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Abstract

Large-scale multiple testing is an important research field in statistics, and it is widely
applied in different areas, for example, DNA microarray analysis, brain imaging, and as-
tronomical surveys. In a large-scale multiple testing problem, we often simultaneously test
thousands or even millions of hypotheses, and many statistical challenges would emerge
from a large number of hypotheses. In this thesis, we face up to some of the challenges,
and focus on developing statistical methods for large-scale multiple testing problems with
specific applications in pharmacovigilance databases and genome-wide association studies
(GWAS).

In Chapter 2, we study the multiple testing problem in pharmacovigilance databases.
Pharmacovigilance databases are established to monitor the adverse drug reactions of mar-
keted drugs, and it is of interest to detect the combinations of drugs and adverse events
that exhibit stronger associations than some threshold. The null hypotheses that are tested
are composite, and the distribution of test statistics under null hypotheses may be hard to
derive. Moreover, the count of reports for combinations is discrete, and the test statistics
are also discrete. We first derive the optimal test statistics to maximize the power of de-
tection while controlling the false discovery rate (FDR). We then propose a nonparametric
empirical Bayes method to estimate the test statistics and demonstrate its performance
advantage through simulations. We apply the proposed method to the pharmacovigilance
database in the United Kingdom, and detect additional signals.

In Chapters 3–4, we study the applications of multiple testing in GWAS. GWAS are
widely used to identify the genetic variants that are associated with human diseases or
traits. We are often trying to identify the associated genetic variants among millions of
genotyped ones, while there are only a few thousand subjects included in the sample due
to economic reasons. The common practice of GWAS is to compare the marginal p-values
to an overly-stringent threshold to control the family-wise error rate, and the procedure is
known to be lacking in power given fixed sample size. Moreover, the neighboring genetic
variants are often highly correlated with each other, and the local dependence further
implicates the multiple testing problem. We are interested in improving the detection
power by proposing new statistical methods that employ the FDR that is a more powerful
error rate.

Specifically, in Chapter 3, we focus on genetic studies on continuous traits. We propose
a novel approach to take into consideration the effects of local dependence among genetic
variants. We propose a search algorithm to find tentative causal variants, and compute
adjusted p-values by accounting for the effects of tentative causal variants. Then, the
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adjusted p-values of non-causal variants would be uniformly distributed, and conventional
FDR control procedures are applicable. Through simulations and application to the North
Finland Birth Cohort (NFBC) study, we show that our procedure is advantageous over
other candidate methods.

In Chapter 4, we focus on the case-control genetic studies with shared control. A
common phenomenon “pleiotropy” exists as some genetically related diseases often share
associated variants, and we can leverage the pleiotropy to improve the probability of iden-
tifying weakly associated variants by integratively analyzing related diseases. However,
the related GWAS often share part of the control sample, and the shared control sample
would induce a positive correlation between test statistics. We propose a four-component
bivariate normal mixture model for the z-values from two GWAS, use an expectation-
maximization (EM) algorithm to estimate the parameters, and further estimate the FDR.
An adaptive pruning procedure is proposed to tackle the problem of local dependence.
Through simulations and application to the data of schizophrenia and bipolar disorder, we
show the proposed procedure outperforms other methods.
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Chapter 1

Introduction

In this chapter, we provide general background information about the topics studied in the
dissertation. We first introduce the hypothesis testing problem, from simple hypothesis
testing to multiple hypothesis testing. We also describe the procedures to control two
widely used error rates: the family-wise error rate and the false discovery rate. We are
interested in the application of multiple testing in a large-scale setting where thousands or
even millions of hypotheses are simultaneously tested. We focus on two specific multiple
testing applications that motivate our methodology development, and describe the context
of pharmacovigilance and genetic studies. In the first application in pharmacology, we aim
to detect adverse events of marketed drugs from spontaneous reports and alert pharma-
covigilance experts to unexpected strong associations of drug and adverse event. In the
second application in genetics, we aim to identify the genetic variants that are associated
with complex human diseases or traits via genome-wide association studies (GWAS).

1.1 Hypothesis Testing

1.1.1 Simple Hypothesis Testing

Hypothesis testing is an important method for statistical inference. The whole population
is often not observable because it is either too large or not accessible, and the true value of a
population parameter is usually not known. We can use hypothesis testing and estimation
to make inference on the parameter in the population with a set of observed data sampled
from the population. Hypothesis testing is different from estimation, as estimation is trying
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to derive the most likely value of the population parameter, while hypothesis testing is
determining whether a statement/hypothesis about the parameter value is likely to be
true or not.

Hypothesis testing often tries to determine between two competing hypotheses about
the population parameters using statistical evidence. For example, one hypothesis may
state that male and female students at the University of Waterloo study for the same
length of time in a semester, while the other hypothesis claim that female students study
longer than male students. The first hypothesis is actually tested, and is referred to as the
null hypothesis, denoted by H0. The null hypothesis is assumed to be true unless there is
strong evidence against it. The other hypothesis is known as the alternative hypothesis,
and is true when the null hypothesis is false, often denoted by H1 or HA. The null and
alternative hypotheses need to be disjoint, and sometimes complementary of each other.

If a null hypothesis specifies a single value for the population parameter of interest,
then it is called a simple null hypothesis. On the contrary, a composite null hypothesis
specifies the parameter as a range of values instead. For example, in Chapter 2 we are
testing whether the odds ratio of a combination of drug and adverse event is no greater
than a tested value, and we are testing a composite null hypothesis; while in the genetic
studies in Chapters 3 and 4, we are testing whether a genetic marker is associated with
some trait/disease or not, i.e., the coefficient in a model is 0 or not, and it is a simple null
hypothesis.

Hypothesis testing aims to determine whether the likelihood that the value of the
population parameter is likely to be true or not. There are four steps in the hypothesis
testing (Privitera, 2011), and they are summarized as follows,

1. State the null and alternative hypotheses. The null hypothesis states a value/range
for the population parameter to be tested, while the alternative hypothesis states a
range that directly contradicts the null hypothesis.

2. Set the level of significance. It is a criterion we set for making a decision for hypothesis
testing. We can compute the likelihood of observing the sample if the null hypothesis
were assumed to be true, and compare the likelihood to the level of significance. The
level of significance is often set at 5% or 10%.

3. Calculate the test statistic. When computing the likelihood, we need a random
variable to evaluate how likely it is to observe the sample if the null hypothesis were
assumed to be true, and the random variable is called the test statistic.
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4. Draw a conclusion. The value of test statistic can be used to draw a conclusion about
whether to reject the null hypothesis. We can compute the probability of having the
observed test statistic given that the value of the population parameter in the null
hypothesis were assumed to be true, and this probability is called p-value. If the
p-value is no greater than the level of significance, we reject the null hypothesis and
the statement of the parameter value in the null hypothesis is not true; otherwise,
there is no evidence to reject the null hypothesis.

For a null hypothesis H0, depending on whether the status of the null hypothesis is
true or false and the decision is to reject the null hypothesis or not, there are four possible
categories. Among the four categories, there are two erroneous cases. The statistical test
may reject the null hypothesis when H0 is true, and this type of error is called type I error.
The associated risk is the type I error rate, denoted by α. The statistical test may not
reject the null hypothesis when H0 is false, and this is a type II error. Its associated risk
is the type II error rate, denoted by β. The outcomes are summarized in Table 1.1.

Table 1.1: Outcomes of testing a null hypothesis
Not to reject H0 Reject H0

H0 is true true negative; (1− α) false positive; type I error rate (α)
H0 is false false negative; type II error rate (β) true positive; power (1− β)

In a hypothesis testing problem, we often try to control the type I error rate at a
nominal level and maximize the power at the same time.

1.1.2 Multiple Hypothesis Testing

Now we move on to the multiple testing problem where multiple null hypotheses are tested
simultaneously. The progress in science often accelerates after breakthroughs in technol-
ogy. As statisticians, we need to develop new statistical methods for every new wave of
scientific data. Simultaneous hypothesis testing first drew attention from mathematicians
and statisticians in the 1950s, and methods for multiple comparisons in the setting of anal-
ysis of variance (ANOVA) have been developed. Such methods for multiple comparisons
adjustment focus on correcting for a modest number of comparisons, motivated in the
ANOVA setting. Over the past several decades, new technologies such as microarray and
high-throughput sequencing bring the multiple testing challenge into a new era, in which a
large number of hypotheses, on the scale of thousands or even millions, are simultaneously
tested. Multiple hypothesis testing is now commonplace in many scientific fields, such as
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pharmacology, genetics, and astronomy. For example, in genetics it is of interest to discover
among thousands of genes the ones that are differentially expressed between the cases and
controls.

Let us consider a multiple testing problem, where m null hypotheses are simultaneously
tested, among which m0 are true null hypotheses,

H01, H02, . . . , H0m, (1.1)

and suppose the corresponding p-values are p1, p2, . . . , pm. A test procedure will declare
each hypothesis “significant” or “non-significant”, or equivalently, will reject or accept each
hypothesis. For a hypothesis in the m hypotheses, depending on its true status of the null
hypothesis and whether the test procedure rejects it or not, the test result would fall in one
of the four categories in Table 1.1. Table 1.2 summarizes the outcomes of simultaneously
testing m hypotheses by the number of hypotheses that fall in each of the four categories.
Here, we consider the number of type I errors (false positives; V ) instead of the type-I
error rate (α), and the number of type II errors (false negatives; T ) instead of the type-II
error rate (β).

Table 1.2: Outcomes of testing m null hypotheses
Declared non-significant Declared significant Total

True null true negatives (U) false positives (V ) m0

False null false negatives (T ) true positives (S) m−m0

Total m−R R m

The probability of making a type I error would increase exponentially with the number
of null hypotheses that are tested, and the naive use of the type I error rate for each
hypothesis may not be suitable in multiple testing. Consider an illustrating example,
we simultaneously test m = 1, 000, 000 hypotheses, on the same scale as the studies in
Chapters 2–4, and we apply the type I error rate α = 0.05 to each test. We would expect
500, 000 type I errors simply by chance, and this may not be acceptable by most researchers.
Therefore, the type I error rate for each hypothesis is not suitable for multiple testing.

Hochberg and Tamhane (1987) suggest that it is meaningful to consider a combined
measure of error rate for a family of hypotheses. It is necessary to consider alternative error
rates instead of the type I error rate in the multiple testing problem. Here we describe
the family-wise error rate and the false discovery rate in details, which are the two most
widely used error rates for multiple testing applications.
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Family-wise Error Rate

The first alternative error rate is the family-wise error rate (FWER), also known as the
overall Type I error rate. It is defined as the probability of committing one or more false
positives in a family of hypotheses, i.e.,

FWER = Pr{V > 0}.

Controlling the family-wise error rate at a nominal level α implies that the probability
of having at least one false positive is at most α. A few procedures (for instance, see
Bonferroni 1936; Šidák 1967 and Hochberg 1988) have been proposed to control the family-
wise error rate. The classical Bonferroni’s procedure is most widely used, and it rejects
the null hypothesis H0i if

pi ≤ α/m.

For example, there are often millions of genetic markers tested simultaneously in genome-
wide association studies (GWAS), and the common practice is to compare the p-values of
genetic markers to the Bonferroni-corrected threshold 0.05/1, 000, 000 = 5×10−8 to control
the family-wise error rate at 0.05.

The Bonferroni’s procedure applies a more stringent threshold that takes the number of
hypotheses into account to the p-values. It is straightforward to apply and can control the
family wise error rate for any dependence structure among the hypotheses. However, the
Bonferroni’s procedure applies an overly-stringent threshold to the p-values, and may miss
some true signals while controlling the probability of at least one false positive. The Bon-
ferroni’s procedure has limited detection power, especially when the number of hypotheses
tested is large.

False Discovery Rate

In their seminal paper, Benjamini and Hochberg (1995) introduce the false discovery rate
(FDR) as a powerful alternative to the family-wise error rate. From then on, the FDR has
gained an increasing amount of popularity from researchers in various fields, and has even
become the standard methodology in some areas, such as the expression quantitative trait
loci (eQTL) community. The concept of family-wise error rate was introduced when the
multiple testing problem often contains a modest number of individual cases m, while the
FDR is more suitable to the new era of multiple testing applications with m in thousands
(Efron, 2010).
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The proportion of false positives V among all the rejections R can be viewed as a
random variable, and the FDR is defined as

FDR = E

(
V

R ∨ 1

)
,

where R ∨ 1 = max(R, 1). By definition, the FDR equals to 0 when no rejection is made.

There are two main approaches in the control of the FDR, frequentist and Bayes. The
most well-known frequentist method is the Benjamini-Hochberg (BH) procedure (Ben-
jamini and Hochberg, 1995). Let us order all the p-values from the smallest to the largest,
denoted by p(1) ≤ p(2) ≤ . . . ≤ p(i) ≤ . . . ≤ p(m). For a nominal level α in (0, 1), the
BH procedure find the index k such that k = max{i : p(i) ≤ iα/m} and reject all the
hypotheses whose p-value are no larger than p(k). The BH procedure applied at level α
controls the FDR at level less than or equal to m0/mα. The equality holds when testing
continuous data, as the p-values are uniformly distributed under the null hypotheses and
Pr(Pi ≤ k/mα) = k/mα for i = 1, 2, . . . ,m and k = 1, 2, . . . ,m. The BH procedure con-
trols the FDR under independence and a special positive dependence condition (Benjamini
and Hochberg 1995; Benjamini et al. 2001).

A related concept, the marginal FDR (mFDR) is defined as

mFDR =
E(V )

E(R)
,

and Genovese and Wasserman (2002) show that mFDR = FDR + O(m−1/2) when test
statistics are independent and the proportion of null hypotheses remains constant. There-
fore, the mFDR is asymptotically equivalent to the FDR.

Alternatively, we can also consider a two-group mixture model in a Bayesian framework
of the FDR. Corresponding to H01, H02, . . . , H0m, assume we have the test statistics
X1, X2, . . . , Xm. θ1, θ2, . . . , θm are the null indicators, where θi = 1 indicates H0i is
true null, and θi’s independently follow Bernoulli(π0) distribution, where π0 is the true null
probability. Let F denote the cumulative distribution function (CDF) of X, and we have
the following two-group model,

F (x) = π0F0(x) + (1− π0)F1(x),

where π0 is the proportion of null hypotheses, and F0 and F1 are the CDFs of X under the
null and non-null hypotheses.
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For a rejection region S, Efron and Tibshirani (2002) define the Bayesian FDR (Fdr)
as

Fdr(S) = Pr(θ = 1|x ∈ S)

=
π0F0(S)

π0F0(S) + (1− π0)F1(S)

=
π0F0(S)

F (S)
.

Note that the Bayesian FDR is the posterior probability that a hypothesis is true null
given it is in the rejection region. Under the two-group model, it is straightforward to
show mFDR(S) = Fdr(S). Hence, the Bayesian FDR is equivalent to the marginal FDR
under the two-group model, and we can approximate the FDR by the marginal FDR or
the Bayesian FDR asymptotically.

The local FDR (fdr) was proposed by Efron et al. (2001) and is defined as the posterior
probability of a hypothesis with a test statistic x being a true null,

fdr(x) =
π0f0(x)

f(x)
,

where f0(x) and f(x) are the probability density functions of X under the null hypothe-
sis and the overall density of X, respectively. Efron and Tibshirani (2002) show that the
Bayesian FDR is the conditional expectation of the local FDR, i.e., Fdr(S) = E{fdr(x)|x ∈
S}. This result suggests that for any rejection region S, its Bayesian FDR can be empiri-
cally estimated as

∑
xi∈S fdr(xi)/|S|, where |S| is the number of test statistics within S.

The estimate of the local FDR is then an important step for the FDR control. For a
rejection region S, the proportion of null hypotheses π0 can be estimated as

π̂0 =
|S|

mF0(S)
,

where f1(x) = 0, for x ∈ S, i.e., we here have the “zero assumption” that all the test statis-
tics of the non-null hypotheses are outside of the region S (Efron, 2010). For example, this
set can be [0.5, 1] if we are working on p-values. The null density function f0(x) is typically
assumed to be known as we know the exact distribution of the test statistic X under null,
for example, it is Uniform[0, 1] for p-values and the standard normal distribution for z-
values. Efron (2004a) also introduce an empirical estimation of the distribution under the
null hypothesis. The mixture density distribution f(x) can be estimated by simple kernel
density estimates or Poisson regression estimates for z-values (Efron, 2010).
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With the estimates of the local FDR, the following FDR control procedure at level α
naturally emerges,

1. Order all the hypotheses by the fdr estimates from the smallest to the largest, denoted
by H0(i) corresponding to f̂dr(i);

2. Reject the hypotheses H0(i) for i = 1, . . . , k, where k = max{j = 1, 2, . . . ,m :∑j
i=1 f̂dr(i)
j

≤ α}.

1.2 Pharmacovigilance

The word “pharmacovigilance” originates from two roots: pharmakon that means “drug”
in Greek and vigilare that means “to keep watch” in Latin. Pharmacovigilance is a branch
in pharmacological science focusing on drug safety via collecting, monitoring, detecting
and further preventing adverse effects of drugs on the market, also known as adverse drug
reactions (ADRs). Pharmacovigilance is crucial to assuring the safety of drugs by reliable
and timely exchange of information on drug safety issues (WHO et al., 2002).

