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Abstract

Machine learning algorithms over big data have been widely used to make low-priced
services better over the years, but they come with privacy as a major public concern. The
European Union has made the General Data Protection Regulation (GDPR) enforceable
recently, and the GDPR mainly focuses on giving citizens and residents more control over
their personal data. On the other hand, with personal and collective data from users,
companies can provide better experience for customers like customized news feeds and
real time transportation systems. To solve this dilemma, many privacy-preserving schemes
have been proposed such as homomorphic encryption and machine learning over encrypted
data. However, many of them are not practical for the time being due to the high com-
putational complexity. In 2017, Bonawitz et al. proposed a practical scheme for secure
data aggregation from privacy-preserving machine learning, which comes with the afford-
able calculation and communication complexity that considers practical users’ drop-out
situations. However, the communication complexity of the scheme is not efficient enough
because a mobile user needs to communicate with all the members in the network to es-
tablish a secure mutual key with each other.

In this thesis, by combining the Harn-Gong key establishment protocol and the mobile
data aggregation scheme, we propose an efficient mobile data aggregation protocol with
privacy-preserving by introducing a non-interactive key establishment protocol which re-
duces the communication complexity for pairwise key establishment of n users from O(n2)
to a constant value. We correct the security proof of Harn-Gong key establishment protocol
and provide a secure threshold of degree of polynomial according to Byzantine Problem.
We implement KDC side Harn-Gong key establishment primitives and prepare a proof-of-
concept Android mobile application to test our protocol’s running time in masking private
data. The result shows that our private data masking time is 1.5 to 3 times faster than
the original one.
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Chapter 1

Introduction

In the last few years, the development and usage of smart phone applications have given
much attention to data usage by cloud services. Since the computation and storage ability
of a mobile device is limited, the data the user provides can be easily leaked. At the same
time, cloud service providers can use their substantial resources to analyze users’ data
to provide better performance on their application. It is reasonable for users to want to
maintain privacy of the data (eg. health data and financial data) while enjoying the cloud
service at the same time. However, as the Internet Trends 2016 report [42] suggests, more
and more users choose to avoid online usage because of privacy concerns. It is important
to provide a communication and computationally efficient privacy scheme for today’s big
data usage.

There are numerous cloud services that a mobile user may need. For example, cloud
storage, speech assistance, and recommendation systems. These technologies make use of
users’ data and can predict users’ interests in order to make a profit. So it is with high
probability that cloud service providers might be interested in probing users’ data at the
same time they respond to users’ demands. This type of curious-but-honest threat model
is a standard one for cloud service. Even when cloud service providers are not interested in
probing users’ privacy, the data format it stores in its server may also be prone to attacks,
such as Facebook data breaches [59], which not only contributes to a company’s loss, but
also threatens users’ privacy in other related areas.

There are many technologies available to address the above issues, such as homomorphic
encryption. Homomorphic encryption is a cryptographic scheme by which a cloud service
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provider can use operates on ciphertexts of users’ data in the same way it operates on
plaintext. When users get the operated data back, they can get the desired cloud compu-
tation results without leaking their private information. It is fair to say that homomorphic
encryption makes data malleable in a way that does not leak the important information of
users. The confidentiality of users’ data is preserved while they enjoy cloud services. But
there is still a long way for fully homomorphic encryption to be truly practical in daily use.

The basic business model of ML-based data analysis is a closed circle: the more the
data is accumulated, the more accurately the model can be trained, which means more
useful services are provided and more users are attracted to the services, and the process
finally leads to more data being collected [62]. People who use machine learning methods
tend to believe that when you cannot figure something out, you just give more data to the
model and let it find an answer. Ubiquity of sensors via mobile and IoT devices has caused
a surge in personal data generation and use while users’ data collection can be important
for the model’s training. Recently, Bonawitz et al. [7] proposed a privacy preserving strat-
egy to update the machine learning model with a new federate learning method. However,
it needs to establish a secret key for each pair of users in the network. For a large scale
of users (say 105), it needs 1010 pairwise keys to be established since the number of keys
increases quadratically for the two party key agreement protocol.

It is widely accepted that a key agreement protocol can establish a safe communica-
tion channel for any two parties. However, when a group of members using two party key
agreement protocols wants to start a secure communication, it is communication inefficient
to use the standard protocol. It has been a big concern of how to establish a group key
without communication overhead as the two party key agreement protocol does. In 1982,
Blundo et al.[6] proposed an information theoretically secure one based on multivariate
polynomials. Later in 2015, Harn and Gong proposed a storage efficient univariate poly-
nomial product protocol [28] based on it. The Harn-Gong protocol is not only useful in
establishing a secure key for a group communication, but also its non-communicative way
to establish group keys helps to reduce communication overhead significantly in a scenario
where a pairwise key for every pair of users in the network is needed.

Secure data aggregation is a process of securely collecting data from a group of users
where each user has a private input, and the aggregation process does not reveal any pri-
vate information about users’ inputs. The secure data aggregation problem, particularly
aggregate sum, has been studied in the literature in different contexts such as wireless
sensor networks [16] and cloud database services [44]. The mobility nature of mobile users
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introduces a new property called robustness or failure-robust where a mobile user is either
alive in the system or drops out from the system.

In this work, we consider the problem of aggregating the sum of mobile users’ data in
a secure manner. Our contributions are as follows:

1) We propose an efficient mobile data aggregation protocol with privacy-preserving by
introducing a non-interactive key establishment protocol that reduces pairwise key
establishment of a group with O(n2) communication complexity to a constant value.

2) We correct the security proof of the Harn-Gong key establishment protocol and pro-
vide a secure threshold of degree of polynomial according to Byzantine Problem.

3) We implement KDC side Harn-Gong key establishment primitives and prepare a
proof-of-concept Android mobile application to test our protocol’s running time in
masking private data. The result shows that our private data masking time is 1.5 to
3 times faster than the original one.

The rest of the thesis is organized as follows. In Chapter 2, we introduce some known
methods for privacy issues related to machine learning algorithms, and introduce related
key establishment protocols. We also discuss homomorphic encryption as a possible solu-
tion for cloud service providers to provide privacy-preserving services. In Chapter 3, we
present terminologies that are used in the key establishment protocol and private data
masking protocols. In Chapter 4, we present the detail of constructions of Harn-Gong key
establishment protocol [28] and its security analysis as well as performance evaluation. In
Chapter 5, we provide a detailed complexity analysis on complexity of privacy-preserving
mobile data aggregation scheme in [7]. We present our new protocol in Chapter 6 and
analyze its complexity. The implementation and analysis is in Chapter 7 and Chapter 8 is
comprised of conclusions and some future work.
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Chapter 2

Literature Survey

We introduce some machine learning algorithms and their privacy issues in Section 2.1. We
then provide details of some key establishment protocols to build a secure communication
channel in Section 2.2. Finally, we present the concept of the homomorphic encryption as
a tool for addressing privacy issues in machine learning in Section 2.3, and state why it is
not practical in current machine learning applications.

2.1 Machine Learning

Machine learning is a process that makes computer progressively improve performance on
some specific tasks rather than being explicitly programmed. The term was first introduced
by Samuel in 1959 [51] and it has become an essential method for problems of computer
vision, speech detection, robotics, finances, etc. In general, machine learning algorithms
can be divided into three paradigms:

1) Supervised learning

2) Unsupervised learning

3) Reinforcement learning

Supervised learning is a machine learning method by which labeled training data is
given to the machine learning model, and the model maps input to output based on ex-
ample pairs [43]. Many different forms of mappings exist, including decision trees [48],
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decision forests [31], logistic regression [18], support vector machines [17], and neural net-
works [41]. One high-impact area of progress in supervised learning in recent years involves
deep networks [4], which has multiple hidden layers between the input and output layers.
Such deep learning systems can be trained over vast collections of data and can contain
billions of parameters. The large-scale deep learning systems have had a major effect in
computer vision [37] and speech recognition [27] in recent years.

Unsupervised learning is a machine learning method by which the model learns from
the unlabeled training data. The instinct of unsupervised learning is to derive the hid-
den structure of the raw data [29]. Many different objectives of unsupervised learning
have been proposed, such as discovering clusters in the input data [5], extracting features
that characterize the input data more compactly [45], and uncovering non-accidental co-
incidences within the input data [63]. Given that the goal is to exploit the particularly
large data sets, the concern with computational complexity is paramount in those methods.

Reinforcement learning is a machine learning method that explores training data be-
tween supervised and unsupervised learning [56]. Instead of giving exact correct answers,
the training data in reinforcement learning provides only an indication as to whether an
action is correct or not. The applications of reinforcement learning have increased in op-
erations research [15] and control theory in the field of Markov decision processes [32].

Machine learning algorithms have been used in many online service providers with rec-
ommendation systems (Netflix, Spotify, Facebook, etc.), and those companies are prone to
store and use a big number of user data. However, data breaches have been a big problem
for those giant companies. The Facebook’s 87 million users’ data leakage is just one exam-
ple of today’s various company’s data breaches [59]. With the introduction of the General
Data Protection Regulation of European Union [60] enforceable in May 2018, data privacy
of machine learning algorithms could be a big legal issue in the future.

2.2 Key Agreement Protocols

A key establishment protocol is a method to enable multiple users to share a secret key [28].
The key agreement protocol is a special type of key establishment protocols that enable
all entities to influence the outcome collaboratively. The most widely-used key agreement
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protocol is Diffie-Hellman key agreement protocol [20]. However, it can only allow two
members to communicate efficiently. For a group of more than two members, O(n2) com-
munication complexity is needed to establish a pairwise key for each pair of members in
the group.

Many natural adaptations of the original Diffie-Hellman key agreement protocol [55, 14,
34] have then been proposed for group key agreement protocols, but their time efficiency
and confidentiality have become great concerns. For example, Steiner et al. [55] proposed
an adapted Diffie-Hellman protocol that needs O(n) rounds communication among n par-
ticipants, which cannot be scaled up to a large network.

In 1995, Burmester and Desmedt [14] proposed a generalized Diffie-Hellman group key
establishment protocol with a constant round of communication for each user. However, it
lacks a full proof of security because it only provides a security proof for an even number
of participants. In 2007, Katz et al. [34] provided the first constant round, fully scalable
and provably-secure protocol compiler and proved the Burmester-Desmedt protocol to be
secure. In [40], the authors provide elliptic curve version of Burmester-Desmedt protocol
and its authenticated variant. However, the digital signature of each user in the group for
authentication of Diffie-Hellman public keys may also restrict its usage since the generation
and verification of digital signature may take substantial computational resources.

In 1992, Blundo et al. [6] proposed a non-interactive k-secure m-conference protocol
based on multivariate polynomials, where k-secure means any k users cannot collude to get
other member’s share information, and m-conference means that the protocol can establish
a group key of up to m members. However, since the protocol requires each polynomial
to have (k + 1)m−1 coefficients, the space complexity of the protocol is exponential in the
number of users, which makes it impossible to use in a large number of users’ network.

Based on the work of [6], in 2015, Harn and Gong [28] provide a protocol that uses con-
stant time to achieve both authentication and confidentiality for the group communication
in a public key network. The protocol uses a univariate polynomial product to reduce the
space complexity of [6] and requires only (k+1) coefficients for the group key computation.
The protocol has space complexity linear in the number of users in the network. Its non-
interactive and efficient storage properties make it attractive for many real applications.

Compared with the generalized Diffie-Hellman protocol and Harn-Gong protocol, it is

6



clear that Burmester-Desmedt protocol requires all parties to participate in the key estab-
lishment process whereas the Harn-Gong protocol is non-interactive. At the same time,
the Harn-Gong protocol can easily accommodate the addition and deletion of members or
subsets, while there is a significant computation cost for the user updates in the Burmester-
Desmedt protocol.

