volume” . The latter is the thermodynamic conjugate to the
pressure. This discussion will be followed by an introduction to the reverse isoperimetric
inequality and its importance. Furthermore, I will summarize the developments of black
hole thermodynamics in extended phase space. I will then conclude by discussing the of
black holes in de Sitter space and comment on the approaches proposed to understand
black holes in this context.

In chapter 3, I study the thermodynamic volume of cosmological horizons in the context
of Eguchi-Henson (EH) solitons.. I start by introduce the EH Solitons in odd dimensions.



Then I briefly discuss general considerations of their thermodynamics. Next, I make use
of the first law and Smarr relation to compute the mass and thermodynamic volume of
these solutions inside and outside the cosmological horizon of dS space . Finally, I show
that explicit expressions for the two parameters can be found in general odd dimensions.

In chapter 4, I study thermalon mediated phase transitions in Gauss-Bonnet gravity.
I start by briefly reviewing the basics and the essentials of the thermalon mechanism in
Lovelock gravity. Then I specialize to the case of Gauss-Bonnet gravity where I study the
stability, extended phase space thermodynamics, and phase structure of the thermalons.
When considering the phase behaviour of these systems, I employ the extended thermody-
namic phase space formalism to exhaustively study how these transitions depend on the
pressure (cosmological constant). In the context of AdS — dS + black hole thermalon
mediated phase transitions I recover the results of [35]. Furthermore, by analyzing the
behaviour of the free energy near the Nariai limit, I find that for a fixed value of the
Gauss-Bonnet coupling, there is a minimum pressure below which thermalon mediated
phase transitions are not possible. I find that in the case where the pressure is vanishing,
a phase transition between thermal AdS space and an asymptotically flat geometry with
a black hole is possible for any range of temperature. In the last section we comment on
the similarities and differences between the thermalon mediated phase transition and the
Hawking-Page transition in the regime of positive pressures.

In chapter 5, I study the thermodynamics of charged de Sitter hairy black holes. I start
by briefly reviewing the basics of conformally coupling scalar fields to gravity and their
resultant hairy black holes solutions. Then I specialize to the case of charged hairy black
holes in de Sitter spacetime. When considering the phase behaviour of these systems, I
employ the extended thermodynamic phase space formalism to study how their thermo-
dynamic parameters behave at constant pressure (cosmological constant) and at constant
chemical potential. Furthermore, in a search of possible phase transitions, I study the
behaviour of the free energy in different ensembles. I find that a system of a charged hairy
black hole in de Sitter will undergo a Reverse Hawking-Page phase transition if studied in
the grand-canonical ensemble, but will not undergo any phase transitions if studied in the
canonical ensemble. The latter is due to a violation of the conservation of charge.

I will conclude my work in Chapter 6 where I will summarize the work conducted in
this thesis and suggest few approaches to better understand asymptotically de Sitter black
holes. This chapter will be followed by an ensemble of appendices of relevant mathematical
derivations.



Chapter 2

Black Hole Chemistry in a Nutshell

Understanding the relationship between thermodynamics, gravitation and quantum theory
has been a subject of great interest in last fifty years due to the rising evidence suggesting
that such a relationship indeed exists. This evidence is embedded in the relation between
black holes and quantum physics, the subject known as black hole thermodynamics. Clas-
sically, this relationship is counter-intuitive [36] due to the black hole’s classical nature: it
absorbs all forms of matter but emits nothing. Hence it has no entropy or temperature and
it is only defined by its mass, angular momentum and the charge if possible [37]. However
the explorations of quantum field theory in curved spacetime affirmed this relationship
through a series of famous results: the first result, found by Bekenstein, introduced the
idea that the area of a black hole corresponds to its entropy[3%]. This relationship was
then confirmed by Hawking’s result that the black hole’s surface gravity corresponds to its
temperature [39]. These results opened the door to a new way of understanding black holes
as objects that, similar to black bodies, emit radiation. And so was born the sub-discipline
of black hole thermodynamics.

2.1 Standard Black Hole Thermodynamics: Overview

Hawking’s area theorem [10] states that the area of the event horizon of a black hole can
never decrease. This was the first indication that black holes, then known only as classi-
cal solutions to Einstein’s equations, can manifest thermodynamic behaviour!. Thereafter

'Hawking’s proof applies to black hole spacetimes that satisfy the following assumptions:

e The spacetime on and outside the future event horizon is a regular predictable space.



Bekenstein noticed the similarity between this area law and the second law of thermody-
namics. Pursuing this thought, he proposed [11] that each black hole should be assigned
an entropy proportional to the area of its event horizon. Following this analogy further,
Bardeen, Carter, and Hawking formulated their now famous account the “four laws of
black hole mechanics’ [1] under the assumption that the event horizon of the black hole is
a Killing horizon?. The four laws are:

1. The surface gravity  of a stationary black hole is constant over the event horizon.

2. As the system including a black hole shifts from one stationary state to another, the
mass of the system changes as follows

K
M= —"_6A+Q6] + 5 2.1
a0t + ®6Q) , (2.1)

where « is the black hole’s surface gravity, A is the area of the event horizon, J its
angular momentum, () its the electric charge, 2 = 2, — Q) its angular velocity and
b = o, — & its electric potential. Here &, and ., correspond respectively to
the potential at the event horizon and the potential at infinity. The quantity .
corresponds to the angular velocity of the (possibly) rotating frame at infinity.

3. In a classical process A4 > 0, i.e. the area A of a black hole’s event horizon does not
decrease.

4. It is impossible to create an extremal black hole, i.e. reduce the surface gravity x to
zero, in a finite number of steps.

In the presence of a Killing horizon, the surface gravity x reads
£VE" = ke, (2.2)

for a suitably normalized Killing vector £ that generates the horizon. The surface gravity
can be thought of as the force exerted at infinity that is required to suspend an object of
unit mass at the horizon of a static black hole [12] (for example the Schwarzschild black
hole).

e The stress-energy tensor satisfies the null energy condition, T,,k%k® > 0, for arbitrary null vector
k®.

2This a null hypersurface generated by a corresponding Killing vector field



From the classical perspective, these black hole laws present a simple analogy between
black hole mechanics and ordinary thermodynamics, where the first law of ordinary ther-
modynamics® reads

0U =T8S — P6V + > judN; + $Q. (2.3)

This analogy relates the surface gravity s to temperature and the event horizon area to
the entropy of the black hole. In fact classical black holes, just like sponges, never emit
anything and they have zero temperature.

In 1974, Hawking carried out the original formalism developed by Parker [13] for com-
puting particle production in curved spacetimes. He discovered that when taking into
account the quantum mechanical effects [39] of scalar fields, a black hole emits radiation

at a characteristic temperature
hk

kT = e’ (2.4)
where kg is Boltzmann’s constant, ¢ is the speed of light , and A is Planck’s constant. The
comparison between the T'9.S term in the first law of thermodynamics with the kA term
for black holes, later confirmed by Gibbons using the Euclidean path integral approach

[11], suggests that the entropy is directly related to the area by

Ac?

= (2.5)

The presence of h accentuates the quantum mechanical nature of black holes. They are
no longer classical solutions — instead they are physical objects that have thermodynamic
properties.

All the above introduces an explicit first law of black hole thermodynamics that, when
setting? G = ¢ = kg = 1 reads:
OM =TS+ Q0J + PQ, (2.6)

for a black hole of mass M, charge (), and angular momentum .J. Keeping this in mind,
I shall henceforth suppress the explicit appearance of these quantities, restoring them on
an as-needed basis.

3 In the first law or ordinary thermodynamics, 6 N; is the changing number of particles of a given species
and p; is its corresponding chemical potential. Similarly the term ®J@Q presents the variable electrostatic
energy.

4 This convention implies that A has units of [length]?and that, in d dimensions, the gravitational
constant G4 has units of [length]¢=*

10



The thermodynamic parameters, as simple as they seem, communicate the behaviour
of the black hole. They are related by Smarr relation[15], which (in four dimensions) reads

M =2(TS+QJ)+ Q. (2.7)

It displays the relationship between the extensive (M, J, Q) and intensive (7,2, ®) ther-
modynamic variables.

2.2 Thermodynamics with A

When analyzing the first law (2.6), one cannot help but wonder about the pressure-volume
term POV. As there has been no mention of pressure or volume that could be associated
with a black hole, this term remained poorly understood. Several years ago a new idea
was proposed. It suggested that the pressure of a black hole could be associated with the
negative cosmological constant A. In other words a black hole in a negative cosmological
constant environment has corresponding positive pressure that is equal in magnitude to
the negative energy density of the environment. This set up describes an asymptotically
anti de Sitter black hole °.

In d spacetime dimensions, given the AdS length ¢, the corresponding negative cosmo-
logical constant reads

(d—1)(d—-2)
AN=————— - . 2.
Y2 <0 (2.8)
Proposed by Teitelboim and Brown [16, 17], the idea of considering A as dynamical variable

was adopted, which incorporated formally[/5] a Pressure-Volume term into the first law of
black hole mechanics 6, and further explored from several perspectives afterwards [19, 50].

Remaining unchanged, the area of the black hole event horizon is A = 4S where S is
its entropy and the temperature is T' = /27 with & its surface gravity.

The generalization of black hole mechanics when including a non zero cosmological
constant, A # 0, set a solid foundation for association of the pressure with A and its ther-
modynamic conjugate with volume [51]. A simple derivation, fully described in AppendixA,
leads to the generalized first law of black hole mechanics:

SM =T5S + VP + Q6J + $5Q . (2.9)

5This class of black holes is a solution to the Einstein equations R, — %gabR + Agap = 8T,y , where
Tup is the matter stress-energy tensor.
6Here, no interpretation of the conjugate variable to the cosmological constant was considered.
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Interpreting P as the thermodynamic pressure and V' as its thermodynamic conjugate
[52, 53], they both read

A d-1)(d-2)
P= 8t 16712 (2.10)
and .y
V= (—) . (2.11)
0P ) 50,

The interpretation of this thermodynamic volume will be carried out in the next section.
Note that M is the conserved charge associated with the time-translation Killing vector of
the spacetime and J is the conserved charge associated with a rotational Killing vector of
the spacetime.

Comparing (2.9) with (2.3), it is logical to think of interpreting M as a gravitational
version of chemical enthalpy [51]. In other words, no longer being interpreted as the
internal energy, the mass can be thought of as the total energy of the system including
both its internal energy E and the energy PV required to displace the vacuum energy of
the spacetime. Relating the two quantities through a Legendre transformation the mass
reads

M=FE+ PV. (2.12)

Jokingly, one could regard this as being the amount of energy needed to create a black
hole and place it in its environment ruled by a negative cosmological constant. If only I
had that superpower.

By including A, a fundamental constant of the theory, as a thermodynamic variable,
the generalized first law of black hole thermodynamics recovers the VJP term in ordinary
thermodynamics and reads [51, 53, 54, 55]

N

OM =T3S + ) Q6T +ViP+ Y &/5Q)7, (2.13)
J J

where the &/ = CDi — ®J_ are the conjugate potentials of the electric and magnetic charges

of the U(1) symmetry group. They permit a non-trivial potential on the horizon <I>i and

another at infinity ®7_. the quantities ., arising from Q' = Q% — Q’_, allow for the

possibility of a rotating frame at infinity [50]. Here, the subscrip “ 7 corresponds to the

event horizon.

Taking into consideration the crucial PV term, the generalized Smarr formula to AdS
spacetimes in d-dimensions now reads
d—3

1 7 2
M = TS+ZQJ——PV+—Z<I>JQJ (2.14)

d—?2
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2.3 Black Hole Volume Dilemma

Understanding the geometry of horizons and their general properties remains incomplete.
A study, inspired by cosmic censorship 7 and Thorne’s hoop conjecture ® [57], describes
the relation between the area of the horizon (an intrinsic horizon property) and dynamical
quantities such as the angular momentum or the total energy of the black hole, giving
rise to the “ Penrose (isoperimetric) inequalities”. As this work is done in extended phase
space, it is inevitable to define the thermodynamic volume as a new intrinsic quantity
associated with the (black hole) horizon.

This section is dedicated to study the physical meaning and characteristic properties of
the thermodynamic volume and to clarify the meaning and use of the reverse isoperimetric
inequality.

2.3.1 Thermodynamic Volume

The thermodynamic volume of a black hole, derived entirely from thermodynamic argu-
ments rather than geometric ones, has dimensions of [Length]¢~!. In other words, it is a
“spatial” volume that characterizes a black hole in a d dimensional spacetime.

For example, in asymptotically AdS black hole spacetime, the thermodynamic volume
is the thermodynamic conjugate to pressure P defined in (2.11) by

V= (a—M> . (2.15)
op $,Q,J,...

At first, Kastor, Traschen and Ray [71] interpreted the thermodynamic volume as a
...... finite, effective volume for the region outside the AdS black hole horizon”. However
it was clarified later that it is different than the naive geometric volume [52] for most black
holes [53]. Hence it remained a thermodynamic volume. For example, for a four-dimentional
Schwarzschild (charged) AdS solution, the thermodynamic volume (2.15) reads

43

V=—nmr

3 —+ (2.16)

"Introduced by Pensrose in 1969, the “weak” cosmic censorship states that there are no naked singu-
larities in the universe other than the big bang singularity

8Introduced by Thorne in 1971, this conjecture states that horizons form when and only when a mass
M gets compacted onto a region whose circumference in every direction is C' < 47 M

13



where 7 is the black hole horizon radius, a result that is identical for the case of a Euclidean
ball of the same radius.

The simplicity of the thermodynamic volume is too good to be true. When includ-
ing any additional thermodynamic parameters such as angular momentum or charge, this
quantity becomes very complicated. However, many results have been found over the years
for this thermodynamic quantity in a variety of black holes for which the thermodynamics
has now been well established. These include charged black holes of various supergravities
[53], higher-dimensional rotating black holes [53], superentropic black holes [58, 59], ‘ul-
traspinning black rings’ obtained in the blackfold approximation [55, 60] and accelerated
black holes [61, 62].

As an example, the metric corresponding to d-dimensional Kerr-AdS black hole space-
times [03, (4] reads ?

W p? 2m al au 2dp; Udr?
ds? = — g —<Wd— ifls ) o
S 2 T + U T ; = +F—2m
N 2 N+te N+e o
r? + a? r? +0LZ 1 + a? 2
+ 0y — = uidy Y =l Wp2<z ,U/zd/%) , (2.17)
i=1 E -1 -
where p? =712 +12,d=2N +1+¢ and
N+e N2 N+e
_ 7 2
D L e Il
i=1
2 N 2
a’
F o= %Hr ta), Si=1-73. (2.18)

Gibbons was the first to compute the thermodynamic parameter of Kerr-AdS black holes in
general dimensions [56]. The mass M, the angular velocities €; and the angular momenta
J; are given by

,,,2
MWg_2 Yo1o1-e A;MW4—2 a;(1+ )

— = - — O =—-"-.  (2.19)
An([1; 5 =h 2

- = =)’ v 2 2
— 4r=i(11, =5) i+ a;
9The metric is written in Boyer-Lindquist coordinates
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Thus the corresponding temperature 1" and entropy S read

1 72 N 1 /1 72\e
T = —[ (—+ 1) ———(——i)],
o\ T ;a%ri r\2 2P
A Wi—2 N CLZ+T2
g — A_ [[& 2= 2.20
4 el E (2:20)

where wy is given by (2.24). Using all of the above, the thermodynamic volume, previously
defined via (2.15), then reads [53]

r A < 1+73 /12 a2> _ r A

; 8w
V=a1 i—1 "= )(d—z);aﬂi' (2:21)

Note that J; are the associated angular momenta, a; are various (up to [(d—1)/2]) rotation
parameters, and A is the horizon area given by

2 2 2
Wi—2 a; + 1y _ a;
A== [[/—=— ==1- 7 (2.22)
+ =i

The latter simply proves that a volume V' of simplistic form and with intuitive geometrical
meaning doesn’t hold. It is only reasonable to wonder if there are any properties that the
volume V' (2.15) obeys and are related in any way with the volume of the black hole.

