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Abstract

The Erdos pentagon problem asks about the maximum number of copies of C5 that one
can find in a triangle-free graph. This problem was posed in 1984, but was not resolved
until 2012. In this thesis, we aim to capture the story of solving the pentagon problem
as completely as possible. We provide a detailed exposition of the motivation behind and
construction of flag algebras, and give a complete solution to the pentagon problem using
flag algebra techniques. All known solutions of the pentagon problem to date have been
computer-assisted; with the question of whether an elementary solution can be found in
mind, we also investigate the pentagon problem and modifications of the problem from
different elementary perspectives.
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Chapter 1

Introduction

1.1 The Erdos Pentagon Problem

One of the first results in extremal graph theory was given as the solution to a problem
posed by Mantel in the journal Wiskundige Opgaven in 1907 [21]: “Given are some points,
no four of which lie on the same plane. At most how many lines can one draw between the
points without forming triangles?”

This is formulated as a geometric problem (as many early graph-theoretic problems were),
and the restriction of having no four points on the same plane is to ensure that any
line drawn between two points will only pass through those two points. This naturally
leads to a graph-theoretic formulation, though, and in the language of graph theory, one
can equivalently ask about the maximum number of edges a graph without triangles can
have.

Extremal graph theory has grown since then to more generally study maximal or minimal
graphs satisfying certain properties, or equivalently, the idea that graphs must carry cer-
tain types of structural properties beyond some maximal or minimal point. For example,
Mantel’s question concerns graphs which carry the property of being triangle-free, and
asks about the maximal such graph with respect to the number of edges in the graph.
Equivalently, this asks us to find the best possible lower bound for the number of edges in
a graph such that it must contain a triangle. Perhaps the most important generalisation
of this was proved by Erdds and Stone in 1946 [9], which gave an asymptotic upper bound
for the number of edges in a graph that does not contain a given subgraph H, for any
non-bipartite graph H.



Along the same lines as these questions, Erdos asked the following question in a 1984 paper
[7], which we will henceforth refer to as the Erdds pentagon problem:

“Is it true that a graph on 5n vertices with no triangle contains at most n® pentagons?”

A pentagon here is defined to be a copy of C5. He noted in that paper that if this is true,
this bound is tight: One can consider a blow-up of C5 obtained by replacing each vertex
with an independent set of n vertices and replacing each edge with a complete bipartite
graph K, ,. Note that this graph is triangle-free. Then, by selecting one vertex in each
independent set, one can find n° pentagons in this graph.

The pentagon problem is simple to state - Erdos took only one sentence to ask the question
and one additional sentence to discuss the tightness of this bound - and could easily be
explained to someone taking a first course in graph theory. Yet, despite looking very
much like other problems in extremal graph theory (such as Mantel’s theorem) which were
resolved with elegant proofs, the pentagon problem remained open for nearly 30 years after
it was first published.

Several attempts got close to solving the problem along the way: In 1989, Gy6ri [ 1] showed

that a triangle-free graph with n vertices contains no more than ¢( "T“)E’ copies of Cy, where
¢ < 1.03. Fiiredi was later able to refine this approach and improve this bound by showing

the same result for ¢ < 1.001 (personal communication; see, e.g., [15]).

No further progress was made until 2012, when Grzesik [I 1] and Hatami et al. [15] in-
dependently resolved the conjecture asymptotically in the affirmative using flag algebras.
Additionally, Hatami et al. showed that for all n divisible by 5, a triangle-free graph with
n vertices maximising the number of 5-cycles in the graph must be a balanced blow-up
of U5, where each vertex of a Cj is replaced with an independent set of size (see Theo-
rem 48). In 2017, Lidicky and Pfender [21] extended these results using flag algebra and
graphon methods to show that with the exception of one sporadic graph where n = 8,
for all n > 5, a triangle-free graph with n vertices maximising the number of 5-cycles in
the graph must be an “almost balanced blow-up” of a C5, where each vertex of a Cj is
replaced with an independent set of size || or [£] (see Theorem 49). Noting that all
previous approaches to resolve the pentagon problem were assisted by a computer, a 2018
paper by Grzesik and Kielak [13] gave a non-computer-assisted proof of a modification of
the pentagon problem (see Theorem 50) - notably, though, this did not yield an elementary

solution to the pentagon problem.

In this thesis, we aim to capture as fully as possible the story of solving the pentagon
problem. In the remainder of Chapter 1, we will provide some preliminaries for the re-
mainder of the exposition. In Chapter 2, we will provide several perspectives from which
one can examine the pentagon problem, including Gyéri’s approach, elements of Fiiredi’s



approach, and an algebraic approach to the problem. In Chapter 3, we will provide a
detailed exposition of the motivation behind and the construction of flag algebras, and
show how flag algebra techniques can be applied to asymptotically resolve the pentagon
problem. Finally, in Chapter 4, we will survey further results on the pentagon problem
and a modification of the pentagon problem.

1.2 Preliminaries

In this section, we will establish some mathematical preliminaries that will be used through-
out the rest of our exposition.