2.3 Homomorphic Encryption

Homomorphic encryption (HE) is a type of encryption that allows computations on en-
crypted data. When the operated ciphertext is decrypted, the result matches operation as
if the operation were performed on the plaintext. HE was first proposed in [49] in 1978 as
a possible solution to the problem that most encrypted data needs to be decrypted if it
needs complicated operation by a third party.

In order to perform homomorphic evaluation of an arbitrary function, it is sufficient for
HE to allow only addition and multiplication operations because the two operations are
functionally complete for any arithmetic operations over a field [49]. HE can be divided
neatly into three categories, which are

1) Partially Homomorphic Encryption (PHE)

2) Somewhat Homomorphic Encryption (SWHE)

3) Fully Homomorphic Encryption (FHE)

PHE is a kind of HE that allows only one type of operation to be performed an un-
limited number of times. For example, the basic RSA public key scheme [50] is a kind
of PHE that achieves homomorphic multiplication. When given an RSA modulus N and
public key e, since the encryption method for a message m is E(m) = me mod N , for
any two different messages m1 and m2, E(m1) ∗ E(m2) = me

1 ∗me
2 (mod N) = (m1m2)e

(mod N) = E(m1m2) (mod N). Besides the RSA public key scheme, there are many other
useful PHE schemes such as Goldwasser and Micali [52], ElGamal [21], Benaloh [3] and
Paillier [46]. Although PHE can only achieve one type of operation, these schemes were
an important basis for subsequent HE research.
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SWHE is a type of HE that allows a limited set of operations to be applied a limited
number of times. An early attempt of computation over encrypted data is Yao’s study in
1986 [61] which solves the Millionaire’s problem by comparing the wealth of two rich people
without revealing the exact amount to each other. However, the time and space complexity
of Yao’s algorithm is exponential. It was not until 2005 that Boneh-Goh-Nissim (BGN)
introduced one of the most significant SWHE schemes [11]. BGN enables an arbitrary
number of additions and one multiplication while keeping the ciphertext size constant.
Although BGN only allows small message space and a limited number of multiplications,
it was an important step towards FHE.

FHE allows an unlimited number of operations to be applied an unlimited number of
times, and it is the ultimate objective of HE research. It was not until 2009 that Gentry
proposed the first plausible FHE scheme in [24]. Gentry’s scheme is based on ideal lattices
and it led to other FHE designs [57, 13, 25]. One year after Gentry’s work, Van Dijk et
al. [57] constructed an FHE scheme over the integers from a “bootstrappable” SWHE by
Gentry’s method. Brakerski et al. [13] then proposed an FHE scheme based on learning
with error (LWE) problem, which is considered as one of the hardest problems to solve
even for even by quantum algorithms.

Homomorphic encryption is an ideal solution to data privacy problems as it allows
cloud service providers to operate on encrypted data without decrypting it. After Gentry’s
work [24], many different FHE schemes were proposed. FHE still needs to be improved
substantially to be practical because the current schemes are too computationally expensive
for real-life big data applications.
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Chapter 3

Preliminaries

In this chapter, to provide the ingredients of our data aggregation scheme, we introduce
stream ciphers in Section 3.1, Shamir’s secret sharing scheme in Section 3.2, and Diffie-
Hellman key establishment protocol in Section 3.4. Section 3.3 describes Horner’s method
for evaluating polynomials. The notation we use in the protocol is presented in Section
3.5.

3.1 Stream Cipher

We first take a look at the One-time Pad (OTP) which has perfect secrecy [54] and simple
encryption and decryption methods.

Definition 3.1.1 (One-time Pad). A one-time pad is a cipher where key k, message m and
ciphertext c are bit strings of the same length. The encryption method is E(k,m) = k⊕m
and decryption method is D(k, c) = k ⊕ c, where ⊕ denotes the exclusive-or operation.

The reason that the one-time pad can be encrypted/decrypted in such a way is that
the exclusive-or of any message with itself is 0. The operations are as follows:

0⊕ 0 = 0

0⊕ 1 = 1

1⊕ 0 = 1

1⊕ 1 = 0
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To achieve perfect secrecy, Shannon [54] proved that the key should be at least as long
as the message. At the same time for a secure OTP scheme, the key cannot be used twice,
which makes the OTP impractical in daily usage.

Stream ciphers overcome this problem by using a relatively short key to generate long
keystream and then encrypt data in the OTP manner. The function to generate a long
keystream from a short-length seed is called Pseudo-Random Number Generator (PRNG).
Stream ciphers are widely used in modern technology because of their efficient encryption
and decryption operations. AES Counter Mode, depicted in Figure 3.1, is a model for
using the AES block cipher to construct a stream cipher.

3.2 Shamir’s (k, n) Secret Sharing Scheme

Shamir’s secret sharing scheme [53] is a method for distributing a secret over n members,
each of whom is allocated a share of the secret, and the secret can only be reconstructed
by up to k members. Shamir’s secret sharing scheme is based on Lagrange interpolation,
and the secret is information theoretically secure if fewer than k shares are collected [47].

Suppose a secret s is to be shared by a group of n members, in such a way that at
least k shares are required to reconstruct s. Let the secret share be a y value, and each
member’s public identity be an x value. The shares and each member’s identity can be
treated as a set of points (x1, y1), · · · , (xn, yn) on a 2-dimensional plane.

According to polynomial interpolation, when provided k pairs of points (xi, yi), 0 ≤ i ≤
k−1, there is one and only one polynomial p(x) of degree at most k−1 such that p(xi) = yi
for all i. After the polynomial is reconstructed, the secret can be selected as p(0) which
makes it reconstructable by all group members.

If we implement Shamir’s secret sharing scheme in a finite field Zq, where q is of l bits,
the advantage of an adversary to reconstruct the secret by knowing fewer that k shares is
1
2l

. Generally, the usage of Shamir’s secret sharing scheme can be divided into two steps:

1) Secret Share Generation.

2) Secret Reconstruction.

10



Figure 3.1: AES Counter Mode

3.2.1 Secret Share Generation

1. s is selected as a secret to be shared over field Zq.

2. For 1 ≤ i ≤ k − 1, i ∈ N, generate pi
R←− Zq.

3. Construct a polynomial p(x) = s+ p1x+ p2x
2 + · · ·+ pk−1x

k−1.

4. For 1 ≤ i ≤ n, evaluate yi = p(xi) over Zq, and distribute yi to member i with
identity xi ∈ Zq.

11



3.2.2 Secret Reconstruction

1. k shares and corresponding member identities are collected which is denoted as
(x1, y1), · · · , (xk, yk).

2. Construct a polynomial p(x) where

p(x) =
k∑
i=1

∏
1≤j≤k,j 6=i

x− xj
xi − xj

yi

3. The secret s is the value of p(0).

s = p(0)

=
k∑
i=1

∏
1≤j≤k,j 6=i

−xj
xi − xj

yi

Lemma 3.2.1 (Shamir’s Secret Sharing Reconstruction). For a (k, n) Shamir’s secret
sharing scheme with over k different shares, the secret polynomial p(x) and secret p(0) can
be reconstructed as described above.

3.3 Horner’s Method

There are many algorithms to evaluate polynomials efficiently, among which Horner’s
method uses k multiplications and k additions to evaluate a polynomial of degree k. The
technique is as follows:

1) Given a polynomial p(x) =
∑k−1

i=0 aix
i, where a0, · · · , ak ∈ Zq and p(x0) is the value

to be evaluated.

2) A new sequence of constants are defined as follows:

bk = ak

bk−1 = ak−1 + bkx0

...

b0 = a0 + b1x0

12



Then b0 is the value of p(x0).

Note that the reason the scheme works is that the polynomial calculation can be
written in the form

p(x0) = a0 + x0(a1 + x0(a2 + · · ·+ x0(ak−1 + akx0)))

= a0 + x0(a1 + x0(a2 + · · ·+ x0(bk−1)))

...

= a0 + x0(b1)

= b0

Clearly the complexity of the algorithm is k multiplications and k additions for calculation
of k constants of bi, where 0 ≤ i ≤ k − 1.

3.4 Diffie-Hellman Protocol

The Diffie-Hellman protocol is a cryptographic key agreement scheme proposed by White-
field Diffie and Martin Hellman in 1976 [20]. The protocol is the earliest practical example
of public key exchange and is widely used in information technology. Asides from the
original version of Diffie-Hellman key agreement protocol, the elliptic curve version [1] is
also widely used due to its efficiency at the same security level compared to the original one.

The basic protocol works like this. Suppose Alice and Bob want to establish a shared
key over a group G of order q, where q is prime. Let g be a generator of G, the Diffie-
Hellman protocol against a passive adversary is in Figure 3.2.

Alice Bob

a
R←− G ga−−−−−−−−−−−−−−−−−−−−−−−−−→

gb←−−−−−−−−−−−−−−−−−−−−−−−−− b
R←− G

K = (gb)a K = (ga)b

Figure 3.2: Standard Diffie-Hellman Protocol Against a Passive Adversary
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Since the key K = (gb)a = gab = (ga)b, Alice and Bob can successfully establish a
shared key . The security of Diffie-Hellman protocol is based on the assumption of Decision
Diffie-Hellman problem (DDH) [9], which makes a passive adversary unable to differentiate
a shared key established by Alice and Bob from a random element of G .

Definition 3.4.1 (Decision Diffie-Hellman Assumption). The two tuples (ga, gb, gab) and

(ga, gb, gc), where g is a generator of group G of order q and a, b, c
R←− G, are computationally

indistinguishable.

The security level of the size of group and elliptic curve is listed in Table 3.1 from [1].

Table 3.1: Group Sizes for Different Security Levels

Security level 80 112 128
Bit Length of p when G = Zp∗ 1024 2048 3072

Bit Length of p when G = E(Zp) 160 224 256

3.5 Notation

In this section, we introduce the notation for protocol specification and computation com-
plexity which will be used throughout the thesis.

3.5.1 Protocols

The notation in Table 3.2 is for the key agreement protocols, the encryption protocols, and
the cryptographic primitives used in the protocol description.

3.5.2 Computation Complexity

The notation in Table 3.3 is for the complexity analysis using bit operations in a scheme
under analysis.
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Table 3.2: Notation for Protocol Description

Notation Description
KA.param(k) −→ pp An algorithm that produces some public parameters

over which the key agreement protocol is used
KA.gen(pp) −→ (sSKu , sPKu ) An algorithm that allows any party u to generate a

private-public key pair
KA.agree(sSKu , sPKv ) −→ su,v An algorithm that allows any user u to combine their

private key sSKu with the public key sPKv for any v (gen-
erated using the same parameter pp), to obtain a private
shared key su,v between u and v

SIG.sign(dSK ,m) −→ σ An algorithm that takes as input the secret key dSK and
a message m and outputs a signature σ

SIG.ver(dPK ,m, σ) −→ {0, 1} An algorithm that takes as input a public key dSK , a
message m and a signature σ, and returns a bit indicat-
ing whether the signature should be considered valid or
not

PRNG(b) −→ v A pseudo-random number generater that generates a
data vector v from a number b

SS.share(s, t,U) −→ {(u, su)}u∈U An algorithm that takes as input a secret s, a set U of
n field elements representing user IDs, and a threshold
t ≤ |U|; it produces a set of shares su , each of which is
associated with a different u ∈ U

SS.recons({(u, su)}u∈V , t) −→ s An algorithm that takes as input the threshold t and
the shares corresponding to a subset V ⊆ U such that
|V| ≥ t, and outputs a field element s

SS.reconp({(u, su)}u∈V , t) −→ p(x) An algorithm that takes as input the threshold t and
the shares corresponding to a subset V ⊆ U such that
|V| ≥ t, and outputs a field polynomial p(x) of degree
t− 1

AE.enc(k,m) −→ c An authenticated encryption algorithm that takes as in-
put a key k and a message m and outputs a ciphertext
c

AE.dec(k, c) −→ {m,⊥} An authenticated decryption algorithm that takes as in-
put a ciphertext c and a key k and outputs either the
original plaintext m, or a special error symbol ⊥
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Table 3.3: Notation for Complexity Analysis

Notation Description
Exp(l) The number of bit operations of the exponentiation of a

number of bit-length l
Inv(l) The number of bit operations of the inversion of a num-

ber of bit-length l
Mul(l) The number of bit operations of the multiplication of

two numbers of bit-length l
Add(l) The number of bit operations of the addition of two

numbers of bit-length l
Sign(l) The number of bit operations of signing a digital signa-

ture of a message of bit-length l
Enc(l) The number of bit operations of the encryption of a

message of bit-length l
Srand(l) The number of bit operations of a secure random number

generation of bit-length l

3.5.3 Finite Fields

The notation in Table 3.4 is for the finite field over which a polynomial evaluation and a
secure random number generation are performed.

