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Abstract	

Brain-computer interfaces have the potential to improve the lives of many populations who 

benefit from neurofeedback. Autism Spectrum Disorder is a condition experienced by many and 

its deficits are potentially improved for some using brain-computer interface technology. Various 

techniques have already been used to illustrate improvements in ASD across different brain signals 

and interactive interfaces. In particular, movement-related cortical potentials are related to 

executive functioning of movement and have been shown to be successful in other systems. This 

thesis investigates the effect of Autism Spectrum Disorder in adults on how movement-related 

cortical potentials are elicited in the brain compared to neurotypical populations to determine 

whether the motor systems that elicit such signals are abnormally functioning, and as a result 

whether they may be improved with neurofeedback.  

In addition to understanding the EEG response for people with ASD to brain-computer 

interfaces, it is important to gain insights into their perception of such technologies. This thesis 

also examines how people with ASD perceive different potential brain-computer interfaces. 

Quantitative and qualitative data was collected and analysed across three different interfaces 

(auditory, visual, and haptic) and two different tasks (real movement and imagined movement 

execution).  

The EEG results show statistically significant differences in the elicitation of movement-

related cortical potentials (MRCPs) between the autistic and neurotypical group, thus indicating 

possible underlying abnormalities in the motor systems being activated. The features of MRCP 

were much smaller in amplitude in the ASD group, suggesting that fewer neurons are being 

recruited for movement-based actions. Since other studies have demonstrated success when 
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improving MRCPs in populations suffering from Parkinson’s and stroke, it is thus inferred that 

such neurofeedback may also benefit those with Autism Spectrum Disorder.  

While there were no statistical differences regarding EEG-related performance for different 

modalities, qualitative results suggest common themes regarding people with ASD’s subjective 

perceptions, including the need for feedback on performance and strong preferences for different 

types of modalities. These results emphasize the importance of considering both quantitative and 

qualitative data when designing brain-computer interfaces for these populations. This research 

demonstrates an opportunity to use MRCP-based neurofeedback to help populations with ASD, as 

well as emphasizes the importance and insights of capturing qualitative data in the process.  
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1. Background	

 

1.1 Autism	Spectrum	Disorder	

Autism Spectrum Disorder (ASD) is the general term for a family of neurodevelopmental disorders 

that are characterized by deficits in communication, social understandings, unpredictable 

sensitivity to various external stimuli, and unusual behaviours [1]. ASD is a lifelong condition that 

is usually diagnosed in children when they are about three years of age, but can occur at any point 

in their life [2]. Currently, a diagnosis is based on an individual’s results on the Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria outlined by the American 

Psychiatric Association [3]. The severity of the diagnosis is categorized as high-functioning, 

moderately-functioning, and low-functioning ASD. The classification of high to low-functioning 

autism was made by the Austrian pediatrician Hans Asperger, in an effort to spare the lives of 

children with ASD, who were persecuted by the Nazi party for being ‘neurologically inferior’ [4]. 

Thus, the term high-functioning ASD is also known as Asperger’s syndrome. The population 

without ASD is often described as ‘neurotypical,’ thus this term will be used therefor. 

 Of particular interest in ASD research is people with ASD’s hypersensitivity to external 

stimuli. Historically, it has been nearly impossible to predict what type of stimuli a particular 

autistic individual will be oversensitive to, as well as what type of stimuli the individual may 

favour [5]. Many studies have aimed to identify the origin and preferences of these sensitivities. 

One study attempted to explain the interaction between stimuli preference and performance 

between autistic children and neurotypical children (N=87, 17 of which belonged to the autistic 

group) [6]. In this study, both groups of children were asked to press a key in response to one of 
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three cues: auditory, visual, and haptic. Performance was measured via response time. In both 

groups, children had the lowest response time using auditory cues, and had the highest with tactile 

cues. It was noted that both groups reported similar preferences to auditory and visual stimuli, 

however the researchers pointed out some factors that might have skewed results. For example, 

the tactile stimulation that was a touch by the experimenter might have negatively affected children 

that avoid social interaction, which is a common observation in people with ASD. Furthermore, 

the researchers propose that the deficiencies in performance via response times with children in 

the ASD group may have been due to learning disturbances, rather than a deficit in the cognitive 

processing of sensory inputs. While research exists examining hypersensitivities, there is little 

research available in examining how they may impact BCIs [7]. Thus, there is still more research 

needed that can control these factors to determine if different external stimuli elicit different 

responses in BCIs designed for people with ASD. 

Due to the variance in sensitivities prevalent with ASD, it has been difficult to find an 

explanation or trend in what type of stimuli will be hypersensitive for ASD population. These 

sensitivities are believed by some researchers to be caused by abnormalities in sub-systems of the 

nervous system that are responsible for processing stimuli. A popular area of research aims to 

assist individuals with ASD in tolerating these external stimuli, known as sensory integration 

therapy [5][8]. The most notable example of this research is Temple Grandin’s famous ‘hugging 

machine,’ in which touch pressure is applied in a hugging fashion to help develop a tolerance to 

touching, as well as reduce anxiety and nervousness in the participant [9]. Her research has been 

very impactful due to the success of her device, as well as her own diagnosis of high-functioning 

ASD. The ‘insider experience’ she has on how stimuli are perceived show how valuable it is to 

have designers of these systems work with those with ASD to make sure that the systems will be 
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successful in real-world use. Such research has supported the “nothing about us without us” slogan, 

which describes the importance of including the affected group as part of the decision-making and 

design process in order to properly address the needs of that group [10]. This slogan is often heard 

in ASD communities and is important to find new ways to make individuals with ASD as 

comfortable as possible while participating in day-to-day activities with others. 

Paired with their deficits in social skills, it can be difficult for adults with ASD to cope 

with simple tasks such as having a conversation or making a phone call. Social skills are a vital 

part in carrying out these tasks in a manner accepted by society. Social skills are currently 

addressed in behavioural and speech therapy, in which children with autism are taught how to 

communicate thoughts and feelings in a socially acceptable manner. These sessions involve several 

trained experts and are often expensive, so it is imperative for the families of those with ASD to 

have a supplement or alternative to reduce the frequency of these sessions. Researchers predict 

that an inability to develop social skills stems from an inability to imitate behaviours and actions 

in others [11]. It is theorized that the ability to imitate the actions of behaviours is mediated by the 

mirror neuron system (MNS), which is described in further detail in section 1.2. It is believed that 

ASD can be quantitatively described via abnormal representations of the MNS [11].  

 While the severity of these deficits varies significantly between individuals, many people 

with ASD report having difficulty performing movements involving complex coordination such 

as writing and hopping on one foot [12]. Some research exists that may support this observation 

in the brain. For example, one study found that children with autism have an increase in white 

brain matter around the primary motor cortex which is associated with functional movement 

impairment [13]. This has been linked to abnormal observations in research studies examining the 

motor systems at play. It should also be noted that the cognitive resources responsible for planning 
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and performing these movements are also involved in the MNS. Thus, abnormalities in MNS may 

also explain the deficits of fine motor control and executive functioning in those with ASD. 

Researchers are currently unsure of what exactly would cause this abnormal MNS in the ASD 

population. It should be noted that the mirror neuron system is still a hypothesis at this point, and 

some researchers think that an abnormal MNS in ASD is a consequence of some other factor such 

as poor attentional engagement in studies, and difficulties in fine motor movements or visual 

processing [14]. 

 Society is impacted positively when autistic people are able to participate in society. Many 

influential people, such as screenwriter Dan Aykroyd, and creator of the popular children’s 

franchise Pokémon Satoshi Tajiri, are clinically diagnosed with ASD. Furthermore, people with 

ASD will improve in their quality of life when they are able to communicate effectively to solve 

problems and form relationships with others. Thus, there are benefits in the well-being of the 

community as well as in industry. Researchers are actively looking for new ways to engage people 

with ASD more in society, and to find new ways to help them contribute to their communities. 

Therefore, we should value their contributions to society, and continue our research into finding 

the best ways to help them successfully interact with the rest of the population. One such 

opportunity to facilitate this is by using brain-computer interfaces to teach positive cognitive 

behaviours and facilitate communication and control for ASD. 
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1.2 Electroencephalography		

Many studies investigating the underlying cognitive systems of ASD population use 

electroencephalography (EEG) to capture and represent the electrical activity of the brain. Using 

electrodes and gel at the scalp surface, the aggregated neuronal activity of the brain is recorded as 

voltage fluctuations [15], [16]. When large groups of neurons activate in unison, the potentials in 

the EEG signal fluctuate [17]. In some cases, neuroscience has analyzed the morphology and 

patterns associated with these fluctuations and how they correspond to the biophysical processes 

happening within the brain. For example, when an individual wishes to execute a motor task, 

neurons are recruited by synchronizing the activities of these synapses between groups of neurons. 

These firings are forms efferent volley and eventually activate muscle cells at the end of the motor 

chain of the neuromuscular pathway, which will then perform the task the user intends to do. 

 The fundamentals of electric activities from the brain was first proposed by Richard Caton 

in 1875, who first described such an phenomenon from the brains of rabbits and monkeys [18]. 

His short excerpt described the electrical activity in the brain, but did not discover any more details. 

In 1890, a Polish physiologist named Adolf Beck was the first to discover oscillations and patterns 

in the brain’s electrical potentials, and in particular their changes to a variety of sensory 

stimulations [19]. Several researchers began experimenting with these electrical activities in 

animals, but it wasn’t until 1924 when the first human EEG was recorded by Hans Berger [20]. It 

wasn’t until 1929 that the first research journal article published his work on EEG [21].  

 At the infancy of this area of research, the procedures of acquiring these electric signals 

were rather invasive, as electrodes and other instruments were either directly inserted inside the 

brain or on the surface of the brain, under the skull and scalp [3][6]. These recording methods were 
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rather rudimentary, and a formal procedure of acquisition was not formalized until the late 1940s-

1950s by Wilder Penfield and Herbert Jasper [22][23]. Their process is known as 

electrocorticography (ECoG), and uses electrodes placed in a grid-like array placed directly on the 

surface of the brain to record electrical activity. ECoG is beneficial in recording brain potentials 

that require higher spatial resolution, however it is an invasive process that requires surgery to 

implant the electrodes. 

 With non-invasive EEG, electrodes are painlessly and safely secured to the surface of the 

scalp and the brain’s electric activity is recorded through the surface layers of brain matter, the 

skull, and the skin. The locations for placing the electrodes are standardized in a configuration 

known as the 10-20 system, where electrode location are proportionate to 10 or 20 percent of the 

length from the individual’s anion to inion [24]. FIGURE 1 illustrates the International 10-20 

system for EEG recording.  
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FIGURE 1 The standardized layout of the International 10-20 system for EEG recording. 
Each letter stands for the region of the brain the electrodes are located on, and the number 
indicates the position laterally (Fp = Pre-frontal, F = Frontal, C = Central, T = Temporal, P = 
Parietal, and O = Occipital). (Figure reproduced from [85], which is available under CC0 1.0 
Universal (CC0 1.0) Public Domain Dedication license). 
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Compared to invasive methods for acquiring EEG, non-invasive methods are more likely 

to be adopted into commercial devices because they do not require introducing implants into the 

body. However, drawbacks exist that make non-invasive EEG problematic for commercial 

devices. The most prevalent issues are that non-invasive EEG has low spatial resolution, is prone 

to noise, and cannot measure activities of deeper brain structures [25]. Despite theses limitations, 

non-invasive methods are the most likely modality for non-clinical commercial products in the 

foreseeable future. 

The analysis of EEG signals is an extensive area of research. There are numerous ways to 

extract more informative components from EEG signals. Depending on the purpose of the analysis, 

one can identify several parts of EEG that can correspond to an individual’s intentions or desired 

action. These components of EEG are grouped into two main occurrences in EEG signals: 

rhythmic activities and event-related potentials. Rhythmic activities are periodic components in 

the EEG that correspond to various aspects of perception and cognition, such as attention, 

consciousness, and memory functions [26]. There are several types that occur at different 

frequencies and different locations on the brain. Of particular interest to autism research are neural 

oscillations pertaining to the MNS because of the role it plays in early cognitive development. 

Mirror neurons are a class of neuron that becomes active while performing actions, or while 

observing someone else performing a similar action [27]. It was proposed that the cortical 

activation caused by mirror neurons has a critical role in understanding and imitating the behavior 

of others [28]. It has been theorized that these mirror neurons are working abnormally in people 

with ASD, which could explain their difficulties in learning social skills [29]. The main cortical 

representation of the MNS is quantified in EEG recordings as mu rhythms, which are found in the 

8-12 Hz frequency range over the primary motor cortex and have long been associated with the 
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cortical processing of movements [30]. The decreases/increases in these rhythms can be identified 

prior and after the onset of movement [31]. 

  Event-related potentials (ERPs) are changes in the EEG signal that are triggered by some 

event or stimuli. Compared to rhythmic activities, which can have ongoing periodic changes, ERPs 

will have a single, non-periodic change in voltage related to a specific event. There are many 

different types of ERPs each characterized by their time of occurrence or shape in the EEG, or the 

nature of the event that causes it [32]. In particular, there are three ERPs that are often mentioned 

in the autism neuroscience literature: P300s, steady-state evoked potentials, and movement-related 

cortical potentials (MRCPs). 

 The P300 wave is elicited with decision-making and natural response to a novel stimulus 

and are strongest over the parietal area of the brain. The P300 presents itself as a positive increase 

in voltage approximately 300 ms after the triggering stimuli is presented. The P300 is beneficial 

in many systems because of its consistency in its waveform structure and its presence in every 

person. The only thing that may change is the voltage amplitude, which will vary depending on 

factors such as age and the intensity of stimuli [33].  

Steady-state evoked potentials are repetitive event responses, that are carried out by a 

stimulus being applied at the same frequency as the stimulus being applied [34]. This is an 

umbrella term that can incorporate one of more types of evoked potentials, such as visual evoked 

potentials (VEPs), auditory evoked potentials (AEPs), and somatosensory evoked potentials 

(SEPs). VEPs are evoked in response to a bright stimulus (such as flashes) that appears in the 

person’s gaze, AEPs are evoked with an auditory stimulus, and SEPs are evoked in response to a 
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tactile stimulus (such as touch or vibrations) [15]. When applied in a steady-state manner, these 

potentials will take a periodic waveform that will cycle at the same frequency as the stimulus.  

Different from the above two ERPs, which are induced by external stimulus, movement-

related cortical potentials (MRCPs) are a type of slow cortical potential that is generated prior to 

voluntary movement by an individual, either spontaneously or in response to a warning cue [35]. 

As such, it is a spontaneously generated signal by the brain, not relying any external stimuli. The 

MRCP will be evoked in the area of the motor cortex responsible for motor function of that limb. 

For example, upon dorsiflexion of either foot an MRCP will be generated at the center of the motor 

cortex, about the electrode Cz indicated on FIGURE 1. MRCPs consist of a slow negative potential 

prior to movement, followed by a rebound back to the baseline after movement execution. In 

spontaneous movements, the negative component is known as the Bereitschaftspotential and 

begins 1.5 to 1 second prior to movement onset [36]. In response to a warning cue, this slope is 

known as the contingent negative variation and will begin at the first warning cue and will decrease 

at a slower rate than its BP counterpart until just before the cue that initiates movement execution. 

Regardless of the nature of the cue, MRCPs can be generated during real or imagined movement 

by the person [37]. 

