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Abstract

Consider a prediction market of multiple rounds with a security contingent on a certain

event whose final outcome is decided by the agents who also trade in the market. One such

prediction market is one in which two agents, Alice and Bob, are trading on the likelihood of

a project both are working on complete. Prior research either only considers the expected

rewards in the prediction market or if external incentives are present, then only a low

number of rounds in the prediction market, to our knowledge at most 2. In addition, the

existing literature assumes that when external incentives exist, there is no net difference

between the cost of different actions agents may take outside of the prediction market. For

example, it is the same cost for either Alice to work hard to complete the project as it is for

her to “loaf” and not work hard. In this work we consider a 2-round round setting in which

agents’ cost of external actions differ. We show that when external action costs differ but

are within a proper range, a prediction market is incentive compatible regardless of the

initial market estimate, something that currently is not shown in the existing literature.
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Chapter 1

Background Introduction

A prediction market is created to aggregate information from individuals about uncertain

events of interest. It is generally assumed that the agents who participate in the market

by trading may have superior information about the relevant event, but no direct control

over the outcome. However, prediction markets are often used in situations where this

assumption is violated [7]. In this study we consider the impact of external incentives on

the efficacy of prediction markets, especially when the external incentives require costly

actions. Prediction markets that are deployed in corporate settings consist of a market

maker, a center with whom all participants (agents) trade, that is present to facilitate

trade and boost market liquidity. In our study, the market maker, is also the market

participants’ employer, does not want agents to take undesirable actions at work that

impact the outcome of the traded event.

There is a mountain of evidence that prediction markets can help produce forecasts of

event outcomes with a lower prediction error than conventional forecast methods [1]. How-

ever, it is also possible that agents might bluff and deceive other players by not revealing

their true beliefs, hoping to correct the prediction probability and benefit from it later [8].

In addition to bluffing to maximize prediction market payoff, an agent may also change

her behavior outside of the prediction market to maximize her reward within the market

as well as outside of the market. For example, employees might have incentives to “slack

off” when working on a project just because their prediction market position is favorable
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to the project being delayed and would somehow benefit more in the prediction market

by working less hard in the workplace. Society is also worried that terrorists might have

a higher incentive to actually conduct attacks if they trade in a relevant prediction mar-

ket [16]. In reality, terrorist markets were shut down by congress in the United States of

America over these concerns. There are additional canonical real-world examples showing

that having agents trade in a prediction market distorts the same agents’ incentives within

and outside of the prediction market [6]. In fact, there is no ex post way to determine

how the presence of a prediction market changes agents’ probability estimates, without

considering the equilibrium strategies of agents within prediction markets. In this study,

we use equilibrium analysis to see if prediction market may indeed cause deviant agent

behavior when the actions of agents external to the market are costly.

In conducting equilibrium analysis with the presence of external incentives in prediction

markets, we find that when external actions have asymmetric costs, one costs more or

less than another, then these asymmetries may actually lead agents to behave truthfully.

Specifically, we determine the equilibrium strategies for two agents in a 2-round setting

where the agents trade in a prediction market with a final value contingent on an event

that the same two agents have a direct impact on the likelihood of the traded event. We

prove that the final equilibrium strategy shows that participants will always take desirable

actions/undesirable actions related to the project (work hard/loaf) and be truthful when

reporting in the prediction market, as they would have had the prediction market not

existed.

In the remainder of this document we introduce related work in Chapter 2 and define

our general model in Chapter 3. We next show that when the cost of exerting high effort is

positive, agents do not work hard, but are truthful in the prediction market in Section 4.2;

similarly we show that when the cost of exerting high effort is negative, agents work hard

and are sill truthful in the prediction market in Section 4.3. However, we show in Section 4.4

that when there is no cost for efforts, there is possibility that agents do not always work

hard and they do not report truthfully in the prediction market. In Chapter 5 we conclude

and discuss future research directions.
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Chapter 2

Literature Review

There has been a lot of research on prediction market with scoring rules that do not con-

sider outside incentives. [4] defines the quadratic scoring rule that assumes agents cannot

influence the outcome of the predicted event. [3] compares three commonly used strictly

proper scoring rules: quadratic, spherical and logarithmic scoring rules. [18] demonstrate

that different strictly proper scoring rules yield considerably different rankings of forecast-

ers based on their scoring rule scores. We, on the other hand, assume agents interact

in a market scoring rule market proposed by [14], derived from the difference of sequen-

tial scoring rules. Hanson’s market scoring rule (MSR) incentivizes risk-neutral, myopic

agents to truthfully reveal their probabilistic estimates by ensuring that truthful report-

ing/betting maximizes their expected payoffs (is incentive compatible). [10] implies that

market making can serve as an effective trading strategy for individual agents who do not

possess superior information but are willing to learn from prices. Unlike the work of [10],

we consider MSR prediction markets in which forward-looking agents may take costly ex-

ternal actions external of the market to influence the likelihood of the traded event. The

agents in our setting, are informed and do not simply learn from the traded prices.

It is generally assumed that the agents who participate in the market by trading may

have superior information about the relevant event, but no direct control over the outcome

as noted by [7]. However, prediction markets are often used in situations where this

assumption is violated to a greater or lesser degree, and we also assume agents may influence
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the outcome of the traded event and therefore have outside incentives similar to [6, 12, 15,

22]. [22] indicate a potential downside of prediction markets is that they may incentivize

agents to take undesirable actions, and prove that there exist principle-aligned prediction

mechanisms that do not incentivize undesirable actions with an ‘overpayment result’. In

particular, unlike our work, [22] does not use a market scoring rule mechanism, instead

uses sequential scoring rules, and has linear subsidy (in the number of agents). [6] give

a two-round example to understand when markets may be prone to manipulation due to

different outside incentives and how much to trust the resulting prediction probabilities.

However, [6] does not consider costly actions as our work do. [15] assumes profit-indifferent

manipulators and proposes a modification to market scoring rules in the form of trade

limits, in order to reduce the extent of manipulation of prediction markets due to external

incentives. However, the limitation of trade amounts may also interfere with enabling

agents’ true beliefs, a limitation we do not have in our work as we do not bound agents’

budgets. [9] employ a two-player market scoring rule setting where a manipulator with

outside incentives trade first, followed by a truthful trader. We also have the two-player

market setting but the two agents in our model are both strategic traders with outside

incentives. Unlike the papers cited in this paragraph, we show that when non-myopic

agents’ expected payoffs not only consist of payoffs from the prediction market, but also

include the costs of their related actions which decide the outcome of the market, the

quadratic scoring rule used as the market reward mechanism incentivize agents to report

truthfully in the prediction market and take actions as if the prediction market were not

present.
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Chapter 3

Model Description

In this section, we propose and describe our setting formally. In a company C, two em-

ployees are assigned to complete a time-limited project E together, and we call them Alice

and Bob. We consider each week as a round from the beginning of this project and the

scheduled time for conducting this project is T weeks. Because we are considering our

model in a multi-round setting, the number of rounds should be equal or larger than 2. In

every round, Alice and Bob will separately decide whether to give high, later denoted as

1, or low, later denoted as 0, effort to project E during this week. After T rounds, Alice

and Bob’s total efforts will determine the likelihood of the project’s success (e.g., meet its

scheduled delivery date). The project E has binary outcome as E occurs or E does not

occur. If the project succeeds by the end of T rounds, we say E occurs; if the project fails

by the end of T rounds, we say E does not occur. Also at the end of every round, every

high effort will bring some payoff scores (negative scores are equivalent to net costs of high

efforts and positive scores are equivalent to net rewards) that is a function of the effort in

that round to the player who exerted this effort, but low efforts will not bring any payoff

scores to the players. 1

1Payoff scores need not be linear in effort and the constant α is used to convert the functional form of

effort to payoff scores, in order to be compared with scores earned in the prediction market. When payoff

score is negative, high efforts bring net costs to agents; when payoff score is positive, high efforts bring net

rewards to agents. The total scores earned from exerting efforts and reporting in the prediction market

could be converted to some financial costs or rewards that will be given to the agents.
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At the same time, in a prediction market, Alice and Bob also trade in security F

whose ultimate value is contingent on the outcome of E. We assume that the prediction

market is a market scoring rule market. If there is no related prediction market in C, then

employees will be inspired to devote high efforts to E in order to gain maximal expected

payoffs. However, when a prediction market contingent on E exists, the employer may

worry that employees will change their effort levels in order to benefit more through the

rewards procured in the prediction market.

For every round i (i = 1, ..., T ), Alice and Bob devote efforts e
(i)
A and e

(i)
B to project E

and report prediction probabilities as r
(i)
A and r

(i)
B in the prediction market, respectively.

When E happens, a report of r
(i)
A earns Alice a net score ρ

(i)
s (r

(i)
A ) = s(E, r

(i)
A )−s(E, r(i−1)

B ),

where s is some scoring rule; when E does not happen, the report earns Alice a net score

ρ
(i)
f (r

(i)
A ) = s(E, r

(i)
A )− s(E, r(i−1)

B ) instead (ρ
(i)
s (r

(i)
B ) and ρ

(i)
f (r

(i)
B ) are similarly defined).