A famous characteristic property for the volume of a connected domain in Euclidean
space is that it obeys an isoperimetric inequality. The next section investigates this prop-
erty in context of black holes.

2.3.2 Reverse Isoperimetric Inequality

For a closed surface of enclosed volume V and surface area A in Euclidean space E?~!, the
isoperimetric inequality states that the ratio

e (U1 () o2

always satisfies R < 1 where the volume of the unit d-sphere reads

d+1

21 2
; .
r(4)
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Note that R = 1 holds if and only if the domain is a standard round ball.

Tha applicability of the isoperimetric inequality was first considered by the authors of
[03] for a variety of static and rotating black holes. They conjectured, using the thermo-
dynamic volume and the area of horizon cross sections, that R doesn’t obey the isotropic
inequality R < 1 but rather its reverse. Hence the name reverse isoperimetric inequality

R>1. (2.25)

This reverse inequality was conjectured to hold for any asymptotically AdS black hole
of horizon area A and thermodynamic volume V. At fixed thermodynamic volume the
entropy of the black hole is maximized for the Schwarzschild-AdS spacetime!?, or in other
words, the bound is saturated for this class of solutions.

To test this conjecture (2.25), one can take the example of Kerr-AdS black holes. The
first step is to introduce a new parameter

1+ 72 /12 2

—_

2 =

Following the authors’ path in [53], one can use (2.21), (2.22) and the arithmetic/geometric
(AG) inequality (JT, z:)YYN < (1/N) >, z; to get

2 2,1 2 —
a1 z ri4a; "7z z 2 1 a; 1/2
R = e[ 2z, ] Z[Hd—z][d—z(giﬁzrizi)}

7 K3

- [1 T3 i 2] [1 + d2_22]_1/2 =G(z). (2.27)

It is then easy to employ G(0) = 1 and dlog G(z)/dz > 0 to see that the reverse isoperi-
metric inequality (2.25) holds.

This conjecture has been proven valid for a large ensemble of charged and/or rotating
spherical black holes [53], as well as ultraspinning black rings with toroidal horizon topology
[55]. For other classes of more complicated black holes, (2.25) was confirmed numerically.
However a class of black holes was subsequently found that violates this conjecture [58,

|, necessitating further investigation of the role and meaning of the volume [25]. The
relationship of V' to other proposed notions of volume [0, (6] is an ongoing subject of
investigation.

This conclude the basic methods formulated to investigate understand the thermody-
namics of black holes. The next section will discuss the implications of introducing new
thermodynamic parameters for the critical behaviour of black holes.

10The same inequality can be extended to all black holes, where wy is replaced by the corresponding
unit volume of the space transverse to the event horizon.
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2.4 Black Hole Chemistry

Having thermodynamic volume and pressure in hand permits the study of black hole ther-
modynamics in the context of extended thermodynamic phase space. This is known as
Black Hole Chemistry [18]. Looking into black holes from this lens, it is inevitable to see
the remarkable resemblance between a set of “everyday” thermodynamic phenomena, such
as Van der Waals behaviour, solid/liquid phase transitions, triple points, reentrant phase
transitions, etc. and the thermodynamic behaviour of black holes. This section summa-
rizes these similarities using the following methodology. First, one starts by studying the
thermodynamics of charged and/or rotating AdS black holes in a canonical (fixed @ or J)
ensemble, relating the “fluid’ thermodynamics by comparing the corresponding physical
quantity (for example the thermodynamic volume and the physical volume of the fluid
etc.). In this set up, the thermodynamic potential and the local thermodynamic stability
of a black hole correspond respectively to the Gibbs free energy G and the positivity of
the specific heat Cp given by

G=M-TS=GPT, J1,....0 n,Q1,..., Q) (2.28)

and 55
Cp=C = (—) .
P B e Qe OT /) Pty I, Q1 @
The goal of this section is to review the famous results of this machinery and build the
foundation for the accomplishments discussed later in this thesis.

(2.29)

2.4.1 Hawking-Page Phase Transition

This section discusses the first and simplest black hole phase transition. Consider a four-
dimensional spherically symmetric ansatz

9 2 dr? 2 702
ds® = —fdt* + T + r7dY, (2.30)
with a metric function o0 9
r
por- 2T (2.31)

where k is {41, 0, -1} corresponding respectively to {spherical, planar, hyperbolic} horizon
geometries. The thermodynamic quantities for this Schwarzschild-AdS black hole read

’I"+Ak < Ti) 7TAk 2 le + 3T<2F 3 7TAk 3
M = k+— S=— T'= —©p— P=—-— =
8 * 2/’ 4 Amcl?ry, 82’ 3
(2.32)
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where the area of the constant-curvature space is given by'! wA,,.

0.50—
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-
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RADIATION Tup T

0.050 0.075 0.100

LARGE BH

Figure 2.1: Hawking—Page phase transition. A plot of the Gibbs free energy of a
Schwarzschild-AdS black hole as a function of temperature for fixed pressure P = 1/(96m).

Using those key thermodynamic parameters in the spherical case, for which £ = 1,
the Gibbs free energy is computed and displayed in Figure 2.1: at T = Typ = 1/(7l) ™! a
discontinuity in the first derivative of the Gibbs free energy , indicating a first order phase
transition between a radiation state and a black hole state, now known as a Hawking-
Page phase transition [ 1]. By analysing the specific heat, as indicated in the mechanism
described at the beginning of this section, the upper branch, describing a small black
hole with horizon r, < 1/4/3, is thermodynamically unstable due to the negativity of its
specific heat Cp. However the lower branch, corresponding to the large black hole, has
positive specific heat. Hence it is the stable branch. In addition, the large black hole has

U The simplest way to think of Ay is for the following cases: for a sphere, Ap—; = 4; for a torus,
Ap—o = XY, with X and Y being the sides of the torus. Unfortunately, there’s no simple example for
Ap—_1.
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negative Gibbs free energy, for T' > Typ or ry > ryp = [, which makes it the most preferred
thermodynamic state for the system at a given temperature.

A simple observation that can be made is that, for G = 0, a coexistence line between
thermal radiation and the large black hole phase can be deduced. Relating temperature
to pressure in this case, this coexistence line reads

0.005
0.004 -
0.003
0.002

0.001

_ 32 (2.33)

coexistence 8

P

Radiation

Large BH

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 2.2: The Hawking-Page phase transition coexistence diagram: A plot dis-
playing a P — T coexistence line of the thermal radiation/large black hole state.

Figure 2.2 displays this coexistence line of radiation/black hole phases. It shows the
resemblance to the solid/liquid phase transition with thermal radiation being analogous to
the solid and the large black hole being analogous to the liquid [18].
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2.4.2 Other AdS black hole phase transitions

In this sub-section I briefly review some of the interesting phase transitions of anti de Sitter
black holes.

2.4.2.1 Van der Waals phase transitions

Van de Waals —like phase transitions were first seen when analysing the thermodynamics
of charged black holes [67, 65].

For d = 4, consider the ansatz

dr?
ds* = —f(r)dt* + — + r?dQ?, 2.34
()it s (234
for which the metric function reads
2M  Q?  r?
=1 - —+ =+ — 2.35
f i X (2.35)

providing an exact solution to the Einstein-Maxwell-AdS equations.
The corresponding thermodynamic quantities for this Reissner-Nordstrom black hole
are [69, 65
P(ri — Q%) +3r]
43 12 ’

4
S =, Vzgm’i, <I>:Q, (2.36)
r+

T —

with pressure remaining unchanged from the case of Schwarzschild-AdS black hole.

Using these thermodynamic variables, the Gibbs free energy within the canonical en-

semble is
l2ri — ri + 3Q%1?

G=M-TS= 2.37

4127”4_ ( )

Plotted as a function of temperature T, this parameter exhibits a first order phase transition
between a small and a large black hole [67, 70, 71, 72, 73]. This phase transition, shown

in Figure 2.3, resembles in many ways the van de Waals phase transition between a liquid
state and the gas state of a non-ideal fluid , also known as swallowtail behaviour. A brief
review of the Van der Waals fluids is available in appendix B.
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Figure 2.3: Swallowtail behaviour of RN—-AdS black hole A plot of the Gibbs free
energy of a Reissner—Nordstrom-AdS black hole at a fixed charge @ = 1.

The swallowtail appears only when P < P,, where P, is the pressure at critical point!?.
The latter is characterized by the following thermodynamic parameters that, for a Reissner—

Nordstrom black hole, read

V6
187Q

1

Pc:—7 c:26>Tc:
9672 v6Q

(2.38)

12As shown in the P — T phase diagram in Figure 2.4, the critical point terminates the coexistence
line where the phase transition is of second order. In the RN-AdS black hole case, it is characterized by
standard mean theory exponents {c, 8,7, 3} [08] where

1
a=0, 625, y=1, §=3.
These exponents are interpreted as follows: « dictates the behaviour of the specific heat for a constant
volume, 3 determines the behaviour of the difference of volume between the large and small black hole
states, v governs the behaviour of the isothermal compressibility and § controls the behaviour of |P — P,|
|V — V,|? on the critical isotherm
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Figure 2.4: Coexistence line of RN—AdS black hole A plot of the P—T phase diagram
illustrating the small/large black hole phase transition.

At this “special” point, the phase transition becomes second order. The swallowtail only
appears for pressures strictly less than the critical pressure. When looking into the coex-
istence diagram, resultant equation of state is

T 1 20?

pP==_ .
v 2w ot

(2.39)

The second order phase transition at the critical point can easily be seen, as displayed in
coexistence line Figure 2.4. Surprisingly, identical to a Van der Waals fluid, the critical
ratio for a Reisner-Nordstom—AdS black hole P.v./T. = 3/8 remains the same'3.

BThe ratio is independent of the black hole charge @) due to dimensional arguments. However this
independence vanishes for d > 4 [74].
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2.4.2.2 Reentrant phase transitions

Another interesting black hole phase transition is a reentrant phase transition. This was
first seen for a four dimensional black hole in the context of Born-Infeld theory [74]. There-
after, this behaviour was found in singly spinning Kerr—AdS black holes in higher dimen-
sions [75], subject of discussion of this sub-section. This phenomenon was seen in further
studies of some classes of black holes in higher dimensions [76, 55, 77] and also in higher
curvatures [78, 79, 80, 81, 65]

G

1.8

LARGE BH

141
SMALL BH
2] — e ,, 2
'\ LARGEBH
T0 | TI I
1 023 0.24 025

Figure 2.5: Reentrant phase transition diagram A plot of the Gibbs free energy of
a singly spinning Kerr-AdS black hole in d = 6. The arrows in this figure indicate the
increasing size of the event horizon r,.

Investigating its Gibbs free energy, shown in Figure 2.5, a singly spinning Kerr-AdS
black hole in 6 dimensions illustrates a phenomenal behaviour: as temperature decreases,
the system is at a stable state of large black hole until it reaches T = T} where a first
order phase transition occurs making a transition from a large to a small black hole state.
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Continuing to decrease the temperature the Gibbs free energy curve becomes discontinuous
at T = Ty. At this point another zeroth order phase transition occurs passing from a
small to a large black hole as the temperature continues to decrease. To recapitulate, as
temperature continues to decrease, a reentrant large/small /large black hole phase transition
occurs.

This phase transition is similar to the water/nicotine reentrant phase transition : the
first phase transition of it kind to ever be observed. It was discovered in 1904 by Hudson
[82]. The transition for the water/nicotine mixture is as follows. Water and the nicotine
begin in a mixed state at high temperature. As temperature decreases, the two substances
separate at some medium temperature. This separated state remains upon further de-
creasing the temperature until at some low temperature another phase transition occurs,
taking the system back to its original mixed state. In making a comparison with the reen-
trant phase transition of the singly spinning Kerr—AdS black hole, the large black hole
corresponds to the mixed state and the small black hole to the water/nicotine state.

Further investigation of the singly-spinning Kerr-AdS black hole revealed that for a
region of parameters P — T', there are no black holes as seen in Figure 2.6. There’s also a
large black hole region and a small black hole region. The large/small black hole coexistence
line is divided into two pieces: the first, shown in black in the figure, corresponds to the first
order phase transition and eventually terminates at a critical point. The second, shown in
red in the figure, displays the zeroth-order phase transition.

2.4.2.3 Triple points: a solid/liquid/gas phase transition

When studying doubly spinning Kerr—AdS black holes at six dimensions, another interest-
ing phase transition relating black hole thermodynamics to everyday physics was unveiled
: the triple point [76]. This phase transition is famously observed for water, having a phase
transition between solid, liquid and gas state. As shown in Figure 2.7, for an appropriate
angular momenta ratio, the black hole transitions between three states: large, intermediate
and a small black hole. The three states meet at a triple point where the three of them
coexist. The main difference with the solid/liquid/gas phase transition is that the coexis-
tence line between small /intermediate black hole, unlike the solid/liquid line, doesn’t reach
infinity, but rater reaches a critical point, identical to the liquid/gas critical point. Other
classes of black hole in higher order gravity theories exhibit this same phase transition
behaviour [79, 78, 80].
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Figure 2.6: Coexistence line of singly spinning Kerr—AdS black hole A plot of the
P — T phase diagram of a singly spinning rotating black hole.

2.4.3 Thermodynamics of asymptotically de Sitter black holes

As they are much more complex systems, asymptotically de Sitter (dS) black holes were not
well explored thermodynamically for two basic reasons. First, having two horizons, an event
horizon that corresponds to the black hole and a cosmological horizon that corresponds to
the “boundary” beyond which information can’t be retrieved, means that the system is not
in thermodynamic equilibrium. In other words, an observer located between the event and
the cosmological horizons is in a thermodynamic system characterized by two temperatures;
hence they are in a non-equilibrium state. Second, at sufficiently large distances, outside
the cosmological horizon, there is no timelike Killing vector. This prevents a clear meaning
of asymptotic mass.

Due to these difficulties, despite their importance to cosmology, there have been only few
investigations of the thermodynamics black holes with variable A in cosmological contexts
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Figure 2.7: Coexistence line of doubly spinning Kerr—AdS black hole A plot of the
P — T phase diagram in d = 6 for a doubly-spinning Kerr-AdS black hole at fixed angular
momenta ratio J/J; = 0.05. The diagram displays a triple-critical point where the three
states could coexist.

[22, 23, 24, 83]. This section will review the few interesting results of black hole chemistry
in de Sitter spacetime.

2.4.3.1 Multiple Horizons: First laws and Smarr Formulae

An interesting method of how to study the thermodynamics of black holes with multi-
horizons environments is to formulate multiple independent thermodynamic first laws, one
for each horizon. For example, in d-dimensions, a general rotating de Sitter black hole with
multiple U(1) charges usually admits three real and positive horizons that are solutions to
the horizon condition 4. They are as follows:

4For example, for a metric (2.30), the horizon condition is when f= 0
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e The cosmological horizon r. corresponds to the largest positive root.
e The black hole outer horizon ry is located at the second largest positive root
e The inner horizon r; is located at to the third largest positive root if it exists.