EEGs currently hold much potential for clinical and commercial applications. EEG is often 

recorded to diagnose conditions such as epilepsy, and are used to determine brain death in patients 

in a persistent vegetative state [22]. Because there is a significant amount of EEG research to help 

identify different types of brain activity, there is an excellent opportunity to use EEG for a variety 

of applications. However, for EEG to be effective, we must consider how to interpret relevant 

components of users’ EEGs and provide an interface that results in meaningful use. These systems 

are known as brain-computer interfaces (BCIs) and are the key to using EEGs to their full potential.  
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1.3 	Brain-Computer	Interfaces	

BCIs capture the activity in the brain (e.g., through EEG) and translate the signals into 

commands that can be sent into machines to carry out the desired actions [38]. BCIs provide the 

user with a new, non-muscular communication and control channel, a direct means of interfacing 

with the brain, and can used for conveying messages and commands to the external world [39]. 

The first BCI was proposed in 1973 by Jacques Vidal, who first explored the feasibility of a system 

in which “observable electrical brain signals be put to work as carriers of information in man-

computer communication or for the purpose of controlling such external apparatus as prosthetic 

devices or spaceships” [40]. His first BCI used visual evoked responses generated from flashing 

lights to guide a cursor through a maze [41]. 

 Since then, BCI technology has progressed significantly. For example, some commercial 

systems interpret EEG to improve meditation, with the aim to reduce stress and anxiety over long 

periods of time [42]. There are several varieties of systems available that will use trigger cues to 

interpret letters and words for communication in the otherwise mute [39]. Clinical systems are 

being developed that utilize neural oscillations corresponding to attention and focus to improve 

the symptoms of attention-deficit/hyperactivity disorder (ADHD), which shares similar behaviours 

with ASD [43]. These systems use neurofeedback, which display real-time feedback of the user’s 

brain activity (either with the raw data, or through some gamified representation of the information 

extracted from EEG) in order to teach the users to self-regulate their brain activities [17]. It has 

been shown by various studies that neurofeedback can be used to help with cognitive functioning 

and improving behavior in people with ASD while potentially reducing dependency on 

medications and treatments that may pose undesirable side-effects [44]. Most research studies 

investigating neurofeedback tend to use smaller sample sizes (in [41] sample sizes ranged from 
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N=9 to N=60), and thus it is insightful to continue with more smaller studies, or less studies 

investigating effects across a larger population to have more justification on applying 

neurofeedback for ASD. Before this can occur, more studies should be conducted to be sure that 

such neurofeedback will work consistently across populations, as well as determine what signals 

can improve symptoms associated with ASD. 
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1.4 Brain-Computer	Interfaces	in	Autism	Spectrum	Disorder	

 Due to the recent surge in popularity of ASD research, many BCIs are being developed to 

help reduce the impact of the symptoms on day-to-day functioning of the ASD population, and to 

supplement therapeutic interventions. Between 2008 and 2018, over 130 published works on ASD 

and BCI have been released on the publication database Web of Science (searched with the 

keywords “autism” and “brain-computer interfaces”). With the growing amount of research 

available on this topic, this section will be split into three sections: (1) Potential applications in 

BCI for ASD, (2) Issues related to using BCI for ASD, and (3) Popular BCI systems already being 

developed for ASD.  
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1.4.1 Potential	applications	in	Brain-Computer	Interfaces	for	ASD	

Autism is a comorbid disorder, and as a result various other disorders are often co-

diagnosed with autism. Often, commercial devices aim to assist those with ASD by addressing 

disorders commonly associated with ASD. While this list is nowhere near exhaustive, some 

common comorbidities that appear with ASD are ADHD, Epilepsy, Obsessive-Compulsive 

Disorder, Tourette’s syndrome, and anxiety disorders. While there is no correlation between 

having ASD and having a comorbid disease, the symptoms that persist in comorbid disorders are 

similar to those in ASD and can cause significant suffering to the individual. Thus, it is beneficial 

to treat these disorders to improve the related symptoms of the autistic individual. There are various 

BCIs that address some of these comorbid conditions and can thus benefit those with ASD. 

For example, BCIs systems exist to treat ADHD. Prior research has shown that children 

with ADHD exhibit abnormal patterns of resting theta and beta waves, which can be treated with 

medication or non-invasive BCIs [45]. One popular study used a non-invasive BCI to develop an 

attention-based game, in which the participant used their EEG signals to control an avatar via brain 

waves correlated with concentration [46]. It was tested on 20 children affected (but not medicated) 

with ADHD in 27 sessions over a five-month period. After intervention, parents reported 

significant improvement in their child’s symptoms of ADHD, and the study reported a statistically 

significant improvement of children’s symptoms according to the ADHD Rating Scale. Individuals 

with ASD and co-morbid ADHD may benefit from such a system.  

 

BCIs can also be used to provide alternative communication channels for those with ASD. 

New forms of communication are important for individuals with ASD when they have 

communicative deficits, especially for a third of the ASD population that are categorized as non-
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verbal ASD and are unable to use spoken language in a meaningful way. Some are also unable to 

type on keyboards due to difficulty in performing fine motor tasks. It is important to note that non-

verbal autism is not a result of intellectual disability, but due to a compound of other factors [47]. 

Therefore, individuals with ASD may benefit from an EEG-based BCI for communication, which 

can manifest in various forms such as typing mechanisms, picture selection, or expressing 

intentions for specific actions. 
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1.4.2 Considerations	regarding	the	use	of	BCIs	for	people	with	ASD	

While a wide range of BCIs are available, there are important considerations with respect 

to using these systems. It is not a solution to simply take existing systems and make those with 

ASD use them as well, in the hopes that the expected results in other populations will be the same 

in those with ASD. There are special considerations that affect ASD and can affect the success of 

BCI systems. 

The most common BCI paradigms in ASD research use ERPs, especially VEPs and P300 

wave (known as the “oddball” paradigm) components. These components are implemented most 

often in communication-centered BCIs [39]. While BCIs based on these paradigms are beneficial 

for neurotypical populations who are able to take full advantage of ERPs, they may not be 

appropriate in a BCI developed as a communication and control tool for the ASD population. For 

example, BCIs using VEPs are based on counting or timing the rate of VEPs generated by flashing 

screens [48]. Epilepsy is a comorbid disease with ASD, and using BCIs with interfaces based on 

flashing lights on screens is known to be a trigger for an epileptic seizure [49]. The rate of the 

flashing can be reduced to minimize this risk; however the limited rate of the flashes reduced the 

throughput of the BCI systems. There is also evidence showing that individuals with ASD may 

generate unique ERPs [50]. In particular, the P300 wave components of auditory evoked potentials 

(AEPs), which are generated by novel auditory stimuli, are abnormal and smaller in amplitude in 

the group with ASD compared to the control group [51]. Therefore, using BCIs made with ERPs 

may not translate well over to BCIs developed for individuals with ASD because these signals are 

not generated the same way in individuals with ASD. If we use ERP-based BCIs on those with 

ASD, their intentions via their EEG may be misdetected and responded to inappropriately. In some 
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cases, such as VEPs, it is potentially dangerous to use these types of ERPs when developing BCIs 

for autistic populations. 

Using some neural oscillations in BCIs are not appropriate for the ASD population, either. 

Several studies exist that show evidence of impaired mu rhythms in individuals with ASD. In the 

a study by Bernier et al, 14 adult participants with a condition under the ASD umbrella were asked 

to watch a screen that displayed people performing different gestures with their face or hands [52]. 

The participants were asked to observe, then imitate the gesture made while having EEG recorded. 

Typically, mu rhythms are suppressed when watching or imitating someone else perform an action. 

A scoring system based on the Mature Imitation Task Manual was used to assess the correctness 

of the gestures imitated by the participant. Compared to a neurotypical control group who also 

underwent the same protocol, the researchers concluded that “during the observation condition, 

adults with autism showed reduced mu wave attenuation, as compared to the typical adults” [52]. 

This means that the adults under the ASD group were unable to suppress mu rhythms the same 

way the control, neurotypical group could while watching the person being displayed execute the 

task. The researchers also identified a correlation between mu rhythm attenuation and how well a 

participant could imitate the gesture. The second study found similar results in their study, where 

they asked 10 high-functioning autistic participants to watch videos of a ball bouncing, their own 

hand moving, or another person’s hand moving [28]. Similar to the results of the first study, they 

identified “significant mu suppression to self-performed hand movements but not to observed hand 

movements” [28]. Both of these studies suggested that people with ASD have an abnormally-

functioning mirror neuron system, which inhibits their ability to observe and imitate others.  
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These papers concluded that the inability to elicit proper responses when the autistic 

individual imitates other individuals leads to deficiencies in social skills. Researchers are currently 

unsure of what exactly would cause this abnormal mirror neuron system.  

Along with abnormal mu rhythms, there are a variety of studies that have looked at other 

abnormal functioning oscillations as well. Hashemian et al. [53] conducted a survey exploring 

different neural oscillations for diagnosing autism and severity of conditions. They identified 

studies that have found autistic abnormalities in different alpha, beta, theta, and gamma bands in 

the brain, particularly around the occipital and parietal lobes. Some researchers think that the 

abnormal MNS observed via mu rhythms are actually attributed to drowsiness or interfering alpha 

waves from some other cause [14]. However, these studies are few and far between and require 

more research to validate these results. Thus, these signal modalities are not recommended to be 

used to control BCIs. However, some of the modalities mentioned can be used in ways other than 

a control mechanism. By using these abnormal signals as a form of neurofeedback, people with 

ASD might be trained through the BCI to improve the signal’s attenuation, which in turn may 

improve symptoms. The next section explores the most impactful BCIs in both research and 

commercial devices, and its feasibility in neurofeedback or as a control method. 
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1.4.3 Popular	Brain-Computer	Interfaces	being	developed	for	ASD	

The efficacy of BCI-based neurofeedback was explored using 24 autistic children who 

were at different levels of the spectrum [54]. This pilot study assessed the severity of autism and 

problem areas identified by their family, followed by a custom neurofeedback protocol for each 

child in which certain frequencies were rewarded, and less desirable frequencies were inhibited. 

The children who completed all sessions of the experiment showed behavioural improvement, 

based on parent interviews and a standardized survey known as the Autism Treatment Evaluation 

Checklist. This improvement was independent of initial severity of symptoms and age, thus 

suggesting the potential in using BCIs as a supplementary therapy to improve the symptoms of 

ASD. It should be noted that the BCI in this case used invasive techniques to record and stimulate 

neurofeedback, and as a result are unlikely to be used in commercial devices. 

In similar fashion, a meta-study was published examining the feasibility of neurofeedback 

in ASD. Holtmann et. al looked at the methodology and results of 13 impactful papers in ASD 

neurofeedback research [55]. The meta-study concluded that neurofeedback is not an appropriate 

treatment for the symptoms of ASD, because papers that reported improvement in ASD-related 

symptoms were only showing improvements in co-morbid conditions such as ADHD rather than 

improvements in ASD itself. It is valuable to see any improvement for any individual, as even 

small changes could positively impact the life of an autistic person. However, it was noted by 

Holtmann that reported improvements of symptoms tend to be based on the report of the 

participants’ parents. This leaves the feedback open to severe biases, as parents want the best 

results for their children. Some parents are so desperate to helping their children that they will 

report superficial improvements. This is a particularly important observation in the study that was 
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overlooked in the conclusion. Based on the study, it is recommended that careful distinctions 

between improvements in comorbid conditions and ASD are identified.  

 Zhu et. al are developing a neurofeedback-based BCI as a form of therapy, specifically 

targeting mirror neuron training in people with ASD [56]. They postulate that by learning social 

communications in a virtual reality environment, they can improve the impaired human mirror 

mechanisms happening at a cortical level. Currently, they have a prototype system which 

incorporates action imitation and facial recognition in a virtual environment, and uses mu rhythms 

as afferent feedback on their attenuation performance [57]. 

Fan et. al developed a BCI that assesses the emotions of the user playing a driving simulator 

in a virtual reality environment [58]. During the session, the user’s EEG was recorded and 

classified based on feelings of frustration, engagement, boredom, difficulty, and enjoyment. While 

this study had an overarching goal of using the environment for autism intervention, it focused on 

adapting the system to the user for optimal performance. This is a reversed approach from the other 

studies discussed, as the goal of the BCIs mentioned in other studies aimed to teach the user to 

adapt to the system instead. With this approach, the researchers believed that this would create a 

more enriching environment to teach specialized skills (i.e., driving) to people with ASD. More 

research is needed comparing this approach to standard methods in order to evaluate if it improves 

performance success with BCIs, compared to the traditional approach. 

Some BCIs have broken past the barriers of research and are now being developed as 

commercial devices. For example, Muse is a BCI developed by the company Interaxon that uses 

EEG collected on the forehead to give feedback on meditation performance. Dreem is another 

company that has developed a commercial BCI product to measure quality of sleep.  
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While commercial BCIs have existed for some time, only recently have there been BCIs 

developed targeting at ASD populations. Prior research is now able to show that there may be a 

benefit in having BCIs made for people with ASD [7]. However, traditional paradigms used for 

neurotypical populations may not suffice both in terms of what brain signal modalities are used, 

and how the interface is perceived by the target population.  
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1.5 	Movement	Related	Cortical	Potentials	and	Hebbian	Plasticity	

In order to properly explore the mirror-neuron hypothesis for ASD, all brain signals elicited 

in the motor cortex need to be explored in order to identify what functions are impaired, rather 

than just focusing on mu rhythms (as is done in research). MRCPs are of particular interest because 

they are elicited at the same location of the scalp as mu rhythms and are also related to the intention 

of movement. Unlike mu rhythms, they can be detected prior to movement and give insight about 

the cortical processes preparing for the movement. As a result, the user’s intention to move can be 

decoded in real-time and provide near-instant feedback [59]. The user’s MRCP is elicited during 

both overt and covert movement intentions. This is valuable for real-time control and can be 

applied to a variety of situations such as self-controlled neuroprosthetics, self-paced rehabilitation, 

and communication. Therefore, MRCPs should be explored as they may provide more insight on 

the mechanisms of their mirror neuron system. This is the focus of this research, and to the author’s 

knowledge, the first time this EEG signal has been explored in ASD research. 

There are several ways to detect MRCPs in a user’s EEG. Currently, the best approach uses 

locality preserved projections (LPPs) to extract feature components in the EEG. The resulting 

features are a low-dimensional representation of the original EEG signal and are used to train a 

machine learning algorithm that is designed to detect whether an MRCP event is occurring or not. 

While other methods exist to extract features to represent an EEG event such as PCA, LPP is able 

to preserve the local structure (distances of neighboring samples) in the high-dimensional data 

after dimensional reduction. In comparison, other methods such as PCA usually change the local 

structure of the original high-dimensional data after dimensional reduction. If the data lost 

contributed to the discrimination between different classes, then the resulting classifier is less 

effective. 
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The use of MRCP systems have already been demonstrated successfully in the use of 

neurotherapy, particularly for improving motor functioning. In Ru et al, a BCI was implemented 

that used the intention of movement to trigger the functional electrical stimulation of the foot in 

an effort to help stroke patients recover voluntary control of their foot [60]. While autistic 

populations typically have voluntary motor control and thus do not require restoring the activation 

of their muscles, the cognitive mechanisms improved by MRCP neurofeedback could benefit those 

with ASD by strengthening the connections within the neurons in the sensorimotor cortex. 

Research in MRCP is important because MRCP is one of the few signals that can be detected 

prior to an intentional action performed by the user. Because it can be used to predict when a user 

will move, it can provide real-time feedback to the user quickly enough to achieve Hebbian 

learning. Hebbian learning is a theory in which repeated simultaneous activation of cells 

strengthens the synaptic connections between them [61]. As a result, mechanisms such as muscle 

control that has been lost can be regained by triggering neurofeedback, such that information sent 

to the brain by muscle and sensory nerves are strengthened by the intention of that movement. 

Neurofeedback aims to close the loop of cause-and-effect by using the intentions from the user to 

rebuild the synapses that may have been severed through some condition or illness.  