Table 3.4: Notation for Finite Field

Notation Description
Zn The set {0, 1, · · · , n− 1}
G A finite group where Diffie-Hellman parameters are de-

fined
F A finite field where secret share coefficients are defined
R A finite field where masking operation is executed

s
R←− F A random number s that is generated over field F
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Chapter 4

Harn-Gong Group Key
Establishment Protocol and its
Security Proof

In this chapter, we introduce a non-interactive protocol for establishing keys for each pair
of users in a network. We present the protocol overview in Section 4.1. The details of the
protocol description are presented in Section 4.2 and a new security proof is demonstrated
in Section 4.3. Finally, we analyze the bit complexity of the protocol in Section 4.4.

4.1 Scheme Overview

A conference key is a secret shared by a group of communication members, the number of
which is usually greater than or equal to two. Since Diffie and Hellman [20] described a
new concept in cryptography called the public key distribution, two-party key agreement
protocols have been well researched. Plenty of efficient and secure schemes have been
proposed over the years [39, 19, 23]; however, to successfully generate a shared secret over
a group in the network, massive communication overhead remains if we want to inherit
the security properties of two-party protocols. For example, if we want to establish a
conference key for six users, the communication overhead is demonstrated in Figure 4.1.

In 1992, Blundo et al. [6] proposed a non-interactive k-secure m-conference protocol
based on multivariate polynomials, where k-secure meaning any k users cannot collude
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U1
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U4

U5 U6

Figure 4.1: 6 Users Key Establishment Overhead Using 2 Party Key Agreement Protocol

to get other member’s share information, and m-conference means that the protocol can
establish a conference key for up to m users. However, since the number of coefficients of
the polynomial is exponential in the number of users in the group, the protocol requires
a large storage space. In 2015, Harn and Gong proposed a conference key establishment
protocol [28] that significantly reduces the storage space of the polynomial coefficients,
based on which we proposed our communication efficient data aggregation scheme.

A Key Distribution Center (KDC) is a component of a cryptosystem to reduce risks
inherent in key exchange. The Harn-Gong protocol needs a KDC to compute each mem-
ber’s secret share polynomial first, and then sends it to each user secretly. The KDC can
be offline once it successfully sends each user their secret share, which avoids the single
point attack traditionally prevalent in a cryptosystem that employs a trusted third party.
The use of KDC can significantly reduce communication overhead in the protocol. Also,
the KDC can be implemented in a distributive way to avoid a single point trust problem,
and the details of the approach are presented in [10]. For example, a group communication
for 6 users employing KDC is presented in Figure 4.2.

Any group of up to m members can establish a group key by the following steps:

1) Univariate Polynomial Generation

2) Secret Share Polynomial Generation

18
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KDC

Figure 4.2: 6 Users Key Establishment Overhead Using Harn-Gong Protocol

3) Conference Key Generation

4.2 Conference Group Key Sharing Protocol

We use the Harn-Gong protocol to establish a k-secure m-members n-users conference key.
Let k, m and n be some positive integers, where m is an even number and m ≤ n. U1

denotes the network where the KDC sends secret polynomial to users, and U2 denotes the
network where the group key is established. For a group consisting of n users, a k-secure
m-members n-users conference key establishment protocol has the following properties:

1) The protocol can resist collusion by up to k users.

2) The protocol can establish a conference key for any r members where r ≤ m.

The protocol is described in the following three subsections.

4.2.1 Univariate Polynomial Generation

KDC :

(a) Generate an RSA modulus N where N is a product of two large safe primes p and
q. Keep p and q secret and broadcast N to the network U1.
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(b) Select a suitable even number m such that m ≤ n where |U1| = n, and select a
security parameter k as the degree of the secret univariate polynomial, f(x).

(c) For 0 ≤ i ≤ k, securely generate a random number ai
R←− ZN as the coefficient of

polynomial f(x) = akx
k + · · · + a1x + a0 mod N . We call f(x) the master secret

polynomial.

4.2.2 Secret Share Polynomial Generation

KDC :

(a) For each user u ∈ U1, compute su(x) = f(u)
1

m−1f(x) mod N , where u ∈ ZN is a
public information associated with the user, and 1

m−1
is the inverse of m− 1 in Zφ(N)

where φ is Euler’s totient function.

(b) For each user u ∈ U1, send the secret share polynomial su(x) to user u over a secure
channel.

4.2.3 Conference Key Generation

User u:

(a) A group of users U2 including u wants to establish a conference key for group com-
munication, where |U2| = r ≤ m.

(b) Generate a group key kU2 where

kU2 =
∏

v∈U2,v 6=u

su(v)× sm−ru (0) mod N

=
∏
v∈U2

f(v)× fm−r(0) mod N

4.3 Security Analysis

Lemma 4.3.1. The inverse of m− 1 in φ(N) always exists when m is an even number in
the protocol.
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We first introduce the concept of a safe prime.

Definition 4.3.1 (Safe Prime). A safe prime is a prime number p of the form p = 2q + 1,
where q is also a prime.

Proof of Lemma 4.3.1. The Euler totient function of the modulus N is φ(N) = (p−1)(q−
1) = 4p′q′ where p′ and q′ are primes that makes p = 2p′ + 1 and q = 2q′ + 1. When m is
even, the greatest common divisor (GCD) of m − 1 and φ(N) is 1 since m − 1 is an odd
number, φ(N) is an even number, m < p′ and m < q′.

SinceGCD(m−1, φ(N)) = 1, from Euclidean algorithm there exists a number z ∈ Zφ(N)

that

z · (m− 1) ≡ 1 mod φ(N)

Thus the inverse of m − 1 in φ(N) always exists when m is an even number in the
protocol.

Lemma 4.3.2. The protocol can establish a secure conference key for any conference having
r (r ≤ m) members.

Proof. From Section 4.2.3, suppose U1 = {i1, i2, · · · , ir} and user u = ij. Then the confer-
ence key kU1 of the network U1 is

kU1 =
∏

1≤l≤r
l 6=j

sij(il)× sm−rij
(0) mod N

=
∏

1≤l≤r
l 6=j

f(ij)
1

m−1f(il)× f(ij)
m−r
m−1fm−r(0) mod N

=
∏

1≤l≤r
l 6=j

f(il)× f(ij)
r−1
m−1 × f(ij)

m−r
m−1fm−r(0) mod N

=
∏

1≤l≤r

f(il)× fm−r(0) mod N

Definition 4.3.2 (RSA Assumption). It is computationally infeasible to compute M given
only the ciphertext C = M e mod N and RSA public key (N, e)
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In the following, we first introduce the result on security analysis of the protocol from
[28].

Lemma 4.3.3 ([28]). The proposed scheme is secure under the RSA assumption to resist
the attack by a single user with one secret share polynomial to solve the master secret
polynomial, f(x), used to generate shares.

We will present a proof of a different security claim, since the original proof has some
flaws. In order to exhibit the flaw, in the following, we first present the security proof of
Lemma 4.3.3 in [28].

Proof of Lemma 4.3.3 in [28]. Suppose there is an efficient algorithm, A, that could factor
a secret share polynomial su(x) to gain KDC’s master secret polynomial f(x) such that
su(x) = f(u)sf(x) where u and s are at his/her wish.

Then an attacker could use this algorithm to decrypt any ciphertext C = M e mod N
efficiently by the following steps where (N, e) is user u’s RSA public key:

1. Let C = (ck, ck−1, . . . , c0)10 ∈ ZN where C = ck10k + ck−110k−1 + · · ·+ c0 mod N .

2. Let g(x) be a polynomial given by g(x) = ckx
k + ck−1x

k−1 + · · ·+ c0 mod N . Thus
the ciphertext can be represented through the polynomial g(x), i.e., C = g(10).

3. Attacker models the RSA encryption in terms of the polynomial as g(x) = f(u)e−1f(x)
where u = 10, then the adversary use algorithm A to factor g(x) to get f(x).

4. Attacker will have g(10) = f(10)e (mod N) = C = M e (mod N), which implies
M = f(10) (mod N). Thus attacker could decrypt ciphertext C.

This contradicts the RSA assumption. Thus [28] concludes that such algorithm A does
not exist.

However, when using the contradiction to prove the lemma, there is a situation where
there does not exist a polynomial f(x) such that g(x) = f(10)e−1 ∗ f(x) mod N . For ex-
ample, when N = 187 = 11 ∗ 17, e = 3, and the ciphertext is 11, then we get g(x) = 1 + x.
Nevertheless, there is no polynomial f(x) = a+ bx such that g(x) = f(10)2 ∗f(x) mod N .
The problem in this case is that ciphertext 11 is a factor of RSA modulus (187 = 11 ∗ 17).
There is also no plaintext m such that makes me = 11 mod N . Thus there is no way to
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construct a polynomial that contradicts the RSA assumption.

In the original proof, knowing single share attack is an attack where the attacker is
trying to acquire the master secret polynomial in the network. However, if the attacker
can obtain other user’s secret polynomial at his/her wish, the attacker can obtain any con-
ference key in the network to compromise the security. As a result we change the definition
of knowing single share attack to that the attacker is trying to acquire other user’s secret
polynomial but not necessarily the master secret polynomial.

Let (N, e) be an RSA public key where N is the RSA modulus and e is the public key.

Let u, v be public information related to the users. Recall that su(x) = f(u)
1
e f(x) and

sv(x) = f(v)
1
e f(x). Let KSSA denote a knowing single share attack problem where

there is an algorithm A that takes input (su(x), N, e, u, v) and output sv(x). Hence
A(su(x), N, e, u, v) = sv(x). Let RSAP denote the RSA problem, and suppose there is
an algorithm A′ that takes input (N, e,M e) and output M respectively where M is a
random value from ZN . Hence A′(N, e,M e) = M . The new lemma and proof are as
follows:

Lemma 4.3.4. The proposed scheme is secure under the RSA assumption to resist the
knowing single share attack by an attacker with one secret share polynomial su(x) to obtain
other user’s secret polynomial sv(x) where v, u are related to users’ public information and
v 6= u.

Proof. Let KSSA denote a knowing single share attack problem where there is an algo-
rithm A that takes input (su(x), N, e, u, v) and output sv(x) where su(x) = f(u)

1
e f(x),

sv(x) = f(v)
1
e f(x), N is an RSA modulus and u, v are public information related to the

users. Hence A(su(x), N, e, u, v) = sv(x). Let RSAP denote the RSA problem where
there is an algorithm A′ that takes input (N, e,M e) and output M respectively. Hence
A′(N, e,M e) = M .

