
Risk Management with Basis Risk

by

Jingong Zhang

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Actuarial Science

Waterloo, Ontario, Canada, 2018

c© Jingong Zhang 2018



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining

Committee is by majority vote.

External Examiner: Rogemar S. Mamon

Professor, Department of Statistical and Actuarial Sciences,

Western University

Supervisor(s): Ken Seng Tan

Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Chengguo Weng

Associate Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Internal Member(s): Adam Kolkiewicz

Associate Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Alexander Schied

Professor, Department of Statistics and Actuarial Science,

University of Waterloo

Internal-External Member: Peter A. Forsyth

Distinguished Professor Emeritus, Cheriton School of Computer Science,

University of Waterloo

ii



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Jingong Zhang

iii



Abstract

Basis risk occurs naturally in a variety of financial and actuarial applications, and it introduces

additional complexity to the risk management problems. Current literature on quantifying and

managing basis risk is still quite limited, and one class of important questions that remains open is

how to conduct effective risk mitigation when basis risk is involved and perfect hedging is either

impossible or too expensive. The theme of this thesis is to study risk management problems in

the presence of basis risk under three settings: 1) hedging equity-linked financial derivatives; 2)

hedging longevity risk; and 3) index insurance design.

First we consider the problem of hedging a vanilla European option using a liquidly traded

asset which is not the underlying asset but correlates to the underlying and we investigate an op-

timal construction of hedging portfolio involving such an asset. The mean-variance criterion is

adopted to evaluate the hedging performance, and a subgame Nash equilibrium is used to define

the optimal solution. The problem is solved by resorting to a dynamic programming procedure

and a change-of-measure technique. A closed-form optimal control process is obtained under a

general diffusion model. The solution we obtain is highly tractable and to the best of our knowl-

edge, this is the first time the analytical solution exists for dynamic hedging of general vanilla

European options with basis risk under the mean-variance criterion. Examples on hedging Eu-

ropean call options are presented to foster the feasibility and importance of our optimal hedging

strategy in the presence of basis risk.

We then explore the problem of optimal dynamic longevity hedge. From a pension plan

sponsor’s perspective, we study dynamic hedging strategies for longevity risk using standardized

securities in a discrete-time setting. The hedging securities are linked to a population which may

differ from the underlying population of the pension plan, and thus basis risk arises. Drawing

from the technique of dynamic programming, we develop a framework which allows us to obtain

analytical optimal dynamic hedging strategies to achieve the minimum variance of hedging error.

For the first time in the literature, analytical optimal solutions are obtained for such a hedging

problem. The most striking advantage of the method lies in its flexibility. While q-forwards

are considered in the specific implementation in the paper, our method is readily applicable to

other securities such as longevity swaps. Further, our method is implementable for a variety of
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longevity models including Lee-Carter, Cairns-Blake-Dowd (CBD) and their variants. Extensive

numerical experiments show that our hedging method significantly outperforms the standard

“delta” hedging strategy which is commonly adopted in the literature.

Lastly we study the problem of optimal index insurance design under an expected utility

maximization framework. For general utility functions, we formally prove the existence and

uniqueness of optimal contract, and develop an effective numerical procedure to calculate the

optimal solution. For exponential utility and quadratic utility functions, we obtain analytical ex-

pression of the optimal indemnity function. Our results show that the indemnity can be a highly

non-linear and even non-monotonic function of the index variable in order to align with the actu-

arial loss variable so as to achieve the best reduction in basis risk. Due to the generality of model

setup, our proposed method is readily applicable to a variety of insurance applications including

index-linked mortality securities, weather index agriculture insurance and index-based catastro-

phe insurance. Our method is illustrated by a numerical example where weather index insurance

is designed for protection against the adverse rice yield using temperature and precipitation as

the underlying indices. Numerical results show that our optimal index insurance significantly

outperforms linear-type index insurance contracts in terms of reducing basis risk.
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Chapter 1

Introduction

1.1 Background

Broadly speaking, basis risk is defined as the non-hedgeable portion of risk as attributed to the

imperfect correlation between the asset to be hedged and the asset used for hedging. It implies

that the hedging will be imperfect and the hedged position still carries some residual risk. The

existence of basis risk introduces additional complication for risk management, and it may have

detrimental effects when it is overlooked. Therefore it is important for risk managers to pay

attention to the identification, assessment, and management of basis risk.

Basis risk naturally occurs in a variety of financial and actuarial problems. A typical example

in the financial market is that the hedging for a derivative written on a non-tradable asset is often

conducted via trading over one liquidly traded asset which is closely correlated with the non-

tradable underlying asset. A relevant concept is finance and economics is the incomplete market

in which the number of Arrow-Debreu securities is less than the number of states of nature, and

thus some payoffs in the market cannot be replicated by tradable securities in that market. In this

case, the hedger would normally aim at designing a hedging scheme with other tradable assets

to minimize the negative impact resulted from the mismatch between these assets and therefore

achieve certain financial objectives.
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The second example where basis risk plays a critical role is longevity risk management. In

recent decades longevity risk has become one of the most dominant risks, particularly for pension

plan sponsors and annuities providers. Longevity risk is any risk associated with the unpredicted

increasing life expectancy, and it will eventually translate into higher than expected payout ratios

for pension plans and insurance companies. Hedging of longevity risk is an important problem

because the risk is non-diversifiable. As such some longevity securities such as longevity bonds

and longevity swaps have been issued in an attempt to address longevity risk. However, these

longevity securities have payoffs that are linked to some standardized populations while the

pension plan sponsors and annuity providers are more concerned with the longevity experience

underlying the pensioners and annuitants. These experiences are not perfectly related to the

experience of the standardized population underlies the longevity securities and hence population

basis risk arises. Li and Hardy (2011) give an empirical example to hedge a pension plan on the

female Canadian population with a longevity index on the U.S. population. When measured by

Value-at-Risk, the magnitude of reduction in basis risk can be as high as 10.14%.

Another area where basis risk is prevalent is the agricultural index insurance where the basis

risk is cited as a primary concern in agricultural risk management (Brockett et al., 2005). Index

insurance is an innovative approach to insurance provision which pays indemnity determined by

certain relevant indices rather than the actual losses experienced by policyholders, and a typical

example of using index insurance is in the area of agricultural insurance. Agricultural production

is very vulnerable to weather risks and hence providing insurance protection to farmers is im-

portant. Traditionally agricultural insurance is indemnity based, i.e. farmers will be reimbursed

based on the incurred losses. This product, however, is known to generate moral hazard with

high underwriting cost, especially offering to regions with numerous small farms. Alternatively,

weather index insurance is gaining popularity to hedge against agricultural production loss. Plau-

sible indices include temperature, precipitation, sunshine as well as those remote sensing indices

based on satellites images such as the Normalized Difference Vegetation Index (NVDI). In this

context, farmers are similarly exposed to basis risk due to the imperfect correlation between the

weather index and the crop yield.

This thesis focuses on three risk management problems, and the evolving theme in these

applications is the basis risk that is present in derivative hedging, longevity risk hedging and
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agricultural index insurance. It should be noted that there are other interesting risk management

problems involving basis risk. Some notable examples include hedging of equity-linked insur-

ance products such as variable annuities (Ng and Li, 2013) and catastrophic risk management

(Doherty, 1997; Li and Yu, 2002; Cummins et al., 2004).

Basis risk generally comes from the mismatch between the hedging objective and the hedging

instrument. More specifically, this mismatch may come in different forms and typical examples

include: 1) hedging objective and hedging instrument are totally different type of assets, e.g.,

one is agricultural production and the other is a weather index; 2) hedging objective and hedging

instrument are the same type but with different underlying assets, time to maturity and so on; 3)

hedging objective and hedging instrument are based on exactly the same asset, but the way to

construct the hedging portfolio makes the hedging imperfect due to budge constraint, trading fre-

quency, and etc. Mathematically, we usually define this mismatch between the hedging objective

and the hedging instrument by assuming that two random variables are not equal almost surely1

in static settings, or two stochastic processes are not indistinguishable2 in dynamic settings.

The study of basis risk contains two major aspects: 1) how to model the dependence struc-

ture between two random variables or stochastic processes and how to measure the difference

between them in order to quantify basis risk; 2) based on a given dependence structure between

the hedging objective and the hedging instrument, how to construct a hedging portfolio or a risk

mitigation strategy in order to achieve the hedger’s certain financial objective. The former, the

modeling problem, itself is a very broad area, and under each specific setting the way to model

the dependence structure can be very different. For example, in the literature of longevity risk,

one common way to model the dependence between multiple populations is to introduce an addi-

tional common factor to represent their co-movement into the original model (such as Lee Carter

model, Cairns-Blake-Dowd (CBD) model and etc.). This is quite different from those commonly

used dependence modeling techniques such as copulas, and is not that commonly used in the

other contexts of risk management. In this thesis we focus on the second aspect, and explic-

itly exploit the current existing models as our starting point. In other words, we study these

1Two random variables X and Y are defined as equal almost surely if P(X = Y ) = 1.
2Two stochastic processes {Xt}t≥0 and {Yt}t≥0 are defined to be indistinguishable if P(ω : X(t, ω) =

Y (t, ω),∀ t ≥ 0) = 1.
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risk management problems in the presence of basis risk by assuming the underlying models and

dependence structures are given exogenously.

In the mathematical finance literature, there are many papers that discuss the problem of

hedging contingent payoffs in an incomplete market setting. Since the contingent claim of

interest cannot generally be replicated by any hedging strategies which are self-financing and

perfectly match the target payoff function at the same time, there are two major approaches

of constructing the hedge: first, the hedger may relax the self-financing constraint imposed

on the hedging strategy by continuously injecting money into the hedging plan, and only re-

quires it to perfectly match the payoff function of the contingent claim to be hedged; second,

the hedger still sticks to self-financing hedging plans and thrives to minimize the “distance” be-

tween the hedging objective and the hedging portfolio. The first method was studied by Föllmer

and Schweizer (1991) and Schweizer (1999), and they introduced the concept of locally risk-

minimizing strategy to minimize the expected cumulative cost under a quadratic criterion, and

obtained the hedging strategy through the Föllmer-Schweizer decomposition. Some further re-

search was conducted by Møller (1998, 2001) with applications for hedging insurance payoffs

such as unit-linked life insurance contracts. The second method was discussed by Duffie and

Richardson (1991) under the mean-variance criterion, and by Davis (2006) and Musiela and

Zariphopoulou (2004) under an exponential utility maximization framework.

In the insurance and actuarial science literature, although there are articles addressing basis

risk for various risk management problems, such as longevity hedge with standardized mortality-

linked securities (Li and Hardy, 2011; Coughlan et al., 2011; Cairns, 2013; Zhou and Li, 2016),

agricultural production protection with weather derivatives and weather insurance (Woodard and

Garcia, 2008; Brockett et al., 2005; Chantarat et al., 2007; Jensen, et al., 2016) and catastrophe

risk mitigation by catastrophe securities (Lee and Yu, 2002; Cummins et al., 2004), most of them

are empirical studies concentrating on very specific applications.
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1.2 Objectives and outline

The thesis aims at developing innovative methodologies by focusing on three risk management

problems in the presence of basis risk, namely, financial derivative hedging, longevity risk hedg-

ing and index insurance design, in three separate chapters. Each chapter begins with formulating

the problem in an optimization framework, proceeds with mathematical derivation to solve the

optimization problem, and finishes with numerical examples showing the applicability and supe-

riority of our proposed solutions. The rest of this thesis is organized as follows.

Chapter 2 studies the hedging problem for general European-style financial derivatives whose

underlying assets are not traded in the market. Therefore we use another correlated and liquidly

traded asset as the hedging instrument. We adopt the mean-variance criterion to evaluate the

hedging performance, and use a subgame Nash equilibrium to define the optimal solution to

overcome the “time-inconsistent” issue which arises inherently from the mean-variance crite-

rion. The problem is solved by resorting to a dynamic programming procedure and a change-

of-measure technique. Numerical examples for hedging futures and European call options are

presented to showcase the performance of our proposed optimal strategy.

Chapter 3 investigates the problem of longevity hedge using standardized longevity secu-

rities. We study dynamic hedging strategies for longevity risk from a pension plan sponsor’s

perspective in a discrete-time setting. Our assumptions about the underlying stochastic mortality

models are quite general so that our results can be applied to those most popularly used longevity

models such as Lee-Carter, Cairns-Blake-Dowd (CBD) and their variants. The hedging instru-

ments are q-forward contracts that are linked to a population different from the pension plan’s

underlying population, so basis risk arises due to such a population mismatch. We apply the

dynamic programming technique to develop a framework which allows us to obtain analytical

optimal dynamic hedging strategies to achieve the minimum variance of hedging error. Exten-

sive numerical experiments show that our hedging method significantly outperforms the dynamic

“delta” hedging strategy which is commonly adopted in the literature.

Chapter 4 studies the problem of index insurance design and its applications in agricultural

weather index insurance. The goal is to design an optimal index insurance contract which max-
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imizes the expected utility of policyholders. For a general strictly concave utility function, the

optimal solution is characterized by an implicit ordinary differential equation (ODE) problem.

Our results show that the optimal indemnity can be a highly non-linear and even non-monotonic

function of the index variable in order to align with the actual loss variable so as to achieve

the best reduction in basis risk. Our theoretical results are illustrated by a numerical example

where weather index insurance is designed for protection against the adverse rice yield using

temperature and precipitation as the underlying indices. Numerical results show that our optimal

index insurance significantly outperforms those linear-type index insurance contracts, which are

commonly adopted in the literature and insurance practice, in terms of reducing basis risk.

Chapter 5 concludes the thesis and discusses some potential future works. Some additional

information complementing each chapter is collected in appendices.
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Chapter 2

Optimal Hedging with Basis Risk under
Mean-Variance Criterion

2.1 Introduction

It is well-known in the financial theory that when an option is written on an asset that is tradable,

it can be hedged by trading in the underlying asset. What if an option is written on an asset that

is either illiquid or even non-tradable? In this case, a common hedging practice is to use another

asset that is tradable, highly liquid, and also has the desirable property of being highly correlated

to the underlying asset of the option. Because the hedged asset does not perfectly capture the

behavior of the underlying asset, there is a mismatch between the risk exposure of the hedged

portfolio and the option in question; this gives rise to the so-called basis risk. As shown in Davis

(2006), the basis risk could be huge even though both assets have very high correlation. This

implies that the basis risk can have a detrimental effect on the hedging performance and hence it

needs to be prudently managed.

Basis risk does not just confine to hedging financial derivatives, it exists in many other set-

tings, notably when an index-based security is used for hedging. For example, a pension plan

sponsor may choose to hedge the plan’s longevity risk by resorting to standard longevity instru-

ment that is traded in the capital market. While such “standard” instrument provides liquidity
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and transparency, its payoffs are typically determined by mortality indices based on one or more

populations. As the longevity experience of the pension plan can deviate significantly from the

reference populations, the basis risk, or more specifically, the population basis risk, is said to

occur; see also Li and Hardy (2011), Coughlan et al. (2012). Another example is in the context

of managing agricultural risk. In this application, using weather derivatives for hedging agricul-

tural risk could give rise to variable basis risk and spatial basis risk (e.g., Brockett et al., 2005;

Woodard and Garcia, 2008). Another situation for which basis risk arises is when a farmer pur-

chases a crop insurance that is based on area yield, instead of individual yield. The area-yield

crop insurance, which is known as the Group Risk Plan in the U.S., is an insurance scheme

with indemnity depending on the aggregated county yields. The individual-yield crop insurance,

which is known as the Annual Production History Insurance in the U.S., is another insurance

scheme with payoff that is linked to individual farm yields. The discrepancy between yields at

the county level and at the individual level gives rise to the basis risk; see for example Skees, et

al. (1997) and Turvey and Islam (1995).

A typical example in the financial market is that the hedging for an option written on a

non-tradable asset is often conducted via trading over one liquidly traded asset which is closely

correlated with the non-tradable underlying asset. However, one should be very careful to use

such a strategy since “close correlation” between the two underlying assets cannot guarantee

the hedging performance to be as good as one may desire. Indeed, Davis (2006) showed that the

unhedgeable noise, which is attributed to the mismatch between the two assets, may be huge even

though the two underlying assets have very high correlation, and the “naive” hedging strategy

may be ineffective.

In the existing literature, analytical results on optimal hedging in the presence of basis risk

can broadly be classified into two streams. In order to ensure the model’s tractability, the first

stream of investigation considers hedging general derivatives with basis risk under an exponential

utility maximization framework. The pioneering closed-form optimal hedging strategies were

obtained by Davis (2006).1 The basic model of Davis (2006) was subsequently extended by

Monoyios (2004) and Musiala and Zariphopoulou (2004) in a few interesting directions including

indifference pricing, perturbation expansions, etc. All of these generalizations are restricted to
1Note that the work of Davis (2006) was done in 2000 but it was not formally published until 2006.
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an exponential preference optimization framework. If we were to consider other optimization

hedging frameworks such as under a mean-variance criterion, analytical optimal strategies with

basis risk have been obtained but only for hedging futures. We classify this line of inquiry as

the second stream. The main contribution is attributed to Duffie and Richardson (1991) who

obtained the optimal continuous-time futures hedging policy under geometric Brownian motion

assumptions. They demonstrated that the optimal hedging strategy can be derived from the

normal equations for orthogonal projection in a Hilbert space. Their method, however, is not

readily applicable to more general derivatives other than the futures contract. This is because

their proposed method depends highly on the specific formulation of the problem and the trivial

structure of the payoff function of the futures contract.

Motivated by the above two streams of investigation, this chapter attempts to address each

of their limitations by studying the dynamic hedging of general European options with basis

risk under a mean-variance criterion. Since the seminal work of Markowitz (1952), the mean-

variance criterion has been widely applied in finance. A key advantage of the mean-variance

criterion over a utility maximization objective is that in practice it is typically challenging to

accurately evaluate a hedger’s utility function while the mean-variance criterion provides a sub-

jective measure. Furthermore, by comparing to the expected utility approach, MacLean et al.

(2011) concluded that, for less volatile financial market, the mean-variance criterion yields a

better investment portfolio return.

It is important to emphasize that the optimal portfolio model of Markowitz (1952) is a one-

period model. If we are interested in a dynamic portfolio selection strategy, it is important to

distinguish optimal strategy that is “pre-commitment” from “time-consistent planning” because

of the added possibility of re-optimizing and re-balancing the portfolio at intertemporal times.

After a decision maker obtained his/her optimal dynamic strategy at time t1, the decision maker

might find that the adopted strategy from t1 does not necessarily maximize his/her objective by

the time he/she progresses to time t2, where t2 > t1. In this situation, the decision maker can

either continue to adopt the original plan or to devise a new plan that is “optimal” for him/her at

time t2. Strotz (1955) referred the former strategy as the “precommitment” strategy and the latter

as the “consistent planing” strategy. Strotz (1955) also showed that the best investment strategy

should be a plan for which the investor will actually follow, e.g., a consistent planing strategy.
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The analytical solutions provided by Zhou and Li (2000) and Li and Ng (2000) for, respec-

tively, the continuous-time and multiperiod analogs of Markowitz (1952) are examples of pre-

commitment optimal strategies. To derive the optimal strategies that are time consistent under

the mean-variance criterion is considerably more subtle. The complication is driven by the fact

that the mean-variance function is not separable so that the Bellman optimality principle cannot

be directly applied for deriving an optimal dynamic solution. This problem was not solved until

another decade later by Basak and Chabakauri (2010) who provided a novel approach of obtain-

ing a “consistent planing” solution to the portfolio selection problem involving mean-variance

objective. They used the total variance formula to derive an extended Hamilton-Jacobi-Bellman

(HJB) equation and ingeniously obtain the optimal hedging strategy without directly solving the

extended HJB equation as a partial differential equation. Subsequently Björk and Murgoci (2010,

2014) developed a more rigorous theory for general time-inconsistent problems by providing a

formal way of defining a “consistent planing” solution using game theoretic approach and pro-

viding the verification theorem. In recent years, the time consistent planning strategies have also

been widely studied for decision problems in insurance, e.g., Li et al. (2012), Li et al. (2015a,

2015b), Liang and Song (2015), Wei et al. (2013), Wong et al. (2014), Wu and Zeng (2015),

Zeng et al. (2013), Zhao et al. (2016), Zhou et al. (2016), just to name a few.

In this chapter, we aim to establish a “consistent planning” optimal hedging strategy in the

sense of Björk and Murgoci (2010). The problem is solved by resorting to a dynamic pro-

gramming procedure and solving an extended HJB equation using a certain change-of-measure

technique. The solution we obtain is tractable and to the best of our knowledge, this is the first

time the analytical solution exists for dynamic hedging of general European options with basis

risk under the mean-variance criterion. The solution we obtained also reduces to the classical

delta hedging strategy when the two involved assets are indistinguishable and the risk aversion

coefficient in the mean-variance objective goes to infinity. For plain vanilla call options, the

calculation of the optimal strategy requires only a minimum amount of numerical procedure.

Examples based on hedging futures and European call options are presented to highlight the im-

portance of our proposed optimal strategy, relative to other commonly adopted hedging strategies

that do not take into consideration the basis risk.

The rest of the chapter proceeds as follows. The problem formulation is given in Section
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2.2 and the consistent planning equilibrium solution is derived in Section 2.3. Discussions on

some special cases are presented in Section 2.4. Some numerical examples are provided in

Section 2.5 to highlight our theoretical results. Section 2.6 concludes the chapter. Finally, the

appendix contains some technical proofs and semi closed-form expressions for the equilibrium

value functions of both futures and European call options.

2.2 Formulation of the optimal hedging problem

Let us begin by first introducing the following notations. For a function F (t, s1, s2, x), we use

Fy to denote its first partial derivative with respect to (w.r.t.) variable y where y ∈ {t, s1, s2, x}.
Analogously, we use Fyz to denote its second derivatives w.r.t. variables y and z where y, z ∈
{t, s1, s2, x}. Note that the function F and its derivatives can be time-dependent processes. In

this case, each of the notation will be indexed by an argument t. Similarly, if the arguments s1,

s2 and x are also processes, then they will be denoted by S1(t), S2(t) and X(t), respectively.

Consider a non-arbitrage market with two risky assets {S1(t), t ≥ 0} and {S2(t), t ≥ 0}
as well as a risk-free asset earning at a constant rate of r > 0. The price processes of the two

risk assets are defined over a common probability space (Ω,F ,P) and they follow two general

diffusion processes under the physical measure P as below:
dSi(t)

Si(t)
= µi(t, Si(t))dt+ σi(t, Si(t))dWi(t), i = 1, 2,

dW1(t)dW2(t) = ρ(t)dt,

(2.1)

where W1 := {W1(t), t ≥ 0} and W2 := {W2(t), t ≥ 0} are two standard Brownian motions

under P. The coefficient ρ(t) is a deterministic function of t, µi(t, s) : R+ × R 7→ R and

σi(t, s) : R+ × R 7→ (0,∞), i = 1, 2, where R and R+ respectively denote the real line and the

set of nonnegative real numbers. When there is no confusion about their dependence on t and s,

it is convenient to use the simplified notations ρ, µi, and σi, respectively. To ensure the existence

of a unique strong solution to the stochastic differential equation (SDE) (2.1), we assume that the

drift and diffusion coefficients for both Si satisfy the global Lipschitz continuity condition, i.e.,
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for i = 1, 2, ∃ K > 0 s.t. ∀ t ∈ R+ and x, y ∈ R,

|x · µi(t, x)− y · µi(t, y)|+ |x · σi(t, x)− y · σi(t, y)| ≤ K|x− y|. (2.2)

If we take y = 0, the above condition becomes

|µi(t, x)|+ |σi(t, x)| ≤ K, ∀ x ∈ R, (2.3)

which means that both µi(t, x) and σi(t, x) are bounded from above. Furthermore, we impose

the non-degeneracy assumption on σi, i.e.,

σi(t) ≥ ε, i = 1, 2, for some constant ε > 0. (2.4)

The specification in equation (2.1) implies that the random sources between the two risky

assets are correlated and the strength of correlation is governed by the coefficient function ρ(t).

Let G = G(S2(T )) be the payoff at maturity T > 0 of a European option that is written on asset

S2, and write

Π(t, s2) := Et,s2 [e
−r(T−t)G(S2(T ))]. (2.5)

It is worth noting that Π(t, s2) differs from the time-t price of the European option G(S2(T ))

since the expectation in (2.5) is taken under the physical measure P, as opposed to a risk neutral

probability measure.

For technical purposes, we assume the derivatives Πt and Πs2s2 exist and the condition

E

[∫ T

0

(S2(t)Πs2(t, S2(t)))2dt

]
<∞ (2.6)

is satisfied. When the coefficients µ2 and σ2 are constants, a sufficient and mild condition for the

existence of the derivative Πt and Πs2s2 is given by

∃a > 0 such that
∫ ∞
−∞

e−ax
2 |G(x)|dx <∞; (2.7)
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see Musiela and Rutkowski (p.124, 1997) for detailed discussion. Both conditions (2.6) and (2.7)

are quite mild and satisfied by most financial derivatives.

We assume that the hedging target is a short position of the contingent payoffG = G(S2(T )),

which could be either interpreted as a short position of a concrete financial derivative for a trader,

or more generally, as a contingent payoff on the liability side of a product line. In both cases

there is incentive to hedge against such a position for both internal risk management purposes

and regulatory purposes. We assume that S2 is either a non-tradable asset or a thinly traded asset

so that it lacks the necessary liquidity to be used for hedging the option that is written on it.

Instead, we assume that S1 is a highly liquid and tradable asset so that together with the risk-free

asset, a hedging portfolio can be constructed to hedge a short position of the above European

option written on asset S2. As S1 is related to S2 via the correlation parameter ρ(t), using S1 to

hedge G(S2(T )) gives rise to basis risk, unless in the special case ρ(t) = 1 ∀t ∈ [0, T ], and the

coefficient functions µ1(·, ·) = µ2(·, ·) and σ1(·, ·) = σ2(·, ·), where the two processes S1 and S2

are indistinguishable from each other as formally proved in Proposition 2.2 in Section 2.4.

At any time t ∈ [0, T ), the hedging portfolio is fully specified by the pair {Xθ(t), θ(t)},
where θ(t) denotes the time-t investment in the risky asset S1 and Xθ(t) represents the time-t

hedging portfolio value resulting from a strategy θ. This implies that the time-t investment in the

risk-free asset is given by Xθ(t) − θ(t). At the inception of the option contract, i.e., at t = 0,

the hedging cost is given by x0 = Xθ(0) > 0. This also corresponds to the initial value of the

hedging portfolio. Then, the value process of the hedging portfolio is governed by the following

SDE:

dXθ(t) =
θ(t)

S1(t)
dS1(t) + [Xθ(t)− θ(t)]rdt

= [rXθ(t) + θ(t)(µ1 − r)]dt+ θ(t)σ1dW1(t), t ∈ (0, T ) (2.8)

Xθ(0) = x0,

where θ(t) = θ(t, S1(t), S2(t), Xθ(t)), t ∈ [0, T ). Note that Xθ(t) is a controlled Markovian

process.

Let F := {Ft, t ≥ 0} be the filtration generated by {(S1(t), S2(t)), t ≥ 0} and write the con-
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ditional expectation as Et,s1,s2,x[ · ] = E[ · |S1(t) = s1, S2(t) = s2, X
θ(t) = x], ∀ (t, s1, s2, x) ∈

[0, T ] × R2
+ × R. We are interested in the optimal hedging strategy among those admissible

strategies in Definition 2.1 below.