We will assume that the reader is familiar with elementary graph theory (for a reference,
see [0]). We establish some graph-theoretic and notational conventions that we will use
throughout our exposition:

e If S is a set, we will use |S| to denote the size of S. For k € N, by the set [k] we
mean the set {1,2,3,--- ,k}. By convention, let [0] be the empty set.

e We will assume that all graphs are finite and simple (no loops or multiedges).

o If G is a graph, we will let V(G) be the set of vertices of G and E(G) be the set of
edges of G.

e Later in our exposition, we will need to work with labelled graphs. To deal with this
formally, we can let a graph be defined as G = (V, E, k,0), where k € NU {0} and
0 : [k] — V(G) is an injective map. When k = 0, we will call G an unlabelled graph
and normally write G = (V, E); otherwise we will call G a labelled graph.

o If G = (V(G),E(G),kg,0) and H = (V(H),E(H),kg,0g) are graphs, they are
said to be isomorphic if kg = ky and there exists a bijection p : V(G) — V(H) such
that vw € E(G) iff f(v)f(w) € E(H) for every v,w € V(G), and p(0(i)) = 0p(7)
for every i € [k]. We will denote graph isomorphism by writing G = H.

e If v € V(G), we will denote the degree of v by deg(v) (or deg(v), when the former
is ambiguous) and the set of vertices adjacent to v by N(v).

o If v,w € V(G) and there exists a v, w-path, we will denote the minimal distance
between v and w in G by d(v, w).

e By an induced subgraph of G, we mean a subset S C V(G) together with all edges
e € E(G) where both endpoints of e are in S. Such a subgraph will be denoted G[S].



e If G and H are graphs and S C V(G), let ¢(H; G) be the number of times H appears
as an induced subgraph of G, and let ¢(H; G, S) be the number of times H appears
as an induced subgraph of G containing every vertex in S. That is, ¢(H;G) is the
number of ways we could select |V (H)| vertices (without respect to order) from V(G)
so that the resulting induced subgraph on these vertices is isomorphic to H, and
c¢(H; G, S) is the number of ways we could select |V (H)| — [V (S)| vertices (without
respect to order) from V' (G) so that the resulting induced subgraph on these vertices
and S is isomorphic to H. Furthermore, observe that in a triangle-free graph, every
copy of Cj is induced, so that if G is triangle-free, ¢(C5; G) is the number of copies

of C5 in G.

e If G is a graph with vertices vy, --- , v, the blow-up of G obtained by replacing v;
with an independent set of n; vertices for all 1 <7 < k and maintaining adjacencies
is denoted by G"")_ If ny = --. = n, = n, then this is simply denoted G™.

We will also assume the reader is familiar with elementary linear algebra. Later in our
exposition (for Theorem 41), we will need one fact about positive semidefinite matrices.
A n x n real symmetric matrix M is said to be positive semidefinite if v" Mv > 0 for
all vectors v € R™. Also, recall that v # 0 is an eigenvector of M with eigenvalue \ if
Mv = Mv. We will prove an equivalent characterisation of positive semidefinite matrices:

Theorem 1. Let M be a real symmetric n x n matrix. The following are equivalent:
(a) vTMv >0 for all v € R™.
(b) All the eigenvalues of M are nonnegative.

(c) There exists a matrix B such that M = BBT.

Proof. (a) = (b): Let A be an eigenvalue of M. By definition, there exists an eigenvector
v € R" such that Mv = Mv. Left-multiplying by v”, it follows that v“ Mv = Av"Tv. Since
vI'Mv > 0 for every v € R" and vTv > 0 for all v as the square of any real number is
nonnegative, it follows that \ is nonnegative.

(b) = (c): Let Ay, ---, A\, be the eigenvalues of M with multiplicity considered. As M is

symmetric, it follows that it has a Jordan decomposition M = Z)\szsz Now, for all
i=1
1 <@ <mn,let y; =/ \jx;; this is well-defined as every ); is nonnegative. Rewriting, we get
n

that M = Z yy! . If we let A be the matrix defined by letting y; be the ith column of A,
i=1



it follows from the definition of matrix multiplication that AT A = M, and letting B = AT
we get the desired result.

(c) = (a): Let v € R™ and suppose that there exists a B such that M = BTB. Let
A = BT so that M = ATA. Then v" Mv = vT AT Av = (Av)T(Av) > 0 as the square of
any real number is nonnegative, as desired. O]

We hope that the remainder of this exposition will be largely self-contained and accessible
to someone with a background in elementary graph theory, probability, linear algebra, and
abstract algebra. That being said, several of our proofs will make use of miscellaneous
theorems which are not otherwise covered in this exposition. We will cover these briefly
now:

Theorem 2 (AM-GM Inequality). Let z1,xs, -+ , x, be non-negative real numbers. Then
the arithmetic mean of xq,xs,--- ,x, is greater than or equal to the geometric mean of
x1,To, - ,Ty; namely, the following inequality holds:

ZE1+1’2+"'+ZL’n
n

> T 1To - Ty,

Furthermore, equality only holds when z1 = x5 = --- = z,,.