We can reduce KSSA problem to RSAP problem by the following process:

1. Given su(x), N, e, u, v, let ρ = su(v)/su(u) = (f(u)
1
e f(v))/(f(u)

1
e f(u)) = f(v)/f(u)

(mod N).

2. Query RSAP to calculate A′(N, e, ρ) = ρ
1
e (mod N) = f(v)

1
e /f(u)

1
e (mod N).

3. Obtain sv(x) by calculating sv(x) = ρ
1
e su(x) (mod N), since ρ

1
e su(x) =

(f(v)/f(u))
1
e f(u)

1
e f(x) = f(v)

1
e f(x) (mod N).
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Since we can use algorithm A′ to output sv(x) from (su(x), N, e, u, v), we know that
KSSA ≤p RSAP .

Now we show how to reduce RSAP to KSSA by the following steps:

1. Given (N, e, C) where C = M e (mod N), let m0
R←− ZN and c0 = me

0 (mod N).

2. Let c1, · · · , ct−1
R←− ZN , find ct such that

∑t
i=0 ci = C (mod N).

3. Let f(x) =
∑t

i=0 cix
i (mod N) such that f(0) = c0 and f(1) = C. Let s0(x) =

m0f(x) (mod N).

4. Query KSSA to get A(s0(x), N, e, 0, 1) = s1(x) (mod N).

5. Since s1(x) = f(1)
1
e f(x) = C

1
e f(x) = Mf(x) (mod N), from s0(x) and s1(x), by

setting x = 0, sv(0)
su(0)

= Mf(0)
m0f(0)

= M
m0

(mod N), then M = m0
sv(0)
su(0)

(mod N).

Since we can use algorithm A to output eth root of C from (N, e,M e), we know that
RSAP ≤p KSSA.

From the two steps above, we conclude that KSSA ≈ RSAP , which means that
knowing a single share polynomial (su(x), N,m, u, v), it is computationally infeasible to
compute other user’s secret polynomial sv(x) as long as RSAP is a hard problem.

From Lemma 4.3.4, we know that by knowing single secret polynomial one cannot use
other user’s secret polynomial to obtain any other conference keys. However, since the
conference key is constructed by the production of the master secret polynomial f(x), one
can also obtain other conference keys by learning f(x). We argue next that it is also
computationally infeasible to determine f(x) from a single secret polynomial.

Claim 4.3.1. By knowing a single secret polynomials su(x) one cannot learn the master
secret polynomial f(x) used to generate conference keys.

Justification. Let m − 1 denoted as e. Suppose the user knows f(u). Since su(x) =

f(u)
1
e f(x), if one can determine f(x), then one can compute f(u)

1
e mod N , which would

be hard due to RSA assumption. Thus it is computationally infeasible to determine f(x)
from a single secret polynomial su(x).

Claim 4.3.2. By knowing t secret polynomials sui(x), 1 ≤ i ≤ t where t < k+1, one cannot
learn the conference key kU where ui 6∈ U for all 1 ≤ i ≤ t.
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Justification. The proof is based on the well-known Lagrange interpolation formula. Sup-

pose U = {v1, v2, · · · , vr} and vj
R←− U . Let g(x) =

∏
1≤l≤r,l 6=j f(vl) × fm−r(0)f(x), then

the conference key kU = g(vj).

By knowing a single secret polynomial sui(x), we can obtain the value of g(ui) by calcu-
lating

∏
1≤l≤r,l 6=j sui(vl)× sm−rui

(0) =
∏

1≤l≤r,l 6=j f(vl)× fm−r(0)f(ui) = g(ui) mod N . We
can obtain t points (ui, g(ui)) by t secret polynomials sui(x), 1 ≤ i ≤ t.

Since g(x) is with degree k, according to the Lagrange interpolation formula, it needs
at least k+1 or more than k+1 points to construct g(vj). By knowing t secret polynomials
sui(x), 1 ≤ i ≤ t where t < k + 1, it is computationally infeasible reconstruct g(x). Hence
one cannot learn the conference key kU where ∀ui 6∈ U , 1 ≤ i ≤ t.

Claim 4.3.3. It is computationally infeasible for an adversary to know other conference
keys by knowing fewer than k + 1 secret polynomials.

Justification. From Lemma 4.3.4, we can conclude that it is computationally infeasible for
an adversary to know other secret polynomials by knowing a single secret polynomial. From
Claim 4.3.2, we also know that it is computationally infeasible to obtain other conference
keys by knowing fewer than k + 1 secret polynomials. Since one can neither obtain other
conference keys by learning others’ secret polynomials nor reconstructing conference keys
by knowing fewer than k + 1 secret polynomials, it is computationally infeasible for an
adversary to know other conference keys by knowing less than k+1 secret polynomials.

4.4 Complexity Analysis

Cryptographic primitives are expensive both in storage and computation, for example, the
operation of cryptographic primitives might involve integers of 128 bytes or more (consid-
ering an RSA modulus of 1024 bits). To illustrate the time and space complexity in more
detail, we analyze the bit complexity of computation and storage.

In the analysis, we use the notation from Tables 3.3 and 3.4. The l bits storage space
can store a 2l number. Since the operation of finding an inverse a number is equal to do
an Euclidean algorithm to find the greatest common divisor of the number and modulus,
Inv(l) is proportional to Mul(l).
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4.4.1 Complexity Analysis of User

Time Complexity :

(a) In Sections 4.2.1 and 4.2.2 there is no computation needed.

(b) In Section 4.2.3, for an k-secure m-members conference key establishment process,
each user needs to evaluate the secret polynomial m times and multiply evaluated
value m times. With the secret polynomial of degree k, from Horner’s method it
takes k(Mul(logN) + Add(logN)) operations for evaluation. Thus the user needs
m(k(Mul(logN) + Add(logN))) + mMul(logN) operations to establish a m-users
conference key.

Space Complexity:

(a) In Sections 4.2.1 and 4.2.2 there is no storage needed.

(b) In Section 4.2.3, the user needs (k + 1) log(N) space to store secret polynomial coef-
ficients.

Communication Complexity:

(a) In Sections 4.2.1 and 4.2.3, there is no communication needed.

(b) In Section 4.2.2, the user needs to receive one message of secret polynomial.

4.4.2 Complexity Analysis of KDC

Time Complexity :

(a) In Section 4.2.1, KDC needs to generate (k+ 1) polynomial coefficients which needs
(k + 1)Srand(logN) operations to generate a univariate polynomial.

(b) In Section 4.2.2 KDC needs to do n evaluations, n modulo inverse and (k + 1)
multiplications for each user in U1. From Horner’s Method we know that KDC needs
n(k(Mul(logN) + Add(logN)) + Inv(logN)) + (k + 1)Mul(logN)) operations in
time.

(c) In Section 4.2.3 there is no computation needed.
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Table 4.1: Complexity Analysis of Harn-Gong Key Establishment Protocol in Bit Opera-
tion

Time Complexity Space Complexity Communication Complexity

KDC
O(kSrand(logN)+
nkMul(logN) +
nkAdd(logN))

O(k logN) O(n)

user
O(mkMul(logN)+
mkAdd(logN))

O(k logN) O(1)

Space Complexity:

(a) In Section 4.2.1, the KDC needs (k + 1) log(N) space to store (k + 1) polynomial
coefficients.

(b) In Section 4.2.2, the KDC needs (k + 1) log(N) space to store temporary secret
polynomial for each user.

(c) In Section 4.2.3, there is no storage needed.

Communication Complexity:

(a) In Sections 4.2.1 and 4.2.3, there is no communication needed.

(b) In Section 4.2.2, the KDC needs to send the secret polynomial to each user, which
means KDC needs to send n messages in total.

In conclusion, the time, space and communication complexity of the KDC and the user
in bit operations are listed in Table 4.1.
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Chapter 5

Mobile Data Aggregation for
Privacy-Preserving Machine Learning

In this chapter, we present a data aggregation scheme for privacy-preserving machine
learning introduced in [7]. We present the scheme overview in Section 5.1. By revising
the adversarial model, the details of the scheme and its privacy analysis are presented in
Section 5.2. We analyze the bit complexity in Section 5.3.

5.1 Scheme Overview

Machine learning is a field of artificial intelligence that uses statistical techniques to give
computers the ability to “learn” [51]. Since the 1990s, machine learning has flourished
in tackling solvable problems of a practical nature, such as object detection in computer
vision, natural language processing and bioinformatics. Standard machine learning ap-
proaches require centralizing a significant amount of training data on one machine or in
a data center. In 2017, Google described a new type of machine learning scheme, called
Federated Learning [36], that distributes the training data across different mobile users.

The general idea of Federated Learning is that each user as a device holder downloads
the current training model from the cloud machine learning provider, stores customized
training data in his/her devices, improves the model by using the new individualized train-
ing data, and then summarizes the changes as a small and focused update. Federated
Learning enables better user experience from machine learning without compromising
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users’ confidentiality, which is often a concern from the public generated by the standard
centralized AI paradigm, where better algorithms always come at the cost of collecting
more and more personal data [2].

Figure 5.1: A user personalizes the model locally, based on customized usage (A). Many
users’ updates are aggregated (B) to form a consensus change. A shared model is dis-
tributed (C) after the consensus change. The procedure runs repeatedly.

A secure data aggregation protocol for Federated Learning has been proposed at the
same time to reduce the risk of the cloud service provider learning the personal model
update [7]. By the combination of cryptographic techniques and machine learning, the
model enables the training algorithm update only by knowing the average data of 100s
or 1000s users. With the evolution of other types of machine learning algorithms in the
mobile device, this protocol can be applied to different situations as well.

For any mobile user who wants to send an update to the server, the process in [7] is as
follows:
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1) Diffie-Hellman Pairwise Key Generation

2) Secret Share Generation

3) Private Data Masking

4) User Drop-out Consistency Check

5) Unmasking Aggregate Data

5.2 Data Aggregation Protocol

The scheme provides an efficient way to calculate users’ sums of vectors under the malicious
model of a curious-but-honest server, and robustness to failures, which enables a practical
and secure aggregation in mobile usage. However, the communication cost is expensive
since drop-outs are common in mobile networks.

Also, the protocol in [7] is only guaranteed to be secure when the server is curious-but-
honest and the adversary is only active in the communication channels of the network; this
does not include a situation where the server is also an active adversary. Hence, in this
chapter we consider the protocol in [7] against an active adversary as a protocol against a
curious-but-honest adversary server and active users.

The requirements of the protocol are listed below:

1) All parties are given the security parameter k, the number of users n and a threshold
value t, honestly generated pp ← KA.param(k), parameters m and R such that
ZmR is the space from which inputs are sampled, and a field F to be used for secret
sharing.

2) All users also have a private authenticated channel with the server.

3) All users u receive their signing key dSKu from the trusted third party, together with
verification keys dPKv bound to each user identity v.

If any of the below operations (assertion, signature verification, key agreement, encryption)
fails, the protocol will abort. Ui, 1 ≤ i ≤ 4 represents the set of online users in each round.
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5.2.1 Diffie-Hellman Pairwise Key Generation

User u:

(1) Generate key pairs (cPKu , cSKu ) ← KA.gen(pp), (sPKu , sSKu ) ← KA.gen(pp), and gen-
erate σu ← SIG.sign(dSKu , cPKu ||sPKu ).

(2) Send (cPKu ||sPKu ||σu) to the server through the private authenticated channel.

(3) Receive server’s broadcast list (v, cPKv , sPKv , σv)v∈U1 . Assert that |U1| ≥ t, that all the
public key pairs are different, and that ∀v ∈ U1, SIG.ver(d

PK
v , cPKv ||sPKv , σv) = 1.