Definition 2.1. An admissible strategy θ(t) = θ(t,Xθ(t), S1(t), S2(t)), t ∈ [0, T ] is defined as a

progressively measurable process such that:

(a) E
[∫ T

0
θ(u)2du

]
<∞;

(b) Et,s1,s2

[∫ T
t
|θ(u)|du

]
≤ KeK(s21+s22) for some constantK > 0, ∀(t, s1, s2) ∈ [0, T ]× R2

+.

We use Θ to denote the set of all admissible strategies.

Both conditions (a) and (b) in Definition 2.1 are quite mild. The square integrability condition

in (a) is almost the minimum requirement to ensure that the SDE (2.8) forXθ is well defined, and

the exponentially growth condition (b) allows a wide class of admissible strategies. Imposing

condition (b) ensures the uniqueness of the solution to the partial differential equation (PDE)

(2.37), which is critical to deriving an explicit optimal strategy as we will see in Section 2.3.3.

Because of the basis risk and the market incompleteness, the hedging strategy involving θ can

not perfectly replicate the maturity value of the European option. The hedging error at expiration

of the option is given by G(S2(T ))−Xθ(T ). By defining V θ(T ) as the terminal profit-and-loss

random variable for the hedger, we have

V θ(T ) = Xθ(T )−G(S2(T )). (2.9)

For any time t < T and under mean-variance criterion, an optimal hedging strategy can be

defined as the one that solves the following optimization problem:

max
θ∈Θ

{
U(t, s1, s2, x; θ) := Et,s1,s2,x[V

θ(T )]− γ
2
Vart,s1,s2,x[V

θ(T )]
}
. (2.10)

where Vart,s1,s2,x[ · ] = Var[ · |S1(t) = s1, S2(t) = s2, X
θ(t) = x], Var[·] denotes the variance

taken under the P measure, and γ > 0 is a constant parameter capturing the risk aversion of
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the hedger. Note that the objective of the hedger is to choose an optimal hedging strategy θ that

maximizes hedger’s (conditional) expected profit (i.e. Et,s1,s2,x[V
θ(T )]) subject to the penalty at-

tributed to the (conditional) variance of the profit (i.e. Vart,s1,s2,x[V
θ(T )]). The degree of penalty

is quantified by the parameter γ, which is called risk aversion coefficient. It is worthwhile noting

that problem (2.10) is reduced to a portfolio selection problem if G(S2(T )) = 0. In this chapter

we use the term “hedging” as the terminal profit-and-loss variable can be interpreted as the dif-

ference between the hedging portfolio and the financial liability to be hedged and the variance

term in the objective function represents the size of hedging error.

Let {θ̃0(t), t ∈ [t1, T )} be a pre-commitment solution of problem (2.10) derived by sitting

at time t1. In other words, {θ̃0(t), t ∈ [t1, T )} is the best strategy among the admissible set

to maximize the mean-variance objective U(t1, s1, s2, x; θ). For a mean-variance optimization

problem, it is well-known that the truncated strategy {θ̃0(t), t ∈ [t2, T )} is not generally optimal

for the decision at a later time t2 > t1 in the sense of maximizing the objective U(t2, s1, s2, x; θ);

see, e.g., Basak and Chabakauri, (2010). Such a phenomenon is called the time-inconsistency

issue associated with mean-variance analysis. Generally we call a problem time-inconsistent, if a

strategy truncated from a strategy which optimizes the objective for an earlier time is not optimal

for the objective at a later time; otherwise, the problem is called time-consistent.

To develop a time-consistent hedging strategy, we follow the game theoretic framework of

Björk and Murgoci (2010) and Basak and Chabakauri (2010). Using the game theoretic formu-

lation, the “optimality” is defined as a subgame perfect Nash equilibrium solution. The idea is

to take the decision making process as a non-cooperative game among a continuum of players

over the time horizon (who can be viewed as the future incarnations of the decision-maker), and

each player can only influence the control process over an infinitesimal time interval. The formal

mathematical definition is given as follows.

Definition 2.2. Consider a control process θ∗ ∈ Θ. For any arbitrary constant q ∈ R, τ ∈ R+,

and initial point (t, s1, s2, x) for (t, S1(t), S2(t), Xθ(t)), define the control process θ̂ as

θ̂(v, s1, s2, x) =

{
q, for t ≤ v < t+ τ ;

θ∗(v, s1, s2, x), for t+ τ ≤ v ≤ T.
(2.11)
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Then θ∗ is an equilibrium control process, if

lim inf
τ→0+

U(t, s1, s2, x; θ∗)− U(t, s1, s2, x; θ̂))

τ
≥ 0 (2.12)

holds for any q ∈ R and t ≥ 0, where U is the objective function in problem (2.10). Furthermore,

the equilibrium value function is defined by

J(t, s1, s2, x) = U(t, s1, s2, x; θ∗). (2.13)

As defined in the above, for any time t ∈ (0, T ), the truncated strategy {θ∗s , s ∈ [t, T ]} is

still an equilibrium solution for the rest time horizon [t, T ]. In other words, the decision at any

later time under such a game theoretical framework sticks to the strategy θ∗, and thus, such an

equilibrium solution θ∗ is also called a time-consistent solution. For a time-inconsistent problem,

the precommitment solution differs from the equilibrium solution in general. In contrast, for a

time-consistent problem, the precommitment solution coincides with the equilibrium solution,

since in this case, the truncation of a precommitment solution over a fractional period [t, T ] is

still an optimal solution for the objective at time t for any t ∈ (0, T ).

Remark 2.1. If the physical measure P is a martingale measure, i.e., µ1(t, s) = r,∀ (t, s) ∈
R+×R, problem (2.10) is in fact a time-consistent problem with Et,s1,s2,x[V

θ(T )] being a constant

independent of θ. Therefore in this chapter, when we use the term “time-inconsistent problem”,

it might also include some time-consistent cases as its special cases.

2.3 Optimal time consistent hedging strategy

When only a controlled Markovian process is involved, there exists a standard procedure to

derive the extended HJB equation for mean-variance optimization, as one can see in some recent

applications such as Björk and Murgoci (2010) and Li et al. (2012). For our problem (2.10), the

profit-and-loss random variable V θ(T ), however, depends on not only the controlled Markovian

process {Xθ(t), t ∈ [0, T ]} but also the price process {S2(t), t ∈ [0, T ]}. Explicit dependence of
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G(S2(T )) in V θ(T ) distinguishes our model from other mean-variance based formulations and

this complicates the derivation of an optimal solution. Subsection 2.3.1 will first establish an

extended HJB equation for problem (2.10) in a heuristic way, subsection 2.3.2 will then formally

justify our result by providing a verification theorem. Subsection 2.3.3 demonstrates that, with

certain technical conditions, the proposed solution satisfies the conditions from the verification

theorem in Subsection 2.3.2, and thus it is an equilibrium solution.

2.3.1 The extended HJB equation

We begin by obtaining an alternate expression for the objective function in problem (2.10). We

achieve this via the following total variance decomposition for an admissible hedging strategy

θ ∈ Θ and τ ∈ R+:

Vart,s1,s2,x(V
θ(T )) = Et,s1,s2,x[Vart+τ (V

θ(T ))] + Vart,s1,s2,x[Et+τ (V
θ(T ))]. (2.14)

The objective function in problem (2.10) therefore can be rewritten as

U(t, s1, s2, x; θ)

= Et,s1,s2,x[V
θ(T )]− γ

2
Vart,s1,s2,x[V

θ(T )]

= Et,s1,s2,x[V
θ(T )]− γ

2
Et,s1,s2,x[Vart+τ (V

θ(T ))]− γ

2
Vart,s1,s2,x[Et+τ (V

θ(T ))]

= Et,s1,s2,x[U
θ(t+ τ)]− γ

2
Vart,s1,s2,x[Et+τ (V

θ(T ))], (2.15)

where U θ(t+ τ) := U(t+ τ, S1(t+ τ), S2(t+ τ), Xθ(t+ τ)).

Letm(t, s1, s2, x; θ) := Et,s1,s2,x

[
V θ(T )

]
, and denotemθ(t) := m

(
t, S1(t), S2(t), Xθ(t); θ

)
.

The, by definition we obtain

Vart,s1,s2,x[m
θ(t+ τ)]

= Et,s1,s2,x

[(
mθ(t+ τ)

)2
]
−
[
Et,s1,s2,x

(
mθ(t+ τ)

)]2
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= Et,s1,s2,x

[(
mθ(t+ τ)

)2 −
(
mθ(t)

)2
]
−
{[

Et,s1,s2,x

(
mθ(t+ τ)

)]2 − [Et,s1,s2,x

(
mθ(t)

)]2}
.

For any τ ∈ R+ and q ∈ R, we let θ̂ to denote a hedging strategy with a generic admissible

constant q ∈ R applied over [t, t + τ) and the equilibrium strategy θ∗ applied over [t + τ, T ),

i.e., θ̂ is as defined in equation (2.11). Thus, dividing by τ and letting τ → 0 in (2.15) gives the

following extended HJB equation:

0 = max
q∈R

(
A qF (t, s1, s2, x)− ξq(m(t, s1, s2, x; θ∗))

)
, (2.16)

where A q is the infinitesimal generator for processes {S1, S2, X
q} and is given by

A qF (t, s1, s2, x) = Ft + Fxrx+ qFx(µ1 − r) + Fs1s1µ1 + Fs2s2µ2

+
1

2
Fxx(qσ1)2 +

1

2
Fs1s1(s1σ1)2 +

1

2
Fs2s2(s2σ2)2

+Fxs1s1σ1qσ1 + Fxs2s2σ2qσ1ρ+ Fs1s2s1σ1s2σ2ρ, (2.17)

and

ξq(m(t, s1, s2, x)) =
γ

2

{
A q
[
m(t, s1, s2, x)2

]
− 2m(t, s1, s2, x)A q [m(t, s1, s2, x)]

}
. (2.18)

2.3.2 Verification theorem

Based on the extended HJB equation (2.16), the objective of this section is to develop a verifi-

cation theorem, together with the required conditions, that guarantees a solution of the extended

HJB equation, and to solve the mean-variance optimization problem (2.10).

Theorem 2.1. (Verification Theorem). Suppose there exists a control process θ∗ ∈ Θ and a

function F such that

θ∗(t) = arg max
q
{A qF (t, s1, s2, x)− ξq (g(t, s1, s2, x))}, (2.19)

0 = A θ∗F (t, s1, s2, x)− ξθ∗(g(t, s1, s2, x)), (2.20)
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F (T, s1, s2, x) = x−G(s2), (2.21)

g(t, s1, s2, x) = Et,s1,s2,x[V
θ∗(T )], (2.22)

for any (t, s1, s2, x) ∈ [0, T ] × R2
+ × R. Then {θ∗(t)}t∈[0,T ) is an equilibrium hedging strat-

egy and F (t, s1, s2, x) is the equilibrium value function, i.e., F (t, s1, s2, x) = U(t, s1, s2, x; θ∗),

∀(t, s1, s2, x) ∈ [0, T ]× R2
+ × R.

Proof. We will first show that F (t, s1, s2, x) = U(t, s1, s2, x; θ∗) given that θ∗ satisfies (2.19)-

(2.22). Indeed, by Dynkin’s formula,

Et,s1,s2,x

[
F (T, S1(T ), S2(T ), Xθ∗(T ))

]
= F (t, s1, s2, x) + Et,s1,s2,x

[∫ T

t

A θ∗F (u, S1(u), S2(u), Xθ∗(u))du

]
. (2.23)

Then, using the shorthand g(u) := g(u, S1(u), S2(u), Xθ∗(u)) and equations (2.18) and (2.20)

yields

Et,s1,s2,x

[
F (T, S1(T ), S2(T ), Xθ∗(T ))

]
= F (t, s1, s2, x) + Et,s1,s2,x

[∫ T

t

ξθ
∗ (
g
(
u, S1(u), S2(u), Xθ∗(u)

))
du

]
= F (t, s1, s2, x) + Et,s1,s2,x

{∫ T

t

[γ
2
A θ∗ [g(u)2]− γg(u)A θ∗ [g(u)]

]
du

}
= F (t, s1, s2, x) + Et,s1,s2,x

{∫ T

t

γ

2
A θ∗ [g(u)2]du

}
= F (t, s1, s2, x) +

γ

2
Et,s1,s2,x

[
g2(T, S1(T ), S2(T ), Xθ∗(T ))

]
− γ

2
g2(t, s1, s2, x).(2.24)

The third equality follows from the condition (2.22) and the last equality can be obtained by

applying Dynkin’s formula in conjunction with the definition of ξθ given in (2.18). Moreover, by

the boundary condition (2.21), we have

Et,s1,s2,x

[
F (T, S1(T ), S2(T ), Xθ∗(T ))

]
= Et,s1,s2,x

[
Xθ∗(T )−G(S2(T ))

]
= Et,s1,s2,x

[
V θ∗(T )

]
. (2.25)
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Combining equations (2.24) and (2.25) yields

F (t, s1, s2, x)

= Et,s1,s2,x

[
V θ∗(T )

]
− γ

2
Et,s1,s2,x

[
g2(T, S1(T ), S2(T ), Xθ∗(T ))

]
+
γ

2
g2(t, s1, s2, x)

= Et,s1,s2,x

[
V θ∗(T )

]
− γ

2
Vart,s1,s2,x

(
V θ∗(T )

)
= U(t, s1, s2, x; θ∗), (2.26)

where the second equality follows from the definition of g given in (2.22). What we have estab-

lished in equation (2.26) is that a function F (t, s1, s2, x) that satisfies conditions (2.19)-(2.22) is

the equilibrium value.

It remains to show that θ∗ is an equilibrium strategy. We start from equations (2.19) and

(2.20) to obtain

A qF (t, s1, s2, x)− ξq(t, s1, s2, x) ≤ 0, ∀ q ∈ R.

Then, discretizing the left-hand-side of the above inequality leads to

Et,s1,s2,x[F (t+ τ, S1(t+ τ), S2(t+ τ), X θ̂(t+ τ))]− F (t, s1, s2, x)

−γ
2

(
Et,s1,s2,x[g(t+ τ, S1(t+ τ), S2(t+ τ), X θ̂(t+ τ))2]− g(t, s1, s2, x)2

)
+
γ

2

(
E2
t,s1,s2,x

[g(t+ τ, S1(t+ τ), S2(t+ τ), X θ̂(t+ τ))]− g(t, s1, s2, x)2
)
≤ o(τ),

where o(τ)/τ → 0 as τ → 0+. We further use the definition of g in equation (2.22) to obtain

F (t, s1, s2, x) ≥ Et,s1,s2,x[F (t+ τ, S1(t+ τ), S2(t+ τ), X θ̂(t+ τ))]

−γ
2

(
Et,s1,s2,x[g(t+ τ, S1(t+ τ), S2(t+ τ), X θ̂(t+ τ))2]

−E2
t,s1,s2,x

[g(t+ τ, S1(t+ τ), S2(t+ τ), X θ̂(t+ τ))]
)

+ o(τ)

= Et,s1,s2,x

[
F (t+ τ, S1(t+ τ), S2(t+ τ), X θ̂(t+ τ))

]
−γ

2
Vart,s1,s2,x

[
Et+τ

(
V θ̂(T )

)]
+ o(τ).
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Since we have proved that F (t, s1, s2, x) = U(t, s1, s2, x; θ∗), we combine equations (2.15) and

the last display to obtain

lim inf
τ→0+

U(t, s1, s2, x; θ∗)− U(t, s1, s2, x; θ̂)

τ
≥ 0, ∀ q ∈ R,

which implies that θ∗ is an equilibrium strategy.

2.3.3 Equilibrium solution

2.3.3.1 Candidate solution and technical conditions

In the next subsection, we will show that, under some technical conditions, the following θ∗ is

an equilibrium solution:

θ∗(t, s1, s2) = e−r(T−t)
[
µ1 − r
γσ2

1

− ηs1(t)s1 −
s2σ2ρ

σ1

(
ηs2(t)− er(T−t)Πs2(t)

)]
, (2.27)

where

η(t, s1, s2) = E∗t,s1,s2

{∫ T

t

[
1

γ
(
µ1 − r
σ1

)2 + (µ1 − r)
ρσ2

σ1

S2(u)er(T−u)Πs2(u)

]
du

}
. (2.28)

In the above, ηs1 = ∂
∂s1
η(t, s1, s2), Πs2 = ∂

∂s2
Π(t, s2). E∗t,s1,s2 [·] denotes conditional expecta-

tion under probability measure P∗, which is defined by the Radon-Nikodym derivative given as

follows:

dP∗

dP

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

(
µ1 − r
σ1

)2

du−
∫ t

0

µ1 − r
σ1

dW1(u)

)
. (2.29)

By the conditions on the boundedness of coefficients µi and σi respectively given in equations

(2.3) and (2.4), the right hand side of equation (2.29) is well defined and Novikov’s condition

E

[
exp

{
1

2

∫ T

0

(
µ1 − r
σ1

)2

du

}]
<∞
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is satisfied. Consequently, by the Girsanov’s Theorem (Karatzas and Shreve, 1998), under P∗,
the two risky assets S1 and S2 follow the following dynamics:

dS1(t)
S1(t)

= rdt+ σ1dW
∗
1 (t),

dS2(t)
S2(t)

=
(
µ2 − (µ1 − r)ρσ2σ1

)
dt+ σ2dW

∗
2 (t),

(2.30)

where W ∗
1 and W ∗

2 are two standard Brownian motions with dW ∗
1 dW

∗
2 = ρdt under P∗.

It is notable that the introduction of measure P∗ allows to express the equilibrium solution

θ∗ using (2.27) and (2.28) explicitly. In general, it is not clear whether θ∗ given in (2.27) is

admissible, i.e., θ∗ ∈ Θ where Θ is defined in Definition 2.1. To ensure this, we need certain

technical conditions, and to facilitate the development, we define

A(u, s) :=
µ1(u, s)− r
σ1(u, s)

and B(u, s) := σ2(u, s)sΠs2(u, s), ∀(u, s) ∈ R2
+. (2.31)

A sufficient condition for the admissibility of θ is that the following conditions C1 and C2 hold

(see Proposition 2.1 in the sequel for formal justificaiton):

C1. ∀ (t, s1, s2) ∈ [0, T ]× R2
+, ηs1(t, s1, s2) and ηs2(t, s1, s2) exist, and there exists a constant

K > 0 such that |η(t, s1, s2)| ≤ K · eK(s21+s22).

C2. ∀ (t, s1, s2) ∈ [0, T ] × R2
+ and ∀ u ∈ [t, T ], there exists positive constants K, K1 and K2

such that the following three partial derivatives exist and satisfy:
∂
∂s1

E∗t,s1 [A(u, S1(u))2] ≤ K(1 + |s1|K1),
∂
∂s1

E∗t,s1,s2 [A(u, S1(u))B(u, S2(u))] ≤ K(1 + |s1|K1 + |s2|K2),
∂
∂s2

E∗t,s1,s2 [A(u, S1(u))B(u, S2(u))] ≤ K(1 + |s1|K1 + |s2|K2).

(2.32)

Remark 2.2. When coefficients ρ, µi and σi, i = 1, 2, are all constants, η(t, s1, s2) is independent

of s1 and A(u, s) is a constant. Thus, in this case, ηs1 = 0 and the first condition in (2.32) is

trivially true. As a consequence, having conditions C1 and C2 is equivalent to the following

condition:
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H. ∀ (t, s2) ∈ [0, T ] × R2
+ and ∀ u ∈ [t, T ], |η̃(t, s2)| ≤ K · eK·s22 holds for some constant

K > 0, and the derivative η̃s2(t, s2) exist, where

η̃(t, s2) := E∗t,s2

[∫ T

t

S2(u)er(T−u)Πs2(u)du

]
, u > t; (2.33)

moreover, the following two derivatives exist and satisfy{
Πs2(t, s2) ≤ K(1 + |s2|K2),

Πs2s2(t, s2) ≤ K(1 + |s2|K2).
(2.34)

Note that, given constant coefficients for both processes S1 and S2, condition H is fully de-

termined by the payoff function of the European option, and it is easily satisfied for common

derivatives; see Section 2.4.4 for more details w.r.t. futures contracts and European call options.

For a general model, conditions C1 and C2 are not transparent and they have to be checked

based on the specific dynamics of asset prices S1 and S2 as well as the function Π, which further

depends on the payoff of the European option. However, a sufficient condition which is a little

stronger but more transparent to verify than condition C2 is given as follows:

C2’. There exist positive constants K, K1 and K2 such that, ∀ (t, s1, s2) ∈ [0, T ]× R2
+,

∂
∂s1
A(t, s1) ≤ K(1 + |s1|K1),

Πs2(t, s2) ≤ K(1 + |s2|K2),
∂
∂s2
σ2(t, s2) ≤ K(1 + |s2|K2),

Πs2s2(t, s2) ≤ K(1 + |s2|K2).

(2.35)

Proposition 2.1 below rigorously clarifies the relationship between C2 and C2’ and their

sufficiency (together with C1) for θ∗ ∈ Θ.

Proposition 2.1. Given condition C1 and the existence of the three derivatives in equation (2.32),

condition C2’ implies condition C2, which together with C1 further implies θ∗ ∈ Θ.

Proof. See Appendix A.1.
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2.3.3.2 Verification of equilibrium solution

The formal justification of the optimality of θ∗ is given in Theorem 2.2 in the sequel and its proof

depends on the following technical lemma.

Lemma 2.1. Given that conditions C1 and C2 hold, η satisfies the following recursion:

η(t, s1, s2) = Et,s1,s2

[∫ T

t

er(T−u)θ∗(u)(µ1 − r)du
]
, (2.36)

where θ∗ is given by equation (2.27).

Proof. By applying Feynman-Kac Theorem to function η(t, s1, s2) along with equation (2.30),

we obtain the following partial differential equation (PDE):

ηt + s1µ1ηs1 + s2µ2ηs2 +
1

2
s2

1σ
2
1ηs1s1 +

1

2
s2

2σ
2
2ηs2s2 + ρs1s2σ1σ2ηs1s2

+
1

γ
(
µ1 − r
σ1

)2 − (µ1 − r)s1ηs1 − (µ1 − r)
ρσ2

σ1

s2

(
ηs2 − er(T−t)Πs2

)
= 0. (2.37)

The given exponential growth condition in condition C1 guarantees the uniqueness of solution to

the second-order linear parabolic PDE (2.37) (see Chen, 2003; Lieberman, 1996). Thus, applying

Feynman-Kac Theorem again, its solution is given by

η(t, s1, s2) = Et

[ ∫ T

t

1

γ

(
µ1 − r
σ1

)2

du

]
−Et

[ ∫ T

t

(µ1 − r)
(
ηs1(u)S1(u) +

ρσ2S2(u)

σ1

[ηs2(u)− er(T−s)Πs2(u)]

)
du

]
= Et,s1,s2

[∫ T

t

er(T−u)θ∗(u)(µ1 − r)du
]
, (2.38)

in view of equation (2.27).

Recall from equation (2.9) that the random variable V θ(T ) = Xθ(T )−G(S2(T )) represents

the profit-and-loss of the hedging strategy at maturity of the European option. For t < T , we
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define V θ(t) as

V θ(t) ≡ V (t, S2(t), Xθ(t)) := Xθ(t)− Π(t, s2), t ∈ [0, T ], (2.39)

where Π(t, s2) is defined in equation (2.5).

To facilitate further development, we introduce the following functions:
m(t, s1, s2, x; θ) := Et,s1,s2,x[V

θ(T )],

n(t, s2, x) := [x− Π(t, s2)] er(T−t),

l(t, s1, s2, x; θ) := Et,s1,s2,x

[∫ T
t

er(T−u)θ(u)(µ1 − r)du
]
,

(2.40)

for (t, s1, s2, x) ∈ [0, T ]× R2
+ × R, and adopt the following short-hand notations:
mθ(t) = m(t, S1(t), S2(t), Xθ(t); θ),

nθ(t) = n(t, S2(t), Xθ(t)),

lθ(t) = l(t, S1(t), S2(t), Xθ(t); θ),

for t ∈ [0, T ]. By Feynman-Kac formula we obtain

rΠ(t, s2) = Πt(t, s2) + Πs2(t, s2)s2µ2 +
1

2
Πs2s2(t, s2)s2

2σ
2
2. (2.41)

Consequently, for t ∈ (0, T ), we apply Itô’s formula to nθ(t) in conjunction with equations (2.1),

(2.8) and (2.41) to obtain

dnθ(t) = d[Xθ(t)er(T−t)]− d[Π(t)er(T−t)]

= er(T−t)dXθ(t)−Xθ(t)er(T−t)rdt+ Π(t)er(T−t)rdt− er(T−t)dΠ(t)

= er(T−t)θ(t)(µ1 − r)dt+ er(T−t) [θ(t)σ1dW1(t)− Πs2(t)S2(t)σ2dW2(t)] . (2.42)

By Proposition 2.1, θ∗ ∈ Θ and thus, the condition (a) in Definition 2.1 ensures

Et,s1,s2,x

[∫ t

0

er(T−u)θ(u)σ1dW1(u)

]
= 0.
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Moreover, from the conditions given in equations (2.3) and (2.6), it follows

Et,s1,s2,x

[∫ t

0

er(T−u)Πs2(u)S2(u)σ2dW2(u)

]
= 0.

Thus, equation (2.42), in conjunction with the fact that nθ(T ) = V θ(T ) and nθ(t) = V θ(t)er(T−t),

yields

m(t, s1, s2, x; θ) ≡ Et,s1,s2,x[V
θ(T )]

= n(t, s2, x) + Et,s1,s2,x

(∫ T

t

er(T−u)θ(u)(µ1 − r)du
)

= n(t, s2, x) + l(t, s1, s2, x; θ), (2.43)

and

V θ(T ) = er(T−t)V θ(t) +

∫ T

t

der(T−u)V θ(u)

= n(t, s2, x) +

∫ T

t

er(T−u)θ(u)(µ1 − r)du

+

∫ T

t

er(T−u) [θ(u)σ1dW1(u)− Πs2(u)S2(u)σ2dW2(u)] . (2.44)

Consequently, we can rewrite the objective function in equation (2.10) as follows:

U(t, s1, s2, x; θ) = Et,s1,s2,x[V
θ(T )]− γ

2
Vart,s1,s2,x[V

θ(T )]

= n(t, s2, x) + l(t, s1, s2, x; θ)

−γ
2

Vart,s1,s2,x

[
er(T−t)V θ(t) +

∫ T

t

d
(
er(T−u)V θ(u)

)]
= n(t, s2, x) + Ũ(t, s1, s2, x; θ), (2.45)

where

Ũ(t, s1, s2, x; θ)
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= l(t, s1, s2, x; θ)− γ

2
Vart,s1,s2,x

(∫ T

t

er(T−u)θ(u)(µ1 − r)du

+

∫ T

t

er(T−u) [θ(u)σ1dW1(u)− Πs2(u)S2(u)σ2dW2(u)]

)
. (2.46)

Equation (2.45) means that our objective function U(t, s1, s2, x; θ) can be separated into two

parts, which is quite essential to solve for equilibrium control θ∗. Let us denote C1,2,2,2 =

{f(t, s1, s2, x) : [0, T ]×R2
+×R 7→ R s.t. f is continuously differentiable in t and twice continuously

differentiable in s1, s2 and x}.

Theorem 2.2. With conditions C1 and C2 (or C2’), θ∗ defined in equation (2.27) is an equilib-

rium solution and the equilibrium value is given byU(t, s1, s2, x; θ∗), provided thatU(t, s1, s2, x; θ∗) ∈
C1,2,2,2.