Hebbian plasticity is considered an important contribution to how mirror neurons are 

developed. It is believed that the activation of mirror neurons will coincide with the sensory 

feedback (audio, visual, and touch) from the action taken. When the individual watches someone 

else perform an action, the same neurons that would be activated as if the self were performing the 

action are activated [62]. As a result, the mirror neuron system is a result of Hebbian learning due 

to the plasticity of the brain. It is hypothesized that Hebbian plasticity from the mirror neuron 

system helps predict what an individual is feeling or will do next, based on the perceiver’s own 
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system [27]. In order to achieve Hebbian plasticity with BCIs, neurofeedback has to occur within 

200 milliseconds after the action has occurred [63]. If we can use neurofeedback to improve these 

systems, they can help improve the deficits experienced by those with ASD. However, mu rhythms 

(which represent the activation of the mirror neuron system) cannot be used by BCIs to achieve 

Hebbian learning because they are not easily identified in EEG until several seconds after the 

action is imagined or initiated by the user. Since MRCPs can be detected prior to the movement, 

neurofeedback can be provided to the user within the window required for Hebbian learning. Thus, 

it is of significant value to analyse how MRCPs are elicited between neurotypical and autistic 

populations in order to find successful neurofeedback mechanisms that can trigger Hebbian 

learning that can be used to improve the symptoms or cognitive functioning of these individuals. 

The MNS is shown to have abnormal activation in individuals with Autism. If we can use 

neurofeedback to improve the activation of the MNS then we can potentially improve the deficits 

in ASD. However, neurofeedback with mu rhythms is currently not possible due to the delay in its 

detection, which is outside of the window needed to achieve Hebbian plasticity to strengthen and 

rebuild severed connections between neurons. MRCPs do not have this delay and thus may be a 

better alternative for neurofeedback to improve the symptoms experienced by those with ASD. 

Prolonged MRCP neurofeedback can strengthen the synapses in the motor cortex and recruit more 

neurons for motor-based actions [35]. The mu rhythms in MNS activation is related to the motors 

systems also activated in MRCP, so MRCP-based neurofeedback may also improve MNS 

activation itself. However, it remains that the differences in MRCPs are examined between 

neurotypical adults and those with ASD in order to better understand how the morphology of 

MRCP may differ between these groups. If we can demonstrate success with MRCP detection then 
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it opens the possibility of designing a neurofeedback system could be designed as an alternative 

form of neurotherapy. 
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1.6 	Objectives	of	thesis	research	

From the literature review, there appear to be several gaps around the use of mu rhythms 

to describe the MNS hypothesis in the ASD population. There are other representations of similar 

motor systems activated with mu rhythms that have not been explored. To the knowledge of the 

author, MRCPs have never been studied and compared between ASD and neurotypical 

populations. Furthermore, the effect that different interface cues may have on MRCPs in the ASD 

population given their hypersensitivity to stimuli is largely unexplored. Differences between signal 

elicitation as well as perceived interactions with these cues need to be compared. Therefore, it is 

worthwhile to explore if there is a difference in MRCP elicitation in ASD populations, and if so, 

how that may change the way we perceive this mu rhythm-MNS hypothesis.  

The potential for BCIs to help ASD populations as a new form of communication, control, 

and neurotherapy has been demonstrated through previous work. However, several questions still 

remain regarding how to interface with the brainwaves of people with ASD and how their brain 

signals could impact BCI design.  

 

The overall goal of the research presented in this thesis is to gain an understanding of how 

individuals with ASD respond to different prompting modalities compared neurotypical controls. 

The research questions that guided this thesis are:  

1. What is the quantitative EEG response of people with ASD to auditory, haptic, and 

visual BCI sensory modalities? 

2. How do people with ASD subjectively perceive their interaction with auditory, 

haptic, and visual sensory stimulation? 
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3. How do movement-related cortical potentials compare between people with ASD 

and neurotypical controls? 

An experiment was conducted to answer these questions; the details of this experiment are outlined 

in the Methodology in section 2. Then, the results are presented in section 3, which compare MRCP 

features between the ASD and neurotypical groups. Section 4 discusses why MRCP features may 

be reduced in the ASD population, and how these are interpreted with respect to the qualitative 

survey data collected. Section 5 reflects on three concerns identified in this research. Finally, the 

concluding remarks and recommendations are highlighted in section 6. This thesis encapsulates 

the findings from the outlined experiment. 
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2. Methodology	

A mixed-methods approach was taken by gathering both qualitative and quantitative data 

to provide a holistic view of the BCI system. The purpose of the data collection and analysis is to 

gain insights regarding as to how MRCPs may differ between ASD and neurotypical populations 

as well as whether there are individual differences between participants with ASD. 
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2.1 Participant	Recruitment	

10 ASD participants with moderate to high-functioning conditions were recruited from 

private support groups and within the Autism Society of Ontario. 10 neurotypical participants were 

also recruited as neurotypical controls (age and sex-matched to the best of the author’s abilities) 

from the University of Waterloo. Both groups had to follow separate inclusion and exclusion 

criteria in order to participate. Both groups had inclusion and exclusion criteria, which is described 

in TABLE 1. 

TABLE 1 Inclusion and exclusion criteria for study participants.  

 Inclusion criteria Exclusion criteria 
Neurotypical group • 18-35 years of age 

• Fluent in the English language  
• Competent to consent  

• Satisfies any of the exclusion 
criteria in the ASD group 

• Have any of the following 
conditions:  
1. Autism Spectrum Disorder 

(ASD)  
2. Asperger’s Syndrome   
3. Down’s Syndrome  
4. A pervasive developmental 

disorder not otherwise 
specified (PDD-NOS)  

5. Epilepsy or a history of 
seizures  

ASD group • Satisfies inclusion criteria of 
neurotypical group 

• Have a diagnosis of ASD (HF/MF-
ASD) via a formal diagnostic report 
from a physician or clinical 
psychologist 

• Are competent to consent based on 
the subjects' ability to provide a 
spontaneous narrative description 
of the key elements of the study  

• Have a motor-related illness or 
disease that inhibits voluntary limb 
control  

• Any known neurological disorders 
and any known allergies to the 
ingredients in the conductive gel 
(including: aqua, carbomer, 
hydroxyethilcellulose, potassium 
chloride, sodium hydroxide, 
propylene glycol, 
methychloroisothiazolinone, and 
methylisothiazolinone).   

• Any vibration or musculoskeletal 
disorders affecting the hand (such 
as carpal tunnel syndrome, hand-
arm vibration syndrome, or De 
Quarvain’s).   

• Has had previous nerve damage to 
upper extremities  

• Has arthritis, obesity, diabetes, 
tendinitis, thyroid disease, or 
kidney function disorders  

• Is pregnant  
• Currently undergoing menopause  
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2.2 	Ethics	Clearance	for	Protocol		

The study received approval by the Office of Research Ethics at the University of Waterloo (ID#: 

22233), which includes the use of all apparatuses outlined in section 2.3 below. 
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2.3 	Apparatus	

Participants’ signals were collected with commercially available devices (listed below), 

with the exception of a haptic wristband, which applies vibrotactile stimulation using a linear 

resonant actuator (10mm, C10-100, Precision Microdrives Ltd.) controlled by a computer 

soundcard (Sound BlasterX G1). The haptic wristband was approved for use by the Safety Office 

at the University of Waterloo and was seemed safe for use in the study. 

The devices used for biosignal acquisition were three g.USBamp bioamplifiers, and three 

interfaces for the electrodes (g.GAMMAbox) that connects the active EEG electrodes on the EEG 

cap to the bioamplifiers, which are then connected to a desktop via USB cable for signal processing 

and data analysis. The interfaces and data acquisition software were built in C++, and MATLAB 

and Minitab 18 were used for the data analysis. 
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2.4 	Experimental	Protocol	

The experiment was partially-balanced and pseudo-random to the participants. Each 

participant was assigned to one of six subgroups that determined the order of interfaces the 

participant interacts with. The structure of experiment sessions for these subgroups were identical, 

other than the order of cue types being presented. In the experiment, the participant was asked to 

sit in a chair and perform either dorsiflexion or imagined dorsiflexion (with intention of movement 

but without physical movement) of their dominant foot, timed to different types of cues. Then, the 

participant was asked to report their experiences on a survey (see FIGURE 9 in the Appendix) that 

captured the subjective perception of a brain-computer interface. After all the interface cues were 

interacted with, the participant was asked to rank their preference of interface for real movement, 

and then again for the imagined movement. 

Before the data recording, surface EEG electrodes were attached to the participant's scalp, 

and EMG electrodes were placed over the mid-section of the Tibialis Anterior muscle of their 

dominant leg. Once the electrodes were prepared and adhered to the skin of the participant, they 

were asked to interact with three different interfaces, in which different modalities of cue were 

presented:  

1. Auditory: A voice counted down each second ("three, two, one‚ go"), followed by 

a "Go." At the "go" cue the participant performed the task. 

2. Visual: A red square box appeared and disappeared four times. The box flashed 

first at the edge of the cross, and discreetly appeared closer to the center of the cross with 

each flash. When the square appeared at the center it turned green, at which point the 

participant performed the task. 



33 
 

3. Haptic: There was a wristband that vibrated on the participant's wrist. At each 

second leading up to the "go" cue, the band vibrated in a short burst. This happened three 

times. At the fourth vibration (the "go" cue) the vibration was more prominent and lasted 

longer, during which the participant performed the task. 

The design of each interface is illustrated in FIGURE 2. The participant interacted with each 

interface twice, performing real dorsiflexion movement first and then imagined dorsiflexion 

movement. The interface modalities were presented to the user in a pseudorandom order. While 

they are not necessarily representative of stimuli experienced in daily life, they are sufficient to 

measure EEG responses and compare reliably between the cues. 

For each BCI, the participants were asked to wait for a cross to appear on the television 

screen in front of them. The cross indicated the beginning of the trial. The participant was asked 

to avoid performing any sudden jerking movements during this period in order to prevent strong 

motion artifacts in the EEG recording. For the first half of the experiment, the participant 

performed dorsiflexion of their dominant foot as the task. In the second half of the experiment, the 

participant was asked to imagine performing the same dorsiflexion task rather than physically 

performing it.  
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For each of the interfaces, the participant performed the same task 20 times in a row. Each 

task took about six seconds to complete; as such each run lasted about 90 seconds. Each session 

had a total of six partially-balanced pseudorandom runs, which will have one of six orders based 

on the order group the participant is assigned to (see TABLE 2).  

TABLE 2 The order of interfaces presented for each group. Each participant was randomly 
assigned to one of the order groups. 

Order 
Group 

First real 
movement 
interface 

Second real 
movement 
interface 

Third real 
movement 
interface 

First 
imagined 
movement 
interface 

Second 
imagined 
movement 
interface 

Third 
imagined 
movement 
interface 

1 Auditory Visual Haptic Haptic Auditory Visual 
2 Visual Auditory Haptic Haptic Visual Auditory 
3 Haptic Auditory Visual Auditory Visual Haptic 
4 Haptic Visual Auditory Visual Auditory Haptic 
5 Visual Haptic Auditory Auditory Haptic Visual 
6 Auditory Haptic Visual Visual Haptic Auditory 

 
 

  

FIGURE 2 A side-by-side comparison of the three interfaces used in the experiment.  
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Each row is the order of conditions the participant performed the task in. After each run 

(which has 20 trials of the task in each), the participant was given a brief two-minute break, during 

which they were asked to fill out the questionnaire. A sample of the survey can be found in 

FIGURE 9 in the Appendix.  Every three runs, the participant had a longer break of about five 

minutes, between the “real movement” task and the “imaginary movement” task. During this 

break, we asked the participant to rank, in descending order, their most-to-least preferred interface 

to work with. The participant has a total of six conditions they have performed the task in. The 

entire session lasted between 1-2 hours, including the preparation and removal of the electrodes. 

After the session, each participant had a set of qualitative data (as questionnaires) as well as the 

quantitative EEG data that was recorded from the session.  
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2.5 Data	Analysis	

 

2.5.1 Data	Preprocessing	

Prior to data analysis, the EEG signals were filtered to remove unwanted noise from the 

EEG signals. To extract MRCP, a 4th-order Butterworth filter between 0.05 Hz and 3 Hz was 

applied to the data, followed by a large Laplacian spatial filter was used centered at Cz (the 

electrode site in which MRCP is most pronounced with dorsiflexion). Cz is located in the center 

of FIGURE 1. These techniques were selected based on its success in other research [59][64]. It is 

known that the initial negative deflection of the MRCP begins at the first cue, which occurred three 

seconds prior to movement onset in the current experimental protocol. The MRCP would rebound 

after movement onset until approximately 1.5 seconds after movement onset. Thus, epochs for 

each trial were retrieved from 4s before movement onset (when the user reacts to the ‘go’ cue) to 

2 seconds after. Movement onset was detected using the Teaker-Kaiser Energy Operator to 

condition the EMG channel. Feature extraction was performed on the preprocessed epochs, 

followed by a statistical analysis on these features described in Section 2.5.2. FIGURE 3 depicts 

what the data looks like after these filters are applied and the data is organized into epochs. 
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FIGURE 3 Different stages of preprocessing the EEG data: a) The EEG data and EMG data 
is retrieved and filtered with a 4th order Butterworth filter. The EEG data around Cz is pictured 
in the top channel, and the EMG channel is at the bottom. b) A large Laplacian spatial filter is 
applied about Cz. Epochs are aligned using movement onset in the EMG, indicated here as 
peaks in the conditioned EMG channel. c) EEG epochs are averaged across trials and is used 
for feature extraction. 
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2.5.2 Feature	Extraction	

The feature set is described by Farina et al and consists of four components [65]. The first 

component calculated is the peak amplitude of negativity (PA), which is the point of largest 

negative magnitude between 0.5 seconds before to 0.5 seconds after the ‘go’ cue is presented. 

Typically, there is a variable delay among participants between the moment of the appearance of 

the ‘go’ cue and the moment of movement onset. Because participants will react at different times 

with respect to this cue, we calculated all other features from the moment of this peak. The second 

component is called the first negative slope (NS1) and describes the slope of the EEG data between 

the first cue and 1.5 seconds before PA. The third component, known as the second negative slope 

(NS2), is the slope between 1.5 seconds prior and up to the moment of movement onset by the 

user. The fourth component is known as the rebound rate (RR) and is the positive slope of the EEG 

recorded between movement onset and 1.5 seconds after movement onset. FIGURE 4 depicts how 

these MRCP features are represented in the data. These features are used to compare the 

quantitative trends in the data between different interfaces and groups.  
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FIGURE 4 The features that represent the average MRCP events from a neurotypical participant. 
Time 0 is the moment of movement onset as detected in EMG. NS1, NS2, PA, and RR represent 
the four features of MRCP as described by Farina et al [65]. It should be noted that the time of 
peak amplitude (PA) is not exactly at 0 due to differences in reaction time between individuals. 
This is very common and does not affect detection or timing in MRCP-based BCIs. 
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Each participant performed 20 trials of each task for each condition (i.e., Real movement 

+ Auditory, Real movement + Haptic, Real movement + Visual, Imagined movement + 

Auditory, Imagined movement + Haptic, and Imagined movement + Visual). For each condition, 

the average MRCP event across all 20 trials were calculated, and then the NS1, NS2, PA, and 

RR features were calculated from the average signal. The ensemble average of EEG signals has 

been accepted as a common practice in ERP analysis because of the varying and poor signal-to-

noise ratio (SNR) in the EEG data – while the signal that is desired for analysis is always present 

in the event (in our case, as indicated by a cue or EMG movement onset) the background noise is 

uncorrelated with signal and thus can be averaged out to identify the consistent MRCP signal in 

each epoch. Thus, ensemble averaging is used to improve the SNR and facilitating subsequent 

feature extraction. These features will be used to inform our statistical model that will identify 

any statistically significant changes in MRCP between conditions. 