Recapitulating the argumets from Appendix A for A > 0 [54], the first laws correspond-
ing to the different horizons read

OM = TSy + > QJF+> " 0)6Q7 + Vo P, (2.40)
k J
OM = —T.58.+ Y QFsJF+> I6Q7 + V0P, (2.41)
k J
OM = —T:08;+ Y Qf6J"+ > ®l6Q7 +ViéP. (2.42)
k J

Here, M is a quantity that is equivalent to the ADM mass in the asymptotically AdS
and flat cases'®. However, the temperatures of the different horizons Ty, T, and T are each
proportional to its corresponding surface gravity and each of them is positive. Note that
Sy, S and S; are the horizons’ entropies, the (2’s are their corresponding angular velocities,
the ®’s correspond to their electric potentials. The @)’s stand for the charges for each , the
J’s denote the angular momenta, and the quantity P is the “pressure”. The latter relates
to the positive cosmological constant A via the same equation (2.10) used in the AdS case

A (d—1)(d—-2)
P = o T6nl? <0. (2.43)
As P is negative in this set up, it is perhaps reasonable to think of it as “tension” in-
stead of pressure. However, in this thesis, I will continue to refer to it as pressure. The
thermodynamic conjugates to the pressure corresponding to the three horizons are defined

by
oM oM oM
) = ) =)
OP /s..01,0t... OP /s,,Jt,0t... OP /s;,01,0..
For an observer situated between two of the horizons, for example the cosmological

and the event horizons, it is only reasonable to introduce a subtracted first law that can
describe the situation yielding

0= T30S, + T.0S. + Y _(Qh — QL)6J + ) (9] — 1)o@’ — VéP, (2.45)

J

(2.44)

15 Au-contraire to those cases, this quantity, M, is conserved in space rather than in time in the de Sitter
case. This is due to that fact that the Killing field 9, in the region near infinity is spacelike [84].
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with
V=V.-V,>0. (2.46)

Here, V' is the net volume of the observable universe, which can be the naive geometric
volume for ordinary cases [54].

Each corresponding Smarr relation for each of the three horizons, derived from the

corresponding first laws (2.40)—(2.42) via the dimensional scaling argument [51], reads
=3y~ s +—Z®Q”+ZQ J— 2 yp (2.47)
d—2 b b d =27 '
M = TS +—Z<I>JQ”+ZQJ Vel (2.48)
=3, ~T,5; +—Z(I>”QJ+ZQ’“J’“——VP (2.49)
d—2 '

2.4.3.2 Multiple Horizons: Effective thermodynamics

Using the first laws and the Smarr formulae presented in the previous section, a few
proposals were presented to address the thermodynamic non-equilibrium. A discussion of
some of these proposals will take place in this section.

The simplest of these proposals is to study the thermodynamics of the three dS horizons
[25] independently. In other words, one can treat each horizon as a thermodynamic system
that is described by its own temperature and has its own thermodynamic behaviour. In
this case, the behaviour of all horizons is captured by a single thermodynamic potential.
The latter is in a way equivalent to the Gibbs free energy of asymptotically AdS black holes
with a negative pressure'® and temperatures'”. Hence if any phase transition is observed
for any of the horizons, it is interpreted to be a phase transition for the asymptotically de
Sitter black hole. Following this logic, a reentrant phase transition [25], similar to the AdS
case, was found for a doubly spinning rotating de Sitter black hole in six dimensions.

Another slightly more complicated approach is to focus on an observer standing some-
where between the black hole and the cosmological horizons. The temperature of the
system is posited to correspond to an “effective temperature” T.; that the observer, in an

16 As mentioned earlier, the negativity of the pressure is cause by the positive cosmological constant.
1"The only negative temperatures are the ones corresponding to the inner horizon and the cosmological
horizon.
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“observable” part of the universe anywhere between the two horizons, sees. This temper-
ature is not universal. This justifies the need for a new effective thermodynamic first law.
Multiple versions of this effective method have been considered, each based on a different
interpretation of the mass parameter M and each introducing a different 7T g.

First introduced by Urano et al. [25] and further analysed in [36, 87, 88, 89, 90, 91], the
first version of the effective method suggested that the parameter of mass M is regarded
as the system’s internal energy E. The other thermodynamic parameters of the system
are determined as follows: the effective volume V' is equal to the volume of the observable
universe '® and reads

S=8+S., V=V.—V,, E=M. (2.50)

The entropy, however, is a ‘total entropy’ S., and it is the sum of the entropies the black
hole horizon and the cosmological horizon [92, 93]. Using (2.40) and (2.41), the effective
first law reads
0E = T.:08 — PadV + Y Q0T +> 93,607 (2.51)
? J

Here, Q. and @7, are respectively the thermodynamic conjugates of J* and Q7. For the
case Schwarzschild dS black holes, this method leads to a phase transition analogous to
the Hawking-Page phase transition seen for Schwarzschild AdS black holes.

The second version of this approach treats the mass parameter M as the gravitational
enthalpy [91]. This analogy is the same as for the AdS case. Hence, the effective thermo-
dynamic first law is given by

0H =T:0S + VogdP + Y Q6]+ 81,607, (2.52)
4 J
with H =—-M, P =—P and V =V, — V,. Here, the actual volume of the system is V..

Similar to the previous version of this effective approach, an effective first law (2.52) is
deduced from (2.40) and (2.41). As the entropy S of the effective system is simply given

by the sum of the entropies S = S. + S [91], the effective temperature reads
1 1\-1
1}:(__~_) . 2.53
AT T, (2.53)

This temperature is not necessarily always positive which can lead to unphysical behaviour
for the system. An improvised solution to this issue is to define the effective entropy as

8Here, the observable universe corresponds to the region of the universe between the black hole horizon
and the cosmological horizon
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S =S,—S,>0." Then, the thermodynamic quantities computed using the effective first
law (2.52) read

1 11 Vo W
chr = < +_> 207 Veff:chf( + b>207

T. Ty T. Ty
‘ O . o I
O - T (—b —C>, & — T (-b —C). 2.54
eff F Tb +Tc eff ff Tb + TC ( )

Despite the attempts to establish a general approach to understand the thermodynamics
of asymptotically de Sitter black holes, non of the previously discussed could fully describe
dS black hole thermodynamics independently of whether or not the cosmological constant
is permitted to vary. The two-horizon problem (i.e. existence of two horizons) prevents the
spacetime from being in thermal equilibrium state, requiring either adopting an effective
temperature approach or considering each horizon as a separate thermodynamic system,
as discussed above. However, isolated de Sitter black holes evaporate due to Hawking
radiation, unlike their AdS cousins where reflecting boundary conditions at oo ensure
thermal stability, making dS black hole thermally “unstable”. In section 5 of this thesis, a
new approach will be thoroughly discussed to this end and overcome some of these issues.

The following chapters of this manuscript are dedicated to study the thermodynamics
of asymptotically de Sitter of black holes. I shall take two foundational paths to this end:
The first path will shed the light on the thermodynamic volume, previously introduced,
in the context of cosmological horizons. This notion is not at all understood as, whenever
studied, is accompanied by the presence of the event horizon. I shall present an approach
to study the thermodynamic volume of cosmological horizons in isolation. The second path
will focus on the studying black hole phase transitions in the context of de Sitter space for
thermalons and for hairy black holes.

9This method would ensure the positivity of both effective temperature T.g and effective volume Vg
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Part 1

Cosmological Horizons
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Chapter 3

Thermodynamic Volume of
Cosmological Solitons

The presence of both a black hole horizon and a cosmological horizon yields two distinct
temperatures, suggesting that the system is in a non-equilibrium state. This in turn leads
to some ambiguity in interpreting the thermodynamic volume, since distinct volumes can
be associated with each horizon. In all known examples the reverse isoperimetric inequality
R > 1 holds separately for each; however if the volume is taken to be the naive geometric
volume in between these horizons then the isoperimetric inequality R < 1 holds [51].

It would be preferable to study the ‘chemistry’ of cosmological horizons in isolation.
For this one needs a class of solutions that are not of constant curvature and that have only
a cosmological horizon. Fortunately a broad class of such solutions exists: Eguchi-Hanson
de Sitter solitons [95].

The Eguchi-Hanson (EH) metric is a self-dual solution of the four-dimensional vac-
uum Euclidean Einstein equations [96]. It has odd-dimensional generalizations that were
discovered few years ago [95] in Einstein gravity with a cosmological constant. They are
referred to as the Eguchi-Hanson solitons. For A < 0 they are horizonless solutions that
in five dimensions are asymptotic to AdSs/Z, (p > 3) and have Lorentzian signature,
yielding a non-simply connected background manifold for the CFT boundary theory [97].
Solutions in higher dimensions have a more complicated asymptotic geometry. For A > 0
these solutions in any odd dimension have a single cosmological horizon, by which I mean
that they have a Killing vector 0/0t that becomes spacelike at sufficiently large distance
from the origin. Upon taking the mass to be the conserved quantity associated with this
Killing vector at future infinity, and computing it using the counterterm method [34], these

32



solutions all satisfy a mazimal mass conjecture [98], whose implication is that they all have
mass less than that of pure de Sitter spacetime with the same asymptotics.

In this chapter I will study the Eguchi-Hanson de Sitter (EHdAS) solitons in the context
of extended phase space thermodynamics. In this framework where A > 0, as discussed in
section 2.4.3.1, the cosmological constant is considered a thermodynamic variable equiva-
lent to the pressure in the first law (2.43) and reads

A
P=——. 3.1
8rG (31)
The thermodynamic conjuguate to the pressure is the volume V' and is defined from geo-
metric arguments [51]. It ensures the validity of the extended first law (2.40)
OM +T6S —VoP =0, (3.2)

and (consistent with Eulerian scaling) renders the Smarr formula (2.47) valid
(D—-2)M+ (D —-1)TS+2VP =0, (3.3)

where d = (D + 1) is the spacetime dimension.

Motivated by the above, I use the Eguchi-Hanson solitons in de Sitter space to inves-
tigate their thermodynamics and cosmological volume in the context of extended phase
space. The particular advantage afforded by these solutions is that, unlike the situation
with de Sitter black holes, thermodynamic equilibrium is satisfied. I find explicit expres-
sions for the thermodynamic volume inside and outside the cosmological horizon. For
the inner case, the reverse isoperimetric inequality is satisfied only for a small range of
a > \/ﬂf when a regularity condition for the soliton is not satisfied. For the outer case,
an important role is played by a Casimir-like term that appears as an arbitrary constant
in the first law and Smarr relation. I compare my results to those obtained using the
counterterm method [95] and I find that they match. Note that for this case the mass is
always smaller than maximal mass given by the Casimir term and that the thermodynamic
volume is always positive if the regularity condition is applied.

The outline of this chapter is as follows: in the next section I introduce the EH Solitons
in odd dimensions. General considerations of their thermodynamics will be discussed in
section 3.2 . The first law and Smarr relation will be used to compute the mass and
thermodynamic volume of these solutions inside and outside the cosmological horizon of
dS space . I will show that explicit expressions for the two parameters can be found in
general odd dimensions. A briefly summarize the results in a the discussion section.
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3.1 EHAdAS solitons

EHAS solitons [95, 97] in general odd (D +1) dimensions are exact solutions to the Einstein
equations with A > 0, and have metrics , derived in Appendix C , of the form

ds? = —g(r)dt® + <2T>

in D = 2k + 2 dimensions, where the metric functions are given by

2 o k

d¢ + Z COS dqbz + m + 5 Z ng(i) (34)

r? a\D
g =1-5 . s =1-(%)", (3.5)
with
d¥2 ) = do? + sin?(6;)dg?, (3.6)
and DD - 1)
A=+ (3.7)

parametrizing the positive cosmological constant.

The radial coordinate is given by r > a; for r < a the metric changes signature,
indicative of its solitonic character. There is a cosmological horizon at r = ¢. Constant (¢, )
sections consist of the fibration of a circle over a product of k 2-spheres. Generalizations
to Gauss-Bonnet gravity [99] and to spacetimes with more general base spaces [100] exist
but I will not consider these solutions here.

For ¢ — oo, the metric (3.4) becomes

i = () 1—(9>D d¢+zk:cos(9 d ZdZQ(), (3.8)
D r - ( D

for a constant t hypersurface. This class of metrics can be regarded as d-dimensional
generalizations of the original [96] D = 4 Eguchi-Hanson metric.

In general, the metric (3.4) will not be regular unless some conditions are imposed to
eliminate the singularities. Noting that a constant (¢, r) section has the form

dr?

2
ds®> = F(r) |dy + Z cos(0;)dd; | + oo (3.9)
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where F(r) = (%)2 f(r) and G(r) = f(r)g(r), regularity requires the absence of conical
singularities. This implies that the periodicity of ¢ at infinity must be an integer multiple

of its periodicity as r — a. Consequently
47 A
VIFGT| _ p
where p is an integer. Note that r = r, is the simultaneous root of F' and G and that

a2
PG, =4 (1- %),

The implications of the regularity condition vary depending on the following three cases:
a® < 0%, a® > (% and a® = (2. If a®> < (?, the regularity condition yields p = 1 and thus

a? = 302 1If a* > (*, when { < r < a, the metric has closed timelike curves. If a = ¢ the
metric is not static for » > a. I will not consider these latter two cases in this work.

(3.10)

In the sequel I shall investigate the thermodynamic behaviour of the metric (3.4) for
general values of a < ¢, imposing the regularity condition a? = %62 at the end of the
calculation. This will allow us to explore the thermodynamics of a cosmological horizon
in thermodynamic equilibrium under rather general conditions without any complicating
features due to the presence of a black hole.

3.2 Soliton Thermodynamics

Since the Killing vector 0/0t is not everywhere timelike, I cannot compute the mass M
of the soliton unambiguously. As a consequence I cannot directly compute the thermody-
namic volume V' = 88—]\; without additional assumptions. I shall assume the validity of the
first law (3.2) and the Smarr relation (3.3) to compute their mass and the volume. This
approach is analogous to that taken for asymptotically Lifshitz black holes [101], for which
computation of the mass is also fraught with ambiguity in certain cases. I shall then relate

our computation of the mass to that obtained in other procedures.

In (D +1) spacetime dimensions, the entropy of the EHAS soliton follows from the area
law

D
S =KV, /1 (%) , (3.11)
with standard arguments implying the temperature at the cosmological horizon is
D
11— (2
T = ﬂ, (3.12)
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D
where K = %p (%r) 2 is one-quarter of the area of the cosmological horizon when a = 0.

Before proceeding, it is worth noting that (3.2) and (3.3) determine the mass and
volume for any solution to the field equations only up to an additive term that depends on
¢. Using (3.1) and (3.7) it is straightforward to compute this contribution

Ma=apt™= Va="Thp )

for both the AdS and dS cases, where ap is an arbitrary constant. Note that the respective
contributions to the mass and volume have opposite signs in the AdS case but the same
sign in the de Sitter case.

apl”, (3.13)

These additional terms depend only on ¢, suggesting they be considered as Casimir *

contributions to the mass and volume. However this interpretation is fraught with problems
in the AdS case for several reasons. First, they are present in any spacetime dimension,
whereas Casimir contributions to the mass occur only for odd spacetime dimensions (even
d), and so this interpretation is inapplicable for odd D. Second, they alternate in sign:
for D = 4,6,8 it has been shown that ap = 37/32, —57%/128,3573/3072 respectively
[103]. This necessarily yields a negative contribution to the volume for D = 4n where n
is an integer, and these contributions can make the overall volume of a sufficiently small
Schwarzschild Anti de Sitter black hole negative. Finally, there is no sensible A — 0 (or
¢ — o0) limit of these contributions unless ap = 0. For these reasons the constant ap is
generally set to zero for asymptotically AdS solutions.

However in the de Sitter case, (3.2) and (3.3) imply that Ma and VA have the same
sign, and it is not clear that such contributions should be set to zero. For the soliton
solutions that are considered here, D is always even and so it is reasonable to expect
a Casimir contribution to the cosmological volume. Indeed I shall see that a variety of
interpretations for this additional term exist, and I shall explore a number of distinct
possibilities.

I solve the first law and Smarr relation for the conserved mass and the cosmological
volume of EHAS solitons in both cases: inside and outside the cosmological horizon. On
dimensional grounds I expand the mass M and the cosmological volume V. in powers of a

and /

M =Y mpa® 2?2 (3.14)
k=0

! This comes from the suggestive argument in [102] that the AdS/CFT correspondence predicts the
existence of extra light states. This means that the boundary energy of pure AdSs is identical to the
Casimir energy of N = 4 super U(N) Yang-Mills theory on S3.
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and
D
5

V=> val e, (3.15)

k=0
which are the most general expansions admitting a solution that satisfies both (3.2) and
(3.3). In fact it is more than needed — noting that the ¢-dependent term in the mass is
divergent in the limit A — 0 suggests that I should consider excluding it. However since
there is no soliton in this limit, this term was retained. I shall investigate the implications
of identifying it with the Casimir energy [34] in the dS/CFT correspondence conjecture

[27].