Proof. We need to show (θ∗, F ) with F (·) = U(·, ·, ·, ·; θ∗) solves the equation system (2.19)-

(2.22). From equation (2.45), we apply Lemma 2.1 to obtain

F (t, s1, s2, x; θ∗) = U(t, s1, s2, x; θ∗) = n(t, x, s2) + Ũ(t, s1, s2; θ∗), (2.47)

with

Ũ(t, s1, s2; θ∗) = η(t, s1, s2)− γ

2
Vart,s1,s2,x

(∫ T

t

er(T−u)θ∗(u)(µ1 − r)du

+

∫ T

t

er(T−u) [θ∗(u)σ1dW1(u)− Πs2(u)S2(u)σ2dW2(u)]

)
,

which is independent of x because θ∗ does not depend on x. Therefore, equation (2.21) holds,

since

F (T, s1, s2, x) = n(T, s2, x) + Ũ(T, s1, s2; θ∗) = (x− Π(T, s2)) + η(T, s1, s2) = x−G(s2).

27



Furthermore, equation (2.22), in conjunction with equation (2.43), implies

g(t, s1, s2, x) = Et,s1,s2,x[V
θ∗(T )] = n(t, s2, x) + Et,s1,s2,x

(∫ T

t

er(T−u)θ∗(u)(µ1 − r)du
)

= n(t, s2, x) + η(t, s1, s2), (2.48)

where the last equality follows from Lemma 2.1.

It remains to check equations (2.19) and (2.20). Regarding (2.20), we notice that g(t, s1, s2, x) =

Et,s1,s2,x[V
θ∗(T )] to obtain

A θ∗F (t, s1, s2, x)− ξθ∗(g(t, s1, s2, x))

= A θ∗U(t, s1, s2, x; θ∗)− ξθ∗(g(t, s1, s2, x))

= A θ∗
(
g(t, s1, s2, x)− γ

2
Et,s1,s2,x[V

θ∗(T )2] +
γ

2
g2(t, s1, s2, x)

)
− ξθ∗(g(t, s1, s2, x)),

where the last equality is due to equation (2.15). Note that g(t, S1(t), S2(t), Xθ∗(t)) is a mar-

tingale. Also, if we denote h(t, s1, s2, x) = E
[
V θ∗(T )2

]
, then h(t, S1(t), S2(t), Xθ∗(t)) is also

a martingale. Therefore, A θ∗g(t, s1, s2, x) = A θ∗h(t, s1, s2, x) = 0, and it follows from the

definition of ξθ∗ that

A θ∗F (t, s1, s2, x)− ξθ∗(g(t, s1, s2, x))

=
γ

2
A θ∗

(
g2(t, s1, s2, x)

)
− γg(t, s1, s2, x)A θ∗ (g(t, s1, s2, x))− ξθ∗(g(t, s1, s2, x))

= 0,

which implies condition (2.20).

Finally, we verify equation (2.19). By the definition of ξq, we obtain

ξq (g(t, s1, s2, x)) =
γ

2

[
g2
x(qσ1)2 + g2

s1
(s1σ1)2 + g2

s2
(s2σ2)2

+ 2gs1gxs1qσ
2
1 + 2gs2gxs2qσ1σ2ρ+ 2gs1gs2s1s2σ1σ2ρ

]
.
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Therefore, we can use equation (2.47) to rewrite the right-hand-side of equation (2.19) as follows:

A qF (t, s1, s2, x)− ξq (g(t, s1, s2, x)) = A qŨ(t, s1, s2)− γ

2
(a0q

2 + a1q + a2), (2.49)

where 
a0 = g2

xσ
2
1,

a1 = 2gs1gxs1σ
2
1 + 2gs2gxs2σ1σ2ρ− 2

γ
er(T−t)(µ1 − r),

a2 = g2
s1

(s1σ1)2 + g2
s2

(s2σ2)2 + 2gs1gs2s1s2σ1σ2ρ

− 2
γ
[er(T−t)rx+ ns2µ2s2 + 1

2
ns2s2(s2σ2)2].

Maximizing (2.49) with respect to q and using equations (2.48) and (2.27) yield

arg max
q
{A qF (t, s1, s2, x)− ξq (g(t, s1, s2, x))}

= − a1

2a0

=
er(T−t)(µ1 − r)− γgs1gxs1σ

2
1 − γgs2gxs2σ1σ2ρ

γg2
xσ

2
1

= e−r(T−t)
[
µ1 − r
γσ2

1

− ηs1(t)s1 −
s2σ2ρ

σ1

(
ηs2(t)− er(T−t)Πs2(t)

)]
= θ∗(t, s1, s2).

This confirms equation (2.19) and the proof is complete.

2.4 Discussions

In this section, we provide additional analysis on some special cases for the general results de-

rived in the preceding section. In particular, optimal trading strategies for variance minimization

and/or the absence of basis risk are shown to be special cases of the general results. We shall use

the notation Y ind.
= Z for two processes Y and Z to denote that they are indistinguishable, i.e.,

P(Y (t) = Z(t), t ∈ [0, T ]) = 1.

29



2.4.1 The case with no basis risk

A natural question one may ask is that under what conditions our problem degenerates to the case

where the two stocks are perfectly correlated and there is no basis risk. It turns out that the case

with no basis risk is indeed one special case of our problem (2.10), as shown in Proposition 2.2

below.

Proposition 2.2. In equation (2.1), if we let ρ = 1, µ1
ind.
= µ2

ind.
= µ and σ1

ind.
= σ2

ind.
= σ for some

progressively measurable processes µ and σ, then the two stochastic processes of stock price

S1(t) and S2(t) are indistinguishable and therefore they can be viewed as the same stock.

Further, the equilibrium solution in this case is given by:

θ∗(t, s) = s · Πs(t) + e−r(T−t)
[
µ− r
γσ2

− sηs(t)
]
, (2.50)

and

η(t, s) = E∗t,s

{∫ T

t

[
1

γ

(
µ− r
σ

)2

+ (µ− r)S(u)er(T−u)Πs(u)

]
du

}
, (2.51)

where S(·) is a progressively measurable process such that S ind.
= S1

ind.
= S2.

Proof. When ρ = 1, ∀t1, t2 ∈ (0, T ),

(W1(t2)−W1(t1),W2(t2)−W2(t1)) ∼ N

(
(0, 0),

[
t2 − t1 t2 − t1
t2 − t1 t2 − t1

])
.

Therefore (W1(t2)−W1(t1),W2(t2)−W2(t1)) is a degenerate bivariate normal random variable

with W1(t2)−W1(t1) = W2(t2)−W2(t1) a.s., and thus ∀t ∈ (0, T ), W1(t) = W2(t) a.s., which

along with the fact that both W1 and W2 have continuous paths almost surely, implies that W1(t)

and W2(t) are indistinguishable, and so are S1(t) and S2(t). Consequently, equation (2.50) and

equation (2.51) are obtained trivially from equations (2.27) and (2.28).
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2.4.2 The limiting case when γ →∞

When the risk aversion coefficient γ in problem (2.10) becomes larger, this implies that the

hedger is more risk averse and is more concerned with the variability of his/her hedging strategy.

In the limiting case of γ → ∞, the hedger can be perceived as one who is pre-dominantly

concerned with the variability of the adopted hedging strategy and hence his/her objective boils

down to minimizing Vart,s1,s2,x[V
θ(T )]. In this special case, it is of interest to investigate if

the equilibrium solution given by equation (2.27) reduces to that of the variance minimization

problem. The answer is affirmative as justified by the proposition below.

Proposition 2.3. Denote θ∗γ as the equilibrium solution given in equation (2.27) to emphasize its

dependence on the risk aversion coefficient γ in problem (2.10), and let

θ∗0(t, s1, s2) = lim
γ→∞

θ∗γ(t, s1, s2) = e−r(T−t)
[
−ηs1(t)s1 −

s2σ2ρ

σ1

(
ηs2(t)− er(T−t)Πs2(t)

)]
(2.52)

and

η(t, s1, s2) = E∗t,s1,s2

{∫ T

t

[
(µ1 − r)

ρσ2

σ1

S2(u)er(T−u)Πs2(u)

]
du

}
. (2.53)

Then, θ∗0 defined in (2.52) is an equilibrium solution to the following variance minimization

problem:

max
θ∈Θ

{
U(t, s1, s2, x; θ) := −Vart,s1,s2,x[V

θ(T )]
}
. (2.54)

Proof. The technique used to derive an equilibrium solution of problem (2.54) parallels to that

of problem (2.10) in Section 2.3, hence we only highlight some key steps of the proof. First, by

the total variance formula, the objective function of problem (2.54) satisfies the recursion:

U(t, s1, s2, x; θ) = −Vart,s1,s2,x[V
θ(T )]

= −Et,s1,s2,x[Vart+τ (V
θ(T ))]− Vart,s1,s2,x[Et+τ (V

θ(T ))]

= Et,s1,s2,x[U
θ(t+ τ)]− Vart,s1,s2,x[Et+τ (V

θ(T ))]. (2.55)
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Second, in parallel to equations (2.45) and (2.46),

U(t, s1, s2, x; θ)

= −Vart,s1,s2,x

(∫ T

t

er(T−u)θ(u)(µ1 − r)du

+

∫ T

t

er(T−u) [θ(u)σ1dW1(u)− Πs2(u)S2(u)σ2dW2(u)]

)
.

Third, by a similar argument as in equation (2.16), we can use the recursion (2.55) to establish

the following extended HJB equation for equilibrium solution θ∗ to satisfy:

0 = max
q∈R

(
A qF (t, s1, s2, x)− ξq(m(t, s1, s2, x; θ∗))

)
, (2.56)

where the generator A q is defined in equation (2.17), m(t, s1, s2, x; θ) := Et,s1,s2,x[V
θ(T )] as

defined in equation (2.40), and in parallel to equation (2.18),

ξq(m(t, s1, s2, x)) = A q
[
m(t, s1, s2, x)2

]
− 2m(t, s1, s2, x)A q [m(t, s1, s2, x)] .

Finally it is straightforward to verify that Theorem 2.1 is still valid with ξq replaced by the above

definition. Then following a procedure similar to Theorem 2.2, we can prove θ∗0 is an equilibrium

solution to problem (2.54).

Remark 2.3. We note that while the equilibrium strategy θ∗ in Proposition 2.3 is derived from

the extended HJB equation (2.56), the expressions of θ∗ and η given in Proposition 2.3 can be

obtained from equations (2.50) and (2.51) by taking γ →∞.

2.4.3 The limiting case when γ →∞ with no basis risk

We consider the case with no basis risk, i.e., S1 and S2 are indistinguishable, for which sufficient

conditions are ρ = 1, µ1
ind.
= µ2 and σ1

ind.
= σ2, as formally proved in Proposition 2.2. Let S be a
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process which is indistinguishable from S1 and S2. So, we can equivalently view the European

option as if it is written on S. By further letting σ be a process indistinguishable from σ1 and

σ2, we obtain from equation (2.30) that, under the probability measure P∗, S follows a dynamic
dS(t)
S(t)

= rdt + σdW ∗(t), where W ∗ is a standard Brownian motion under P∗. Thus, the delta of

the European option at time t is given by ∆(t, s) = ∂
∂s

Π∗(t, s), where

Π∗(t, s) = E∗t,s
[
e−r(T−t)G(S(T ))

]
. (2.57)

In this special case with no basis risk, it is well known that a dynamic delta hedging can

fully replicate the payoff G(S(T )) of the European option. Therefore, a trading strategy θ̃ =

{θ̃(t, s), t ∈ [0, T ] and s ∈ R+} with θ̃(t, s) = s∆(t, s) is an equilibrium solution to the vari-

ance minimization problem (2.54), because the variance attains its minimum value, zero, with

such a trading strategy at any time t ∈ [0, T ].

Recall that (2.50) of Proposition 2.2 gives an equilibrium solution when there is no basis risk.

With γ →∞, θ∗(t, s) in (2.50) reduces to

θ∗(t, s) = e−r(T−t)
[
−s
(
ηs(t, s)− er(T−t)Πs(t, s)

)]
, t ∈ [0, T ], s ∈ R+. (2.58)

Therefore, in view of the above analysis, one may expect that θ∗ given in equation (2.58) is the

same as the delta hedging strategy θ̃. Proposition 2.4 below confirms such a conjecture.

Proposition 2.4. θ̃(t, s) = θ∗(t, s) for any t ∈ [0, T ] and s ∈ R+, where θ∗ is given by equation

(2.58).

Proof. Let us denote y(t, s) := Et,s[G(S(T ))] = e−r(T−t)Π(t, s), t ∈ [0, T ] and s ∈ R+. Then,

by Feynmann-Kac Theorem,

yt + µsys +
1

2
σ2s2yss = 0. (2.59)

Since Π(t, s) = Et,s

[
e−r(T−t)G(S(T ))

]
, it follows from (2.58) and Lemma 2.1 that

θ∗(t, s) = s · e−r(T−t) [ys(t, s)− ηs(t, s)] ,
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with

η(t, s) = Et,s

[∫ T

t

er(T−u)θ∗(u, S(u))(µ− r)du
]

= Et,s

[∫ T

t

s(µ− r) [ys(u, S(u))− ηs(u, S(u))] du

]
.

Applying Feynman-Kac Theorem again yields

ηt + µsηs +
1

2
σ2s2ηss + s(ys − ηs)(µ− r) = 0. (2.60)

Combining equations (2.59) and (2.60) yields

(y − η)t + rs(y − η)s +
1

2
σ2s2(y − η)ss = 0. (2.61)

We further define y∗(t, s) := E∗t,s [G(S(T ))], t ∈ [0, T ] and s ∈ R+, and use Feynman-Kac

Theorem to obtain

y∗t + rsy∗s +
1

2
σ2s2y∗ss = 0. (2.62)

Note that y∗(t, s) and y(t, s) − η(t, s) satisfy the same PDE with the same boundary con-

dition, i.e., y(T, s) − η(T, s) = G(S(T )) = y∗(T, s). Thus, y∗(t, s) = y(t, s) − η(t, s)

and y∗s(t, s) = ys(t, s) − ηs(t, s). We further note θ̂(t, s) = s∆(t, s) = e−r(T−t)y∗s(t, s) and

θ∗ = e−r(T−t) [ys(t, s)− ηs(t, s)] to conclude θ̂(t, s) = θ∗(t, s).

2.4.4 Solutions under geometric Brownian motions

In this subsection, we investigate the hedging problem of two specific contingent claims – futures

contract and the European call option – under the assumption that both asset price processes S1

and S2 are geometric Brownian motions. Under the assumption that S1 is a geometric Brownian

motion, the coefficients µ1 and σ1 are constant and the function η is independent of s1. In this

special case, we suppress the notation η(t, s1, s2) into η(t, s2) throughout the section. Similarly
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for the optimal hedging strategy θ∗ that only depends on time t and the price of asset S2, and we

use the simplified notation θ∗(t, s2). Further, we denote

µ∗2 = µ2 − (µ1 − r)
ρσ2

σ1

, (2.63)

which is the drift coefficient of S2 under the measure P ∗ as given in equation (2.30).

2.4.4.1 Futures contract

In this section, we assume the hedging target is a future contract. The price of a future contract

may depend on a variety of factors, such as the dividend payments of the underlying, the storage

cost or the cost to carry for commodity-based futures contracts, and it may not converge to the

spot underlying asset price at expiration. In this section, we do not consider those factors and

assume for simplicity that the payoff of a futures contract is the same as the spot asset price at

expiration so that G(S2(T )) = S2(T )−K. Hence, we have

Π(t, s2) = Et,s2 [e
−r(T−t)(S2(T )−K)] = s2e(µ2−r)(T−t) −Ke−r(T−t),

and

E∗t,s2 [S2(u)Πs2(u)] = E∗t,s2
[
S2(t)e(µ2−r)(T−t)

]
= s2eµ

∗
2(u−t) · e(µ2−r)(T−t).

Substituting these into equation (2.28) yields

η(t, s2) =

∫ T

t

[
1

γ
(
µ1 − r
σ1

)2 − (µ1 − r)
ρσ2

σ1

s2eµ
∗
2(u−t)+µ2(T−u)

]
du,

and

ηs2 =

∫ T

t

[(µ1 − r)
ρσ2

σ1

eµ
∗
2(u−t)+µ2(T−u)]du = eµ2(T−t) − eµ

∗
2(T−t).
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With the expressions of the above quantities, it is easy to check that condition H in Remark 2.2

is satisfied. Therefore, from equation (2.27) we obtain the optimal hedging strategy as follows

θ∗(t, s2) =
µ1 − r
γ(σ1)2

e−r(T−t) +
ρσ2

σ1

s2e(µ∗2−r)(T−t), 0 ≤ t ≤ T. (2.64)

Equilibrium value function J(t, s1, s2, x) does not have an explicit form, and thus need to be

calculated numerically. A semi closed-form expression is given in Appendix A.2.

2.4.4.2 European call option

Recall that the key contribution of this chapter is to provide an analytical optimal strategy to

hedge derivative security. In this section, we provide an in-depth analysis by considering hedging

a European call option under the Black-Scholes framework. The payoff of a European call option

at maturity T is given byG(S2(T )) = (S2(T )−K)+, whereK is the pre-determined strike price

and (x)+ = max(x, 0). From the Black-Scholes formula, it can be shown that

Π(t, s2) = Et,s2

[
e−r(T−t)(S2(T )−K)+

]
= e(µ2−r)(T−t)Et,s2

[
e−µ2(T−t)(S2(T )−K)+

]
= e(µ2−r)(T−t)

[
s2Φ(d1,t)−Ke−µ2(T−t)Φ(d2,t)

]
,

where Φ(·) is the standard normal distribution function, and
d1,t =

ln(s2/K) + (µ2 + 1
2
σ2

2)(T − t)
σ2

√
T − t

,

d2,t = d1,t − σ2

√
T − t =

ln( s2
K

) + (µ2 − 1
2
σ2

2)(T − t)
σ2

√
T − t

.

Hence

Πs2 =
∂

∂s2

(
e(µ2−r)(T−t)

[
s2Φ(d1,t)− e−µ2(T−t)KΦ(d2,t)

])
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= e(µ2−r)(T−t) ∂

∂s2

[
s2Φ(d1,t)− e−µ2(T−s)KΦ(d2,t)

]
= e(µ2−r)(T−t)Φ(d1,t). (2.65)

By denoting

c(u, s2) :=
ln s2 + (µ∗2 − 1

2
σ2

2)(u− t)− lnK + (µ2 +
σ2
2

2
)(T − u)

σ2

√
T − u

,

we obtain, for 0 ≤ t < u,

E∗t,s2 [S2(u)Πs2(u)]

= E∗t,s2

[
S2(u)e(µ2−r)(T−u)Φ

(
ln(S2(u)/K) + (µ2 +

σ2
2

2
)(T − u)

σ2

√
T − u

)]

= e(µ2−r)(T−u)

∫ ∞
−∞

s2e(µ∗2−
1
2
σ2
2)(u−t)+

√
u−t·xΦ

( √
u− t

σ2

√
T − u

x+ c(u, s2)

)
e−

x2

2

√
2π
dx

= s2e(µ2−r)(T−u)e(µ∗2−
σ22
2

)(u−t)
∫ ∞
−∞

(
1√
2π

)2

e
√
u−t·xe−

x2

2

∫ √
u−t

σ2
√
T−ux+c(u,s2)

−∞
e−

z2

2 dzdx

= s2e(µ2−r)(T−u)e(µ∗2−
σ22
2

)(u−t)e
1
2

(u−t)
∫ ∞
−∞

∫ √
u−t

σ2
√
T−ux+c(u,s2)

−∞

1

2π
e−

(x−
√
u−t)2+z2
2 dzdx

= s2e(µ2−r)(T−u)e(µ∗2−
σ22
2

)(u−t)e
1
2

(u−t)P
[
Z ≤

√
u− t

σ2

√
T − u

(X +
√
u− t) + c(u, s2)

]
,

where, under the probability measure P, X and Z are two independent standard normal variables

so that Z̃ := Z−
√
u−t

σ2
√
T−uX is also a normal variable with E[Z̃] = 0 and Var[Z̃] =

σ2
2(T−u)+(u−t)
σ2
2(T−u)

.

Consequently,

E∗t,s2 [S2(u)Πs2(u)]

= s2e(−µ2+r+µ∗2−
σ22
2

+ 1
2

)ue(µ2−r)T e(−µ∗2+
σ22
2
− 1

2
)tΦ

(
(u− t) + c(u, s2)σ2

√
T − u√

(u− t) + σ2
2(T − u)

)
.(2.66)
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Using equation (2.28), we have

η(t, s2) =
1

γ
(
µ1 − r
σ1

)2(T − t) + (µ1 − r)
ρσ2

σ1

eµ2T e−(µ∗2−
σ22
2

+ 1
2

)t · s2

·
∫ T

t

e(µ∗2−
σ22
2

+ 1
2
−µ2)uΦ

(
(u− t) + c(u, s2)σ2

√
T − u√

(u− t) + σ2(T − u)

)
du,

and

ηs2 = (µ1 − r)
ρσ2

σ1

eµ2T e−(µ∗2−
σ22
2

+ 1
2

)t

∫ T

t

e(µ∗2−
σ22
2

+ 1
2
−µ2)uΦ

(
(u− t) + c(u, s2)σ2

√
T − u√

(u− t) + σ2
2(T − u)

)
du

+(µ1 − r)
ρσ2

σ1

eµ2T s2e−(µ∗2−
σ22
2

+ 1
2

)t

·
∫ T

t

e(µ∗2−
σ22
2

+ 1
2
−µ2)uφ

(
(u− t) + c(u, s2)σ2

√
T − u√

(u− t) + σ2
2(T − u)

)
σ2

√
T − u√

(u− t) + σ2
2(T − u)

∂c(u, s2)

∂s2

du

= (µ1 − r)
ρσ2

σ1

eµ2T e−(µ∗2−
σ22
2

+ 1
2

)t ·
∫ T

t

e(µ∗2−
σ22
2

+ 1
2
−µ2)u

·

[
Φ

(
(u− t) + c(u, s2)σ2

√
T − u√

(u− t) + σ2
2(T − u)

)

+φ

(
(u− t) + c(u, s2)σ2

√
T − u√

(u− t) + σ2
2(T − u)

)
1√

(u− t) + σ2
2(T − u)

]
du,

where φ is the standard normal density function.

Based on the expression of Πs2 given in (2.65), we can further derive an expression for Πs2s2

and show that the polynomial bounded condition in equation (2.34) is satisfied. Further, based

on equation (2.66) and noticing that the normal distribution function Π(x) ≤ 1 for any x ∈ R,

we can easily verify the condition in equation (2.33). Combining these implies that condition H
in Remark 2.2 is satisfied. Therefore, we plug the corresponding expressions developed in the

above into equation (2.27) to get the equilibrium solution as follows

θ∗(t, s2) = e−r(T−t)
µ1 − r
γσ2

1

− e−r(T−t)
ρσ2

σ1

s2ηs2 +
ρσ2

σ1

s2Πs2
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= e−r(T−t)
µ1 − r
γσ2

1

+
ρσ2

σ1

s2e(µ2−r)(T−t)Φ(d1,t)

−e−(µ∗2−
σ22
2

+ 1
2
−r)te(µ2−r)T (

ρσ2

σ1

)2(µ1 − r)s2

·
∫ T

t

e(µ∗2−
σ22
2

+ 1
2
−µ2)u

[
Φ(d∗,u) +

φ(d∗,u)√
(u− t) + σ2

2(T − u)

]
du, (2.67)

where

d∗,u =
(u− t) + c(u, s2)σ2

√
T − u√

(u− t) + σ2
2(T − u)

.

Similar to futures contracts, equilibrium value function J(t, s1, s2, x) does not have an ex-

plicit form, and a semi closed-form expression is given in Appendix A.3.

2.5 Numerical examples

Based on the consistent planning equilibrium strategy derived in Subsection 2.4.4.2 for hedging

a short position in European call option, this section provides some numerical evidences to high-

light the importance of the proposed equilibrium hedging strategy. Throughout the numerical

examples, we assume that the strike price of the European call option is K = 100 with T = 1

year time to maturity, and that both asset prices follow geometric Brownian motions with param-

eter values given in Table 2.1. Furthermore, the initial hedging cost is consistently set at x0 = 20.

Table 2.1: Parameter values for the hedging examples
S1(0) S2(0) K r µ1 σ1 µ2 σ2 T x0

100 100 100 0.05 0.1 0.25 0.12 0.3 1 20

For our first set of comparison, we numerically evaluate the performance of our proposed

mean-variance equilibrium strategy against two other hedging strategies. The first strategy we
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benchmark against is known as the “naive delta hedge”, which is defined by

θnaive =
σ2S2(t)

σ1

∂

∂s
BS(S2(t)),

where BS(·) denotes the Black-Scholes price and ∂
∂s
BS(·) denotes the Black-Scholes delta. We

refer θnaive as a naive delta hedge because such a strategy ignores the basis risk and applies delta

hedge dynamically based on S1 (i.e. assuming S1 is the underlying asset). The naive delta hedge

is not time consistent in terms of optimizing the mean-variance objective. The second strategy

we benchmark against is simply the “no hedging” strategy, which merely investing the initial

hedging amount of x0 = 20 in the risk-free bond to earn the risk-free rate of r = 5%.

For each of the above strategies, we compute the mean and variance of the terminal wealth,

along with the mean-variance objective value E[V (T )] − γ
2
Var[V (T )]. These are depicted in

Table 2.2 by assuming the risk aversion coefficient γ = 1. For both equilibrium and naive delta

hedging strategies, we further assume that the correlation parameter ρ increases from 0.5 to 1, at

increment of 0.1. Based on these results, it is clear that simply investing in the risk-free bond is

an inadequate strategy, as can be seen from the unacceptable large negative value of |E[V (T )]−
γ
2
Var[V (T )]|. On the other hand, in the extreme case with ρ = 1, both equilibrium strategy

and naive delta strategy are competitively effective for hedging the European call option. This

is supported by the negligible variance of the terminal wealth of the hedger. The advantage of

the equilibrium strategy becomes more pronounced as the correlation increases so that basis risk

becomes less prominent. As ρ decreases, the variances of the terminal wealth of both strategies

increase sharply (from perfect correlation case) but nevertheless the mean-variance objective

values of the equilibrium strategy are consistently higher than the corresponding values from the

naive delta hedging strategy, hence indicating the importance of taking into account the basis risk

and the superiority of the equilibrium hedging strategy.

In the second set of comparison, we investigate the effect of risk aversion coefficient γ on

the performance of the equilibrium hedging strategy and the naive delta hedging strategy. We

similarly use the preceding example except by considering

ρ ∈ {0.9, 1} and γ ∈ {1/8, 1/4, 1/2, 1, 2, 4,∞}.
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Table 2.2: Comparison of different strategies on hedging European call option (γ = 1)
E[V (T )] Var[V (T )] E[V (T )]− γ

2
Var[V (T )]

ρ = 1
equilibrium 5.49 0.91 5.04
naive delta 5.39 1.14 4.82

ρ = 0.9
equilibrium 4.72 131.99 -61.27
naive delta 5.19 137.46 -63.54

ρ = 0.8
equilibrium 4.20 249.89 -120.74
naive delta 5.21 270.24 -129.91

ρ = 0.7
equilibrium 3.70 356.14 -174.38
naive delta 5.25 402.84 -196.17

ρ = 0.6
equilibrium 3.20 449.59 -221.59
naive delta 5.31 534.65 -262.02

ρ = 0.5
equilibrium 2.71 529.94 -262.26
naive delta 5.36 664.97 -327.13
no hedge 0.08 799.77 -399.81

The numerical results are reported in Tables 2.3 and 2.4 for ρ = 1 and ρ = 0.9, respectively.