In the previous sentence, r
(i)
A = 1 − r

(i)
A , in the remainder of this document we will

analogously define w = 1 − w for any variable w. In addition, s(·) is said to be a proper

scoring rule if for a risk-neutral agent with belief p and report r on an event, then:

d

dr
[p · s(r) + p · s(r)] = 0|r=p, (3.1)

and
d2

dr2
[p · s(r) + p · s(r)] ≤ 0. (3.2)

When an agent’s score maximizing report is equal to her true belief, a proper scoring

rule, and in turn a market scoring rule, is said to incentive compatible. Here we have the

assumption that Alice (Bob) would assume the other player to be myopic when she (he) sees

his (her) previous prediction in the market and we use νA (0 < νA < 1) to describe Alice’s

impact on likelihood of success of project E. We denote h
(i)
A (h

(i)
B ) as the accumulated

number of high efforts that have been taken by Alice (Bob) by the end of round i. p
(i)
A (p

(i)
B )

is the belief on the likelihood of E’s final occurring held by Alice (Bob) in round i before she

(he) takes any actions in this round. π
(i)
A (π

(i)
B ) is the payoff score earned from the current

round i to the final round T by agent Alice (Bob) from exerting efforts to E and also from

making reports in the prediction market. I
(i)
A (I

(i)
B ) is the system stage that Alice (Bob)

has in round i after she (he) observes the most recent prediction probability and before
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she (he) takes any actions in that round. E[π
(i)
A (I

(i)
A , a

(i)
A )] (E[π

(i)
B (I

(i)
B , a

(i)
B )]) is the expected

payoff score given the current system state I
(i)
A (I

(i)
B ) and the action set a

(i)
A (a

(i)
B ) that

agent would take in round i, while E[π
(i)∗
A (I

(i)
A , a

(i)
A )] (E[π

(i)∗
B (I

(i)
B , a

(i)
B )]) is the corresponding

maximal expected payoff score for a given stage I
(i)
A (I

(i)
B ). a

(i)∗
A = (e

(i)∗
A , r

(i)∗
A ) (a

(i)∗
B =

(e
(i)∗
B , r

(i)∗
B )) is the optimal action set Alice (Bob) would take in round i in order to get

E[π
(i)∗
A (I

(i)
A , a

(i)
A )] (E[π

(i)∗
B (I

(i)
B , a

(i)
B )]). Figure 3.1 shows the dynamics of our model. We

assume that in each round Alice first determines her effort level, e
(i)
A , then she makes a

report in the prediction market, r
(i)
A ; next, Bob determines the effort level he exerts in this

round, e
(i)
B , and finally the round concludes by Bob reporting in the prediction market, r

(i)
B .

However, for a certain round, one agent decides her (his) effort level and reported belief of

this round at the same time, though the actions exerted to the project and exerted in the

prediction market are conducted sequentially. Alice’s and Bob’s reports in the prediction

market are always common knowledge to both agents in all cases. Effort levels, however,

are not common knowledge.

round

actionse
(1)
A r

(1)
A e

(1)
B

1

r
(1)
B e

(T )
A r

(T )
A e

(T )
B

T

r
(T )
B

Figure 3.1: Model dynamics timeline

Given that in each round two risk-neutral forward-looking agents are maximizing their

expected profits from the current round to the end of the project horizon, T , we can write

down the Bellman equation to determine the payoff for each round for each agent. Before

we write down the equations fo each round, we first define the payoffs each agent will receive

in each round. In round i, Alice (Bob) will receive ρ
(i)
e (e

(i)
A ) (ρ

(i)
e (e

(i)
B )) from devoting effort

e
(i)
A (e

(i)
B ) to the project, and receive p

(i)
A · ρ

(i)
s (r

(i)
A ) + p

(i)
A · ρ

(i)
f (r

(i)
A ) (p

(i)
A · ρ

(i)
s (r

(i)
B ) + p

(i)
B ·

ρ
(i)
f (r

(i)
B )) from reporting probability estimate r

(i)
A (r

(i)
B ) in the prediction market, with each

probability estimate bounded between 0 and 1. As previously introduced, the value of

payoff function of exerted efforts, ρ
(i)
e (e

(i)
A ) (ρ

(i)
e (e

(i)
B )), is negative when high efforts bring

net costs and positive when high efforts bring net rewards. In our model we assume that

the likelihood of E occurring is determined by the total number of high efforts of all rounds,
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weighed by agents’ impacts on determining the likelihood of E:

νA ·
T∑
n=1

e
(n)
A + (1− νA) ·

T∑
n=1

e
(n)
B

T

(3.3)

For Alice in round i before she takes any actions in this round, the number of accu-

mulated high efforts exerted by her and by the end of round i − 1 (h
(i−1)
A ) is known to

herself, but the number of accumulated high efforts exerted by Bob and by the end of

round i− 1 (h
(i−1)
B ) is not observed by her directly. However,

T∑
n=i+1

ẽ
(n)
A and

T∑
n=i

ẽ
(n)
B are all

future efforts, and e
(i)
A is the effort level decision she needs to make in this current round

i. For agent Bob before he takes any actions in round i, the situation is slightly different.

Because Alice has already taken her actions in this round, the number of accumulated high

efforts exerted by her is h
(i)
A instead. To be more specific, we can write down the definitions

of p
(i)
A and p

(i)
B as:

p
(i)
A =

νA(h
(i−1)
A + e

(i)
A +

T∑
n=i+1

ẽ
(n)
A ) + (1− νA) · (h(i−1)

B +
T∑
n=i

ẽ
(n)
B )

T
, (3.4a)

p
(i)
B =

νA(h
(i)
A +

T∑
n=i+1

ẽ
(n)
A ) + (1− νA) · (h(i−1)

B + e
(i)
B +

T∑
n=i

ẽ
(n)
B )

T
. (3.4b)

In equation (3.4a) we see the formal definition of p
(i)
A as the total efforts of Alice, past

and future, h
(i−1)
A +

T∑
n=i

ẽ
(n)
A , plus the total efforts of Bob, past and future, h

(i−1)
B +

T∑
n=i

ẽ
(n)
B ,

all weighted by νA. From Alice’s perspective, she knows her past effort levels, thus h
(i−1)
A

is known and is some natural number between 0 and i − 1. Similarly, as we will see in

our analysis, Alice may infer Bob’s effort levels from his reports in the prediction market,

and again h
(i−1)
B is known to Alice. The ẽ

(n)
A and ẽ

(n)
B effort values, for n ≥ i + 1, are not

necessarily binary, and are instead real numbers over [0, 1] to account for the fact that
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Alice’s and Bob’s equilibrium effort strategies are mixed. As effort levels are not common

knowledge, we have to define how each agent interprets the reported probability of the

other agent. One way to interpret reported probabilities is to use Bayesian updating, given

current prior beliefs. However, as the probability of E is dependent not only on market

estimates but current and future effort levels, defining the Bayesian updating policy is

quite convoluted. To simplify our analysis, we define rB(A)(i) as Bob’s estimate on the

likelihood of E up to and including round i after observing Alice’s last report. However,

when Alice makes the report in round i, Bob has not yet taken actions in this round, the

expectation of his effort value of round i perceived by Alice is denoted as EA(ẽ
(i)
B ). We

similarly define rA(B)(i) as Alice’s estimate of the likelihood of E’s occurring up to and

including round i after observing Bob’s last report. We formally define the two notations

below as:

rB(A)(i) =
νAh

(i)
A + (1− νA)(h

(i−1)
B + EA(ẽ

(i)
B ))

i
, (3.5a)

rA(B)(i) =
νAh

(i)
A + (1− νA)h

(i)
B

i
. (3.5b)

Here we assume that at the beginning of round i, Alice has no information of predicting

Bob’s effort level of this round, which implies EA(ẽ
(i)
B ) = 0.5 for any round i. Then the

notations of rB(A)(i) and rA(B)(i) can be further defined as:

rB(A)(i) =
νAh

(i)
A + (1− νA)(h

(i−1)
B + 0.5)

i
, (3.6a)

rA(B)(i) =
νAh

(i)
A + (1− νA)h

(i)
B

i
. (3.6b)

Note that rB(A)(i) = r
(i)
A and rA(B)(i) = r

(i−1)
B , as we are simply presenting how each of the

agents interprets the observed prediction market probabilities of the other agent. In (3.4a)

Alice’s number of previous high efforts, h
(i−1)
A , is known to herself; and the number of Bob’s

previous high efforts, h
(i−1)
B , could not be observed directly but could be inferred using his

last prediction probability r
(i−1)
B as h

(i−1)
B =

(i−1)·r(i−1)
B −νAh

(i−1)
A

1−νA
. For (3.4b) the unobservable

number of previous high efforts exerted by Alice could also be inferred using r
(i)
A as h

(i)
A =

i·r(i)A −(1−νA)h
(i−1)
B +0.5

νA
. By inserting h

(i−1)
B =

(i−1)·r(i−1)
B −νAh

(i−1)
A

1−νA
and h

(i)
A =

i·r(i)A −(1−νA)(h
(i−1)
B +0.5)

νA

9



into (3.4a) and (3.4b) separately, we can get a further expression of the agents’ beliefs on

the likelihood of E’s final occurring as:

p
(i)
A =

(i− 1) · r(i−1)
B + νA(e

(i)
A +

T∑
n=i+1

ẽ
(n)
A ) + (1− νA)

T∑
n=i

ẽ
(n)
B

T
, (3.7a)

p
(i)
B =

i · r(i)
A − 0.5(1− νA) + νA

T∑
n=i+1

ẽ
(n)
A + (1− νA)(e

(i)
B +

T∑
n=i+1

ẽ
(n)
B )

T
. (3.7b)

With the payoff scores collected in each round, each agent maximizes the current round’s

payoff scores plus the discounted future rounds’ payoff scores.

E[π
(i)∗
A (I

(i)
A , a

(i)
A )] = max

(e
(i)
A ,r

(i)
A )

{ δ · E[π
(i+1)∗
A ]︸ ︷︷ ︸

discounted future payoff

+ ρ(i)
e (e

(i)
A )︸ ︷︷ ︸

effort payoff

+ p
(i)
A · ρ

(i)
s (r

(i)
A ) + p

(i)
A · ρ

(i)
f (r

(i)
A )︸ ︷︷ ︸

prediction market payoff

},

E[π
(i)∗
B (I

(i)
B , a

(i)
B )] = max

(e
(i)
B ,r

(i)
B )

{δ · E[π
(i+1)∗
B ] + ρ(i)

e (e
(i)
B ) + p

(i)
B · ρ

(i)
s (r

(i)
B ) + p

(i)
B · ρ

(i)
f (r

(i)
B )}.

(3.8)

In the remainder of this document, we will determine the values of E[π
(i)∗
A (I

(1)
A , a

(1)
A )]

and E[π
(1)∗
B (I

(1)
B , a

(1)
B )] and the equilibrium strategies of both players.
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Chapter 4

Result and Analysis

This section first introduces one of the most commonly used scoring rules, the quadratic

scoring rule, that will be used in all following cases. Then we give mathematical analysis

of case 1, high efforts bring net cost to agents, and case 2, high efforts bring net reward

instead and case 3, external incentives do not exist. We assume T = 2 for all cases.