3.2.1 Inside the cosmological horizon

The Smarr relation (3.3) and the first law (3.2) are valid for a black hole horizon. For a
cosmological horizon these equations are modified in (2.41), (2.48) to read [7]

§Mip + TdS — VindP = 0, (3.16)
(D = 2)My, + (D — 1)TS + 2V, P = 0, (3.17)

from the perspective of an observer in a region where 9/0t is timelike, and where the
plus signs in the second terms of these equations arises because the surface gravity of
the de Sitter horizon is negative, while the corresponding temperature T > 0 since it is
proportional to the magnitude of the surface gravity.

Using (3.11) and (3.12), I found that most terms in both (3.14) and (3.15) vanish and
obtain

— / Vin = —— —_— — ) /P 1
me e D—1" po—1)""%" D) - (318)
for the mass and volume respectively, where I have relabeled aop — m D.

If one imposes the requirement that the mass remain finite as A — 0, then mp = 0
2

and
D
(B)*a” s L (3m\""
M, =D/ = A20a, = (20 D=2 1
3 8p7T€2 — sol . (D) 14 ) (3 9)
D D D
9 (4r) 2 D D 9¢D (4m) 2 D 5
szigD 12 * A__*(stol:#ﬂ 1- = 3 :
pD 2(D—1)¢P D 2(D—1) \4
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where the latter relations follow from imposing the regularity condition (3.10).

Suspending the regularity condition, it becomes clear that for any value of a < /¢
the mass M;, and cosmological volume V;,, in (3.18) are both positive for vanishing m D.
However the volume V;, does not vanish in the A — 0 limit, and so one might consider a
variety of choices of m D that will yield various desired outcomes. These I depict in tables
1 and 2. In table 1 I have not imposed the regularity condition (3.10), and indicate the

choices of m D such that the rows correspond to finite mass as ¢ — oo (case 1), vanishing

mass (case 2), vanishing volume (case 3), and requiring the volume to depend only on the
soliton parameter a (case 4). In table 2 the regularity condition is imposed, the rows in
this table corresponding to those in table 1 for the respective choices of mp.

2
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Figure 3.1: Plots of the isoperimetric ratio R (for a representative dimension D = 6) as
a function of the parameter y = 7. The plots, from left to right, correspond respectively
to case 1, case 2, and case 4 discussed in Table 3.1. The dashed line corresponds to the
regularity condition y = 1/3/4 .

Since the soliton is not a black hole, the premises of the Reverse Isoperimetric Inequality
Conjecture [53] does not apply. In a d = D + 1 dimensions, the isoperimetric factor reads

(G TR ) G e

However the parameter R provides a useful measure of the relationship between volume
and entropy, and so I indicate in each table a computation of the isoperimetric ratio R in
(3.21) . I find that R is always less than unity if the regularity condition is imposed, as
indicated in table 2 and illustrated in figures 3.1 and 3.2. If the regularity condition is not
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Figure 3.2: A plot of the isoperimetric factor R for the cases 1, 2 and 4 of the cosmological
volume as a function of the spatial dimension D when the regularity condition is imposed
(see Table 3.2). The first case is (blue), the second is in (red) and the fourth is in (green).

imposed then for a small range of values of a > /3/4¢ one can obtain R > 1, as shown in
figure 3.1.

3.2.2 Outside the cosmological horizon

In this section I consider the thermodynamics of EH-dS solitons outside of the cosmological
horizon, where r > ¢. This problem (without taking thermodynamic volume into account)
has been previously considered in the context of the proposed dS/CFT correspondence
[27], which entails computing quantities at past/future infinity. As its name indicates, this
method suggests an information correlation regarding Euclidean CFT of asymptotically de
Sitter (a)dS spacetimes. Some calculation for conserved charges for pure and asymptot-
ically de Sitter were performed inside the cosmological horizon where the Killing vector

39



SYMSOI [RIDUOY) :T°¢ S[qR],

Q@m Am\w - N\Qwﬁv % M% D JO UOTIUNJ SB M4 :f ase))
0 ATi - M\wv ﬁ% Q@ ‘ammwﬁ EC | oumpoy Sunpsiuey g ose))
(- & 0 Q@ = sse]y Surystuey :g asen)
i+ i o 0 00 - 58 g g T ose)
ut ut £
I n du

40




posoduut m = fi uonipuod Ajrrensor

O M SYMSOY '€ OIRL,

008 0 (8T |edd|li) T o (5) T (5) F - D Jo Hoganoy st ) ose)
0 0 el |12 0] () EGT | [(0) 6 +1-a] o (§) S0 | ommoy Sy i ose)
860060 | o/ m@ -1 %A@ %| 0 %Amv %ﬁ sse]\ SUTYSIURA :7 S
€L0960 | o %% L4 m@ - r-al m:@ = 0 00 ¢ Se My ayuLy T ase))
108 0S 4
=0y P Py au

41



£ = 0/0t is timelike [104] .

Nevertheless outside the horizon, the spacetime boundaries at past/future infinity are
Euclidean surfaces. So one can use a different set of coordinates [98] to turn the timelike
Killing vector to a spacelike Killing vector. Hence its associated conserved charge can be
calculated using the relationship

M= = }’{ DP-1gaghrefl (3.22)
b

where T¢I is stress-energy on the boundary Y of the manifold, determined from varying
the Einstein-dS action with counter-terms. Full expansions for this quantity have been
previously computed [34]. Using (3.22) the maximal mass conjecture — any asymptotically
dS spacetime with mass greater than dS has a cosmological singularity — was proposed
[98]. A straightforward evaluation of (3.22) at future infinity for the Schwarzschild de
Sitter solution whose metric functions in the ansatz (3.4) are g(r) = 1 — r?/0? — 2m/r?,
f(r) = 1 for D = 4 yields M = —m [105], which is sign-reversed from the quantity
employed in (3.16) and (3.17). This is a general property of computing the mass outside
of a cosmological horizon using (3.22) [105].

Hence in order to apply this approach, one can make use of the Smarr relation (3.17)
and the first law (3.16) with M — —M to solve for the outer mass and the cosmological
volume. The net effect of this is to recover the relations (3.3) and (3.2) but with V' — -V

§Myu — TdS + V0P = 0, (3.23)

(D — 2)Myy, — (D — 1)TS — 2V, P = 0, (3.24)
and I shall solve these for M,,; and V,,; using (3.11) and (3.12).

The calculation is very similar to the inside case yielding

Ka” D—2
Maut - - A l? + mgf y (325)
and 2K 8(D — 2) 4K
Vot = ——a? — (222 oy — 22 ) P 3.26
‘=" Dp-1° (D(D—1)7Tm? D) ’ (3:26)

as the general solutions to (3.3) and (3.2). One can see that in general the contribution
proportional to mp is now of opposite sign for the mass and volume.
2
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One can compare these results in D = 4 to a direct computation of the mass. The
EHAS metric reads in this case

2 2 1 ?,,2
ds? = —g(r)dt2 + = f(r [d\II v eosodo| + ———ar? + T an,?, 3.27
A 0 [ Fgn ™ Tt B
where the counter-term method [31] yields
7 (30% — 4a?)
= 7 3.28
for the conserved mass using (3.22) [95]. The action can likewise be directly computed in

this approach and is
pr (4a* — 504)

1= 2
o (3.29)
yielding the entropy
B (04— a*)
S = 3.30
via the Gibbs-Duhem relation S = M — I, where
273
B = W/ (3.31)

is the period of the Euclidean time 7 that ensures regularity in the (7,7) section of the
Euclidean solution. Note that the regularity condition has not been applied.

Clearly for D = 4, § = 1/T from (3.12), and the entropy (3.30) agrees with (3.11).
Requiring that these quantities along with the mass (3.28) satisfy both the first law (3.2)

and Smarr relation (3.3) yields
2

‘/ou =
LT 24

(9¢* — 8a?), (3.32)

for the thermodynamic volume of the EHdS soliton, where from (3.1) the pressure is

A 3

=== ) 3.33
871G 4ml? ( )
By imposing the regularity condition p = 1, I obtain
3> 3202
out — Tao 0 out — ) 34
" 128 TG (3:34)
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Dimension | m My Viout

Nl|s]

D=4 | 3 | Sz | 3p

32 128

_ 5mZ 2 1372 46
D=6 128 1286 405 o5 ¢

_ 3575 | 877x° p2 | 87x% 48
D=8 3072 98304€ 28672£

Table 3.3: Mass and Volume computed
outside the cosmological horizon. The
constant mp is chosen to yield the mass
of de Sitter 2spacetime when a = 0.

which is in agreement with both the mass (3.25) and the cosmological volume (3.26) if
I set my = 22 (and noting that K = 7?/2p for D = 4). Note from (3.34) that M, <

Mys = 3§5 , in accord with the maximal mass conjecture [93, , |, and that this
yields a positive thermodynamic volume. If one chooses M,,; = Mg, then my = ?Tg’

and the volume is still positive. A negative volume requires mo > lé’f, which then yields

2
M,y = 2}% > Mg, in violation of the conjecture.

Similar arguments for D > 4 can be made. It is always possible to choose the constant
mp to yield M, = Mys when a = 0, and it is clear from (3.34) that the maximal mass
conJecture will necessarily be satisfied. As shown in table 3.3, one finds for all values that
have been calculated for Myg [341] that the volume V,,; > 0. I expect that this is a general
feature for any (odd) dimension.

3.3 Discussion

In this work, general expressions for the thermodynamic volume inside and outside the
cosmological horizon for EH solitons in any odd dimension were found. These quantities
are calculable and well-defined regardless of whether or not the regularity condition for the
soliton is satisfied. They illustrate that cosmological volume is a well-defined concept, and
that cosmological horizons indeed have meaningful thermodynamic properties.

For observers within the cosmological horizon, the mass and volume can be defined
using the first law and Smarr relations. I have shown that for this case that the reverse
isoperimetric inequality [53] is not satisfied for general values of the soliton parameter a
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(including the value satisfying the regularity condition), though it is satisfied for a narrow
range of values of this parameter. This situation stands in contrast to that for the class of
Kerr de Sitter spacetimes, for which R > 1 holds for cosmological horizons [51]. That R is
less than unity even when the soliton regularity condition is satisfied hints at a relationship
between the degrees of freedom of cosmological horizons and their entropy that is distinct
from that of black holes.

For the outer case I exploited the definition (3.22) of conserved mass to obtain the
unique result (3.32) for the cosmological volume in 5 dimensions (or alternatively (3.34)
when the regularity condition holds). The mass M,,; satisfies the maximal mass conjecture
and the volume is positive. By computing M,,; to yield the mass (3.22) for de Sitter
space when a = 0, I find that the associated cosmological volume is always positive in all
dimensions for which (3.22) has been computed. I expect this to be a general feature for
all spacetimes satisifying the maximal mass conjecture.

The thermodynamics of these objects remains to be explored. The equation of state for
the (non-regular) soliton will, from (3.12), be a highly non-linear relationship between the
pressure, volume, and temperature, and whether or not any interesting phase behaviour can
result remains to be determined. Generalizations of these solutions to Lovelock gravity exist
[99], and it is quite possible that these objects may also exhibit interesting thermodynamic
behaviour.
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Chapter 4

Thermalons

Phase transitions in gravitational physics have been a subject of interest for the last few
decades. More than 35 years ago, Coleman and de Luccia discussed gravitational in-
stantons, showing that coupling a scalar field to a dynamical metric can lead to phase
transitions between two competing vacua with different cosmological constants [107, 108].
These transitions proceed via the nucleation of expanding bubbles of true vacuum within
the false vacuum when the free energy of the true vacuum becomes smaller than that of
the false vacuum. Mechanisms of this kind have been utilized in various proposed solutions
to the cosmological constant problem [109, 17]. Another classic example of a gravitational
phase transition is the Hawking-Page transition [11], which has significance in various pro-
posed gauge/gravity dualities. This phenomenon is a first order phase transition between
thermal Anti de Sitter (AdS) space and the Schwarzschild-AdS black hole, with the latter
becoming thermodynamically preferred (i.e. lower in free energy) above a certain critical
temperature.

A number of recent studies have focused on thermalon mediated phase transitions in
higher curvature gravity [32, 35, |. These phase transitions proceed via the nucleation
of spherical shells, called thermalons, that separate spacetime into two regions described
by different branches of the solution, hosting a black hole in the interior. Above a certain
critical temperature the thermalon configuration is thermodynamically preferred to finite
temperature AdS space . The thermalon, once formed, is dynamically unstable and expands
to fill all space in finite time, effectively changing the asymptotic structure of the spacetime.
In a study focusing on a fixed value of the cosmological constant, it has been shown
[35, | that thermal AdS space can undergo a thermalon-mediated phase transition to
an asymptotically dS black hole geometry—in some sense a generalized version of the
Hawking-Page transition.
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In this chapter, I will be studying thermalon mediated phase transitions in the context
of extended phase space thermodynamics. In this framework, the relationship between the
cosmological constant and the thermodynamic pressure is

A

8rG
where the last equality follows since I employ the normalization 167G = 1 for consistency
with ref.[32]. The corresponding conjugate quantity is the thermodynamic volume which
is defined to ensure the validity of the extended first law (2.13) a result which follows from
geometric arguments [51], and which renders the Smarr relation (2.14) consistent with
Eulerian scaling. A natural consequence of the extended phase space paradigm is that
it allows us to understand mass as the gravitational analogue of the enthalpy of a black
hole rather than the total energy of the system, which has far-reaching consequences. My
motivation for using this framework comes from the fact that it is particularly well suited
for an exhaustive study of the thermodynamic phase space as discussed in chapter 2. As
a result, I will be able to explore the properties of these phase transitions as the pressure
varies.

_2A, (4.1)

The organization of this chapter is as follows: In the next section I briefly review
the basics and the essentials of the thermalon mechanism in Lovelock gravity. In section
4.2 1 specialize to the case of Gauss-Bonnet gravity where I study the stability, extended
phase space thermodynamics, and phase structure of the thermalons. When considering
the phase behaviour of these systems, I employ the extended thermodynamic phase space
formalism to exhaustively study how these transitions depend on the pressure (cosmological
constant). In the context of AdS — dS + black hole thermalon mediated phase transitions
I recover the results of [35]. Furthermore, by analysing the behaviour of the free energy
near the Nariai limit, I find that for a fixed value of the Gauss-Bonnet coupling, there is a
minimum pressure below which thermalon mediated phase transitions are not possible. I
find that in the case where the pressure is vanishing, a phase transition between thermal
AdS space and an asymptotically flat geometry with a black hole is possible for any range
of temperature. In the last section I comment on the similarities and differences between
the thermalon mediated phase transition and the Hawking-Page transition in the regime
of positive pressures.

4.1 Thermalons in Lovelock gravity

It is generally expected that in any attempt to perturbatively quantize gravity one will find
that the standard Einstein-Hilbert action is modified by the addition of higher curvature

48



terms. Natural candidates for the higher curvature corrections are provided by Lovelock
gravities, which are the unique theories that give rise to generally covariant field equations
containing at most second order derivatives of the metric [112].