Note that as shown in Proposition 2.3, the equilibrium strategy reduces to a solution for variance

minimization as γ →∞.

The advantage of the equilibrium hedging strategy is highlighted in this example in that it is

capable of reflecting the risk aversion of the hedger. When the hedger has a higher risk tolerance,

he/she seeks an optimal strategy that has a higher mean value of the terminal wealth, though at

the expense of higher terminal wealth variability. When the hedger becomes more and more risk

averse, a greater penalty is imposed on the variability of the terminal wealth, which in turn also

dampens the expected value of the terminal value. In contrast, the naive delta hedging strategy

is invariant to the risk aversion of the hedger and hence produces the same set of mean and

variance of the terminal wealth, irrespective of γ. Regardless of the risk aversion of the hedger,

the mean-variance trade-off value of the equilibrium hedging strategy is consistently higher than

the corresponding value from the naive delta hedging strategy, indicating the superiority of the

former strategy. In the special case with ρ = 1 and irrespective of γ, both hedging strategies are

very competitive and effective, as signaled by the small variance of the terminal wealth. This

observation is consistent with the earlier example.
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Table 2.3: Hedging European call with ρ = 1: “equilibrium solution” vs “naive delta hedge”.
E[V (T )] Var[V (T )] E[V (T )]− γ

2
Var[V (T )]

naive delta

γ = 1/8

5.387 1.140

5.316
γ = 1/4 5.245
γ = 1/2 5.102
γ = 1 4.817
γ = 2 4.247
γ = 4 3.107
γ →∞ N/A

equilibrium

γ = 1/8 5.802 4.493 5.521
γ = 1/4 5.626 1.947 5.383
γ = 1/2 5.539 1.174 5.245
γ = 1 5.495 0.913 5.038
γ = 2 5.473 0.814 4.659
γ = 4 5.462 0.772 3.918
γ →∞ 5.451 0.736 N/A

Table 2.4: Hedging European call with ρ = 0.9: “equilibrium solution” vs “naive delta hedge”.
E[V (T )] Var[V (T )] E[V (T )]− γ

2
Var[V (T )]

naive delta

γ = 1/8

5.187 137.462

-3.404
γ = 1/4 -11.995
γ = 1/2 -29.178
γ = 1 -63.544
γ = 2 -132.274
γ = 4 -269.736
γ →∞ N/A

equilibrium

γ = 1/8 5.009 134.731 -3.412
γ = 1/4 4.846 132.632 -11.733
γ = 1/2 4.765 132.115 -28.264
γ = 1 4.725 131.989 -61.270
γ = 2 4.704 131.960 -127.256
γ = 4 4.694 131.953 -259.213
γ →∞ 4.684 131.952 N/A
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2.6 Conclusion

The optimal dynamic hedging for European-style derivatives is studied in this chapter in the

presence of basis risk where the underlying asset of the option is not traded in the market and

is hedged by a traded asset. Under a diffusion model setup, analytical hedging strategy is ob-

tained from optimizing a mean-variance criterion and resorting to the Nash subgame equilibrium

framework. The derivation is based on an extended HJB equation and change-measure tech-

niques. The existent literature usually either focus on the hedging of futures contracts or follow

an exponential preference optimization framework for mathematical convenience.

In contrast, in this chapter formal analysis is provided for the mean-variance optimal hedging

strategy on hedging general European-style derivatives. The optimal hedging strategies in the

absence of basis risk and/or for variance minimization can be recovered, as special cases, from

the general results that were established in this chapter.

43



Chapter 3

Optimal Dynamic Longevity Hedge with
Basis Risk

3.1 Introduction

Over the last 100 years, life expectancies have increased at the rate of approximately 2.5 years

per decade. What this means is that you are expected to live 2.5 years longer than someone who

was born 10 years before you were. While the improvement of our life expectancy is one of the

greatest achievements in mankind and is to be celebrated, the unanticipated mortality improve-

ments can have an undesirable effect on the society. More specifically, because of longevity,

that is, we are living longer, this creates additional (and significant) financial burden to individu-

als, corporations and governments, as attributed to the greater retirement cost and medical cost,

among others. The challenges with managing longevity risk, that is, the uncertainty associated

with future mortality improvements, stem from the fact that it is a systematic risk, which means it

cannot be mitigated via the typical diversification strategies. As such longevity risk has become a

high profile risk in recent years. For example, in the International Monetary Fund (IMF) Global

Financial Stability Report, which has received considerable attention since it was published in

April 2012, it was demonstrated that if individuals live three years longer than expected, “the

already large costs of aging could increase by another 50 percent, representing an additional cost
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of 50 percent of 2010 GDP in advanced economies and 25 percent of 2010 GDP in emerging

economies.

The corporate pension plan sponsors and the annuity providers are similarly facing the ad-

verse financial effect of the longevity risk and raise considerable concern on their sustainability

and the viability. Hence these stakeholders (or hedgers) are constantly seeking for more effective

longevity risk management solutions. Some of the traditional approaches include pension buy-in,

pension buy-out, and reinsurance and these are often considered as customization strategies in

that actual longevity risk is effectively transferred to a third party. Another solution that has been

advocated is via the capital market whereby hedgers hedge their longevity risk using standardized

longevity securities that are linked to some certain longevity indices. While the former solution

based on customization is undoubtedly more effective, it tends to be more costly. The latter

longevity index-based solution, on the other hand, can be more cost effective. The downside of

this strategy is the presence of basis risk, that is, the mismatch between the mortality experience

underlies the standard longevity securities and the hedger’s own mortality experience. The basis

risk, therefore, diminishes the effectiveness of the longevity index-based solutions.

In recent years there have been some advances in addressing the longevity hedge in the pres-

ence of basis risk. Most of the existing literature on longevity hedge focus on static hedge, as

opposed to dynamic hedge (Li and Hardy, 2011; Li and Luo, 2012; Cairns, 2013). Hedging

based on static strategy can be inefficient due to the following reasons. First, it is very vulnerable

to future market changes due to its inflexibility, and thus in general the hedging performance is

not as good as dynamic strategies. Second, in order to achieve certain financial objectives, the

hedger usually has to pay a considerable initial cost (or reserve for future cost), which might be

impractical. Third, as pointed out in Zhou and Li (2016), constructing an effective static hedging

portfolio generally requires long-dated hedging instruments which are expensive, unappealing

to investors and have high counterparty risks. In conclusion, dynamic hedge, if implemented

properly, can be a more effective strategy.

It appears that the most commonly used dynamic hedging strategies for longevity risk in the

presence of basis risk is the dynamic “delta” hedging method proposed by Cairns (2011) (see

also Zhou and Li, 2016). The key principle of the delta hedging method is to construct a hedging
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portfolio that matches the sensitivity of the hedger’s (usually an annuity provider’s or a pen-

sion plan sponsor’s) future liability with respect to changes in some underlying mortality index.

However, it should be emphasized that in the presence of basis risk, there is no guarantee on the

effectiveness of the above delta hedging strategy due to the imperfect correlation between the

hedging portfolio and the underlying mortality risk. Additionally, performance of the dynamic

“delta” hedging method highly depends on choice of assumption about mortality models and in

practice it may be very computationally costly for case-by-case analysis.

The dynamic hedging problem formulated as an optimization problem under some certain

criterion is a good alternative as it ensures some optimality on the performance of the proposed

hedging strategy. Wong et al. (2014, 2015) discussed the optimal dynamic longevity hedging

strategy using longevity bonds for an insurer under the mean-variance criterion. They derived

a closed-form hedging policy using the Hamilton-Jacobi-Bellman (HJB) framework. A major

deficiency of their results is that they used diffusion models for underlying mortality rates and

their derivation was conducted in a continuous time setting. However, in the context of longevity

risk, discrete time models such as the Lee-Cater model and the Cairns-Blake-Dowd (CBD) model

are more popularly adopted. In this chapter we will use discrete time models and aim at obtaining

hedging strategies which are more readily applicable in practice.

In this chapter, we also adopt the mean-variance objective and aim to find the optimal dy-

namic hedging strategy for a pension plan liability with population basis risk involved. We will

show that under our assumption we can tackle with the hedging problem using the stochastic op-

timal control framework. Therefore a Bellman equation is derived to obtain a semi closed-form

solution to efficiently calculate the optimal hedging plan for the original hedging problem.

Our work contributes to the existing literature in the following three ways: first, it is the

first time to discuss optimal dynamic longevity hedging problem using q-forward contracts when

basis risk is involved, and the results obtained in this chapter provides an effective solution for

longevity risk management involving standardized securities; second, by numerical examples we

can show that the hedging strategy we propose in this chapter outperforms the benchmark “delta”

method in terms of reducing the hedger’s basis risk, while still retaining a practical computational

effort; third, we provide a very general framework for dynamic longevity hedging problems,
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and therefore generalization of this chapter to other longevity models, hedging instruments and

hedging structures is highly probable in the future.

The rest of this chapter is organized as follows. Section 3.2 introduces notation, the longevity

models and formulates the hedging problem as an optimization problem. Section 3.3 derives

the optimal control process by adopting the dynamic programming principle and the Bellman’s

equation framework. Section 3.4 provides a numerical example to demonstrate the effectiveness

and feasibility of our proposed strategy. Section 3.5 concludes the chapter.

3.2 Problem setup

3.2.1 Stochastic mortality model

In this section, we describe the set-up of our longevity risk management framework. The method-

ology to deriving an optimal hedging strategy using the dynamic programming framework is

quite general and it is applicable to many popular longevity models, including the Lee-Carter

model, the Cairns-Blake-Dowd (CBD) model and their extensions. For illustration purpose, we

proceed our mathematical derivation with the assumption that the future mortality improvement

follows the Augmented Common Factor (ACF) model proposed by Li and Lee (2005). We con-

sider the following two-population model:

ln(m
(i)
x,t) = a(i)

x +BxKt + b(i)
x k

(i)
t + ε

(i)
x,t,

where i ∈ {H,R}, and H and R are two different populations; m(i)
x,t denotes population i’s

central death rate at age x in year t; a(i)
x denotes population i’s average mortality level at age x;

Kt represents the mortality improvement to both populations,Bx is the corresponding coefficient

for age x; k(i)
t represents the mortality improvement specific to population i, and b

(i)
x is the

corresponding coefficients for age x specific to population i; ε(i)x,t denotes the residual term which

are modeled by independent and identically distributed (i.i.d.) normal random variables. In

addition, the parameters Bx, b(i)
x , Kt and k(i)

t are subject to
∑

xBx =
∑

x b
(i)
x = 1 and

∑
tKt =∑

t k
(i)
t = 0 to ensure identifiability of the model.
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The time-varying indices {Kt}t≥0 and {k(i)
t }t≥0, i ∈ {H,R} are further modeled by time

series models, e.g., autoregressive integrated moving average (ARIMA) models. In this chapter,

we follow Li and Lee (2005) and assume that {Kt}t≥0 follows a random walk with drift, while

each of {k(i)
t }t≥0, i ∈ {H,R} follows an AR(1) model: ∀ t = 0, 1, 2, 3, ...

Kt = C +Kt−1 + ξt,

k
(i)
t = φ

(i)
0 + φ

(i)
1 k

(i)
t−1 + ζ

(i)
t ,

where i ∈ {H,R}, C, φ(i)
0 and φ(i)

1 are constants, and {ξt} and {ζ(i)
t } are two mutually indepen-

dent sequences of i.i.d. normal random variables with zero mean and constant variance:

var(ξt) = σ2
K ,

var(ζ
(i)
t ) = σ2

k,i i ∈ {H,R}.

Additionally, we assume |φ(i)
1 | < 1 to ensure that the two time series {k(i)

t }t≥0 are stationary.

Finally, we emphasize that the assumptions on the time-varying indices {Kt}t≥0 and {k(i)
t }t≥0,

i ∈ {H,R} are for illustration purpose only, and our derivation also applies to general ARIMA

(p, d, q) models.

3.2.2 Pension liability

In order to define the pension plan liability and formulate our hedging problem, it is useful to

introduce the following notations:

• q(i)
x,t denotes the probability that an individual aged x at time t− 1 (alive) from population

i dies between time t− 1 and t;

• S(i)
x,t(T ) :=

∏T
s=1(1−q(i)

x+s−1,t+s) denotes the probability that an individual from population

i aged x at time t (alive) will survive to time t+ T ;

• p(i)
x,u(T,Kt, k

(i)
t ) := E(S

(i)
x,u(T )|Ft) = E(S

(i)
x,u(T )|Kt, k

(i)
t ), u ≥ t, is the expected survival

probability given information up to time t, where {Ft}t≥0 denotes the filtration generated
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by {Ku, k
(H)
u , k

(R)
u }{0≤u≤t}. We call it a spot survival probability if u = t and a forward

survival probability if u > t.

Now we consider a pension plan involving a single cohort of n pensioners all age x0 at

time 0 from population H , and the sponsor of the pension plan would like to hedge against the

unexpected future mortality improvement associated with the plan liability. Without any loss

of generality we assume that the notional amount is $ 1
n

per pensioner, i.e., the plan pays each

pensioner $ 1
n

at the end of each year until death, so that the total notional amount of the whole

pension plan at time 0 is $1. We also assume that the size of the plan, n, is large enough such that

there is no sample risk and thus mortality experience of the underlying cohort perfectly matches

the mortality rate of population H . As a result, the time-t present value of future plan liability,

denoted by FLt, can be expressed by

FLt =
∞∑

s=t+1

(1 + r)−sS
(H)
x0+t,t(s),

where r is the risk-free rate and is assumed to be a constant in this chapter. In particular, we are

interested in designing a hedging strategy for the time-0 future liability variable, given by

FL0 =
∞∑
s=1

(1 + r)−sS
(H)
x0,0

(s). (3.1)

3.2.3 Dynamic hedge with q-forward

Any unexpected changes in the mortality experience of population H can have an adverse ef-

fect to the pension plan sponsor. This can be seen from the time-0 value of the future pension

plan liability given by (3.1). The pension plan sponsor, or the hedger, is therefore interested in

hedging its longevity risk exposure. Here we assume that the hedger hedges its risk by trading

index-linked q-forward contracts, instead of customized longevity securities. We further assume

that the payoff of the q-forward depends on some other referenced population denoted by R. Be-

cause of the imperfect correlation between populations H and R, basis risk arises in our hedging
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strategy. The magnitude of basis risk, or equivalently, the effectiveness of our hedging strategy

depends on how the hedging portfolio is constructed. This chapter is concerned with an opti-

mal construction of hedging portfolio such that the basis risk is minimized under some chosen

criterion to be formally defined later.

To proceed, we now describe the q-forward. A q-forward contract is basically a zero-coupon

swap with its floating leg proportional to the realized death probability for a certain reference

age during the very last year before maturity, and its fixed leg proportional to a predetermined

forward mortality rate. As swap type contracts, q-forwards do not generate any cash flows at the

inception of the contract, and all payments are settled at the maturity date. In our setting, we

assume that the q-forward contract written on population H is not liquidly traded, or even does

not exist in the market. As an alternative, the hedger may choose the q-forward contract that is

written on population R because it is sufficiently liquid as the hedging instrument. To study the

effect of mismatch between populations on basis risk, in the rest of the chapter we only consider

the longevity security linked to population R as the hedging instrument.

Whenever mortality rates and future improvements for populationsH andR are not perfectly

correlated, we would expect that basis risk to arise and a perfect hedge is not possible. Addition-

ally, in reality it is usually the case that, besides population basis risk, other types of basis risk

such as age basis risk and gender basis risk may also exist (Cairns et al., 2014). In this section

we focus on basis risk associated with the population differences, and will have some discussion

on factors related to the structure of the hedge in Sections 3.4.5 and 3.4.6.

We assume that the fixed leg of the q-forward is determined by the pure risk premium, i.e.,

there is no additional risk premium at the inception time of the contract, t0. Therefore, by denot-

ing the forward mortality rate for the fixed leg as qft0 := qf (t0, Kt0 , k
(R)
t0 , xf , T

∗), we have

qft0 = E(q
(R)
xf ,t0+T ∗|Ft0) = E(q

(R)
xf ,t0+T ∗ |Kt0 , k

(R)
t0 ),

where xf is a pre-specified reference age, t0 is the issuing time of the contract, T ∗ is the time to

maturity at inception and t0 + T ∗ is the maturity time.

As the hedger of the pension plan liability defined by equation (3.1), we want to be the fixed

rate receiver between the two counterparties of the q-forward contracts, as this hedging instru-
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ment is linked to the death probability but not the survival probability. Subsequently, a dynamic

hedging scheme can be constructed via a so-called “rolling” strategy: at time t, t = 0, 1, 2, ..., we

write a q-forward contract as the fixed leg receiver with a notional amount of ht (with no initial

cost); a year later at time t+1, we close out the position written at time t (with profit or loss) and

then write a new contract with notional amount ht+1; we repeat this process until the end of our

hedging horizon. Based on the above description, the hedging strategy can be represented by the

process {ht}t≥0, which is adapted to {Ft}t≥0. Via such a yearly rebalancing hedging scheme we

are able to utilize the latest information obtained from the market and to adjust our position in our

hedging instruments that best matches our future liability. Mathematically, we denote Qt2(t1),

t2 ≥ t1, as the time-t2 value of q-forward contract that was written at time t1 (to the fixed rate

receiver), i.e.,

Qt2(t1) = (1 + r)−(T ∗−(t2−t1))
[
qft1 − E(q

(R)
xf ,t1+T ∗|Ft2)

]
. (3.2)

Therefore at time t = 0, 1, 2, ..., the value of our position in the newly written q-forward

contract is represented as:

ht ·Qt(t) = 0.

At time t + 1, we may experience a profit or loss from the actual realization of mortality

improvement during the one-year time period, and the value of our position in q-forwards written

at time t becomes:

ht ·Qt+1(t)

= ht · (1 + r)−(T ∗−1)
[
qft − E(q

(R)
xf ,t+T ∗

|Ft+1)
]

= ht · (1 + r)−(T ∗−1)
[
E(q

(R)
xf ,t+T ∗

|Ft)− E(q
(R)
xf ,t+T ∗

|Ft+1)
]

= ht · (1 + r)−(T ∗−1)
[
p

(R)
xf ,t+T ∗−1(1, Kt+1, k

(R)
t+1)− p(R)

xf ,t+T ∗−1(1, Kt, k
(R)
t )
]
. (3.3)

An immediate conclusion we can draw about this hedging strategy is that, it does not affect
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the hedger’s expected rate of return. Mathematically we have the following proposition.

Proposition 3.1. ∀ t = 0, 1, 2, ..., we have

Et[Qt+1(t)] = Qt(t) = 0, (3.4)

where Et[ · ] denotes E[ · |Ft].

Proof. By definition,

Et[Qt+1(t)] = (1 + r)−(T ∗−1)
{

Et

[
E(q

(R)
xf ,t+T ∗

|Ft)
]
− Et

[
(E(q

(R)
xf ,t+T ∗

|Ft+1)
]}

= (1 + r)−(T ∗−1)
{

Et

[
q

(R)
xf ,t+T ∗

]
− Et

[
q

(R)
xf ,t+T ∗

]}
= 0.

So far the hedging problem boils down to the problem of determining {ht}t≥0 such that the

hedged position will achieve certain desirable objectives of the hedger. In the rest of this chapter,

we write Et[ · ] := E[ · |Ft] and Vart[ · ] := Var[ · |Ft], ∀ t ≥ 0. Furthermore, we also use E[ · ]
and Var[ · ] to denote E0[ · ] and Var0[ · ] respectively.

3.2.4 Hedging objective

Without loss of generality, we assume that the hedger’s initial net wealth is 0. We adopt the

hedging strategy described in Section 3.2.3 and construct a yearly adjusted hedging portfolio

starting at time 0 by trading q-forward contracts, in order to hedge the pension plan liability

defined in Section 3.2.2. At each time point t, t = 1, 2, 3, ..., the net position of the hedger can

be positive or negative (i.e. profit or loss) depending on relative values of the hedging portfolio

and the realized pension liability. Define

F (t) := ht−1 ·Qt(t− 1)− S(H)
x0,0

(t), t = 1, 2, 3, ... (3.5)
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Then F (t) is the time-t present value of net cash flow that adds up to the hedger’s net wealth

process. Also we define X(s) as the time-0 value of all future net cash flows truncated at time s,

∀ s > 0,

X(s) :=
s∑
t=1

(1 + r)−tF (t). (3.6)

We denote ω as the limiting age such that no human being survives beyond it under current

medical conditions, and Y as a finite hedging horizon such that Y ≤ ω. Because ω is a finite

number and we know that S(H)
x0,0

(t) = 0 for large t ≥ ω, we will immediately stop constructing

the hedging portfolio as our remaining plan liability reduces to 0. The reason why we further

consider a hedging horizon Y ≤ ω is that the number of survivors in the pension plan during

sufficiently late years will be very small and hence it is quite unnecessary to hedge such small

plan liabilities. For the time-0 present value of all future net cash flows, we adopt the truncation

and apply the following approximation,

∞∑
t=1

(1 + r)−tF (t) ≈ X(Y ).

We can always choose a large enough Y such that the above approximation yields a certain level

of desirable accuracy.

Since basis risk exists and a perfect hedging strategy is in general impossible, we choose to

optimize a mean-variance objective function of the time-0 present value of the truncated future

net cash flows X(Y ). In other words, our proposed longevity hedging strategy is defined as a

solution to the following optimization problem:

max
{ht}t=0,1,2,...,Y−1

{
E0[X(Y )]− γ

2
Var0[X(Y )]

}
, (3.7)

where γ > 0 is the risk aversion coefficient.

Problem (3.7) can be recast into a quadratic hedging problem as demonstrated in the follow-

ing proposition.
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Proposition 3.2. Problem (3.7) is equivalent to the following problem (3.8), in the sense that

they yield the same optimal control process.

min
{ht}t=0,1,2,...,Y−1

E0[X(Y )2]. (3.8)

Proof. The objective function (3.7) can be rewritten as

E0[X(Y )]− γ

2
Var0[X(Y )]

= E0[X(Y )]− γ

2
E0[X(Y )2] +

γ

2

(
E0[X(Y )]2

)
= E0

[
Y∑
t=1

(1 + r)−t
(
ht−1 ·Qt(t− 1)− S(H)

x0,0
(t)
)]
− γ

2
E0[X(Y )2]

+
γ

2

(
E0

[
Y∑
t=1

(1 + r)−t
(
ht−1 ·Qt(t− 1)− S(H)

x0,0
(t)
)])2

= −E0

[
Y∑
t=1

(1 + r)−tS
(H)
x0,0

(t)

]
− γ

2
E0[X(Y )2] +

γ

2

(
E0

[
Y∑
t=1

(1 + r)−tS
(H)
x0,0

(t)

])2

.

The last equality is due to the fact that E0[Qt(t − 1)] = 0, ∀ t > 0, by Proposition 3.1. The

first term and the last term in the last line of the last display do not depend on control pro-

cess {ht}t=0,1,2,...,Y−1, so maximizing E0[X(Y )] − γ
2
Var0[X(Y )] is equivalent to minimizing

E0[X(Y )2].

The objective function in (3.8) has a standard form of conditional expectation, and therefore

it admits the Bellman’s Principle of Optimality. In the rest of this chapter we will work on

problem (3.8) instead of the original optimization problem (3.7). We denote {h∗t}t=0,1,2,...,Y−1 as

the minimizer of problem (3.8), i.e.,

{h∗t}t=0,1,2,...,Y−1 = argmin
{ht}t=0,1,2,...,Y−1

E0[X(Y )2],

where {h∗t}t=0,1,2,...,Y−1 is adapted to {Ft}t=0,1,2,...,Y−1. Our goal is to solve for {h∗t}t=0,1,2,...,Y−1

such that hedging objective (3.8) is achieved.
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3.3 Derivation of the optimal solution

In this section we solve problem (3.8) for the optimal hedging strategy {h∗t}t=0,1,2,...,Y−1, by

resorting to the dynamic programming principle. Section 3.3.1 derives the Bellman equation and

Section 3.3.2 solves for {h∗t}t=0,1,2,...,Y−1 using the Bellman equation.

3.3.1 The Bellman equation

Define

Jt := Et

( Y∑
s=t+1

(1 + r)−sF (s)

)2
 , t = 0, 1, ..., Y,

and

Vt := min
{hs}s=t,t+1,...,Y−1

Jt, t = 0, 1, ..., Y. (3.9)

Applying the dynamic programming principle, we obtain the Bellman equation, as shown in

Proposition 3.3 below, to recursively solve for the optimization problem (3.8).

Proposition 3.3. For problem (3.8), the value process {Vt}t=0,1,2,...,Y−1 satisfies the following

Bellman equation, ∀ t = 0, 1, 2, ..., Y − 1,

Vt = min
ht

Et

{
Vt+1 + (1 + r)−2(t+1)h2

tQ
2
t+1(t) + (1 + r)−2(t+1)S

(H)
x0,0

(t+ 1)2

−2(1 + r)−2(t+1)htQt+1(t)S
(H)
x0,0

(t+ 1)

+2(1 + r)−(t+1)htQt+1(t)Et+1

[
Y∑

s=t+2

(1 + r)−sF ∗(s)

]

−2(1 + r)−(t+1)S
(H)
x0,0

(t+ 1)Et+1

[
Y∑

s=t+2

(1 + r)−sF ∗(s)

]}
, (3.10)
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with the boundary condition given by VY = X(Y )2. The optimal control process {h∗t}t=0,1,2,...,Y−1

is the corresponding minimizer.

Proof. From equation (3.8), the boundary condition is trivially true. In order to prove equation

(3.10), we first rewrite the objective function Jt by splitting it into two terms:

Jt = Et


(

(1 + r)−(t+1)F (t+ 1) +
Y∑

s=t+2

(1 + r)−sF (s)

)2


= Et

Et+1

((1 + r)−(t+1)F (t+ 1) +
Y∑

s=t+2

(1 + r)−sF (s)

)2


= Et

{
Et+1

[
(1 + r)−2(t+1)F (t+ 1)2 + 2(1 + r)−(t+1)F (t+ 1)

Y∑
s=t+2

(1 + r)−sF (s)

+

(
Y∑

s=t+2

(1 + r)−sF (s)

)2


= Et

{
(1 + r)−2(t+1)F (t+ 1)2 + 2(1 + r)−(t+1)F (t+ 1)Et+1

[
Y∑

s=t+2

(1 + r)−sF (s)

]
+ Jt+1

}

We assume future cash flows, F (s), s = t + 2, t + 3, ..., Y , are controlled by the optimal

control process h∗s, s = t+ 1, t+ 2, ..., Y − 1, and use the notation F ∗(s), s = t+ 2, t+ 3, ..., Y ,

for F (s) controlled by the optimal control h∗s. Therefore we obtain the Bellman equation:

Vt = min
{h∗s}s=t,t+1,...,Y−1

Jt

= min
ht

Et

{
(1 + r)−2(t+1)F (t+ 1)2 + 2(1 + r)−(t+1)F (t+ 1)Et+1

[
Y∑

s=t+2

(1 + r)−sF ∗(s)

]

+Vt+1

}
= min

ht
Et

{
Vt+1 + (1 + r)−2(t+1)h2

tQ
2
t+1(t) + (1 + r)−2(t+1)S

(H)
x0,0

(t+ 1)2
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−2(1 + r)−2(t+1)htQt+1(t)S
(H)
x0,0

(t+ 1)

+2(1 + r)−(t+1)htQt+1(t)Et+1

[
Y∑

s=t+2

(1 + r)−sF ∗(s)

]

−2(1 + r)−(t+1)S
(H)
x0,0

(t+ 1)Et+1

[
Y∑

s=t+2

(1 + r)−sF ∗(s)

]}
,

and this completes the proof.