In this work, we show that with external incentives (net payoff scores are given to ex-

erted efforts), the quadratic scoring applied in the prediction market is incentive-compatible

(agents will report truthfully in the prediction market). In fact, we prove that in a 2-round

setting, agents will take desirable actions (always exert high efforts) when high efforts bring

net rewards in case 1; and agents will take undesirable actions (always exert low efforts)

when high efforts bring net costs in case 2. When external incentives exist, agents will

behave as if the prediction market were not present, which indicates that the prediction

market will not change agents’ incentives outside of the market. However, when external

incentive does not exist, we prove in case 3 that agents will have incentives to bluff (report

untruthfully) in the prediction market when they are forward-looking. This result is aligned

with the conclusion from previous work [8, 11].
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4.1 Application of the quadratic scoring rule

In this section, we use one of the most popular scoring rules, the quadratic scoring rule,

as the reward mechanism in the prediction market. As we consider extreme reports in our

results, we cannot use another, perhaps more popular, scoring rule, the logarithmic scoring

rule. Then s(E, r) introduced in Chapter 3 is defined as:

s(E, r) = 2r − r2 − r2 = −2r2 + 4r − 1

s(E, r) = 2r − r2 − r2 = −2r2 + 1
(4.1)

s(E, r) is a proper scoring rule as (3.1) and (3.2) are satisfied. We have already defined

the scores earned by reporting in the prediction market in Chapter 3 as:

ρs(r
(i)
A ) = s(E, r

(i)
A )− s(E, r(i−1)

B )

ρf (r
(i)
A ) = s(E, r

(i)
A )− s(E, r(i−1)

B )

ρs(r
(i)
B ) = s(E, r

(i)
B )− s(E, r(i)

A )

ρf (r
(i)
B ) = s(E, r

(i)
B )− s(E, r(i)

A )

(4.2)

Using s(E, r) defined in (4.1), we can further write the scores as:

ρs(r
(i)
A ) = 4r

(i)
A − 2(r

(i)
A )2 − 4r

(i−1)
B + 2(r

(i−1)
B )2

ρf (r
(i)
A ) = −2(r

(i)
A )2 + 2(r

(i−1)
B )2

ρs(r
(i)
B ) = 4r

(i)
B − 2(r

(i)
B )2 − 4r

(i)
A + 2(r

(i)
A )2

ρf (r
(i)
B ) = −2(r

(i)
B )2 + 2(r

(i)
A )2

(4.3)

4.2 Case 1: High efforts bring net costs to agents

In case 1 we assume that two agents’ efforts together decide the outcome of E and the

ultimate value of F but high efforts will bring net costs to the agents who exert them. In

this setting, we assume the payoff function of exerted efforts to be ρe(e) = −α · e2 (α > 0):

ρe(e
(i)
A ) = −α · (e(i)

A )2, (4.4a)

ρe(e
(i)
B ) = −α · (e(i)

B )2. (4.4b)
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In this section we use the definition of Alice’s (Bob’s) belief on the likelihood E’s final

occurrence in each round when maximizing her (his) expected total payoff from Chapter 3,

and apply the quadratic scoring rule introduced in section 4.1. From (4.4), (3.7) and (4.3),

we know that I
(i)
A = r

(i−1)
B and I

(i)
B = r

(i)
A when deciding the values of E[π

(i)∗
A (I

(i)
A , a

(i)
A )] and

E[π
(i)∗
B (I

(i)
B , a

(i)
B )], respectively. After inserting the payoff functions of exerted efforts (4.4),

the belief on the likelihood of E’s occurring (3.7), and the payoff functions in the prediction

market (4.3) into the maximization equations (3.8) from the first round to the final round,

we get the following maximization equations for Alice and Bob separately when T = 2:

For agent Alice:

E[π
(1)∗
A (r

(0)
B , a

(1)
A )] = max

a
(1)
A =(e

(1)
A ,r

(1)
A )

{δ · E[π
(2)∗
A (r̃

(1)
B , a

(2)
A )]− α · (e(1)

A )2 (4.5a)

+

νA(e
(1)
A + ẽ

(2)
A ) + (1− νA)

2∑
n=1

ẽ
(n)
B

2
· [4r(1)

A − 2(r
(1)
A )2 − 4r

(0)
B + 2(r

(0)
B )2]

+ (1−
νA(e

(1)
A + ẽ

(2)
A ) + (1− νA)

2∑
n=1

ẽ
(n)
B

2
) · [−2(r

(1)
A )2 + 2(r

(0)
B )2]}

= max
a
(1)
A =(e

(1)
A ,r

(1)
A )

{δ · E[π
(2)∗
A (r̃

(1)
B , a

(2)
A )]− α · (e(1)

A )2 (4.5b)

+

νA(e
(1)
A + ẽ

(2)
A ) + (1− νA)

2∑
n=1

ẽ
(n)
B

2
· [4r(1)

A − 4r
(0)
B ]

+ [−2(r
(1)
A )2 + 2(r

(0)
B )2]},

E[π
(2)∗
A (r

(1)
B , a

(2)
A )] = max

a
(2)
A =(e

(2)
A ,r

(2)
A )

{−α · (e(2)
A )2 (4.5c)

+
1 · r(1)

B + νA · e(2)
A + (1− νA) · ẽ(2)

B

2
· [4r(2)

A − 4r
(1)
B ]

+ [−2(r
(2)
A )2 + 2(r

(1)
B )2]}.
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For agent Bob:

E[π
(1)∗
B (r

(1)
A , a

(1)
B )] = max

a
(1)
B =(e

(1)
B ,r

(1)
B )

{δ · E[π
(2)∗
B (r̃

(2)
A , a

(2)
B )]− α · (e(1)

B )2 (4.6a)

+
r

(1)
A − 0.5(1− νA) + νA · ẽ(2)

A + (1− νA) · (e(1)
B + ẽ

(2)
B )

2

· [4r(1)
B − 4r

(1)
A ] + [−2(r

(1)
B )2 + 2(r

(1)
A )2]},

E[π
(2)∗
B (r

(2)
A , a

(2)
B )] = max

a
(2)
B =(e

(2)
B ,r

(2)
B )

{−α · (e(2)
B )2 (4.6b)

+
2 · r(2)

A − (1− νA) · 0.5 + (1− νA) · e(2)
B

2
· [4r(2)

B − 4r
(2)
A ]

+ [−2(r
(2)
B )2 + 2(r

(2)
A )2]}.

From the timeline we know that Alice is the first agent to make action decisions in

round 1. Although for Alice in round 1, r̃
(1)
B , ẽ

(2)
A , ẽ

(1)
B and ẽ

(2)
B are values for future actions,

which are not known to Alice now, but could be inferred by her, for agents are assumed

to be rational, forward-looking and strategic in our model. To be more specific, Alice can

play the whole game in her mind knowing that both agents want to maximize the expected

scores earned from the current round to the final round in any round, and infer what

future optimal actions will be after exerting effort e
(1)
A and making report r

(1)
A in round 1.

Following this logic, we can use backwards induction to solve this problem, i.e., determine

the values of (4.5) and (4.6).

Define f
(i)
B (f

(i)
A ) as the function of Bob’s (Alice’s) expected payoff scores earned from

the current round i and f
(i)∗
B (f

(i)∗
A ) is the corresponding optimal function value. First

consider agent Bob in round 2, there is no future score for Bob since this is the last round,

so we have f
(2)
B as:

f
(2)
B = E[π

(2)
B (r

(2)
A , a

(2)
B )] = −α · (e(2)

B )2

+
2 · r(2)

A − (1− νA) · 0.5 + (1− νA) · e(2)
B

2
· [4r(2)

B − 2(r
(2)
B )2 − 4r

(2)
A + 2(r

(2)
A )2]

+ (1− 2 · r(2)
A − (1− νA) · 0.5 + (1− νA) · e(2)

B

2
) · [−2(r

(2)
B )2 + 2(r

(2)
A )2]

(4.7)
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Lemma 1. If α > max{ (1−νA)2

2
,
ν2A
2
} and r

(2)
A 6 1

4
(1 − νA), then (e

(2)∗
B , r

(2)∗
B ) = (0, 0) and

E[π
(2)∗
B (r

(2)
A , a

(2)
B )] = −2(r

(2)
A )2 + (1− νA)r

(2)
A .

Proof. As we can see from the equation above, f
(2)
B is a function of Alice’s most recent

report (r
(2)
A ) and his actions of this round (a

(2)
B = (e

(2)
B , r

(2)
B )). To determine the optimal

action set of Bob in round 2 (a
(2)∗
B = (e

(2)∗
B , r

(2)∗
B )) and the optimal function value (f

(2)∗
B ) we

need to check the convexity of the function f
(2)
B by checking the Hessian of this function:

∇2f
(2)
B (e

(2)
B , r

(2)
B ) =


∂2f

(2)
B

∂(e
(2)
B )2

∂2f
(2)
B

∂e
(2)
B ∂r

(2)
B

∂2f
(2)
B

∂r
(2)
B ∂e

(2)
B

∂2f
(2)
B

∂(r
(2)
B )2

 =

− 2α
4(1− νA)

2
4(1− νA)

2
−4



The first principle minor of ∇2f
(2)
B (e

(2)
B , r

(2)
B ) is negative for det

[
∂2f

(2)
B

∂(e
(2)
B )2

]
= −2α < 0 .

The second principle minor is positive when:

det


∂2f

(2)
B

∂(e
(2)
B )2

∂2f
(2)
B

∂e
(2)
B ∂r

(2)
B

∂2f
(2)
B

∂r
(2)
B ∂e

(2)
B

∂2f
(2)
B

∂(r
(2)
B )2

 = 8α− 16(1− νA)2

4
> 0(α >

(1− νA)2

2
).