(4) For each other user v ∈ U1\{u}, compute ku,v ← KA.agree(cSKu , cPKv )

(5) Store all messages received and values generated.

Server:

(1) Collect at least t messages from individual users in the previous round (denote with
U1 this set of users). Otherwise, abort.

(2) Broadcast to all users in U1 the list (v, cPKv , sPKv , σv)v∈U1 .

5.2.2 Secret Share Generation

User u:

(1) Sample a random element bu ← F to be used as a seed for a PRNG.

(2) Generate t-out-of-|U1| shares of sSKu :{(v, sSKu,v )}v∈U1 ← SS.share(sSKu , t,U1)

(3) Generate t-out-of-|U1| shares of bu: {(v, bu,v)}v∈U1 ← SS.share(bu, t,U1)

(4) For each other user v ∈ U1\{u}, compute eu,v ← AE.enc(ku,v, u||v||sSKu,v ||bu,v)

(5) Send all the ciphertexts eu,v to the server (each implicitly containing addressing
information u, v as metadata).

(6) Store all messages received and values generated.
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Server:

(1) Collect lists of ciphertexts from at least t users (denote with U2 ⊆ U1 this set of
users).

(2) Sends to each user u ∈ U2 all ciphertexts encrypted for it: {eu,v}v∈U2 .

5.2.3 Private Data Masking

User u:

(1) If the list of eu,v received from server is of size less than t, abort.

(2) For each other user v ∈ U2\{u}, expand ku,v using a PRNG into a random vector
pu,v = ∆u,v · PRNG(ku,v), where ∆u,v = 1 when u > v, and ∆u,v = −1 when u < v.
Additionally, define pu,u = 0.

(3) Compute the user’s own private mask vector bu = PRNG(bu). Then, compute the
masked input vector yu ← xu + bu +

∑
v∈U2 pu,v (mod )R

(4) Send yu to the server.

Server:

(1) Collect yu from at least t users (denote with U3 ⊆ U2 this set of users). Send to each
user in U3 the list U3.

5.2.4 User Dropout Consistency Check

User u:

(1) Receive from the server a list U3 ⊆ U2 consisting of at least t users (including itself).
If U3 is smaller than t, abort.

(2) Send to the server σ′u ← SIG.sign(dSKu ,U3).

Server :

(1) Collect σ′ from at least t users (denote with U4 ⊆ U3 this set of users). Send to each
user in U4 the set {v, σ′v}v∈U4 .
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5.2.5 Unmasking Aggregate Data

User u:

(1) Receive from the server a list {v, σ′v}v∈U4 . Verify that U4 ⊆ U3, that |U4| ≥ t and that
SIG.ver(dPKu ,U3, σ

′) = 1 for all v ∈ U4 (otherwise abort).

(2) For each other user v in U2\{u}, decrypt the ciphertext v′||u′||sSKv,u ||bv,u ← AE.dec(kv,u, ev,u)
and assert that u = u′ ∧ v = v′.

(3) Send a list of shares to the server, which consists of sSKv,u for users v ∈ U2\U4 and bv,u
for users in v ∈ U4.

Server:

(1) Collect from at least t users (denote with U5 this set of users).

(2) For each user in u ∈ U2\U3, reconstruct sSKu ← SS.recons({sSKu,v }v∈U5 , t) and use it
(together with the public keys received in Section 5.2.1) to recompute pv,u for all
v ∈ U3 using the PRNG.

(3) For each user u ∈ U3, reconstruct bu ← SS.recons({bu,v}v∈U5 , t) and then recompute
bu using the PRNG.

(4) Compute and output z =
∑

u∈U3 xu as∑
u∈U3

xu =
∑
u∈U3

yu −
∑
u∈U3

bu +
∑

u∈U3,v∈U2\U3

pv,u

5.2.6 Security Analysis

The security proof of the protocol in [7] is based on the Decision Diffie-Hellman problem
(Definition 3.4.1). We are going to illustrate why the privacy of the user is preserved in
the curious-but-honest adversary model.

From Section 5.2.3 the server can receive the masking data yu from every user u ∈ U2,
however, it is impossible for the server to learn anything of user’s private data xu under
a curious-but-honest adversary model. Since the server can collect information from at
least t users in Section 5.2.5, we can select t users from U5 and denote those users as
u1, u2, · · · , ut.
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Lemma 5.2.1. For any user u ∈ U2\U3, the server can only get xu+bu from yu it received.

Proof. From Section 5.2.5, the server can compute sSKu for each user u ∈ U2\U3 by using
Lagrange Interpolation from Lemma 3.2.1

sSKu =
t∑
i=1

∏
1≤j≤t,j 6=i

0− uj
ui − uj

ssSKui,u

The server can then calculate ku,v for each user v ∈ U2 by:

ku,v ← KA.agree(sSKu , sPKv )

pu,v can be determined for each user v ∈ U2 by:

pu,v =


PRNG(ku,v), u > v

0, u = v

−PRNG(ku,v), u < v

The sever can then calculate xu + bu from yu by:

yu −
∑
v∈U2

pu,v = xu + bu +
∑
v∈U2

pu,v −
∑
v∈U2

pu,v mod R

= xu + bu mod R

However, since in Section 5.2.5 the server will not receive information of bu of any user
u ∈ U2\U3, the server can only get xu + bu from yu it received under a curious-but-honest
adversary model.

Lemma 5.2.2. For any user u ∈ U3, the server can only get xu +
∑

v∈U3 pu,v from yu it
received.

Proof. From Section 5.2.5, the server can compute bu for each user u ∈ U4 by using La-
grange Interpolation from Lemma 3.2.1

bu =
t∑
i=1

∏
1≤j≤t,j 6=i

0− uj
ui − uj

bui,u
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pu can be determined by:

pu = PRNG(bu)

The sever can then calculate xu +
∑

v∈U4 pu,v from yu by:

yu − pu = xu + bu +
∑
v∈U3

pu,v − pu (mod R)

= xu +
∑
v∈U3

pu,v (mod R)

However, in Section 5.2.5 the server will not receive information of bu for any user
u ∈ U3, under a curious-but-honest adversary model, the server can only get xu+

∑
v∈U3 pu,v

from yu it received.

Lemma 5.2.3. For any user u ∈ U2, the server cannot learn xu from yu it received.

Proof. From Decision Diffie-Hellman problem we can think of
∑

v∈U3 pu,v as a variable that
is computationally indistinguishable from random, thus

∑
v∈U3 pu,v is a random vector over

field R. Since bu is a random variable, then the vector bu which is generated by bu and
a pseudo-random generator function can also be computationally indistinguishable from a
random vector.

Because the server can get either xu + bu for each user u ∈ U2\U3 and xu +
∑

v∈U3 pu,v
from yu for user u ∈ U3, then for all yu, u ∈ U2 which Sever get in Section 5.2.3, the value
the server received is the sum of users’ private data vector and a random vector. As a
result, it is infeasible for the server to probe users’ private information, which means the
server cannot learn xu from yu it received.

5.3 Complexity Analysis

We analyze the complexity of computation and storage in the same manner as Section
4.4 does. Given a random finite field F, logF is the bit length of the maximum value in
F. Since decryption scheme is an inverse operation of encryption scheme, we consider the
operation of the decryption scheme used in the protocol whose input length is l bits is also
Enc(l). At the same time, since an operation of subtraction is the same as an operation of
addition of the inverse number, the time of an operation of subtraction of l bits is Add(l),
too. We let the dimension of data vector to be r.
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5.3.1 Complexity Analysis of the User

Time Complexity :

(a) In Section 5.2.1, the user needs to generate 2 Diffie-Hellman key pairs and 1 signa-
ture, which is 2(Srand(log |G|) + Exp(log |G|)) + Sign(log |G|) operations in total.
A user then needs to compute n different Diffie-Hellman pairwise key, the computa-
tion time is nExp(log |G|).

(b) In Section 5.2.2, the user needs to generate a random number using Srand(log |F|)
time. Then generate two (t+ 1) coefficients polynomial using 2(t+ 1)Srand(log |F|)
time.
Then the user needs to evaluate n times for the two polynomials. According to
Horner’s Method it needs 2nt(Mul(log |F|) + Add(log |F|)) operations to evaluate.
In the end it needs to encrypt secret shares n times using nEnc(log |F|) time.

(c) In 5.2.3, the user needs rSrand(log |R|) operations to generate one pu,v, which in
total is rnSrand(log |R|) for n users.
Then rSrand(log |R|) operations is needed to generate bu.
In the end rnAdd(log |R|) operations is needed to generate yu.

(d) In Section 5.2.4, the user needs to sign a message which takes Sign(log |G|) time.

(e) In Section 5.2.5, the user needs to do at least t signature verification which takes
tSign(log |G|) time, and at most (n − t) decryption which take (n − t)Enc(log |F|)
time.

Space Complexity:

(a) In Section 5.2.1, the user needs 2(t+1) log |F| space to store coefficients, and n log |G|
space to store all the value received in this step.

(b) In Section 5.2.2, the user needs to store n log |F| different messages for {eu,v}v∈U2 .

(c) In Section 5.2.3, the user needs to store 4r log |R| space for yu,xu,bu and
∑

v∈U2 pu,v.

(d) In Section 5.2.4, the user needs at most (n− t) log n space to store the list.

(e) In Section 5.2.5, the user needs to spend at most (n− t) log |F| space to store bu,v.

Communication Complexity:
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(a) In Section 5.2.1, the user needs to send 2 public keys and receive 2(n−1) public keys
in communication.

(b) In Section 5.2.2, the user needs to send n messages of ciphertexts to the server.

(c) In Section 5.2.3, the user needs to send a message yu with r dimension to the server.

(d) In Section 5.2.4, the user needs to receive at most n messages of signature and send
1 signature to the server.

(e) In Section 5.2.5, the user needs to send at most n − t messages of secret shares to
the server.

5.3.2 Complexity Analysis of the Server

Time Complexity :

(a) In Sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4, there is no computation needed.

(b) In Section 5.2.5, the server needs tMul(log |F|) to reconstruct sSKu , Exp(log |G|) to
reconstruct secret key, and at most (n− t) times of operations to reconstruct users’
secret polynomials. It takes (n− t)(tMul(log |F|) + Exp(log |G|)) in total.

Then, the server needs tMul(log |F|) and rSrand(log |R|) to reconstruct a bu at most
n−t times, which takes (n−t)(tMul(log |F|)+rSrand(log |R|)) operations altogether.

At last server needs to do 3r additions to get aggregate value in 3rAdd(log |R|) time.

Space Complexity:

(a) In Section 5.2.1, server needs to store n messages from individual users which is
n log |G| space.

(b) In Section 5.2.2, server needs to store n2 messages for ev,u which takes n2 log |F|.

(c) In Section 5.2.3, server needs to store at least tr log |R| for yu from at least t users.

(d) In Section 5.2.4, server needs to store at most n messages from individual users which
is n log |G| space.
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(e) In Section 5.2.5, server needs (t + 1) log |F| to store secret share polynomial, and
log |G| to store secret key, which in total takes (n− t)((t+ 1) log |F|+ log |G|) space.

Then server needs (n− t)(t log |F|+ r log |R|)) space to store values used in aggregat-
ing sum.

Since server can only store a running sum to calculate yu, at last it needs r log |R|
space to store running value.

Communication Complexity:

(a) In Section 5.2.1, server needs to broadcast a message of a n users’ list to all user,
which means server needs to send n2 messages in communication.

(b) In Section 5.2.2, server needs to collect ciphertexts at most n times and send them
to all users with the cost of n times, which is n2 messages in total.

(c) In Section 5.2.3,server needs to send the list of users in U3 to all user in U3 at least
n2 times.