One can obtain spherically symmetric solutions to the field equations of this theory,
described via the boundary and bulk action in (1.5), of the form

2

ds* = —f(r)dt* + ;i(rr)

with dQ(ZU) 4o denoting the line element on a (d— 2)-dimensional compact space of constant

+ T2dQ%o.)d,27 (42)

curvature (o = 1,0, —1 denoting spherical, flat and hyperbolic topologies, respectively).
Making use of the notation g = (¢ — f)/r?, the field equations are solved provided, the
characteristic polynomial satisfies

Tl =Y st = o, (4.3)

where M is a constant of integration identified as the mass parameter!' of the solution.
Note that here I have suppressed, for convenience, a factor proportional to the volume of
the unit radius manifold whose metric is given by dQ%O) deo-

This chapter is concerned with thermalon-mediated phase transitions. These transitions
proceed via the production of a thermodynamically favoured but dynamically unstable
spherical shell, called the thermalon, which divides spacetime into two regions. The case of
interest is when the spacetime metric is continuous but not differentiable at the junction,
a condition which, in Einstein gravity, would require the junction shell to possess stress-
energy but does not have such a requirement in higher curvature gravity—one can think of
the higher curvature terms themselves as providing the matter source. Since the thermalon
is dynamically unstable, once formed it expands rapidly, reaching spatial infinity in finite
time and therefore changing the asymptotic structure of the spacetime. In this way, the
thermalon can be considered to mediate a phase transition between two vacua with different
asymptotic structure.

I now turn our attention to a brief recapitulation of the junction conditions and ther-
malon properties as discussed in [32]. Here I am interested in the case where a timelike
junction surface separates an inner region and an outer region, which is denoted with a
“—7 and “+7, respectively. In particular, I will be interested in the scenario where the

167G

'Here, the mass is related to the standard definition via M = @2n
- d—2
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metric function describing the inner geometry, f_(r), is different from the metric function
describing the outer geometry, f,(r). To this end, I decompose the spacetime manifold:
M= M_U(E x &) UM, where ¥ is the junction hypersurface and £ € [0, 1] is a real
parameter used to interpolate both regions.

Since the thermalon is a finite temperature instanton 2, I take the Euclidean metric to
be

ds? = fo(r)dt* + fﬁi) + 204 o (4.4)
and describe the junction with the parametric equations
r=ua(r), ti="Tg(7), (4.5)
and induced metric
ds* = dr* + a(T)QdQ%U)d_Q . (4.6)

Note that writing the hypersurface metric in the form of (4.6) assumes that the condition

a2

feT2 + O (4.7)

is satisfied for all 7 (a dot representing a 7 derivative). In the case of the thermalon,
which is characterized by the static configuration @ = d = 0, i.e. a(7) = ay, this condition
amounts to the physical statement that the temperature of the bubble is the same as seen

from both sides
V f—(a*)ﬁ— =V f+(a*)ﬁ+ = ﬁOa (48)

where (_ is the inverse Hawking temperature of the inner black hole and S, is the inverse
temperature seen by an observer at infinity.

As discussed in detail in [32], the junction conditions for this set up (without matter)
amount to the continuity of the canonical momenta across the hypersurface >

7r;“b =T, (4.9)

where the canonical momenta are computed via the variation of the boundary terms at
the junction surface [114]

6Ty = — / A e hey . (4.10)
oM

2Instantons are particle-like solutions to the equations of motion of classical field theories in Euclidean
space [113]. Tt carries out a description of quantum tunneling.
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However, for the case just described, the canonical momenta have only diagonal compo-
nents, which are themselves all related by the constraint

d
- (a’?x7) = (d—2)a*ar) (4.11)

where ; represent the angular coordinates on . Due to the Bianchi identity, only the 77
component of the canonical momenta matters. A detailed calculation of 7 is provided in
Appendix D.

In the following section I shall specialize to the case of Gauss-Bonnet (GB) gravity.

4.2 (Gauss-Bonnet case

Gauss-Bonnet gravity is the simplest extension of the Einstein-Hilbert action to include
higher curvature Lovelock terms (1.5). In the following I shall adopt for the normalization
of the Lovelock couplings as discussed in the introduction

—2A4
Co (d—l)(d—?) , G y G2 ( )
Note that here our definitions differ from those in refs. [32, 35, | in two ways. First,

I have not assumed a particular sign for the cosmological term and I have written it in
terms of the radius of curvature, L. This decision is simply for convenience when I will
later identify the cosmological constant as a pressure. Note also here our introduction of
the terminology “A4” where the dimension-dependent factors have been absorbed to make
a more convenient shorthand. Secondly, I have not rescaled the GB coupling by a power of
A to make it dimensionless, since doing so would introduce extra and unnecessary factors
of the pressure, thereby complicating the analysis.

The characteristic polynomial (4.3) now reads

My

Tlgs] = —2A 4 g1 + Mg3 = "

—=. (4.13)

Explicitly solving this for g.(r) yields

M,
1i\/1+4)\ <2A+ﬁ)] , (4.14)

ol

1
g+(r) = o




and so

2

fe(r) = U+;_)\

1:|:\/1+4)\ (2A+i\f—ﬁ)] . (4.15)

A point of particular interest is that for each branch of the solution there is an effective
cosmological constant given by

1+ V14+8\A

A = — 4.16
and so the two branches describe two asymptotically distinct solutions. The effective
cosmological constants are generally different, being equal only when A = —1/(8A), a case

that corresponds to Chern-Simons theory [115].

Expressing the junction condition IT = 0 in the more convenient form a2 — 2V(a) =0

yields
d+1

~ 24A(M, — M) [9+B+2091)" =93+ 20 )] + 5, (4.17)

for the thermalon potential. Making use of (4.13), I can put V' into a more useful form by
reducing the order in g+. The result is

V(a)

+
a®t! 4M o
= 1 AN 24+ A\g)—— —. 4.1
V@) = gt [+ @ ||+ (4.13)
Note that in the above, the factor 1 + 8 \A can be written as
14 8AA = A2 (A — A (4.19)

where the term in parentheses could be interpreted as proportional to the difference between
“effective pressures” inside and outside the bubble. Working further with this potential, I
can obtain expressions for its a derivatives, the first of which reads

V'(a)

! M } (4.20)

= S, = (d+1)(1+8AN)g — [d 17+ 2X(d — 5)g] —

In obtaining (4.20) I have utilized the characteristic polynomial and its derivative to remove
expressions involving ¢/ (a). Expressions for higher derivatives of the potential can be
obtained in the same manner, but for our analysis I shall need only the potential and its

first derivative, since solving for consistent thermalon configurations amounts to the static
condition V'(a,) = V'(a,) = 0.
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4.2.1 Stability

Before moving on to the analysis of the thermodynamics of these systems, I pause to
comment on the stability of thermalon configurations in GB gravity. As was outlined in
[32], there are two primary stability concerns: the dynamical instability of the thermalon
solution and the possibility of the bubble escaping to infinity. By expanding the junction
condition about the thermalon solution a = ay, to leading order it takes the form (cf. eq.

(4.32) from [32])

C'LQ

1 2
“k(a—a)? =0, 4.21
5 + 2k(a ay) 0 ( )

oo & oIl \ 0211

=5 \om ) 9a2
which can be thought of as an effective Hooke’s constant. The sign of k determines the
stability of the thermalon configuration — if it is positive, the thermalon is stable (the bubble
can oscillate about a = a, or remain fixed there) while a negative value of k indicates that
the thermalon is unstable (the bubble can expand, causing a phase transition).® Since I
am interested in thermalon mediated phase transitions, I am interested only in cases where
k < 0. In the case at hand, k is proportional to the second derivative of the thermalon
potential V. The particular expression for k (or, equivalently, V") is quite messy, but I
have confirmed numerically that & < 0 here, provided A > 0, for all physically relevant
values of A.

where k is given by

[\

: (4.22)

a=ax

The second condition I am interested in is the possibility of the bubble escaping to
infinity. To this end, it is of interest to see how the speed of the bubble (@) behaves in the
limit of large a. A consistent solution of the junction conditions in this limit yields

ad-1 A
H~x ——— dz Y 4.2
2(M+ _ M_) /Ae_ff L [‘r] ) ( 3)

where H = (0 + a?)/a? is related to the velocity of the bubble and approaches infinity as
the bubble expands to infinity (for more details see Appendix D). In the case considered
here this expression has the simple form

at™l (14 8AA)2 at=1)

H ~ —
2(My — M) 62 12(M, — M_)

(A — AsTY? (4.24)

3The possibility of collapsing bubbles was discussed at length in [32].
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The limit H — oo is consistent with the bubble expanding to infinity (¢ — oo) provided
that I have M, > M_, A > 0 and A > —1/(8)). Looking at the last term I see that
H ~ AP3,. This result fits well with our thermodynamic intuition: the bubble will be able
to expand to infinity provided there is a positive difference between the effective pressures
inside and outside of the bubble, which is the situation here.

4.2.2 Thermodynamic picture

In this section I wish to develop the extended phase space thermodynamics of the system
under study. In particular, I am interested in the case where the outer solution describes
an asymptotically AdS spacetime, while the inner solution is asymptotically dS. First, I
consider the location of the bubble relative to the black hole horizon and the de Sitter
horizon. Recall that the thermalon corresponds to the static solution V' (a.) = V'(a,) = 0.
I can then solve eqs. (4.17) and (4.20) to obtain My as functions of g+ and a,. By
substituting these results into the characteristic polynomial (4.13) T arrive at a system of
two quadratic equations which can be solved for gi(a,). The solution can be obtained
analytically; however it is important to mention criteria used in determining which root is
correct. First, I cannot have g4 (a,) = g_(a4), since in this case I would not be considering
jump metrics and so no phase transition would occur. Second, g, (a.) must be strictly
negative, so that the metric function f,(r) is positive and properly describes an AdS
spacetime outside the bubble.

Having solved for g4 (a,), an explicit expression for M_(a,,A) can be obtained via the
characteristic polynomial (4.13). One can then compare a, with the event and cosmological
horizon radii by solving f_(ry) = f-(r.) = 0 for r;, and r. as functions of M_(a,, A). It
is easy to find that for all well-defined parameters the thermalon radius is larger than the
event horizon radius, but smaller than the radius of the cosmological horizon up until the
Nariai limit, at which all three occur at the same value. The result is highlighted for the
specific case d = 5, A = 0.5, A = 0.1 and o0 = 1 in Figure 4.1. One consequence of this
is that the cosmological horizon is not part of the spacetime, since outside the bubble the
solution is given by the AdS branch. One has, therefore, a Killing field which is timelike
everywhere outside the event horizon allowing us to form a well-defined thermodynamic
picture, free of the usual issues that plague dS spacetimes.

I now focus on a development of the extended first law and Smarr formulae for this set
up. Since A here is dimensionful, I must consider it as a thermodynamic variable in the
first law with a conjugate potential ¥. Recalling that the pressure is given by eq. (4.1)
and using this, along with the various properties of the inner black hole solution, it is
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Figure 4.1: A plot of r, (blue), r. (red) and a, (green) as functions of a, for d = 5,
A =01, A =0.5, 0 = 1. Isee that the bubble location, a,, is always found between
the event horizon and the cosmological horizon until all three meet at the Nariai bound,
a, =1/ V4A. The plot is qualitatively the same for d > 5.

straightforward to show that the extended first law [54, 116]

dM_ =T_dS + V_dP + V_d\, (4.25)
is satisfied provided I identify
Vo= (4.26)
as the thermodynamic volume? and
8wy
U_=ori®(o- 4.27

4 The absence of a prefactor of the form 272 follows from the conventions employed throughout this
work.
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for the potential conjugate to A. Note that here the Hawking temperature of the black
hole is obtained in the standard way by requiring the absence of conical singularities in
the Euclidean section (t — —itg)

1)

T
47

, (4.28)

r=rp

while the entropy in this normalization is given by [32]

1 20\
= 4qrd2 . 4.2
5 =dmr, (d—2+r§(d—4)) (4.29)

These thermodynamic quantities satisfy the Smarr relation for the black hole
(d—=3)M_=(d—2)T_S —2V_P +2V_), (4.30)

as derived from scaling.

I now wish to develop the first law and Smarr relation for the quantities outside the
bubble. The outer first law and Smarr formula are given by

dM+ — T+dS + V+dp + \I}+dA,

which the thermodynamic quantities must satisfy. As mentioned earlier, when the condi-
tions for the existence of the thermalon are enforced (i.e. V(as) = V'(ay) = 0), I obtain
expressions for M, and M_ in terms of a, and A, the latter of which equivalently means I
obtain an implicit relationship between r;, a,, and A

o

M _(a,,A) =r1Y [—2] . (4.32)
Th

This relationship gives us the freedom to write down thermodynamic expressions in terms

of either a, or r,. In the outer first law it is be easier to work directly with the former,

since I have explicitly M, (a.,A). For the temperature, from the matching condition at

the bubble I know that

f+ (a*> T
f-(a,)
The entropy that appears in the outer first law is simply that given in (4.29) for the black
hole, since the bubble does not contribute to the entropy.

T+:

(4.33)
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It is only practical to compute the expressions of the quantities in (4.31) analytically
in d = 5, but even then they are particularly messy—especially V., and ¥,. For these
reasons | have verified a consistent solution of (4.31) numerically. In general, V, is not
independent of P, which is (at least in part) due to the relationship (4.32) including P as
the zeroth order contribution in Y [o/r?].

4.2.3 Ciriticality & phase phenomena

With the tools developed in the previous sections I am now situated to perform the ex-
tended phase space analysis for these transitions. I focus on the case 0 =1 and d = 5. The
thermodynamically preferred state at a given temperature and pressure is that which min-
imizes the Gibbs free energy. In [32] the Euclidean action for the thermalon configuration
was shown to be

IT=p,M,—S. (4.34)

In general, the Euclidean action of the thermalon configuration is divergent; however, it
can be suitably regularized by subtracting the (infinite) contribution of thermal AdS space
yielding the result above. It is then the case that the Gibbs free energy is given by

Here I will be comparing the free energy of the thermalon configuration to that of
pure AdS space, the latter being identically zero due to the fact that it was used in
the background subtraction. Despite the naive impression that there are six independent
parameters (M, 51, a, and P), there are in fact only two, T, and P, since there are four
equations relating the six quantities: V'(a.) = V'(a,) = 0, the Hawking condition for the
inner black hole, and the matching of thermal circles (4.33) imposed at the junction. In
general it is difficult or impossible to write M, and S as explicit functions of T’y and P,
therefore I studied the behaviour of G' numerically.

4.2.3.1 Negative pressure: thermal AdS to dS black hole transitions

I begin by considering the situation in which the thermalon separates spacetime into regions
with AdS asymptotics outside and dS asymptotics inside. I build upon the approach of
[35] by performing an exhaustive analysis of the pressure parameter space.

I first consider the parameter range over which I can obtain a sensible solution of the
four equations governing the thermalon. A representative plot is shown in Figure 4.2 which
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Figure 4.2: A plot displaying a, (black), the cosmological horizon (cyan), the event horizon
(red) and the mass parameter M_ (purple) as functions of a,, in units of the Planck length.
The Nariai limit corresponds to the point where the black, cyan, and red curves meet.
This plot corresponds to P = —0.1 and A = 1.35; plots for other parameter values are
qualitatively similar.

highlights the salient features. I see that for some range of a, there is a consistent solution
where the inner de Sitter space has a cosmological horizon, an event horizon and the mass
parameter M_ is positive. Outside of this region (values of a, that lie beyond the edges of
the red curve) there is no consistent solution and bubbles of these sizes cannot form. To the
right of the Nariai limit, the conditions V'(a,) = V'(a,) = 0 are satisfied. However in this
region II"™ = —IT1~, and so the junction conditions cannot be satisfied without the addition
of a shell of stress-energy. Furthermore, it can be shown that IIT < 0 for a, > aNariais
since the only zero of ITT occurs at the Nariai limit and its slope as a function of a is

negative there. Consequently any such shell must be composed of exotic matter, since
p~IIT —II" =2II" < 0.