In fact, when α >
ν2A
2

, we can prove that f
(2)
A (which could be similarly defined as

f
(2)
B ) is also a concave function. it is reasonable to assume max{ (1−νA)2

2
,
ν2A
2
} < α 6 2 for

0 < max{1−νA
2
, νA

2
} < 1

2
. If we assume α 6 max{ (1−νA)2

2
,
ν2A
2
}, then the range of scores

earned from efforts in each round is between [0, 1
2
), while the range of scores earned from

reports in each round is between [0, 2]. Under this assumption we find f
(2)
B to be a concave

function. We take the first derivative of f
(2)
B regarding e

(2)
B and r

(2)
B respectively and let

the two derivatives equal to 0 simultaneously. If the solution pair a
(2)
B = (e

(2)
B , r

(2)
B ) is a

feasible solution, then it is the optimal solution. However, we get e
(2)
B = −(1−νA)2

2(2α−(1−νA)2)
< 0
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e
(2)
B r

(2)
B f

(2)
B

0 r
(2)
A + 1

4
(νA − 1) 1

8
(ν

(1)
A − 1)2

1 r
(2)
A + 1

4
(1− νA) −α + 1

8
(ν

(1)
A − 1)2

0 0 −2(r
(2)
A )2 + (1− νA)r

(2)
A

0 1 −2(r
(2)
A )2 + (5− νA)r

(2)
A + νA − 3

1 0 −2(r
(2)
A )2 + (νA − 1)r

(2)
A − α

1 1 −2(r
(2)
A )2 + (νA + 3)r

(2)
A − α− νA − 1

Table 4.1: KKT points of f
(2)
B in case 1

when α > (1−νA)2

2
, and it is not a feasible solution for the value of e

(2)
B is between [0, 1]. In

this situation, the way to find the maximal value f
(2)∗
B is to find its Karush–Kuhn–Tucker

(KKT) points and compare the values of f
(2)
B of these points, for f

(2)∗
B must be attained

in one of these KKT points. We write down in table 4.1 the KKT points of f
(2)
B and the

corresponding function values. However, to simplify our analysis, unfeasible KKT points

are not shown in this table. If r
(2)
A 6 1

4
(1− νA), by comparing the values of f

(2)
B of feasible

KKT points in table 4.1, we find that f
(2)∗
B is attained as f

(2)∗
B = −2(r

(2)
A )2 + (1 − νA)r

(2)
A

when (e
(2)∗
B , r

(2)∗
B ) = (0, 0). So lemma 1 is true.

As there are conditions on when Lemma 1 is applicable we use (e
(2)∗
B,1 , r

(2)∗
B,1 ) and

E[π
(2)∗
B,1 (r

(2)
A , a

(2)
B )] to denote the optimal values as determined in the lemma. Similarly for

all subsequent lemmas, say lemma i, we use (e
(k)∗
j,i , r

(k)∗
j,i ), E[π

(k)∗
j,i ], and f

(k)∗
j,i to denote

the equilibrium decisions, total expected payoff (from round k to the last round), and

round payoff, of player j, j ∈ {A,B} in round k according to the conditions of lemma i,

respectively.

Lemma 2. If α > max{ (1−νA)2

2
,
ν2A
2
} and r

(2)
A > 1

4
(1 − νA), then (e

(2)∗
B,2 , r

(2)∗
B,2 ) = (0, r

(2)
A +

1
4
(νA − 1)) and E[π

(2)∗
B,2 (r

(2)
A , a

(2)
B )] = 1

8
(ν

(1)
A − 1)2.

Proof. Similar as the proof for lemma 1, if 1
4
(1 − νA) 6 r

(2)
A , by comparing the values of

f
(2)
B of feasible KKT points in table 4.1, we find that f

(2)∗
B is attained as f

(2)∗
B,2 = 1

8
(ν

(1)
A −1)2

when (e
(2)∗
B,2 , r

(2)∗
B,2 ) = (0, r

(2)
A + 1

4
(νA − 1)). So lemma 2 is true.
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Given the two cases for Bob’s equilibrium decisions in round 2, we may now determine

Bob’s round 2 decisions:

Theorem 1. If α > max{ (1−νA)2

2
,
ν2A
2
}, then

(e
(2)∗
B , r

(2)∗
B ) =

{
(0, 0) if 0 6 r

(2)
A 6 1

4
(1− νA)

(0, r
(2)
A + 1

4
(νA − 1)) if 1

4
(1− νA) 6 r

(2)
A 6 1

f
(2)∗
B =

{
−2(r

(2)
A )2 + (1− νA)r

(2)
A if 0 6 r

(2)
A 6 1

4
(1− νA)

1
8
(ν

(1)
A − 1)2 if 1

4
(1− νA) 6 r

(2)
A 6 1

Proof. With lemma 1 and lemma 2, theorem 1 is true.

Then consider Alice’s expected payoff score in round i = 2. We know from theorem 1

that e
(2)∗
B = 0 no matter what value r

(2)
A is. After inserting ẽ

(2)
B = e

(2)∗
B = 0 into the function

of E[π
(2)
A (r

(1)
B , a

(2)
A )], we get f

(2)
A as:

f
(2)
A = E[π

(2)
A (r

(1)
B , a

(2)
A )] = −α · (e(2)

A )2

+
1 · r(1)

B + νA · e(2)
A + (1− νA) · 0
2

· [4r(2)
A − 4r

(1)
B ]

+ [−2(r
(2)
A )2 + 2(r

(1)
B )2]

Theorem 2. If α > max{ (1−νA)2

2
,
ν2A
2
}, then Alice’s optimal action set in round 2 is

(e
(2)∗
A , r

(2)∗
A ) = (0, 1

2
r

(1)
B ), and her optimal expected payoff score of round 2 is E[π

(2)∗
A (r

(1)
B , a

(2)
A )] =

1
2
(r

(1)
B )2.

Proof. To find the optimal function value f
(2)∗
A , we still need to check the Hessian of func-

tion f
(2)
A :

∇2f
(2)
A (e

(2)
A , r

(2)
A ) =


∂2f

(2)
A

∂(e
(2)
A )2

∂2f
(2)
A

∂e
(2)
A ∂r

(2)
A

∂2f
(2)
A

∂r
(2)
A ∂e

(2)
A

∂2f
(2)
A

∂(r
(2)
A )2

 =

[
− 2α 2νA

2νA −4

]
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e
(2)
A r

(2)
A f

(2)
A

0 1
2
r

(1)
B

1
2
(r

(1)
B )2

1 1
2
(r

(1)
B + νA) −α + 1

2
(r

(1)
B )2

νA(1−r(1)B )

α
1 2(r

(1)
B − 1) +

ν2A(r
(1)
B −1)2

α

0 0 0

0 1 2(r
(1)
B − 1)

1 0 −2νAr
(1)
B − α

1 1 2(1− νA)(r
(1)
B − 1)− α

Table 4.2: KKT points of f
(2)
A in case 1

We find that f
(2)
A is a concave function because the value of the first principle minor

of ∇2f
(2)
A is negative as −2α < 0, and the value of the second principle minor of ∇2f

(2)
A

is positive as when α >
ν2A
2

. We take the first derivative of f
(2)
A regarding e

(2)
A and r

(2)
A

respectively and let the two derivative equations equal to 0 simultaneously, then we get

e
(2)
A =

−νAr
(1)
B

2α−ν2A
. However, it is not a feasible solution when r

(1)
B 6= 0, so we still need to discuss

the KKT points of f
(2)
A in order to get a

(2)∗
A and f

(2)∗
A . We denote in table 4.2 the KKT

points of f
(2)
B and the corresponding function values. However, to simplify our analysis,

unfeasible KKT points are not shown in this table.

By comparing the values of f
(2)
A in table 4.2, we find that f

(2)
A is maximized as f

(2)∗
A =

1
2
(r

(1)
B )2 when (e

(2)∗
A , r

(2)∗
A ) = (0, 1

2
r

(1)
B ), regardless of the value of r

(1)
B . So theorem 2 is

true.

Consider Bob in round 1. From theorem 1 and theorem 2 we have e
(2)∗
A = e

(2)∗
B = 0.
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Knowing ẽ
(2)
A = ẽ

(2)
B = 0, we get the expression of f

(1)
B as:

f
(1)
B = −α · (e(1)

B )2

+
r

(1)
A − 0.5(1− νA) + νA · 0 + (1− νA) · (e(1)

B + 0)

2
· [4r(1)

B − 4r
(1)
A ]

+ [−2(r
(1)
B )2 + 2(r

(1)
A )2]

(4.8)

Lemma 3. If α > max{ (1−νA)2

2
,
ν2A
2
} , then

(e
(2)∗
B , r

(2)∗
B ) =

{
(0, 0) if 0 6 r

(1)
B 6 1

2
(1− νA)

(0, r
(2)
A + 1

4
(νA − 1)) if 1

2
(1− νA) 6 r

(1)
B 6 1

f
(2)∗
B =

{
−2(r

(2)
A )2 + (1− νA)r

(2)
A if 0 6 r

(1)
B 6 1

2
(1− νA)

1
8
(ν

(1)
A − 1)2 if 1

2
(1− νA) 6 r

(1)
B 6 1

Proof. According to theorem 2, we know that r
(2)∗
A = 1

2
r

(1)
B . Together with the statement

of theorem 1, we infer lemma 3.

We now move to Bob’s optimal actions in the first round. We find that Bob will exert

low effort and report as 0 in round 1 no matter what report Alice makes in round 1.

Theorem 3. If α > max{ (1−νA)2

2
,
ν2A
2
} and 0 < νA <

1
3
, then Bob’s optimal action set in

round 1 is (e
(1)∗
B , r

(1)∗
B ) = (0, 0), and his expected total payoff score from this round to the

final round is E[π
(1)∗
B (r

(1)
A , a

(1)
B )] = r

(1)
A (1− νA).

Proof. According to the definitions of E[π
(1)
B (r

(1)
A , a

(1)
B )], f

(1)
B and f

(2)∗
B , we know that

E[π
(1)
B (r

(1)
A , a

(1)
B )] = f

(1)
B +δ·f (2)∗

B , and f
(2)∗
B is a fixed value for a given r

(2)∗
A . From lemma 3 we

know that if r
(1)
B 6 1

2
(1−νA), then (e

(2)∗
B , r

(2)∗
B ) = (0, 0) and f

(2)∗
B,1 = −1

2
(r

(1)
B )2+ 1

2
(1−νA)r

(1)
B ;

if r
(1)
B > 1

2
(1− νA), then (e

(2)∗
B , r

(2)∗
B ) = (0, r

(2)
A + 1

4
(νA − 1)) and f

(2)∗
B,2 = 1

8
(ν

(1)
A − 1)2.