A second feature set is extracted and used for MRCP detection. A variety of methods have 

been proposed and developed to predict if movement intention is occurring in a user. Some 

methods that have been explored use matched filters [66], common spatial filters [67], and locality 

sensitive discriminant analyses, but are not widely recognized in MRCP research [68]. In current 

models used for MRCP detection, the features that are used for MRCP event detection in this study 

are components extracted with locality preserved projections (LPP). These components are then 

used to train a machine learning model that will learn to determine if MRCP is occurring in a set 

of EEG data or not.  
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2.5.3 Statistical	analysis	

It is common in BCI research to use the analysis of variance (ANOVA) statistical test to 

identify statistically significant differences between sampled means of different conditions or 

environmental effects on EEG signals [5][6]. In EEG studies, this process consists of taking the 

average of individual trials across all experimental conditions, and then conducting the ANOVA 

test to determine if a controlled condition or variable can cause a change in the EEG signals, and 

whether the resulting differences are statistically significant. There are three conditions that must 

be satisfied in order to have a reliable ANOVA test: (1) all conditions contain independent samples, 

(2) the response variables (NS1, NS2, PA, RR) are gaussian-distributed, and (3) the variance of 

the dependent variables are the same. Researchers have already proven empirically that EEG data 

rarely satisfies these assumptions, making it unlikely that it is an appropriate analysis method [4].  

Furthermore, Vossen et al argues that ANOVA is an inappropriate statistical model for 

ERP analysis due to the loss of within-subject variance between different trials, and the 

requirement of having a sufficient number of artifact-free trials for analysis [69]. Instead, Vossen 

et al recommend using a mixed regression approach to ERP-based studies. They were also able to 

show that ANOVA and mixed regression approaches yield similar results, with the key differences 

lying in the robustness of the model. With mixed regression, all trials can be used instead of an 

ensembled average of the ERP data, meaning that less trials have to be rejected and can provide 

more insights to within-subject variations over time.  

A linear mixed model (LMM) is a type of mixed regression approach and shares some 

important similarities with ANOVA in that both methods attempt to fit a linear relationship 

between factors. However, LMMs make distinctions between fixed and random effects between 

conditions in the data. Due to the high variability of ERPs within subjects, this is considered a 
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random factor. Because ANOVA tests do not allow random factors, there is strong motivation to 

use LMMs instead. Several studies have used LMMs in their studies [70], [71]. 

To determine if there is a statistically significant change in MRCP between neurotypical 

and autistic populations, a linear mixed-effect model was produced in which the fixed factors were 

the type of interface (auditory, visual, and haptic), the type of task executed (imagined or real), 

and the group of interest (neurotypical vs ASD group). The subject is incorporated into the model 

as a random correlated effect, which is nested within the factor of group of interest (neurotypical 

vs ASD group). The response variables are the MRCP features NS1, NS2, PA, and RR.  

With this model, a Type 3 test of Fixed Effects was conducted, which tests the significance 

of fixed effects present in a dataset. If a fixed effect has statistical significance, it means that the 

conditions can predictably affect some selected response variable. The Type 3 test of Fixed Effects 

is conducted to determine the significance for each factor, as well as potential two-way effects 

between ASD and interface cues. This test is conducted by constructing a type L matrix for each 

effect, and then calculating the obtained F score for each effect. The F score determines how likely 

the factor being tested has caused a change in the response variable. Each F score is compared to 

a threshold F value that, if surpassed, indicates that there is a significant difference observed (and 

that the observed difference is not due to a sampling error). Most statistical tests on MRCP data 

use a = 0.05 (analogous to P-value), so that is maintained in the Type 3 test for consistency [72]. 

The LMM and Type 3 test of Fixed Effects is conducted using the Minitab 18 software. 
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2.6 Qualitative	Survey	Data	

Each participant was asked to complete a set of qualitative data using questionnaires. To 

standardize part of the qualitative assessment, we have asked each participant to rank their 

preference of the interface type from most-preferred to least-preferred. We use this to compare the 

preference ranking to their strongest-performing interface with the EEG data, as well as comparing 

their rankings with how they immediately reported their feelings after interacting with a particular 

interface. The questionnaire can be found in FIGURE 9 of the Appendix, and the justification for 

each question are as follows: 

The first question on the survey is used to compare the usability of interfaces between 

participants. The average of these Likert scales will be used to compare against what interface was 

ranked as the highest and lowest for each user, as well as provide insight to the perception of real 

and imagined interfaces. 

In the second question of the survey, we leave a dialogue box open for text. While methods 

exist to perform a standardized analysis for similar open-ended questions, writing in the box is 

optional and thus not all of the participants responded. As a result, there is an incomplete set of 

data for an already small sample size. As this was an exploratory part of the study, the benefits of 

such standardized techniques will not provide enough insight to conduct. A descriptive analysis of 

these responses provide context to the quantitative data, which informs the understanding of the 

results. A human factors approach was taken by identifying recurring themes in their responses 

and comparing any indicated struggles or ease-of-use against the quantitative data to see if they 

align. Particularly of interest to this research is if any reported sensitivities to particular interfaces 

affect how participants respond to the first and last question of the questionnaire. 
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The last question is used to determine the feasibility of the interface being evaluated. The 

previous questions do not explicitly determine whether the participant would use this in a real-

world situation, thus this last question must be asked to determine if such an interface would 

actually be adopted in a more casual setting (as BCIs are designed to operate in). The binary 

responses are converted into a usability rate, and then the Adjusted-Wald bionomial confidence 

interval is used to extract confidence intervals to predict the potential usability. The Adjusted-

Wald confidence interval is used to its appropriateness for small sample sizes [73]. 
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3. Results	

3.1 Participants	

The EEG data of ten neurotypical participants were recruited so as to age and sex-match to 

the ASD participants as closely as possible. All participants were recruited within one hundred 

kilometres of the research lab in Waterloo, Ontario. TABLE 3 reports the demographics of the 

participants recruited. 

TABLE 3 Participant demographics. 

Group 
Mean Reported Age 

(Standard 
Deviation) 

Number of men Number of women 

ASD 25.0 (6.5) 5 5 
Neurotypical 27.5 (6.7) 5 5 

 

A set of EEG data and survey responses were recorded for each interface and movement 

execution and imagery for every participant. An example of the quantitative data from a 

neurotypical participant’s EEG is in TABLE 4. As the interface cue types were presented in a 

balanced, random order to the participants, TABLE 4 does not reflect the order that the participant 

completed each run. The interface cue type was not included in these descriptive statistics because 

they were not found to have statistically significant differences on their EEG values (see TABLE 

6). 

 



46 
 

TABLE 4 An example set of data collected for one participant from the neurotypical group. 

Type of 
Movement 

Interface 
Cue Type NS1 (µV/s) NS2 (µV/s) PA (µV) RR (µV/s) 

Real Haptic -13.689 -12.4655 -19.4868 15.9445 
Real Visual -9.3711 -10.6046 -15.9635 14.6782 
Real Auditory -10.9719 -12.4589 -18.0024 15.5910 
Imaginary Haptic -2.8565 -4.6599 -7.9625 6.9437 
Imaginary Visual -6.2371 -5.2812 -8.7225 6.4788 
Imaginary Auditory -6.0281 -3.5665 -7.5247 5.9898 

 

The responses from the surveys can be found in section 3.3.2, and their reported preference 

rankings can be found in section 3.3.1.  
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3.1.1 Case	study	comparing	participants	

A small case study is presented to illustrate the differences observed in the EEG data 

between ASD and neurotypical participants, which are shown in TABLE 5. Both participants are 

a typical representation of their groups. For example, all of the neurotypical participant’s features 

are within 3 µV of the mean real-movement MRCP features in FIGURE 6 (less than 1 standard 

deviation from the mean features as indicated by the error bars), and all of the features from the 

typical ASD participant are within 1 standard deviation of the mean of the ASD features in 

FIGURE 7.  

The features shown were calculated during real movement execution and with an auditory 

interface. The real movement BCI was chosen to better illustrate the observations in the EEG data, 

and the auditory interface was arbitrarily chosen since there are no statistical differences between 

interfaces (see TABLE 6). 
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TABLE 5 The EEG epochs and features calculated from the average (demonstrated in the graph 
as the black signal) for a representative ASD and neurotypical participant.  

Representative naïve neurotypical 
participant 

Representative naïve ASD participant 

  

Features:  

NS1 (µV/s) -10.7357 NS1 (µV/s) -1.9713 

NS2 (µV/s) -6.0791 NS2 (µV/s) -4.2650 

PA (µV) -12.5947 PA (µV) -4.7455 

RR (µV/s) 7.9762 RR (µV/s) 4.2836 
 

There are three observations that can be made from TABLE 5: 

1. The ASD participant has less inter-trial variation in their EEG features than the 

neurotypical control. The neurotypical participant has high inter-trial variability but 

elicits more pronounced features. 

2. The peak amplitude of negativity (PA) is much larger in the neurotypical participant than 

the ASD participant.  

3. In the ASD participant, the potential after movement execution is higher than the baseline 

potential prior to the MRCP. 
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The first and second observations are consistent in most participants. The third observation can be 

found amongst most participants in the ASD group, but is not consistent in for all participants.  

 

  



50 
 

3.1.2 Unrepresentative	subject	–	AS07	

The data of one subject from the ASD group was rejected from the statistical analysis. The 

subject is very high-functioning. The MRCP features of this subject are very prominent and have 

low variance. The MRCP features for this subject are significantly different from the rest of the 

ASD group. Across all interfaces, the MRCP features of AS07 are significantly different than the 

features calculated for the rest of the group. To confirm this, four t-tests were conducted (one for 

each feature) to see if the MRCP features in AS07 are significantly different from the rest of the 

ASD group. A t-test validated these differences with a significance of p <  0.0001 for all of the 

features.  While this participant elicits a very desirable MRCP, it is unrepresentative of the 

neurotypical or ASD groups. As a result, this subject’s data was removed from the statistical 

analyses in section 3.2.1.  

Since this data is uncorrupted and still useful for other analyses, it is still included in the 

descriptive statistics in sections 3.1.3 and 3.1.4 as well as the qualitative analysis presented in 

section 3.3. FIGURE 5 illustrates this subject’s data. Compared to the case study presented in 

section 3.1.1, it is evident that subject’s data is very different. It should be noted that this subject 

was also naïve to BCI, and thus did not have any training prior to improve MRCP elicitation.  
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FIGURE 5 An example of one of the runs of the rejected subject. This particular visualization 
is from the subject’s real movement execution with an auditory interface.  
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3.1.3 Neurotypical	group	

A total of fifteen neurotypical subjects were recruited for the study. Five of them were 

removed from the EEG analysis due to an abundance of noise and movement artifacts in their data, 

or not being close enough to the age and sex of the ASD participants to match to. Two neurotypical 

subjects had their real-movement with haptic interface run removed due to executing dorsiflexion 

at incorrect times in the EMG data collected. This resulted in the analysis of the data from all ten 

neurotypical participants, but two conditions from the real movement with haptic interface 

condition were removed. 

While the rejected runs from two neurotypical participants still have valuable qualitative 

data, it is not considered when compared to the ASD group’s survey data to maintain consistency 

in the comparison. FIGURE 6 displays the mean and standard deviation of the MRCP features 

collected from the neurotypical group for real and imagined movements. The mean values for NS1, 

NS2, PA, and RR were calculated across all of the interfaces. Note that all features in the imagined 

movement MRCP are smaller in value compared to their real movement counterpart.  
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Of the same ten participants used for quantitative analysis, six of them responded to all 

parts of the qualitative survey. The other four did not report their preference ranking, and thus are 

not included in qualitative analyses using the preference rankings in TABLE 9. 

  

 

FIGURE 6 The mean values across the four MRCP features computed for real and imagined 
movement MRCP in the neurotypical group. The error bars indicate the standard deviation for 
each feature. Note that for features NS1, NS2, and RR the voltage is measured over one second. 
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3.1.4 ASD	group	

All ten sets of data collected in the ASD group are used in the quantitative and qualitative 

analyses. In the qualitative data set, three of the ten participants did not report their rankings of 

preference of cue type. As discussed in section 3.1.3, those who did not report preference rankings 

were excluded from the analyses that use preference rankings in TABLE 9. 

FIGURE 7 shows the mean features across all interfaces, separated by movement execution 

type. The large standard deviation represented by the error bars show that there is a lot of variance 

during real movement execution. While the imagined movement features are less variable, the 

mean values are closer to 0 µV. 
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FIGURE 7 The mean values across the four MRCP features computed for real and imagined 
movement MRCP in the ASD group. The error bars indicate the standard deviation for each 
feature. Note that for features NS1, NS2, and RR the voltage is measured over one second. 
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3.2 Quantitative	Analysis		

3.2.1 Comparison	of	MRCP	Features	

To compare the MRCP features between the neurotypical and ASD group, the mean 

feature values for both groups are placed side-by-side in FIGURE 8.  

 

To measure the statistical strength between these differences, a Type 3 Test of Fixed 

Effects was conducted according to the methodology described in Section 2.5.3; the results are 

shown in TABLE 6.  

 

 

FIGURE 8 Mean values of MRCP features between the neurotypical and ASD groups. Note 
that for features NS1, NS2, and RR the voltage is measured over one second. 
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TABLE 6 The results of the Type 3 test of Fixed Effects. The dependent variable was 
 PA, and a statistically significant significance (*) is indicated when p < a (a = 0.05).  

Source Numerator df Denominator df F p 

ASDvsNeurotypical 1 16.97 13.28 0.002* 

ExecutionType 1 88.12 51.09 0.000* 

CueType 2 88.10 1.30 0.278 

ASDvsNeurotypical* 
CueType 

2 88.10 0.45 0.637 

 

In order to confirm that significant effects that are observed in TABLE 6 were seen across 

all features, the same test was performed across the other features (NS1, NS2, and RR). For these 

tests, only the significant effects are investigated. Thus, the two-way interaction between ASD and 

cue type is ignored for the other features. TABLE 7  shows the results of the Type 3 test of Fixed 

Effects. The effect observed from ASD shows a significant difference across all features. The 

movement execution type (real movement vs. imagined movement) also had a significant effect 

on all features except for NS2. 
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TABLE 7 The results of the Type 3 test of Fixed Effects in which the response variable was 
changed to be the other features NS1, NS2, and RR. Significance (*) is indicated when p < 0.05. 

Source, with NS1 as 
response variable Numerator df Denominator df F p 

ASDvsNeurotypical 1 16.47 17.67 0.001* 

ExecutionType 1 87.69 5.96 0.017* 

Source, with NS2 as 
response variable Numerator df 

Denominator 
df F p 

ASDvsNeurotypical 1 16.96 3.28      0.088 

ExecutionType 1 88.07 45.88 0.000* 

Source, with RR as 
response variable Numerator df 

Denominator 
df F p 

ASDvsNeurotypical 1 17.07 8.35 0.010* 

ExecutionType 1 88.18 80.31 0.000* 
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3.2.2 Power	Analysis	and	Sample	Size	Estimation	

To determine the effect size of ASD on MRCP features, Cohen’s d was calculated for each 

of the four MRCP features. TABLE 8 reports the effect size that ASD has on each feature of the 

dataset. The data has been split between imagined and real movement execution type. The data of 

the three interface cue types have been grouped together since they were shown to not have any 

significant differences in TABLE 6. Using Cohen’s guidelines for determining effect sizes, ASD 

has medium and almost large effects in both real and imagined movement execution for features 

NS1 and PA [74].  

TABLE 8 The measurements of effect size using Cohen’s d for each of the MRCP features. 
Large effects are considered to be d > 0.8 and medium effects are when d > 0.5 [74]. 