Many pharmacovigilance databases have been established to collect reports of ad-
verse effects of marketed drugs, for example, the FDA’s Adverse Event Reporting System
(FAERS; Gupta 2008) in the United States, the European Medicines Agency EudraVigi-
lance Database (Vermeer et al., 2013) and the VigiBase (Lindquist, 2008) from the World
Health Organization.

1.2.1 Medical Dictionary for Regulatory Activities

The Medical Dictionary for Regulatory Activities (MedDRA) was developed by the In-
ternational Conference on Harmonisation of Technical Requirements for Registration of
Pharmaceuticals for Human Use (ICH) in the 1990s. The MedDRA is a highly specific
standardized medical terminology dictionary for the convenient sharing of information for
medical products, and it is used by regulatory authorities in the pharmaceutical industry,
from pre-marketing clinical trials to post-marketing pharmacovigilance monitoring. It is
the standard adverse event classification dictionary that is endorsed by the ICH.

The MedDRA dictionary has a hierarchical structure. This structure is organized by
System Organ Class (SOC), further divided in three levels, the “high level group terms
(HLGT), the “high level terms” (HLT), the “preferred terms” (PT), and the “lowest level
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terms” (LLT), from the most general to the most specific. The data entry of individual
cases are coded at the LLT level, and the output of counts are often at the PT level.

1.2.2 Collection of reports

There are mainly two types of reports of drugs and adverse events. The first one is a
solicited report. A solicited report is gathering information about suspected ADRs for
specific drugs and adverse events, and it is derived from organized data collection sys-
tems, for example, clinical trials, post-approval named patient use programs, other patient
support and disease management programs, surveys of patients or healthcare providers,
and information gathering on efficacy or patient compliance (Srba, 2014). Adverse event
reports from a solicited report cannot be considered spontaneous. The second one is an
unsolicited report. Unsolicited reports are obtained from other sources, for example, spon-
taneous reports, scientific literature reports, and media reports. See more details about
different kinds of ADR reports in European Medicines Agency (2012).

Spontaneous reports

We give a detailed description of spontaneous reports as they are used in pharmacovigilance
databases. A spontaneous report is a kind of unsolicited communication from healthcare
professionals or patients to a regulatory authority or other organizations (for example, the
WHO, Poison Control Center), and it describes the ADRs from a patient who was given
one or more medicinal products and that does not derive from a study or any organized
data collection scheme (European Medicines Agency, 2012). Stimulated reporting should
be considered spontaneous, such as a publication in the press, or questioning of healthcare
professionals by company representatives.

The reports that are directly from patients should also be handled as spontaneous
reports irrespective of any subsequent “medical confirmation”, a process required by some
regulatory authorities. As European Medicines Agency (2012) increases the importance of
patients in the existing context of spontaneous reporting ADRs, even if the reports received
from patients do not qualify for regulatory reporting, the cases should still be retained,
and emphasis should be placed on the report instead of on its source.
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1.2.3 Pharmacovigilance databases

Pharmacovigilance databases often contain millions of spontaneous reports of adverse
events and associated drugs. Typically, a health care provider can submit a spontaneous
report through a spontaneous reporting scheme when he/she believes one of his/her pa-
tients is suffering adverse events related to a drug being taken, or a patient can submit a
spontaneous report on his/her own. In many countries, spontaneous reports can be filed
electronically under some specific standard.

Figure 1.1: Example of aggregated spontaneous reports from Yellow Card Scheme

In the United Kingdom, the Medication and Healthcare Products Regulatory Agency
(MHRA) operates post-marketing surveillance for reporting, investigating and monitoring
of adverse drug reactions. The spontaneous reporting scheme in the United Kingdom was
introduced by the launch of the Yellow Card Scheme, after the thalidomide tragedy 1964.
The doctors and dentists (since 1964), pharmacists (since the 1990s), nurses (since 2002),
and patients (since 2004) have been invited to submit suspected ADRs. Now, hundreds of
thousands of spontaneous reports have been submitted to the MHRA via the Yellow Card
Scheme (http://yellowcard.mhra.gov.uk/).

The databases then aggregate individual spontaneous reports based on the combination
of drugs and events. Figure 1.1 shows an example of aggregated spontaneous reports of an
autoimmune disease drug Abatacept and adverse events reported related to eye disorders.
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We can see that related adverse drug reactions are grouped in a hierarchical structure
by MedDRA for Medicines Regulation. The structure used in the United Kingdom phar-
macovigilance database is composed of three levels, the “preferred term” (PT), the “high
level term” (HLT) and the “system organ class” (SOC), from the most specific to the most
general. For example, eye pain (PT) is grouped under the broader heading ocular disorders
NEC (HLT), which is contained within eye disorders (SOC). We focus on the adverse drug
reactions of the high level term in the application of our project.

We can extract the number of reported cases for each combination of adverse event
and drug from a pharmacovigilance database, and the pharmacovigilance data can be
summarized as a large I × J contingency table crossing I adverse events and J drugs. For
a specific pair (adverse effect i, drug j), a 2 by 2 contingency table can be obtained by
collapsing the large contingency table, as presented in Table 1.3. In the table, nij, ni., n.j
and n denote the number of reports involving the pair (i, j), the marginal count for the
adverse event i, the marginal count for the drug j and the total count in the contingency
table, respectively. Our aim is, among the combinations of drugs and adverse events, to
detect the pairs of (i, j) where drug j leads to significantly more adverse events i than
expected by chance.

Table 1.3: Two by two contingency table for the adverse event-drug combination (i, j)
Drug j Other drugs Total

Adverse event i nij ni. − nij ni.
Other adverse events n.j − nij n+ nij − ni. − n.j n− ni.
Total n.j n− n.j n

1.2.4 Automatic Detection Methods

Due to a large number of possible combinations of drugs and adverse events, automatic
detection methods need to be developed. The automatic detection methods identify some
combinations of drugs and adverse events that show unusually strong association and
report these detections to pharmacovigilance experts so that the reported associations
can be further analyzed. We here introduce some automatic detection methods that are
commonly used by regulatory agencies and drug monitoring systems.
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Proportional Reporting Ratio

The proportional reporting ratio (PRR) is proposed by Evans et al. (2001), and it is defined
as the ratio of the proportion with which a specific adverse event is reported for the drug
of interest and the proportion with which the same adverse event is reported for all the
others drugs, i.e., for drug j and adverse event i,

PRRij =
nij(n− n.j)
n.j(ni. − nij)

.

A proportional reporting ratio indicates the extent to which a specific adverse event is
reported for individuals that are taking or not taking a specific drug. If the proportional
reporting ratio is greater than 1, it suggests that the adverse event is more commonly
reported for individuals taking the drug.

A signal is generated if there is a PRR no smaller than 2, chi-squared test (on one
degree of freedom with Yates’s correction) statistic no smaller than 4 and three or more
cases.

Reporting Odds Ratio

The reporting odds ratio (ROR) is introduced by van Puijenbroek et al. (2002), and it is
defined as the observed odds ratio, for drug j and adverse event i,

RORij =
nij(n− n.j − ni. + nij)

(ni. − nij)(n.j − nij)
.

The logarithm of reporting odds ratio is assumed to be normally distributed with
variance estimated as var{ln(RORij} = 1/nij + 1/(n − n.j − ni. + nij) + 1/(ni. − nij) +
1/(n.j − nij). Then, if the lower bound of the two-sided 95% confidence interval is greater
than 0, a signal is generated.

Gamma Poisson Shrinker

The Gamma Poisson shrinker model is proposed by DuMouchel (1999). It is assumed
that for a cell (i, j), nij ∼ Poisson(φijEij)), where φij is the relative risk, and Eij is the
expected number of reports for cell (i, j) if the independence between drug j and adverse
event i were true,

Eij =
ni.n.j
n

.
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The prior distribution of all the φ’s is a mixture of two gamma distributions,

φij ∼ ωGamma(α1, β1) + (1− ω)Gamma(α2, β2),

and the parameters are estimated by maximizing the products of the marginal likelihoods
of nij|Eij. Then, the posterior distribution is computed as

φij|nij, Eij
∼ ω̂Gamma(α̂1 + nij, β̂1 + Eij) + (1− ω̂)Gamma(α̂2 + nij, β̂2 + Eij).

DuMouchel and Pregibon (2001) propose to rank the cells by the 5% quantile of the
distribution of φij|nij, Eij and a threshold of 2 is recommended by Szarfman et al. (2002).

1.2.5 Related Research in Multiple Testing

The automatic signal detection methods mentioned above use empirical thresholds to de-
tect signals, and do not consider the multiplicity adjustment due to a large number of
hypotheses tested simultaneously. We consider the problem of detecting adverse drug ef-
fects in the setting of multiple testing, and focus on estimating and controlling the FDR
(Benjamini and Hochberg, 1995). There are two main challenges here. The first one is that
the number of reports of adverse event and drug is discrete, and the test statistics test-
ing their association is also discrete; the second one is that we are interested in detecting
strong associations between adverse events and drugs, which lead to testing of composite
null hypotheses.

Most existing methods can only address one of the two challenges, except Ahmed et al.
(2009) and Ahmed et al. (2010), and we briefly describe the statistical methods that have
been proposed to test composite null hypotheses with continuous data, to test simple null
hypotheses with discrete data, and to test composite null hypotheses with discrete data.

Composite Null Hypotheses with Continuous Data

Sun and McLain (2012) consider the multiple testing problem of composite null hypothe-
ses in heteroscedastic models. Specifically, Suppose Xi, i = 1, 2, . . . ,m are independent
observations from a random mixture model,

Xi = µi + εi, εi ∼ N(0, σ2
i ),
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where µi denotes the unknown effects sizes for comparing two competing conditions, and
εi denotes the heteroscedastic errors with variances σ2

i .

They assume that µi has a mixture density function with a point mass at zero,

fµ(·) = (1− ω)δ0(·) + ωg(·),

where ω = Pr(µi 6= 0) is the non-zero proportion, δ0 is the dirac delta function, and g is a
continuous density function of non-zero effects.

The composite null hypotheses Hi0 : µi ∈ A are tested simultaneously, and A is a set of
unimportant effects including 0 and small uninteresting effects, referred to as “indifference
region” by Sun and McLain (2012).

Sun and McLain (2012) formulate the problem in a decision theory framework. They
formulate the density function of X as a mixture model on A and Ac, i.e.,

f(x|σ2) = (1− ω̃)f̃0(x|σ2) + ω̃f̃1(x|σ2),

where

ω̃ = ω

∫
Ac

g(µ)dµ,

f̃0 and f̃1 are the corresponding density functions on A and Ac, respectively.

Then, they prove the optimal test statistic to minimize the loss as an expression of the
weighted sum of false positives and false negatives is,

TOR(Xi, σ
2
i ) =

(1− ω̃)f̃0(Xi, σ
2
i )

f(Xi, σ2
i )

,

and it actually reduces to the local FDR when A = {0} and the errors are homoscedastic
(Sun and McLain, 2012). See details about the parameter estimates in Sun and McLain
(2012).

Sun and McLain (2012) test the composite null hypotheses with continuous test statis-
tics, and their method cannot be applied to the multiple testing problem with composite
null hypotheses and discrete data. However, their formulation of the local FDR inspires
us to derive the local FDR as our test statistics in Chapter 2.

Discrete Data with Simple Null Hypotheses

Many methods have been proposed to test multiple simple null hypotheses with discrete
test statistics. For discrete data, the BH procedure applied at level α controls the FDR
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at level less than m0/mα, and Gilbert (2005) argues that the original BH procedure can
be made more powerful. Gilbert (2005) proposes a modification to the BH procedure that
consists of two steps. The first step is to remove the null hypotheses whose test statistics
do not reach some level of significance, and the second step is to apply the BH procedure
to the remaining hypotheses. One drawback of Gilbert (2005) is that they ignore the
discreteness of the remaining hypotheses.

Kulinskaya and Lewin (2009) suggests using randomized p-values from randomized
tests. Specifically, for the null distribution of a discrete test statistic X, let c be the value
of X such that Pr(X ≥ c) > α and Pr(X > c) < α. Then, a randomized p-value that
achieves the exact level α test is computed as P (c) = Pr(X > c)+U Pr(X = c), where U ∼
Uniform(0, 1). The randomized p-values are continuous and uniformly distributed under
the null hypotheses. However, the randomized p-values are not interpretation-friendly due
to the randomness.

Heyse (2011) exploits the discreteness of the test statistics and propose to use FDR
adjusted p-values that are modified for discreteness for the FDR control. Define Qi(P )
as the largest p-value no greater than P that is achievable for hypothesis i = 1, 2, . . . ,m.
Qi(P ) is zero if the p-values are not achievable under P or an extreme value of P . They
propose to compute adjusted p-values as

P ∗|m| = P(m),

P ∗|j| = min{P|j+1|,
m∑
i=1

Qi(P(j))/j},

for values of j ≤ m − 1. Then, the hypotheses with adjusted p-values P ∗|j| ≤ α, j =

1, 2, . . . ,m are rejected. Heyse (2011) demonstrates its power advantage over Gilbert (2005)
by simulations, however it may fail to control the FDR, see examples in Gur (2011) and
Döhler et al. (2018).

Composite Null Hypotheses with Discrete Data

Let ψ denote the odds ratio, which is a measure of the association between adverse event
and drug. We test the following null hypotheses for adverse event i and drug j,

H0ij : ψij ≤ ψ0 versus H1ij : ψij > ψ0,

where ψ0 is a tested value for odds ratio, and ψ0 = 1 is often of interest.
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Ahmed et al. (2009) extend the two existing Bayesian methods used in automatic sig-
nal detection for pharmacovigilance, the Bayesian confidence propagation neural network
(BCPNN; Bate et al. 1998) and the Gamma Poisson Shrinker (GPS; DuMouchel 1999), to
the multiple testing setting. By simulations, Ahmed et al. (2009) show that the extended
GPS method has better performance than the extended BCPPN method and the original
GPS and BCPPN. However, the GPS assumes a two-component gamma distribution for
relative risks, and the parametric assumption can be too strong in reality.

Ahmed et al. (2010) propose a frequentist method that models the distribution of mid-p-
values (Lancaster, 1961) as a mixture model after filtering out the hypotheses with small cell
counts. In Table 1.3, assume the marginal counts (ni., n.j, n) are fixed, and the random vari-
able Nij|ni., n.j, n;ψ0 follows an non-central hypergeometric distribution (Agresti and Ka-
teri, 2011). The p-value for cell (i, j) can be computed as pij = Pr(Nij ≥ nij|ni., n.j, n;ψ0).
The corresponding mid-p-value is computed as Pr(Nij > nij|ni., n.j, n;ψ0) + 1

2
Pr(Nij =

nij|ni., n.j, n;ψ0). The distribution of p-values under null hypothesis is assumed to be
a non-decreasing function expressed as a mixture of a uniform distribution and a non-
decreasing function (Ahmed et al., 2010). Through a simulation study, Ahmed et al.
(2010) show their method is able to control the FDR. However, filtering the hypotheses
with small cell counts is not always satisfactory as it naively discards some hypotheses.
Also, it is non-trivial to select the threshold for the cell count filtering.

1.3 Genome-wide Association Studies

In the last two decades, genome-wide association studies (GWAS) have become an impor-
tant tool to identify the genetic variants that are associated with human diseases or traits,
as can be seen from Figure 1.2. As of September 2016, GWAS have found more than
24, 000 unique variant-trait associations from 2, 518 publications from the GWAS catalog
http://www.genome.gov/gwastudies/ (Welter et al., 2013).

1.3.1 Basic Concepts

All living creatures, including human and animals, are composed of functional and repro-
ductive cells. Inside the cells reside the hereditary material, the genome. The genome
genetically influences the process of development of cells and further the characteristics
of the living creatures, and the characteristics are called phenotype. The phenotypes can
be traits, for example human height and blood pressure, or diseases, for example type I
diabetes and autism.
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Figure 1.2: Number of published GWA reports, figure from the GWAS catalogue

The genome is made of chromosomes. Different living creatures have a varying number
of chromosomes. For example, human have 23 pairs of chromosomes while monkeys and
Ape have 24 pairs. Among the 23 pairs of chromosomes in human, 22 pairs are autosomes
and they look the same in males and females, while the 23rd pair differs between male
and female and are called the sex chromosomes. When a baby is born, for each pair of
chromosomes he inherits one chromosome from his father, and the other from his mother.

Each chromosome contains a string of 4 nucleotides: Adenine (A), Thymine (T), Cyto-
sine (C) and Guanine (G), and the nucleotides arrange in pairs to form Deoxyribonucleic
Acid (DNA) that has a double helix structure. A segment of DNA codes for the amino
acid sequence for a particular protein, and this segment is called a gene.

The most common genetic variants spanning the whole genome are single-nucleotide
variants. A single-nucleotide polymorphism (SNP) is a variation of a single nucleotide
at a specific location in the genome. At a SNP location, there are typically two alleles
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(base-pairs) that commonly exist within a population: a major allele and a minor allele.
The definition of major or minor is based on the frequency of that allele appears, and
the frequency of a SNP is defined as the frequency of the minor allele. For example, at
a specific SNP position, the two possible nucleotide variations are C and A and they are
called the alleles for this position. If the C nucleotide only appears in a small fraction of
the individuals in the population, say 20%, and the A nucleotide appears in most of the
population, then C is the minor allele and A is the major allele at this position, and the
frequency of this SNP is 20%.

1.3.2 Hardy-Weinberg Equilibrium

The concept of Hardy-Weinberg equilibrium was proposed by Hardy (1908) and Weinberg
(1908), and it states that allele frequencies and genotype frequencies in a population will
remain constant under the assumptions that the population has infinite size, is randomly
mating, and is free from evolutionary influences, for example natural selection, migration,
and mutation.