3.3.2 Solution of the Bellman equation

We observe from (3.6) that F (t) depends on not only the current state {t,Kt, k
(H)
t , k

(R)
t } but

also their realizations before time t. Thus, the term
(∑Y

s=t+1(1 + r)−sF (s)
)2

appears in the

objective of problem (3.9) is non-Markovian. This implies that the value function Vt defined in

(3.9) depends not only on the time-t state {t,Kt, k
(H)
t , k

(R)
t } but also on the states before time t.

In general, this non-Markovian feature may make the problem intractable. Fortunately, we are

able to show that the value function Vt does not depend on the control policies adopted before

time t, as shown in the proposition below.

Proposition 3.4. ∀ 0 ≤ t ≤ Y − 2, the value function process Vt+1 defined by equation (3.9) is

independent of the control process up to time t, i.e., {hs}0≤s≤t.

Proof. We prove by backward induction. For t = Y − 2, from the Bellman equation (3.10),

VY−1 = EY−1

{[
(1 + r)−Y F ∗(Y )

]2}
= (1 + r)−2Y EY−1

{[
h∗Y−1QY (Y − 1)− S(H)

x0,0
(Y )
]2
}
,

which obviously depends on only h∗Y−1 but not {hs}0≤s≤Y−2.

Suppose that the conclusion holds for t = k, i.e., Vk+1 is independent of {hs}0≤s≤k. Then for
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t = k − 1, it follows from the Bellman equation (3.10) that

Vk = min
hk

Ek

{
Vk+1 + (1 + r)−2(k+1)h2

kQ
2
k+1(k) + (1 + r)−2(k+1)S

(H)
x0,0

(k + 1)2

−2(1 + r)−2(k+1)hkQk+1(k)S
(H)
x0,0

(k + 1)

+2(1 + r)−(k+1)hkQk+1(k)Ek+1

[
Y∑

s=k+2

(1 + r)(−s)F ∗(s)

]

−2(1 + r)−(k+1)S
(H)
x0,0

(k + 1)Ek+1

[
Y∑

s=k+2

(1 + r)(−s)F ∗(s)

]}

= Ek{Vk+1}+ min
hk

Ek

{
(1 + r)−2(k+1)h2

kQ
2
k+1(k) + (1 + r)−2(k+1)S

(H)
x0,0

(k + 1)2

−2(1 + r)−2(k+1)hkQk+1(k)S
(H)
x0,0

(k + 1)

+2(1 + r)−(k+1)hkQk+1(k)Ek+1

[
Y∑

s=k+2

(1 + r)(−s)F ∗(s)

]

−2(1 + r)−(k+1)S
(H)
x0,0

(k + 1)Ek+1

[
Y∑

s=k+2

(1 + r)(−s)F ∗(s)

]}
.

In the end of the last display, the first expectation term is independent of the control process

{hs}0≤s≤k, and the second expectation term only involves hk. This implies Vk is independent of

{hs}0≤s≤k−1 and by a backward induction, the proof is complete.

By Proposition 3.4, ∀ t = 0, 1, ..., Y − 1, the optimal hedging strategy h∗t can be solved as

the maximizer of a quadratic form in equation (3.10). Subsequently we can obtain the optimal

hedging strategy as described in the following proposition.

Proposition 3.5. The optimal control process h∗t , ∀ t = 0, 1, ..., Y − 1, to the Bellman equation

(3.10) is given by

h∗t =

Et

{
Qt+1(t)

∑Y
s=t+1(1 + r)−[s−(t+1)]S

(H)
x0,0

(s)

}
Et

[
Q2
t+1(t)

] , (3.11)
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where

Qt+1(t) = (1 + r)−(T ∗−1)
(
p

(R)
xf ,t+T ∗−1(1, Kt+1, k

(R)
t+1)− p(R)

xf ,t+T ∗−1(1, Kt, k
(R)
t )
)
, (3.12)

as defined in equation (3.2) and demonstrated in equation (3.3).

Proof. In equation (3.10), the optimization term has a quadratic form which opens upwards, and

therefore the minimizer h∗t always exists and is given by

h∗t =

{
Et

[
Qt+1(t)S

(H)
x0,0

(t+ 1)
]
− (1 + r)t+1Et

[
Qt+1(t)Et+1

(∑Y
s=t+2(1 + r)−sF ∗(s)

)]}
Et

[
Q2
t+1(t)

] ,

(3.13)

for any t = 0, 1, 2, ..., Y − 1. In particular, for t = Y − 1, obviously
∑Y

s=t+2(1 + r)−sF ∗(s) = 0,

and thus,

h∗Y−1 =
(1 + r)Y EY−1

[
QY (Y − 1)S

(H)
x0,0

(Y )
]

EY−1 [Q2
Y (Y − 1)]

.

Next we consider the cases when t = 0, 1, ..., Y − 2. We note that hs−1 is Fs−1 measur-

able, and thus we apply Proposition 3.1 to conclude Es−1 [hs−1Qs(s− 1)] = 0. This implies

Et+1

(∑Y
s=t+2(1 + r)−shs−1 ·Qs(s− 1)

)
= 0. Further from equation (3.5), we have

Et

[
Qt+1(t)Et+1

(
Y∑

s=t+2

(1 + r)−sF ∗(s)

)]
= −Et

[
Qt+1(t)Et+1

(
Y∑

s=t+2

(1 + r)−sS
(H)
x0,0

(s)

)]
.

Plugging the equation above into equation (3.13), we can simplify the expression of h∗t into the

desired expression

h∗t =

{
Et

[
Qt+1(t)S

(H)
x0,0

(t+ 1)
]

+ (1 + r)t+1Et

[
Qt+1(t)Et+1

(∑Y
s=t+2(1 + r)−sS

(H)
x0,0

(s)
)]}

Et

[
Q2
t+1(t)

]
59



=

{
(1 + r)t+1Et

[
Qt+1(t)Et+1

(∑Y
s=t+1(1 + r)−sS

(H)
x0,0

(s)
)]}

Et

[
Q2
t+1(t)

]
=

Et

{
Qt+1(t)

∑Y
s=t+1(1 + r)−[s−(t+1)]S

(H)
x0,0

(s)

}
Et

[
Q2
t+1(t)

] .

Remark 3.1. Proposition 3.5 shows that the optimal control h∗t , ∀ t = 0, 1, ..., Y − 1, only

depends on the current state variable {t,Kt, k
(H)
t , k

(R)
t } and this feature significantly simplifies

the computation of the optimal hedging strategy. We also note that the value function Vt, ∀ t =

0, 1, ..., Y , cannot be written as a function of the current state variable {t,Kt, k
(H)
t , k

(R)
t } only.

Fortunately sitting at each time t, we are only interested in the particular value Vt and the optimal

hedging strategy h∗t determined by the state we observe then. In our numerical examples, we will

resort to Monte Carlo simulation method for their computation.

Remark 3.2. From equation (3.12), we can see that the calculation of Qt+1(t) involves two

forward mortality rates which themselves are defined as conditional expectations. Then by equa-

tion (3.11), the numerical calculation of the optimal hedging strategy {h∗t}t=0,1,...,Y−1 involves

a two-step “nested” Monte Carlo simulation which can be computationally intensive. Due to

its two-step nature, a direct Monte Carlo may still be feasible, but is highly ineffective in gen-

eral. In the next section, in addition to the crude Monte Carlo method, we will adopt certain

approximation to facilitate the Monte Carlo simulation procedure in implementing Proposition

3.5.

3.4 Hedging Canadian mortality rates with UK mortality rates

By using an example which involves hedging Canadian mortality rates based on UK mortality

rates, this section compares and evaluates the effectiveness of various hedging strategies, includ-

ing our strategy proposed in Section 3.3. Section 3.4.1 describes the data source, summarizes
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our assumptions and introduces the criterion to evaluate hedging performance. Section 3.4.2 pro-

vides an approximation method which significantly reduces the computational time in calculating

the hedging strategy, in order to overcome the “nested” computational issue as we mentioned in

Remark 3.2. Section 3.4.3 introduces the “delta” strategy developed by Cairns (2011), and Zhou

and Li (2016), and this is the benchmark in the literature. Section 3.4.4 compares the hedging

performance between our optimal strategy and the “delta” strategy, and the results show that

our proposed hedging scheme consistently outperforms the “delta” strategy in terms of variance

reduction. Sections 3.4.5, 3.4.6 and 3.4.7 conduct several sensitivity tests to demonstrate that

the performance of our proposed method is generally stable to the changes in the hedging in-

strument’s reference age, the hedging instrument’s time to maturity and the underlying mortality

model, respectively.

3.4.1 Data and assumptions

In this section we describe the data and model assumptions pertaining to our numerical illustra-

tion. In Sections 3.4.1 to 3.4.6, we assume that future mortality improvements follow the ACF

model introduced in Section 3.2.1, and model parameters are calibrated from the mortality data

of Canadian unisex population and UK unisex population aged 60 to 89 over the period of 1966

to 20051. The calibration process follows the procedures described in Zhou and Li (2016), which

is based on a first-order singular value decomposition (SVD) procedure. In this example, Cana-

dian unisex population is referred as population H , and the UK unisex population is referred as

population R. Other main assumptions are listed below:

• The pension liability we hedge against is from a single cohort of individuals aged x0 = 60

at time 0 from population H . The total notional amount is $1.

• The scale of the pension plan is large enough so that we do not consider sample risk.

• The hedging horizon is Y = 30 years.

1Data source: http://www.mortality.org
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• The q-forwards used as hedging instruments are linked to death rates of population R. The

reference age for all the contracts is fixed at xf = 75 and the time to maturity at inception

is T ∗ = 10 years.

• The risk free rate is r = 4%.

We use Hedge Effectiveness (HE), which measures the proportion of variance reduction of a

hedging strategy relative to the unhedged position, as a measure of quantifying the performance

of a hedging strategy. It is defined as

HE = 1− Var[time-0 value of hedged portfolio]

Var[time-0 value of unhedged portfolio]

= 1− Var[X(30)]

Var[
∑30

t=1(1 + r)−tS
(H)
x0,0

(t)]
, (3.14)

where X(30) is defined by equation (3.6). By definition, whenever the hedging strategy has a

non-negative impact on the hedger’s position, HE is a real number between 0 and 1. A larger HE

implies that the hedging strategy is more effective in reducing the variance of hedger’s position

at time 0, and vice versa. HE = 1 will be achieved only if the hedge is perfect, and we know it

is in general impossible due to the mismatch in mortality rates between the Canadian population

and the UK population. Once we obtain the optimal hedging strategy using equations (3.11) and

(3.12) based on a numerical procedure, we can use Monte Carlo simulation to estimate variance

of the time-0 value of both hedged and unhedged cash flows, and thus the Hedge Effectiveness

to show its performance.

3.4.2 Approximation to forward mortality rates

A direct simulation to calculate the optimal strategy {h∗t}t=0,1,2,...,29 based on equations (3.11)

and (3.12) is possible, however, numerical calculation of those double conditional expectations

requires the so-called “nested Monte Carlo” which is generally computationally expensive. An

alternative way is to adopt the first-order approximation formula for forward mortality rates pro-

posed by Cairns (2011) and Zhou and Li (2016). This approximation method is introduced to es-
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timate forward survival rates by the first-order Taylor expansion, instead of calculating the mean

of their true distributions. Subsequently it can be used to analytically evaluate equation (3.12),

and thus we only need a regular simulation procedure to evaluate equation (3.11). In this way we

can avoid the “nested Monte Carlo” issue, and therefore have a much lower computation burden

to calculate the hedging strategies. The approximation formula for the ACF model we use for

this longevity hedging problem is provided in Appendix B.1 (see Zhou and Li (2016) for proof).

Additionally, a similar approximation formula for the CBD model, which will be used later in

Section 3.4.7, is given in Appendix B.2.

3.4.3 Benchmark method

Since we will calculate the optimal hedging strategy {h∗t}t=0,1,2,...,29 using a Monte Carlo proce-

dure combined with the approximation formula to forward mortality rates discussed in subsec-

tion 3.4.2, there is no guarantee that the strategy calculated using equation (3.11) is exactly the

actual objective function minimizer to problem (3.8). Therefore in order to show that the error

from approximation procedure is acceptable and the approximated hedging strategy is still very

effective in reducing the hedger’s basis risk, we introduce the “delta” hedging strategy developed

in Cairns (2011), and Zhou and Li (2016) as the benchmark to compare our results with. Ac-

cording to their method, the notional amount of q-forwards the hedger chooses to keep at time t,

denoted by h∗∗t for t = 0, 1, ..., 29, is determined such that the hedging portfolio and the pension

plan’s future liability have the same sensitivity to the mortality index Kt, i.e.,

∂
[∑Y

s=1(1 + r)−sp
(H)
x0+t,t(s,Kt, k

(H)
t )

]
∂Kt

= h∗∗t ·
∂Qt(t− 1)

∂Kt

. (3.15)

The “delta” method is relatively easy to understand and implement, and generally computa-

tionally less intensive. However, as a trade-off, the solution is based on a heuristic idea rather

than rigorous mathematical formulation and therefore neglects some useful information from

the market, and can hardly capture the full dependence structure between different populations.

In the next section, we will show that our proposed optimal strategy {h∗t}t=0,1,2,...,29 defined by
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equation (3.11) generally outperforms the “delta” {h∗∗t }t=0,1,2,...,29 defined by equation (3.15) in

terms of reducing the hedger’s basis risk.

3.4.4 Baseline result

In this section we will present simulation results of five experiments based on the optimal strategy

{h∗t}t=0,1,2,...,29 and the “delta” strategy {h∗∗t }t=0,1,2,...,29, and use these results to assess their

relative efficiency. In each experiment, we generate N = 2, 000 random sample paths using the

ACF model, and then for each generated path we calculate our optimal hedging strategy h∗t or

the “delta” hedging strategy h∗∗t for each time t, t = 0, 1, ..., 29, based on five different numerical

procedures listed below.

• Method 1a: First analytically calculate the approximation formula (3.12) using equa-

tion (B.1), then simulate M = 1, 000 paths to estimate equation (3.11).

• Method 1b: Same as Method 1a but increase the number of paths generated in the second

step to M = 10, 000.

• Method 1c: Same as Method 1a but further increase the number of paths generated in the

second step to M = 100, 000.

• Method 2: “Delta” method based on equation (3.15).

• Method 3: A direct “nested” simulation based on numerical evaluation for equation (3.11)

with M = 10, 000 simulated sample paths and numerical evaluation for equation (3.12)

with M1 = 10, 000 sample paths.

For each of the five methods, we calculate the variance of time-0 value for both unhedged

and hedged portfolios from the 2,000 generated samples, to produce a single point estimate

of the Hedge Effectiveness defined in equation (3.14). Furthermore, a bootstrapping of Nb =

100, 000 is implemented using these 2,000 simulated samples to yield estimates for variance and

percentiles of the Hedging Effectiveness. Results of the Hedge Effectiveness from these five

experiments are shown in Table 3.1.
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HE Method 1a Method 1b Method 1c Method 2 Method 3

mean 0.9149 0.9147 0.9213 0.8938 0.9153
variance 1.5812e-005 1.3876e-005 1.2142e-005 2.3656e-005 1.4084e-005

Min 0.8962 0.8979 0.9035 0.8699 0.8968
Q1 0.9123 0.9122 0.9190 0.8906 0.9128
Q2 0.9150 0.9148 0.9214 0.8939 0.9154
Q3 0.9177 0.9172 0.9237 0.8971 0.9179

Max 0.9299 0.9301 0.9341 0.9127 0.9300
95% C.I. (0.9069,0.9225) (0.9072,0.9218) (0.9143,0.9279) (0.8839,0.9030) (0.9077,0.9224)
time (hrs) 0.27 1.56 12.18 0.16 117.51

Table 3.1: Results of Five Experiments

The results from Methods 1a, 1b and 1c in Table 3.1 are based on the optimal strategy with

a Monte Carlo procedure combined with the approximation formula to forward mortality rates.

The only difference across these three columns is the sample size adopted in the Monte Carlo

procedure. A comparison among the three columns shows that the Hedge Effectiveness increases

as we increase the number of sample paths M in calculating equation (3.11). Note that the HE

improves significantly from M = 10, 000 to M = 100, 000. Also, the variance decreases as M

increases, which means that we can get a better estimation for the HE as we increase M . The

cost is, of course, at the expense of more computational efforts.

Comparing results from Method 1 (i.e. Methods 1a, 1b and 1c) based on our proposed method

with Method 2 based on the benchmark method, we can see that our hedging strategy consistently

outperforms the “delta” hedge, as indicated by the higher HE. Even with the smallest number of

simulated paths M = 1, 000 (i.e. Method 1a), the average HE is consistently and significantly

larger than that of Method 2, and the two 95% Confidence Intervals obtained by Method 1a and

2 do not share any overlap. In order to better demonstrate the huge difference in HE between

Methods 1 and 2, we conduct a two-sample t-test with unequal variances on the hedge effec-

tiveness between Methods 1a and 2. The t-test result rejects the null hypothesis with a p-value

less than 10−8, and therefore strongly suggests that the advantage of our proposed strategy over

“delta” strategy is significant. Additionally, all the HE from Method 1 have smaller variance

than Method 2, which means that the results calculated from our proposed method are more sta-
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ble. Finally, it should be noted that the computational time of Method 1a is less than double the

computational time of Method 2 to ensure its feasibility in practice.

Comparing the HE obtained using Method 1 (which uses the approximation formula) with

Method 3 (which is based on a direct “nested” Monte Carlo), we can see that the average HE

from Methods 1a and 1b are lower that that from Method 3, while Method 1c yields a higher

HE than Method 3 does. Although in theory Method 3 gives us the real objective optimizer, in

practice due to the computational time limit we may not always have large enough number of

sample paths to estimate equation (3.11) accurately. This explains why the mean and quantiles of

HE from Method 1c are higher than those of Method 3 in their estimates. Comparison between

the variance also shows that the HE obtained in Methods 1b and 1c are more accurate than that

in Method 3. As a result, Method 1c should be considered as a preferred choice among the five

methods in term of balancing between hedging performance and computational cost.

It is worth mentioning that although Method 3 seems to be unacceptably slow compared to

other four methods and the HE we obtain from Method 3 is not as good as Method 1c, it is still

the best strategy in theory if we have very powerful computation resources so that computational

time is not a major issue. In this example, in order to illustrate our results we need to calculate the

optimal hedging strategy {h∗t}t=0,1,...,29 using equation (3.11) by a total of 60, 000(= 30×2, 000)

times for each experiment, so the total computation time gets quite long even though one single

hedging strategy only takes about 7 seconds. But in practice it is usually the case that we only

need to numerically calculate the optimal strategy for one particular period each time instead of

the whole path, and thus we can always increase the number of simulation paths to approach the

theoretically optimal hedging performance.

3.4.5 Robustness to q-forwards’ time to maturity

In this section we examine the robustness of the Hedge Effectiveness of our proposed hedging

strategy with respect to the maturity of the q-forwards. In our previous baseline example con-

sidered in section 3.4.4, the q-forwards’ time to maturity T ∗ was set at 10 years, which is one

third of our hedging horizon Y = 30 years; and the q-forwards’ reference age was set at xf = 75

which is approximately the average age of the underlying population during the hedging period.
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However, in practice, a certain type of q-forward contract may not be always liquidly traded

in the market. Therefore it is of interest to evaluate the Hedge Effectiveness of our proposed

strategy if the hedging instruments are based on different maturities and reference ages.

In this section we repeat our experiments using Methods 1c and 2 described in section 3.4.4,

by keeping reference age fixed as xf = 75 and varying the q-forwards’ time to maturity with

T ∗ = 3, 4, ..., 20 years. Simulation results on the HE with different time to maturity are presented

in figure 3.1.
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Figure 3.1: HE with different time to maturity

From figure 3.1 we can see that the obtained Hedge Effectiveness is very stable with respect

to the maturity of q-forwards, T ∗. For our proposed optimal hedging strategy, the HE is dis-

tributed within the interval [91%, 92%] while the dynamic “delta” method is consistently less

effective. Since we adjust our hedging position in the hedging instrument every year based on

the latest information from the market, we would not be very concerned if the amount of hedging

instrument used for next year does not reflect mortality change in the far future. Additionally,
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when the q-forwards’ time to maturity is too long, for example, T ∗ = 20 years, it may become

less effective as time goes by because the mortality rate, which it is linked to, will be out of our

hedging horizon.

This example reveals one of the major advantages of dynamic hedging strategy. Because

longevity instruments with shorter time to maturity are generally much more appealing to in-

vestors and speculators than those longer term ones, longevity hedges will have more favorable

expense and flexibility if the hedger adopts dynamic plans instead of static ones.

3.4.6 Robustness to q-forwards’ reference age

Next we investigate the impact of q-forwards’ reference age on the hedging performance. We

fix time to maturity to be T ∗ = 10 years as in our baseline example, and respectively consider

reference ages xf = 60, 61, ..., 84. Since the underlying cohort of the pension plan liability are

aged at 60 at inception, it does not make sense if we use q-forwards with reference ages that are

lower than 60; for very high ages such as 85, it is unlikely to reflect our pension liability as well.

This explains why we consider those values as the range for the reference age xf . Results of the

Hedge Effectiveness for different reference ages are shown in figure 3.2.

Figure 3.2 shows that the HE indeed heavily depends on q-forwards’ reference age. Hedge

effectiveness remains above 85% within the interval of 71 ≤ xf ≤ 81, while it fluctuates dras-

tically for xf < 71 or xf > 81. This is consistent with our conjecture that the best hedging

performance should be obtained by using q-forwards that are linked to approximately the aver-

age age of the pension plan cohort during our hedging horizon. The curves shown in Figure 3.2

are not smooth due to the fact that age effects captured by Bx and b(i)
x , i = 1, 2 in the ACF model

are not necessarily smooth functions of x. Last but not least, we can also see that our hedging

method generally outperforms the dynamic “delta” method, despite the unstable hedging perfor-

mance when the reference age xf is too large or too small.
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Figure 3.2: HE with different reference ages

3.4.7 Robustness to model risk

3.4.7.1 The Cairns-Blake-Dowd (CBD) model

In this section, we study the impact of model risk, i.e., the risk coming from misidentifying the

actual stochastic longevity model. In order to do so, we introduce the two-population Cairns-

Blake-Dowd (CBD) model defined as follows:

logit(q
(i)
x,t) := ln

(
q

(i)
x,t

1− q(i)
x,t

)
= κc1,t + κc2,t(x− x̄) + κ

(i)
1,t + κ

(i)
2,t(x− x̄) + ε

(i)
x,t, (3.16)

where i = H,R, are referred as two populations; x̄ denotes the average age over the sample age

range [xa, xb] (=[60,89] in this example); κc1,t and κc2,t are time-varying factors which are common

to both two populations; κ(i)
1,t and κ(i)

2,t are time-varying factors applied to the specific population

i; ε(i)x,t captures all the remaining variations and the error terms for different populations, ages and
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times are assumed to be independent.

Further the common factors κc1,t and κc2,t are modeled by a bivariate random walk with drift,

i.e., ∀t = 1, 2, 3, ..., κc1,t = µc1 + κc1,t−1 + ηc1,t,

κc2,t = µc2 + κc2,t−1 + ηc2,t,

where ηc1,t and ηc2,t are constantly correlated, i.e., the correlation coefficient ρ(ηc1,t, η
c
2,t) is a con-

stant number that does not change with time t. Moreover, the population specific factors κ(i)
1,t and

κ
(i)
2,t are modeled by two correlated AR(1) model, ∀t = 1, 2, 3, ...κ

(i)
1,t = µ

(i)
1 + φ

(i)
1 κ

(i)
1,t−1 + η

(i)
1,t,

κ
(i)
2,t = µ

(i)
2 + φ

(i)
2 κ

(i)
2,t−1 + η

(i)
2,t,

where η(i)
1,t and η(i)

2,t are also constantly correlated.

3.4.7.2 Hedging results with model risk

With model risk involved, we would expect a lower HE when applying our proposed hedging

scheme due to the additional error from the model misspecification. To demonstrate this we

investigate model risk by comparing results from the four following cases.

• Case 1: the “true” model is CBD model, but calculation of hedging strategy is based on

ACF model (referred as “assumption” model in the rest of this section).

• Case 2: the “true” model is ACF model, but the “assumption” model is CBD model.

• Case 3: the “true” model is CBD model, and the “assumption” model is CBD model.

• Case 4: the “true” model is ACF model, and the “assumption” model is ACF model. This

is the same as baseline results.
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“True”/“assumption” model mean variance min max 95% C.I.

Case 1 (CBD/ACF) 0.6437 1.7231× 10−4 0.5828 0.6942 (0.6174,0.6687)
Case 2 (ACF/CBD) 0.8712 3.2003× 10−5 0.8416 0.8952 (0.8597,0.8819)
Case 3 (CBD/CBD) 0.6492 1.7890× 10−4 0.5839 0.7029 (0.6222,0.6747)

Case 4 (ACF/ACF, baseline) 0.9213 1.2142× 10−5 0.9035 0.9341 (0.9143,0.9279)

Table 3.2: HE results with different “true” and “assumption” models

In order to mimic this situation, we take the following numerical procedure for each of the

four cases listed above:

Step 1. Simulate N = 2, 000 mortality sample paths using the “true” model.

Step 2. Based on each simulated path, calibrate model parameters for the “assumption” model. If

the “true” model and the “assumption” model are identical, skip this step.

Step 3. Calculate optimal hedging strategy for each time point on each simulated path based on

the calibrated model parameters of the “assumption” model.

Step 4. Calculate time-0 value of both hedged and unhedged position based on simulated paths

and hedging strategy obtained in step 3.

Step 5. Bootstrap of Nb = 100, 000 to obtain an estimation for the distribution of the Hedge Ef-

fectiveness.

To focus on model risk, in this example we fix the q-forward contract with reference age

xf = 75 and time to maturity T ∗ = 10, to be consistent with the parameter values in our baseline

experiments. Results of the Hedge Effectiveness under these four cases are shown in Table 3.2.

Table 3.2 shows that the Hedge Effectiveness by adopting our proposed hedging strategy is

quite stable even when the “assumption” model deviates from the “true” model. Comparing Case

2 with baseline result Case 4, we can see that the average HE decreases from 92.13% to 87.12%

if the “assumption” model is misidentified as the CBD model. All the percentiles also decrease

slightly and variance of the HE increases substantially, from 1.2142 × 10−5 to 3.2003 × 10−5.
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When the model is misspecified, additional hedging error occurs due to the discrepancy between

the “true” model and the “assumption” model, and the hedging strategy becomes less accurate,

however, the HE we obtain in this example should still be considered as satisfactory in general.

When the “true” model is the CBD model (Cases 1 and 3), we observe a similar pattern.

If the underlying model is correctly specified, the HE is slightly better in terms of average and

percentiles, but the difference is quite small. It further implies that our hedging strategy is not

sensitive to model risk.