Movement 
Execution 

Type 

Effect Size of ASD on MRCP Features 

NS1 (µV/s) NS2 (µV/s) PA (µV) RR (µV/s) 

Real 
Movement 0.6952 0.4509 0.6137 -0.4392 

Imagined 
Movement 0.7159 0.4830 0.7489 -0.7107 

 

A power analysis was conducted on the study presented to determine how likely it is to 

identify statistically significant differences between an ASD and neurotypical group should they 

exist in a larger population. Because PA is a highly representative feature of MRCPs and have 

large effect sizes they are used as the critical difference used for the power analyses. To conduct 

the power analysis for each movement type, the pooled standard deviations of the real and 

imagined PA features and a = 0.05 are used. Given our collected sample size of 10 pairs, our study 

only has a power of b = 0.03 for real movement execution and b = 0.02 for imagined movement 

execution. Under the same conditions, the minimum sample size needed to achieve sufficient 
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power (b >= 0.80) for this observed effect is 1018 pairs of participants for real movement execution 

and 395 pairs of participants for imagined movement execution. 
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3.2.3 MRCP	Detection	rate	using	LPPs	

As a post-hoc analysis, MRCP detection using LPP was processed using the data for each 

participant to predict performance and the time of detection. The performance is measured by the 

number of true positive detections and determined whether the participant’s MRCP is 

differentiable enough from the noise to be applied to a BCI. The time of detection will indicate 

whether MRCP is detected soon enough to achieve Hebbian plasticity for neurorehabilitation (as 

discussed in section 1.5). 

Two sets of data were used to create the LPP machine-learning classifier. The machine 

learning model was trained and tested on each individual participant. The training data set was the 

auditory interface using real movement for a participant, and the testing data set was the visual 

interface using real movement for the same participant. The haptic interfaces were not used for 

MRCP detection because the full data set was not available for all participants. Since the statistical 

analysis in TABLE 6 indicated that there is no statistically significant difference between 

interfaces, the selection of auditory and visual interface data for training/testing is not relevant.  

To train the model, a sliding window of two seconds long was used across the Laplacian-

filtered data corresponding to the electrode channel Cz. The window slid in steps of 50 ms (60 

samples given 1200 samples per second collected. Feature extraction was performed using LPP, 

and then labelled based on whether an MRCP event was occurring or not. The label was 

determined using movement onset detected in the EMG, where the window would be labelled as 

MRCP-detected data if the window locates completely between two seconds before to two seconds 

after movement onset. Thus the EEG data labelled as non-MRCP occurred between 2 second to 6 

seconds after movement onset and windows outside of those periods were ignored. The features 

extracted with LPP are used to train a linear discriminant analysis (LDA) model, which fits a linear 
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boundary between LPP features that represent an MRCP-detected event and no MRCP event. This 

boundary is used to make future predictions on future EEG data, based on what side of the 

boundary the LPP features are on. 

Then the model was tested on an unseen set of data (i.e., the real movement interface with 

visual cues). A window of the same size as the training data was moved along the filtered EEG 

data across time. Each window of incoming data was processed with LPP, and then fed to the LDA 

classifier to predict if MRCP has occurred. If the classifier predicted the MRCP had indeed 

occurred, then the window was validated against the EMG-aligned data of that particular epoch. If 

MRCP was occurring in the epoch, then a true positive was detected. If not, then a false positive 

had occurred. This continues until the window moves until there is not enough EEG data to 

populate an entire window of data. Then, the true positive rate and false positive rate is measured 

based on the number of correct and incorrect MRCP detections. 

The number of true positives represent how many MRCP events were within ±2 seconds 

within the go cue. Once a true positive is detected, the time of detection with respect to movement 

onset in the EMG is recorded and then the next trial is processed. Since there are 20 “go” cues in 

each testing set, the number of true positives can be any integer between 0-20. False positives were 

ignored as the ASD subjects often shuffled or moved in their seat during the rest period between 

cues, and thus are a factor of restlessness of the participant instead of the success of the algorithm. 

TABLE 9 represents the results of MRCP detection results. As indicated above, a set of training 

and testing data are required to perform the detection algorithm. Since the interfaces were found 

to not be statistically significant (see TABLE 6), the visual interface sessions were used as training 

data, and the auditory interfaces were chosen as testing data. Haptic interfaces were not chosen for 

MRCP detection because two neurotypical subjects had their haptic interface with real movement 
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execution data rejected. The auditory and visual data was complete across all subjects, so they 

were used instead. 

TABLE 9 MRCP Detection results for neurotypical (s) and ASD (AS) subjects. The mean 
detection time represents when the events were detected prior/after the event (positive numbers 
indicate the event was detected after the go cue; negative numbers indicate prior to the go cue).  

Participant 
Real or 

imagined 
movement 

Number of true 
positives 

Mean detection time  
before movement onset 

S02 Real 6 -251 ms 
Imagined 7 -87 ms 

S03 Real 11 358 ms 
Imagined 4 -4 ms 

S04 Real 11 -202 ms 
Imagined 6 -35 ms 

S05 Real 11 -86 ms 
Imagined 10 -250 ms 

S08 Real 6 494 ms 
Imagined 4 353 ms 

S09 Real 6 11 ms 
Imagined 7 66 ms 

S10 Real 10 312 ms 
 Imagined 1 -587 ms 
S11 Real 5 -231 ms 

Imagined 6 -6 ms 
S14 Real 7 -18 ms 

Imagined 6 206 ms 
S15 Real 12 -17 ms 

Imagined 10 -172 ms 
AS01 Real 14 192 ms 

Imagined 11 -105 ms 
AS02 Real 5 521 ms 

Imagined 9 0 ms 
AS03 Real 2 8 ms 
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Imagined 7 356 ms 
AS04 Real 0 - 

Imagined 5 376 ms 
AS05 Real 8 -157 ms 

Imagined 10 2 ms 
AS06 Real 4 -477 ms 

Imagined 7 -37 ms 
AS07 Real 2 873 ms 

Imagined 3 153 ms 
AS08 Real 3 -380 ms 

Imagined 4 -18 ms 
AS09 Real 5 -450 ms 

Imagined 11 77 ms 
AS10 Real 5 33 ms 

Imagined 7 -266 ms 

Mean (ASD) Real 
Imagined 

4.8 
7.4 

16.3 ms 
53.8 ms 

Mean 
(Neurotypical) 

Real 
Imagined 

8.5 
6.1 

37 ms 
-51.6 ms 
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3.3 Analysis	of	Qualitative	Surveys	

The qualitative analysis focuses on the survey data and reported preference rankings of the 

three different interfaces (auditory, haptic, visual). The overall response rate of completed surveys 

was 64%. However, some participant data was rejected from the quantitative analysis (discussed 

in section 3.1) and thus cannot be used for the qualitative analysis. The complete response rate was 

75% for the rest of the participants. Details about the second question have been omitted in this 

section since they were optional to fill in but can be found in TABLE 13 in the Appendix. A full 

systematic qualitative analysis was deemed to be unnecessary for the scope and maturity of this 

research, therefore a high-level descriptive qualitative analysis was conducted.  
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3.3.1 Interface	preference	ranking		

The mode of the rankings was measured to see which ranking an interface was most often 

indicated as. The reported preference rankings are can be seen in TABLE 9. AS01, and S02-S05 

did not report their ranking and thus are not included in the table below. S12 and S13 reported 

their rankings, but their EEG data was rejected due to poor signal quality. As a result, their 

qualitative results have also been omitted from TABLE 9. 

TABLE 9 Preference rankings for different cueing modalities as reported by the 
participants where 1 = most preferred and 3 = least preferred. Two numbers in the mean 
indicate that those rankings were the mode (i.e., the interface was the most often ranked 
both of the numbers indicated). 

Participant 
Real Movement Imaginary Movement 

Auditory Visual Haptic Auditory Visual Haptic 

S08 3 2 1 1 2 3 
S09 1 2 3 3 2 1 
S10 3 2 1 3 2 1 
S11 2 1 3 2 1 3 
S14 2 1 3 1 2 3 
S15 3 1 2 3 2 1 
AS02 2 3 1 2 3 1 
AS03 1 3 2 1 2 3 
AS04 1 2 3 2 3 1 
AS05 2 1 3 2 3 1 
AS06 2 3 1 3 2 1 
AS07 2 1 3 1 2 3 
AS08 1 2 3 3 2 1 
AS09 2 3 1 2 3 1 
AS10 1 3 2 2 3 1 

Mode (all 
participants) 2 - 3 2 2 1 

Mode (ASD) 2 3 3 2 3 1 
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Mode 
(Neurotypical) 3 1, 2 3 3 2 1, 3 

 

To compare what participants’ self-reported preferred interface was to the interface that 

elicited the best MRCP, data from TABLE 9 was compared with the interface that elicited the 

strongest MRCP (indicated by having the lowest PA value) as selected in TABLE 14 in the 

Appendix. Some participants were omitted from this comparison as they did not report their 

rankings in TABLE 9. The haptic, real-movement execution run in S15 was also rejected due to 

the presence of too much noise, therefore their best performing real-movement interface cannot be 

reported on. The comparison of performance based on MRCP data and subjective ranking by 

participants can be found in TABLE 10. 

TABLE 10 Comparison between the participants’ subjective ranking of interfaces with the 
MRCP data. Dashes indicate that there is no mean available for that group. 

Participant 

Best Subjective 
Real 

Movement 
Interface 

Best MRCP 
Real 

Movement 
Interface 

Best Subjective 
Imaginary 
Movement 
Interface 

Best MRCP 
Imaginary 
Movement 
Interface 

S08 Haptic Haptic Auditory Auditory 
S09 Auditory Haptic Haptic Visual 
S10 Haptic Haptic Haptic Haptic 
S11 Visual Haptic Visual Visual 
S14 Visual Visual Auditory Auditory 
S15 Visual - Haptic Haptic 
AS02 Haptic Auditory Haptic Haptic 
AS03 Auditory Auditory Auditory Haptic 
AS04 Auditory Visual Haptic Haptic 
AS05 Visual Visual Haptic Haptic 
AS06 Haptic Haptic Haptic Visual 
AS07 Visual Auditory Auditory Haptic 
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AS08 Auditory Visual Haptic Haptic 
AS09 Haptic Haptic Haptic Haptic 
AS10 Auditory Auditory Haptic Visual 
Mean (ASD) Auditory Auditory Haptic Haptic 
Mean 
(Neurotypical) Visual Haptic Haptic - 
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3.3.2 Survey	results	

TABLE 11 shows the responses of the Likert rankings about the likability of the interface from 

question 1 of the survey. The question asked was “On the scale to your right, please indicate how 

you felt when interacting with that type of interface.” This question had a 100% response rate for 

all subjects. 

TABLE 11 Responses from question 1. Responses are represented as an integer from 1-5, 
where 5 = Very pleasant and 1 = Very unpleasant. 

Subject Real Movement Imaginary Movement 

 Auditory Visual Haptic Auditory Visual Haptic 

S02 5 4 5 4 3 4 
S03 3 2 5 4 2 5 
S04 5 4 4 5 4 4 
S05 5 4 5 2 3 3 
S08 3 4 5 3 3 2 
S09 5 4 2 5 4 5 
S10 3 3 4 3 3 3 
S11 5 5 5 5 5 5 
S14 3 4 2 4 3 2 
S15 2 4 3 4 5 5 
AS01 5 5 5 5 4 4 
AS02 3 3 5 3 2 3 
AS03 5 5 5 5 5 5 
AS04 5 4 4 5 4 5 
AS05 4 5 3 5 5 2 
AS06 4 5 5 3 3 3 
AS07 3 4 3 3 3 2 
AS08 5 3 3 5 3 2 
AS09 4 4 4 3 3 4 
AS10 4 3 3 4 3 3 
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Mean 
(all 
participa
nts) 

4.05 3.95 4 4 3.5 3.55 

Mean 
(ASD) 4.2 4.1 4 4.1 3.5 3.3 

Mean 
(Neurot-
ypical) 

3.9 3.8 4 3.8 3.5 3.8 

 

Responses from the second question “Please tell us a little bit more about why you feel this 

way” are available in TABLE 13 of the Appendix. Because it was an optional open-ended question, 

not every participant wrote a response. Examples of data from Question 2 are presented in section 

4.4 to provide context to the results. 

The third question “In your opinion, would you feel comfortable using this type of system 

to control a machine or computer?” was a general usability question and was captured as a binary 

response (i.e., ‘yes’ or ‘no’). The response rate for this question was 100% and are shown in 

TABLE 12. 

 

TABLE 12 Responses from question 3 in the survey where 1 = “Yes” and 0 = “No.” 

Participant Real Movement Imaginary Movement 

 Auditory Visual Haptic Auditory Visual Haptic 

S02 1 1 1 1 0 1 
S03 0 0 1 1 0 1 
S04 1 1 1 1 1 1 
S05 1 1 1 0 0 0 
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S08 1 1 1 1 1 0 
S09 1 1 1 1 1 1 
S10 1 1 1 0 0 1 
S11 1 1 1 1 1 1 
S14 1 1 1 1 0 0 
S15 0 1 0 1 1 1 
AS01 1 1 1 1 1 1 
AS02 1 0 1 1 0 0 
AS03 1 1 1 1 1 1 
AS04 1 1 1 1 1 1 
AS05 1 1 1 1 1 0 
AS06 1 1 1 1 1 1 
AS07 0 1 0 1 0 0 
AS08 1 1 0 1 1 1 
AS09 1 1 1 1 1 1 
AS10 1 1 1 1 1 1 

Mean (all 
participant

s) 
0.85 0.9 0.85 0.9 0.65 0.7 

Mean 
(ASD) 0.9 0.9 0.8 1 0.8 0.7 

Mean 
(Neurotypi

cal) 
0.8 0.9 0.9 0.8 0.5 0.7 

95% 
Confidence 

Interval 

0.6311  
to 

0.9561 

0.6867 
to 

0.9843 

0.6311 
to 

0.9561 

0.6867 
to 

0.9843 

0.4316 
to 

0.8201 

0.4787 
to 

0.8548 

 

  



72 
 

4. Discussion	

4.1 Summary	of	key	findings	

From the results, we have established the following key findings: 

1. There are statistically significant differences in MRCP features between the neurotypical 

and ASD groups. 

2. There are no statistically significant differences between MRCPs generated with different 

interface types (haptic, auditory, visual) across both groups of participants. 

3. The type of interface that is preferred by subjects is not often the interface that elicits the 

strongest MRCP features.  

4. The ASD group has less false positive events and more true positive events in imagined 

movement trials in MRCP detection compared to the neurotypical group. 

5. Haptic interfaces were most often ranked as the most preferred interface for imagined 

movement BCIs in both groups.  

6. Auditory interfaces were reported as being the most pleasant interface in the imagined and 

real-movement BCIs in both groups. 
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4.2 	Case	Study	Discussion	

Several findings from the statistical analysis presented in 3.2.1 are clearly seen in the case 

study presented in section 3.1.1. The first finding that is evident from the case study is that the 

features in the ASD participant are much smaller in magnitude than the neurotypical participant. 

This is supported with the Type 3 test of Fixed Effects and the side-by-side comparison in TABLE 

5.  

A second observation from the case study is that that the rebound rate after movement 

execution surpasses the baseline potential. The baseline can be observed between 4-3 seconds prior 

to movement execution in TABLE 5. The rebound rate is believed to reflect the fine control of 

movement and reafferent sensory processing that results from the participant moving their foot 

[75]. Although the observed overshooting of the baseline may indicate some interesting activity 

for ASD participants, it was not observed in all participants in the ASD group. The observed 

overshooting may be related to hypersensitivity experienced by these ASD participants, but further 

work is needed to investigate how often this occurs.  