Let us consider a simple case with a locus that have two alleles, denoted by A and a.
Assume the frequencies for A and a are fA = p and fa = q, respectively, where p+ q = 1.
By the Hardy-Weinberg equilibrium, the expected frequency for genotypes are given,

fAA = p2,

fAa = 2pq,

faa = q2.

The frequencies for alleles A and a, and the frequencies for genotypes AA, Aa, and aa will
remain constant from generation to generation with no evolutionary influences.

In reality, not all the assumptions are necessarily satisfied, and a deviation may be
observed. Statistical methods that compare the expected and observed frequencies, such
as Guo and Thompson (1992), can be used to test the equilibrium. These tests are often
used in the quality control of genetic studies, to screen out the genetic variants that severely
violate the Hardy-Weinberg equilibrium.

1.3.3 Linkage Disequilibrium

The SNPs at different loci are not independent of each other, which greatly complicates the
multiple testing problem in GWAS. In fact, the SNPs in a close neighborhood tend to be
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correlated with each other. The frequency of one combination of different alleles is higher
or lower than what would be when they were independent, and this phenomenon is known
as linkage disequilibrium. There are several factors that may lead to the dependence
between SNPs, including inheritance pattern, population structure, and genetic factors.
One important factor is recombination, which refers to the fact that during the process of
production of offspring, chromosomes break at locations and the loci on two sides separate
from each other. The chromosomes do not break equally easily at different locations, and
the loci in a segment that is difficult to break tend to be highly correlated with each other.

Linkage disequilibrium can be measured in different ways, and a comparison of different
measures can be found in Devlin and Risch (1995). We describe several commonly used
statistics that measure the pairwise linkage disequilibrium between two loci. Considering
two neighboring loci in a population, suppose allele A occurs with frequency fA at one
locus, allele B occurs with frequency fB at the other locus, and the haplotype AB occurs
with frequency fAB. If the two alleles A and B are independent, then fAB = fAfB. If the
independence is not satisfied, there would be a discrepancy between the two quantities fAB
and fAfB. The discrepancy is one of the earliest measures of linkage disequilibrium, and
the coefficient of linkage disequilibrium is defined as

D = fAB − fAfB.

A greater value of D implies that the alleles A and B are more in linkage disequilibrium.
The definition of D is simple, however not always convenient in real applications, as the
range of D depends on the allele frequencies and this makes the comparison of the strength
of linkage disequilibrium difficult. Several other measures of linkage disequilibrium have
been proposed to facilitate the comparison, and we mention two most common alternatives.

The maximum of D can be derived as

Dmax =

{
min{fAfB, (1− fA)(1− fB)} if D < 0;

min{fA(1− fB), (1− fA)fB} if D > 0.

Lewontin (1964) propose to normalize D by dividing its maximum,

D′ =
D

Dmax

.

Another important measure r is proposed by Hill and Robertson (1968), and it is
defined as

r =
D√

fA(1− fA)fB(1− fB)
,
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and it can be easily proved that r is equivalent to the Pearson correlation coefficient between
the indicator variables of the major alleles or minor alleles. The values of r are between −1
and 1. A value of r = 1 or −1 indicates the two alleles are in perfect linkage disequilibrium
and there are only two possible combinations for the haplotypes, while a value of r = 0
indicates the independence between the alleles.

In the GWAS projects of Chapters 3–4, we shall use the correlation coefficient r to
measure the level of linkage disequilibrium.

1.3.4 Genetic Models

A genetic model describes the relationship between genotype and phenotype. The phe-
notype can be binary for characteristics or diseases, for example curly hair and type I
diabetes, or continuous for traits, for example body mass index (BMI). A causal variant is
the locus that contributes to the variation in the phenotype. Depending on the number of
loci that have an influence on the phenotype, there are simple traits and complex traits.
Simple traits only have one causal locus, for example whether people are able to curl up
the sides of tongue and sickle cell anemia, while complex traits have more than one causal
locus, for example whether people have curly hair and schizophrenia.

For simple traits, there are several models that can be used to describe the genetic
relationship between genotype and phenotype. We first define a penetrance function,

Pr(Y |G) =

{
a conditional probability if Y is binary;

a conditional density if Y is continuous,

where Y is the phenotype and G is the genotype for a causal variant. Assume the disease
allele is D and its counterpart is d, and the genotype G can be DD, Dd and dd. To simplify,
we assume the phenotype is binary and Y represents whether a disease (or characteristic)
is observed.

Mendelian models, also named deterministic models describe the genetic models for
simple traits. Depending on the different modes of inheritance, we can have several ge-
netic models. In a dominant model, the disease allele D is dominant in determining the
phenotype and one occurrence of D would lead to the disease, i.e.,

Pr(Y = 1|DD) = Pr(Y = 1|Dd) = 1, Pr(Y = 1|dd) = 0.

The genotype scores are often coded as 1 for DD or Dd, and 0 for dd.
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In a recessive model, the disease allele D is recessive, and only the genotype DD would
lead to the disease, i.e.,

Pr(Y = 1|DD) = 1, Pr(Y = 1|Dd) = Pr(Y = 1|dd) = 0.

The genotype scores are coded as 1 for DD, and 0 for Dd or dd.

Another important model is called the additive/dosage model, which indicates the
disease risk is additive in terms of the occurrence of disease allele D,

Pr(Y = 1|DD) > Pr(Y = 1|Dd) > Pr(Y = 1|dd).

The genotype scores are often coded as the number of disease alleles, 2 for DD, 1 for Dd,
and 0 for dd.

In general, the mode of inheritance is unknown, and the additive model is most com-
monly used in genetic studies.

For complex traits, we often assume that each locus contributes a small amount to the
phenotypic variability, and the additive model is also the most common. In Chapters 3–4,
we focus on developing statistical methods for detecting associated variants of complex
traits using the additive model.

1.3.5 Univariate Test

The number of SNPs genotyped in genetic studies can be close to 1, 000, 000 or more, while
the number of subjects is only a few thousand. This is a “big n, small p” problem, and
univariate tests have been proposed to measure the association between SNPs and the
phenotype. Assume Y is the vector of phenotypes for n individuals, and X is the n by
M matrix that contains the genotype scores of M SNPs that are coded as the number
of minor alleles {0 = no minor allele, 1 = 1 minor allele, 2 = 2 minor alleles} in the
additive model.

For continuous phenotype, a simple linear regression is usually used,

Y = β0 + βiXi + ε,

for i = 1, 2, . . . ,M , where β0 is the intercept, βi is the coefficient, Xi is the vector of
genotype scores for SNP i, and ε is the error term. The maximum likelihood estimates of
the parameters in the model can be computed, and the t test statistics and corresponding
p-values can be obtained for all SNPs.
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For discrete phenotypes, several methods have been used to test the association. We
can compute a contingency table crossing the genotype and phenotype, and χ2 test is then
applied to test the independence of the table. If all the cells in the table have expected
frequencies > 5, a Pearson χ2 test can be conducted. Otherwise, alternatives such as
Fisher’s exact test can be used. The Cochran-Armitage test (Cochran 1954; Armitage
1955), also known as trend test, is also commonly used in case-control studies.

Another common test used in discrete phenotypes is the logistic regression model.
Similar to the simple linear regression used in continuous phenotypes, a logistic regression
model can be fitted to the genotype scores of each SNP,

log
pj

1− pj
= β0 + βiXi,

for i = 1, 2, . . . ,M and j = 1, 2, . . . , n, where pj = Pr(Yj = 1|Xi) is the probability of
individual j having the disease or characteristic given SNP i. The parameters can be
estimated by maximized likelihood method, and the Wald statistics and corresponding
p-values are computed. Note that it can be proved that the Cochran-Armitage test is
equivalent to the score test under the logistic regression model.

After computing marginal p-values for all the SNPs, the common practice in GWAS is
to compare the p-values to the Bonferroni-corrected threshold 5×10−8 to control the family-
wise error rate at level 0.05. However, as we argued in Section 1.1.2 and will demonstrate
in Chapter 3, the control of the family-wise error rate can be overly-conservative and have
limited detection power, and we are interested in developing statistical methods for GWAS
that are able to reasonably control the false discovery rate (FDR) instead.

1.3.6 Penalized Multiple Regression

To overcome the low detection power problem of marginal p-values, many methods have
been proposed to apply penalized regression methods to all SNPs, for instance see Hoggart
et al. (2008), Wu et al. (2009), and Hoffman et al. (2013).

A penalized multiple regression can be used in GWAS, and the estimates of regression
coefficients are given as,

β̂ = argmax
β

l(y|β)−
∑
j

pθ(βj),

where y is the vector of phenotype values, β is the vector of coefficients, l(·) is the log-
likelihood function for a linear regression (for continuous phenotypes) or a logistic regression
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(for discrete phenotypes), and p(·) is the penalty function indexed by the vector of tuning
parameters θ. The penalty function p(·) needs to satisfy the sparsity property as only a
small subset of the SNPs are causal SNPs.

Different penalty functions have been used by researchers. Wu et al. (2009) use the
Lasso penalty, Hoggart et al. (2008) use the normal-exponential-gamma (NEG) penalty
due to Griffin and Brown (2011), and Hoffman et al. (2013) compare various penalties
including Lasso (Tibshirani, 1996), Adaptive Lasso (Zou, 2006), NEG, minimax concave
penalty (Zhang et al., 2010) and others.

The penalized regression methods are able to improve the detection power compared to
the marginal p-values, however the selection of associated SNPs is often arbitrary due to
the high correlations among neighboring SNPs. Moreover, another drawback of penalized
regression in GWAS is that they only compute the coefficient estimates with no standard
deviations or p-values, and provide no error rate control, which is not always convenient.
In Chapters 3–4, we aim to approximately control the FDR in GWAS.
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Chapter 2

Simultaneous testing of composite
null hypotheses with discrete data:
an application to pharmacovigilance

2.1 Introduction

As a motivating example, we look at the post-marketing surveillance of pharmaceutical
drugs. Drugs are widely used to treat or prevent diseases, but they could also cause minor
to severe adverse drug reactions (ADRs), such as nausea, skin rash, or even death. The
World Health Organization, the European Union and many countries have established
pharmacovigilance databases to monitor the marketed drugs for detection of ADRs.

In any pharmacovigilance database, we can extract the number of reported cases for
each combination of adverse event and drug. Therefore, the pharmacovigilance data can
be summarized as a large I × J contingency table crossing I adverse events and J drugs.
For a specific pair (adverse effect i, drug j), a 2 by 2 contingency table can be obtained
by collapsing the large contingency table, as presented in Table 1.3. In the table, nij, ni.,
n.j and n denote the number of reports involving the pair (i, j), the marginal count for the
adverse event i, the marginal count for the drug j and the total count in the contingency
table, respectively.

Let ψ denote the odds ratio, which is a measure of the association between adverse event
and drug. In pharmacovigilance, we are interested in finding strong positive associations
between drugs and ADRs. Thus, we test the following hypothesis for adverse event i and
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drug j,
H0ij : ψij ≤ ψ0 versus H1ij : ψij > ψ0, (2.1)

where ψ0 is a target threshold for odds ratio. An adverse event-drug combination (i, j) will
be investigated further if H0ij is rejected, which means that drug j may lead to significantly
more adverse event i than expected by chance. It is common to choose ψ0 = 1, but larger
ψ0 threshold are also widely used to focus on strong associations.

In Equation (2.1), the alternative hypothesis is one-sided, and the null hypothesis is
composite. Testing a composite null hypothesis is challenging because the distribution of
test statistic under the null is difficult to characterize. Furthermore, the number of reports
of any adverse event-drug combination is discrete, and the corresponding test statistic is
also discrete. Finally, there are multiple associations being tested simultaneously. As a
concrete example, the pharmacovigilance database in the United Kingdom contained 1, 617
drugs and 1, 310 adverse events by September 2014, and there are slightly over 2 million
unique combinations of adverse events and drugs.

To take the multiplicity into account, we will focus on estimating and controlling the
false discovery rate (FDR; Benjamini and Hochberg 1995), which is a more powerful alter-
native than the family-wise error rate. Few statistical methods have been proposed to test
multiple composite null hypotheses with discrete data, and most existing methods can only
address either the issue of discreteness or composite null. Methods to control the FDR for
discrete data under simple null hypothesis include Gilbert (2005), Kulinskaya and Lewin
(2009), Heyse (2011), Habiger (2015), Chen et al. (2018) and Döhler et al. (2018), among
others. On the other hand, Sun and McLain (2012) study multiple testing of composite
null hypotheses with continuous test statistics.

Methods that are specific to the multiple testing of pharmacovigilance signal detection
have been developed. Existing methods including the reporting odds ratio (ROR; van
Puijenbroek et al. 2002), the Bayesian confidence propagation neural network (BCPNN;
Bate et al. 1998) and the Gamma Poisson Shrinker (GPS; DuMouchel 1999) are used to
automatically detect signals from a large number of reports. One notable drawback of
these methods is that they use ad hoc thresholds to detect signals and do not consider
the multiplicity. Ahmed et al. (2010) propose a frequentist method that models the mid-
p-value distribution through a finite mixture model after filtering out the hypotheses with
small cell counts. Through a simulation study based on the French pharmacovigilance
database, Ahmed et al. (2010) showed their method’s FDR estimates are conservative
with respect to the true FDR levels. However, their threshold for cell count filtering is
arbitrary. More importantly, filtering the hypotheses with small cell counts is equivalent
to filtering the hypotheses with large p-values and can lead to anti-conservative results.
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Ahmed et al. (2009) extend the two existing Bayesian methods used in pharmacovigilance
signal detection, the BCPNN by Bate et al. (1998) and the GPS by DuMouchel (1999),
to the multiple testing setting. The extended GPS method showed better performance
than the extended BCPPN method and the original GPS and BCPPN. The GPS is a
parametric method which assumes a two-component gamma distribution for relative risks.
However, the strong parametric assumption of GPS may not always be reasonable for real
applications.

The chapter is organized as follows. In Section 2, we investigate an oracle procedure
based on the local FDR, which is shown to have the best power given a constraint on the
FDR level. Then, we propose a nonparametric empirical Bayes method to approximate the
oracle statistic. In Section 3, we conduct simulation studies to illustrate the advantages
of our proposed procedure over existing methods. In Section 4, we apply the proposed
procedure to the UK pharmacovigilance database.

2.2 Method

In Benjamini and Hochberg (1995), a simple procedure based on p-values (the BH pro-
cedure) was proposed and shown to control the FDR under independence. They assume
p-values under true null follow independent Uniform(0, 1) distribution, which is a reason-
able assumption when the null hypotheses are simple and the observations are continuous.
If the null hypotheses are composite and the observations are discrete, the p-values under
true null are stochastically larger than Uniform(0, 1), and a direct application of the BH
procedure can be severely conservative. In the pharmacovigilance example, let Nij be the
number of reports of the ith adverse event after taking the jth drug, a reasonable model
is that Nij follows a noncentral hypergeometric distribution given the marginal counts ni.,
n.j, n and the true odds ratio ψij (Agresti, 2002). Given the odds ratio threshold ψ0 that is
tested, the p-values corresponding to the null hypothesis in Equation (2.1) can be computed
by the Fisher’s exact test as pij = Pr(Nij ≥ nij|ni., n.j, n;ψ0). Ahmed et al. (2010) propose
a frequentist method to estimate the FDR by modeling the mid-p-values (Lancaster, 1961)
under null hypotheses as a mixture of a uniform distribution and a non-decreasing density
function. The fundamental question we will address first is whether (mid-)p-values are the
best statistics to use for testing multiple composite null hypotheses with discrete data.
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2.2.1 Oracle Procedure to Control the FDR

Assume a set of unknown parameters θ1, θ2, . . . , θm are independently distributed as

θi ∼ g(θ),

for i = 1, 2, . . . ,m. Suppose X1, X2, . . . , Xm are the the discrete test statistics that are
independently distributed with the probability mass function,

p(x) =

∫
Θ

f(x|θ)g(θ)dθ,

where f(x|θ) is a known distribution for the test statistics X given the true value of θ, and
Θ is the support for the parameter θ. Consider the problem of simultaneously testing m
independent composite null hypotheses,

H0i : θi ∈ Θ0 versus H1i : θi /∈ Θ0, (2.2)

for i = 1, 2, . . . ,m, where Θ0 is the support of θ for true null hypotheses.

The probability mass function of X corresponding to true null hypotheses is

p0(x) =

∫
Θ0

f(x|θ)g(θ)dθ.

Let V denote the number of falsely rejected null hypotheses and R the total number of
rejections, and the FDR is defined as

FDR = E

(
V

R ∨ 1

)
,

where R ∨ 1 = max(R, 1). For any rejection region S, the marginal FDR (mFDR) is
defined as

mFDR =
E(V )

E(R)

=

∑
x∈S p0(x)∑
x∈S p(x)

.

The Bayesian FDR (Fdr) was proposed by Efron and Tibshirani (2002), and it is defined
as

Fdr(S) = Pr(θ ∈ Θ0|x ∈ S)

=

∑
x∈S p0(x)∑
x∈S p(x)

.
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Note that the Bayesian FDR is the posterior probability that a hypothesis is true null
given it is in the rejection region, and mFDR(S) = Fdr(S).