The behaviour of the Gibbs free energy is very interesting and is influenced by both the
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Figure 4.3: AdS to dS transition: pressure effects: A = 1.35. The red curves
correspond to P = —0.1 while the blue curves correspond to P = —1. Upper left: A plot
of the free energy vs. T'.. For P = —0.1 a thermalon mediated phase transition is possible
over a range of temperature, while it is not possible for P = —1. In each case the thin upper
branch is unphysical, corresponding to II"™ = —II~. The dotted black line corresponds to
the Gibbs free energy for the Nariai limit as a function of pressure. Upper right: A plot
of the temperature, T, vs. a, n both the blue and red curve, the cusp corresponds to the
Nariai limit. Bottom: A plot showing the Gibbs free energy as a function of a, with the
cusps again corresponding to the Nariai limit. All quantities are measured in units of the

Planck length. The thick lines correspond to the physical curves.
59



pressure and the Gauss-Bonnet coupling. First let us consider the effect the pressure has
on the Gibbs free energy. Figure 4.3 shows free energy and temperature plots for A = 1.35
with the red and blue curves corresponding to P = —0.1 and P = —1, respectively. These
plots illustrate a general feature: for a given fixed A, thermalon mediated phase transitions
are possible for values of P near zero, while for P increasingly negative there is a point
after which the free energy is strictly positive, and no phase transitions can occur—in
Figure 4.3 this happens for pressures near P = —1. As the pressure becomes closer to
zero, the range of temperatures over which the thermalon mediated phase transitions can
occur becomes larger. This suggests the possibility of observing AdS — Minkowski space
phase transitions in the limit where P = 0, which I explore in the following section.

From Figure 4.3 it appears as through the free energy is double valued, with the pos-
sibility of small and large bubbles for each value of temperature. However, this is not the
case. The large bubble branch turns out to be unphysical (or would require exotic matter):
while it satisfies V(a,) = V'(ax) = 0 it does not satisfy II* = II". The same is true for
the branches to the right of the cusp in Figure 4.4. The cusp in the Gibbs free energy vs.
temperature curve corresponds to parameter values that yield the Nariai limit.

The next feature I examine is how the free energy depends on A, with representative
results shown in Figure 4.4. From these plots I see that for various ranges of temperatures
the free energy is negative, indicating the possibility of thermalon mediated phase tran-
sitions. I note that the range of temperatures over which these transitions are possible
increases as A is made smaller.

I can attain further insight by considering these phase transitions in the P — T-plane,
as shown in Figure 4.5 for A = 0.1. Here, the red curve marks the parameter values for
which the free energy of the thermalon is identically zero. Within the region bounded by
the left-most part of the red curve and the Nariai temperature (the cusp of the red curve),
the free energy of the thermalon is negative and a phase transition can occur. Outside of
this region, either the free energy of the thermalon is positive or no physical thermalon
solution exists, and thus the thermal AdS space will not undergo a thermalon mediated
phase transition. The piece of the red curve to the right of the cusp corresponds to the
zeros of the unphysical (or exotic matter) branch.

I pause here to make a cautionary remark. While Figure 4.5 is similar to coexistence
plots, it is important to distinguish these thermalon mediated phase transitions from the
type of phase transitions I normally study using the tools of extended phase space thermo-
dynamics. Typically one compares a number of configurations all of which are in thermal
equilibrium. The key difference for the thermalon is that it is unstable—once it forms it
rapidly expands to infinity, changing the asymptotics of the spacetime. Furthermore, there
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Figure 4.4: AdS to dS transition: )\ effects: P = —0.1. The above plots show the free
energy vs temperature (77) for A = 0.05,0.1,0.2,1.35 (from right to left) with the right
plot being just a zoomed-in version of the left. Thermalon mediated phase transitions are
possible over a wider range of temperatures for larger values of A\. The physical parts of
the curves are the thick ones to the left of the cusps. The dotted black line corresponds to
the Nariai limit as a function of A\. Quantities are measured in units of the Planck length.
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Figure 4.5: AdS to dS transition: P — 7T plane: A = 0.1. For parameter values inside
the red curve a thermalon mediated phase transition is permitted, while parameters outside
of this wedge correspond to thermal AdS space—mno phase transition is possible. The cusp
corresponds to the Nariai limit; the physical curve is the thick one at the left.

is no regular thermalon solution with dS asymptotics outside and AdS asymptotics inside.
In other words, this phase transition can only proceed in the direction of thermal AdS to
a de Sitter black hole; the reverse process is not possible. The consequence is this: if one
wishes to read Figure 4.5 in a manner similar to how a coexistence plot would be read,
it must be kept in mind that the only physical interpretations correspond to adjusting
parameters so that the state of the system enters the region bounded by the red curve,
and never exits it. In other words, it would be incorrect to say that the plot physically
describes a AdS — dS + BH — AdS re-entrant phase transition for a single spacetime.
Rather, in the context of an ensemble of spacetimes, as temperature is monotonically in-
creased, I go from stable thermal AdS, to unstable AdS in which a black hole forms in a
de Sitter environment, and then back to stable thermal AdS.

Although the discussion above focused on the specific case A = 0.1, the ideas are quite
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Figure 4.6: AdS to dS transition: Nariai Gibbs free energy. The dotted lines
display the Gibbs free energy at the Nariai limit for A = 0.1,0.2,0.4,0.8,1.35 (right to left,
respectively). The solid black curve displays the locus of points corresponding the limit
P — —oo of the Nariai Gibbs free energy. The quantities are measured in units of the
Planck length.

general, and results are qualitatively identical for all A > 0, as I shall now discuss. For
example, one universal feature is that, for all A > 0, there is a pressure beyond which
no phase transition will occur or alternatively, for which the Gibbs free energy is always
positive. To see this, I can study the Gibbs energy in the Nariai limit which I denote
G = M+ — T+§ , where the tilde represents the quantities are evaluated in this extremal
limit. This will be helpful since, as I saw in the earlier discussion, the (physical) Gibbs free
energy terminates at the Nariai limit, and this point corresponds to the minimum of the
Gibbs free energy. Note that, even though 7" is zero in this limit, 7, remains finite since

T, = T, (4.36)



and T_ and +/ f_(ry) approach zero at the same rate. The expression for G takes the form

192P%)\% +9 — 84P\ — (4 — 48\P)\/9 — 24\P
48\ P2 ’

~ 1 [J48\P — 18
T, = ) 4,
87 P (4.38)

For a given fixed value of \, as P — 0_, I have T, — oo and G — —oo, so the Gibbs
free energy will always be negative for negative pressures sufficiently close to zero. On the
other hand, as P — —oo I have

- 1 3 -
T+—>%\/;, G:4A+o(ﬁ), (4.39)

G =

(4.37)

and

meaning the Gibbs energy at the Nariai limit will be positive for sufficiently large negative
pressures. What I glean from these two cases is that, regardless of the value of A (so long
as it is positive), the plot of G(T') will always resemble the dotted lines of Figure 4.6: it
will be positive for large negative pressures and negative for sufficiently small pressures.
For the pressures that satisfy G > 0, there will be no phase transitions. In other words,
for any given A there will exist a minimum pressure F, such that for all P < B, the free
energy of the thermalon is always positive, and no phase transitions take place.

4.2.3.2 Vanishing pressure: thermal AdS to asymptotically flat black hole
transitions

The analysis above hinted towards the possibility of observing transitions between thermal
AdS space and an asymptotically flat black hole when P = 0. The junction conditions
discussed earlier are in no way changed by specializing to the specific case P = 0, and so
I can proceed as before. Note that, for P = 0, the effective cosmological constants are
1+1

Af = ——— 4.40
or in other words AT = —1/X and A°® = 0. The Gibbs energy remains G = M, — TS,
and Figure 4.7 shows representative plots of G vs. T for various values of \.

Since the “ — " branch describes an asymptotically flat black hole, I do not face the
complications associated with the Nariai limit here. In Figure 4.7 this amounts to the

64



601 0.61

40 - 0.51

0.4
20 1

0.3

2 024 flat BH

-20 A 0.14

AdS

-401 05 1 15 2 25 3

Figure 4.7: AdS to flat space transition: Left: G vs. T plot for P = 0 showing
A = 0.1,0.2,0.4,0.8,1.35 (bottom to top in y-intercept). For each value of A there is
a temperature above which the thermalon-mediated transition can occur. Right: The
coexistence plot in A — T space for the AdS to asymptotically flat black hole transition.
Below the red line, the thermodynamically preferred state is thermal AdS space, while
above the red line an asymptotically black hole is thermodynamically preferred. The
coexistence plot can only be read from left to right, and not from right to left, since the
thermalon is dynamically unstable.
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fact that the Gibbs free energy does not terminate at a particular temperature, but is
well-defined for all positive temperatures. This feature is highlighted in the right plot of
Figure 4.7, which shows a A — T coexistence plot for P = 0. One must keep in mind that,
because the thermalon is not an equilibrium configuration, the coexistence plot can only
be read from left to right—an asymptotically flat black hole will not spontaneously decay
to AdS space by this mechanism. As a consequence of this, I see that regardless the value
of A > 0, there will always be a temperature above which it becomes thermodynamically
favourable for the thermal AdS vacuum to decay to an asymptotically flat black hole.

One might be concerned about this transition from the point of view of energy: ther-
mal AdS space is decaying into a spacetime containing an asymptotically flat black hole.
However, it is important to keep in mind that the “true” cosmological constant, ¢y in the
characteristic polynomial, is zero here. The asymptotically AdS structure of the outer
branch is a result of the non-zero Gauss-Bonnet coupling, as observed in eq. (4.40). The
equivalent transition could not occur in Einstein gravity.

4.2.3.3 Positive pressures: thermal AdS to AdS black hole transitions

Considering the stability constraints discussed earlier, there is a small range of positive
pressures for which the thermalon mediated phase transitions can occur. Specifically,
our constraints were found earlier to be A > —1/(8)), which in terms of pressure reads
P < 1/(4X). For pressures in the range 0 < P < 1/(4\) both branches of the GB solution
admit AdS asymptotics, and the thermalon then describes a transition between thermal
AdS space and an AdS black hole, in some ways analogous to the Hawking-Page transition.
The behaviour of the free energy in this case is qualitatively identical to that shown in
Figure 4.7, and so I do not replicate the plot again here. Due to the similarities, one
may wonder whether there is some competition between the Hawking-Page and thermalon
mechanisms.

As it turns out, such a situation does not arise. In the case of the Hawking-Page
transition, one finds that an AdS black hole is thermodynamically favoured to thermal
AdS space above a certain critical temperature. In order to make sense of this transition,
the thermal AdS space and AdS black hole should have the same asymptotic structure, i.e.
the same (effective) cosmological constant. In the case of the thermalon mediated phase
transitions, one is again considering a transition between thermal AdS space and an AdS
black hole; however the difference in this case is that the effective cosmological constants
of the thermal AdS space and the AdS black hole are different.

This makes the comparison between the two transitions a questionable one for the fol-
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lowing reasons. Given values for A and )\, these correspond to some AST. If T am interested
in considering a thermalon mediated phase transition, then I consider the thermal AdS
vacuum to have cosmological constant Aiﬁ, which then decays to a black hole with cosmo-
logical constant AT, However, this poses a problem for the Hawking-Page transition, since
for thermal AdS space with A and A corresponding to A‘jrff, the theory does not permit a
black hole solution which has the same cosmological constant and coupling constants A
and A. In other words, the branch of the Gauss-Bonnet solution that is asymptotically
described by Af’f does not describe a black hole, and so the Hawking-Page transition would
not occur for it. In order to describe a Hawking-Page transition for thermal AdS space with
cosmological constant Af, one would have to consider a theory with different values of A
and X such that AST(A, ) = AT(A, \). To summarize, it does not seem sensible to talk
about a comparison between the Hawking-Page and thermalon mediated phase transitions
for a given theory specified by value of A and \.

4.3 Discussion

I have performed an analysis of thermalon mediated phase transitions in extended thermo-
dynamic phase space. In addition to showing the results previously studied in [32, , 39]
are consistent with the extended phase space paradigm, I have found a number of new
and interesting features of these transitions. In terms of the effect of the thermodynamic
pressure, | have shown that for any given value of the Gauss-Bonnet coupling, for large
enough negative pressures (i.e. large, positive cosmological constants) the phase transitions
are not possible.

In addition to considering thermalon phase transitions in the case where the inner
solution is de Sitter, I have also considered the possibility where the inner solution is
asymptotically flat. Here I have found that thermal AdS space can undergo a thermalon
mediated phase transition to an asymptotically flat black hole spacetime. In contrast
to the de Sitter case, where the phase transitions are only possible over a small range
of temperatures, in the asymptotically flat case, a thermalon transition is possible at
arbitrarily large temperatures.

The results found in chapter indicate that asymptotically de Sitter black holes do have
phase transitions, and so the next chapter will focus on establishing a complete approach
that overcomes the two-horizon problem in de Sitter spacetime and successfully studies its
black hole chemistry using a class of exact hairy black hole solutions to Einstein gravity
with conformally coupled scalar fields.
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Chapter 5

Hairy Black Holes

In this chapter we present a new approach that overcomes the two-horizon problem in de
Sitter spacetime and successfully studies its black hole chemistry. By adding hair to the
black hole, the thermodynamic equilibrium between the two horizons can be maintained.
Other conserved quantities (such as charge) can be added to the black hole and it becomes
possible to explore a range of black hole phase transitions in de Sitter spacetime. I find
considerably different behaviour for charged hairy de Sitter black holes than I do for their
Anti de Sitter (AdS) counterparts [117, , 119]. In specific terms, I find that the system
can undergo a phase transition that resembles the Hawking-Page phase transition, but I
do not find any swallowtail structure in the free-energy, signatory of a first order phase
transition from large to small black holes. Our results are commensurate with studies
of de Sitter black holes in a cavity [120, ], though significant details differ once the
thermodynamic phase space is extended to include pressure [122].

This chapter is organized as follows. In the next section I briefly review the basics of
conformally coupled scalar field to gravity and their resultant hairy black holes solutions. In
section 5.2 I specialize to the case of charged hairy black holes in de Sitter spacetime. When
considering the phase behaviour of these systems, I employ the extended thermodynamic
phase space formalism to study how their thermodynamic parameters behave at constant
pressure (cosmological constant) and at constant “chemical” potential. Furthermore, in a
search of possible phase transitions, I study the behaviour of the free energy in different
ensembles. I find that a system of a charged hairy black hole in de Sitter will undergo
a Reverse Hawking-Page phase transition if studied in the grand-canonical ensemble, but
will not undergo any phase transitions if studied in the canonical ensemble since otherwise
there would be violation of the conservation of charge.
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5.1 Conformal Scalar Coupling and Hairy Black Hole
Thermodynamics

Although in this chapter I am only interested in Einstein gravity, I shall set our investigation
in the context of Lovelock gravity minimally coupled to a Maxwell field. The scalar hair
is conformally coupled to gravity via the dimensionally extended Euler densities in terms
of the rank four tensor [123]

= * Ry, — 20,0V 0V ) — 46,V V6 + 85V 16V, (5.1)

where ¢ is the scalar field. Under a conformal transformation g, — Q%g,, and ¢ — Q" '¢
the tensor S,Ww — Q4SW75. The action is

k.
1 max

(k) _ 1%
= o d?z/— (g L ArGF,,F ) (5.2)

where

1
k) _ k arfBr d—4k arfBr
£® —?5( ) ( HRH b by HSWW) , (5.3)

with 6 5311511 ﬁk’ﬁk the generalized Kronecker tensor, a; and by are coupling constants,

and Kpax < (d—1)/2.
The corresponding spherically symmetric topological black hole solutions to the metric
of this theory are called Hairy Black Holes [118]. In a d dimensional spacetime, this metric

is of the form
ds* = —fdt* + f~1dr* + T2d23(d_2), (5.4)

where dZi( d-2) 18 the line element on a hypersurface of constant scalar curvature that
corresponds to the flat, spherical and hyperbolic horizon geometries for ¢ = 0,+1, —1,
respectively. The volume of this submanifold, w(H)) = 2x(@=1/2)T (&1) | is simply the
volume of a sphere for 0 = +1. The field equations of this theory of gravity give a solution
provided f solves the following polynomial equation [118]

k k
v g f 167G M H srG Q@

“ - ta- : 5.5
,; ( r2 ) =2l @D 3) (5.5)

69



where M, H and () are the mass, hair parameter and charge respectively, and

2k
ag
Q0= T o o = ay, ar=ai | |(d—n) for k> 2. (5.6)
(d—1)(d—2) }_[3
For consistency with [118], I shall set oy = a3 = 1 and ap = —2A < 0 to recover general

relativity at the limit ap — 0 for £ > 1 and I also set G = 1. T also have

k
N ~ (d_3)‘ k aArd—2k
o= % (d—2(k+ 1)) ’ (5.7)

the respective scalar field and “hair parameter”. To satisfy the equations of motion the
integration constant N must satisfy the following constraints

k
— (d B 1)' k—1 122k
PR Gty L ST
; Hd—2k—11° 0

k
maz (d _ 1)l(d(d — 1) + 4]{;2) EAr—2k
% p (R (5.8)

Since N is the only unknown in (5.8), then one of these equations plays the role of a
constraint on the permitted coupling constants .