It is worthwhile mentioning that the difference in HE achieved between “true” model of

CBD cases (Cases 1 and 3) and “true” model of ACF cases (Cases 2 and 4) is not caused by

the hedging strategy, but the implied population basis risk of different models. In this chapter

correlations between mortality rates of different populations are modeled by common factors,

and those model parameters we use in this example are estimated by a least square procedure. As

a result, correlation between these two populations under different mortality model assumptions

are not necessarily the same or even close, even though model parameters are calibrated from the

same data set. Table 3.2 shows that in this example there is much larger population basis risk if

future mortality rates follow a two-population CBD model.

3.4.7.3 Correlation coefficients under different models

In what follows, we provide some explanation about the seemingly large difference in basis risk

we observed under different “true” model assumptions in section 3.4.7.2, by comparing the cor-

relation coefficients between some representative death rates of two longevity models: the ACF

model and the CBD model. To be consistent with our original hedging problem assumptions, we

choose q(H)
59+t,t and q(R)

75,t+9, t = 1, 2, 3, ..., 30, as the representative death rates. Based on each of

the ACF model and the CBD model calibrated from the same data set, we simulate N = 10, 000

future mortality paths and calculate correlation coefficient ρ(q
(H)
59+t,t, q

(R)
75,t+9) for t = 1, 2, 3, ..., 30,

and numerical results are shown in Figure 3.3.

Figure 3.3 shows that the ACF model and the CBD model have different patterns to model

the correlation between death rates q(H)
59+t,t and q

(R)
75,t+9 of two populations. When t is small,
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Figure 3.3: Change with time to maturity

correlation coefficients ρ(q
(H)
59+t,t, q

(R)
75,t+9) for ACF are generally larger, however, as t increases,

ρ(q
(H)
59+t,t, q

(R)
75,t+9) for CBD model surpasses that from ACF model till the end of our hedging

horizon T = 30 years. Because the pension plan liability is more dependent on mortality rates

in early years of the hedging horizon, intuitively it explains why there is much higher basis risk

when the underlying model is the CBD model. A more comprehensive and rigorous analysis on

the modeling issue of multi-population longevity models is beyond the scope of this chapter and

worth more thorough investigations in the future.

3.5 Conclusion

In this chapter we study the optimal dynamic hedging strategy for pension plans that are exposed

to longevity risk and basis risk. Under the commonly used longevity models such as the Aug-

mented Common Factor model and the Cairns-Blake-Dowd model, we derive a semi closed-form
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hedging plan for the pension plan sponsor which minimizes the variance of time-0 value of the

total future liabilities. Further with a Monte Carlo simulation procedure and an approximation

formula for forward mortality rates, we show that numerical calculation of optimal hedging strat-

egy only requires moderate computational time and therefore it offers an effective solution for

practical applications.

As the theoretically best strategy under the variance criterion, our proposed hedging scheme

is also shown to outperform the “delta” strategy in terms of both effectiveness and stability.

Additionally, extensive numerical results show that the hedging performance achieved by our

hedging plan is robust to the hedging instrument we use and the underlying longevity model we

choose. One useful discovery is that for dynamic longevity hedging plans, it is unnecessary to

choose those long-maturity longevity instruments that tend to be more costly and less liquid, in

order to achieve a satisfactory hedging performance.
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Chapter 4

Index Insurance Design

4.1 Introduction

The purpose of this chapter is to provide an in-depth analysis on a class of insurance known as

the index-indemnifying insurance, or simply the index insurance. As opposed to the traditional

loss-indemnifying insurance for which its payout (indemnity payment) is a function of the actual

loss incurred by the policyholder, the payout of an index insurance depends exclusively on a

pre-determined index or some appropriately chosen indicators.

Prominent applications of index insurance can be found in insurance coverage provided to

agricultural producers. In fact in recent years there is a surge of interest in piloting index insur-

ance for agricultural households in developing economics. In these applications, an index may

be an average county crop yield, the number of heating days, the amount of rainfall received

by a particular area during the growing season, or based on remote sensing satellite vegetation

data. For example Barnett and Mahul (2007) discuss the use of weather index insurance for

agriculture in rural areas of lower-income countries. Chantarat et al. (2007) demonstrate that

an index insurance with payout linked to some weather variables can be effective in improving

drought response for famine prevention. Chantarat et al. (2013) describe an index-based live-

stock insurance by exploiting remote sensing vegetation data. Bokusheva et al. (2016) analyze

the effectiveness of the indices constructed based on the satellite-based vegetation health indices
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for insuring against drought-related yield losses. See also International Fund for Agricultural

Development World Food Program (2010), Conradt et al. (2015), Carter et al. (2016) for recent

advances in agricultural index insurance.

Other than hedging agricultural and livestock risks, index-based securities that are issued in

the capital market have been effective in securitizing the catastrophic risks. See for example

catastrophic-loss index options for hedging hurricane risk (Cummins et al., 2004) and the Swiss-

Re mortality bonds for hedging mortality risk.

The popularity of index insurance stems from a number of reasons. The first and foremost

reason lies in its potential of reducing or even eliminating completely the moral hazard and

adverse selections since the indemnity payments are based on an index that is transparent, well-

defined, and cannot be manipulated by either the insured or the insurer. The second reason is

its low operational cost (such as the cost associated with the underwriting, administration, loss

assessment). Because the indemnity payments are completely determined by an index, there is

no need to assess the losses actually incurred by the agricultural producers. The loss assessment

can be expensive and prohibitive, especially in rural areas where accessibility can be problematic.

The number of small agricultural households further aggravates the cost if insurer needs to assess

loss for all households. As a result, the claim settlement can also be processed more efficiently

and more timely whenever there is a claim from an index insurance.

Despite all the aforementioned advantages, the challenge with the index insurance is the basis

risk, which arises due to the discrepancy between the indemnity payments dictated by the index

and the actual losses incurred by the insured. The imperfect correlation between the adopted

index and the loss random variable casts doubt on the effectiveness of index insurance in hedging

agricultural production risk and as such leads to low demand in some pilot index insurance

programs. See, for example, Miranda and Farrin (2012) for a review of recent theoretical and

empirical research on index insurance for developing countries and a summary of lessons learned

from index insurance projects implemented in the developing world since 2000. See also Elabed,

et al. (2013) and Jensen, et al. (2016) for additional discussion on basis risk associated with

agricultural and livestock productions, respectively.

The presence of basis risk implies that the index must be chosen meticulously. A logical line
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of inquiry is the determination of an index that optimally minimizes the basis risk. This basi-

cally relates to the optimal design of index insurance. The optimal design of loss-indemnifying

contract is a widely studied problem in the actuarial literature. It is, however, important to

point out some subtle differences between the formulation of optimal loss-indemnifying contract

and optimal index-indemnifying contract. More specifically, the indemnity function in a loss-

indemnifying insurance contract needs to be non-decreasing, bounded from above by the actual

loss, and has a non-zero deductible, in order to avoid moral hazard. In contrast, the indemnity

function of an index insurance can have very flexible structure. The indemnity is not necessarily

increasing in the underlying indices. The indemnity payment can even exceed the loss incurred

by the insured.

While index insurance is prevalent in agricultural production, its indemnity function in most

cases, is relatively simple and is of linear type (e.g., Giné et al., 2007; Okhrin et al., 2013). While

linear-type indemnity functions may work well in certain contexts, the basis risk is generally high

in most cases. For example, in the context of agricultural insurance, the dependence structure be-

tween crop yields and weather indices such as temperature and precipitation are so complex that

it cannot be accurately captured by a linear function. Thus, innovative weather index insurance

products need to be developed for farmers to better protect against the decline in crop yields due

to adverse weather conditions.

In this chapter, we adopt a utility maximization framework for the design of index insurance

(Raviv, 1979) and define the optimal index insurance as the one that maximizes the insureds’

expected utility. The variance minimization problem can be viewed as a special case in our gen-

eral utility maximization framework when a quadratic utility function is adopted. Mahul (2000)

and Vercammen (2001) are the two relevant references. The mathematical models in these two

references share a similar structure as the present chapter, but they considered the problem of

optimal loss-indemnifying (instead of index-indemnifying) insurance design in the presence of

background risk under a utility maximization framework. They derived a characterization equa-

tion for the optimal solution, and presented certain interpretations on the shape of the optimal

indemnity function. However, neither of these two articles studied the existence and uniqueness

of the optimal contract, or offered a feasible procedure for the derivation of the optimal indemnity

function. Therefore, their results are not sufficient for insurers to design effective index based
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insurance products.

We contribute to the literature in the following aspects. First, we provide a rigorous mathe-

matical examination on the existence and uniqueness of the optimal index insurance arrangement.

Second, explicit form of the optimal index insurance is derived for utility functions commonly

adopted in insurance economics including quadratic and exponential utility functions. For a gen-

eral strictly concave utility function, the optimal solution is characterized by an implicit ordinary

differential equation (ODE) , for which the solution can be easily obtained numerically, for ex-

ample, by the Runge-Kutta method (Burden and Faires, 2001). Third, an empirical agricultural

index insurance is conducted and it shows that the index based contract from our results sig-

nificantly outperforms those existing index contracts from the literature. Choosing the average

temperature as the underlying index, we find that the optimal indemnity function generally fol-

lows a “first decreasing and then increasing” pattern and its specific shape relies on the premium

level charged by the insurance contract, the maximum indemnity paid and the form of utility

function. For quadratic utility function, the design is equivalent to minimizing the variance of

insured’s resulting position, and our numerical results show that the effectiveness in terms of

variance deduction does not continue to improve with the premium level after the premium ex-

ceeds certain threshold. This observation provides important and useful insights for government

agency in making agricultural insurance premium subsidiaries. Further, our results also show

that the proposed optimal contract generally outperforms the linear-type insurance contracts, and

that the multi-index contracts can further reduce basis risk, when compared to the single-index

ones.

The rest of this chapter is organized as follows. Section 4.2 describes the problem formu-

lation of index insurance we will study in the chapter. Section 4.3 discusses the existence and

uniqueness of the optimal index insurance contract for our formulation. Section 4.4 provides an

ODE based method for the computation of the optimal solution, and applies this method to derive

explicit optimal solution for quadratic and exponential utility functions, respectively. Section 4.5

provides an empirical study on the viability of our proposed optimal index insurance to weather

index insurance. Section 4.6 concludes the chapter. A numerical procedure for solving the ODE

arising from Section 4.4 is described in Appendix C.
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4.2 Problem Setup

Suppose that a potential loss, which can hardly be insured or well hedged by any existing in-

surance of financial program on the market, is modeled by a random variable Y . Throughout

this chapter, all the random variables are defined on a probability space (Ω,F ,P). Our objec-

tive is to design an index-based insurance which is linked to an index X to protect an insured

from such a risk. Let [c, d] and [a, b] with c < d and a < b be the supports of X and Y re-

spectively. Further we assume that X and Y have a joint probability density function f(x, y) for

(x, y) ∈ [c, d]× [a, b] so that
∫ d
c

∫ b
a
f(x, y) dy dx = 1. In this chapter, we assume that f(x, y) is

continuous on [c, d]×[a, b], and we write the marginal density functions forX and Y respectively

as follows

h(x) :=

∫ b

a

f(x, y) dy for x ∈ [c, d], and g(y) :=

∫ d

c

f(x, y) dx for y ∈ [a, b].

Obviously g(y) and h(x) are continuous on [a, b] and [c, d] respectively. Additionally, we assume

that f(x, y) > 0 on [c, d]× [a, b] a.e., and thus h(x) > 0 a.e. on [c, d] and g(y) > 0 a.e. on [a, b].

Let I(X) be the indemnity function of the index insurance. This means that the actual payoff

of the insurance is completely determined by the realization of the index X . We further assume

that 0 ≤ I(X) ≤ M for a constant M > 0 which represents the maximum amount paid by the

insurer. The maximum amount paid, M , is assumed exogenously in our discussion. It is possible

to have M ≥ b because the insured may want to over-insure its underlying for large losses in an

incomplete market (Doherty and Schlesinger, 1983). Mathematically, we consider the following

feasible set for the indemnity function in the design of index insurance:

I := {I |I : [c, d]→ [0,M ] is measurable}.

For loss-indemnifying insurance where the payoff of the insurance contract depends on the actual

loss occurred on the insured, the indemnity function is typically non-decreasing and bounded

from above by the actual loss, and has a non-zero deductible, in order to preclude severe moral

hazard from the insurance contract (e.g., Chi and Weng, 2013; Zhuang et al., 2016). For the
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design of index insurance, however, we do not need to impose these restrictions on the indemnity

function because the index can hardly be manipulated by either the insured or the insurer and thus

no moral hazard is involved.

In this chapter we assume that the price of this insurance product is determined by the ex-

pected value premium principle:

P = γE [I(X)] = γ

∫ d

c

I(x)h(x) dx,

where γ − 1 ≥ 0 is the safety loading factor. For a given insurance premium level P ∈ (0, γM),

the insurer aims to design an optimal insurance that maximizes its clients’ expected utility. In

other words, we are interested in solving the following optimization problem: sup
I∈I

J(I) := E{U(w + I(X)− Y − (1− θ)P )}

s.t. P = γ
∫ d
c
I(x)h(x) dx

(4.1)

where U is a strictly concave and non-decreasing utility function for the insured with U ′(x) ≥ 0

and U ′′(x) < 0 for x in the domain of the utility function U , U ′′(x) is a continuous function, 0 ≤
θ ≤ 1 denotes any possible subsidy to the insured by a third party (which is usually a government

agency in practice), w is the initial wealth of the insured, and thus, w + I(X) − Y − (1 − θ)P
denotes the terminal wealth of the insured in the presence of an index insurance. The constraint

P = γ
∫ d
c
I(x)h(x) dx may also be interpreted as the participation constraint for risk-neutral

insurers when the insurance costs are proportional to the insurance payments (Raviv, 1979). We

assume 0 < P < γM to ensure that the problem is well defined, and to exclude the trivial cases

of P = 0 or P = γM , where the optimal indemnity is either zero or the upper bound M . We

note that it is very common among most countries for a government to subsidize farmers for

purchasing agricultural insurance. The inclusion of θ in model (4.1) is to reflect such a practice.

In the special case of θ = 0, no subsidy is assumed for the insured in the above model.
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4.3 Existence and Uniqueness of the Optimal Design

4.3.1 Uniqueness of the optimal solution

Due to the strict convexity of the utility function, we have the following proposition regarding

the uniqueness of optimal solution to the insurance design problem (4.1).

Proposition 4.1 (Uniqueness of optimal solution). The optimal solution to problem (4.1) is

unique up to the equality almost everywhere if it exists.

Proof. Let I1 and I2 be two optimal solutions to problem (4.1) with µ(D) > 0 where D :=

{x ∈ [c, d] |I1(x) 6= I2(x)} and µ(D) denotes the Lebesgue measure of the setD. Denote Iλ(x) :=

λI1(x) + (1− λ)I2(x), x ∈ [c, d] for a constant λ ∈ (0, 1). Obviously, Iλ is a feasible indemnity

function for problem (4.1) because Iλ ∈ I and it satisfies the constraint in problem (4.1). We

also note that X has a positive density function on the interval [c, d]. Consequently, µ(D) > 0

implies P(A) > 0 where A := {ω ∈ Ω |I1(X) 6= I2(X)}.

Let v(P ) denote the supremum value for problem (4.1). We must have v(P ) < ∞ because

both I(X) and Y are bounded random variables. Thus, using the strict concavity, we obtain

J(Iλ) = E
[
U
(
w + λI1(X) + (1− λ)I2(X)− Y − (1− θ)P

)]
> λE

[
U
(
w + I1(X)− Y − (1− θ)P

)]
+(1− λ)E

[
U
(
w + I2(X)− Y − (1− θ)P

)]
= λv(P ) + (1− λ)v(P )

= v(P ),

which contradicts to the optimality of I1 and I2. Thus, the optimal solution to problem (4.1) is

unique up to the equality almost everywhere if it exists.
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4.3.2 Existence of optimal solution

In order to solve problem (4.1), we introduce the Lagrange multiplier λ and define:

K(I, λ) := J(I) + λ

(
P − γ

∫ d

c

I(x)h(x) dx

)
= E [U (w + I(X)− Y − (1− θ)P )] + λ

∫ d

c

[P − γI(x)]h(x) dx

=

∫ d

c

∫ b

a

U (w + I(x)− y − (1− θ)P ) f(x, y) dy dx+

∫ d

c

λ(P − γI(x))h(x) dx

=

∫ d

c

{∫ b

a

U (w + I(x)− y − (1− θ)P ) f(y|x) dy + λ(P − γI(x))

}
h(x) dx,

(4.2)

where f(y|x) = f(x, y)/h(x) is the conditional density function of Y given X = x. By the

continuity and positiveness of f(x, y) and h(x), f(y|x) is also continuous and positive for x ∈
[c, d] and y ∈ [a, b]. The optimal solution to problem (4.1) can be recovered by the maximizer of

K(I, λ) defined in (4.2), as stated in the following Lemma.

Lemma 4.1. Let Iλ denote the maximizer of K(I, λ) defined by equation (4.2) for every λ ∈ R.

If there exists λ∗ such that E[Iλ∗ ] = P/γ, then I∗ := Iλ∗ solves problem (4.1).

Proof. Recall that v(P ) denotes the supremum value of problem (4.1). Therefore,

v(P ) = sup
I∈I s.t. γE[I]=P

E[J(I)]

= sup
I∈I s.t. γE[I]=P

{E[J(I)] + λ∗(P − γE[I])}

≤ sup
I∈I
{E[J(I)] + λ∗(P − γE[I])}

= E[J(I∗)] + λ∗(P − γE[I∗])

= E[J(I∗)]

≤ sup
I∈I s.t. γE[I]=P

E[J(I)]

= v(P ),
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which implies that I∗ is the solution of problem (4.1).

By virtue of Lemma 4.1, we first investigate the maximizer of the function K(I, λ) with

respect to I for a given λ ∈ R. In view of equation (4.2), a sufficient condition is to pointwise

maximize its integrand:

H(I(x), x, λ) :=

∫ b

a

U (w + I(x)− y − (1− θ)P ) f(y|x) dy + λ(P − γI(x)), x ∈ [c, d].(4.3)

The derivative of H(I(x), x, λ) with respect to I(x) is given by

Ḣ(I(x), x, λ) := G(I(x), x)− λγ, (4.4)

where

G(ξ, x) :=

∫ b

a

U ′ (w + ξ − y − (1− θ)P ) f(y|x) dy

= E [U ′ (w + ξ − Y − (1− θ)P ) |X = x] . (4.5)

We note that G(ξ, x) is strictly decreasing in ξ for any fixed x, since U is strictly concave.

Accordingly, G(ξ, x) attains its maximum value at ξ = 0 and its minimum value at ξ = M for a

given x. Based on this fact, we define the following three sets:

Sλ1 :=

{
x ∈ [c, d]

∣∣∣∣G(0, x) < λγ

}
, (4.6)

Sλ2 :=

{
x ∈ [c, d]

∣∣∣∣G(M,x) > λγ

}
, (4.7)

Sλ3 :=

{
x ∈ [c, d]

∣∣∣∣G(M,x) ≤ λγ ≤ G(0, x)

}
. (4.8)

Since G(ξ, x) is strictly decreasing in ξ for a fixed x, we must have Sλ1 ∩ Sλ2 = ∅, and thus Sλ1 ,
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Sλ2 and Sλ3 constitute a partition of the interval [c, d]. Consequently, it is obvious to have

Iλ(x) := argmin
I(x)∈[0,M ]

H(I(x), x, λ) =


0, for x ∈ Sλ1 ,
M, for x ∈ Sλ2 ,
Îλ(x), for x ∈ Sλ3 ,

(4.9)

where Îλ(x) satisfies Ḣ(Îλ(x), x, λ) = 0, i.e.,

G(Îλ(x), x) = λγ. (4.10)

Obviously Ḣ(0, x, λ) ≥ 0 and Ḣ(M,x, λ) ≤ 0 for x ∈ Sλ3 . Thus, the continuity and strictly

increasing property of Ḣ(I(x), x, λ) as a function of I(x) implies that there exists a unique

solution Îλ(x) ∈ [0,M ] to equation (4.10) for every x ∈ Sλ3 .

Remark 4.1. The partition by the three sets Sλ1 , Sλ2 and Sλ3 for the index X represents different

levels of insurance coverage for the insured. The expression of H(I(x), x, λ) given in (4.3)

implies that its maximizer strives to keep a balance between the marginal utility gained and the

marginal expense on insurance premium from an increase of insurance coverage. When the index

value lies in the set Sλ1 , the marginal utility gained from each unit of insurance coverage is less

than the marginal cost of premium, and thus a zero insurance coverage is optimal. For the index

value on Sλ2 , the marginal utility for each unit of insurance coverage is larger than the marginal

cost of insurance premium, and thus the maximum coverage is optimal. On Sλ3 , the optimal

coverage makes the marginal benefit of utility equal to the marginal cost of insurance premium.

The insurance coverage for index on the set Sλ3 is between 0 and M , and thus Sλ3 represents the

relatively medium coverage region.

In the rest of the section, we use Lemma 4.1 to show the existence of a solution to problem

(4.1). We need to verify the existence of λ∗ such that E[Iλ∗ ] = P/γ for Iλ in equation (4.9). To

this end, we impose the following technical conditions:

H1: µ ({x ∈ [c, d]|G(0, x) = k1}) = µ ({x ∈ [c, d]|G(M,x) = k2}) = 0 for any k1, k2 ∈ R.
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The above condition means that the level sets have a zero Lebesque measure at any level for

both functions G(0, x) and G(M,x). This condition is quite mild from a practical point of view.

For example, when the function G(M,x) is piecewise strictly monotonic over [c, d], then con-

dition H1 is satisfied. In the context of optimal insurance or risk sharing with background risk,

the concept of stochastic monotonicity is commonly used to describe the dependence structure

between two random variables (e.g., Dana and Scarsini, 2007). A random variable Z1 is (strictly)

stochastically monotonic in Z2, if the map z 7→ E[f(Z1)|Z2 = z] is (strictly) monotonic for every

(strictly) monotonic function f . Obviously, condition H1 is satisfied when the actual loss vari-

able Y is strictly stochastically monotonic in the index variable X . For index insurance design,

the stochastic monotonicity is generally too strong to apply, but condition H1 is general enough

for most applications.

Proposition 4.2 (Existence of optimal solution). Assume that condition H1 holds and P ∈
(0, γM). Then, there exists λ∗ to satisfy E[Iλ∗ ] = P/γ for Iλ defined by equations (4.9) and

(4.10). In this case, Iλ∗ is the optimal solution to problem (4.1).

Proof. We only need to show the existence of λ∗ to satisfy E[Iλ∗ ] = P/γ, because this combined

with Lemma 4.1 implies the optimality of Iλ∗ for problem (4.1).

For x ∈ [c, d], define λU := maxx∈[c,d]
1
γ
G(0, x) and λL := minx∈[c,d]

1
γ
G(M,x). Condition

H1 implies that both SλU1 and SλL2 differ from the set [c, d] by only a µ-null set. Thus, by (4.9),

E[IλU (X)] = 0 and E[IλL(X)] = M . As a result, it is sufficient to show that E[Iλ(X)] is

continuous on [λL, λU ].

Below we only show the right continuity of E[Iλ(X)] on [λL, λU ], as its left continuity follows

in the same fashion. Define ∆λ
ε := |E[Iλ+ε(X)]− E[Iλ(X)]| for λ ∈ [λL, λU − ε] and ε > 0.

Then,

∆λ
ε =

∣∣∣∣∣M · P(X ∈ Sλ+ε
2 ) +

∫
Sλ+ε3

Iλ+ε(x)h(x) dx−M · P(X ∈ Sλ2 )−
∫
Sλ3

Iλ(x)h(x) dx

∣∣∣∣∣
≤ M ·

∣∣P(X ∈ Sλ+ε
2 )− P(X ∈ Sλ2 )

∣∣+

∣∣∣∣∣
∫
Sλ+ε3

Iλ+ε(x)h(x) dx−
∫
Sλ3

Iλ(x)h(x) dx

∣∣∣∣∣
=: M |J ε2|+ |J ε3|.
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By definition of Sλ2 in (4.7), J ε2 = −P(λγ < G(M,X) ≤ (λ + ε)γ) = P(G(M,X) ≤ λγ) −
P(G(M,X) ≤ (λ+ ε)γ)→ 0 as ε→ 0+.

It remains to show J ε3 → 0 as ε→ 0+. Indeed,

J ε3 =

∫
Sλ+ε3 ∩Sλ3

Iλ+ε(x)h(x) dx−
∫
Sλ3∩S

λ+ε
3

Iλ(x)h(x) dx

+

∫
Sλ+ε3 ∩Sλ3

(Iλ+ε(x)− Iλ(x))h(x) dx, (4.11)

where Ā denotes the complement of a set A. It is easy to verify

Sλ+ε
3 ∩ Sλ3 = {x ∈ [c, d] |λγ < G(M,x) ≤ (λ+ ε)γ ≤ G(0, x)} ,

and

Sλ3 ∩ Sλ+ε
3 = {x ∈ [c, d] |G(M,x) ≤ λγ ≤ G(0, x) < (λ+ ε)γ } .

Condition H1 implies both µ
(
Sλ+ε

3 ∩ Sλ3
)
→ 0 and µ

(
Sλ3 ∩ Sλ+ε

3

)
→ 0 as ε → 0+. Further

noting Iλ+η(x) ∈ [0,M ] for any η ≥ 0 and x ∈ [c, d], the first two items in (4.11) converge to 0

as ε→ 0+.

For x ∈ Sλ+ε
3 ∩ Sλ3 , we have

G(Iλ+ε(x), x) = (λ+ ε)γ and G(Iλ(x), x) = λγ.

Further, G(ξ, x) is a continuous and differentiable function of ξ for any x ∈ [c, d], and thus, we

apply the mean value theorem to obtain

εγ = G(Iλ+ε(x), x)−G(Iλ(x), x) = G′ξ(ξ, x) (Iλ+ε(x)− Iλ(x))

for some constant ξ := ξx,λ valued between Iλ+ε(x) and Iλ(x), where G′ξ(ξ, x) := ∂
∂ξ
G(ξ, x).
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This implies

|Iλ+ε(x)− Iλ(x)| = εγ∣∣G′ξ(ξ, x)
∣∣ ≤ εγ

infξ∈[0,M ], x∈[c,d]

∣∣G′ξ(ξ, x)
∣∣ . (4.12)

From (4.5), we have G′ξ(ξ, x) =
∫ b
a
U ′′ (w + ξ − y − (1− θ)P ) f(y|x) dy. Since U ′′(·) is a

continuous function over its domain, there exits a constant δ > 0 such that

∣∣G′ξ(ξ, x)
∣∣ ≥ δ

∫ b

a

f(y|x) dy = δ, ∀ ξ ∈ [0,M ] and x ∈ [c, d].

Consequently, it follows from (4.12) that∫
Sλ+ε3 ∩Sλ3

(Iλ+ε(x)− Iλ(x))h(x) dx ≤
∫
Sλ+ε3 ∩Sλ3

εγ

δ
h(x) dx ≤ ε

γ(d− c)
δ

→ 0, as ε→ 0+.

Therefore, from (4.11) we have J ε3 → 0 as ε→ 0+, by which we complete the proof.