The local FDR (fdr; Efron et al. 2001), as the posterior probability of being true null,
can be defined as follows,

fdr(x) =
p0(x)

p(x)
.

In the literature of multiple testing with simple null and continuous test statistics, the local
FDR based procedure has been shown to be superior to p-value based procedures (Sun
and Cai, 2007). It is straightforward to show that the Bayesian FDR is the conditional
expectation of the local FDR.

Theorem 1. Fdr(S) = Ep{fdr(x)|x ∈ S}.

Proof.

Ep{fdr(x)|x ∈ S} =
Ep{fdr(x);x ∈ S}

Pr(x ∈ S)

=

∑
x∈S[p0(x)/p(x)]p(x)∑

x∈S p(x)

=

∑
x∈S p0(x)∑
x∈S p(x)

= Fdr(S).

This result suggests that for a set of rejections R, its Bayesian FDR can be empirically
estimated as

∑
xi∈S fdr(xi)/|R|, for i = 1, 2, . . . ,m, where |R| is the number of rejections.

Genovese and Wasserman (2002) showed that under independence, mFDR = FDR +
O(m−1/2). Therefore, the FDR and the Bayesian FDR are asymptotically equivalent, as the
marginal FDR is equivalent to the Bayesian FDR. This suggests that we can asymptotically
control the FDR by controlling the Bayesian FDR.

We now establish the optimality of the local FDR based procedure in the context of
testing composite nulls with discrete data.

Theorem 2. For the multiple testing problem in (2.2), define the oracle rejection region
of the form SOR = {x : fdr(x) ≤ C}, where C is a cut-off for the local FDR. Suppose
the Bayesian FDR level of SOR, Fdr(SOR) = α. For any rejection region S such that
Fdr(S) ≤ α, SOR yields more expected true positives.
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The proof is given in Appendix, and it is similar in spirit to Proposition 1 of Du et al.
(2014), which focus on the setting of simple null and continuous test statistics. Theorem 2
shows that the local FDR is the optimal test statistic to form the rejection region. Then,
we propose an oracle procedure to control the Bayesian FDR as follows,

1. Order all the hypotheses by their fdr values and separate them into q groups with
distinct ordered fdr values denoted by fdr(1), . . . , fdr(q);

2. Reject the hypotheses in groups i = 1, . . . , k with the smallest fdr values, where

k = max{j :
∑j

i=1mifdr(i)∑j
i=1mi

≤ α}, where mi is the number of fdr values in group i.

Because of the discreteness of the data, we handle ties by dividing them into groups of
identical fdr values in the oracle procedure. It is easy to see that the Bayesian FDR level

with fdr(k) as the cut-off is
∑k

i=1mifdr(i)∑k
i=1mi

.

2.2.2 Adaptive Procedure to Control the FDR

The oracle procedure uses the fdr, which require the oracle knowledge of the mixing dis-
tribution g. To approximate the oracle procedure, we first need to estimate g.

We use the predictive recursion (PR) method (Newton, 2002) to estimate the mixing
distribution g. We choose the PR because of its computation efficiency and convergence
properties under weak conditions (Tokdar et al., 2009). This computation efficiency is
crucial for applications with a large number of observations, which is the case for pharma-
covigilance data.

More specifically, the sampling distribution of cell count Nij given ni., n.j and n follows
a noncentral hypergeometric distribution with parameter ψij. The initial density estimate
of g(ψ) is chosen as a uniform distribution, and it is shown to have no significant effects on
the final estimate gm(ψ) due to its convergence property (Tokdar et al., 2009). Moreover,
as the predictive recursion algorithm is a sequential procedure, the final estimate depends
on the order of data. As suggested by the literature, We randomly permute the data and
obtain an average density estimate ḡm(ψ). Further details about our implementation of
the predictive recursion are included in Appendix.

After we obtain the PR estimate of the odds ratio ψ density ḡm(ψ), we estimate the
local FDR as

f̂dr(x) =

∫
Θ0
f(x|θ)ḡm(θ)dθ∫

Θ
f(x|θ)ḡm(θ)dθ

,
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where Θ0 is the parameter support corresponding to null hypothesis, i.e. ψ ≤ ψ0 in our
multiple testing problem for pharmacovigilance data.

We replace the local FDR in the oracle procedure with its estimates, and naturally
have the adaptive procedure to approximate the oracle procedure.

2.3 Simulations

In this section, candidate methods and data generation process are first described. Then
simulation results to test ψ0 = 1 and ψ0 = 5 are presented to illustrate the performance of
candidate methods.

2.3.1 Candidate Methods

We consider the following methods:

midP: the mid-p-value frequentist method proposed in Ahmed et al. (2010). The adverse
event-drug combinations with small cell counts nij’s are filtered. Ahmed et al. (2010)
considered filtering criteria of nij < 1 and nij < 3, and here we filter all combinations with
empty cells, i.e. nij < 1.

Pval: because the use of mid-p-values and the filtering of small cell counts can lead to
anti-conservative results, we consider the use of all p-values. The distribution of p-values
has a U shape due to the testing of composite nulls. Similar to Ahmed et al. (2010), we
applied the LBE method (Pounds and Cheng, 2006) to estimate the flattened proportion
in the center of the distribution of p-values and adjust the FDR estimate accordingly.
Technical details of this p-value based procedure are presented in Appendix.

GPS: the extended GPS method suggested in Ahmed et al. (2009). GPS is implemented
to test the relative risk (denoted by φ) of the combinations of drugs and adverse events
instead of the odds ratio ψ, but there is no one-to-one mapping between them. However,
it is equivalent to test φ ≤ 1 and ψ ≤ 1, and we will only show the simulation result of GPS
when ψ0 = 1. The estimate of the local FDR can be obtained as the posterior probability
Pr(φij|nij ≤ φ0), and the same rejection procedure as our proposed method can be applied
to hypothesis testing.

PRfdr: our proposed method with the density of odds ratio ψ estimated by predictive
recursion (PR). As in Martin and Tokdar (2009), 10 random permutations of the data
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were performed, and the average of the density estimates was computed as ḡm to avoid the
dependence on the order of data.

KDfdr: same as PRfdr except that we use the kernel density estimate of odds ratios
based on the true ψij values. KDfdr is considered as the “oracle” because the true ψij
values are not known in real applications.

2.3.2 Data Generation

We generate data similarly as simulation studies of Ahmed et al. (2010). We first obtain
the marginal counts for adverse events and drugs of the UK pharmacovigilance data as
n1., . . . , nI. and n.1, . . . , n.J , respectively. For one iteration, the probability of observing
adverse event i for drug j is

pij =
λijri.r.j∑
ij λijri.r.j

,

where r1., . . . , rI. ∼ Dirichlet(n1., . . . , nI.) and r.1, . . . , r.J ∼ Dirichlet(n.1, . . . , n.J).

For the purpose of computational efficiency and comparison with the original data, a
subset with 200 drugs and 200 adverse events randomly sampled from the original UK data
was also used in the simulation. Three different settings of λ distributions are investigated:

1. the sampled data with ln(λij) ∼ 0.3N(−1, 0.01) + 0.5N(0, 0.1) + 0.2N(1, 1);

2. the sampled data with ln(λij) ∼ 0.5N(0, 1) + 0.5N(1, 2);

3. the original data with ln(λij) ∼ logistic(0, 0.5).

The first two settings correspond to a three-component and a two-component normal dis-
tribution for ln(λ), respectively, and the third setting is the same as that in Ahmed et al.
(2010).

With the probabilities pij known, the cell counts follow a multinomial distribution and
can be generated as

n11, n12, . . . , nIJ ∼Multinomial(n, (p11, p12, . . . , pIJ)),

where n is the sum of cell counts in the UK data.
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The true odds ratio for cell (i, j) can be computed as

ψij =
pij(1 + pij − pi. − p.j)
(pi. − pij)(p.j − pij)

,

and the true relative risk is

φij =
pij
pi.p.j

,

where pi. and p.j are the ith row sum and the jth column sum of p.

2.3.3 Simulation Results

We repeat the simulation 200 times and report the average realized FDR levels and power.
The target FDR levels are between 0.01 and 0.2.

Figure 2.1 shows the realized FDR levels versus the target FDR levels of five candidate
methods in the three simulation settings for testing ψ0 = 1 and ψ0 = 5. We can clearly
see that, the realized FDR levels for KDfdr and PRfdr are very close to the target FDR
levels, which means that they can control the true FDR very well, and the PRfdr yields
almost the same results to the “oracle” KDfdr. Both Pval and midP are able to control the
FDR in sets 1 and 2, as the realized FDR levels are smaller than the target FDR; midP
performs better than Pval as the realized FDR levels of midP are closer to the target FDR
level compared to those for Pval. It can also be seen that the improvement in controlling
the FDR by the adoption of mid-p-values decreases for ψ0 = 5 than ψ0 = 1. In set 3, the
FDR control of Pval for ψ0 = 1 is first slightly liberal, then turns slightly conservative;
Pval yields a conservative FDR control for ψ0 = 5. The use of mid-p-values in set 3 makes
midP very liberal in FDR control. GPS is liberal in terms of the FDR control in set 1 as
the realized FDR levels are greater than the target FDR levels, while it is conservative in
set 2. In set 3, GPS is slightly liberal for the target FDR levels larger than 0.1.

Figure 2.2 shows the number of true positives versus the target FDR levels. Among the
methods that can control the FDR in each setting, KDfdr and PRfdr are noticeably more
powerful than Pval, midP and GPS. Compared to Pval, midP has more true positives, and
the improvement of power for ψ0 = 1 is greater than that for ψ0 = 5. In sets 1 and 3, the
number of true positives for GPS is slightly larger than those of KDfdr and PRfdr, and the
reason is GPS liberal in the FDR control and yields more signals, including true positives
and false positives, than expected. This result also applies to midP for ψ0 = 1 in set 3.
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Figure 2.3 plots the true positive rate versus the false positive rate, which is known
as the receiver operating characteristic (ROC) curve. We can compare the goodness of
ranking of test statistics in a multiple testing procedure by the ROC curve. A multiple
testing procedure is composed of ranking and thresholding test statistics, and a good
ranking of test statistics will often lead to a good testing procedure. The lines for KDfdr

and PRfdr are mostly overlapping, and their rankings of test statistics are significantly
better than those for Pval and midP, which can explain why KDfdr and PRfdr can improve
the control of FDR and yield more power. We can also see that the ranking of Pval is
slightly better than that of midP as the mid-p-values have distorted the original ranking of
p-values. For ψ0 = 1, the lines for GPS are overlapping with those for KDfdr and PRfdr in
sets 1–3, and they have similar rankings of test statistics.
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Figure 2.1: Realized FDR levels (y axis) versus target FDR levels (x axis). Rows 1, 2 and
3 show the plots from sets 1, 2 and 3, respectively. Reference diagonal line as gray line
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Figure 2.2: Number of true positives (y axis) versus target FDR levels (x axis). Rows 1, 2
and 3 show the plots from sets 1, 2 and 3, respectively
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Figure 2.3: True positive rate (y axis) versus false positive rate (x axis). Rows 1, 2 and 3
show the plots from sets 1, 2 and 3, respectively
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As a summary, we have shown that KDfdr and PRfdr outperform Pval, midP and GPS

in the sense that KDfdr and PRfdr can better control the FDR, yield more true positives
and provide a more efficient ranking of test statistics. Pval can control the FDR in sets
1–3, but the realized FDR levels are not as close to the target FDR levels and it yields
significantly less power; midP can improve the control of FDR and power in sets 1 and
2, but it is liberal in the FDR control in set 3. GPS can be liberal or conservative in the
control of FDR and it has less power than KDfdr and PRfdr even when the realized FDR
levels are below the target FDR levels.
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Figure 2.4: Average histograms of p-values and mid-p-values

The result that midP fails to control the FDR in set 3 is contradictory to the obser-
vation and recommendation in Ahmed et al. (2010), where they argued that the use of
mid-p-values can improve the performance of the multiple testing procedures in pharma-
covigilance databases. One key assumption in Ahmed et al. (2010) is that the distribution
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of mid-p-values under null hypotheses is a non-decreasing function. In Figure 2.4, the aver-
age histograms, over 200 iterations, of p-values and mid-p-values from null (black area) and
alternative (grey area) hypotheses for ψ0 = 1 and ψ0 = 5 are plotted. The horizontal solid
line indicates the LBE estimate of the flattened proportion π0π0∗, while the vertical dash
lines show the threshold values for p-values or mid-p-values corresponding to the target
FDR levels 0.05, 0.1, 0.15 and 0.2 for ψ0 = 1 and 0.2 for ψ0 = 5. We can see that the distri-
bution of p-values or mid-p-values from null hypotheses are not necessarily non-decreasing.
The histogram of mid-p-values for ψ0 = 1 shows the most decreasing distribution on the
left side, mid-p-values for ψ0 = 5 the second, p-values for ψ0 = 1 the third, and p-values for
ψ0 = 5 the least. This observation contradicts the assumption of non-decreasing function.
Their simulation results are based on the French pharmacovigilance data, which is not pub-
licly available. The non-deceasing true null density assumption may be more appropriate
for the French data but certainly is not universally satisfied.

2.4 Application
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Figure 2.5: Number of signals (y axis) versus target FDR levels (x axis)
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The proposed procedure PRfdr along with Pval, midP and GPS were applied to the UK
pharmocovigilance data. As of September 2014, there were 1, 617 drugs and 1, 310 adverse
events in the UK database. The numbers of detected signals are reported for each target
FDR level between 0.001 and 0.2. As can be seen in Figure 2.5, for ψ0 = 1, midP detected
the largest number of signals, GPS the second, PRfdr the third, and Pval the smallest. For
ψ0 = 5, the number of signals for PRfdr was larger than that for midP for small target FDR
levels, and PRfdr detected fewer signals than midP when the target FDR level is greater
than about 0.14. Pval also detected the fewest signals when ψ0 = 5 is tested.

Both midP and GPS fail to control the FDR in some simulation settings and are not
further compared here. For ψ0 = 1 and ψ0 = 5, our proposed procedure PRfdr detected
more signals than Pval. Among the additional detected signals by PRfdr for ψ0 = 1, we
find the combination of the pain-killing drug oxycodone and the adverse event nausea or
vomiting. The FDR-adjusted p-value by PRfdr for the combination is 0.005, while the
FDR-adjusted p-value by Pval is 0.051. Nausea or vomiting is known as a common side
effect of oxycodone, for instance see Portenoy et al. (2007), and this association would be
discovered by PRfdr, but not by Pval at target FDR level 0.05.

2.5 Conclusion

We study the multiple testing problem with composite null hypotheses and discrete data.
Pharmacovigilance data is a specific application, and signals can be automatically detected
if the association between a combination of drug and adverse event is higher than the tested
value.

Ahmed et al. (2010) proposed to adopt mid-p-values on filtered cells, and it is assumed
that the distribution of p-values under H0 is non-decreasing. This assumption can adapt
the mixture model of p-values from simple null hypotheses to composite null hypotheses,
however it can be violated in some cases and the control of FDR will not be guaranteed.
In Ahmed et al. (2009), they extended the GPS model to the multiple testing setting and
showed by simulations the extended GPS model outperforms other Bayesian methods. The
extended GPS model uses a two-component gamma distribution to approximate the true
distribution of relative risk, however in reality the relative risk can follow any distribution.
The approximation may not work well in some cases, for example in simulation set 1
where the true relative risk follows a three-component distribution and in set 2 a two-
component distribution, and the control of FDR can be liberal or conservative, as shown
in the simulation.
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In this chapter, we assume no specific distribution on the odds ratio. We propose a
non-parametric empirical Bayes method based on the local FDR to approximately control
the FDR and achieve the maximum power among all the procedures that can control the
FDR. The proposed procedure is free of assumptions on the distribution of true odds ratio.

Further research can be conducted to analyze the goodness of the predictive recursion
density estimate. This non-parametric density estimation method exhibits convergence
property and efficient computation. However, there are certain cases where the accuracy
of density estimation may not be satisfactory, as Padilla et al. (2015) pointed out that the
mixing density estimate by predictive recursion can be over-smooth. Moreover, it remains
unknown whether the local FDR estimate is consistent, and thus the optimality of the
adaptive procedure is not guaranteed.
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Chapter 3

Control the False Discovery Rate of
GWAS with Adjusted Block P-values

3.1 Introduction

In the last two decades, genome-wide association studies (GWAS) have been widely used
to identify the genetic variants that are associated with human diseases or traits. As
of September 2018, there are 71, 673 unique variant-trait associations reported from 3, 567
publications in the GWAS catalog (Welter et al., 2013). In spite of the encouraging success
of GWAS in studying the genetic basis of human traits, there still exist many challenges.
For most complex human traits, the reported variants only explain a small proportion of
the trait variation, which is referred to as “missing heritability” (Manolio et al., 2009).
For example, there are about 180 single-nucleotide polymorphisms (SNPs) found to be
associated with human height (Allen et al., 2010). However, these SNPs can only explain
about 10% of the phenotypic variation while the total genetic contribution to human height
is estimated to be about 80% (Visscher et al., 2008).