For asymptotically de Sitter solutions ag < 0, and a black hole solution for f from (5.5)
will have at least two horizons: a cosmological horizon at r = r. and a black hole horizon
at r =r,.

To investigate the thermodynamics of these black holes I need to compute their temper-
ature and entropy. For the latter, as shown in [118], T use Wald’s method ' [%], obtaining

(5.9)

P ’sz (d— koo™ dH
LEVTE d — 2k 20(d—4) |’

k=1

where r, € {r.,ry} is the horizon size and I have set by = 0V k > 2 for simplicity.

Recalling that temperature 7), = ‘f/i—:rh) , it is straightforward to verify that both the

'Wald’s method of computing entropy consists of considering the black hole entropy as the Noether
charge associated with diffeomorphism invariance of the Lagrangian. This came from an attempt to
understand how corrections to the area law are computed when transitioning from general relativity,
where the entropy is the proportional to the area of the horizon, to higher curvature theories of gravity
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(extended) first law of thermodynamics and the Smarr relation hold at both horizons [54].
For the black hole these read respectively

5M+ = T+(SS+ + V+(SP+ + ¢+6Q + H(SH, (510)

where the subscript ‘+’ refers to the black hole. Similarly, but not identically, the extended
first law and the Smarr relation corresponding to the cosmological horizon are respectively

SM, = —T.55, + V.6 P, + ©.6Q + K6 H, (5.12)
(d—3)M, = —(d — 2)T.S. — 2V.P. + (d — 3)®.Q + (d — 2)xH, (5.13)

where the subscript ‘¢’ refers to the cosmological horizon.

The idea of fixing the two-horizon problem for black holes in de Sitter space is not new.
A few studies have investigated “lukewarm” black holes [124, , |, which are black
hole solutions in which the temperature is fixed to match that of the de Sitter background.
However these solutions don’t have enough parameters to manipulate the system and see
if it undergoes any phase transitions. The key feature that I will exploit in examining the
thermodynamics of these black holes is that the additional degree of freedom from the hair
parameter provides an additional ‘control parameter’ while still allowing us to require that
the temperatures at both horizons be equal

f(ry)
47

T, = ’ =T, =T, (5.14)

equilibrating the particle flux at both horizons. This ensures thermodynamic equilibrium
whilst retaining the same numbers of thermodynamic degrees of freedom present in the
Reissner-Nordstrom AdS black hole. In the sequel I shall consider the thermodynamics of
these charged hairy black holes in Einstein gravity.

5.2 Asymptotically de Sitter Hairy black holes

With the tools developed in the previous sections, I am now situated to perform the
extended phase space analysis for these systems. As I want to see if there are any hidden
phase transitions that either the black hole or the full system undergo, I will not study the
thermodynamic behaviour of each and every parameter, but rather focus on analyzing the
Gibbs free energy, with the equilibrium state being the global minimum of this quantity.

71



The latter can be considered in the grand-canonical ensemble, in which the charge is
considered as variable and the potential is fixed. Alternatively I can consider the canonical
ensemble in which charge is the parameter that is fixed.

In what follows I shall study asymptotically de Sitter charged hairy black holes in both
the canonical and grand-canonical ensembles.

5.2.1 Setup

Naively, one would start the analysis of the chosen black holes at d = 4. But since I am
coupling the scalar field to the Gauss-Bonnet term, the latter makes no contribution to
the field equations at d = 4. In other words, the metric function only receives a “hairy”
contribution when d > 4. All the expressions for the entropy in the previous section (5.9)
were derived assuming d > 4.

Therefore I specify to d = 5 Einstein gravity and [ set ag = —2A <0, a1 =1, ag>1 =0
and G =1 , obtaining

1, H 8M 470
— A= 2 T 5.15
fr) ¢ AT TR T3 T3 (5.15)
from (5.5). At each horizon I have
11 H 8M 47Q?
oAb oo 2R 5.16
6o T 2oy 3mrd o 30 ’ (5.16)

and solve this polynomial equation, at both the event horizon r;, = r, and the cosmological
horizon r, = r., for the mass and the hair parameters. Both can be regarded as functions
of {re, 7+, @, A} and so the metric function f now depends on these parameters. Since
I am working in extended phase space, I use the relationship between the cosmological
constant and the pressure A = —87 P (which, since P < 0, is actually a tension) and then
solve (5.14) for the cosmological horizon parameter r. where

1 Ar, 4Q> 3 H 4 M
12 n 3rd  Amrt  3wrd’
1Ar, 4Q2 3H 4 M

12 7 373 4wt 3a3

(5.17)
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Figure 5.1: The thermodynamic parameters of the charged hairy asymptotically
de Sitter black holes: for P = —0.0001. The {red,blue, green, purple} curves corre-
spond to the potential ®, = {0.1, 1, 2, 3} respectively .The dotted line represents the Nariai

limit.
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Figure 5.2: The thermodynamic parameters of the charged hairy asymp-
totically de Sitter black holes for fixed potential: the case of &, = 0.1.

The {red,blue, green, purple} curves correspond respectively to the pressure P =
{—0.0001, —0.0003, —0.0005, —0.0008}. The dotted line represents the Nariai limit.
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The resultant equation has nine different roots but only one of them is a physical
solution. The net result is that all thermodynamic parameters — mass M, entropy .S,
temperature T, and hair H — are now functions of {r,, @, P}. This makes the analy-
sis analogous to that of charged AdS black holes [65], and our setup can be understood
and studied in several ways. The most relevant involves trying to understand this sys-
tem’s thermodynamics in the contexts of the canonical ensemble and the grand-canonical
ensemble.

5.2.2 The Grand Canonical Ensemble: Thermodynamics with
Fixed Potential

The grand canonical ensemble is defined as the process that couples the energy and charge
reservoirs of the system in question while holding the temperature and the potential fixed
[67, 70]. Its corresponding thermodynamic potential is the known Gibbs free energy.

The first question presented by our de Sitter black holes is that of which Gibbs free
energy should I consider? There are three possibilities: that of the black hole, that of
the cosmological horizon or that of the total system that includes the black hole and the
cosmological horizon. These respectively read

G-‘r =M _TS+ - q)-‘rQa
G = M =TS, — .0, (5.18)
GTotal =M — T(S+ + Sc) - <(I)+ - CI)C)Qa

where S, is the entropy of the black hole and S, is the entropy at the cosmological horizon.
Note that I regard the black hole as a thermodynamic system in equilibrium with the de
Sitter vacuum. I plot M, T', and S of the black hole as a function of r in figures 5.1 and
5.2. I consider only those values of r, for which these quantities are positive, and ensure
that r, < r., so that I do not attain the Nariai limit.

Plotting the Gibbs free energy for the different cases in figure 5.3 I see that the black
hole and the cosmological horizons cannot undergo any phase transitions if isolated from
each other: the red curve is the Gibbs free energy of the black hole when isolated from
the cosmological horizon. On its own, it cannot undergo a phase transition as the curve
does not cross the plane of Gy = 0. Nonetheless, the blue curve that represents the free
energy of the cosmological horizon does. Yet it cannot undergo a phase transition since the
cosmological horizon cannot be decoupled from the black hole (i.e. I use the mass of the
black hole to compute the free energy of the cosmological horizon) and so has no physical
meaning; the curve is plotted for reference.
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Figure 5.3: Gibbs Free Energy with fixed potential. The green curve represents
G, corresponding only to the black hole, as a function of temperature. The blue curve
represents GG. as measured at the cosmological horizon r. and the red curve is that of Gy
for the total system i.e. of the black hole in a the de Sitter heat bath. All curves are plotted
for P = —0.0001 and ¢, = 0.1.

However,the full system undergoes a phase transition that resembles the Hawking-Page
phase transition: at low temperatures, the equilibrium state of the system is de Sitter space
with scalar radiation, and not a black hole. As the temperature increases, the system can
undergo a first order phase transition to a new equilibrium state of a black hole with scalar
hair. The black hole would be of large size and would keep shrinking down as the system
heats up. But at high temperatures, unlike the Schwarzschild black holes which have a
negative specific heat and are unstable, the charged and hairy de Sitter black holes have
a positive specific heat as shown in figure 5.4 and are stable — as the small (high-T') black
hole radiates, the cosmological horizon will restore the particle flux to ensure equilibrium.

The arrows in the plot 5.3 indicate how the equilibrium state of the system changes
from a state of scalar radiation in de Sitter spacetime to a charged hairy black hole. Along
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the black hole branch the arrows correspond to decreasing values of the radius of the black
hole event horizon. This is quite unlike the corresponding situation in anti de Sitter space
[11], as well as for de Sitter black holes in cavities [120, , 122], in which large black
holes are at higher temperature. I call this a Reverse Hawking-Page phase transition.
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Figure 5.4: Specific Heat. This curve represents Cp, the specific heat of the system, as
a function of the temperature. It is plotted for P = —0.0001 and &, = 0.1 .

The behaviour of the total Gibbs free energy Groo for a variety of tensions and poten-
tials, as seen in figure 5.5, shows that the system is sensitive to each. These two parameters
have different effects as to the temperature at the phase transition can actually happen.
The transition temperature of the system is almost indifferent to the choice of fixed po-
tential of the system but is highly sensitive to its tension. This is understandable as the
effect of the charge located at the centre of the black hole should not be significant, unlike
the tension that is applied on the black hole by the de Sitter spacetime that affects the
critical temperature dramatically.
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Figure 5.5: Total Gibbs Free Energy Groiu. Left: Groa at P = —0.0001 where the
{red, blue, green, purple} curves correspond to the potential &, = {0.1, 1,2, 3} respectively
. Right: Groe at . = 0.1 where the {red, blue, green, purple} curves correspond to the
pressure P = {—0.0001, —0.0003, —0.0005, —0.0008} respectively .

5.2.3 Canonical Ensemble: Thermodynamics with Fixed Charge

The canonical ensemble, unlike the grand canonical ensemble, holds the charge fixed instead
of the potential [67, 70]. However unlike these investigations, since the mass M as the
enthalpy in the extended phase space, I consider minimization of the Gibbs free energy
F and not the Helmholtz free energy. Once again I consider the multiple scenarios: the
free energy of the black hole, of the cosmological horizon, and of the total system. They
respectively read :

F,=M-TS,,
F.=M-TS,, (5.19)
Froa =M —T(Sy + S,).
As in the previous section, I start by studying the different scenarios of different Gibbs

free energies: The free energy of the black hole versus the free energy of the total system.
I see in figure 5.6 the behaviour of all three is respectively analogous to that found in the
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grand canonical ensemble. However due to the conservation of charge, the total system
will not undergo a phase transition at Fr,, = 0 — there will always be an equilibrium
state consisting of a charged hairy black hole in de Sitter space. This system is always be
stable, as its specific heat is always positive (the plot of the specific heat for this case is
similar to that in figure 5.4).
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- 1000

=2000-

Figure 5.6: Canonical Gibbs Free Energy (CGFE): the green curve represents the
CGFE corresponding only to the black hole, the blue curve represents the CGFE as mea-
sured at the cosmological horizon r,, the red curve is of the CGFE of the total system i.e.
of the black hole in a the de Sitter heat bath . All curves are plotted for P = —0.0001 and

Q=1

The behaviour of the total Gibbs free energy Fr..; for a variety of tensions and charges
showed similar results to 5.5. These two parameters have different effects on the free energy.
But as there is no phase transition possible this sensitivity is of marginal interest.
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5.3 Discussion

I have for the first time studied the thermodynamics of a black hole with two horizons
with thermodynamic equilibrium imposed and with a control parameter. This study is
possible because this class of black holes has an additional degree of freedom given by a
hair parameter that allows us to impose thermodynamic equilibrium.

In addition of thoroughly studying the thermodynamic parameters of these black holes
in de Sitter, I have analyzed the free energy of these systems in different ensembles. I have
found that the system can undergo a phase transition that resembles the Hawking-Page
phase transition in the grand-canonical ensemble, a result that is consistent with results
previously found for de Sitter black holes isolated inside a cavity with thermodynamic
equilibrium externally imposed [120]. However a key difference in our result is that at
high-T the small black hole remains stable as it radiates, the cosmological horizon restoring
the particle flux; for this reason I call it a “Reverse Hawking-Page” phase transition. As
the black hole radiates, the hair parameter will adjust itself to preserve the thermodynamic
equilibrium. I also found that these systems cannot undergo any phase transition in the
canonical ensemble as such a transition violates the conservation of charge.

The situation here also stands in notable contrast to a recent study of the behaviour
of charged de Sitter black holes in a cavity that takes into account pressure (tension) and
volume [122]. In this case the cavity is used to ensure equilibrium, and one finds not only
a standard Hawking Page transition but also a Van der Waals transition that exists only
for a finite range of non-zero pressure, described by a “swallowtube” structure in a plot of
free energy vs. pressure and temperature. However we find that this structure does not
appear when scalar hair is used to ensure equilibrium, and only a reverse Hawking-Page
transition is possible.

Mine is an exceptional setup that allows to uncover the thermodynamic properties
and phase transitions that can give more insight to de Sitter space. It is certainly very
important to further study these classes of black holes in higher dimensions and in other
higher-curvature theories of gravity to see what other interesting phase behavior might be
present.
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Chapter 6

General Conclusions

The study of Black Holes as thermodynamic systems has been an increasingly active area of
research in the last couple of decades. Investigations of asymptotically anti de-Sitter (AdS)
black holes have been at the forefront in advancing our understanding of this subject. A key
finding that has emerged from a rather large body of work is that their thermodynamic
behaviour has been found to be analogous to everyday life thermodynamic systems, a
subject known as Black Hole Chemistry.

However, our knowledge of the thermodynamic behaviour of asymptotically de Sitter
(dS) black holes is significantly more sparse.Unfortunately this is a complex problem, since
the absence of a Killing vector that is everywhere timelike outside the black hole horizon
renders a good notion of the asymptotic mass questionable. Furthermore, the presence
of both a black hole horizon and a cosmological horizon yields two distinct temperatures,
suggesting that the system is in a non-equilibrium state. Yet their importance to cosmology
and to a posited duality between gravity in de Sitter space and conformal field theory make
them important objects of investigation.

In this thesis I used a variety of classes of solutions that allowed me to map out two
approaches that are foundational to understanding black hole thermodynamics in de Sitter
spacetime. The first approach is to understand the “thermodynamic volume” of cosmo-
logical horizons in isolation, without the additional complication of a black hole horizon.
Fortunately a broad class of exact solutions having only a cosmological horizon exists:
Eguchi-Hanson de Sitter solitons. I carried out the first study of thermodynamic volume
associated with the cosmological horizon for Eguchi-Hanson de Sitter solitons in general di-
mensions. These results have shown that these quantities are calculable inside and outside
the cosmological horizon in any odd dimension whether or not the regularity condition for
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the soliton is imposed. This illustrates that cosmological volume is a well-defined concept,
and that cosmological horizons indeed have meaningful thermodynamic properties.