A third observation is that the ASD participant has less inter-trial variation in their EEG 

features than the neurotypical control. The neurotypical participant has high inter-trial variability 

but elicits more pronounced features. One might infer from the third observation that MRCP 

detection will be improved in neurotypical participants, since the features are more distinctive and 

thus ‘easier to detect.’ However, this decrease in variation does not indicate necessarily that MRCP 

detection is more difficult because in section 3.1.1, it was observed that the EEG seemed to vary 

less in amplitude over time in in the ASD participant. Thus, even small changes can still be 

significant enough for successful MRCP detection. TABLE 9 shows that the average MRCP 

detection is very similar between the ASD and neurotypical groups. The most important factor for 
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reliable MRCP detection is a strong SNR; namely, whether there are little or large amounts of 

noise in the EEG, the signal needs to be prominent enough to be detected. Thus, having more 

pronounced features won’t necessarily impact how well MRCP can be detected in that subject. 
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4.3 Quantitative	Data	

Originally, the target size for both groups was 12 participants. While the target size of 12 

participants was not met, the sample size of 10 participants for each group is similar to comparable 

studies such as [28], [76], and [77].   

 The results of the Type 3 test of Fixed Effects in TABLE 6 reveals statistically significant 

differences across movement execution (real or imagined movement) and the participant groups 

(neurotypical and ASD). The significance of movement execution type is not a surprise; it has 

been well-documented in research literature over several decades that real movement execution 

produces more pronounced MRCPs than imagined movement does [78]. It has been presented to 

validate the dataset collected and thus will not be discussed further. The Type 3 test of Fixed 

Effects also demonstrated that the interface cue type (visual, auditory, haptic) appears to have no 

significant effects on MRCP features. This is relevant to the first research question presented in 

this thesis, “What is the quantitative EEG response of people with ASD to different BCI sensory 

modalities (auditory, haptic, visual) with their EEG?” While there is no statistically significant 

response in the participants’ EEG data, the qualitative results provide interesting insights on the 

subjective differences in the interface cues discussed in section 4.4.  

The most significant finding was the statistically significant differences in MRCP features 

between the neurotypical and ASD groups. The difference is also clear in the side-by-side 

comparison in FIGURE 8. The neurotypical group has larger values in every feature, and this 

observation is consistent between real and imagined movement execution. The peak amplitude of 

negativity is much smaller in value in the ASD group than the neurotypical group, which provides 

insights into how the brain is preparing for movement. As stated in section 1.5, the potentials of 

MRCP are related to the amount of neurons being recruited for the movement task. The more 
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neurons that are being recruited to prepare for movement execution, the lower that the peak 

amplitude will be for MRCP, which in turn affects all the other feature values as well. This suggests 

that less neurons are recruited for movement task intention and preparation in the ASD group 

compared to the neurotypical group, and thus less activity occurs. This is significant for the 

research questions presented in this thesis because it resolves the third question, “Do movement-

related cortical potentials differ in people with ASD, compared to a neurotypical population?” 

MRCP features indeed differ between the two groups, and this difference has consequences on 

cortical activity for preparing and executing motor tasks. 

The effect size in TABLE 8 demonstrates that the effect ASD has on these features is not 

small. Using Cohen’s criteria, the measurements of effect sizes are considered medium, trending 

toward large [74]. However, this effect size is tempered by having an underpowered study. While 

this study was an important pilot to demonstrate the effect of ASD on MRCPs, the small sample 

size means that it is underpowered and thus prone to Type II statistical errors. The power analysis 

in section 3.2.2 means that at least 1018 participants in each group are needed to have a 

sufficiently-powered study such that we could predict how this effect behaves in a more general 

population. This would be an important step to demonstrate MRCP differences in a more general 

population before developing or commercializing technology that could solve this. The limitations 

in such a study is discussed in section 5. 

Although the ASD group was unable to elicit an MRCP response as prominent as the 

neurotypical group, this does not mean that they are unable to perform motor tasks correctly. 

Rather, it suggests that the cognitive processing involved during motor task preparation in the ASD 

population is not as predictable as the neurotypical population. This could be related to difficulties 

with executing fine motor tasks such as coordinating movements to a cue, which is a common 
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occurrence in people with ASD. Because MRCPs are generated during voluntary movement 

planning, this may indicate that among ASD population there is a deficiency in planning movement 

tasks effectively. Existing BCI research for ASD has only focused on EEG signals related during 

or after motor tasks, with many results proving to be inconclusive or contradictory to other studies 

[79], [28], [80]. Thus, different MRCP morphology in ASD may be related to why people with 

ASD have issues with fine motor tasks, since the different MRCP morphology could indicate 

different neuronal activation patterns with motor movement planning as well as the motor 

execution as already identified in the research. Movement planning also lies under executive 

functioning, which is a difficulty in people with ASD. Thus, MRCP may be reflective of motor 

control as well as executive functioning abnormalities in ASD. Thus, improving MRCP elicitation 

may lead to improvement in motor and executive functioning abnormalities in those with ASD. 

More research is needed to focus on this component but may have a significant impact on the ASD 

community. 

This finding is particularly significant with current ASD research. Since an abnormal MNS 

system has already been proposed in prior research investigating mu rhythms, the research 

presented in this thesis suggests that mu rhythms and its role in the MNS is not sufficient for 

describing the symptoms experienced by those with ASD. MRCPs are generated in the same 

location of the brain as mu rhythms and show an abnormal elicitation in the ASD participants, as 

demonstrated by TABLE 6 and TABLE 7. As MRCPs are generated prior to mu rhythms, the 

inability of a person to elicit proper movement intentions could lead to abnormal cognitive 

processing of the movement itself, and consequently abnormally suppressed mu rhythms. 

Abnormal MRCPs could also be a result of less connections between neurons available, leading to 

more difficulty in recruiting neurons to participate in tasks. Regardless, abnormal MRCPs imply 
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that there is likely more happening in intentionally generated EEG signals for ASD than current 

research suggests. 

Differences between the neurotypical and ASD groups also exist with MRCP detection 

success. In TABLE 9, the neurotypical group had more true positives than the group with ASD 

and the mean detection latency was shorter and earlier than the ASD group in imagined movement. 

Thus, more MRCP events can be identified earlier in the neurotypical group compared to the ASD 

group for imagined movement. The lower true positive rate in real movement as well as the poor 

detection time of MRCP in ASD is likely due to their less pronounced MRCP components 

compared to the neurotypical group. Since LPPs rely on spatial relationships in the EEG, signals 

that do not spatially separate themselves from EEG noise will not be detected as easily. Despite 

this, the mean detection times in both real and imagined movement execution in the ASD group 

had an average detection latency within 200 ms after the “go” cue. As a result, this algorithm can 

detect their intentions within the window needed for perceived real-time feedback and can achieve 

Hebbian learning.  

As demonstrated in TABLE 6 and TABLE 7, MRCP differences between the neurotypical 

and ASD groups exist. Thus, the ASD population may benefit from MRCP-based neurofeedback 

to improve activation in the motor cortex. In using MRCP for neurofeedback, we can achieve 

Hebbian learning (see section 1.5) and strengthen the cortical activation of the primary motor 

cortex, which can potentially enable improvement in the activation of the MNS. While this has not 

been demonstrated yet, future research can explore if MRCP training can indeed improve MNS 

function. Improvements with stroke and Parkinson’s patients have already been put in place by 

using neurofeedback with MRCP [60], [81], [82]. Since there are similarities between the poor 

motor control between these populations and ASD, it is worthwhile to explore if neurofeedback 
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using MRCPs can improve motor functioning. However, more research needs to be done to see 

how consistent neurofeedback will be across ASD populations in order to justify such type of 

systems (as explained in section 1.3).  

  

4.4 Qualitative	Survey	Data	

The Type 3 test of Fixed Effects demonstrates that the interface cue type (visual, auditory, 

haptic) appears to have no significant effects on MRCP features. However, the qualitative results 

provide interesting insights on the subjective differences in the interface cues, especially when 

considered in parallel with related quantitative data. Even though no statistically significant 

differences were found in the MRCP features between interfaces, the questionnaire data appears 

to identify some polarizing opinions about different interfaces. This was especially apparent in 

ASD survey responses. For example, for subjects AS07 and AS08, the haptic interfaces were 

likened to ‘shock collars.’ One wrote it down, and another reported this verbally. Such language 

is very polarized and frames haptic interfaces as dangerous and pain-provoking. It should be noted 

that the vibration was at the same frequency for all participants and the haptic wristband was 

reported to be comfortable verbally by each participant before every haptic interface test was done. 

While the other participants were not bothered by the haptic interfaces, 20% of the ASD 

participants is enough to indicate that haptic interfaces should not be the standard, especially since 

using other interfaces does not appear to affect MRCP morphology. While some other participants 

self-reported hypersensitivities to the other interface stimuli, they did not use language that would 

suggest suffering or perceiving pain in any capacity. 
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This negative feedback for the haptic interfaces is reflected in those participants’ Likert 

scores, which were lower than the other interfaces. However, their EEG data showed that the haptic 

interfaces performed the best for both these participants. If BCI interface were chosen based on 

quantitative data alone, it would neglect how participants feel about the BCI interface, which could 

jeopardize the acceptance, usability, and uptake of BCI for people with ASD. Thus, it is very 

important for researchers and developers of BCIs to include some form of qualitative data to 

investigate subjective opinions regarding designs.  

As discussed at the start of section 4.3, it was identified that there are no significant 

differences between the auditory, haptic, and visual interfaces. Prior work by Pearce et al. found 

that auditory and visual interfaces had no statistically significant effect on MRCP responses in 

neurotypical participants, which is validated by the work presented in this thesis [83]. Given that 

many people with ASD report a hypersensitivity to stimuli, it is yet to be determined whether 

hypersensitivities would impact the elicitation of MRCP responses. Three ASD participants self-

reported their hypersensitivities either verbally or written down in question 2 of the survey. It may 

be assumed that the hypersensitivities would lead to non-optimal performances in the respective 

interface; however, the interfaces that these three participants sensitive to ended up being the best 

performing in terms of MRCP peak amplitudes of negativity. Thus, it is not possible to identify 

this effect only using EEG. This is problematic if researchers and developers focus on creating 

interfaces that generate optimal MRCP signals in order to achieve as high classification accuracy 

as possible, as they may effectively design interfaces that people wouldn’t want to use. Preferences 

for interaction modalities for people with ASD can be quite strong, as supported by qualitative 

responses for this research. These preferences will have a larger impact on BCIs than the 

insignificantly small changes in the EEG data. Thus, the data from this work suggests that selecting 
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an interface based on quantitative EEG data alone is inappropriate and could be detrimental to the 

adoption of the BCI for ASD populations. Others should be weary of relying on quantitative data 

alone, as it may not indicate usability issues that will deter the success of BCIs in a commercial 

setting.  

Based on the Likert responses for question 1 in TABLE 11, the BCIs that used imagined 

task execution are perceived as less pleasant than BCIs with real movement tasks. This finding is 

not surprising as it is more difficult to perform an imagined task, and imaginary tasks tends to 

cause mental fatigue in many people [84]. The mean Likert scores for real-movement interfaces 

indicate that visual and auditory interfaces are rated higher than the haptic interface across all 

participants and the ASD group, but the neurotypical group prefer the haptic interface most. For 

imagined movement interfaces, the auditory interface is the highest rated across all groups. The 

visual interface has the lowest score across all participants and within the neurotypical group, and 

in the ASD group the haptic interface is scored lowest. On average, it appears that haptic interfaces 

are better for neurotypical populations than for ASD. Haptic interfaces are perceived poorly 

compared to the other two interfaces for the ASD group. This is significant to the second research 

question presented in this thesis, “How do people with ASD subjectively perceive their interaction 

with auditory, haptic, and visual sensory stimulation?” because it indicates that haptic interfaces 

should be avoided for BCI design for ASD populations. For neurotypical populations, haptic 

interfaces are perceived better compared to the other two interfaces. Based on the highest rated 

scored in the ASD group, auditory interfaces may be more appropriate. However, these findings 

should only be used a starting point for BCI development and research. Factors such as 

hypersensitivities should be strongly considered and will have a large impact on the perception of 

the BCI. 
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In the reported rankings of real-movement interfaces (see TABLE 9), the auditory cues 

were most often ranked as the most preferred choice overall, and the neurotypical group most often 

chose visual interfaces as the highest ranked interface. All groups most often chose haptic 

interfaces as the least preferred interface. While the interface that was often ranked highest aligns 

with the observations in the Likert responses with the real-movement interfaces (see TABLE 11) 

this was not the case for imagined movement BCIs. In the imagined movement interfaces, the 

haptic interface is usually ranked the most preferred interface across all groups, while the Likert 

scores suggest that auditory interfaces are the most preferred. There is an inconsistency present 

here, which indicates some biases that come in self-reporting right after interacting with the 

interface. When participants are asked to rate an interface without having experienced all three 

interfaces, opinions are likely to change after working with all the interfaces. While ranking may 

appear to be more appropriate for comparing several interfaces, there is a lack of qualitative data 

in justifying why participants feel a particular way. Rankings are also unable to capture the 

impulsive, initial feelings of the perception of the BCI. The first impression of a BCI is recorded 

in the post-task Likert scales because the participant reports this immediately after interacting with 

the BCI.  Thus, the post-task Likert scales can provide more insight to the first impressions, and 

the participant can justify why those feelings are present in an open-ended question like question 

2.  

From the data collected in this research, it appears that the ranking method provided more 

insight as to what interface would be best out of a set of options compared to the Likert scales. The 

Likert scales were often filled in with the same rating across all interfaces, unless the participant 

indicated a dislike of an interface (and thus marked a very low on the Likert scale for that interface). 

This does not give good insight as to what interfaces are best, as it only indicates poor interfaces. 
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This is particularly relevant for A/B testing for research and development because users will report 

lower results for the one they don’t like. Likert scales are less valuable when there are more than 

two interfaces to assess because the same rating will likely be filled in for several interfaces, and 

thus it is difficult to identify differences in preferences between them. Thus, it is recommended 

that BCI research and development use rankings rather than Likert scales to determine most 

preferred interfaces, since the Likert scores were not always definitive in comparing interface 

designs and were positively skewed. 

In this comparison between the subjective rankings from TABLE 9 and the Likert scale 

responses from TABLE 11, it appears that for simple product validation that does not require a 

deep-dive into why BCI users feel a way, rankings are more appropriate than Likert scales. When 

justification is required, using the Likert scales and open-ended questions are more appropriate. 

Even though the rankings and Likert scale data may contradict each other, we have demonstrated 

that the ranking and Likert scales are equally important because they provide interesting and 

capture different contexts.  

When the subjective rankings are compared with MRCP data in TABLE 10, 66% of the 

subjects reported preferences for interfaces (either real or imagined movement execution) that did 

not reflect that they performed the best in. Out of the interfaces using real movement execution, 

43% of subjects preferred interfaces that were not their best performing. For the imagined 

movement execution, only 33% of subjects preferred interfaces that were not their best performing. 

This misalignment is important to the second research question presented in this thesis because the 

preferences of the participants discussed above that answer this question would rarely be selected 

as the best interface to be used in research. Because BCI researchers are looking for methods to 

get the best results, there will be a bias towards using interfaces that yield the best signals. 
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However, the interface with the best signals rarely align with what would be most preferred by the 

participants. While using the interface with the best signals aligns with research, the BCI is less 

likely to be adopted in a commercial setting if people are less likely to use it. If people aren’t going 

to use the interface then there is little worth in the research and development of those BCIs, 

especially when BCIs are designed for commercial use. 

Because imagined movement BCIs are harder to use than real movement BCIs, it was not 

a surprise when imagined movement BCIs were rated lower than the real-movement counterparts. 

This is seen in overall, and in the ASD and neurotypical groups. While this difference does exist, 

the perceived usability of the interface was not significantly different even when considering this 

observation. Thus, the different types of interfaces appear to have strong preferences by the 

participants, which will affect the success and adoption of that BCI. Whether the interface uses 

real or imagined movement does not significantly impact these perceptions. These perceptions are 

also not reflected in the quantitative data, which again supports the importance of capturing 

qualitative data when developing BCIs. It is recommended that future BCI work should include 

qualitative surveys to capture a more holistic understanding of the BCI system. Otherwise, BCIs 

may not be successfully translated into real-world applications and commercially viable systems. 