In GWAS, the number of SNPs genotyped can be close to 1, 000, 000 or more, while the
number of subjects is on the scale of a few thousand. This is known as the “large p, small
n” problem, and fitting a multiple regression model with all SNPs is not feasible. The
common practice is to test the marginal effect of each SNP separately. Then a stringent
statistical threshold of 5× 10−8 on the marginal p-values is used to control the family-wise
error rate (FWER) at level 0.05. The FWER controlling procedure on marginal p-values
is simple to apply and can accommodate arbitrary dependence among SNPs. However,
such an approach is ill-suited for the GWAS studies of complex diseases or traits for two
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reasons. First, in large-scale multiple testing applications such as GWAS, controlling the
FWER is a less powerful approach than controlling the false discovery rate (Benjamini
and Hochberg, 1995). Second, complex traits are often associated with many SNPs with
small or modest effect sizes, and the power to detect causal SNPs (signals) by simple
linear regression deteriorates with the increase of the number of signals. As an illustrating
example, we randomly simulate 10 to 100 signals with uniformly distributed effect sizes
and compute the p-values from marginal linear regression. Details about the simulation
of genotype and phenotype data can be found later in Section 3 of our simulation studies.
We plot the proportion of signals with p-values no larger than 5 × 10−8 as a function of
the number of signals in Figure 3.1. The proportion decreases steadily as the number of
signals increases, and only about 30% of the signals have p-values under the threshold when
we have 100 signals. To overcome the inefficiency of marginal p-values in GWAS, many
researchers propose to use penalized regression, for instance, see Hoggart et al. (2008), Wu
et al. (2009), and Hoffman et al. (2013). However, the error rates of the selected variables
from penalized regression are unclear.
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Figure 3.1: Proportion of signals with marginal p-values under the threshold of 5× 10−8

We consider the control of the false discovery rate (FDR) in GWAS. Most FDR con-
trolling procedures require independence, but the GWAS test statistics are dependent due
to linkage disequilibrium (LD) between SNPs.
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As an important feature, GWAS typically only genotype a small subset of all SNPs
due to practical and economic reasons, and there is no guarantee that all causal SNPs are
genotyped. The dependence between SNPs is utilized to select the genotyped SNPs such
that most SNPs are reasonably correlated with a genotyped one. But this feature also
makes the definition of true associations on the SNP level difficult. If we use the strict
definition of true associations as those between causal SNPs and the phenotype, we will
miss many causal SNPs that are not genotyped. On the other hand, if we treat the SNPs
that have correlations with the causal SNPs higher than some threshold as having true
associations, it is non-trivial to set an appropriate threshold and there could be several
correlated SNPs for any causal SNP. Furthermore, no matter whether a causal SNP is
genotyped, the neighboring SNPs of the causal SNP tend to have small marginal p-values
due to their correlations with the causal SNP, and we call the phenomenon as signal leakage.
Naive applications of existing FDR procedures are likely to declare these SNPs discoveries,
but classifying such discoveries as true associations can distort the true FDR because there
can be multiple correlated SNPs for each causal SNP.

In a thought-provoking paper, Brzyski et al. (2017) carefully illustrate many fundamen-
tal difficulties of defining true associations and FDR on the SNP level. As many SNPs can
be significantly correlated with a causal SNP, they iteratively group the correlated SNPs
around the tentative causal SNPs into blocks and define true associations on the block level.
More specifically, at each step of their blocking algorithm and among the un-grouped SNPs,
they first find the SNP with the smallest marginal p-value as a new block representative,
then by a fixed threshold they group all SNPs that are correlated with the representative
into the new block. Further tests are carried out on these block representatives. To control
the FDR, they use results from selective inference (Benjamini and Bogomolov, 2014) by
applying existing testing procedures at a more stringent FDR level. There are two proce-
dures proposed. The first testing procedure applies the linear step-up Benjamini-Hochberg
(BH) procedure (Benjamini and Hochberg, 1995) to the marginal p-values of the block
representatives; the second one regresses trait values to block representatives by a special
penalized regression method called geneSLOPE. Specifically, they extend SLOPE (Bogdan
et al., 2015) to the GWAS setting by modifying the penalty sequence. SLOPE (Bogdan
et al., 2015) is an extension of the Lasso (Tibshirani, 1996), and it can achieve the FDR
control under orthogonal designs. Brzyski et al. (2017) show approximate FDR control
of their testing procedures in simulation studies, and the geneSLOPE procedure performs
better than the univariate testing procedure.

However, the procedures in Brzyski et al. (2017) rely on several tuning parameters, and
their performance can be sensitive to these parameters, which include the initial screening
p-value threshold, the block correlation threshold, and the true positive correlation thresh-
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old. To be more specific, we will focus on the last parameter first. In their simulation
studies, a block representative is classified as a true positive if the correlation between the
representative and any causal SNP is no smaller than a threshold of 0.3. It is clear that
the realized FDR and power depend on this threshold. Furthermore, this definition of true
positive still allows multiple true associations for each causal SNP.

Similar to Brzyski et al. (2017), we aim to control the FDR on the block level. We first
introduce a new definition of the true associations that are one-to-one to the causal SNPs.
We obtain a list of tentative causal SNPs through forward selection. We then compute the
adjusted block p-value for each block by modeling the effect of signal leakage. Finally, the
BH procedure naturally applies to the block p-values and achieves the FDR control.

The chapter is organized as follows. In Section 2, we first introduce the multiple testing
problem for GWAS and define the FDR on the block level. Then, we describe our methods
to control the FDR. In Section 3, we illustrate the performance of our procedure with a
simulation study, and compare our procedure to other candidate methods. In Section 4,
we apply our procedure to the North Finland Birth Cohort (NFBC) study (Sabatti et al.,
2009) and show additional true discoveries and potential true discoveries. We conclude
with some remarks and conclusions in Section 5.

3.2 Methods

In this section, we describe the multiple testing problem for GWAS and define the false
discovery rate (FDR; Benjamini and Hochberg 1995) on the block level. Some neighboring
single nucleotide polymorphisms (SNPs) exhibit relatively high dependence, and the distri-
bution of test statistics of null hypotheses correlated with non-null hypotheses is distorted
due to signal leakage. We derive the effects of causal SNPs on the z-values of correlated
non-causal SNPs. Given all the causal SNPs, we propose an oracle procedure to take the
effects of signal leakage into consideration. We group the SNPs based on the correlation
structure, compute block p-values by adjusting for the effects of causal SNPs outside the
blocks, and apply the BH procedure to adjusted block p-values for the FDR control. The
locations of causal SNPs are unknown, and we propose an adaptive procedure to find
tentative causal SNPs by forward selection and estimate adjusted block p-values.
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3.2.1 Multiple Testing Problem for GWAS

We conduct a GWAS study to identify the loci in the genome that are associated with
the phenotype of interest. Suppose we have collected the trait values Y and genotype
scores X for a collection of M SNPs across the genome from a sample of n individuals.
The phenotype of interest can be a continuous trait (e.g., height, blood pressure) or a
discrete trait (i.e., disease and no disease). For simplicity, we focus on GWAS studies
with continuous traits. Under the commonly used additive model of inheritance, X is the
number of minor alleles and takes values in {0, 1, 2}.

For an unknown set of causal SNPs C, we assume the commonly used linear additive
model

Yi = β0 +
∑
j∈C

βjWij + εi, i = 1, 2, . . . , n, (3.1)

where Wij denotes the genotype for the jth causal SNP of the ith subject and εi ∼ N(0, σ2)
is the random error. Because the causal SNPs are not necessarily genotyped, we use W
instead of X to emphasize their difference.

Similar to Brzyski et al. (2017), we proceed to test on the block level. The exact
blocking procedure used is not crucial, and we use the hierarchical clustering method as
in Candes et al. (2018). More specifically, we use the single-linkage clustering with the
correlation between genotype scores of SNPs as the similarity measure. The advantage of
this blocking procedure is that it only depends on the Pearson correlation between SNPs
and is independent of test statistics. Other blocking procedures can also be used, for
example, the sequential blocking method of Brzyski et al. (2017) and the interval graph-
based method of Kim et al. (2017).

Assume all M SNPs are grouped into m relatively independent blocks, then we define
the truly associated blocks as follows. If a causal SNP is genotyped, the block that contains
it is truly associated with the phenotype. If a causal SNP is not genotyped, we find the
genotyped SNP that correlates the most with the causal one as its representative, then
we define the block that contains the representative as truly associated. Finally, we define
the rest of the blocks as not associated with the phenotype. Unlike the true association
definition in Brzyski et al. (2017), our definition establishes a one-to-one mapping between
the truly associated blocks and causal SNPs and does not depend on tuning parameters.

Then the multiple testing problem simplifies to testing whether a block is truly associ-
ated with the phenotype or not,

Hj : block j is not associated with the phenotype
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for j = 1, 2, . . . ,m. We define the FDR on the block level as E[V/max{R, 1}] where V
and R are the numbers of falsely and total rejected blocks, respectively.

3.2.2 Adjusted Block p-values

Fitting a multiple regression to all the SNPs is not feasible, as the number of SNPs is often
much larger than the number of subjects in GWAS. A marginal linear model

Yi = b0 + bjXij + ci,

can be fitted to test Hj : bj = 0 for SNP j = 1, 2, . . . ,M , and we can compute its z-value
as

zj =
XT
j Y√

n− 1σSj
,

where Sj is the standard deviation of elements in Xj. Note that in reality, σ is unknown
and needs to be estimated.

For a causal SNP c and a non-causal SNP k, it can be shown that the asymptotic joint
distribution of z-values is a multivariate normal distribution, i.e.(

Zk
Zc

)
∼MVN

((√
n−1
σ

Scrkcβc√
n−1
σ

Scβc

)
,

(
1 rkc
rkc 1

))
, (3.2)

where rkc is the Pearson correlation coefficient of Xk and Xc, and Sc is the standard
deviation of Xc. The details of the derivation can be found in Appendix. A similar result
is also shown in Hormozdiari et al. (2014), and a parallel result for the joint distribution
of association statistics in case-control GWAS studies can be found in Han et al. (2009).

Then, conditioning on Zc, Zk follows a normal distribution given as follows,

Zk|Zc ∼ N(rkcZc, 1− r2
kc).

That is, conditioning on Zc, the expectation of Zk is simply the product of Zc and the
Pearson correlation coefficient between them, and the variance is a function of the corre-
lation. The conditional expectation of Zk implies that simply decreasing the dependence
between the SNPs that are tested, for example in Brzyski et al. (2017), may not work well,
and the effects of causal SNPs need to be adjusted properly. We can use the conditional
distribution to remove the effects of causal SNPs on non-causal ones and calculate adjusted
p-values.

46



Then by applying Equation (3.2) and its conditional form in a multivariate case, for
each block we can specify the joint distribution of z-values conditioning on the z-values of
causal SNPs outside this block. For any block K, denote the index set of nK SNPs in the
block as K, and we write the conditional distribution as

WK|C ≡ ZK|ZC\K ∼MVN(µK,ΣK),

where WK|C = (WK|C,1, . . . ,WK|C,nK
)T is defined as the random vector of ZK conditional on

ZC\K, µK = (µK,1, . . . , µK,nK
)T is the conditional mean vector, and ΣK is the conditional

variance-covariance matrix. Assume the z-values in block K are zK = (zK,1, . . . , zK,nK
)T .

Denote the element-wise maximum departure of z-values from the conditional mean as
d = max

i=1,...,nK

| zK,i − µK,i |. Then the adjusted block p-value for block k is

Pr( max
i=1,...,nK

| WK|C,i − µK,i |≥ d),

which can be computed using the multivariate normal distribution function.

We compute adjusted block p-values by removing the effects of causal SNPs on non-
causal SNPs. Then, we apply the BH procedure to adjusted block p-values at a nominal
level α to control the FDR.

3.2.3 Algorithms to Find Tentative Causal SNPs

To adjust for the signal leakage, we need the knowledge of the causal SNPs and to compute
the z-values. However, the locations of causal SNPs are unknown in reality and is the aim
of a GWAS study. Moreover, the computation of z-values depends on the unknown σ
in Equation (3.1). In Figure 3.1, the detection power of marginal test decreases as the
number of signals increases because the unmodeled signals inflate the variance estimate.
We propose to estimate the causal SNPs and σ simultaneously through a forward selection
algorithm, which sequentially adds tentative causal SNPs until the consecutive reduction
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in σ estimates is reasonably small. The details are as follows.

Algorithm 1: Simple forward selection algorithm

1 Calculate p-values for all SNPs across the genome with marginal
linear regression, and select the most significant SNP into the set of
tentative causal SNPs P ;

2 Fit a linear regression to the SNP in P , and denote the estimate of σ
as σ̂old;

3 Compute the p-values for the SNPs outside P conditioning on the
SNPs in P with multiple linear regression, and select the most
significant SNP into P ;

4 Re-fit a multiple linear regression to the SNPs in P , and the new
estimate of σ is σ̂new;

5 If |σ̂new − σ̂old|/σ̂old ≤ c, where c is a threshold, the search stops.
Otherwise, set σ̂old = σ̂new and return to step 3.

We only use the p-values from marginal linear regression in step 1 to select the most
significant SNP and then use conditional p-values in the remaining steps. Our goal is to
correct for most of the signal leakage and obtain a good estimate of σ. To this end, a
relatively stringent threshold of c is preferred to include most of the strong signals or their
highly correlated neighbors. By default, we set c = 0.5%.

The simple search algorithm is intuitive but requires intense computation. A GWAS
study often contains millions of SNPs, and we need to compute conditional p-values for
all the SNPs outside P at each iteration. For the purpose of computation efficiency, we
proceed with a batch mode that only recomputes conditional p-values for the SNPs whose
p-values are under a threshold p, for example p = 0.05, in each batch, and then repeat
the batches until convergence. Moreover, we may first scan all the SNPs and use available
variable selection methods, such as Lasso, to select a subset of SNPs as a starting point,
then find tentative causal SNPs in the selected SNPs. The batch algorithm is described in
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Algorithm 2.

Algorithm 2: Batch search algorithm

1 Use Lasso to select a subset of SNPs S;
2 Initialize the candidate set as C = ∅, the set of tentative causal SNPs
P = ∅, and the old estimate of σ as a reasonably large number, for
example σ̂old = 1× 108;

3 Start a batch. Set the new batch indicator δ = 1. Compute a p-value
for each SNP in S \P conditioning the SNPs in P , set the candidate
set C as the set of SNPs that have p-values smaller than p;

4 Compute the p-values for the SNPs in C conditioning on the SNPs in
P . Update the candidate set C, that is, keep only the SNPs with
p-values smaller than p in C. Set δ = 0;

5 Select the most significant SNP in C into P . Fit a multiple linear
regression to the SNPs in P , and obtain a new estimate of σ as σ̂new;

6 Check the convergence criterion.

(a) If |σ̂new − σ̂old|/σ̂old > c, keep searching within the current batch by
going to step 4;

(b) If δ = 1 and |σ̂new − σ̂old|/σ̂old ≤ c, the search stops;

(c) If δ = 0 and |σ̂new − σ̂old|/σ̂old ≤ c, start a new batch by going to step
3;

3.3 Simulations

We conduct simulation studies to investigate the control of the FDR and power of our
method.

3.3.1 Candidate Methods

We consider the following candidate methods in the simulation:
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Adaptive: Our proposed method. We first find tentative causal SNPs with the batch
search algorithm 2, estimate σ in Equation (3.1) by fitting a multiple linear model to the
tentative causal SNPs, and estimate marginal z-values for all the SNPs. Then we compute
the adjusted block p-values conditional on the tentative causal SNPs outside the blocks,
and apply the BH procedure at a target FDR level α.

Oracle: Same as Adaptive, except that we use the true locations of causal SNPs and
the true σ.

GeneSLOPE: The proposed GeneSLOPE procedure in Brzyski et al. (2017) using our SNP
block partitions. As in their paper, we screen out the SNPs that have marginal p-values
smaller than 0.05 and apply the GeneSLOPE procedure to the block representatives.

3.3.2 Simulation Setting

We applied HapGen2 (Su et al., 2011) to simulate genotype data across 22 chromosomes
and used the European population in the 1000 Genomes project (Consortium et al., 2010)
as the reference data. Then, we randomly sampled M = 10, 000 SNPs for n = 2, 000
individuals. We used the commonly used additive model (3.1), and computed the genotype
scores X ∈ {0, 1, 2} for each SNP as the number of minor alleles.

We randomly selected the set of causal SNPs C among all the SNPs and varied the
number of causal SNPs, which took values {10, 20, . . . , 100}. The effect size β was randomly
generated and simulated by two distributions: set 1, Unif(0.6

√
2logM, 1.4

√
2logM) as in

Brzyski et al. (2017); set 2, N(0, 2). Random errors εi’s were simulated from N(0, 1).
Then, we calculated the trait values Y base on the additive model (3.1).

To facilitate the comparison of candidate methods, we applied the same blocking
method as in Candes et al. (2018), i.e., hierarchical clustering with the absolute value
of Pearson correlation between genotype scores X as the similarity measure and 0.3 and
0.5 as the single-linkage cutoff ρ. The target FDR level α = 0.1.

3.3.3 Simulation Results

We now illustrate the performance of candidate methods with realized FDR levels and the
number of true positives. The following results are based on 100 iterations. For ρ = 0.3
in Figure 3.2, we can see that the realized FDR levels of Oracle and Adaptive are close
to the target FDR level α = 0.1. In set 1 where the effect sizes are uniformly distributed,
GeneSLOPE has inflated FDR levels, and the largest realized FDR level is about 50% over
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Figure 3.2: Realized FDR levels and true positives for various numbers of signals (ρ = 0.3)

the target level. We also see that Oracle and Adaptive are more powerful than GeneSLOPE,
especially when the number of signals is large. The power advantage of our procedure over
GeneSLOPE is more pronounced in set 2 where many effect sizes are small or modest.