(d) In Section 5.2.4, server needs to send the list of users in U4 to all user in U4 at least
n2 times.

(e) In Section 5.2.5, server needs to receive at most n− t shares to reconstruct pu,v and
bu, and at most rn data vector to update running sum.

In conclusion, the time, space and communication bit complexity of the server and the
user are given in Table 5.1.

38



Table 5.1: Bit Complexity Analysis of Privacy-Preserving Mobile Data Aggregation Pro-
tocol

Time Complexity Space Complexity Communication Complexity

Server
O(ntMul(log |F|)+
nExp(log |G|) +
nrSrand(log |R|))

O(n2 log |F|+
nt log |G|+
r log |R|))

O(n2 + nr)

User

O(nSign(log |G|)+
nExp(log |G|) +
rnSrand(log |F|) +
ntMul(log |F|) +
nEnc(log |F|))

O(n log |F|+
r log |R|) O(n+ r)
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Chapter 6

A New Communication Efficient
Data Aggregation Protocol

In this chapter, we introduce our new communication efficient and privacy-preserving data
aggregation protocol. We present an overview of the protocol in Section 6.1. The details of
the scheme are presented in Section 6.2. We present the adversarial model and the security
analysis in Section 6.3. Finally, we analyze the bit complexity of the protocol in Section
6.4.

6.1 Scheme Overview

In the complexity analysis in Section 5.3, one can see that each user needs to generate
a temporary pair of Diffie-Hellman public/private keys to mask private data. The in-
clusion of the mechanism ensures the private key reconstruction of drop-out users won’t
compromise the confidentiality of the users’ private information. However, the pairwise
keys’ construction also involves n more times of Diffie-Hellman shared key exponentiation
operations for the user and n2 more communication rounds for the server. The construc-
tion is rather expensive considering that mobile device’s resource is always limited. The
original scheme requires each user to have a pair of public/private keys and know others’
public keys, which would be rather expensive considering that as the number of mobile
users scale, it is communication and space expensive to know every users’ public key in the
network.
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Considering this issue, we combine the Harn-Gong key establishment protocol from
Chapter 4 with the mobile data aggregation protocol from Chapter 5 to make it more
communication efficient with privacy-preserving machine learning. We propose a detailed
protocol in this chapter and the protocol improves the computation and communication
efficiency. It also allows each user not to store and know every other user’s public key in
the network as long as they share the same master secret polynomial. A secure selection
scheme of threshold t of master secret polynomial is also presented.

The trusted third party in Chapter 5 is assigned one more task to distribute the secret
share polynomial for different users, which is a fair assumption considering that a trusted
third party (in this case, the KDC ) can issue each user a public/private keys certificate in
the active adversary model of Chapter 5.

We also consider the network model where each user has the information of its neigh-
boring nodes information in the new protocol. The numbers of neighboring users for all
users are assumed to be equal, which is l, i.e., in terms of a graph representation, it is
an l-regular undirected graph [8]. The l-regular communication network property is used
in the data aggregation phase and the server will send the the information of neighboring
nodes to each user.

The inclusion of l-regular communication network could reduce computation overhead
significantly since the user does not need to mask his/her data with all the pairwise key
in the network. For the drop-out situation in a mobile network in this chapter, we adopt
the drop-out situation from Chapter 5, however, the computation overhead of drop-out
situation can also be substantially reduced [33].

Property 6.1.1 (l-regular communication network). An l-regular communication network
is a logical network with a topology as an l-regular graph that is used in the pairwise key
establishment phase.

Our scheme’s high-level view is given in Figure 6.1.

Any mobile user who wants to send an update to the server can do the following:

1) Bootstrapping phase

(a) Secret Share Polynomial Distribution
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Secret Polynomial Distribution, over a Secure Channel
User u KDC

f(x)
R←− F

su(x) = f(u)
1

m−1 f(x)

su(x)←−−−−−−−−−−−−−−−−−−−−−−−−−
set su(x) to be secret polyno-
mial

(a) Bootstrapping Phase

Process Initialization
User u Server

Send Request to update data−−−−−−−−−−−−−−−−−−−−−−−−−→ Wait for enough users U1 ⊆ U
Broadcast list U1←−−−−−−−−−−−−−−−−−−−−−−−−−

Secret Share Generation
Generate bu and compute
ku,v . Generate t-out-of-n se-
cret shares for bu and compute
ssu,v

Send encrypted messages that contains bu and ssu,v−−−−−−−−−−−−−−−−−−−−−−−−−→ Wait for enough users U2 ⊆ U1

Private Data Masking
Forward received encrypted shares←−−−−−−−−−−−−−−−−−−−−−−−−−

Compute masked input yu

Send yu−−−−−−−−−−−−−−−−−−−−−−−−−→ Wait for enough users U3 ⊆ U2

Unmasking Aggregate Data
Send a list {v} of survived users from U3←−−−−−−−−−−−−−−−−−−−−−−−−−

Abort if |U3| < t

Send shares of bu for alive users and su(x) for dropped−−−−−−−−−−−−−−−−−−−−−−−−−→ Reconstruct secret polynomi-
als

Compute the final aggregated
value

(b) Running Phase

Figure 6.1: High-level view of the protocol
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2) Running phase

(a) Process Initialization

(b) Secret Share Generation

(c) Private Data Masking

(d) Unmasking Aggregate Data

6.2 Methodology

The setup for the protocol is the following, and the recommendation of the security pa-
rameters is given in Section 6.3:

1) All parties are given the security parameter k, the number of users n and a threshold
value t, honestly generated pp ← KA.gen(k), parameters m and R such that ZmR is
the space from which inputs are sampled, and a field F to be used for secret sharing.

2) All users also have a private authenticated channel with the server.

3) Each user u receives his/her secret share polynomial su(x) = f(u)
1

m−1f(x) mod N
from the trusted third party.

If any of the below operations (assertion, signature verification, key agreement, encryption)
fails, the protocol will abort. Ui, 1 ≤ i ≤ 4 represents the set of users in each round.

6.2.1 Process Initialization

User u:

(1) Request server to update data.

Server :

(1) Collect at least t messages from individual users in the previous round (denote by U1

this set of users). Otherwise, abort.

(2) Broadcast to all users in U1 the list {v}v∈U1 .
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6.2.2 Secret Share Generation

User u:

(1) Receive the list {v}v∈U1 broadcasted by the server. Verify that |U1| ≥ t.

(2) Select bu
R←− F to be used as a seed for a PRNG.

(3) For v ∈ U1, compute ssu,v = su(v) (mod N).

(4) Generate t-out-of-|U1| shares of bu: {(v, bu,v)}v∈U1 ← SS.share(bu, t,U1).

(5) For each user v ∈ U1\{u}, compute eu,v ← AE.enc(ku,v, u||v||ssu,v||bu,v), where ku,v =
ssu,v ∗ su(0)m−2 (mod N).

(6) Send all the ciphertexts eu,v to the server (each implicitly containing addressing
information u, v as metadata).

(7) Store all messages received and values generated.

Server:

(1) Collect lists of ciphertexts from at least t users (denote with U2 ⊆ U1 this set of
users).

(2) Sends to each user u ∈ U2 all ciphertexts encrypted for it: {eu,v}v∈U2 .

(3) Randomly selects the neighboring nodes N (u) of each user u ∈ U2. Sends N (u) to
each user u ∈ U2.

6.2.3 Private Data Masking

User u:

(1) If the list of eu,v received from server is of size < t, abort.

(2) Suppose the data update to be sent is xu in R. For each other user v ∈ N (u), expand
ku,v using a PRNG into a random vector pu,v = ∆u,v · PRNG(ku,v), where ∆u,v = 1
when u > v, and ∆u,v = −1 when u < v. Additionally, define pu,u = 0.
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(3) Compute the user’s own private mask vector bu = PRNG(bu). Then, compute the
masked input vector yu ← xu + bu +

∑
v∈N (u) pu,v.

(4) Send yu to the server

Server:

(1) Collect yu from at least t users (denote by U3 ⊆ U2 this set of users). Send to each
user in U3 the list U3.

6.2.4 Unmasking Aggregate Data

User u:

(1) Receive from the server a list {v}v∈U3 . Verify that U3 ⊆ U2, that |U3| ≥ t and
|U2| − |U3| ≤ t (otherwise abort).

(2) For each user v in U3\{u}, decrypt the ciphertext v′||u′||ssv,u||bu,v ← AE.dec(kv,u, ev,u)
and verify that u = u′ and v = v′.

(3) Send a list of shares to the server, which consists of ssv,u for users v ∈ U2\U3 and bu,v
for users v ∈ U3.

Server:

(1) Collect the list of shares from at least t users (denote by U4 this set of users).

(2) For each user in u ∈ U2\U3, reconstruct su(x) ← SS.reconp({ssu,v}v∈U4 , t) and use
it (together with each user’s public key) to recompute pv,u for all v ∈ U3 using the
PRNG.

(3) For each user u ∈ U3, reconstruct bu ← SS.recons({bu,v}v∈U4 , t) and then recompute
bu using the PRNG.

(4) Compute and output z =
∑

u∈U3 xu as∑
u∈U3

xu =
∑
u∈U3

yu −
∑
u∈U3

bu +
∑

u∈U3,v∈U2\U3∧v∈N (u)

pv,u

.
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6.3 Adversary Model and Security Analysis

We consider a curious-but-honest server that provides cloud services for machine learning.
The server may be curious to inquire the user’s secret, but it would not manipulate mes-
sages or act actively to acquire a user’s secret or data. We assume there is a trusted third
party who provides secret share polynomials and keeps φ(N) secret to make the secret
share polynomial resist up to t users’ collaboration. A secure threshold for t is provided
to resist a passive adversary who wants to learn users’ secret data to be updated by cloud
server. The security of protocol is based on the RSA assumption and the Byzantine pro-
tocol.

Definition 6.3.1 (Byzantine Generals Problem). A group of generals, each commanding
a portion of the Byzantine army, encircle a city. These generals wish to formulate a plan
for attacking the city. In its simplest form, the generals must decide only whether to attack
or retreat. Some generals may prefer to attack, while others prefer to retreat.

Lemma 6.3.1. For the multivariate polynomial key establishment protocol with m users
and degree t in an open network, the protocol can reach a secure key agreement if t ≥ m/3.

Proof. We may assume the network of this protocol to be a situation where the Byzantine
generals problem applied since no assumption of malicious nodes is made.

From [22] we know that there is a t resilient synchronous protocol without authentica-
tion which solves the strong Byzantine generals problems if and only if t/n < 1/3, where
a t-resilient protocol automatically tolerates up to t processes and links failures and n is
the number of processes. Thus we may assume the upper bound of malicious nodes to be
m/3 for an m-members conference key protocol because there is no practical situation for
this network to function securely if the upper bound of malicious node is over m/3.

We can then conclude that if the degree t of the polynomial to be greater than or equal
to m/3 the security of the whole network could be based on other properties of the network
without consideration of security parameter t.

Lemma 6.3.2. There exists an l-regular communication network for each user in the
protocol.

Proof. We first introduce the concept of an l-regular graph:

Definition 6.3.2 (l-regular graph). A graph all of whose vertices have degree l is called
an l-regular graph or regular graph of degree l.
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For each user u that belongs to a network U , it should be noticed that the user can
communicate with any other user in the network directly or indirectly. Let N (u) denote a
set of neighbors to which the user u can communicate directly. There exists an undirected
edge between user u and each user v ∈ N (u). Since given two integers l and m, there exists
an l-regular graph with m vertices if l or m is even, with a network with m members where
m is even in the Harn-Gong protocol, the KDC can always maintain a network where each
user has exactly l neighbors, i.e., |N (u)| = l for all u ∈ U .