4.4 Computing the Optimal Solution

In the previous section we have demonstrated the existence and uniqueness of the optimal in-

surance contract for problem (4.1). In order to derive a closed-form expression for the optimal

solution, one may invoke Proposition 4.2. However, this involves the determination of the spe-

cific forms of the sets Sλ∗2 and Sλ∗3 , as well as solving the equation (4.10) for Îλ∗(x), where λ∗ is

given in Proposition 4.2. Recall that Îλ∗(x) is defined on the set Sλ∗3 only and it is solved from

equation (4.10) as the unique solution. In this section we consider the case where the analytical

form of Îλ∗(x) derived from equation (4.10) can be extended to the whole interval [c, d], i.e.,

Îλ∗(x) is well defined for x ∈ [c, d]. We develop an ordinary differential equation (ODE) method

which is more convenient for the derivation of the optimal solution. This ODE method will be

demonstrated for quadratic and exponential utility functions in this section. For other strictly

concave utility functions, a numerical procedure is attached in Appendix C for the derivation of

optimal contract.
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4.4.1 The ODE method

Lemma 4.2 below provides an equivalent but more computationally friendly way for deriving Iλ
to maximize K(I, λ) in (4.2) when Îλ(x) derived from the equation (4.10) can be extended to

the interval [c, d]. Note that Îλ(x) may no longer confine to the interval [0,M ] for x outside the

set Sλ3 .

Lemma 4.2. Let λ be a constant such that Sλ3 6= ∅, and assume that Îλ(x) solved from (4.10)

exists on [c, d]. Then, the optimal solution to maximize K(I, λ) in (4.2) is given by

Iλ(x) =
[(
Îλ(x)

)
∨ 0
]
∧M. (4.13)

Proof. Without loss of generality, we assume that both Sλ1 and Sλ2 are non-empty. One can see

from the rest of the proof that it is actually easier to show the desired result when either or both

of the two sets are empty.

By equation (4.9), it is sufficient to show Îλ(x) ≤ 0 for x ∈ Sλ1 and Îλ(x) ≥ M for x ∈ Sλ2 .

In fact, if Îλ(x1) > 0 for some x1 ∈ S1, then

0 = G
(
Îλ(x1), x1

)
− λγ

=

∫ b

a

U ′
(
w + Îλ(x1)− y − (1− θ)P

)
f(y|x1) dy − λγ

<

∫ b

a

U ′ (w − y − (1− θ)P ) f(y|x1) dy − λγ

= G(0, x1)− λγ

< 0,

where the first inequality is due to the strict convexity of U and the second one follows from the

fact x1 ∈ Sλ1 . The last display means 0 < 0, a contradiction. Thus, we must have Îλ(x) ≤ 0 for

x ∈ Sλ1 . We can use the same contradiction argument to show Îλ(x) ≥M for x ∈ Sλ2 .

The advantage of Lemma 4.2 lies in the fact that we do not need to determine the sets Sλ2
and Sλ3 for the determination of the optimal solution Iλ(x). Once we derive an analytical form
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of Îλ(x) by solving equation (4.10) for x ∈ [c, d], the optimal solution Iλ(x) can be derived via

equation (4.13).

We can apply Lemma 4.2 to transform problem (4.1) into an ODE problem under certain

smoothness condition for f(x, y) as shown in Proposition 4.4 in the sequel. The ODE method

relies on the analytical continuation of Îλ∗(x) from Sλ
∗

3 to [c, d], and thus, we need to make sure

Sλ
∗

3 is non-empty to make the ODE method valid, where λ∗ is given in Proposition 4.2. The

following proposition confirms the non-emptiness of Sλ∗3 .

Proposition 4.3. Assume that condition H1 is satisfied. Then, Sλ
∗

3 is a non-empty subset of

[c, d], where λ∗ is any constant such that E[Iλ∗(X)] = P/γ with the existence guaranteed by

Proposition 4.2.

Proof. We prove the proposition by contradiction. Suppose Sλ∗3 = ∅. Then, it must be one of the

following three scenarios:

Case 1: Sλ∗1 = [c, d],

Case 2: Sλ∗2 = [c, d],

Case 3: Sλ∗1 ∪ Sλ
∗

2 = [c, d], Sλ∗1 6= ∅ and Sλ∗2 6= ∅.

For Case 1, it follows from (4.9) that I∗(x) = 0, ∀x ∈ [c, d] and thus P = γE[Iλ∗(X)] = 0.

Similarly, for Case 2 I∗(x) = M , ∀x ∈ [c, d] and thus P = γE[Iλ∗(X)] = γM . Since the

insurance premium budget P ∈ (0, γM), both Cases 1 and 2 are impossible.

Consider Case 3 and take x1 ∈ Sλ
∗

1 and x2 ∈ Sλ
∗

2 . By equations (4.6) and (4.7), and the fact

that G(ξ, x) is strictly decreasing in ξ, we have

G(0, x1) < λγ < G(M,x2) < G(0, x2). (4.14)

Further, since f(y|x) is continuous on (x, y) ∈ [c, d]× [a, b], it must be uniformly continuous on

[a, b]. Therefore, for ε > 0,

|G(0, x+ ε)−G(0, x)|
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=

∣∣∣∣∫ b

a

U ′ (w − y − (1− θ)P ) f(y|x+ ε) dy −
∫ b

a

U ′ (w − y − (1− θ)P ) f(y|x) dy

∣∣∣∣
≤ max

y∈[a,b]
|U ′ (w − y − (1− θ)P )| ·

∫ b

a

|f(y|x+ ε)− f(y|x)| dy

→ 0, as ε→ 0+, ∀x ∈ [c, d],

which implies the continuity of G(0, x) as a function of x on [c, d]. Thus, those inequalities in

(4.14) imply the existence of a constant x3 between x1 and x2 to satisfy G(0, x3) = λγ. Again,

by the strictly increasing property of G(ξ, x) in ξ, we have G(M,x3) < G(0, x3) = λγ, which

means that x3 ∈ Sλ
∗

3 . This contradicts to the assumption of Sλ∗3 = ∅, and thus the proof is

complete.

The following proposition states that the index insurance design problem (4.1) can be solved

by the ODE approach:

Proposition 4.4. Suppose that the derivative ∂
∂x
f(y|x) exists and is continuous on [c, d]× [a, b],

and a function L̂ : [c, d] 7→ R solves the following ODE problem:{
dL
dx

= F (x, L),

P = γE [(L(X) ∨ 0) ∧M ] ,
(4.15)

where the function F : [c, d]× R 7→ R is defined by

F (x, L) := −
∫ b
a
U ′ (w + L− y − (1− θ)P ) ∂

∂x
f(y|x) dy∫ b

a
U ′′ (w + L− y − (1− θ)P ) f(y|x) dy

.

Then, L∗ :=
(
L̂(x) ∨ 0

)
∧M is the optimal solution to problem (4.1).

Proof. By our assumption of U ′′(x) < 0 and f(y|x) ≡ f(x,y)
h(x)

> 0, a.e., for (x, y) ∈ [c, d]× [a, b],

we have ∫ b

a

U ′′
(
w + Î(x)− y − (1− θ)P

)
f(y|x) dy < 0, ∀ x ∈ [c, d],

and thus F (x, L) is well defined.
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By Proposition 4.3, Sλ∗3 6= ∅ for any constant λ∗ such that E[Iλ∗(X)] = P/γ, where Iλ∗(x)

is defined in (4.9). If we could find a constant λ∗ to satisfy E[Iλ∗(X)] = P/γ and show that

L̂(x) = Îλ∗(x), a.e., on Sλ∗3 , then Lemma 4.2, along with the fact that L̂(x) is well defined on

[c, d], implies that L∗ =
(
L̂(x) ∨ 0

)
∧M is the optimal solution to problem (4.1).

Since L̂(x) satisfies equation (4.15), we have

∫ b

a

{
U ′′
(
w + L̂(x)− y − (1− θ)P

)
f(y|x)

dL̂(x)

dx

+U ′
(
w + L̂(x)− y − (1− θ)P

) ∂

∂x
f(y|x)

}
dy = 0,

i.e.,

d

dx

∫ b

a

U ′
(
w + L̂(x)− y − (1− θ)P

)
f(y|x) dy = 0, x ∈ [c, d].

This implies

G(L̂(x), x) =

∫ b

a

U ′
(
w + L̂(x)− y − (1− θ)P

)
f(y|x) dy = λ0γ, x ∈ [c, d], (4.16)

where the constant λ0 is defined as

λ0 :=
1

γ

∫ b

a

U ′
(
w + L̂(c)− y − (1− θ)P

)
f(y|c) dy.

The last two displays, together with the fact that the equation (4.10) has a unique solution Îλ(x)

for every x ∈ Sλ03 , imply that L̂(x) = Îλ∗(x) on Sλ∗3 for λ∗ = λ0. Comparing (4.10) and (4.16),

we see L̂ and Îλ∗ satisfy the same equation. Thus, from the proof of Lemma 4.2, L̂(x) ≤ 0 for

x ∈ Sλ∗1 and L̂(x) ≥ M for x ∈ Sλ∗2 . Further, the second equation in (4.15) obviously implies

E[Iλ∗(X)] = P/γ, and thus, the proof is complete.

In the next two sections we will demonstrate the applications of Proposition 4.4 for the deriva-

tion of optimal index insurance solutions for quadratic and exponential utility functions, respec-
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tively.

4.4.2 Quadratic utility

We suppose that the insured’s utility function has a quadratic form, i.e., U(x) = αx − βx2,

x ≤ α
2β

, where the parameters α > 0 and β > 0. We also assume that w+M−a−(1−θ)P ≤ α
2β

so that the insured’s maximum possible wealth will not go beyond the domain of the utility

function, and U ′(x) ≥ 0, U ′′(x) < 0 and continuity of U ′′(x) hold for every x in its domain.

By invoking Proposition 4.4, we can derive a closed-form solution of optimal index insurance as

shown in the following proposition.

Proposition 4.5. Suppose that ∂
∂x
f(y|x) exists and is continuous on [c, d]× [a, b]. If the policy-

holder’s utility function U(x) = αx − βx2, x ≤ α
2β

, where the parameters α > 0 and β > 0,

then the optimal index insurance is given by

I∗(x) = [(E [Y |X = x] + η∗) ∨ 0] ∧M, (4.17)

where η∗ is determined by the equation

E[I∗(X)] = E {[(E [Y |X] + η∗) ∨ 0] ∧M} =
P

γ
.

Proof. With the given utility, the function F in equation (4.15) becomes,

F (x, L) = −
∫ b
a
U ′ (w + L(x)− y − (1− θ)P ) ∂

∂x
f(y|x) dy∫ b

a
U ′′ (w + L(x)− y − (1− θ)P ) f(y|x) dy

= −
∫ b
a

(α− 2βw − 2βL(x) + 2β(1− θ)P ) ∂
∂x
f(y|x) dy +

∫ b
a

2βy ∂
∂x
f(y|x) dy

−2β

=
(α− 2βw − 2βL(x) + 2β(1− θ)P ) ∂

∂x

∫ b
a
f(y|x) dy + 2β ∂

∂x

∫ b
a
yf(y|x) dy

2β

=
0 + 2β ∂

∂x
E[Y |X = x]

2β
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=
∂

∂x
E[Y |X = x],

where we apply the fact that
∫ b
a
f(y|x) dy = 1 and thus ∂

∂x

∫ b
a
f(y|x) dy = 0.

Due to the existence and continuity of ∂
∂x
f(y|x), ∂

∂x
E[Y |X = x] =

∫ b
a
y ∂
∂x
f(y|x) dy exists

for every x ∈ [c, d]. Therefore, a direct application of Proposition 4.4 implies the following

optimal index insurance

I∗(x) = [(E [Y |X = x] + η∗) ∨ 0] ∧M,

given that a constant η∗ exists to satisfy

E[I∗(X)] = E {[(E [Y |X] + η∗) ∨ 0] ∧M} =
P

γ
.

In fact, E[I∗(X)] is apparently continuous and non-decreasing in η∗, and thus, a solution η∗ must

exist for the above equation. Therefore, the proof is complete.

Remark 4.2. It is well known that the one-period quadratic utility maximization problem is

equivalent to the one-period mean-variance problem. It is trivial to show that the optimal in-

demnity function is still given by Proposition 4.5 if the insurer aims at minimizing the variance

of the insured’ terminal wealth.

Remark 4.3. (a) As one can infer from Proposition 4.5, the optimal contract is independent

of the parameters α and β under the quadratic utility.

(b) Proposition 4.5 also shows that, under quadratic utility function, the optimal indemnity

function is irrelevant to both the insured’s initial wealth w and subsidy level θ.

Remark 4.4. When the quadratic utility is adopted as the criterion, computation of the opti-

mal index insurance is substantially simplified because it does not involve estimating the joint

density function f(x, y), (x, y) ∈ [c, d] × [a, b], but only the conditional expectation function

E [Y |X = x], x ∈ [c, d]. In practice, it is sometimes possible to obtain a much quicker and more

convenient estimation on E [Y |X = x] directly without estimating f(x, y).

93



4.4.3 Exponential utility

In this section we consider the case when U is an exponential utility function, i.e., U(x) =

− 1
α
e−αx, where the parameter α > 0. It is easy to verify that U ′(x) ≥ 0 and U ′′(x) < 0 for all

x ∈ R. We invoke Proposition 4.4 to derive a closed-form solution of optimal index insurance as

shown in the following proposition.

Proposition 4.6. Suppose that ∂
∂x
f(y|x) exists and is continuous on [c, d] × [a, b]. If U(x) =

− 1
α
e−αx, x ∈ R, with the utility parameter α > 0, then the optimal indemnity function is given

by

I∗(x) =

[(
1

α
ln
(
E
[
eαY |X = x

])
+ η∗

)
∨ 0

]
∧M,

where η∗ is a constant determined by P = γE [I∗(X)].

Proof. From the given utility, the function F in equation (4.15) becomes,

F (x, L) = −
∫ b
a
U ′ (w + L(x)− y − (1− θ)P ) ∂

∂x
f(y|x) dy∫ b

a
U ′′ (w + L(x)− y − (1− θ)P ) f(y|x) dy

= −
∫ b
a
e−α(w+L(x)−y−(1−θ)P ) ∂

∂x
f(y|x) dy∫ b

a
(−α)e−α(w+L(x)−y−(1−θ)P )f(y|x) dy

=
1

α
·
e−α(w+L(x)−(1−θ)P )

∫ b
a
eαy ∂

∂x
f(y|x) dy

e−α(w+L(x)−(1−θ)P )
∫ b
a
eαyf(y|x) dy

=
1

α

∂
∂x

E
[
eαY |X = x

]
E [eαY |X = x]

=
∂

∂x

{
1

α
ln
(
E
[
eαY |X = x

])}
.

Similar to the proof of Proposition 4.5, the continuity of ∂
∂x
f(y|x) and f(y|x) implies that both

∂
∂x

E
[
eαY |X = x

]
and E

[
eαY |X = x

]
exist for every x ∈ [c, d], and thus

∂

∂x

{
1

α
ln
(
E
[
eαY |X = x

])}
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also exists for every x ∈ [c, d]. Then, by invoking Proposition 4.4, we derive the optimal index

insurance as follows

I∗(x) =

[(
1

α
ln
(
E
[
eαY |X = x

])
+ η∗

)
∨ 0

]
∧M,

given the existence of a constant η∗ to satisfy P = γE [I∗(X)]. Apparently, E[I∗(X)] is con-

tinuous and non-decreasing in η∗, which indicates the existence of η∗. Hence, the proof is com-

plete.

Remark 4.5. Similar to the quadratic utility case as we commented in Remark 4.4, we only need

to estimate the conditional expectation E
[
eαY |X = x

]
, x ∈ [c, d], in order to determine the

optimal index insurance under the exponential utility function. We do not have to estimate the

joint density function f(x, y) in real data applications.

Remark 4.6. Proposition 4.6 also indicates that the optimal indemnity function under the expo-

nential utility is irrelevant to both the insured’ initial wealth w and the subsidy level θ. This is

a similar fact to those comments we made in Remark 4.3 for optimal index insurance under the

quadratic utility function.

4.5 Applications in Weather Index Insurance Design

In this section we apply our theoretical results to an example of weather index insurance con-

tract design, where basis risk is a primary concern for policyholders. For sections 4.5.1-4.5.5,

we choose the temperature as the underlying index to protect insured’s position from adverse

weather conditions. We investigate the optimal index insurance under the quadratic, exponential

and logarithmic utility functions, respectively. We also conduct certain comparison study be-

tween our optimal index design and linear-type contracts. Finally, we extend the optimal index

design to the bivariate case where the indemnity depends on two indices, the temperature and the

precipitation.
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4.5.1 Dependence modeling

We choose the average temperature of the whole product growing cycle as the underlying index

to protect insured’s position from adverse weather conditions. For a certain kind of agricultural

product, both too high and too low temperatures would normally have an adverse impact on the

product yield. As a result, the indemnity function of a well designed contract should take larger

values at both ends of the interval at temperature axis but smaller values in the middle area. In

our study we use county-level data of rice yield and temperature data in Jiangsu Province, China

during the period from 1992 to 2011. The same data set has been studied by Shi and Jiang (2016).

We first remove the trend in the historical yield which represents production improvement fac-

tors over time such as technology, and then define the actual loss variable to the insured Y as

the highest detrended yield during the last 20 years less the detrended yield. We apply kernel

smoothing method to calibrate the joint density between the average temperature and the actual

loss variables. The graph of the joint density function f(x, y) is illustrated in Figure 4.1.

Figure 4.1: Joint density f(x, y) of the actual loss and the average temperature.
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4.5.2 Quadratic utility

We begin with investigation into the shape of the optimal index insurance contract when the in-

sured’s risk preference is represented by a quadratic utility function. As we discussed in Remark

4.2, the optimal indemnity function is independent of the parameter values under a quadratic util-

ity function, and therefore it is unnecessary to specify the parameter values for the investigation

of the optimal index insurance. There are two major exogenous factors determining the shape

and the scale of the optimal contract: the premium level P and the maximum indemnity level M .

Weather index agricultural insurance is often subsidized by the government, and the premium

level P also reflects the subsidy level because the latter is usually proportional to P . The max-

imum indemnity level M is also very important factor for index insurance design, because the

insurer can prevent itself from extreme large losses by imposing such an upper limit.

4.5.2.1 Optimal contracts with different premium levels

We fix the maximum indemnity level at M = 300, and invoke Proposition 4.5 to construct

the optimal indemnity functions for four different premium levels P varying from 20 to 80 in

multiples of 20. The shapes of the optimal indemnity functions are illustrated in Figure 4.2 for

each premium level.

Figure 4.2 shows the change in shape of the optimal indemnity function when we increase

the premium level P from 20 to 80. The optimal indemnity function follows a “first decreasing

and then increasing” pattern, which is in good accordance with our conjecture that a large portion

of the premium paid by the insured goes to both ends of the weather index axis which indicates

higher potential losses. Further, the slope of right half of the indemnity function is steeper than

the left half, which means an asymmetric impact of temperature on the product yield: high

temperatures have a more severely adverse impact on the crop yield than low temperatures do.

Recall from equation (4.9) that the indemnity from the optimal index insurance is zero over

the set Sλ∗1 , attains the maximum amount M over Sλ∗2 , and lies between 0 and M over Sλ∗3 .

Figure 4.2 indicates that, as the premium level P goes larger, the set Sλ∗1 diminishes and Sλ∗2

expands. When P = 20, Sλ∗2 = ∅. This means that the premium level is too small to cover the
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Figure 4.2: Optimal indemnity functions for different premium levels.

maximum indemnity level M = 300 over any region. When P = 80, Sλ∗1 = ∅ which means that

the premium level is large enough in this case to cover the whole range of the index variable.

4.5.2.2 Optimal contracts with different maximum indemnity levels

In this section we fix the premium level P = 50, and investigate the shape of the optimal in-

demnity function for different maximum indemnity levels M . Numerical results are displayed in

Figure 4.3.

Figure 4.3 shows that the optimal indemnity function also shows the “first decreasing and

then increasing” pattern for all the different maximum indemnity levels we considered. As the

maximum indemnity M increases, more premium transfers from the middle area to both tails,

and thus the set Sλ∗1 becomes larger. In the meanwhile, the set Sλ∗2 becomes smaller as the

indemnity payment on this set has been increased. From the perspective of the insured, when M

is too small, the indemnity function does not sufficiently reflect the impact of the weather index
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Figure 4.3: Optimal indemnity for different maximum indemnity levels.

on the insured’s actual loss, and thus the index insurance contract is ineffective in this case; on

the other hand, from the perspective of the insurance company, an increase in M also increases

its own tail risk and thus potentially high capital cost. Therefore in practice the choice of M

should be determined by the bargaining power between these two parties.

4.5.2.3 Risk mitigation performance

In this section we are interested in the effectiveness of our proposed index insurance in reducing

basis risk, which is measured by the standard deviation of the residual risk after the indemnity

payment, i.e., the variance of the residual risk [Y − I∗(X)]. If the standard deviation of the

residual risk is large, it means that policyholders’ risk is not effectively mitigated and the basis

risk is high, and vice versa. Figure 4.4 reports the standard deviation of the residual risk for P

and M vary over intervals [0, 100] and [200, 600], respectively.

The straight line intersected by the surface and plane P = 0 in Figure 4.4 represents the
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Figure 4.4: Basis risk (i.e., the standard deviation of residual risk) for different levels of premium
and maximum indemnity.

uninsured position of the policyholder, and the standard deviation of the actual loss variable is

about 443 in this case. The whole surface in the figure is lower than 443, which means a positive

impact from our proposed index insurance on reducing the basis risk. The shape of the surface

also indicates that the basis risk can be reduced by increasing premium level P and maximum

indemnity level M . The exception occurs when P becomes too large relatively to M . This

phenomenon can be explained by the curve on the top (corresponding to P = 80) in Figure 4.2,

which says that, when P is large relatively toM , any additional premium goes to cover the actual

losses in the middle area, in other words, the coverage for small losses increases while coverage

for large ones remains unchanged; as a result, the basis risk increases rather than decreases.

Since the premium level also indicates how much subsidy the government is paying for the

policyholders, Figure 4.4 also provides some suggestions for the government in determining the

subsidy amount according to M . This example shows that a wise choice for the subsidy amount

needs to comply with the maximum indemnity level M .
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4.5.3 Exponential utility

Risk preference of the insured is essential in index insurance contract design, and one advantage

of our method is its capability to take into account the insured’s utility function. In the present and

the next sections we will investigate the optimal index insurance designs under the exponential

and the logarithmic utility functions.

First we consider the shape of the optimal indemnity function under an exponential utility

in the form of U(x) = − 1
α
e−αx, where the parameter α > 0. By equation (4.18), the optimal

indemnity function depends on the parameter α, which measures the degree of risk preference of

the policyholder. Risk averse policyholders always have α > 0, and a higher α means a higher

degree of risk aversion. In order to see how α affects the shape of the optimal index insurance

contract, we illustrate the optimal indemnity functions for four different values of α in Figure

4.5. In this example we fix P = 50 and M = 300.
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Figure 4.5: Optimal indemnity under exponential utility.
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Figure 4.5 shows that the shape of the optimal indemnity function depends heavily on the

choice of α. For an α as small as 0.001, the indemnity function also shows the “first decreasing

and then increasing” pattern which has been previously observed under the quadratic utility. As α

becomes larger, i.e., the insured becomes more risk averse, the coverage on the low temperature

region decreases and more premium is spent on the high temperature region. When the parameter

α is as large as 0.01, the optimal index insurance contract only indemnifies losses occurred in

the high temperature region but not those in the low temperature region. This phenomenon can

be explained from two perspectives. First, policyholders with a larger α is generally more risk

averse than those using “quadratic utility” as their risk preferences. As a result, they would like

to have more coverage on the most severe losses, which occur in the high temperature region.

Second, it can be explained by the asymmetric effects of temperature on the loss in rice yield.

The adverse effect is more severe from the high temperatures than the low temperatures.

4.5.4 Logarithmic utility

The logarithmic utility function takes a form of U(x) = lnx for x > 0. There is no closed-form

for the optimal index insurance contract under the logarithmic utility. We use Proposition 4.4 and

apply a numerical scheme to solve the ODE in (4.15) for the optimal solution. The numerical

scheme is specified in Appendix C. We fix the maximum indemnity levelM = 300, and compute

the optimal indemnity functions for a set of different premium levels P . The resulting optimal

indemnity functions are illustrated in Figure 4.6. The figure shows that the optimal indemnity

function takes a similar shape as the one under the quadratic utility function. It also generally

follows the “first decreasing and then increasing” pattern and the coverage increases throughout

the whole region as the premium increases.

In order to make a close comparison of the optimal index insurance among the three utility

functions (i.e., quadratic, exponential and logarithmic), we fix P = 50 and M = 300 and

demonstrate the resulting optimal indemnity functions in Figure 4.7, where α = 0.005 is set

for the exponential utility function. Clearly, the contract under the logarithmic utility is quite

similar to the one under the quadratic utility. The left parts of the two curves almost coincide

with each other, and the right part of optimal indemnity function under the logarithmic utility is
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Figure 4.6: Optimal indemnity under logarithmic utility.

slightly steeper. In contrast, the optimal indemnity function under the exponential utility function

is quite different from the other two, with less coverage on the left half but more coverage on the

right half.

4.5.5 Comparison with linear contracts

In this section we compare the effectiveness of our optimally designed index insurance contracts

with the linear-type contract (e.g., Giné et al., 2007; Okhrin et al., 2013), which is based on a

linear regression procedure and widely applied in both practice and academia as a benchmark.

The effectiveness is measured by the standard deviation of the residual risk after the indemnity

payment for the policyholders, which we also call basis risk. The comparison is conducted for

a set of premium levels and two maximum indemnity payments at M = 250 and M = 300,

respectively. The results are demonstrated in Figure 4.8.
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Figure 4.7: Comparison of optimal indemnity functions under three different utilities.

Maximizing the expected quadratic utility is the same as minimizing the variance of the resid-

ual risk for the insured in our index insurance design model. In theory our proposed indemnity

function achieves the smallest standard deviation reduction of the residual risk for the insured,

as guaranteed by Proposition 4.5. Figure 4.8 shows the superiority of our proposed insurance

contract compared with the linear-type contract. The basis risk measured by the standard devi-

ation of the insured’s residual risk is smaller under our optimally design index insurance than

the linear-type contract. Our index insurance performs equally well as the linear-type contract

for small premium level (say, P < 40). It substantially outperforms the linear-type contract

for larger premium levels, and the advantage becomes more obvious as P increases. While the

linear-type contract suffers from not being able to benefit from an increase in P and M , we can

generally enhance the performance of our proposed contract by increasing the premium level P

and enlarging the maximum coverage level M .
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Figure 4.8: Effectiveness: our optimal index insurance vs. the linear-type contract.

4.5.6 An example of bivariate-index insurance

In the previous sections, we focus on the single-index case, where the insurance indemnity is

determined by a single index. In this section, we incorporate a second index into the insurance

contract design and consider the optimal bivariate-index insurance. In principle introducing more

indices into the insurance payoff function is always helpful to reduce basis risk, and we will

illustrate this by an example of index insurance linked to two weather indices: temperature and

precipitation. We use the average temperature and the total amount of precipitation during the

whole growing period as the underlying indices to construct the index insurance contract. In this

example we assume the policyholders’ utility function has a quadratic form, and results under

other utility functions can be analyzed similarly. Mathematically, it is straightforward to show

that Proposition 4.5 still holds for the multi-dimensional case and the optimal indemnity function

takes a similar form as I∗(x) in (4.17). Let X1 and X2 respectively denote the two indices under

our consideration. Then the optimal indemnity function is given by

I∗(x1, x2) = [(E [Y |X1 = x1, X2 = x2] + η∗) ∨ 0] ∧M,
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where where η∗ is determined by E[I∗(X)] = P/γ. The optimal indemnity function of this

bivariate-index insurance contract is illustrated in Figure 4.9.
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Figure 4.9: Indemnity function of a bivariate-index insurance: temperature and precipitation

The indemnity function also shows the “first decreasing and then increasing” pattern with

respect to the increase in the temperature index. Further, the precipitation index also plays

an important role in the optimal indemnity function. Indemnity amount is higher in the “low

temperature & high precipitation” region than in the “low temperature & low precipitation” re-

gion. Within the “high temperature” region, a “medium precipitation” corresponds to the largest

amount of indemnity, and a “low precipitation” leads to a larger indemnity amount than a “high

precipitation”. Further, there is no indemnity payment when both temperature and precipitation

are moderate, which corresponds to a good harvest and negligible actual loss.