The simulation results for ρ = 0.5 are shown in Figure 3.3. The realized FDR levels
of Oracle and Adaptive are very close to the target FDR level. On the other hand, the
realized FDR levels of GeneSLOPE can be highly inflated with a maximum of about 0.31.
The inflation of the realized FDR levels is also shown in the simulation results of Brzyski
et al. (2017), though to a less extent. The increasing trend of realized FDR may be due to
the fact that GeneSLOPE fails to account for the dependence between blocks and the effects
of signal leakage are more pronounced when the number of signals is large. Our procedure is

51



● ● ● ● ● ● ●
● ● ●

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

● Oracle
Adaptive
GeneSLOPE

Realized FDR
se

t 1

●

●

●

●

●

●

●

●

●

●

20 40 60 80 100

10
20

30
40

50
60

70
80

True positives

●

● ●
● ● ● ● ●

●
●

20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

se
t 2

●

●

●

●

●

●

●

●

●

●

20 40 60 80 100

10
20

30
40

50
60

Number of signals

ρ = 0.5

Figure 3.3: Realized FDR levels and true positives for various numbers of signals (ρ = 0.5)

more powerful than GeneSLOPE even when the realized FDR levels of GeneSLOPE is almost
3 times of ours.

In Figure 3.4, we compare the performance of candidate methods with blocking thresh-
olds ρ ∈ {0.3, 0.4, . . . , 0.7}. The number of causal SNPs simulated is set to 100. We see
that Oracle and Adaptive are able to achieve the FDR control at all the levels of blocking
thresholds. GeneSLOPE has a reasonable FDR control when ρ = 0.3 but fails to control the
FDR when ρ is larger. The realized FDR of GeneSLOPE has a noticeable increasing trend,
and the largest realized FDR is above 0.4 when ρ = 0.7. When a larger blocking thresh-
old is used, the dependence between blocks gets stronger, thus exacerbating the effects of
signal leakage. As for the detection power, we can see that Adaptive manages to detect
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Figure 3.4: Realized FDR levels and true positives for various blocking thresholds ρ

more true positives, even when GeneSLOPE has much inflated realized FDR levels. We can
also see that the number of true positives increases with the blocking thresholds, and this
is because there could be multiple signals residing in the same block when the blocking
threshold is small.

We also run simulations with the sequential blocking procedure in Brzyski et al. (2017)
and both their and our definitions of truly associated blocks. The results are similar to the
results above and are shown in the Appendix.
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3.4 Application

We apply our proposed procedure to the North Finland Birth Cohort (NFBC) study
(Sabatti et al., 2009). We obtained access to raw phenotype and genotype data from
dbGaP with accession number phs000276.v2.p1. The raw data contains the genotype and
phenotype data for 364, 590 genetic markers and 5, 402 subjects.

We aim to identify the causal SNPs that are associated with the four lipid phe-
notypes: high-density lipoproteins (HDL), low-density lipoproteins (LDL), triglycerides
(TG), and total cholesterol (CHOL). We applied the proposed procedure Adaptive along
with GeneSLOPE (Brzyski et al., 2017) to the NFBC data and compared the results to the
discoveries that are reported by Global Lipids Genetics Consortium (GLGC; Willer et al.
2013), which is a much larger study that contains 188, 577 subjects.

We used the same pre-processing protocol in Sabatti et al. (2009) to filter the subjects.
Among the 5, 402 subjects in the study, 487 were excluded from the sample as they were
either taking medication for diabetes or not fasted, and the remaining subjects were used
for further analysis. Then, we fitted multiple linear regression to the four lipids, with
independent variables as gender, pregnant status, oral conception and the first five prin-
ciple components of genotype scores as population structure variables. We computed the
residuals from linear regression and used them as adjusted trait values in the following
analysis.

We also conducted quality control procedures in terms of genetic markers. We used
the R package “snpStats” (Clayton, 2012) and excluded the markers with call rate ≤ 95%,
minor allele frequency < 0.01 or Hardy-Weinberg equilibrium p-value < 0.0001. We also
imputed missing genotype data for a SNP as the mean of genotype scores for the SNP, as
in Brzyski et al. (2017).

We divided the SNPs into blocks with hierarchical clustering and used ρ = 0.5 as
the single-linkage cutoff. For our proposed procedure Adaptive, we treat the SNPs on
different chromosomes as independent. We first searched for tentative causal SNPs inside
each chromosome and aggregated the results across the 22 chromosomes. Then, we fitted
a multiple linear regression to the set of tentative causal SNPs and obtained an estimate
of σ. We computed the z-values for all the SNPs and adjusted p-values for blocks, then
applied the BH procedure. For GeneSLOPE, we selected block representatives as the SNPs
with the smallest marginal p-values, and used block representatives.

We compared the rejections by Adaptive and GeneSLOPE to the discoveries in the
GLGC study. Specifically, for each rejected block, we found the smallest marginal p-value
reported in GLGC for the SNPs within 1Mb distance from any SNP in the block. We
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Figure 3.5: Histogram of minimum marginal p-values for the SNPs in GLGC within 1Mb
distance from each rejection by Adaptive

treated the rejections that have the smallest marginal p-values smaller than 5 × 10−8 as
true discoveries, similar to Brzyski et al. (2017). It turned out that our procedure Adaptive
generated (about) the same number of true discoveries as GeneSLOPE. However, Adaptive
successfully identified more associated blocks than GeneSLOPE. In Figure 3.5, we plotted
the histogram of minimum p-values for rejections by Adaptive. We can clearly see that
Adaptive identified some additional blocks with modest effect sizes and their minimum
marginal p-values are on the magnitude of 10−7 to 10−2.

The common practice of GWAS is to compare marginal p-values to the Bonferroni-
corrected cutoff 5×10−8 and report the SNPs with p-values under the cutoff as discoveries.
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There could be two drawbacks in this procedure. The first one is the stringent Bonferroni-
corrected cutoff aims to control the family-wise error rate (FWER) at level 0.05, but it
is known to be very conservative, especially for complex traits. The second one is that
the marginal p-values may not be powerful enough and fail to identify weak or modest
associations, and this is due to the fact that marginal regression leads to an inflated estimate
of residual variance σ2 (Hoffman et al., 2013).

The adjusted p-values for additional rejected blocks from Adaptive are quite small,
for instance, for HDL the block p-values are between 5.19 × 10−6 and 3.66 × 10−5. We
also fitted multiple linear regression to the representative SNPs for rejected blocks from
Adaptive, and the additional rejections turned out to be very significant. For example,
the p-values for HDL are between 1.51× 10−5 and 2.58× 10−4. The additional rejections
for the other three phenotypes were also significant. Therefore, Adaptive yields about
the same number of true discoveries, and the additional rejections can be potential true
discoveries.

The adjusted block p-values from blocks with no association would follow closer to
uniform distribution after we remove the effects of signal leakage. This allows us to apply
the recent development of multiple testing methods to further improve the detection power.
For instance, Lei and Fithian (2018) proposed a framework AdaPT to use side information
in multiple testing problems. We computed the average of minor allele frequency of SNPs
in a block as the block minor allele frequency. Then, we applied AdaPT to the NFBC data
with the adjusted block p-value as test statistics and the block minor allele frequency as
side information, and yielded more rejections. For example, AdaPT identified 4 more blocks
that have minimal marginal p-values within 1Mb distance smaller than 5×10−8 in GLGC.

3.5 Conclusion

The use of the FDR in GWAS is still limited compared with its wide applications in other
fields, for example expression quantitative trait loci (eQTL) studies. This is mainly due to
the fact that neighboring SNPs are often correlated with each other, and the SNPs that are
correlated with causal SNPs tend to yield small p-values due to signal leakage. Therefore,
one causal SNP may correspond to several rejections of null hypotheses of no association
if we naively use test statistics from marginal regression and do not account for the local
dependence. The definition of true positive is also troublesome as there may be a few SNPs
that are correlated with one causal SNP, and the FDR is distorted as a consequence.

In light of testing groups of null hypotheses in the literature (for example, Benjamini
and Heller 2007; Siegmund et al. 2011), Brzyski et al. (2017) creatively tackled this problem
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by grouping the SNPs into blocks based on the correlation and defining the FDR on the
block level instead of the SNP level. Brzyski et al. (2017) proposed to screen the SNPs
and select block representatives, and then apply a testing procedure to the test statistics
of selected hypotheses at a more stringent FDR level. However, one notable drawback is
that the effects of causal SNPs on correlated neighbors are not accounted for even if the
dependence between representative SNPs is greatly decreased due to blocking.

We take on the challenge and quantify the effects of z values of causal SNPs on cor-
related neighbors. Then, we propose a search algorithm to locate tentative causal SNPs
and compute block p-values by removing the effects of tentative causal SNPs outside a
block. Hence, the block p-values are uniformly distributed for the blocks with no causal
SNPs inside, and we are able to apply testing procedures for the FDR control that are only
applicable to conventional settings where null hypotheses are independent. The classical
BH procedure is used in our procedure.

Our procedure is able to control the FDR at a nominal level in different settings and
yield more detection power than other candidate methods. Moreover, our procedure is
quite flexible in the choice of testing procedures for the FDR control, as the effects of
signal leakage are already accounted for. We may combine the block p-values with side
information such as minor allele frequency and annotation data to further improve the
detection power.
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Chapter 4

Pleiotropy-Informed Conditional
Local False Discovery Rate in GWAS
with Shared Control

4.1 Introduction

Since genome-wide association studies (GWAS) were first introduced in 2005, they have
become the standard method for identifying associations between single nucleotide poly-
morphisms (SNPs) and human diseases/traits. As of September 2016, more than 24, 000
associations have been reported from the GWAS catalog (Welter et al., 2013). Although
GWAS have been successful in identifying a relatively large number of associations, the
detection power is still limited. For complex human traits, the reported associations can
only explain a small proportion of heritability, and this phenomenon is referred to as “miss-
ing heritability” (Manolio et al., 2009). For example, there are 128 SNPs identified to be
associated with schizophrenia from a large study by the Psychiatric Genetics Consortium
(PGC), but these SNPs only explain about 3% of the variation while the total variation
due to genetic effects is estimated as 80% (Ripke et al., 2014).

In order to address the problem of missing heritability, many efforts have been made to
increase the power of GWAS. A simple method is to increase the sample size, but this can be
time-consuming and expensive. We can also obtain a larger sample size by a meta-analysis
that combines multiple similar studies (Begum et al., 2012). However, a meta-analysis
would require data access to other related studies in addition to the coordination between
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different study groups. In summary, increasing the sample size directly or through meta-
analysis can be economically or administratively challenging, and we focus on developing
statistical methods to improve the detection power given the current sample size.

The common practice of GWAS is to compute marginal p-values for all the SNPs
across the genome and apply a very stringent Bonferroni-corrected threshold to control
the family-wise error rate (FWER). The use of FWER can be very conservative in the
setting of large-scale multiple testing problems, such as GWAS. The detection power is
further limited when complex phenotypes are of interest. Complex diseases/traits are
often associated with many SNPs with small or modest effect sizes.

To explain more phenotypic variation, it would be of great value to integratively analyze
GWAS data with the aid of additional information or covariates, for example annotation
data and minor allele frequency. A genetically related auxiliary phenotype is of critical
importance to identify associated genetic variants for the primary phenotype. Recent stud-
ies have shown that some SNPs are associated with multiple genetically related complex
traits, and this phenomenon is known as pleiotropy. Pleiotropy exists commonly in genes,
for example, among all the SNPs that are associated with some trait, about 16.9% of
them are associated with more than one trait (Sivakumaran et al., 2011). These geneti-
cally related phenotypes have a similar genetic mechanism and shared associated SNPs.
Therefore, we can leverage the pleiotropy to increase the probability of identifying weakly
associated SNPs by jointly analyzing genetically related phenotypes.

Some researchers (for example, see Cotsapas et al. 2011; Sklar et al. 2011) have uti-
lized the pleiotropy and reported more associated SNPs, however they still use the overly-
stringent Bonferroni-corrected p-value threshold. Andreassen et al. (2013b) take advantage
of the pleiotropy between schizophrenia and bipolar disorder and successfully identify more
associated SNPs, by extending the false discovery rate (FDR; Benjamini and Hochberg
1995) to the conditional FDR in a two-phenotype framework. The FDR is defined as the
expected proportion of false positives among all the rejections, and controlling the FDR is
more powerful than controlling the FWER in large-scale multiple testing problems. For all
SNPs, they compute and threshold the conditional FDR, which is the posterior probability
that a SNP is null for the primary phenotype given that the p-values for both phenotypes
are no greater than their respective observed p-values. However, Andreassen et al. (2013b)
require that the two GWAS data have distinct case and control samples, which may not
be the case for many GWAS studies. It is common for two related GWAS studies to share
a part of the control sample as recruiting distinct samples to save cost. The shared con-
trol sample will induce a positive correlation between test statistics of two GWAS studies
and make the statistical inference more challenging. For example, when we observe small
p-values for null SNPs of one GWAS, the corresponding p-values for its related GWAS also
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tend to be small. Liley and Wallace (2015) extend the estimation method of the condi-
tional false discovery rate to allow the shared control by explicitly modeling the positive
correlation under the null hypothesis. However, one noticeable drawback of the methods
in Andreassen et al. (2013b) and Liley and Wallace (2015) is that there is no guarantee
of the FDR control by thresholding the conditional FDR. Moreover, the correlation can
be complicated as its effect may vary for combinations of null and non-null SNPs for two
GWAS. In this chapter, we carefully model the correlation due to the shared control and
estimate the conditional local FDR.

This chapter is organized as follows. In Section 2, we propose a method to model the
z-values from the primary and auxiliary GWAS and estimate the conditional local FDR. In
Section 3, we run the simulation under independent and dependent cases to illustrate the
performance of our proposed procedures. In Section 4, we apply our method to the GWAS
data of schizophrenia with auxiliary summary statistics of bipolar disorder. Finally, we
conclude the chapter with some remarks and discussions in Section 5.

4.2 Methods

In this section, we first propose a method to estimate the conditional local FDR under a
bivariate normal mixture model of z-values from the primary and auxiliary genome-wide
association studies (GWAS). The z-values from shared control GWAS are not independent
of each other, and our model takes into consideration the correlation arising from shared
control. We then use an expectation-maximization (EM) algorithm to estimate the pa-
rameters in the mixture model. Then, we estimate the conditional local FDR for each
hypothesis. It is well known that there may exist high correlations between neighboring
SNPs (also known as linkage disequilibrium), and we apply the blocking and adaptive
pruning procedures to mitigate the correlation effects.

4.2.1 Probabilistic Model of Test Statistics from GWAS

We conduct a GWAS study to identify the genomic loci that are associated with the
phenotype of interest. Suppose we have collected the phenotypes Y and genotype scores
X for a collection of m single nucleotide polymorphisms (SNPs) across the genome from a
sample of n individuals. The phenotype of interest can be a continuous trait (e.g. height,
blood pressure) or a discrete trait (i.e. disease and no disease). In this chapter, we focus on
the case-control GWAS study, and the trait values Y take values in {0 = no disease, 1 =
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disease} as the disease status. The genotype scores X can have different supports in
different genetic models. Under the commonly used additive model of inheritance, X is
the number of minor alleles and takes values in {0, 1, 2}. Then, we naturally have the
following logistic regression model,

log(
P

1− P
) = α +XTβ, (4.1)

where P = Pr(Y = 1|X) is the disease risk, α is the intercept, and β is a coefficient vector
of the log odds ratios for SNPs. Other covariates such as population stratification may
also have an influence on the disease risk, and they can easily be accommodated by the
logistic model.

We are interested in identifying the SNPs that are associated with the phenotype of
interest, and testing simultaneously

Hi : βi = 0

for i = 1, 2, . . . ,m.

The number of genotyped SNPs is often much larger than the number of subjects in
GWAS, and a joint model of all the SNPs cannot be fitted. Instead, a univariate logistic
regression model can be fitted, and the summary test statistics are computed for each
SNP. We shall use the z-values as our test statistics in the probabilistic model. Sometimes,
z-values are missing in the GWAS results. If the p-value (P ) and odds ratio (OR) are
given, we can compute the z-value (Z) as

Z = sign(1−OR)Φ−1(P/2),

where sign is the sign function and Φ is the cumulative distribution function (CDF) of
standard normal distribution.

Note that in GWAS, SNPs are often highly corrected with their neighbors, and this is
known as linkage disequilibrium. For simplicity, we first assume that SNPs are independent
of each other and will tackle the problem of linkage disequilibrium in Section 4.2.3.

We first start with one GWAS study. From the asymptotic properties of maximum
likelihood estimators for logistic regression, we have

β̂|β ∼ N(β, se(β̂)2).

Then, the observed z-value for that SNP is computed as

Z =
β̂

se(β̂)
,
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where se is the standard error, and with simple derivation, we have

Z|β ∼ N(
β

se(β̂)
, 1).

We consider the effect size β for a SNP as a random variable and assume β follows a
mixture distribution of a point mass at 0 with probability p = π0 and a normal distribution
with mean 0 and variance σ2 with probability p = 1− π0, i.e.,

β ∼

{
0, p = π0;

N(0, σ2), p = 1− π0.

Similar models have been considered in the literature, for example, see Liley and Wallace
(2015) and Zhang et al. (2018).

Then, the marginal distribution of z-values is

Z ∼

{
N(0, 1), p = π0;

N(0, 1 + σ2

se(β̂)2
), p = 1− π0.