Lemma 6.3.3. From the new application of the data aggregation scheme, the cloud server
can produce a correct aggregate sum in the final round.

Proof. Since the server can collect information from at least t users’ secret share, we
can select t users’ information and denote those users as u1, u2, · · · , ut. For each user
ui, 1 ≤ i ≤ t, the user’s information consists of ssv,ui for users v ∈ U2\U3 and bv,ui for users
v ∈ U3.

From Lemma 3.2.1, the server can construct the secret polynomial for all users v ∈
U2\U3 by the following calculation

sv(x) =
t∑
i=1

∏
1≤j≤t,j 6=i

x− uj
ui − uj

ssv,ui

As a result, for each user v ∈ U2\U3 ∧ v ∈ N (u), the server can get its
∑

u∈U2 pv,u
where pv,u = PRNG(kv,u) if v > u and pv,u = −PRNG(kv,u) if v < u. kv,u is pairwise key
computed by sv(x).

By the same construction method, server can get bv for all user v ∈ U2

bv =
t∑
i=1

∏
1≤j≤t,j 6=i

0− uj
ui − uj

bv,ui

Thus for each user v ∈ U2\U3, the server can get its pv = PRNG(bv).

For every u ∈ U3, the server can get its yu from Section 6.2.3, thus get its aggregate
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sum
∑

u∈U3 xu by the following process:∑
u∈U3

yu −
∑
u∈U3

bu +
∑

u∈U3,v∈U2\U3∧v∈N (u)

pv,u

=
∑
u∈U3

(xu + bu +
∑

v∈U2∧v∈N (u)

pu,v)−
∑
u∈U3

bu +
∑

u∈U3,v∈U2\U3∧v∈N (u)

pv,u

=
∑
u∈U3

xu +
∑
u∈U3

bu +
∑
u∈U3

∑
v∈U2∧v∈N (u)

pu,v −
∑
u∈U3

bu +
∑

u∈U3,v∈U2\U3∧v∈N (u)

pv,u

=
∑
u∈U3

xu +
∑

u∈U3,v∈U2∧v∈N (u)

pu,v +
∑

u∈U3,v∈U2\U3∧v∈N (u)

pv,u

=
∑
u∈U3

xu +
∑

u∈U3,v∈U3∧v∈N (u)

pv,u

=
∑
u∈U3

xu

Corollary 6.3.3.1. For each pair of users u, v in U1, the established pairwise keys are the
same, which means ku,v = kv,u.

Proof. Since from the Harn-Gong protocol we know that

ku,v = su(v) ∗ su(0)m−2

kv,u = sv(u) ∗ sv(0)m−2

And from the definition of the secret polynomial we know that

su(x) = f(u)
1

m−1f(x)

sv(x) = f(v)
1

m−1f(x)

Hence the established key is

ku,v = su(v) ∗ su(0)m−2

= f(u)
1

m−1f(v) ∗ (f(u)
1

m−1f(0))m−2

= f(u)
1

m−1f(v) ∗ (f(u)
1

m−1 )m−2f(0)m−2

= f(u)
1

m−1f(v) ∗ f(u)
m−2
m−1f(0)m−2

= f(u)f(v)f(0)m−2

48



From the same process we can calculate that

kv,u = f(v)f(u)f(0)m−2

= ku,v

Corollary 6.3.3.2. For any pair of users u, v ∈ U1, pv,u+pu,v = 0 and
∑

u∈U ,v∈U∧v∈N (u) pv,u = 0.

Proof. To prove that pv,u + pu,v = 0, we can assume that v > u. Since v > u, pv,u =
PRNG(kv,u) and pu,v = −PRNG(ku,v)

From Corollary 6.3 we know that kv,u = ku,v, thus

pv,u + pu,v = PRNG(ku,v)− PRNG(kv,u)

= 0

Since pv,u + pu,v = 0 and if v ∈ N (u) then u ∈ N (v), we can calculate that∑
u∈U ,v∈U∧v∈N (u)

pv,u =
∑

u∈U ,v∈U∧v∈N (u),u<v

(pv,u + pu,v)

= 0

Lemma 6.3.4. For any user u ∈ U2, the server cannot learn xu from yu it received.

Proof. From Claim 4.3.2 we know that by knowing fewer than t+ 1 secret polynomials it
is computationally infeasible to know other conference keys. For the curious-but-honest
cloud server, since it only knows |U2| − |U3| secret polynomials and |U2| − |U3| < t + 1, it
is also computationally infeasible for the server to obtain other conference keys involving
user u ∈ U3, which makes the server cannot learn xu from yu for each user u ∈ U3.

Since bu is generated the same as the previous one does, from Lemma 5.2.6 we know
that the server can neither learn xu from yu for each user u ∈ U2\U3. Hence the server
cannot learn xu from yu it received.

Lemma 6.3.5. The new protocol saves O(n2) communication complexity in the key estab-
lishment process compared to the scheme in Section 5.
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Proof. The mutual key establishment process in the protocol in Section 5 is that, every
user in the network generates a Diffie-Hellman key pair and send that to the server, then
the server sends each user in the network the Diffie-Hellman public keys’ list of the network.

In the process above, the server needs to send a list of n Diffie-Hellman public keys to
n users, which causes an O(n2) communication costs in the key establishment.

In the key establishment process of the new protocol, each user can establish a pairwise
key non-interactively by Harn-Gong Protocol, thus the new protocol saves O(n2) commu-
nication complexity in the key establishment process compared to the scheme in Section
5.

6.4 Complexity Analysis

We consider the bit complexity in the same manner as Section 5.3 does.

6.4.1 Complexity Analysis of the User

Time Complexity :

(a) In Section 6.2.1, no computation is needed.

(b) In Section 6.2.2, the user needs to generate a random number using Srand(log |F|)
time. Then generate a set of (t+1) coefficients polynomial for bu secret sharing using
(t+ 1)Srand(log |F|) time.
Then the user needs to evaluate n times for secret sharing polynomial of bu and
l times for Harn-Gong secret share polynomial. According to Horner’s Method it
needs ntMul(log |F|) +ntAdd(log |F|) + ltMul(log |G|) + ltAdd(log |G|) operations to
evaluate.
In the end it needs to encrypt n times using nEnc(log |G|) time.

(c) In Section 6.2.3, the user needs rSrand(log |R|) operations to generate pu,v for each
user v, which in total is rnSrand(log |R|). rSrand(log |R|) operations is needed to
generate bu and rnAdd(log |R|) is required to generate yu.

(d) In Section 6.2.4, the user needs at most (n−t) decryption which take (n−t)Enc(log |G|)
time.
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Space Complexity:

(a) In Section 6.2.1, the user needs (t + 1) log |G| to store secret univariate product
polynomial coefficients.

(b) In Section 6.2.2, the user needs to store (t+1) log |G| to store secret share polynomial
coefficients. The user also needs to store n log |F| different messages for {eu,v}v∈U2 .

(c) In Section 6.2.3, the user needs to store 4r log |R| space for yu,xu,bu and
∑

v∈U2 pu,v

(d) In Section 6.2.4, the user needs to spend at most (n− t) log |F| space to store bu,v.

Communication Complexity:

(a) In Section 6.2.1, the user needs to send one message to server in communication.

(b) In Section 6.2.2, the user needs to send n messages of ciphertext to the server.

(c) In Section 6.2.3, the user needs to send r dimension of message yu to the server.

(d) In Section 6.2.4, the user needs to send at most (n− t) messages of secret shares to
the server.

6.4.2 Complexity Analysis of the Server

Time Complexity :

(a) In Sections 6.2.1, 6.2.2 and 6.2.3, there is no computation needed.

(b) In Section 6.2.4, server needs t(Mul(log |G|) + Add(log |G|)) to reconstruct su(x),
needs t(Mul(log |F|) + Add(log |F|)) to evaluate pairwise key, and needs to do eval-
uation at most (n − t) times, which takes (n − t)(t(Mul(log |F|) + Mul(log |G|) +
Add(log |F|) + Add(log |G|))) time.
Then, server needs t(Mul(log |F|)+Add(log |F|)) and rSrand(log |R|) to reconstruct a
bu, at most n−t times, which takes (n−t)(tMul(log |F|)+Add(log |F|)+rSrand(log |R|))
time.
At last server needs to do 3rAdd(log |R|) to get aggregate value.

Space Complexity:
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(a) In Section 6.2.1, a list of users is stored in n log |G| space.

(b) In Section 6.2.2, server needs to store n2 messages for ev,u which takes n2 log |G|.

(c) In Section 6.2.3, server needs to store r log |R| for yu from at least t users which costs
r log |R| space in total.

(d) In Section 6.2.4, server needs (t + 1) log |G| to store secret share polynomial, and
log |F| to store secret key, which in total takes (n− t)((t+ 1) log |G|) space.

Since server can only store a running sum to calculate yu, at last it needs r log |R|
space to store running value.

Communication Complexity:

(a) In Section 6.2.1, server needs to broadcast a message of a n users’ list to all user,
which means server needs to send n2 messages in communication.

(b) In Section 6.2.2, server needs to collect ciphertexts at most n times and send them
to all users with the cost of n times, which is n2 messages in total.

(c) In Section 6.2.3, server needs to send the list of users in U3 to all user in U3 at least
n2 times

(d) In Section 6.2.4, server needs to receive at most n− t shares to reconstruct pu,v and
bu, and at most rn data vector to update running sum.

In conclusion, the time, space and communication bit complexity of the server and the
user are listed in Table 6.1.
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Table 6.1: Bit Complexity Analysis of Privacy-Preserving Mobile Data Aggregation Pro-
tocol

Time Complexity Space Complexity Communication Complexity

Server

O(ntMul(log |F|)+
(nt+

r)Add(log |F|) +
nrSrand(log |R|))

O(n2 log |G|+
r log |R|)) O(n2 + nr)

User

O(nrSrand(log |F|)+
(nr +

lt)Add(log |R|) +
ltMul(log |G|) +
nEnc(logG))

O(n log |F|+
r log |R|) O(n+ r)

53



Chapter 7

Implementation of Mobile Data
Aggregation

Since the protocol in [28] does not include implementation detail, we implement neces-
sary primitives for Harn-Gong protocol in python and test its running time according to
different users’ number as well as different polynomials’ degree. Moreover, because the
implementation of [7] in mobile user side does not involve a real Android application but
a Java client in desktop, we implement our new protocol an Android application and also
compare its performance with [7] in the same settings. It shows that our protocol is 1.5 to
3 times faster than [7] due to the non-interactive pairwise key establishment and l-regular
communication network properties.

In this Chapter, we introduce our implementation of Harn-Gong protocol and its per-
formance in Section 7.1. Different versions of the implementation of our new scheme and
performance comparison are demonstrated in Section 7.2.

7.1 Python Lib for KDC Generating Secret Share

The implementation of python lib is a python module based on secret sharing to achieve
group key sharing. It contains 5 python files:

1. conferenceKey.py is main API for conference key construct and recover.

2. polynomials.py is used for Lagrange interpolation and modular arithmetic.
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3. primes.py is used to generate safe prime number.

4. sharing.py is original secret sharing API, which is not used in this group key sharing
implementation.

5. test secret.py is a unit test file for safe prime generation and group key construction.