We first discuss the situation where f
(2)∗
B,1 is a function of r

(1)
B as f

(2)∗
B,1 = −1

2
(r

(1)
B )2 + 1

2
(1−

νA)r
(1)
B when r

(1)
B 6 1

2
(1−νA). Under this condition, f

(1)
B +δ ·f (2)∗

B,1 is also a concave function

if α > max{ (1−νA)2

2
,
ν2A
2
}. Compare the KKT points of f

(1)
B +δ ·f (2)∗

B,1 , we get f
(1)
B +δ ·f (2)∗

B will

be maximized as r
(1)
A (1 − νA) when (e

(1)
B , r

(1)
B ) = (0, 0). We secondly discuss the situation
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e
(1)
B r

(1)
B f

(1)
B + δ · f (2)∗

B,2

0 1
2
r

(1)
A + 1

4
(νA − 1) 1

2
r

(1)
A (r

(1)
A + 1− νA) + 1

8
(1 + δ)(ν

(1)
A − 1)2

1 1
2
r

(2)
A + 1

4
(1− νA) −α + 1

2
r

(1)
A (r

(1)
A − 1 + νA) + 1

8
(1 + δ)(ν

(1)
A − 1)2

0 1 (r
(1)
A − 1)(3− νA) + 1

8
δ(ν

(1)
A − 1)2

1 1 (r
(1)
A − 1)(νA + 1)− α + 1

8
δ(ν

(1)
A − 1)2

Table 4.3: KKT points of f
(1)
B + δ · f (2)∗

B,2 in case 1 when 1
2
(1− νA) 6 r

(1)
B 6 1

where f
(2)∗
B,2 is a constant as f

(2)∗
B,2 = 1

8
(ν

(1)
A − 1)2 when 1

2
(1 − νA) 6 r

(1)
B 6 1. Under this

condition, f
(1)
B + δ · f (2)∗

B,2 is also a concave function if α > max{ (1−νA)2

2
,
ν2A
2
}. Similarly we

denote the KKT points of f
(1)
B +δ ·f (2)∗

B,2 in table 4.3. We conclude from table 4.3 that when

r
(1)
A > 3

2
(1−νA), f

(1)
B + δ ·f (2)∗

B will be maximized as 1
2
r

(1)
A (r

(1)
A +1−νA)+ 1

8
(1+ δ)(ν

(1)
A −1)2

when (e
(1)
B , r

(1)
B ) = (0, 1

2
r

(1)
A + 1

4
(νA − 1)), which is larger than r

(1)
A (1 − νA); however, when

0 < νA < 1
3

, this situation does not exist for r
(1)
A 6 1. When r

(1)
A < 3

2
(1 − νA), the rest

three points’ values are all less than r
(1)
A (1− νA).

In conclusion, the optimal value of E[π
(1)
B (r

(1)
A , a

(1)
B )] is achieved as E[π

(1)∗
B (r

(1)
A , a

(1)
B )] =

r
(1)
A (1− νA) when (e

(1)∗
B , r

(1)∗
B ) = (0, 0). So theorem 3 is true.

At last, consider Alice in round 1. We have already proved in theorem 1, theorem 2

and theorem 3 that e
(1)∗
B = e

(2)∗
A = e

(2)∗
B = r

(1)∗
B = 0 and f

(2)∗
A = 1

2
(r

(1)
B )2 = 0 no matter

what effort Alice exerts and no matter what report she makes in round 1. In this situation

f
(2)∗
A = 0 is a constant and we get the expression of f

(1)
A + δf

(2)∗
A as:

f
(1)
A + f

(2)∗
A = δ · 0− α · (e(1)

A )2

+
νA(e

(1)
A + 0) + (1− νA) · (0 + 0)

2
· [4r(1)

A − 4r
(0)
B ]

+ [−2(r
(1)
A )2 + 2(r

(0)
B )2]

(4.9)

We now move to Alice’s optimal actions in the first round. We find that Alice will exert

low effort and report as 0 in round 1 no matter what initial market estimate is.

Theorem 4. If α > max{ (1−νA)2

2
,
ν2A
2
}, then Alice’s optimal action set in round 1 is

(e
(1)∗
A , r

(1)∗
A ) = (0, 0), and her expected total payoff score from this round to the final round

is E[π
(1)∗
A (r

(0)
B , a

(1)
A )] = 2(r

(0)
B )2.
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e
(1)
A r

(1)
A f

(1)
A + δ · f (2)∗

A

0 0 2(r
(0)
B )2

1 1
2
νA −α + 1

2
ν2
A − 2νAr

(0)
B + 2(r

(0)
B )2

νA(1−r(0)B

α
1 −2 +

ν2A(r
(0)
B −1)2

α
+ 2(r

(0)
B )2

1 0 −α− 2νAr
(0)
B + 2(r

(0)
B )2

1 1 −α− 2νAr
(0)
B + 2(r

(0)
B )2 + 2(νA − 1)

Table 4.4: KKT points of f
(1)
A + δ · f (2)∗

A in case 1

Proof. We write down the KKT points of the concave function f
(1)
A + δ · f (2)∗

A in table 4.4.

By comparing the function values of the KKT points in table 4.4, we immediately conclude

that the optimal value of f
(1)
A + δ · f (2)∗

A is achieved as 2(r
(0)
B )2 when (e

(1)∗
A , r

(1)∗
A ) = (0, 0).

So theorem 4 is true.

From theorem 4, theorem 3, theorem 2, and theorem 1, we infer the set of equilibrium

strategies for both agents of 2 rounds in table 4.5:

Round, i Player, j Optimal action, a
(i)∗
j = (e

(i)∗
j , r

(i)∗
j )

1 A a
(1)∗
A = (0, 0)

1 B a
(1)∗
B = (0, 0)

2 A a
(2)∗
A = (0, 0)

2 B a
(2)∗
B = (0, 0)

Table 4.5: Equilibrium strategies in case 1

And we have table 4.6 of equilibrium payoffs in case 1:

We can immediately conclude that if α > max{ (1−νA)2

2
,
ν2A
2
} and 0 < νA <

1
3
, then not

only will all of the agents’ reports be 0, but so will all of their effort values. This suggests

that even when agents are strategic and external incentives exist, the proposed market

scoring rule is incentive compatible regardless of the initial market estimate, so long as we
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Round, i Player, j Optimal expected payoff, E[π
(i)∗
j ()]

1 A E[π
(1)∗
A (r

(0)
B , a

(1)
A ] = 2(r

(0)
B )2

1 B E[π
(1)∗
B (r

(1)∗
A = 0, a

(1)
B )] = 0

2 A E[π
(2)∗
A (r

(1)∗
B = 0, a

(2)
A )] = 0

2 B E[π
(2)∗
B (r

(2)∗
A = 0, a

(2)
B )] = 0

Table 4.6: Equilibrium payoffs in case 1

set a proper range for α and νA. In the next section we derive the symmetric result when

the cost of high effort is negative.

4.3 Case 2: High efforts bring net rewards to agents

In case 2 we assume that two agents’ efforts together decide the outcome of E and the

ultimate value of F but high efforts will bring negative net costs (equivalent to positive net

rewards) to the agents who exert them. We further assume the payoff function of exerted

effort to be ρe(e) = α · e2(α > 0):

ρe(e
(i)
A ) = α · (e(i)

A )2, (4.10a)

ρe(e
(i)
B ) = α · (e(i)

B )2. (4.10b)

In order to compare case 2 with case 1, we set the same range for α as α > max{ (1−νA)2

2
,
ν2A
2
}.

In this section we set Alice’s impact on deciding the likelihood of E as νA ∈ (0, 1) and

have the same definition of Alice’s (Bob’s) belief on the likelihood of E’s final occurring

held in each round as that of case 1. Here we continue using the quadratic scoring rule

in the prediction market. In case 2 we still have I
(i)
A = r

(i−1)
B and I

(i)
B = r

(i)
A as in case 1.

After inserting the reward functions of exerted efforts (4.10), the belief on the likelihood

of E’s occurring (3.7) perceived by agents, and the reward functions in the prediction

market (4.3) into the maximization equations (3.8) for Alice and Bob separately, we get

the following maximization equations when T = 2:
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For agent Alice:

E[π
(1)∗
A (r

(0)
B , a

(1)
A )] = max

a
(1)
A =(e

(1)
A ,r

(1)
A )

{δ · E[π
(2)∗
A (r̃

(1)
B , a

(2)
A )] + α · (e(1)

A )2 (4.11a)

+

νA(e
(1)
A + ẽ

(2)
A ) + (1− νA)

2∑
n=1

ẽ
(n)
B

2
· [4r(1)

A − 4r
(0)
B ]

+ [−2(r
(1)
A )2 + 2(r

(0)
B )2]},

E[π
(2)∗
A (r

(1)
B , a

(2)
A )] = max

a
(2)
A =(e

(2)
A ,r

(2)
A )

{α · (e(2)
A )2 (4.11b)

+
1 · r(1)

B + νA · e(2)
A + (1− νA) · ẽ(2)

B

2
· [4r(2)

A − 4r
(1)
B ]

+ [−2(r
(2)
A )2 + 2(r

(1)
B )2]}.

For agent Bob:

E[π
(1)∗
B (r

(1)
A , a

(1)
B )] = max

a
(1)
B =(e

(1)
B ,r

(1)
B )

{δ · E[π
(2)∗
B (r̃

(2)
A , a

(2)
B )] + α · (e(1)

B )2 (4.12a)

+
r

(1)
A − 0.5(1− νA) + νA · ẽ(2)

A + (1− νA) · (e(1)
B + ẽ

(2)
B )

2

· [4r(1)
B − 4r

(1)
A ] + [−2(r

(1)
B )2 + 2(r

(1)
A )2]},

E[π
(2)∗
B (r

(2)
A , a

(2)
B )] = max

a
(2)
B =(e

(2)
B ,r

(2)
B )

{α · (e(2)
B )2 +

2 · r(2)
A − (1− νA) · 0.5 + (1− νA) · e(2)

B

2

(4.12b)

· [4r(2)
B − 4r

(2)
A ] + [−2(r

(2)
B )2 + 2(r

(2)
A )2]}.

When i = 2, there are no future rounds. Consider Bob’s function of expected payoff
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scores in round 2 as f
(2)
B :

f
(2)
B = E[π

(2)
B (r

(2)
A , a

(2)
B )] = α · (e(2)

B )2

+
2 · r(2)

A − (1− νA) · 0.5 + (1− νA) · e(2)
B

2
· [4r(2)

B − 4r
(2)
A ]

+ [−2(r
(2)
B )2 + 2(r

(2)
A )2]

(4.13)

Lemma 4. If α > max{ (1−νA)2

2
,
ν2A
2
} and r

(2)
A 6 3+νA

4
, then (e

(2)∗
B,4 , r

(2)∗
B,4 ) = (1, r

(2)
A + 1

4
(1−νA))

and E[π
(2)∗
B,4 (r

(2)
A , a

(2)
B )] = α + 1

8
(ν

(1)
A − 1)2.