The second approach entailed including black hole horizons. My first step along this
path was to understand the phase transitions of thermalons — objects that describe a
transition from a black hole in Anti de Sitter spacetime to one in de Sitter spacetime. This
indicated that Thermalons can be be understood in black holes chemistry terms and that
asymptotically de Sitter black holes do have phase transitions.

I then focused on establishing a more complete approach that overcomes the two-
horizon problem in de Sitter spacetime and successfully studies its black hole chemistry.
Again, I exploited a class of exact hairy black hole solutions to Einstein gravity with
conformally coupled scalar fields to this end . By adding hair to the black hole I found
that thermodynamic equilibrium could be maintained between the two horizons. These
solutions retain the same numbers of thermodynamic degrees of freedom present in the
Reissner-Nordstrom AdS black hole, making it possible to explore a range of black hole
phase transitions in de Sitter spacetime. I found that the this hairy charge black hole
system, and the de Sitter space surrounding it, undergo a ‘Reverse’ Hawking-Page phase
transition within the grand-canonical ensemble. This is the first approach that addressed
the two-horizon problem whilst including all contributions of energy from every part of the
system and without invoking additional artifacts such as cavities.

Many steps are yet to be taken to firmly establish black hole thermodynamics in de
Sitter spacetime. I shall list several approaches to this end.

The first is to study the thermodynamics of isolated cosmological horizons. The method
here will be to broaden the range of exact (and approximate) solutions having non-trivial
curvature and a single cosmological horizon. This can be done by finding exact solitonic
solutions to higher-curvature theories of gravity. It has been established in AdS spacetime
that such higher curvature black holes exhibit a rich and interesting phase behaviour, and
there is good reason to expect interesting behaviour to likewise occur in the de Sitter case.
Among other things, this approach will allow to better understand the physical significance
of thermodynamic volume and more generally the “chemistry” of cosmological horizons.
Another study along these lines is to investigate the thermodynamic volume of de Sitter
cosmological wormhole solutions [127], instead of the solitonic solutions. A study of ther-
modynamics of these systems is also possible as the thermodynamic equilibrium condition
can be satisfied between the cosmological horizon and the wormhole throat. These stud-
ies, in combination, will provide a much better understanding of the thermodynamics of
cosmological horizons.

The second direction is to broaden the class of de Sitter black holes whose temperatures
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at both horizons are the same so that thermodynamic equilibrium is maintained. Again,
an obvious place to look is in higher curvature theories of gravity, such as Lovelock gravity,
and its more general quasi-topological counterparts. It is straightforward to add scalar
hair to these solutions, whose key advantage is that the parameter space is much larger,
allowing a lot more flexibility in requiring thermodynamic equilibrium between the two
horizons. Some results are known for their AdS counterparts, and one can exploit this
in investigating the de Sitter case to see what other interesting phase behaviour might be
present. Moving beyond this, one can then consider thermodynamics of de Sitter black hole
solutions with general base manifolds in Lovelock gravity. Recently constructed by Ray
[128], these ‘exotic’ black hole solutions have the interesting property that their horizons
do not have constant curvature. This introduces a new set of geometric and topological
parameters that offer new possibilities for achieving thermodynamic equilibrium and for
finding new kinds of phase transitions.

The long-run aim is to establish a general approach to de Sitter black hole thermo-
dynamics. It is generally expected that the knowledge of black hole thermodynamics is
key to understanding quantum gravity, and so it is of crucial importance to establish firm
and reliable knowledge as to what happens in de Sitter space. Such a study is of more
than academic interest — de Sitter spacetime is the closest model to our own accelerating
universe. By studying it, the hope is to answer questions that have yet to be explored,
that are relevant to the understanding of the universe, and that perhaps can be tested
experimentally.
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Appendix A

Generalized first law of black hole
mechanics

This appendix briefly summerizes the Hamiltonian derivation of the extended first law
(2.9) of balck hole mechanics[51].

Consider a black hole with a killing field, solution to Einstein’s field equations in d
dimensional spacetime. The corresponding metric reads

Gab = hab — NgNp (A1>

where n is the unit timelike normal (n-n = —1) to a hypersurface ¥. The latter has
an induced metric' hg, that obeys h,®ny = 0. In the presence of such hypersurfaces, the
system evolves along the vector field

£ = Nn® + N, (A.2)

where N = —¢-n is the lapse function while N is the shift vector (that is always tangential
to X).

The full gravitational Hamiltonian reads

H=NH+N°H,, (A.3)

I The dynamical parameters in the phase space consist of the metric hq, and its conjugate momentum
7o = —ﬁ(K“b — Kh), with K, = h,®V.ny being the extrinsic curvature of ¥. Note that K = K%,
and ™ = 7%, are the traces of these respective tensors. However h is the determinant of the metric hgqyp
restricted to X.
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with

2

1 s
H = =2Ggn'n’ = — ROV 4 o (5 — 17,
pTt M + |h’ d—_2 T Tab |
Hy = —2Gan®h§ = —2Dy(|h| 27, (A.4)

where D, is the covariant derivative operator associated to hg, on ¥ and R@Y the corre-

sponding scalar curvature of ¥. A special situation rises when considering 877 = —Agj,
which yields the following constraints equations:

H=-2\, H,=0. (A.5)

Assuming that g, is a solution of the field equations with Killing vector £* and cos-
mological constant A, its infinitesimally close solution that does not necessarily admit any
Killing vector reads

gab = Gab + 6gab7 (A6>

where the corresponding A = A+ 6N, hoyy = hay + Yap and T = Tap + pap- Note that
Yab = Ohap, Pap = Omqy and that hy, and 7 are correspond to the original solution gg,.
Taking all of this into account, (A.5) becomes [129, , , 1]

Dy(B* — 26Aw™n,) =0, (A7)
with N = —£%, = —D.(w®ny). Here B® behaves as follows
B*[€] = N(D*yi—Dyy™) —v¢D*N +~*" Dy N + |h|_%Nb(WCd%dhab—ZWac%c—2pab) , (A8)

and w® = —wb obeys [132, 51]:

Vw® =¢, (A.9)

b is a non-unique tensor and is only defined up to a divergence-less term.

where w?

A Gauss’ law relation is displayed in (A.7) that can be integrated over a volume 1%
contained in Y yielding

/A dSr. (B°[¢] — 26Aw™ny) = / dSr. (B°[¢] — 26Aw™ny) . (A.10)
WVout

Vin

Note that ¢ is the unitary normal vector pointing into the inner boundary 8‘7m7 and out
of the outer boundary of dV,,; of V.
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Using w® = w® — wP,¢ + wPys for the 9V, part of the intergral, (A.10) becomes
/ dSr. (B°[¢] — 26Awysny) = / dSr. (20A(w™ — wiis)ms)
aVout aVout

+ / dSr. (B°[¢] — 26Aw™n;) ,  (A.11)
OVin

with w%,s being the Killing co-potential of the background AdS spacetime.

The variations in the total mass M and angular momentum J of the space-time , when
setting the outer boundary at spatial infinity and respectively setting the time translation
and rotations as £* = (0;)* and £* = (0,,), are given by

16m0M = — / dSr. (B°[0;] — 26 Awysms) (A.12)
16m0J = / dSr.B¢[0,] . (A.13)
The w%,s term guarantees that §M is finite [71]. Let H be the event horizon of a black hole

induced by the Killing vector {* = (0; + Q0,,)*. Given that A is the area of the bifurcate
Killing horizon H where ¢ vanishes, its variation reads

20A = — / dSr.B°[0, + 00, (A.14)
H

here, Kk = ,/—évagbvagb |r:T+ is the surface gravity at this event horizon.

Since the variation of the cosmological constant JA is spacetime-independent, the vol-
ume can be defined by

V= / dSr.ny, (wd’ — wffds) —/ dSrnyw® . (A.15)
00 H

Hence, the remaining terms in (A.11) can be interpreted as V§P 2. Combining all these
terms, the first law of black hole thermodynamics is reproduced

SM =T8S + VP + Q6 (A.16)

which is in total agreement with (2.9).

2 Here, V is finite due to the presence of the wf‘fds term.
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Appendix B

Van de Waals Fluids: A brief review

This appendix will review the Van de Waals phase transition for fluids.
The liquid/gas transition of a non-ideal fluid is described by the Van der Waals equation
od state (B.1) that reads
a
(P+—ﬁ&w%ﬁ:T, (B.1)
v
where P is the pressure, v = V/N is the volume, T is the temperature and the parameter
a > 0 and b respectively measure the attraction between particles and the volume of “fluid
particles” [133]. As the nonzero size of the molecules of a given fluid is taken into account

in the constant b > 0, The attraction between them is measured by the constant a > 0.
Similarly, one can write this equation as a cubic equation for v yielding

Pv* — (kT + bP)v? +av —ab= 0. (B.2)

From the qualitative behaviour of isotherms, it is easy to see that a critical point takes
place when P = P(v) has an inflection point, i.e. at the critical isotherm 7' = T, yielding

oP P

-_— = — =0. B.3
v T O? (B-3)
One can write (B.2) in the form P.(v —v.)® = 0, then compare the coefficients to get
8a a
KT, = — . =3b, Po— — B.4
o e 2702 (B-4)

Note that IZTUC = % is a universal number anticipated for all fluids independently of the
choice a and b.
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One can set
p:—’ ]/:—’ ’7’:—’ (B5)

to obtain the universal law of corresponding states. 1t is valid for more general conjectures
other than that of the Van der Waals equation. It reads

87 = (3v —1) (p + %) . (B.6)

The system undergoes a liquid—gas phase transition when T" < T,.. The latter can be
described by substituting the oscillating part of the isotherm by an isobar, as states in
Mazwell’s equal area law that reads

j{vdp 0. (B.7)

The phase transition can be understood by analysing the (specific) Gibbs free energy,
G = G(P,T). For a fixed number of particles, one can integrate

dG = —SdT + vdP, (B.8)

while using the Van der Waals equation. Comparing the outcome with (statistical) G' of
the ideal gas to determine the integration function, the specific Gibbs free energy reads

G = G(T,P) = —kT <1+1n [%D —%+Pv. (B.9)

The parameter v here is analyzed using P and T', via the Van der Waals equation (B.1),
and ® is a characteristic constant of the gas and it has dimensionality.

One can analyse the coexistence line of two phases, along which these two phases are
in equilibrium. It takes place whenever two surfaces of G cross paths. It is dictated by the
Clausius—Clapeyron equation

dp 5, -8,

- = , B.10
dT lcoexistence v, — v ( )

where Sy, S;, and vy, v;, correspond to the specific entropy and specific volume of the gas
and liquid phase, respectively. Otherwise, this coexistence curve can be established using
Maxwell’s law (B.7), or by finding a line in the (P, T')-plane for which the Gibbs free energy
and the Van der Waals temperature coincide for two different volumes v; and vy.
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Appendix C

Eguchi-Hanson Solitons

In this Appendix I review the derivation of the Eguchi-Henson metric (3.4).
For this one has to use the five-dimensional generalization [131] of the Taub-NUT metric,

dp?

7 = =+ 40 F () [0 + cos(O)do]" +

+ (p* — n?)(d6? +sin(6)*d¢?), (C.1)

with the U(1)-fibration being a partial fibration over a two-dimensional subspace the D = 3
base space. Here, the function F'(p) is

Flp) = p* + 4ml? — 2n?p?
PR )

(C.2)

4

The condition n = £ must hold for this to satisfy the d = 5 Einstein equations with
6

cosmological constant A = — ;.

|

Setting the NUT charge, equivalent to A, to zero renders a degenerate metric which
causes the spacetime to be non trivial. Hence one must use an ensemble of transformations
yielding this “non trivial” metric in the zero cosmological constant limit, i.e. [ — oo. These
transformations are

2 _ .2 2 _ & a' 3
p°=1r"+n m= (C.3)
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Thereafter, one must set » — r/2, t — 2t/¢ and obtain

rf ( ) dr’
ds* = —g(r)dt* + diy + cos d¢2+—
") A0 eSO g
2
%(d@Q + sin(6)2d¢?), (C.4)
2 ot
o) = 14 g =1-0
One can easily see that (C.4) solves Einstein’s equations with negative cosmological con-
stant A = —6/¢?. Hence, one can demand ¢ — i/ transforming (C.4) into a metric that

solves Einstein’s equations A > 0.

The metric transformation (C.1) — (C.4) yields a new way of obtaining the Eguchi-
Hanson metric in d = 4. When imposing the limit ¢ — oo on (C.4), one obtains the
Eguchi-Hanson metric

r? dr?  r?

ds* = Zf(r) [dy) + cos(0)d¢]” + o) Z(d92 + sin(6)2de?), (C.5)

as a constant t hypersurface. These steps yield a degenerate metric.

By setting D = 2k + 2, the metric (C.4) can be generalized to any odd dimension
(D + 1) where D > 4 must hold. This resultant set of metric then read

2
2r\” i
2 _ 2
ds* = (r)dt” + (5> f(r) dw—i-ZCos(Gi)d@]
i=1
dr? r? &
+ -+ = d22 1)) C.6
7o T D 2 (C6)
where
dEg(i) = df? + sin®(6;)d¢?, (C.7)
and the metric functions are given by
r? a
o) =1F 75 . ) =1-(%).F (€.8)

satisfy the (D + 1)-dimensional Einstein equations for both a positive and negative cosmo-
logical constant A = +D(D — 1)/(2¢?).
This is in total agreement with (3.4).
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Appendix D

Themalons

In this Appendix I derive 7 as discussed in [32] and I comment on the thermalon’s fate
at infinity.
One can start by using (4.11)
d , . . :
e (a™%7%) = (d—2) a2a7rjm , Vi, (D.1)

such that when 7 satisfies the junction condltlon all the other components automatically
follow. Hence, one JU_St need to calculate II* = 7% (This notation II* is simply chosen to
avoid the use of indices). This only includes the angular parts of both the intrinsic and
extrinsic curvatures; the expression then becomes

s - YL [y 2= € 1] D2)

a2
One should impose ITT = II~ when not including matter which is the case here. The
polynomial Y is , as always, playing a key role in this computation.
Introducing I =11+ — IT~, the junction condition and Bianchi identity (D.1) yield
II =9 — (. One can easily see that this expression is miraculously independent of the

dr
spacetime dimensionality. One can introduce
o— f+(a . o+a?
g+ = g+(a) = T() , and H=H(a,a) = " (D.3)

Hence, (D.2) becomes
*lgs, H = VH — gi/d§T g1+ (1-&)H] . (D.4)
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This leads to concluding that the information about the branches of the solution is hiding
in gy.

One can rewrite the difference in canonical momenta II as

ﬁ=(%H—g+—¢H—g_)/01d§T’[H—(§ H—g++<1—£>ﬂ)2} .

(D.5)
A simple change of integration variable results in
BV =
Il = / dx Y'[H — 2?] , (D.6)
A/ H—g—

where H = (o + a*)/a?.

As the size of the bubble grows and approaches infinity, the parameter H must be com-
puted via power law. In the limit of large bubble speed, equation (D.5) can be computed
using

He (VA g+ - OVE ) ~ oot (-89 + 760 (s — 0 |

(VA5 VA=0) % o= (14 o+ 90) |

One can make sure, up to an order of 1/H , that

Q

fix e Tl Ylo] - 5 / "o Tl - 0Tl - 010 )| - @1

One needs the following variable substitution z = £g, + (1 — £)g_ to solve for

H ~ m {adl /g i Y] = (g4 M. — g_M_)} | (D.8)

One can get the predictable equation of H at the lightlike limit (H — oo0) wherever
M, — M_. The same happens if a — oo and H ~ a?~!. The asymptotic behavior of the
potential in the latter case is given by

d—1

a At
H~ s /A dz Tl | (D.9)

where H is a solution of II = 0.
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