The third question in the survey use the binary responses to predict the usability rate, and 

the confidence interval suggests that there is a 95% level of confidence that about 63-98% of the 

general population would perceive real movement BCIs as usable, and about 43-98% for imagined 

movement interfaces. Thus, the binary usability responses from TABLE 12 show promise for the 

future of BCI technologies. The responses were mostly positive and indicate there exists at least 

some fraction of the population that sees the value of using BCIs in their lives. The adjusted 

confidence intervals in TABLE 12 show that it is possible that the population will also see value 
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in MRCP-controlled BCIs when they are more widespread and commercially available. The 

responses demonstrate that MRCP interfaces could be a viable commercial solution that the 

general population would be likely to try. However, it should be noted that this does not indicate 

whether they would continue to be used over a long enough period of time to achieve the benefits 

of using such BCIs. This may also be affected by the excitement new technology often incites in 

early-adopters of innovative technology. It is important that long-term studies on BCI use are 

conducted to examine whether consumers would use BCIs consistently. 

In TABLE 13 of the Appendix, the responses from question 2 of the survey are recorded. 

While each person had personal opinions about the interfaces (and MRCP-based BCI technology 

overall), there were some common topics or language used that can provide rich qualitative insight 

into the experiences of participants when using different MRCP-based BCIs. First, 8 neurotypical 

and 3 ASD participants self-assessed their ability interacting with the BCI based on how distracted 

they were. While the details of how distracting the cue stimulus was varied, there were some 

repeated patterns that indicates potential problems when moving such BCIs to market.  

Another useful finding from these responses was that several participants liked non-visual 

interfaces because they did not need to attend to the stimuli. Visual cues require more sustained 

attention to a screen than other interfaces, which can hinder multitasking when using BCIs. If BCIs 

are used for communication or control, the need to constantly attend visual stimuli should be 

avoided to allow people to engage more with their environment around them while they use it. 

In the experimental paradigm outlined in this study, neurofeedback was not incorporated 

or presented to the user. One participant wrote down feelings of frustration for not being able to 

receive feedback on their performance. Three participants expressed these feelings verbally; one 

in the neurotypical group, and two in the ASD group. Neurofeedback was not included because 
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participants may assess an interface on their perceived performance based solely on 

neurofeedback, rather than assessing the BCI based on their own interpretations of cue types. 

However, the importance of including such feedback is a critical step in determining whether a 

BCI user is improving or needs to change a specific behavior. 

  



87 
 

4.5 	Peroration	

Given these observations, there are new questions that should be asked by BCI researchers 

and developers. First, a logical next step is to investigate how BCI preferences compare with other 

EEG signal modalities. For some types of modalities, it may be that one type of interface may be 

strongly preferred over another; there may be interesting results for interfaces involving other 

movement or sensory-based brainwaves. Second, it is not yet clear as to whether the neural circuits 

that yield abnormal MRCP elicitation contribute to what causes ASD (or how the symptoms 

persist) or are merely a consequence of other abnormally functioning systems such as the MNS. 

While there is not enough data from this work to tell, it can be said that current EEG research on 

ASD has been focused on specific brainwaves that may not represent how ASD persists in EEG 

and that there may be than the MNS that is abnormally functioning in those with ASD. Such 

questions need to be asked in order to develop appropriate treatments and therapy for those with 

ASD. 

The results show that there is a difference in MRCP elicitation between the ASD and 

neurotypical groups. Improvements with stroke and Parkinson’s patients have already been put in 

place by using neurofeedback with MRCP [60], [81], [82]. Since there are similarities between the 

poor motor control between these populations and ASD, it is worthwhile to explore if 

neurofeedback using MRCPs can improve motor functioning. However, more research needs to 

be done to see how consistent neurofeedback will be across ASD populations in order to justify 

such type of systems (as explained in section 1.4).  

Qualitative data provides important insights that would have been unidentified if only EEG 

data was used for analysis. It is recommended that more qualitative data is considered when 

researching and developing BCIs. When researchers capture and qualitative data on the 
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participant’s preferences, it creates active engagement with the users and gives them a say in the 

development. This empowers BCI users and fosters a positive relationship between technology 

and users. All the incredible work done by academia in BCI falls apart if the people it is designed 

for can’t or won’t use it. In the end, it all comes back to “nothing about us without us.” 
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5. Methodological	Considerations	

There are three considerations this thesis considers. First, this research had small sample 

sizes, which is common in early-stage BCI research. Due to the small sample size, we cannot 

conclude for certain that the data presented in this work is representative of larger populations. In 

order to have sufficient statistical power, the power analysis in section 3.2.2 estimates a minimum 

sample size of 1018 participants for each group. It is very rare to see BCI studies that recruit such 

a high number of participants for a number of reasons. Depending on a variety of factors such as 

geography and local demographics, there may be few people that meet the special criteria for BCI 

investigations. Furthermore, the equipment needed to conduct BCI studies is expensive and not 

portable. Participants often must travel to the institution which can be overbearing and time-

consuming for participants. While there may be sufficient neurotypical participants, it is highly 

unlikely that the same number of ASD participants can be recruited. As discussed in section 2.1,the 

sample sizes collected for this study is consistent with other BCI studies, most of which is 

developed and designed for special needs populations. While it is acknowledged in the academic 

research fields that this is a major problem in BCI research, there are currently few solutions 

available for this problem. Solving these problems are outside of the scope of this thesis. 

The second consideration is that the MRCP detection algorithm used is not a generalizable 

model. Because there is high variability in MRCP features based on the subject, and the locality 

preserved projections have different feature the detection algorithm is built specifically to the 

morphology of the subject’s EEG data. As a result, the models used for MRCP detection on one 

participant will not be generalizable to other participants. If one participant is very good at eliciting 

MRCP, it is unlikely to work as well on other subjects. Unfortunately, it means that the detection 

models developed and tested for this thesis cannot be used in. commercial device at this time.  
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Lastly, while the results presented in this work demonstrated a difference in MRCPs 

between neurotypical and ASD participants, it is yet to be determined whether neurofeedback 

using MRCPs is due to an abnormal MNS or can improve MNS functionality. While mu rhythms 

and MRCPs both engage similar motor systems, there are currently no studies to empirically prove 

this link between MRCP and the MNS. Furthermore, MNS is still a theory at this point and 

researchers are still unsure whether there is enough support to prove that the MNS exists in 

humans. if there is enough evidence to support its existence. 
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6. Conclusions	and	Recommendations	

6.1 	Conclusions		

The goal of this thesis was to answer the research questions: 

1. What is the quantitative EEG response of people with ASD to auditory, haptic, and 

visual BCI sensory modalities? 

2. How do people with ASD subjectively perceive their interaction with auditory, 

haptic, and visual sensory stimulation? 

3. How do movement-related cortical potentials compare between people with ASD 

and neurotypical controls? 

For question 1, no statistically significant differences were found in MRCP features between 

auditory, haptic, or visual-based BCIs. The data also demonstrated peak amplitudes that were 

smaller in value between the ASD compared to neurotypical groups, suggesting that MRCPs differ 

between the two populations, which relates to question 3. For question 2, the qualitative data 

demonstrated ASD group perceived differences in BCI modalities such as preferences based on 

stimuli hypersensitivities, incompatibilities between participant’s preferred and best performing 

interfaces, and the benefits of using interfaces that don’t require constant visual attention.   

The work presented today provides several novel contributions to the current body of 

research. In thus study, the first comparison of MRCPs between ASD and neurotypical populations 

are presented. This comparison included EEG and a qualitative perception of the different 

interfaces, which presents a more comprehensive comparison than other research in this area, 

which only examines the EEG signals. Furthermore, this is the first study to examine the 



92 
 

differences between haptic, auditory, and visual responses in MRCP elicitation in any population 

between different interface cues. 
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6.2 	Recommendations		

There were several polarized opinions expressed by participants about the interfaces based 

on prior experiences and sensitivities. Because haptic interfaces were so polarized (and potentially 

perceived as harmful to those with ASD) and visual interfaces were a little distracting, it may be 

best to use auditory cues for early stage development of MRCP-based BCIs. This finding can be 

expanded to other BCIs, as the reasoning for preferring one interface for another was not often due 

to its relation to the task. However, it is important to recognize the limitations of auditory MRCP-

based BCIs based on the audience the BCI is being developed for. Auditory cues are a good place 

to start at the beginning but may need to be enhanced or used with other stimuli based on the 

hearing ability of the user.  

It is clear from the research presented that more BCI studies should incorporate more 

qualitative data collection. The insights provided by the users would not have been otherwise 

identified with EEG data alone.  

Future work should investigate whether neurofeedback training for MRCP can improve 

symptoms in those with ASD. It should also be investigated whether other algorithms may improve 

MRCP detection in adults with ASD, either in detection accuracy or detection time. When 

detection is reliable enough to get sufficient detection accuracy, then it should be investigated if 

MRCP neurofeedback training can improve MNS activation, which could be measured via mu 

rhythm suppression.  
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8. Appendix	

 

FIGURE 9 The template of the survey presented to participants. 

Version 1.3, last revised on December 8th 2017. 

Post-Section  Questionnaire 
Based on the interface you just used, please answer the following questions below: 

Very Unpleasant 
Satisfactory/ 

Neutral Very Pleasant 
           |                        |         |  

 1 2 3 4 5 
On the scale to your right, please indicate how you felt when 
interacting with that type of interface: 

⃝ ⃝ ⃝ ⃝ ⃝ 

 
Please tell us a little bit more about why you feel this way:     (You do not need to fill in the whole space) 

 

In your opinion, would you feel comfortable using this type of system to control a machine or 
computer? 

⃝ YES ⃝ NO 
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TABLE 13 Responses of question 2 from survey, which asked “Please tell us a little bit about why 
you felt this way”. Note that minor spelling errors have been corrected in the table below, such as 
missing or extra letters to a word. Point form notes have been separated by commas. Dashes (-) 
indicate that nothing was written down. 

Participant Movement 
Type Interface Type Response 

S02 

Real 

Auditory 

“Voice of the computer is pleasant. 
However, the final call (‘go’) is not very 
‘enthusiastic.’ I would expect it to be 
more encouraging/engaging.” 

Visual “The chair is a bit uncomfortable.” 

Haptic 

“This type of interface is very tactile. The 
best one of all three (in my opinion). 
Does not require visual nor audible 
attention.” 

Imagined 

Auditory 
“The enthusiasm in voice commands 
decreases with time. ‘Go’ should be 
louder.” 

Visual “Requires lots of attention. Waiting for 
the stimuli induces fatigue” 

Haptic 

“This type of experiment engages 
imagination. There is some learning 
curve to it. In order to use it well, 
definitely lots of practice is required.” 

S03 

Real 

Auditory “A little bit annoying, ‘someone’ tells you 
what to do” 

Visual “Annoying, you have to be very focused on 
the screen, you ‘sleep’ during this test” 

Haptic “Doesn’t make noise, little device” 

Imagined 

Auditory “Difficult to imagine your foot moving, 
need to train to do that well” 

Visual 
“More difficult because you have to focus 
on the screen so you’re less focused on 
your foot” 

Haptic “Not disturbing, you can focus on your 
task” 

S04 Real Auditory “Auditory triggers were easier to 
follow/stay focused on” 
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Visual 
“In between the haptic and auditory cues, 
easier to follow than haptic but less than 
auditory” 

Haptic “Vibrations helped focus on the task” 

Imagined 
Auditory “Eyes are starting to fatigue” 
Visual - 
Haptic “Same comment as before” 

S05 

Real 

Auditory 

“Audio cue helped to focus on the cues 
more than visual/tactile. ‘Zoned out’ during 
experiments, focused less on sight and more 
on hearing/touch.” 

Visual - 

Haptic 
“Tactile sensation was more ‘compelling’ 
than usual. Felt a stranger urge to move my 
foot at the cue.” 

Imagined 

Auditory Felt more like I was trying not to move my 
foot, rather than imagining it moving.” 

Visual 
“Somewhere between audio vs. haptic in 
terms of an urge to move. More concerned 
with timing than haptic.” 

Haptic 
Less anticipation than audio cues. Felt more 
deliberate about moving my foot. Less of 
an urge to move 

S08 

Real 

Auditory “The sound wasn’t stressful, but it stressed 
me a bit for the timing.” 

Visual “It had no pressure, I had the time to see it 
coming and move in consequence.” 

Haptic - 

Imagined 

Auditory - 

Visual “In the end, I really wanted to move my 
foot!” 

Haptic “Tring to figure out how to move but not 
move in the end is hard.” 

S09 Real 

Auditory “I was comfortable with this type of cue.” 
Visual - 

Haptic 
“I feel that the vibration was distracting and 
I had to focus at my wrist which made me 
uncomfortable. To be more specific, part of 
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my brain was busy waiting for the 
command.” 

Imagined 

Auditory 
“It was a good experience and could follow 
the instructions after 5 trials (could imagine 
the movement better).” 

Visual 

“I was comfortable with this interface. I am 
the type of a person who learns things 
visually so this visual helped me be more 
focused on the task. And I think that can be 
a factor.” 

Haptic “I was surprisingly very comfortable with 
the haptic cue for imaginary movement.” 

S10 

Real 
Auditory 

“Found voice was the hardest to stay 
focused/on task (though perhaps this is 
trial #3).” 

Visual “More intrusive than vibration.” 
Haptic “Easy to feel, gentle, non-intrusive.” 

Imagined 

Auditory 
“Getting quite tired/made me feel tired. 
Perhaps if the voice was different it 
would help with the engagement.” 

Visual “Much more difficult than real motion; 
harder to remain focused.” 

Haptic 
“Most engaging and not intrusive at the 
same time. I felt this was the easiest to 
interact with.” 

S11 

Real 
Auditory - 
Visual - 
Haptic - 

Imagined 
Auditory - 
Visual - 
Haptic - 

S14 
Real 

Auditory 
“Good – voice kept my attention more, 
but the tone of voice was a little 
unenthusiastic!” 

Visual “Easy to understand.” 

Haptic 
“Requires more thinking – need to keep 
track of pulses, whereas other methods 
show 3, 2, 1 differently.” 

Imagined Auditory “Probably the best of the imagined ones. 
Voice guiding just seemed natural.” 
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Visual - 
Haptic “Even more thinking here.” 

S15 

Real 

Auditory 
“The women’s voice is a little terrifying. 
It feels like she is giving me order to 
obey.” 

Visual “A little bit silent. I feel I can be easily 
distracted by the environment.” 

Haptic “The vibration is weaker than my 
wristband. So it’s less annoying.” 

Imagined 

Auditory “It gives the accurate timing for moving 
my leg.” 

Visual “Better timing than the audio cue.” 

Haptic “Gives a better timing for moving my leg 
than the audio one.” 

AS01 

Real 

Auditory 
“I feel nothing wrong with anything and 
when the white cross appears, I tense 
myself in preparation.” 

Visual “It was calming getting ready to do the 
action when a green square appeared.” 

Haptic “Very relaxing.” 

Imagined 

Auditory “Feeling easier to do.” 

Visual “Pretty hard to accurately calculate the 
mental kick but it’s easy to learn.” 

Haptic “Calm but slightly difficult moving my 
foot.” 

AS02 

Real 

Auditory - 
Visual - 

Haptic 

“I like this method the best so far 
because, with the sound I might tune it 
out by accident, and with the shapes I 
might not pay attention. But with the 
vibrations, I’m forced to pay attention. 
(Vibrations on wrist) were the best so 
far” 

Imagined 

Auditory - 

Visual “Watching the shapes made me feel tired 
and fight to keep my eyes open.” 