Proof. Because Bob is the last agent to take actions in round 2, there are no future action

values that need to be inserted into the equation of f
(2)
B . To determine the optimal value of

f
(2)
B and the optimal action set a

(2)
B for a given report r

(2)
A , we need to check the convexity

of the function f
(2)
B by checking the Hessian of this function:

∇2f
(2)
B (e

(2)
B , r

(2)
B ) =


∂2f

(2)
B

∂(e
(2)
B )2

∂2f
(2)
B

∂e
(2)
B ∂r

(2)
B

∂2f
(2)
B

∂r
(2)
B ∂e

(2)
B

∂2f
(2)
B

∂(r
(2)
B )2

 =

[
2α 2(1− νA)

2(1− νA) −4

]

The first principle minor of ∇2f
(2)
B (e

(2)
B , r

(2)
B ) is positive for det

[
∂2f

(2)
B

∂(e
(2)
B )2

]
= 2α > 0 . the

second principle minor is negative because:

det


∂2f

(2)
B

∂(e
(2)
B )2

∂2f
(2)
B

∂e
(2)
B ∂r

(2)
B

∂2f
(2)
B

∂r
(2)
B ∂e

(2)
B

∂2f
(2)
B

∂(r
(2)
B )2

 = −8α− 4(1− νA)2 < 0.

We find that the Hessian of f
(2)
B is an indefinite matrix so we still need to find its

KKT points and compare the corresponding values of f
(2)
B , for f

(2)∗
B must be attained in
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e
(2)
B r

(2)
B f

(2)
B

0 r
(2)
A + 1

4
(νA − 1) 1

8
(ν

(1)
A − 1)2

1 r
(2)
A + 1

4
(1− νA) α + 1

8
(ν

(1)
A − 1)2

r
(2)
A (1−νA)

α
0 −2(r

(2)
A )2 + r

(2)
A (1− νA)− (r

(2)
A )2(1−νA)2

α

0 0 −2(r
(2)
A )2 + (1− νA)r

(2)
A

0 1 −2(r
(2)
A )2 + (5− νA)r

(2)
A + νA − 3

1 0 −2(r
(2)
A )2 + (νA − 1)r

(2)
A + α

1 1 −2(r
(2)
A )2 + (νA + 3)r

(2)
A + α− νA − 1

Table 4.7: KKT points of f
(2)
B in case 2

one of these KKT points. We write down in table 4.7 the KKT points of f
(2)
B and the

corresponding function values. However, to simplify our analysis, unfeasible KKT points

are not shown in this table. We find that if r
(2)
A 6 3+νA

4
, f

(2)∗
B is attained as α+ 1

8
(ν

(1)
A − 1)2

when (e
(2)
B , r

(2)
B ) = (1, r

(2)
A + 1

4
(1− νA)). So lemma 4 is true.

Lemma 5. If α > max{ (1−νA)2

2
,
ν2A
2
} and r

(2)
A > 3+νA

4
, then (e

(2)∗
B,5 , r

(2)∗
B,5 ) = (1, 1) and

E[π
(2)∗
B,5 (r

(2)
A , a

(2)
B )] = −2(r

(2)
A )2 + (νA + 3)r

(2)
A + α− νA − 1.

Proof. Similar as the proof for lemma 4, if r
(2)
A > 3+νA

4
, by comparing the values of f

(2)
B of

feasible KKT points in table 4.6, we find that f
(2)∗
B is attained as f

(2)∗
B,5 = −2(r

(2)
A )2 + (νA +

3)r
(2)
A + α− νA − 1 when (e

(2)∗
B,5 , r

(2)∗
B,5 ) = (1, 1). So lemma 5 is true.

Given the two cases for Bob’s equilibrium decisions in round 2, we may now determine

Bob’s round 2 decisions:

Theorem 5. If α > max{ (1−νA)2

2
,
ν2A
2
}, then

(e
(2)∗
B , r

(2)∗
B ) =

{
(1, r

(2)
A + 1

4
(1− νA)) if 0 6 r

(2)
A 6 3+νA

4

(1, 1) if 3+νA
4

6 r
(2)
A 6 1

f
(2)∗
B =

{
α + 1

8
(ν

(1)
A − 1)2 if 0 6 r

(2)
A 6 3+νA

4

−2(r
(2)
A )2 + (νA + 3)r

(2)
A + α− νA − 1 if 3+νA

4
6 r

(2)
A 6 1
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Proof. With lemma 4 and lemma 5, theorem 5 is true.

Then consider Alice in round i = 2 when the only future effort is ẽ
(2)
B . We know from

theorem 5 that ẽ
(2)
B = e

(2)∗
B = 1. After inserting ẽ

(2)
B = 1 into E[π

(2)
A (r

(1)
B , a

(2)
A )] we get:

f
(2)
A = E[π

(2)
A (r

(1)
B , a

(2)
A )] = α · (e(2)

A )2

+
(2− 1) · r(1)

B + νA · e(2)
A + (1− νA) · 1

2
· [4r(2)

A − 4r
(1)
B ]

+ [−2(r
(2)
A )2 + 2(r

(1)
B )2]

(4.14)

We now move to Alice’s optimal actions in round 2. We find that Alice will exert high

effort and report as 1 in round 2 no matter what Bob reports in round 1.

Theorem 6. If α > max{ (1−νA)2

2
,
ν2A
2
}, Alice’s optimal action set in round 2 is (e

(2)∗
A , r

(2)∗
A ) =

(1, 1
2
(r

(1)
B + 1)), and the optimal expected payoff score of round 2 is E[π

(2)∗
A (r

(1)
B , a

(2)
A )] =

α + 1
2
(r

(1)
B )2 + 1

2
− r(1)

B .

Proof. To find the value of f
(2)∗
A , we need to check the Hessian of function f

(2)
A :

∇2f
(2)
A (e

(2)
A , r

(2)
A ) =


∂2f

(2)
A

∂(e
(2)
A )2

∂2f
(2)
A

∂e
(2)
A ∂r

(2)
A

∂2f
(2)
A

∂r
(2)
A ∂e

(2)
A

∂2f
(2)
A

∂(r
(2)
A )2

 =

2α
4νA
2

4νA
2

−4



We find that the Hessian of f
(2)
A is also an indefinite matrix because the value of its

first principle minor is positive as 2α > 0, and the value of its second principle minor is

negative as −8α− 4(νA)2 < 0. We write down in table 4.8 the KKT points of f
(2)
A and the

corresponding function values. We find that f
(2)
A is maximized as f

(2)∗
A = α+1

2
(r

(1)
B )2+1

2
−r(1)

B

when (e
(2)
A , r

(2)
A ) = (1, 1

2
(r

(1)
B + 1)). So theorem 6 is true.
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e
(2)
A r

(2)
A f

(2)
A

0 1
2
r

(1)
B + 1

2
(1− νA) 1

2
(r

(1)
B )2 + 1

2
(νA − 1)2 + r

(1)
B (νA − 1)

1 1
2
(r

(1)
B + 1) α + 1

2
(r

(1)
B )2 + 1

2
− r(1)

B

νAr
(1)
B

α
0 2r

(1)
B (νA − 1)− (νAr

(1)
B )2

α

0 0 2r
(1)
B (νA − 1)

0 1 2νA(r
(1)
B − 1)

1 0 −2r
(1)
B + α

1 1 α

Table 4.8: KKT points of f
(2)
A in case 2

Consider Bob in round 1. From theorem 5 and theorem 6 we know that e
(2)∗
A = e

(2)∗
B = 1.

Knowing ẽ
(2)
A = ẽ

(2)
B = 1, we get the expression of f

(1)
B as:

f
(1)
B = α · (e(1)

B )2

+
r

(1)
A − 0.5(1− νA) + νA · 1 + (1− νA) · (e(1)

B + 1)

2
· [4r(1)

B − 4r
(1)
A ]

+ [−2(r
(1)
B )2 + 2(r

(1)
A )2]

(4.15)

Lemma 6. If α > max{ (1−νA)2

2
,
ν2A
2
}, then

(e
(2)∗
B , r

(2)∗
B ) =

{
(1, r

(2)
A + 1

4
(1− νA)) if 0 6 r

(1)
B 6 1

2
(1 + νA)

(1, 1) if 1
2
(1 + νA) 6 r

(1)
B 6 1

f
(2)∗
B =

{
α + 1

8
(ν

(1)
A − 1)2 if 0 6 r

(1)
B 6 1

2
(1 + νA)

−1
2
(r

(1)
B )2 + 1

2
r

(1)
B + 1

2
r

(1)
B νA − 1

2
νA + α if 1

2
(1 + νA) 6 r

(1)
B 6 1

Proof. According to theorem 6, we know that r
(2)∗
A = 1

2
(r

(1)
B + 1). Together with the

statement of theorem 5, we infer lemma 6.

Lemma 7. If α > max{ (1−νA)2

2
,
ν2A
2
} and r

(1)
A 6 νA+1

2
, then (e

(1)∗
B,7 , r

(1)∗
B,7 ) = (1, 1

2
r

(1)
A + 1

4
(3−

νA)) and E[π
(1)∗
B,7 (r

(1)
A , a

(1)
B )] = 1

2
r

(1)
A (r

(1)
A −3 +νA) +α+ 1

8
ν

(2)
A − 3

4
νA + 9

8
+ δ(α+ 1

8
(ν

(1)
A −1)2).
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e
(1)
B r

(1)
B f

(1)
B + δ · f (2)∗

B,4

0 1
2
r

(1)
A + 1

4
(νA + 1) 1

2
r

(1)
A (r

(1)
A − 1− νA) + 1

8
(ν

(1)
A + 1)2 + δ(α + 1

8
(ν

(1)
A − 1)2)

1 1
2
r

(2)
1 + 1

4
(3− νA) 1

2
r

(1)
A (r

(1)
A − 3 + νA) + α + 1

8
ν

(2)
A − 3

4
νA + 9

8
+ δ(α + 1

8
(ν

(1)
A − 1)2)

r
(1)
A (1−νA)

α
0 −r(1)

A (1 + νA)− (r
(1)
A )2(νA−1)2

α
+ δ(α + 1

8
(ν

(1)
A − 1)2)

0 0 −r(1)
A (νA + 1) + δ(α + 1

8
(ν

(1)
A − 1)2)

1 0 r
(1)
A (νA − 3) + α + δ(α + 1

8
(ν

(1)
A − 1)2)

Table 4.9: KKT points of f
(1)
B + δ · f (2)∗

B,4 in case 2 when r
(1)
B 6 1

2
(1 + νA)

Proof. From lemma 6 we know that f
(2)∗
B is attained as f

(2)∗
B,4 = α + 1

8
(ν

(1)
A − 1)2 when

r
(1)
B 6 1

2
(1 + νA); and attained as f

(2)∗
B,5 = −1

2
(r

(1)
B )2 + 1

2
r

(1)
B + 1

2
r

(1)
B νA − 1

2
νA + α when

r
(1)
B > 1

2
(1 + νA).