7.1.1 Sample Usage

Splitting Into Shareholders

>>> from s e c r e t s h a r i n g import conferenceKey
>>> A, sha r eho ld e r s = conferenceKey . s h a r e g e n e r a t i o n (3 , 4 , 4 , 16)
>>> A
>>> [ 1517141389 , 635182453 , 524693228 , 3001449852]

>>> sha r eho ld e r s
>>> [ [ 405405764L , 2986928440L , 1555085675L , 2683010161L ] ,

[1177434373L , 1662914492L , 1555645294L , 2047286792L ] ,
[2209032879L , 2932824304L , 1219761147L , 2514560514L ] ,
[1714642752L , 807232125L , 809625417L , 1082038406L ] ]

Constructing Group Key

>>> Shareho lder s [ 0 ] . c o n f e r e n c e k e y c o n s t r u c t ( range ( 4 ) )
>>> 2018829063L
>>> Shareho lder s [ 1 ] . c o n f e r e n c e k e y c o n s t r u c t ( range ( 4 ) )
>>> 2018829063L

Recovering Secret

>>> v = [ ]
>>> for s in Shareho lder s :

v . append ( s . s e c r e t v a l u e ( ) )
>>> mod = Shareho lder s [ 0 ] . get modulus ( )
>>> conferenceKey . s e c r e t r e c o n s t r u c t ( range ( 4 ) , v , 4 , 3 , mod)
>>> 849991194L
>>> A[ 0 ]∗∗4 % mod
>>> 849991194L
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7.1.2 API Description

• conferenceKey.share generation(k, m, n, l = None,pub inf = None):

Returns a tuple (A, Shareholders) which contains a random polynomial with degree
k for KDC, and n shareholders’ polynomials for each member.

l is a long bit length prime which can be either decided by KDC or generated by
program.

pub inf is users’ public keys information which could either be transmitted or gen-
erated by program.

• share Polynomial.conference key construct(self, shareholders, pub inf = None):

Returns group key of users whose id is in shareholders.

• conferenceKey.secret reconstruct(shareholders, values, n,k, modulus, pub inf =
None)):

Returns secret in KDC ’s random polynomial, which is constructed by users in share-
holders and secret value of each user in values.

7.1.3 Secret Share Polynomial Generation Time

The KDC primitives implementation is built and run on a macOS High Sierra system
with an Intel Core i7 processor and 16 GB memory. The time needed for generating
secret share polynomials for a different number of users is demonstrated. The degree of
polynomials is selected to be k and the generation time increases with the degree increases.
The generation time also increases linearly according to the increase in the number of users.
The generation time of different degrees and users’ number is in Figure 7.1.

7.2 Android App for Client Masking Private Data

The Android implementation of the user is built and run on a Nexus 5 x86 Android Studio
Simulator on macOS High Sierra 10.13.3. For cryptographic primitives, we firstly used
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Figure 7.1: Secret Share Polynomial Generation Time in 128 Security Level

Java BigInteger class to evaluate the polynomial and calculated the application’s masking
time under different levels of security. The graphic user interface is shown in Figure 7.2.
However, although we can get a rough result of masking time, we got a big memory
overhead when evaluating polynomials using Horner’s Method since the native BigInteger
class is immutable.

We then compiled the OpenSSL library and use it as an Android native-lib to use a
data structure like big integer and modulo arithmetic of C++ implementation. The C++
combined Android application makes it more time and memory efficient. We also changed
our user interface to make the security level and number of neighbors more controllable
by the user in Figure 7.3. Its masking time is demonstrated when clicking the button of
“CALC” .
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Figure 7.2: User selects security level locally using Java native BigInteger class. Left: Each
button is displayed in the form of i j, where j denotes how many neighbors user has in
order and the label reveals number of neighbors and the time masking function uses. Right:
After button is pressed, masking time is displayed in second by computation.

7.3 Execution Time

We first implemented a Java BigInteger class based masking app and collected its average
execution time. However, a significant memory and time overhead is generated when eval-
uating different polynomials, and the app would even freeze when encountering big RSA
modulus size and a large number of neighbors. The reason for it is that the Android app
would inherently not collect garbage while the user is using the app, where a garbage col-
lection would freeze the app and influence the user experience. For UX purpose it was fair,
but since BigInteger class is immutable (like a String literal in general case), temporary
BigInteger variables generated by Horner’s method will not be cleared out, which causes a
big memory space occupation of the app stack. Significant memory overhead is the reason
why we can only get the security level for the number of users up to 1000.
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Figure 7.3: A user selects security level locally using native OpenSSL C++ library. Left:
“CALC” button is clicked to calculate masking time and represent the result in “Time”
label. Right: Masking time in millisecond for a user in a network of m = 100 users, with
the secret polynomial of degree t = 33 and l = 33 neighbors.

Considering the essence of the developer not manipulating memory in Java language, we
decided to compile a C++ library of OpenSSL into the Android system. The Java Native
Interface is necessary to make the Android app call C++ function, so is a compiled C++
library based on the different underlying hardware system. After researching on several
different programming languages’ interaction, we compiled a C++ lib in macOS x86 Nexus
5 simulator and get a significant performance improvement. However, the hardware specific
C++ library makes the app complicated to be transformed into a different Android phone
and operating systems (ARM architecture, for example). Nevertheless, it is an excellent
tool to illustrate how efficient our scheme could be.
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7.3.1 Security Level Execution Time Comparison

We consider three security levels of 80, 112 and 128 bits. Its corresponding modulus sizes
are provided in Table 7.1. The security level of RSA modulus is based on the difficulty of
solving RSA problems of different modulus size, and the security level of Shamir’s secret
sharing (SS) modulus is raised to provide more security.

Table 7.1: Modulus Sizes for Different Security Levels

Security level 80 112 128
RSA modulus (N) size in bits 1024 2048 3072

SS modulus size in bits 160 224 256

Figure 7.4: Different Security Level Masking Time Using Java BigInteger Class

Figure 7.4 shows that different security level influence little of performance time, the
reason of which is that big overhead of the masking contributes from pseudo random num-
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ber generation and masking. Such statement can also be found in [7].

7.3.2 Masking Schemes Execution Time Comparison

Figure 7.5: Masking Scheme Comparison Using C++ Native Lib

Figure 7.5 shows that our scheme and scheme in [7] are of the same increasing shape
(which is the same in complexity analysis), but the running time of our scheme is signifi-
cantly less than that of [7].

We implemented both schemes in the android app using C++ library, while the time
comparison in [7] is a Java Client implemented in a desktop. The difference of compu-
tational resource from desktop and android phone might influence the running time of
different schemes.

61



7.4 Power Consumption

Since power consumption of cryptographic operations can be a big issue for mobile de-
vices, we test and provide the power consumption results of our Android application with
OpenSSL and provide its comparison with previous work.

Figure 7.6 shows that our scheme is more power efficient in masking private data than

Figure 7.6: Masking Scheme Power Consumption Comparison

that of [7].
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Chapter 8

Conclusions and Future Work

In this chapter, we present the conclusions in Section 8.1, and in Section 8.2 we list some
directions for the future work.

8.1 Conclusions

With the growing use of Machine Learning as a Service (MLaaS), the cloud server collects
data from mobile users to improve user experiences by applying learning algorithms. At
the same time, providing privacy for mobile users data is challenging. In this thesis, we pro-
pose a communication-efficient scheme for a privacy-preserving data aggregation scheme,
which aggregate users’ data for machine learning services without revealing an individual’s
private information. The aggregate sum scheme is based on the one-time masking opera-
tion where the masking operation masks a user input with pairwise keys of its neighboring
users specified by a communication network. Due to employing a non-interactive key gen-
eration mechanism for the masking operation, we improved Diffie-Hellman key exchange
protocol[7] from O(n2) complexity to a constant value. The security and performance of
the scheme is discussed.

In addition, we provided a new security proof of the Harn-Gong protocol and provided
the security threshold of our new scheme. Furthermore, we implemented both the KDC
python application for secret share polynomial distribution and the Android mobile appli-
cation for masking user private data. We evaluated the feasibility of using the proposed
scheme on smart phone devices by conducting experiments for 80, 112 and 128 bits secu-
rity levels and various user and input sizes. The proof-of-concept implementation indicates
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that our scheme is 1.5 to 3 times more efficient than that in [7].

8.2 Future Work

Since this thesis improves the communication efficiency of the privacy-preserving mobile
data aggregation scheme, for the computation performance of the new protocol, our future
work will aim to improve the multipoint evaluation efficiency. Since for Horner’s Method,
it is only ideal for one time evaluation, and there is a computation improving space for the
multipoint evaluation for one polynomial using a divide-and-conquer algorithm.

Also, we adopt the passive adversary threat model from the privacy-preserving mobile
data aggregation scheme and improves its efficiency. We would like to build a new efficient
scheme against the active adversary threat model and provide its security proof.
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Appendix A

Fast Multipoint Evaluation
Algorithm

For arbitrary points x0, x1, · · · , xn−1, multipoint evaluation can be done with O(n2) oper-
ations by using Horner’s Method n times. It is reasonable to think that n evaluation of
polynomial needs at least n2 multiplication, however, we found a faster way from [58]. The
idea is to divide the point set {x0, x1, · · · , xn−1} into two halves and solve the problem
locally. This method leads to a binary tree of depth log n.

From a set of algebraic operations we can get for any polynomial p(x) for which we
want to evaluate an arbitrary point x0 in a ring R, when p(x) mod (x− x0) is denoted as
r(x)

p(x0) = r(x0) mod R

Similarly, for a set of arbitrary points x0, x1, · · · , xn−1, if we denote r(x) = p(x)
mod (x− x0)(x− x1) · · · (x− xn−1) mod R, then

(p(x0), p(x1), · · · , p(xn−1)) = (r(x0), r(x1), · · · , r(xn−1)) mod R

We let mi = x− xj and define

Mi,j = mj·2imj·2i+1 · · ·mj·2i+2i−1

=
∏

0≤l<2i

mj·2i+l

= (x− uj·2i)(x− uj·2i+1) · · · (x− uj·2i+2i−1))
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for 0 ≤ i ≤ k = log n and 0 ≤ j ≤ 2k−i.

Then we have

M0,j = (x− uj)
= mj

and

Mi+1,j =
∏

0≤l<2i+1

mj·2i+1+l

=
∏

0≤l<2i

mj·2i+1+l ·
∏

0≤l<2i

mj·(2i+1+2i+l)

=
∏

0≤l<2i

m2j·2i+l ·
∏

0≤l<2i

m(2j+1)·(2i+l)

= Mi,2j ·Mi,2j+1

We can produce subtree of Mi,j as in algorithm 1.

Algorithm 1: Building up the subproduct tree

input : x0, x1, · · · , xn−1, where n = 2k for some k ∈ N
output: The polynomials Mi,j for 0 ≤ i ≤ k and 0 ≤ j < 2k−i

1 foreach j = 0, · · · , n− 1 do
2 M0,j ← mj

3 foreach i = 1, · · · , k do
4 foreach j = 0, · · · , 2k−i − 1 do
5 Mi,j ←Mi−1,2j ·Mi−1,2j+1

6 return

We now have a divide-and-conquer algorithm that, given all subproducts Mi,j, we can
proceed our evaluation process in the algorithm 2.

It can be proved in [58] that the complexity of algorithm 2 is O(n log n).
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Algorithm 2: Going down the subproduct tree

input : p(x) of degree less than n = 2k for some k ∈ N, x0, x1, · · · , xn−1 ∈ R, and
the subproducts Mi,j from Algorithm 1

output: p(x0), p(x1), · · · , p(xn−1) ∈ R
1 if n = 1 then
2 return p(x0)

3 r0(x)← p(x) mod Mk−1,0, r1(x)← p(x) mod Mk−1,1

4 call the algorithm recursively to compute r0(u0), · · · , r0(un/2−1)
5 call the algorithm recursively to compute r1(un/2), · · · , r0(un−1)
6 return r0(u0), · · · , r0(un/2−1), r1(un/2), · · · , r0(un−1)
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