To demonstrate the benefit of including the precipitation variable as the additional index in

the optimal insurance contract, we compare the basis risk (measured by the standard deviation

of residual risk) between the bivariate-index contract and the single-index contract under a set of
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different premium levels. The maximum indemnity amount payment is fixed at M = 400. The

comparison results are illustrated in Figure 4.10. Obviously, the inclusion of the precipitation

index significantly reduces basis risk. Residual risk is constantly lower from the bivariate-index

contract than the single-index contract. As the premium level P increases, the gap in residual risk

between the two contracts becomes larger. In particular, the basis risk is reduced from 370 down

to 340, which means a reduction rate of 8.1%, when the premium level P = 120. This suggests

that more relevant indices should be included into the optimal insurance design if estimation of

the joint distribution between the actual loss variable and indices is not an issue.
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Figure 4.10: Effectiveness improvement of additional index. Basis risk is measured by standard
deviation of residual risk.
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4.6 Conclusion

In this chapter, we investigate the optimal index insurance design problem under a utility max-

imization framework. Under quite general and practical assumptions, we show that the optimal

index insurance contract exists and is uniquely determined by the policyholder’s utility function,

the premium level and the maximum indemnity covered by the insurance contract. The optimal

index insurance contract is obtained by solving an implicit ODE problem. Additionally, when

the insured has a quadratic utility or an exponential utility, the optimal indemnity functions have

explicit forms which are computationally friendly for real applications.

Our theoretical results are applied to a real data example, in which the temperature and pre-

cipitation variables are used as the underlying indices of the insurance contract to protect rice

yield in Jiangsu, China. The shape of the optimal indemnity functions under different utility

functions, premium levels and maximum indemnity amounts generally follow the “first decreas-

ing and then increasing” pattern. The risk mitigation performance measured by the standard

deviation reduction of the insured’s residual risk is also discussed. Our results confirm that our

optimally designed index insurance significantly outperforms the linear-type contract, which is

a popular solution applied both in practice and in the literature for reducing farmers’ basis risk.

Finally, an example of a bivariate-index insurance contract based on the temperature and pre-

cipitation variables is introduced to show the benefit of incorporating multiple indices into the

insurance contract design for mitigating basis risk.
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Chapter 5

Conclusion and Future Research

This thesis studies the topic of risk management with basis risk by specializing in three prob-

lems from insurance and finance: financial derivative hedging, longevity risk hedging, and index

insurance design. While these three problems are formulated from different economic settings,

mathematically they all aim at solving a certain optimization problem for the best risk mitigation

strategy from certain perspective. They all target to derive the best functional on the hedging

instrument which minimizes the “distance” between the hedging objective and the functional

representing the risk mitigation plan.

These three problems are investigated in three independent chapters, and they differ from

each other in the following aspects:

1. By their nature, the financial derivative hedging and longevity risk hedging problems are

studied in dynamic settings, whereas the index insurance design is analyzed in a static

setting.

2. The financial derivative hedging problem is studied in a continuous-time setting, while the

longevity risk hedging problem is tackled in a discrete-time setting for practicality reason.

3. The mean-variance criterion is adopted in our studies for the financial derivative hedging

and longevity risk hedging problems. The index insurance design problem is studied under

a utility maximization framework instead.
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In the long-run, I plan to explore further interesting risk management problems with basis

risk from the fields of insurance and finance. I am interested in developing methodologically

innovative and practically effective risk management strategies for dealing with problems with

basis risk. In the literature, basis risk is generally described as the non-hedgeable portion of risk

as attributed to the mismatch between the hedging objective and the hedging instrument, and so

far there has been no mathematically concrete definition for basis risk. As an important future

research project, I plan to explore the potential intrinsic connections between the meanings of

basis risk from different contexts, and to develop certain axiomatical scheme for basis risk.

In the near future, I plan to further my research on basis risk for the three problems: financial

derivative hedging, longevity risk management and index insurance design, which have been

studied in Chapters 2-4 of the thesis. Below I summarize the remaining important and relevant

questions for each chapter.

Chapter 2 studies the problem of hedging general European vanilla options in a subgame

Nash equilibrium framework. Two questions are natural to be further considered. First, what

is the optimal hedging strategy for exotic or path-dependent options? This is indeed a very

important but technically challenging problem. Most literature on dynamic hedging of path-

dependent payoffs is based on the assumption of a complete market, and the problem of hedging

general path-dependent payoffs with basis risk remains open in the literature. Second, what is

the “pre-commitment” strategy, and how do the subgame Nash equilibrium strategy and the “pre-

commitment” strategy differ from each other? Defined as the optimizer of the hedger’s objective

function at time 0, the “pre-commitment” strategy has been widely studied by many researchers,

however, the comparison between these two strategies currently focuses on the mathematical

side, and further empirical evidence on pros and cons of each strategy is essential for people to

better understand the nature of time inconsistency.

Chapter 3 provides a general framework to investigate the problem of optimal dynamic

longevity hedge, and the framework can be used to conduct more comprehensive analysis on

hedging problems based on different longevity models (e.g., extensions of ACF and CBD mod-

els) and hedging instruments (e.g., longevity swaps and longevity bonds). As one of my future

research projects, I am interested in solving a multi-dimensional hedging problem and comparing
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hedging effectiveness between different model assumptions and hedging portfolio constructions.

Another problem worthwhile a more closely investigation is related to the calibration procedure

of multi-population longevity models: what technique can one use to make the estimated corre-

lation between populations to be more consistent across different underlying mortality models?

Chapter 4 discusses the problem of optimal index insurance design under an expected utility

maximization framework. In the context of agricultural weather index insurance, the contract is

designed to minimize the mismatch between the weather variable and the crop yield variable,

which is known as the variable basis risk. A remaining yet critical problem is to take into con-

sideration the spatial basis risk, which represents differences in weather and crop yield across

locations, and offer a more comprehensive and handy solution for agricultural insurers.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Proposition 2.1

The proof depends on the following lemma.

Lemma A.1. Under the Lipschitz continuity condition given in equation (2.2), there exists a

unique strong solution to the SDE (2.1). Moreover, for all p > 1 and T > 0, there exist positive

constants C1,T and C2,T such that:

E

[
sup

0≤t≤T
|Si(t)|p

]
≤ Ci,T (1 + spi ), i = 1, 2,

given that Si(0) = si for constant si > 0, i = 1, 2. Moreover, for the strong solution Ŝi(t),

i = 1, 2 to the SDE (2.1) with initial values Ŝi(0) = ŝi, there exist positive constants D1,T and

D2,T such that

E

[
sup

0≤t≤T
|Si(t)− Ŝi(t)|p

]
≤ Di,T (si − ŝi)p, i = 1, 2.

Proof. See Theorem 6.3 in Yong and Zhou (1999). �

Proof of Proposition 2.1. We first prove the implication of condition C2’ to condition C2. We
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begin with showing that the first two inequalities in (2.35) together imply the second inequality

in (2.32).

Recall that we have defined A(u, s) = µ1(u,s)−r
σ1(u,s)

and B(u, s) = σ2(u, s)sΠs2(u, s), ∀(u, s) ∈
R+×R, in equation (2.31). Let St,si (u) be the unique strong solution to the SDE (2.1) with initial

value Si(t) = s, i = 1, 2. We claim that there exist positive constants K0 and K01 to satisfy

lim sup
h→0

E∗


[
A(u, St,s1+h

1 (u))− A(u, St,s11 (u))

St,s1+h
1 (u)− St,s11 (u)

]4
 ≤ K0(1 + |s1|K01), ∀ s1 > 0. (A.1)

Indeed, by the Mean Value Theorem, there exists aFu measurable random variable ξ ∈ [St,s1+h
1 (u)∧

St,s11 (u), St,s1+h
1 (u) ∨ St,s11 (u)] such that

A(u, St,s1+h
1 (u))− A(u, St,s11 (u))

St,s1+h
1 (u)− St,s11 (u)

= As(u, ξ),

where As(u, ξ) := ∂
∂s1
A(u, s1)

∣∣∣
s1=ξ

, a ∧ b = min(a, b), and a ∨ b = max(a, b). Therefore, by

the first equality in display (2.35), there exist positive constants c1, c2 and c ≥ 1 such that

E∗

(A(u, St,s1+h
1 (u))− A(u, St,s11 (u))

St,s1+h
1 (u)− St,s11 (u)

)4
 = E∗

[
A4
s(u, ξ)

]
≤ E∗ [c1|ξ|c + c2] . (A.2)

Noticing that ξ ∈ [St,s1+h
1 (u) ∧ St,s11 (u), St,s1+h

1 (u) ∨ St,s11 (u)], we obtain

E∗ [c1|ξ|c + c2] ≤ E∗
[
c1

(∣∣∣St,s1+h
1 (u) ∧ St,s11 (u)

∣∣∣ ∨ ∣∣∣St,s1+h
1 (u) ∨ St,s11 (u)

∣∣∣)c + c2

]
= E∗

[
c1

(∣∣∣St,s1+h
1 (u) ∧ St,s11 (u)

∣∣∣c ∨ ∣∣∣St,s1+h
1 (u) ∨ St,s11 (u)

∣∣∣c)+ c2

]
≤ E∗

[
c1

∣∣∣St,s1+h
1 (u) ∧ St,s11 (u)

∣∣∣c + c1

∣∣∣St,s1+h
1 (u) ∨ St,s11 (u)

∣∣∣c + c2

]
.

Using the notation ‖X‖p = (E∗[|X|p])1/p for all p > 1 and applying Minkowski inequality, we
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can continue the above display as follows

E∗ [c1|ξ|c + c2] ≤ c2 + c1

(∥∥∥St,s1+h
1 (u) ∧ St,s11 (u)

∥∥∥
c

)c
+ c1

(∥∥∥St,s1+h
1 (u) ∨ St,s11 (u)

∥∥∥
c

)c
≤ c2 + c1

(∥∥∥St,s1+h
1 (u) ∧ St,s11 (u)− St,s11 (u)

∥∥∥
c

+
∥∥St,s11 (u)

∥∥
c

)c
+c1

(∥∥∥St,s1+h
1 (u) ∨ St,s11 (u)− St,s11 (u)

∥∥∥
c

+
∥∥St,s11 (u)

∥∥
c

)c
≤ c2 + c1

(∥∥∥St,s1+h
1 (u)− St,s11 (u)

∥∥∥
c

+
∥∥St,s11 (u)

∥∥
c

)c
+c1

(∥∥∥St,s1+h
1 (u)− St,s11 (u)

∥∥∥
c

+
∥∥St,s11 (u)

∥∥
c

)c
.

Applying Lemma A.1 to the right hand side of the above inequality, we obtain

E∗ [c1|ξ|c + c2] ≤ c2 + c1

[
(Kl|h|c)1/c +Kl(1 + sc1)1/c

]c
(A.3)

for some positive constant Kl. Combining (A.2) and (A.3) and letting h→ 0, we obtain (A.1).

We are ready to prove the second inequality in (2.32). Indeed, by repeatedly using Hölder’s

inequality, we obtain

1

h
E∗
[(
A(u, St,s1+h

1 (u))− A(u, St,s11 (u))
)
B(u, St,s22 (u))

]
≤ 1

h

∥∥∥(A(u, St,s1+h
1 (u))− A(u, St,s11 (u))

)∥∥∥
2
·
∥∥B(u, St,s22 (u))

∥∥
2

≤ 1

h

∥∥∥∥∥A(u, St,s1+h
1 (u))− A(u, St,s11 (u))

St,s1+h
1 (u)− St,s11 (u)

∥∥∥∥∥
4

·
∥∥∥St,s1+h

1 (u)− St,s11 (u)
∥∥∥

4
·
∥∥B(u, St,s22 (u))

∥∥
2
.

Consequently, letting h→ 0 in the above display and applying Lemma A.1, we obtain

∂

∂s1

E∗t,s1,s2 [A(u, S1(u))B(u, S2(u))]

≤
(
K1(1 + |s1|K11)

)1/4 ·K1/4
2 ·

[
K3(1 + |s2|K32)

]1/2
≤ K(1 + |s1|K1 + |s2|K2).

for some positive constants K, K1 and K2.
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In a similar manner, we can show that the third and fourth inequalities in (2.35) together

imply the third inequality in (2.32). Moreover, it is easy to check that the first inequality from

equation (2.35) ensures the first inequality from (2.32).

It remains to show θ∗ ∈ Θ, i.e., there exists some constant K > 0 such that E[
∫ T

0
θ(u)2du] <

∞ and Et,s1,s2

[∫ T
t
|θ(u)|du

]
≤ KeK(s21+s22), ∀ (t, s1, s2) ∈ [0, T ]× R2

+. From the definition of

η(·, ·, ·) given in (2.28) and the first two inequalities in (2.32), we can obtain that, ∀ (t, s1, s2) ∈
[0, T ]× R2

+,

∂

∂s1

η(t, s1, s2)

=

∫ T

t

1

γ

∂

∂s1

E∗t,s1,s2

[(
µ1 − r
σ1

)2
]
du+

∫ T

t

∂

∂s2

E∗t,s1,s2

[
(µ1 − r)

ρσ2

σ1

S2(u)er(T−u)Πs2(u)

]
du

≤ K(1 + |s1|K1 + |s2|K2).

Similarly, by using the last inequality in (2.32), we can obtain

∂

∂s2

η(t, s1, s2) ≤ K(1 + |s1|K1 + |s2|K2).

Therefore, by equation (2.27),

θ∗(t, s1, s2) ≤ K0(1 + |s1|K01 + |s2|K02),

which, in conjecture of Lamma A.1, implies E[
∫ T

0
θ(u)2du] < ∞ and Et,s1,s2

[∫ T
t
|θ(u)|du

]
≤

KeK(s21+s22) for some constant K > 0.
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A.2 Equilibrium value function for futures contract

A semi closed-form expression for the equilibrium value function is obtained by plugging equa-

tion (2.64) into equation (2.47) as follows:

J(t, s1, s2, x) = (x− Π(t, s2))er(T−t) + Et,s1,s2,x

(∫ T

t

er(T−u)[θ∗(u)(µ1 − r)]du
)

−γ
2

Et,s1,s2,x

[(∫ T

t

er(T−u)[θ∗(u)(µ1 − r)]du

+

∫ T

t

er(T−u)θ∗(u)σ1dW1(u)−
∫ T

t

eµ2(T−u)S2(u)σ2dW2(u)

)2]
+
γ

2

[
Et,s1,s2,x

(∫ T

t

er(T−u)[θ∗(u)(µ1 − r)]du
)]2

= xer(T−t) + xK − s2eµ2(T−t) +
(µ1 − r)2(T − t)

2γσ2
1

+
1

2
s2

[
eµ2(T−t) − eµ

∗
2(T−t)]− γρ2σ2

2s
2
2

4µ2 + 2σ2
2 − 4µ∗2

[
e(2µ2+σ2

2)(T−t) − e2µ∗2(T−t)
]

−γs
2
2

2
e2µ2T−2µ2t−σ2

2t
[
eσ

2
2T − eσ

2
2t
]

+
ρ(µ1 − r)σ2

2σ2
1

eµ2(T−t)s2(T − t)

+
γρ2σ2

2s
2
2

2σ1(µ2 + σ2
2 − µ∗2)

[
e(2µ2+σ2

2)(T−t)−e(µ
∗
2+µ2)(T−t)

]
+
γ

2

{
(µ1 − r)2(T − t)

γσ2
1

+ s2

[
eµ2(T−t) − eµ

∗
2(T−t)]}2

−γ
2

Et,s1,s2,x

[(∫ T

t

er(T−u)[θ∗(u)(µ1 − r)]du
)2
]

−γEt,s1,s2,x

[(∫ T

t

er(T−u)[θ∗(u)(µ1 − r)]du
)

(∫ T

t

er(T−u)θ∗(u)σ1dW1(u)−
∫ T

t

eµ2(T−u)S2(u)σ2dW2(u)

)]
.
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A.3 Equilibrium value function for European call options

A semi closed-form expression for the equilibrium value function is obtained by plugging equa-

tion (2.67) into equation (2.47) as follows:

J(t, s1, s2, x) = (x− Π(t, s2)) er(T−t) + Et,s1,s2,x

(∫ T

t

er(T−u) [θ∗(u)(µ1 − r)] du
)

−γ
2

Et,s1,s2,x

[(∫ T

t

er(T−u)[θ∗(u)(µ1 − r)]du

+

∫ T

t

er(T−u)θ∗(u)σ1dW1(u)−
∫ T

t

eµ2(T−u)Φ(d1)S2(u)σ2dW2(u)

)2
]

+
γ

2

[
Et,s1,s2,x

(∫ T

t

er(T−u)[θ∗(u)(µ1 − r)]du
)]2

.
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Appendix B

Appendix for Chapter 3

B.1 Approximations for forward survival rates in Section 3.4.2

By Zhou and Li (2016), forward survival rates are approximated by, ∀u > t,

p(R)
x,u (T, k

(R)
t ) ≈ Φ

 −E(V
(R)
u |Ft)√

Var(V
(R)
u |Ft)

 (B.1)

where Φ(·) denotes the CDF of a standard normal distribution, and other components of the

formula are defined as below:

E(V (R)
u |Ft) = −D(R)

x,u,0(T )−D(R)
x,u,1(T )(E(Ku|Ft)− E(Ku|F0))

−D(R)
x,u,2(T )(E(k(R)

u |Ft)− E(k(R)
u |F0))

Var(V (R)
u |Ft) = 1 + (D

(R)
x,u,1(T ))2Var(Ku|Ft) + (D

(R)
x,u,2(T ))2Var(k(R)

u |Ft)

+2D
(R)
x,u,1(T )D

(R)
x,u,2(T )Cov(Ku, k

(R)
u |Ft)

E(Ku|Ft) = Kt −K0 − Ct

E(k(R)
u |Ft) = (φ

(R)
1 )u((φ

(R)
1 )−tk

(R)
t − k(R)

0 ) +
(φ

(R)
1 )u(1− φ(R)

1 )−t)

1− φ(R)
1

φ
(R)
0
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Var(Ku|Ft) = σ2
K(u− t)

Var(k(R)
u |Ft) =

1− (φ
(i)
1 )2(u−t)

1− (φ
(R)
1 )2

σ2
k,i

Cov(Ku, k
(R)
u |Ft) = 0

f
(R)
x,t (T, k

(R)
t ) = Φ−1(p

(R)
x,t (T, k

(R)
t ))

D
(R)
x,t,0(T ) = f

(R)
x,t (T,E(Kt|F0),E(k

(R)
t |F0))

D
(R)
x,t,1(T ) =

∂f
(R)
x,t (T,Kt,E(k

(R)
t |F0))

∂Kt

∣∣∣∣∣
Kt=E(Kt|F0)

D
(R)
x,t,2(T ) =

∂f
(R)
x,t (T,E(Kt|F0), k

(R)
t )

∂k
(R)
t

∣∣∣∣∣
k
(R)
t =E(k

(R)
t |F0)

For proof, see Zhou and Li (2016).

B.2 Approximations for forward survival rates under CBD
model in Section 3.4.7

In order to show the following derivation more concisely, we look at one specific population i

and denote time-varying factors κc1,t, κ
c
2,t, κ

(i)
1,t and κ(i)

2,t in the CBD model as κ1,t, κ2,t, κ3,t and

κ4,t, respectively. We also denote σ1 = σ(ηc1,t), σ2 = σ(ηc2,t), ρ1 = ρ(ηc1,t, η
c
2,t), σ3 = σ(η

(i)
1,t),

σ4 = σ(η
(i)
2,t), ρ2 = ρ(η

(i)
1,t, η

(i)
2,t) and denote the vector (κ1,t, κ2,t, κ3,t, κ4,t)

ᵀ as κt. Then we apply

the probit transformation and define f (i)
x,t(T, κt) := Φ−1(p

(i)
x,t(T, κt)). Therefore an approximation

based on Taylor’s theorem at κt = κ̂t := E[κt] is given by:

f
(i)
x,t(T, κt) = f̃

(i)
x,t(T, κt)

= D
(i)
x,t,0(T ) +D

(i)
x,t,1(T )ᵀ(κt − κ̂t) +

1

2
(κt − κ̂t)ᵀD(i)

x,t,2(T )(κt − κ̂t),
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where

D
(i)
x,t,0(T ) = f

(i)
x,t(T, κ̂t),

D
(i)
x,t,1(T )j =

∂

∂κj,t
f

(i)
x,t(T, κt)

∣∣∣∣
κt=κ̂t

, j = 1, 2, 3, 4,

D
(i)
x,t,0(T ) is a 4× 1 vector with j-th element defined by D(i)

x,t,1(T )j,

D
(i)
x,t,2(T )jk =

∂2

∂κj,t∂κk,t
f

(i)
x,t(T, κt)

∣∣∣∣
κt=κ̂t

, j, k = 1, 2, 3, 4,

D
(i)
x,t,2(T ) is a 4× 4 matrix with jk-th element defined by D(i)

x,t,2(T )jk.

Therefore, by definition, when u > t,

p(i)
x,u(T, κt) = E[p(i)

x,u(T, κu)|Ft].

Applying a first-order approximation and letting Au := D
(i)
x,u,0(T ) +D

(i)
x,u,1(T )ᵀ(κu− κ̂u), we

have:

p(i)
x,u(T, κu) ≈ Φ[D

(i)
x,u,0(T ) +D

(i)
x,u,1(T )ᵀ(κu − κ̂u)]

= P[Z ≤ Au|Fu] where Z is standards normal and independent of Au

= E[1{Z≤Au}|Fu].

Hence, letting Bu := Z − Au = Z −D(i)
x,u,0(T )−D(i)

x,u,1(T )ᵀ(κu − κ̂u),

p(i)
x,u(T, κt) ≈ E{E[1{Z≤Au}|Fu]|Ft}

= E[1{Z≤Au}|Ft]]

= P[Z ≤ Au|Ft]

= P[Bu ≤ 0|Ft]

= Φ

[
−E(Bu|Ft)√
Var(Bu|Ft)

]
,
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where

E(Bu|Ft) = −D(i)
x,u,0(T )−D(i)

x,u,1(T )ᵀ[E(κu)|Ft − κ̂u],

Var(Bu|Ft) = 1 + [E(κu)|Ft − κ̂u]ᵀVu[E(κu)|Ft − κ̂u],

where Vu is a 4× 4 covariance matrix with jk-th element defined by:

Vu,jk = Cov(κj,u, κk,u|Ft),

and

E(κj,u|Ft)− κ̂j,u = κj,t − κj,0 − µc1t, j = 1, 2,

E(κj,u|Ft)− κ̂j,u = (φ
(i)
j−2)u((φ

(i)
j−2)−tk

(i)
j−2,t − k

(i)
j−2,0) +

(φ
(i)
j−2)u(1− φ(i)

j−2)−t)

1− φ(i)
j−2

µ
(i)
j−2, j = 3, 4,

Vu,jj = Var(κj,u|Ft) = σ2
j (u− t), j = 1, 2,

Vu,12 = Vu,21 = Cov(κ1,u, κ2,u|Ft) = ρσ1σ2(u− t),

Vu,jj = Var(κj,u|Ft) =
1− (φ

(i)
j−2)2(u−t)

1− (φ
(i)
j−2)2

σ2
j , j = 3, 4,

Vu,34 = Vu,43 = Cov(κ3,u, κ4,u|Ft) =
1− (φ

(i)
1 φ

(i)
2 )(u−t)

1− φ(i)
1 φ

(i)
2

ρσ3σ4,

Vu,13 = Vu,14 = Vu,23 = Vu,24 = Vu,31 = Vu,32 = Vu,41 = Vu,42 = 0.
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Appendix C

Appendix for Chapter 4

C.1 A Numerical Scheme for Solving ODE (4.15)

For utility functions other than the quadratic and exponential ones, closed-form solutions for

the ODE (4.15) are generally unavailable and thus a numerical scheme is needed. The general

boundary ODE problem (4.15) can be viewed as an initial value problem (C.1) along with an

algebraic equation (C.2): {
dI
dx

= F (x, I), x ∈ [c, d],

I(c) = Ic,
(C.1)

with initial value Ic determined by

P = γE [I∗(X)] = γE
[(
Îλ∗(X) ∨ 0

)
∧M

]
. (C.2)

For any fixed Ic, the initial value problem (C.1) is a standard ODE problem. If equation (C.1)

yields a unique solution for a given Ic, then equation (C.2) becomes an algebraic equation of

Ic. By Theorem 5.4 and Theorem 5.6 in Burden and Faires (2001), a sufficient condition for

existence and uniqueness of the solution, and the well-posedness of problem (C.1) is given by:
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H2:


∣∣∣∣∂F (x, I)

∂I

∣∣∣∣ ≤ L,∀ (x, I) ∈ [c, d]× R for some constant L > 0,

F (x, I) is continuous on [c, d]× R.

If condition H2 holds, then the implicit ODE (C.1)-(C.2) are well-posted and it can be solved

using a numerical procedure. We recommend the 4th order Runge-Kutta (RK4) method com-

bined with a binary search to numerically compute I∗(x), x ∈ [c, d]. The specific numerical

scheme is summarized in six steps below.

Step 1 : Find a large enough interval [Lc, Uc] such that I(c) ∈ [Lc, Uc]. Check that (PLc −
P )(PUc − P ) < 0, where PIc denotes the premium calculated by equation (C.2) for the

contract starting at Ic. Suppose PLc−P < 0, PUc−P > 0, and define I0(c) = 1
2
(Lc+Uc).

Step 2 : Apply RK4 with a step-size δ > 0 to the initial value problem dI
dx

= F (x, I), x ∈ [c, d],

with I(c) = I0(c) : For n = 0, 1, 2, ..., bd−c
δ
− 1c, define

1. k1 = F (xn, In),

2. k2 = F (xn + δ
2
, In + δ

2
k1),

3. k3 = F (xn + δ
2
, In + δ

2
k2),

4. k4 = F (xn + δ, In + δk3),

5. xn+1 = x+ δ,

6. In+1 = x+ δ
6
(k1 + 2k2 + 2k3 + k4).

Step 3 : Define I∗n = (In ∨ 0) ∧M , n = 0, 1, 2, ..., d−c
δ

, where In is obtained from the previous

step.

Step 4 : Approximate the premium constraint P = γE [I∗] numerically using

P0 :=
δγ

2

2

 d−c
δ∑

n=0

I∗nh(c+ nδ)

− I∗0h(c)− I∗d−c
δ

h(d)

 .
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Step 5 : Verify whether |P0 − P | < ε is satisfied by the given tolerance ε. If yes, I∗ is already

an accurate approximation to the solution of ODE (C.1)-(C.2), and we stop the algorithm;

otherwise, we go to Step 6.

Step 6 : If P0 < P , then define I1(c) = 1
2
(I0(c) + Uc); if P0 > P , then define I1(c) = 1

2
(Lc +

I0(c)). Go back to Step 2, replace the initial condition with I(c) = I1(c), and repeat Steps

2-6.
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