We first discuss the situation where f
(2)∗
B is a constant as f

(2)∗
B,4 = α+ 1

8
(ν

(1)
A − 1)2 when

r
(1)
B 6 1

2
(1 + νA). Similarly we denote the KKT points of f

(1)
B + δ · f (2)∗

B,4 in table 4.9.

We find that when r
(1)
A 6 1+νA

2
, f

(1)
B + δ · f (2)∗

B,4 is maximized as 1
2
r

(1)
A (r

(1)
A − 3 + νA) +

α + 1
8
ν

(2)
A − 3

4
νA + 9

8
+ δ(α + 1

8
(ν

(1)
A − 1)2), which we denote as E[π

(1)
B,7(r

(1)
A , a

(1)
B )], when

(e
(1)
B , r

(1)
B ) = (1, 1

2
r

(1)
A + 1

4
(3− νA)).

We secondly discuss the situation where f
(2)∗
B,5 is a function of r

(1)
B as f

(2)∗
B,5 = −1

2
(r

(1)
B )2 +

1
2
r

(1)
B + 1

2
r

(1)
B νA − 1

2
νA + α when r

(1)
B > 1

2
(1 + νA). Using the same method, we find

that f
(1)
B + δ · f (2)∗

B,5 is maximized as (1 − νA)(1 − r
(1)
A ) + α(1 + δ), which we denote as

E[π
(1)
B,8(r

(1)
A , a

(1)
B )], when (e

(1)
B , r

(1)
B ) = (1, 1). Through calculation we find that if r

(1)
A 6

νA+1
2

, E[π
(1)
B,7(r

(1)
A , a

(1)
B )] is larger than E[π

(1)
B,8(r

(1)
A , a

(1)
B )], so E[π

(1)∗
B (r

(1)
A , a

(1)
B )] is achieved as

E[π
(1)
B,7(r

(1)
A , a

(1)
B )] = 1

2
r

(1)
A (r

(1)
A − 3 + νA) + α + 1

8
ν

(2)
A − 3

4
νA + 9

8
+ δ(α + 1

8
(ν

(1)
A − 1)2) when

(e
(1)∗
B,7 , r

(1)∗
B,7 ) = (1, 1

2
r

(1)
A + 1

4
(3− νA)). So lemma 7 is true.

Lemma 8. If α > max{ (1−νA)2

2
,
ν2A
2
} and r

(1)
A > νA+1

2
, then (e

(1)∗
B,8 , r

(1)∗
B,8 ) = (1, 1) and

E[π
(1)∗
B,8 (r

(2)
A , a

(2)
B )] = (1− νA)(1− r(1)

A ) + α(1 + δ) + δνA(1
2
− νA).

Proof. Similar as the proof for lemma 7, we find that if r
(1)
A > νA+1

2
, then E[π

(1)∗
B (r

(1)
A , a

(1)
B )] is

achieved as E[π
(1)
B,8(r

(2)
A , a

(2)
B )] = (1−νA)(1−r(1)

A )+α(1+δ)+δνA(1
2
−νA) when (e

(1)∗
B,8 , r

(1)∗
B,8 ) =

(1, 1). So lemma 8 is true.
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Given the two cases for Bob’s equilibrium decisions in round 1, we may now determine

Bob’s round 1 decisions:

Theorem 7. If α > max{ (1−νA)2

2
,
ν2A
2
}, then

(e
(1)∗
B , r

(1)∗
B ) =

{
(1, 1

2
r

(1)
A + 1

4
(3− νA)) if 0 6 r

(1)
A 6 νA+1

2

(1, 1) if νA+1
2

6 r
(1)
A 6 1

f
(1)∗
B =

{
1
2
r

(1)
A (r

(1)
A − 3 + νA) + α + 1

8
ν

(2)
A − 3

4
νA + 9

8
+ δ(α + 1

8
(ν

(1)
A − 1)2) if 0 6 r

(1)
A 6 νA+1

2

(1− νA)(1− r(1)
A ) + α(1 + δ) + δνA(1

2
− νA) if νA+1

2
6 r

(1)
A 6 1

Proof. With lemma 7 and lemma 8, theorem 7 is true.

Finally, consider Alice in round 1. We have already proved in theorem 5, theorem 6

and theorem 7 that e
(1)∗
B = e

(2)∗
A = e

(2)∗
B = 1 and E[π

(2)∗
A (r

(1)
B , a

(2)
A )] = α+ 1

2
(r

(1)
B )2 + 1

2
− r(1)

B .

After inserting ẽ
(1)
B = ẽ

(2)
A = ẽ

(2)
B = 1 and E[π

(2)∗
A (r̃

(1)
B , a

(2)
A )] into E[π

(1)
A (r

(0)
B , a

(1)
A )], we get

the function of f
(1)
A + δf

(2)∗
A as:

f
(1)
A + δf

(2)∗
A = E[π

(1)
A (r

(1)
B , a

(2)
A )] = δ(α +

1

2
(1)2 +

1

2
− 1)

+ α · (e(1)
A )2 +

νA(e
(1)
A + 1) + (1− νA)(1 + 1)

2
· [4r(1)

A − 4r
(0)
B ]

+ [−2(r
(1)
A )2 + 2(r

(0)
B )2]

(4.16)

We now move to Alice’s optimal actions in the first round. We find that Alice will exert

high effort and report as 1 in round 1 no matter what initial market estimate is.

Theorem 8. If α > max{ (1−νA)2

2
,
ν2A
2
}, then Alice’s optimal action set in round 1 is

(e
(1)∗
A , r

(1)∗
A ) = (1, 1), and her expected total payoff score from this round to the final round

is E[π
(1)∗
A (r

(0)
B , a

(1)
A )] = 2(r

(0)
B − 1)2 + (1 + δ)α.

Proof. To find the optimal value of E[π
(1)
A (r

(0)
B , a

(1)
A )], we check the Hessian of function

f
(1)
A +δf

(2)∗
A and find it is also an indefinite matrix. Still we need to denote the KKT points

of f
(1)
A +δf

(2)∗
A in table 4.10. We infer from the table that the optimal value of f

(1)
A +δ ·f (2)∗

A

is achieved as 2(r
(0)
B − 1)2 + (1 + δ)α when (e

(1)∗
A , r

(1)∗
A ) = (1, 1). So theorem 8 is true.
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e
(1)
A r

(1)
A f

(1)
A + δf

(2)∗
A

0 1− 1
2
r

(0)
B

1
2
(2r

(0)
B + νA)2 + 2(1− νA)− 4r

(0)
B + δα

1 1 2(r
(0)
B − 1)2 + (1 + δ)α

νAr
(0)
B

α
0 2r

(0)
B (r

(0)
B + νA − 2)− (νAr

(0)
B )2 + δα

0 0 2r
(0)
B (r

(0)
B + νA − 2) + δα

0 1 2r
(0)
B (r

(0)
B + νA − 2) + 2(1− νA) + δα

Table 4.10: KKT points of f
(1)
A + δf

(2)∗
A in case 2

From theorem 8, theorem 7, theorem 6, and theorem 5, we infer the set of optimal

equilibrium strategies for both agents of 2 rounds in table 4.11:

Round, i Player, j Optimal action, a
(i)∗
j = (e

(i)∗
j , r

(i)∗
j )

1 A a
(1)∗
A = (1, 1)

1 B a
(1)∗
B = (1, 1)

2 A a
(2)∗
A = (1, 1)

2 B a
(2)∗
B = (1, 1)

Table 4.11: Equilibrium strategies in case 2

And we also have the equilibrium payoffs in table 4.12:

Round, i Player, j Optimal expected payoff, E[π
(i)∗
j ()]

1 A E[π
(1)∗
A (r

(0)
B , a

(1)
A ] = 2(r

(0)
B − 1)2 + (1 + δ)α

1 B E[π
(1)∗
B (r

(1)∗
A , a

(1)
B )] = α(1 + δ) + δνA(1

2
− νA)

2 A E[π
(2)∗
A (r

(1)∗
B , a

(2)
A )] = α

2 B E[π
(2)∗
B (r

(2)∗
A , a

(2)
B )] = α

Table 4.12: Equilibrium payoffs in case 2

We can immediately conclude that if α > max{ (1−νA)2

2
,
ν2A
2
}, then not only will all of

the agents’ reports be 1, but so will all of their effort values.
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The results in sections 4.2 and 4.3 generalize to the 4 round setting, but it is still unclear

if they generalize for any value of T . The analysis required for the generalized 4 round

setting is similar to the 2 round setting, and as such we omit it from this document.

4.4 Case 3: External incentives do not exist

In case 3 we assume that two agents’ efforts together decide the outcome of E and

the ultimate value of F but their efforts will bring no payoffs to the agents who exert

them (ρe(e) = 0). Previous work has shown that when external incentives do not exist

outside of the prediction market, non-myopic agents have incentives to lie in the prediction

market. We show in case 3 that this result also applies for our model. Without losing gen-

erality, we assume νA = 1
2

(Alice and Bob have the same impact on deciding the occurring

probability of E) and r
(0)
B = 3

4
(the initial market estimate is set to be 3

4
). Under the above

assumptions we then have Alice and Bob’s bellman equations in the 2-round setting as:

For agent Alice:

E[π
(1)∗
A (r

(0)
B =

3

4
, a

(1)
A )] = max

a
(1)
A =(e

(1)
A ,r

(1)
A )

{δ · E[π
(2)∗
A (r̃

(1)
B , a

(2)
A )] (4.17a)

+
νA(e

(1)
A + ẽ

(2)
A ) + (1− νA)(ẽ

(1)
B + ẽ

(2)
B )

2

· [4r(1)
A − 4r

(0)
B ] + [−2(r

(1)
A )2 + 2(r

(0)
B )2]},

E[π
(2)∗
A (r

(1)
B , a

(2)
A )] = max

a
(2)
A =(e

(2)
A ,r

(2)
A )

{r
(1)
B + νA · ẽ(2)

A + (1− νA) · ẽ(2)
B

2
(4.17b)

· [4r(2)
A − 4r

(1)
B ] + [−2(r

(2)
A )2 + 2(r

(1)
B )2]}.