That is, the observed z-values follow a mixture of two normal distributions with mean 0
and different variances. It is known that for the SNPs across the genome, the standard
error differs. We can approximate the standard errors for different SNPs with the mean or
median of all the standard errors and denote the approximation as σ′. Then, we can write

Z ∼

{
N(0, 1), p = π0;

N(0, 1 + σ′2), p = 1− π0.

Now, we extend the above probabilistic model to two related GWAS 1 and 2, where
GWAS 1 is the primary study and GWAS 2 is the auxiliary one. We aim to improve
detection power for primary GWAS with the aid of auxiliary GWAS.

At a SNP, given the effect sizes β1 and β2, then the observed z-values jointly follow(
Z1

Z2

) ∣∣∣∣∣
(
β1

β2

)
∼MVN

((
β1

se(β̂1)
β2

se(β̂2)

)
,

(
1 ρ
ρ 1

))
,

where ρ is the correlation between the z-values. The primary z-values and auxiliary z-
values are not independent and the correlation arises from the shared control sample in
the two GWAS studies.
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Integrating the joint conditional distribution of z-values over the distribution of (β1, β2),
we can compute the joint marginal distribution of z-values as

f(Z1, Z2) = π00f00(Z1, Z2) + π01f01(Z1, Z2) + π10f10(Z1, Z2) + π11f11(Z1, Z2),

where π00, π01, π10 and π11 are the proportions of true status combinations for primary
and auxiliary hypotheses H00, H01, H10 and H11 with 0 indicating null and 1 indicating
alternative, and f00(Z1, Z2), f01(Z1, Z2), f10(Z1, Z2) and f11(Z1, Z2) defined below are the
joint probability distribution functions (PDFs) of (Z1, Z2) of the four components,

f00(Z1, Z2) = MVN

((
0
0

)
,

(
1 σ00

σ00 1

))
,

f01(Z1, Z2) = MVN

((
0
0

)
,

(
1 σ01

σ01 1 + σ2
2

))
,

f10(Z1, Z2) = MVN

((
0
0

)
,

(
1 + σ2

1 σ10

σ10 1

))
,

f11(Z1, Z2) = MVN

((
0
0

)
,

(
1 + σ2

1 σ11

σ11 1 + σ2
2

))
,

where σ1 and σ2 are the values of σ′ for the primary and auxiliary GWAS, and σ00, σ01, σ10

and σ11 are the covariances between the primary and auxiliary z-values for the four com-
ponents. The induced correlation between test statistics under null has been investigated
in the literature, and an explicit formula of σ00 is readily available (Lin and Sullivan 2009;
Zaykin and Kozbur 2010). We need to develop an algorithm to estimate other parameters
in the bivariate normal mixture model.

We choose the false discovery rate (FDR; Benjamini and Hochberg 1995) as the error
rate. We can define the conditional local false discovery rate (CLfdr; Ferkingstad et al.
2008; Zablocki et al. 2017) as

CLfdr(z1|z2) = Pr(Hi is true|z1, z2)

=
π00f00(z1, z2) + π01f01(z1, z2)

f(z1, z2)
.

We can easily see that the conditional local FDR computes the posterior probability of pri-
mary null hypothesis being true, conditioning on the primary and auxiliary test statistics.
The conditional local FDR was proved to be the optimal test statistics (Du et al., 2014) to
form the oracle rejection region SOR = {(z1, z2) : CLfdr(z1, z2) ≤ C}, where 0 < C < 1 is a
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cut-off. That is, among all the rejection regions that can asymptotically control the FDR
at some nominal level, the rejection region constructed by thresholding the conditional
local FDR has the largest average number of rejections and the highest power.

Given the conditional local FDR for each hypothesis Hi, similar to Cai and Sun (2009),
we use the following oracle procedure to control the FDR at level α,

1. Order all the hypothesis pairs by CLfdr and denote the increasing CLfdr values by
CLfdr(1), . . . ,CLfdr(m);

2. Reject the k hypotheses with the smallest CLfdr values, where k = max{j :
∑j

i=1 CLfdr(i)
j

≤
α}.

The above oracle procedure is formed by thresholding the optimal test statistics. It is
the optimal procedure for the multiple testing problem with auxiliary statistics available.

4.2.2 An Expectation-Maximization Algorithm

The parameters in the four-component bivariate normal mixture models can be esti-
mated by an expectation-maximization (EM) algorithm. The true statuses of primary
and auxiliary hypotheses are unknown and latent variables. For simplicity of notations,
we denote the vector of z-values as Zi = (Z1i, Z2i), the vector of proportion parame-
ters as π = (π00, π01, π10, π11) and the vector of variance/covariance parameters as σ =
(σ1, σ2, σ00, σ01, σ10, σ11), the full data likelihood is given as follows,

L(π,σ) =
m∏
i=1

(π00f00(zi))
H00i(π01f01(zi))

H01i(π10f10(zi))
H10i(π11f11(zi))

H11i ,

and the log-likelihood is

l(π,σ) =
m∑
i=1

π00f00(zi)H00i + π01f01(zi)H01i + π10f10(zi)H10i + π11f11(zi)H11i.

The true statuses of hypotheses H00, H01, H10 and H11 are missing. We use an
expectation-maximization (EM) algorithm to estimate the parameters π and σ. Details
are given in Appendix.
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After we have estimated the parameters in the model, we can further estimate the
conditional local FDR as

ĈLfdr(Z1, Z2) =
π̂00f̂00(Z1, Z2) + π̂01f̂01(Z1, Z2)

f̂(Z1, Z2)
.

In the adaptive procedure, we replace the conditional local FDR in the oracle procedure
with its estimates.

4.2.3 Linkage Disequilibrium and Signal Leakage

Most FDR controlling procedures require independent test statistics, and our EM algo-
rithm to estimate the parameters is designed to maximize the likelihood of independent
observations. However, the linkage disequilibrium between SNPs implies that there exists
strong dependence within neighboring SNPs in GWAS. Furthermore, the dependence can
lead to the phenomenon of signal leakage that the test statistics of non-causal SNPs who
are correlated with a causal SNP may show strong evidence of significance.

To address the issue of dependence, we take advantage of the available genotype and
phenotype data for primary GWAS. We first divide the SNPs into blocks with hierarchical
clustering as in Candes et al. (2018) with the Pearson correlation between genotype scores
of SNPs as the similarity measure and the threshold ρ = 0.5 is used as the single-linkage
cutoff. The multiple testing problem simplifies to testing whether a block contains any
causal SNPs or not. Then, we select the SNP within a block that has the smallest marginal
p-value as the block representative, and the z-values for block representatives are used as
block test statistics. However, this selection step distorts the distribution of test statistics
as it picks the most significant SNP in each block. We use a similar idea as in Candes
et al. (2018) to split the sample into two subsets, say, 20% and 80%, respectively, and we
use the 20% subset to select block representatives while using the other 80% to compute
the test statistics.

The aforementioned procedure can greatly decrease the dependence between test statis-
tics by testing relatively independent block representatives. However, testing block repre-
sentatives may not be enough to mitigate the effects of signal leakage, especially when the
effect size is large. Consider a causal SNP c and a non-causal SNP k, it has been shown
that the expectation of non-causal z-value zk is proportional to the product of causal z-
value zc and their correlation of genotype scores rkc (Han et al. 2009; Hormozdiari et al.
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2014). We propose an adaptive pruning procedure to further alleviate the effects of signal
leakage,

Algorithm 3: Adaptive pruning procedure

1 Order all blocks by the absolute value of z-values of their
representatives in a decreasing order, denoted as z1, z2, . . . , zk,
where k is the number of blocks;

2 Start with block i = 1, and prune blocks j > i that satisfies
|zirij| > c, where rij is the Pearson correlation between the genotype
scores of representatives of blocks i and j, and c is a cutoff;

3 Iterate i in an increasing order through the remaining blocks and
repeat step 2 until no blocks can be pruned.

We can choose the pruning cutoff c based on the knowledge of how much mean shift is
significant enough for a standard normal distribution, and we set c = 0.2 in this chapter.
The conventional pruning only tests whether the correlation r between two SNPs is greater
than some threshold and then keeps the SNP with higher MAF. Our adaptive pruning
procedure performs better as it takes into account the effect size by testing |rz| and has a
higher probability to keep causal SNPs with the knowledge of marginal z-values and the
aid of sample splitting technique.

After the blocking and pruning procedures based on the 20% sample of primary GWAS,
we have a list of remaining block representatives and can use the other 80% sample to com-
pute test statistics for primary GWAS. The test statistics of remaining block representatives
for the auxiliary GWAS can be obtained from its summary statistics. Then we apply the
adaptive FDR control procedure to the z-value pairs of remaining block representatives.

4.3 Simulations

In this section, we describe candidate methods and the simulation setting in both the
independent and dependent cases, and present the simulation results to illustrate the FDR
control and power of our proposed procedure.

4.3.1 Candidate Methods

We consider the following candidate methods in the independent case:
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Oracle: The proportion parameters π00, π01, π10 and π11 are known from the number
of causal SNPs and shared causal SNPs. The variance parameters σ1 and σ2 can be
empirically estimated by the sample variance, and the covariance parameters σ00, σ01, σ10

and σ11 are estimated by the sample covariances. We then compute the conditional local
FDR, and apply the oracle procedure.

Adaptive: Same as Oracle, except that we use the EM algorithm to estimate the
parameters in the bivariate normal mixture model and then use the plug-in estimates of
conditional local FDR.

BH: The linear step-up Benjamini-Hochberg (BH) procedure in Benjamini and Hochberg
(1995) is applied to the p-values from the primary GWAS. It is used as a comparison to
our procedures.

In the dependent case, we perform the blocking and adaptive pruning procedures in
Section 4.2.3, and apply Oracle, Adaptive and BH to the test statistics of remaining block
representatives.

4.3.2 Simulation Setting

We conduct the simulation study to examine the performance of our proposed procedure in
both the independent and dependent cases. The logistic regression model in Equation (4.1)
is used to generate the case-control GWAS data. We use the additive model of inheritance,
and the genotype scores take values in {0, 1, 2} to represent the number of minor alleles.

In the independent case, we generate independent genotype data. We first generate
the minor allele frequencies (MAF) for m independent single nucleotide polymorphisms
(SNPs),

MAFi ∼ Uniform(0.05, 0.5),

for i = 1, 2, . . . ,m. Then we generate the genotype scores for N individuals,

Xji ∼ Binomial(2,MAFi),

for i = 1, 2, . . . ,m and j = 1, 2, . . . , N .

In the dependent case, we simulate genotype data with HapGen2 (Su et al., 2011) across
22 chromosomes with the European population in the 1000 Genomes project (Consortium
et al., 2010) as reference data.

Next, we randomly select causal SNPs from the m SNPs for the primary disease and
the auxiliary one. For simplicity, the numbers of causal SNPs for two diseases are assumed
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to be equal, denoted by m1. The level of pleiotropy is characterized by the proportion of
shared causal SNPs in the m1 causal SNPs. The effect sizes for causal SNPs of primary
and auxiliary diseases are simulated as

β1 ∼ N(0, σ2
1),

β2 ∼ N(0, σ2
2),

where σ2
1 and σ2

2 are the variances of effect sizes for causal SNPs. The effect sizes for
non-causal SNPs are 0.

The intercept α is chosen to indicate the level of prevalence of the disease. Then, for
individual j = 1, 2, . . . , N , we compute the probabilities Pj1 and Pj2 for having the primary
and auxiliary diseases, respectively, by the logistic model in Equation (4.1). The disease
status Y is generated as,

Yj1 ∼ Bernoulli(Pj1),

Yj2 ∼ Bernoulli(Pj2).

Again for simplicity, we assume the two GWAS studies have the same sample size n,
and each GWAS has equal numbers of control and case subjects n/2. Specifically, we
sample n/2 control and n/2 case subjects based on the disease status of the N individuals.
The level of shared control is characterized by the proportion of shared control subjects in
the n sample. We make sure no shared case subjects between the two GWAS is included
in the sample, as it is not of interest in this project and may be rare in real applications.

Now, we have generated the genotype data in both independent and dependent cases,
computed the disease status for the primary and auxiliary diseases, and obtained a sample
of case and control subjects that features some level of shared control. We compute the
z-values by fitting univariate logistic regression to each SNP, and the bivariate z-value pairs
(zi1, zi2) are obtained, for i = 1, 2, . . . ,m. Then, we apply our proposed procedures to test
their performance.

We set the number of SNPs m = 10000 and generate m1 = 100 causal SNPs. We set
the total sample size n = 2000, with 1000 case subjects and 1000 control subjects. The
effect sizes of the casual SNPs for the primary and auxiliary diseases are simulated as

β1 ∼ N(0, 32),

β2 ∼ N(0, 22).

We set various levels of pleiotropy from 0 to 0.9 with an even spacing of 0.1, and use
three levels of shared control 10%, 50% and 100%. The target FDR level is set as α = 0.1.
We compute the average of realized FDR level and the number of true positives over 200
replications.
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4.3.3 Simulation Results

Simulation Results for the Independent Case
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Figure 4.1: Realized FDR levels and true positives for various levels of shared control and
pleiotropy (independent case)

Figure 4.1 shows the realized FDR levels (left panel) and the number of true positives
(right panel) for various settings of shared control and pleiotropy in the independent case.
From the left panel, we can see that Oracle, Adaptive and BH control the FDR around the
target level, and the realized FDR levels are approximately in the range (0.098, 0.102). Our
procedures control the FDR level reasonably well. The right panel illustrates the detection
power for the multiple testing problem and it depicts the average number of true positives
for the procedures at different settings of shared control and shared causal SNPs. BH yields
about 40 true positives, and our procedures achieve more power, especially when the level of
shared control or the level of pleiotropy is higher. Adaptive generates a similar number of
true positives as Oracle, and that means Adaptive approximates Oracle well. It can also
be seen that our procedures generate more true positives as the level of shared control or
pleiotropy increases. The auxiliary GWAS study can provide more additional information
about the primary GWAS when they share more control samples or more causal SNPs.
Hence, more true positives can be detected with the assistance of the auxiliary GWAS.
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Simulation Results for the Dependent Case
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Figure 4.2: Realized FDR levels and true positives for various levels of shared control and
pleiotropy (dependent case)

Figure 4.2 depicts the simulation results in the dependent case. We can see that the
realized FDR levels of our procedures are roughly in the range (0.107, 0.113) and the FDR
is still reasonably controlled. The number of true positives shows a similar increasing trend
as the level of shared control or pleiotropy increases. It can be seen that the procedures
detect fewer true positives in the dependent case than in the independent case, and that is
due to the fact that we performed blocking and pruning to reduce the dependence between
hypotheses.

From the simulation results shown above, we can see that in both the independent and
dependent cases our proposed procedure can control the realized FDR reasonably well at a
nominal level, and yield more detection power than BH, especially when the levels of shared
control or pleiotropy is high.

4.4 Application

In this section, we apply the proposed procedure to two related psychiatric diseases with
schizophrenia as our primary GWAS and bipolar disorder as the auxiliary one. We
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obtain access to the raw data of schizophrenia from dbGaP under accession number
phs000021.v3.p2 and download the summary statistics for bipolar disorder from Psychiatric
Genomics Consortium (PGC; https://www.med.unc.edu/pgc).

For the schizophrenia data, we use 1, 404 cases and 1, 442 controls from the European-
American ancestry. The quality of phenotype data is guaranteed by a set of data collection
methods and procedures. Case individuals are diagnosed by operational criteria, and con-
trol individuals are sampled from the population that is geographically and ethnically
similar to cases. There are 702, 603 SNPs genotyped in the data, and common quality
control procedures for genotype data are applied to the SNPs. See more details about
quality control in Ripke et al. (2011).

We include the first five principal components as covariates in the logistic regression
to account for the population structure, and compute the z-values for all SNPs. We apply
the blocking and adaptive pruning procedures described in Section 4.2.3.

Due to the limited sample size, we are not able to set the target FDR at a reasonably

low level. Instead we compare the goodness of test statistics ĈLfdr and p-values by a
receiver operating characteristic (ROC) curve in Figure 4.3. We treat the representative
SNPs that fall in the 108 associated loci reported in Ripke et al. (2014) as associated SNPs

and treat other SNPs as non-associated. We can clearly see that ĈLfdr is a better ranking
test statistic as its true positive rates are larger than those of p-values for the same false
positive rates. Our procedure is likely to improve the detection power at a reasonable FDR
level with a larger sample size.

4.5 Conclusion

It is common in GWAS that genetically related traits can share associated genetic vari-
ants, for instance see Sivakumaran et al. (2011) and Chambers et al. (2011) for reported
genetic pleiotropy in human traits. Schizophrenia and bipolar disorder have some similar
psychiatric symptoms (Craddock and Owen 2007; Vieta and Phillips 2007; Fischer and
Carpenter Jr 2009), and the literature shows that they share some associated SNPs, for
example, see Lichtenstein et al. (2009) and Consortium et al. (2009).

Several existing methods leverage on the genetic pleiotropy between related traits,
however they mostly use the over-conservative family-wise error rate (FWER). The false
discovery rate (FDR; Benjamini and Hochberg 1995) is a more powerful method for error
rate control, and Andreassen et al. (2013b) creatively propose the conditional FDR as
an advantageous way to consider the pleiotropy. Liley and Wallace (2015) extend the
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Figure 4.3: True positive rate (y axis) versus false positive rate (x axis) for ĈLfdr and
p-values

conditional FDR to allow for shared control in the sample, however, the FDR cannot be
controlled properly by thresholding the conditional FDR.