Haptic - 
AS03 Real Auditory - 
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Visual - 
Haptic - 

Imagined 
Auditory - 
Visual - 
Haptic - 

AS04 

Real 

Auditory “Easiest one to follow.” 

Visual “In some applications this may be good, 
little hard to keep looking sometimes.” 

Haptic “Vibration felt a bit odd at first but I got 
used to it.” 

Imagined 

Auditory “Easiest to follow.” 

Visual “Little hard to focus on that and think 
about moving.” 

Haptic “Easiest to follow while thinking about 
moving.” 

AS05 

Real 

Auditory 

“As this is the third time around, my 
ankle is getting a little weaker and tired 
from all the moving so far, but generally 
comfortable and easy instructions to 
follow.” 

Visual 

“I like rhythms. I find them calming. I 
was able to concentrate and focus 
because I knew when the green light was 
going to happen. (I had a red light 
countdown.) And there was only one 
instruction: to point my toes up. 
(Therefore it is less overwhelming.)” 

Haptic 

“I don’t particularly like things that 
vibrate, but it wasn’t so unpleasant that I 
needed to stop. (Sensory processing 
disorder is part of ASD, and I’m very 
sensitive to sound and tactile things.) It 
also tends to itch in the area of buzzing if 
it goes on long enough. But generally 
comfortable.” 

Imagined Auditory 

“That was cool. I would like to know 
how easily one could see my imagination 
doing the thing. It’s so amazing to be 
able to control something using your 
brain. I tried different speeds and also 
imaging the muscles moving.” 
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Visual 

“This was so much easier. I found it 
really easy to imagine the muscles 
moving so it felt like I was actually 
moving them up and down, but it wasn’t 
actually going anywhere. Less anxiety 
this time. I could change the speed more 
easily as well. (picture it just as clearly.)” 

Haptic 

“This one was particularly itchy. I also 
got very sleepy. I started to have a. lot of 
anxiety as it was going and I wanted it to 
be over. I found it more difficult to 
concentrate.” 

AS06 

Real 

Auditory “Instruction on desired movement a little 
but overall went well.” 

Visual “I have a little delay in processing visual 
cues sometimes.” 

Haptic “I prefer vibration alerts.” 

Imagined 

Auditory “Imagined response is challenging.” 

Visual “Nothing ‘special’ but needed the 
practice round to get visualizing ‘down.’” 

Haptic “Imagined movement isn’t easy have 
lower ‘score.’” 

AS07 

Real 

Auditory - 

Visual “Some difficulty with lifting foot only for 
an instant.” 

Haptic “This felt easily like a very mild shock 
collar.” 

Imagined 

Auditory “Lack of focus this instance.” 
Visual - 

Haptic “Unsure how to precisely perform test. 
Still a shock collar, though.” 

AS08 

Real 
Auditory - 
Visual “Strange.” 
Haptic - 

Imagined 
Auditory - 
Visual - 
Haptic - 

AS09 Real Auditory “The test was very simple and direct, 
only it was a bit harder to know how long 
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to keep my foot raised before the next 
sequence.” 

Visual “The test was very simple and direct.” 

Haptic “The test was very simple, and very 
direct.” 

Imagined 

Auditory 

“This was slightly easier than the 
previous test as I was able to concentrate 
better by closing my eyes to envision my 
foot raising as needed. This test still 
required some concentration.” 

Visual 
“This was harder than the previous three 
which involved actual movement, but I 
found it easier than imagined.” 

Haptic 

“This skill required some concentration 
but was easier than the other imaginary 
test as I was able to time the envisioning 
of lifting my foot with the timed feel of 
the buzz from the bracelet.” 

AS10 

Real 

Auditory 
“With voice, you can benefit it with the 
muscle reaction, with the tone, the 
pronunciation and the rhythm.” 

Visual “It feels like that it can be used for other 
things, it felt like nothing for me.” 

Haptic 

“It’s a new way of using your body, like 
you are of that of a baby, it’s getting used 
gradually from time to time that it will 
become a part of you like a prosthetic for 
example.” 

Imagined 

Auditory 
“I feel like it benefits a lot from thinking 
what you want to do in your head and get 
a reaction out of it.” 

Visual 
“I feel like thinking what you’re going to 
do adds to the system on making it more 
precise for the general public.” 

Haptic 
“It gives reactions to that of objectives, 
such as waking up at a certain time for 
example.” 
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TABLE 14 The MRCP features collected for each participant and interface, averaged across 20 
trials. 

Participant Group Movement 
Type 

Cue 
Type 

NS1 
(µV/s) 

NS2 
(µV/s) 

PA 
(µV) 

RR 
(µV/s) 

AS01 ASD Real Auditory -0.8366 -4.2873 -4.2934 4.4973 

AS01 ASD Real Visual -3.5230 -5.7513 -6.7411 4.7781 

AS01 ASD Real Haptic -3.8554 -3.2700 -5.0238 2.4880 

AS01 ASD Imagined Auditory 1.1443 -1.9979 0.0130 0.6895 

AS01 ASD Imagined Visual -0.9559 -1.5888 -1.6759 0.9228 

AS01 ASD Imagined Haptic 0.5368 -3.8027 -0.9154 0.4581 

AS02 ASD Real Auditory -1.9713 -4.2650 -4.7455 4.2836 

AS02 ASD Real Visual 0.2720 -5.0386 -4.6152 5.0857 

AS02 ASD Real Haptic -1.1788 -4.3096 -3.9322 2.8836 

AS02 ASD Imagined Auditory -1.4267 -0.8025 -1.3439 0.2711 

AS02 ASD Imagined Visual 1.1522 -3.3516 -1.4189 0.6499 

AS02 ASD Imagined Haptic -1.5807 -1.9658 -2.0858 2.2775 

AS03 ASD Real Auditory 1.7172 -3.8433 -2.0201 4.3901 

AS03 ASD Real Visual 5.9577 2.6133 1.2539 1.0083 

AS03 ASD Real Haptic 1.3184 -4.0083 -1.6720 3.1997 

AS03 ASD Imagined Auditory -3.1787 -5.1002 3.1997 -0.1992 

AS03 ASD Imagined Visual -3.4027 -3.7831 -2.1102 0.0842 

AS03 ASD Imagined Haptic -7.1097 -3.8768 -5.7232 1.9659 

AS04 ASD Real Visual -8.4696 -13.6568 -17.9172 15.9779 
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AS04 ASD Real Auditory -3.9253 -17.4085 -14.3433 13.8567 

AS04 ASD Real Haptic -4.8132 -11.9225 -13.8908 15.8052 

AS04 ASD Imagined Visual 1.2935 -8.7270 -3.2504 5.2760 

AS04 ASD Imagined Auditory -1.3290 -1.7331 -4.1925 2.3183 

AS04 ASD Imagined Haptic -5.9395 -12.4434 -12.3487 6.8082 

AS05 ASD Real Visual -5.7393 -2.2980 -5.8694 4.7836 

AS05 ASD Real Auditory -0.7565 -3.1023 -3.4155 3.5858 

AS05 ASD Real Haptic 0.5816 -2.8149 -1.6315 2.9641 

AS05 ASD Imagined Visual -1.4151 -2.8385 -1.9927 0.4914 

AS05 ASD Imagined Auditory -2.9906 -0.6077 -1.8283 1.3266 

AS05 ASD Imagined Haptic -1.9202 -3.1509 -3.2676 1.4301 

AS06 ASD Real Visual -0.0340 -6.2115 -5.7911 4.5573 

AS06 ASD Real Auditory -0.7888 -4.7558 -4.2616 3.6070 

AS06 ASD Real Haptic -0.9863 -12.7672 -7.9628 5.3156 

AS06 ASD Imagined Visual -0.3967 -6.8322 -3.2531 2.2951 

AS06 ASD Imagined Auditory -0.8831 -2.1166 -1.3797 2.1652 

AS06 ASD Imagined Haptic -0.1720 -5.2595 -3.0209 2.1138 

AS07 ASD Real Visual -10.0147 -16.3641 -16.7763 10.8364 

AS07 ASD Real Auditory -9.9453 -22.1835 -18.5721 12.0033 

AS07 ASD Real Haptic -9.2255 -12.2556 -15.5175 6.6166 

AS07 ASD Imagined Haptic -9.0657 -12.3708 -15.4327 11.7817 

AS07 ASD Imagined Visual -11.4181 -5.9609 -13.6089 9.0479 

AS07 ASD Imagined Auditory -5.9669 -8.7964 -12.4918 12.4238 
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AS08 ASD Real Auditory -2.6700 -11.5656 -8.9711 5.0609 

AS08 ASD Real Visual -6.6418 -11.1498 -12.4343 8.2123 

AS08 ASD Real Haptic -2.1580 -8.3739 -6.6342 4.6813 

AS08 ASD Imagined Haptic 0.3078 -0.9312 -1.4494 1.6852 

AS08 ASD Imagined Visual -0.6289 -4.3118 -1.1939 -0.3687 

AS08 ASD Imagined Auditory -0.1702 -2.4296 -1.3670 1.6648 

AS09 ASD Real Auditory -2.3669 -5.8913 -5.8913 7.1594 

AS09 ASD Real Visual -9.7675 -7.8123 -12.1806 6.9908 

AS09 ASD Real Haptic -7.5168 -14.0058 -14.4451 9.3815 

AS09 ASD Imagined Haptic -5.7947 -0.9908 -4.8774 1.2483 

AS09 ASD Imagined Visual -2.7939 -3.0885 -1.7912 0.0736 

AS09 ASD Imagined Auditory -4.6733 -0.7202 -0.3700 -2.0526 

AS10 ASD Real Auditory -5.0577 -0.5277 -4.2978 1.5379 

AS10 ASD Real Visual -1.6335 -3.3913 -2.9920 -0.1565 

AS10 ASD Real Haptic -2.5451 -3.2199 -2.7039 1.6769 

AS10 ASD Imagined Haptic 0.9980 -2.5263 -0.5385 -0.0052 

AS10 ASD Imagined Visual -2.3960 -2.3188 -3.6331 1.7594 

AS10 ASD Imagined Auditory -4.0180 -3.3338 -1.7864 0.4438 

S02 Neurotypical Real Visual -5.2507 -10.1998 -10.5044 8.4846 

S02 Neurotypical Real Haptic -6.4515 -6.5739 -10.7751 9.0740 

S02 Neurotypical Real Auditory -3.9218 -6.4390 -10.6477 9.0096 

S02 Neurotypical Imagined Visual -0.6445 -4.8102 -3.3709 2.5489 

S02 Neurotypical Imagined Haptic 0.9012 -3.3185 -2.1963 1.3851 
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S02 Neurotypical Imagined Auditory -3.6800 -2.7245 -5.8940 5.2208 

S03 Neurotypical Real Auditory -5.3869 -12.7539 -13.1747 9.3049 

S03 Neurotypical Real Visual -16.9581 -21.3018 -18.3568 5.5037 

S03 Neurotypical Real Haptic -15.8096 -12.3031 -18.9176 10.0950 

S03 Neurotypical Imagined Auditory -8.4580 -6.7134 -7.0709 2.5229 

S03 Neurotypical Imagined Visual -16.2918 -17.1919 -15.8261 3.1023 

S03 Neurotypical Imagined Haptic 4.7644 -4.4755 0.6024 0.6667 

S04 Neurotypical Real Auditory -4.4158 -9.3018 -7.9687 4.1707 

S04 Neurotypical Real Visual -6.4341 -10.1457 -10.3461 5.5619 

S04 Neurotypical Real Haptic -9.3824 -8.5822 -11.6975 6.1466 

S04 Neurotypical Imagined Auditory -5.0494 -6.6620 -6.0393 4.0025 

S04 Neurotypical Imagined Visual -2.9678 -8.5883 -5.3462 4.7859 

S04 Neurotypical Imagined Haptic -3.1384 -5.4772 -4.7995 3.2205 

S05 Neurotypical Real Auditory -18.3827 -16.5494 -17.8757 6.7094 

S05 Neurotypical Real Visual -16.6178 -14.5323 -13.6463 6.5642 

S05 Neurotypical Imagined Auditory -12.1274 -2.8153 -10.9040 7.6279 

S05 Neurotypical Imagined Visual -10.8708 -13.1942 -10.9583 8.4581 

S05 Neurotypical Imagined Haptic -9.7743 -9.4155 -10.9583 8.4194 

S08 Neurotypical Real Visual -13.4019 -6.0967 -6.0967 10.7324 

S08 Neurotypical Real Auditory -10.7357 -6.0791 -12.5947 7.9762 

S08 Neurotypical Real Haptic -14.0403 -6.6064 -16.0121 9.5008 

S08 Neurotypical Imagined Visual -7.2273 -4.1906 -5.4726 2.0173 

S08 Neurotypical Imagined Auditory -8.9075 -4.8908 -10.8359 6.0788 
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S08 Neurotypical Imagined Haptic -4.3475 -2.0660 -6.7237 6.0143 

S09 Neurotypical Real Haptic -13.6889 -12.4655 -19.4868 15.9445 

S09 Neurotypical Real Visual -9.3711 -10.6046 -15.9635 14.6782 

S09 Neurotypical Real Auditory -10.9719 -12.4589 -18.0024 15.5910 

S09 Neurotypical Imagined Haptic -2.8565 -4.6599 -7.9625 6.9437 

S09 Neurotypical Imagined Visual -6.2371 -5.2812 -8.7225 6.4788 

S09 Neurotypical Imagined Auditory -6.0281 -3.5665 -7.5247 5.9898 

S10 Neurotypical Real Haptic -12.8327 -11.1417 -16.2326 10.5268 

S10 Neurotypical Real Visual -7.7776 -12.3591 -11.0291 9.5752 

S10 Neurotypical Real Auditory -7.1260 -14.2581 -13.7451 8.8347 

S10 Neurotypical Imagined Haptic -5.9731 -4.3750 -6.9685 4.4416 

S10 Neurotypical Imagined Visual -1.8303 -8.4418 -5.2464 3.7672 

S10 Neurotypical Imagined Auditory -5.4715 -3.3135 -4.9440 1.3804 

S11 Neurotypical Real Haptic -6.4190 -4.4948 -9.4287 9.5050 

S11 Neurotypical Real Visual -4.8922 -6.4560 -8.2242 7.3183 

S11 Neurotypical Real Auditory -5.5653 -2.2719 -8.5292 8.8488 

S11 Neurotypical Imagined Haptic -8.7982 -1.8715 -9.5121 6.4496 

S11 Neurotypical Imagined Visual -10.4043 -4.9792 -10.6327 5.4681 

S11 Neurotypical Imagined Auditory -2.8408 -4.5848 -4.3319 3.4948 

S14 Neurotypical Real Haptic -0.9156 -3.5294 -3.2289 3.1347 

S14 Neurotypical Real Visual -3.9785 -4.4822 -4.4822 3.4465 

S14 Neurotypical Real Auditory 1.4167 -6.8763 -2.3369 2.5925 

S14 Neurotypical Imagined Haptic -0.3512 -2.8846 -2.6729 4.1537 
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S14 Neurotypical Imagined Visual -7.9240 -2.7124 -6.0241 2.0686 

S14 Neurotypical Imagined Auditory -5.7677 -1.9608 -6.0922 8.1997 

S15 Neurotypical Real Visual -2.7637 -8.9956 -5.6370 3.2990 

S15 Neurotypical Real Auditory 0.0210 -2.7088 -4.3808 5.4401 

S15 Neurotypical Imagined Haptic -10.5618 -5.5770 -10.3422 8.1559 

S15 Neurotypical Imagined Visual -6.9786 -4.5751 -8.5133 4.1527 

S15 Neurotypical Imagined Auditory -7.9693 -4.1271 -8.0264 4.9562 