31



For agent Bob:

E[π
(1)∗
B (r

(1)
A , a

(1)
B )] = max

a
(1)
B =(e

(1)
B ,r

(1)
B )

{δ · E[π
(2)∗
B (r̃

(2)
A , a

(2)
B )] (4.18a)

+
r

(1)
A − 0.5(1− νA) + νA · ẽ(2)

A + (1− νA) · (e(1)
B + ẽ

(2)
B )

2
(4.18b)

· [4r(1)
B − 4r

(1)
A ] + [−2(r

(1)
B )2 + 2(r

(1)
A )2]},

E[π
(2)∗
B (r

(2)
A , a

(2)
B )] = max

a
(2)
B =(e

(2)
B ,r

(2)
B )

{2r
(2)
A − (1− νA) · 0.5 + (1− νA) · e(2)

B

2
(4.18c)

· [4r(2)
B − 4r

(2)
A ] + [−2(r

(2)
B )2 + 2(r

(2)
A )2]}.

Using backwards induction as has been explained in detail for case 1 and case 2, we

infer the set of equilibrium strategies for both agents of 2 rounds in table 4.13:

Round, i Player, j Optimal action, a
(i)∗
j = (e

(i)∗
j , r

(i)∗
j )

1 A a
(1)∗
A = (0, 1

2
)

1 B a
(1)∗
B = (1, 7

8
)

2 A a
(2)∗
A = (0, 11

16
)

2 B a
(2)∗
B = (1, 13

16
)

Table 4.13: Equilibrium strategies in case 3

And we denote the equilibrium payoffs in table 4.14:

So in case 3 where external incentives do not exist, we observe directly from the optimal

actions that agents do not necessarily exert high efforts to E and they also do not report

truthfully in the prediction market.
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Round, i Player, j Optimal expected payoff, E[π
(i)∗
j ()]

1 A E[π
(1)∗
A (r

(0)
B = 3

4
, a

(1)
A )] = 1

8

1 B E[π
(1)∗
B (r

(1)∗
A = 1

2
, a

(1)
B )] = 1

32

2 A E[π
(2)∗
A (r

(1)∗
B = 7

8
, a

(2)
A )] = 9

128
+ 1

8
δ

2 B E[π
(2)∗
B (r

(2)∗
A = 11

16
, a

(2)
B )] = 1

32
(1 + δ)

Table 4.14: Equilibrium payoffs in case 3
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Chapter 5

Discussion and Conclusion

In this work we show that with costly actions that determine the outcome of a prediction

market traded event, the promised costs or rewards of external actions actually have a

great influence on changing agents’ behaviour than potential prediction market benefits.

We find that in a 2-round setting, when agents are forward-looking and want to maximize

their total expected payoffs gained from exerting efforts towards realizing the traded event

as well as from trading in the prediction market, asymmetric action costs results in agents

avoiding taking the costliest actions. However if a market maker rewards her preferred

action the most, agents will take the desired action. We find that the value of net reward

to each desirable action should be larger than a certain amount, which is determined by

the value of νA in our 2-round setting. Perhaps unexpectedly, even though agents’ actions

are influenced by external costs, agents will always report truthfully during each prediction

market round, so long as we set a proper range of scores given to the related actions. This

observation, shows that our proper scoring rule is incentive-compatible even with external

incentives and costly actions.

In the past, decision and policy makers have expressed concern that the existence of a

prediction market will inspire undesirable actions for the agents who trade in the prediction

market and also have a direct impact on deciding the likelihood of the predicted event.

However, previous research does not take into account the potential payoffs (could be net

costs or net rewards) to the agents who exert such actions. We base our research on the
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assumption that forward-looking agents wish to maximize their total expected payoffs not

only from the prediction market but also from their actions related to the traded event.

With our finding, a market maker who cares about the result of such predicted event can

in fact inspire agents’ desirable actions by rewarding preferred actions. A market maker

can also gain true information about agents’ actions from agents’ reports in the prediction

market for the market reward mechanism is incentive-compatible.

In this work we set a range for expected payoff scores of exerted efforts, whose absolute

value should be larger than a certain value in each round, in order to inspire certain

actions and truthful reports. We do not discuss whether the prediction market will still be

incentive-compatible or not when this range is violated. However, we do show that when

efforts are not costly actions (payoff scores are 0 for exerted efforts), agents will bluff in

the prediction market. More importantly, in this work we set the number of rounds (T ) to

be 2, which guarantees our assumption that agents are forward-looking. However, we do

have the need to extend our model to a finite round setting with T being a large number

to see whether our conclusion still holds if agents take actions and trade in the long run.
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APPENDICES

α constant that represents amount of cost (reward) for efforts, we assume 0 < α 6 2.

i number of round, i = 1, . . . , T .

r
(i)
A the reported prediction probability of E’s occurring in round i if the report has

already been made by Alice, r
(i)
A ∈ [0, 1], r

(i)
A = 1− r(i)

A .

r
(i)
B the reported prediction probability of E’s occurring in round i if the report has

already been made by Bob, r
(i)
B ∈ [0, 1], r

(i)
B = 1− r(i)

B .

r̃
(i)
A the reported prediction probability of E’s occurring in round i if the report has not

yet been made by Alice.

r̃
(i)
B the reported prediction probability of E’s occurring in round i if the report has not

yet been made by Bob.

r
(0)
B the beginning market estimate set in the prediction market by the market maker.

e
(i)
A value of Alice’s effort in round i if the effort action has already happened, e

(1)
A = 1 if

Alice devotes high effort in round i, otherwise 0, e
(i)
A = 1− e(i)

A .

e
(i)
B value of Bob’s effort in round i if the effort action has already happened, e

(1)
B = 1 if

Bob devotes high effort in round i, otherwise 0, e
(i)
B = 1− e(i)

B .

ẽ
(i)
A value of Alice’s future effort in round i if the effort action has not yet taken place.

ẽ
(i)
B value of Bob’s future effort in round i if the effort action has not yet taken place.
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EA(ẽ
(i)
B ) the expectation of Bob’s future effort value of round i perceived by Alice when she

reports in round i.

a
(i)
A the action set that Alice takes in round i, a

(i)
A = (e

(i)
A , r

(i)
A ).

a
(i)∗
A the optimal action set that Alice takes in round i, a

(i)
A = (e

(i)∗
A , r

(i)∗
A ).

aA the policy that Alice takes for all rounds, aA := (a
(1)
A , ..., a

(T )
A ).

a∗A the optimal policy for Alice, a∗A := (a
(1)∗
A , ..., a

(T )∗
A ).

A(i)
A the action set that Alice has in round i, a

(i)
A ∈ A

(i)
A .

AA the whole action set that Alice has, AA = A(1)
A × ...×A

(i)
A and aA ∈ AA.

a
(i)
B the action set that Bob takes in round i, a

(i)
B = (e

(i)
B , r

(i)
B ).

a
(i)∗
B the optimal action set that Bob takes in round i, a

(i)∗
B = (e

(i)∗
B , r

(i)∗
B ).

aB the policy that Bob takes for all rounds, aB := (a
(1)
B , . . . , a

(T )
B ).

a∗B the optimal policy for Bob, a∗B := (a
(1)∗
B , . . . , a

(T )∗
B ).

A(i)
B the action set that Bob has in round i, a

(i)
B ∈ A

(i)
B .

AB the whole action set that Bob has, AB = A(1)
B × ...×A

(i)
B and aB ∈ AB.

h
(i)
A number of high efforts Alice has exerted in total from round 1 to round i, h

(0)
A = 0.

h
(i)
B number of high efforts Bob has exerted in total from round 1 to round i, h

(0)
B = 0.

νA Alice’s impact on deciding the likelihood of project E’s occurring, 0 < νA < 1.

p
(i)
A Alice’s belief on the likelihood of E’s occurring in round i after she observes Bob’s

most recent report and before she takes any actions in that round, taking into account

actions in future rounds.

p
(i)
B Bob’s belief on the likelihood of E’s occurring in round i after he observes Alice’s

most recent report and before he takes any actions in that round, taking into account

actions in future rounds.
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ρ
(i)
e (·) function of payoff scores of efforts devoted in round i.

ρ
(i)
s (·) function of payoff scores earned from moving the probability in prediction market in

round i if E occurs (succeeds) after T rounds.

ρ
(i)
f (·) function of payoff scores earned from moving the probability in prediction market in

round i if E does not occur (fails) after T rounds.

δ discounting factor on the future profits, 0 < δ < 1.

π
(i)
A payoff scores earned by Alice from round i to round T , including scores earned in

this round and discounting future scores.

π
(i)
B payoff scores earned by Bob from round i to round T , including scores earned in this

round and discounting future scores.

I
(i)
A the system state that Alice has in round i, after she observes Bob’s most recent

report in the prediction market, and before she takes any actions in that round.

E[π
(i)
A (I

(i)
A , a

(i)
A ) ] the expected value of π

(i)
A if the current state is I

(i)
A and the current round’s action

set is a
(i)
A .

E[π
(i)∗
A (I

(i)
A , a

(i)
A ) ] the optimal expected value of π

(i)
A given the current state I

(i)
B .

I
(i)
B the system state that Bob has in round i, after he observes Alice’s most recent report

in the prediction market, and before he takes any actions in that round.

E[π
(i)
B (I

(i)
B , a

(i)
B ) ] the expected value of π

(i)
B given if the current state is I

(i)
B and the current round’s

action set is a
(i)
B .

E[π
(i)∗
B (I

(i)
B , a

(i)
B ) ] the optimal expected value of π

(i)
B given the current state I

(i)
B .
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