In this chapter, we propose a bivariate normal mixture model for the z-values of pri-
mary and auxiliary GWAS and estimate the conditional local FDR. To tackle the problem
of linkage disequilibrium and signal leakage, we apply the blocking procedure and the adap-
tive pruning procedure to select the representative SNPs that are relatively independent.
Through simulation results, we show that the proposed procedure is able to reasonably
control the FDR and yields more detection power than the Benjamini-Hochberg (BH) pro-
cedure. We also apply both procedures to schizophrenia and bipolar disorder, and show

that ĈLfdr is a better ranking test statistic and our procedure is likely to improve the
detection power.

72



Chapter 5

Conclusions and Future Work

In this chapter, we briefly describe conclusions and possible future work.

In Chapter 2, we propose a non-parametric empirical Bayes method for the multiple
testing problem with composite null hypotheses and discrete data, with a specific ap-
plication in pharmacovigilance databases, and the proposed method outperforms other
candidate methods. Our procedure estimates the local FDR via a non-parametric density
estimate of odds ratio, and the simulation and application results show that it can con-
trol the FDR and achieve greater power than other methods that can control the FDR.
However, the consistency of the estimate of the local FDR is not clear, and we need future
work on the derivation.

In Chapter 3, the aim is to identify associated SNPs for complex continuous traits
while controlling the FDR. The neighboring SNPs are often highly correlated, and the
SNPs correlated to causal SNPs also have relatively small marginal p-values due to signal
leakage. We quantify the effects of signal leakage by deriving the distribution of z-values of
non-causal SNPs conditional on correlated causal SNPs, and compute adjusted p-values by
removing the effects. The adjusted p-values for the null blocks with no causal SNPs within
would follow uniform distribution, and conventional FDR controlling procedures such as
the BH procedure would apply. It is of interest to extend the idea of accounting for signal
leakage to case-control GWAS studies.

In Chapter 4, we aim to improve the detection power by integratively analyzing GWAS
with the aid of additional information. Specifically, we assess the pleiotropy between related
case-control GWAS studies with shared controls and shared risk variants, and propose a
four-component normal mixture model for the z-value pairs of primary and auxiliary GWAS
studies. We also suggest blocking and adaptive pruning procedures to mitigate the effects
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of linkage disequilibrium and signal leakage. The pruning procedure would not be necessary
if the effects of signal leakage could be accounted for properly as in Chapter 3, which is
possible future work. Apart from a related study, annotation data is also advantageous to
improve the detection power. It is believed that the SNPs that are functionally annotated
perform a more important role and they are more likely to be associated SNPs, than those
that are not annotated. For example, it is found that the annotated SNPs can explain
more phenotypic variation in human height than those without known function in Yang
et al. (2011). Integratively analyze GWAS with other additional information, for example
annotation data, would also be useful to improve the power.
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Appendix A

Appendix in Chapter 2

A.1 Proof of Theorem 2

For ease of notation, for any set A, we write,

p(A) =
∑
x∈A

p(x),

p0(A) =
∑
x∈A

p0(x),

p1(A) = p(A)− p0(A).

It is obvious that α < C as Fdr(SOR) is the conditional expectation of fdr(x) given
x ∈ SOR.

Note that Fdr is discrete, and a randomization technique can be applied such that
Fdr can reach any level α ∈ (0, π0]. From the rejection region S, we can construct a new
rejection region S1 by adding all the hypotheses with the next greater fdr value than the
greatest fdr value in S, and it is straightforward that Fdr(S) < Fdr(S1). We can also add
a fraction β ∈ (0, 1) of all the hypotheses with the next greater fdr value, and this rejection
region will yield an Fdr level α ∈ (Fdr(S),Fdr(S1)). This construction continues until we
obtain a rejection region S ′ such that S ⊂ S ′ and Fdr(S ′) = α. It remains to prove that
p1(S) ≤ p1(SOR).

For every x,

I(x ∈ S ′){1− fdr(x)/C} ≤ I(x ∈ SOR){1− fdr(x)/C},
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as the left-hand side is smaller than or equal to 0 and the right-hand side is equal to 0
when x /∈ SOR, and the left-hand side is obviously smaller than or equal to the right-hand
side when x ∈ SOR.

Taking expectation on both sides,∑
x

I(x ∈ S ′){1− fdr(x)/C}p(x)

≤
∑
x

I(x ∈ SOR){1− fdr(x)/C}p(x),

where p(x) is the probability mass function of X.

Note that we can write the left-hand side as∑
x

I(x ∈ S ′){1− fdr(x)/C}p(x)

=
∑
x

I(x ∈ S ′)p(x)−
∑
x

I(x ∈ S ′)fdr(x)/Cp(x)

= p(S ′)−
∑
x∈S′

fdr(x)p(x)/C

= p(S ′)− E{fdr(x)|x ∈ S ′}p(S ′)/C
= p(S ′){1− Fdr(S ′)/C}.

Similarly, the right-hand side can be simplified.

We can get

p(S ′){1− Fdr(S ′)/C} ≤ p(SOR){1− Fdr(SOR)/C}.

Note that Fdr(S ′) = Fdr(SOR) = α, and 1 − α/C > 0. Therefore, we can get p(S ′) ≤
p(SOR). Moreover, p1(S ′) = p(S ′)(1 − α) and p1(SOR) = p(SOR)(1 − α), and it leads to
p1(S ′) ≤ p1(SOR). We also have p1(S) ≤ p1(S ′) as S ⊂ S ′, therefore p1(S) ≤ p1(SOR).

A.2 Predictive Recursion

Consider the following mixing density estimation problem, X1, . . . , Xm are independently
distributed with the probability mass function,

p(x) =

∫
Θ

f(x|θ)g(θ)µ(dθ),
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where x is an observable data point, f(x|θ) is a known sampling distribution, g(θ) is the
mixing distribution of parameter θ, and µ is a σ-finite measure on Θ. Newton (2002)
proposed a recursive algorithm that keeps updating the density estimate g(θ) of parameter
θ.

Predictive Recursion (PR) Algorithm. Start with an initial estimate of g, denoted by
g0, given a sequence of weights w1, . . . , wm ∈ (0, 1), then for i = 1, . . . ,m, the ith density
estimate of θ can be obtained as

gi(θ) = (1− wi)gi−1(θ) + wi
f(x|θ)gi−1(θ)∫

Θ
f(x|θ′)gi−1(θ′)µ(dθ′)

,

and the ith marginal probability mass function estimate of X is

pi(x) =

∫
Θ

f(x|θ)gi(θ)µ(dθ).

Similar to Martin and Tokdar (2012), we set the weights wi = (i+ 1)−0.67 for i = 1, . . . , n.

A.3 p-values based procedure

Here we present the details of the p-value based procedure, which is compared in simulation
studies. We estimate the flattened proportion in the center of the distribution of p-values as
π0π0∗. Because of the large proportion of empty cells, this estimate can be quite small. So
we treat all p-values greater than 0.5 as coming from null hypotheses, and for any p-value
threshold γ, we can estimate the FDR as

F̂DR(γ) =

{
π̂0π0∗γ/F̂ (γ) if γ ≤ 0.5;

[π̂0π0∗0.5 + #(0.5 < pij ≤ γ)/m]/F̂ (γ) if γ > 0.5.
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Appendix B

Appendix in Chapter 3

B.1 Distribution of z-values of causal and non-causal

SNPs

First, we consider z-values from marginal linear regression for SNP j = 1, 2, . . . ,M . For
simplicity, we center Xj and Y to have mean 0 and it will not affect the inference of bj.
The maximum likelihood estimate is

b̂j = Cov(Xj, Y )/V ar(Xj)

=
1

(n− 1)S2
j

XT
j Y,

where Sj is the standard deviation of Xj.

Under model (3.1), the expectation of b̂j

E(b̂j) =
1

(n− 1)S2
j

XT
j E(Y )

=
1

(n− 1)S2
j

XT
j (β01 +Xcβc)

=
1

(n− 1)S2
j

∑
k∈C

(n− 1)SjSkrjkβk

=
1

Sj

∑
k∈C

Skrjkβk,
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where rjk is the Pearson correlation coefficient between Xj and Xk.

The variance for b̂j is

V (b̂j) =

∑n
i=1X

2
ijσ

2

(n− 1)2S4
j

=
σ2

(n− 1)S2
j

.

The covariance between b̂ for SNPs j and k is

Cov(b̂j, b̂k) = σ2 1

(n− 1)S2
j

XT
j Xk

1

(n− 1)S2
k

=
rjkσ

2

(n− 1)SjSk
,

and the correlation is

Cor(b̂j, b̂k) =
Cov(b̂j, b̂k)√
V (b̂j)V (b̂k))

= rjk.

We can compute the z-value for SNP j,

Zj =
b̂j

sd(b̂j)

=
XT
j Y

(n− 1)S2
j

/

√
σ2

(n− 1)S2
j

=
XT
j Y√

n− 1σSj
.

The expectation of Zj is

E(Zj) =
1

Sj

∑
k∈C

Skrjkβk/
σ√

n− 1Sj

=

√
n− 1

σ

∑
k∈C

Skrjkβk,
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and the variance is

V (Zj) =

∑n
i=1 X

2
ijσ

2

(n− 1)σ2S2
j

= 1.

That says, for a causal SNP c and non-causal SNP k, the joint distribution of z-values
is (

Zk
Zc

)
∼MVN

((√
n−1
σ

Scrkcβc√
n−1
σ

Scβc

)
,

(
1 rkc
rkc 1

))
.

Then, the distribution of Zk conditioning on Zc is

Zk|Zc ∼ N(

√
n− 1

σ
Scrkcβc + rkc(Zc −

√
n− 1

σ
Scβc), 1− r2

kc)

∼ N(rkcZc, 1− r2
kc).

B.2 Simulation results with Brzyski et al. (2017)’s

blocking procedure and different definitions of

true null blocks

Brzyski et al. (2017) propose a sequential blocking procedure. Among the un-grouped
SNPs, their blocking procedure sequentially finds the SNP with the smallest marginal p-
value as a new block representative, and groups all the SNPs that have correlations with
the representative greater than some threshold ρ into the new block. Brzyski et al. (2017)
define the null hypothesis corresponding to a block to be true if the block representative
SNP has correlations smaller than 0.3 with all causal SNPs. There could be several blocks
whose representatives have correlations higher than 0.3 with one causal SNP, and those
blocks are considered to be non-null corresponding to one causal SNP. This definition of
true null hypotheses may distort the FDR and power. Instead, we define the null hypothesis
related to a block to be true if the block does not contain any causal SNP.

Here, we present the simulation results using the blocking procedure proposed by
Brzyski et al. (2017), and we use both their definition of true null blocks and ours when
evaluating the FDR and true positives. The target FDR level is 0.1, and the results are
based on 100 iterations.
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Figures B.1–B.2 show the realized FDR and true positives for ρ = 0.3 and ρ = 0.5
when our definition of true null hypotheses is used. We can see that our procedures are
able to control the FDR for all the numbers of signals, and GeneSLOPE has a liberal FDR
control. Our procedures also yield more numbers of true positives than GeneSLOPE.
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Figure B.1: Realized FDR levels and true positives for various numbers of signals (ρ = 0.3
and true null hypotheses as the blocks that contain any causal SNP)
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Figure B.2: Realized FDR levels and true positives for various numbers of signals (ρ = 0.5
and true null hypotheses as the blocks that contain any causal SNP)

Figures B.3–B.4 show the realized FDR and true positives when the definition of true
null hypotheses in Brzyski et al. (2017) is used. We can see that our procedures can
control the FDR at the target level while GeneSLOPE fails in the control. GeneSLOPE

has slightly more numbers of true positives than our procedures in set 1, especially for
ρ = 0.5. However, we can easily see that in Figure B.2 the true positives for GeneSLOPE

are greater than the number of simulated signals, and this verifies that more than one
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block is considered to be non-null for one causal SNP and the FDR and true positives
are distorted. Our procedures still yield more true positives in set 2, and they are able to
detect more signals with small effect sizes.

The simulation results above show that our procedures are able to control the FDR using
their blocking procedure and both definitions of true null hypotheses, while GeneSLOPE fails
in the control in all the cases. Our procedures yield more power than GeneSLOPE when our
definition of true null hypotheses is used. When the definition of true null hypotheses in
Brzyski et al. (2017) is used, the FDR and true positives are distorted, and our procedures
can detect more signals with small effect sizes.
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Figure B.3: Realized FDR levels and true positives for various numbers of signals (ρ = 0.3
and true null hypotheses defined as the blocks whose representative SNPs have correlations
higher than 0.3 with any causal SNP)
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Figure B.4: Realized FDR levels and true positives for various numbers of signals (ρ = 0.5
and true null hypotheses defined as the blocks whose representative SNPs have correlations
higher than 0.3 with any causal SNP)
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Appendix in Chapter 4

C.1 EM algorithm

The EM algorithm recursively updates the estimates of parameters π and σ to maximize
the likelihood, and alternates an expectation (E) step and an maximization (M) step
until some convergence criterion is reached. For any iteration r, the E step computes the
component weights w for each Zi in each component, given the estimates of parameters
from the last iteration π̂(r−1) and σ̂(r−1), as

w00i = E(H00i|(zi, π̂(r−1), σ̂(r−1))) = π̂
(r−1)
00 f̂

(r−1)
00 (zi)/f̂

(r−1)(zi),

w01i = E(H01i|(zi, π̂(r−1), σ̂(r−1))) = π̂
(r−1)
01 f̂

(r−1)
01 (zi)/f̂

(r−1)(zi),

w10i = E(H10i|(zi, π̂(r−1), σ̂(r−1))) = π̂
(r−1)
10 f̂

(r−1)
10 (zi)/f̂

(r−1)(zi),

w11i = E(H11i|(zi, π̂(r−1), σ̂(r−1))) = π̂
(r−1)
11 f̂

(r−1)
11 (zi)/f̂

(r−1)(zi),

and f̂ (r−1)(zi) = π̂
(r−1)
00 f̂

(r−1)
00 (zi) + π̂

(r−1)
01 f̂

(r−1)
01 (zi) + π̂

(r−1)
10 f̂

(r−1)
10 (zi) + π̂

(r−1)
11 f̂

(r−1)
11 (zi). In

the estimates of σ1 and σ2, we guarantee the estimates are greater than 0 by taking the
maximum.

The M step then updates the estimates of parameters π and σ by maximizing the log
likelihood given the weights. The explicit formula of new estimates are given as below,

π̂
(r)
00 =

m∑
i=1

w00i/m,
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π̂
(r)
01 =

m∑
i=1

w01i/m,

π̂
(r)
10 =

m∑
i=1

w10i/m,

π̂
(r)
11 =

m∑
i=1

w11i/m,

σ̂
(r)
1 = max(1e− 4,

∑m
i=1(w10i + w11i)z

2
i1∑m

i=1(w10i + w11i)
− 1)1/2,

σ̂
(r)
2 = max(1e− 4,

∑m
i=1(w01i + w11i)z

2
i2∑m

i=1(w01i + w11i)
− 1)1/2,

σ̂
(r)
00 =

∑m
i=1w00izi1zi2∑m

i=1 w00i

−
∑m

i=1w00izi1∑m
i=1w00i

∑m
i=1w00izi2∑m
i=1 w00i

,

σ̂
(r)
01 =

∑m
i=1w01izi1zi2∑m

i=1 w01i

−
∑m

i=1w01izi1∑m
i=1w01i

∑m
i=1w01izi2∑m
i=1 w01i

,

σ̂
(r)
10 =

∑m
i=1w10izi1zi2∑m

i=1 w10i

−
∑m

i=1w10izi1∑m
i=1w10i

∑m
i=1w10izi2∑m
i=1 w10i

,

σ̂
(r)
11 =

∑m
i=1w11izi1zi2∑m

i=1 w11i

−
∑m

i=1w11izi1∑m
i=1w11i

∑m
i=1w11izi2∑m
i=1 w11i

.

We iterate the E step and M step until the log-likelihood does not change much. Details
of the EM algorithm are given as follows,

1. Initialize the parameters:
set the proportions π̂

(0)
00 = 0.8, π̂

(0)
01 = π̂

(0)
10 = 0.09, π̂

(0)
11 = 0.02;

set the variances σ̂
(0)
1 = σ̂

(0)
2 = 1;

set the covariances σ̂
(0)
00 = σ̂

(0)
01 = σ̂

(0)
10 = σ̂

(0)
11 = 0.1;

set the tolerance level tol = 1e− 4, and the likelihood difference d = 1;
set the maximum iterations maxit = 1e4;
set the iteration r = 1;

2. for iteration r < maxit and log-likelihood difference df > tol:

(a) The E step: compute the weights w00i, w01i, w10i and w11i for each zi = (zi1, zi2)
in the four components, given π̂(r−1) and σ̂(r−1);
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(b) The M step: update the estimate of parameters π̂(r) and σ̂(r);

(c) Compute the difference of log-likelihood from iterations r and r − 1,

d = |l(r) − l(r−1)|;

(d) If d ≤ tol, then stop; else set r = r + 1 and repeat 2.(a)–(d).

The above algorithm still tries to estimate the correlation σ00 between primary and
auxiliary z-values under null, and the estimate is very close to the formula given in (Lin
and Sullivan 2009; Zaykin and Kozbur 2010) from simulations.
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