Theorem 3 (Tychonoff’s Theorem). Let I be an index set, and let {X;};e; be an indexed

family of non-empty topological spaces. Let X = HXZ' be the corresponding product
iel

space endowed with the product topology. Then X is compact if and only if every X; is

compact.

Theorem 4 (Chebyshev’s Inequality). Let X be a random variable with a finite expected
value p and finite non-zero variance o2. Then if k > 0 is a positive real number,

1
P(IX = pl 2 ko) < 15

Theorem 5 (Borel-Cantelli Lemma). Let {A4;}5°; be a sequence of events in some proba-
bility space. If the sum of the probabilities of these events is finite, that is, if

f:P(AJ < 00,
=1



then the probability that infinitely many of these events occur is zero. In other words,

n=1i>n
Theorem 2 will be used in several proofs throughout this exposition. Theorem 3 will be

used in the proof of Theorem 27, and Theorems 4 and 5 will be used in the proof of
Theorem 34.



Chapter 2

Perspectives on the Pentagon
Problem

2.1 Gyori’s Elementary Upper Bound

The first published approach to the Erdos pentagon problem was given by Gyori in 1989;
in this section, we will retrace the approach given in his paper [11]. Gyéri managed to use
elementary methods to find an upper bound on the number of copies of C5 in an n-vertex
triangle-free graph which got very close to, but didn’t quite reach, Erdds’s conjectured
bound. More precisely, he proved the following theorem:

=)

Theorem 6. A triangle-free graph on n vertices cannot have more than ¢( ® C5’s where

c=35 <1.03.

To begin, we establish the following numerical lemma. (We remark that we do not need
the conclusion about the equality case in our proof of Theorem 6, but it is immediate from
the proof.)

Lemma 7. Suppose that v, o4, -, ap, B1, -+ -, B € RT and that Z?:l a; = Z;; B — M.
M M
Then 11312 a;(y — B;) < —(e — —). Moreover, equality holds if and only if o; = 3; = %
<i<n n n
forall 1 <7 <n.

Proof. Suppose that a;(y — 5;) > %(7 — %) for all 1 < i < n. By taking the product of



these n inequalities and taking the nth root of both sides, we get that

n

[[ai"(r=8yn = 2= 30

. n
=1

However, the AM-GM inequality (Theorem 2) tells us that

M Z 1az (H az) 1/n

M — Zz 1(7 51) (ﬁ(/y 5%)) .

and

n n
=1

so the equality conditions of the AM-GM inequality tell us that «;(y — 5;) > M(v %)

forall 1 < <nif and only if o; = 3; = ]\f for all 7, as desired. O

This numerical lemma can help us establish Gy6ri’s theorem:

Proof of Theorem 6. We proceed by induction on n. For n = 1, we have that c(§)5 < 1,
so the statement is clearly true. Now, suppose that |V (G)| = n. Let v € V(G); first, we
show that we can find an upper bound on ¢(Cs; G, {v}):

Claim. c(C5;G,{v})§degiv> N1EG) - Y deg(u)
weE(G)

Proof. To pick a C5 containing v, it suffices to pick the edge opposite to v in the Cs (call
this edge f = xy), then two vertices, one adjacent to both v and z, and the other adjacent
to both v and y.

If uy, us € N(v), then uyuy cannot be an edge of G, or else v, uy, us would form a triangle;
thus, the set of edges incident to u; and the set of edges incident to us must be disjoint.
The edge opposite to v in a Cs must only be incident to vertices at distance two or more
away from v, so no edge incident to any neighbour of v can be f; thus there are at most

G)| — Z deg(u) ways to choose f.

weE(G)

Observe that for any f = zy, if u € N(v), then uzx and uy cannot both be edges, otherwise
u, x,y would form a triangle. Thus, if we can choose the vertex incident to both v and x in



k ways, we can choose the vertex incident to both v and y in at most deg(v) — k ways, so
2
we can choose the remaining two vertices of the C5 in at most k(deg(v) — k) < % ways
deg(v)?
and thus we can choose a C5 containing v in at most % | |E(G)| — E deg(u)
weE(G)
ways.

Now, let M = Z deg(v)?. Observe that by counting deg(v) once for each of its neigh-
veV(Q)
bours, we also have that M = Z Z deg(u). By the Cauchy-Schwarz inequality,
veV(G) weE(G)

2

Z deg(v Z deg(v Z 12 =

veV(Q) veV (G veV(G)

so by the Handshaking Lemma, |F(G)| < @ By letting a, = deg(v)? and 3, =

Z deg(u) for each v € V(@) and letting v = |E(G)|, by Lemma 7, it follows that there

weE(G)
M(_VMN — M)

must exist a vertex v so that ¢(Cs; G, {v}) < 7.(¥5 =)

When n is fixed, by taking derivatives, the right-hand side of this inequality is maximised

when M = 96%3, and so by substituting, it follows that ¢(Cs; G,{v}) < 323144. By the

induction hypothesis, we also have that ¢(Cs; G — v) < 5321471 Thus, G has at most

3. 0B, 3

5
5.914 214 < 5214<n+1)

Cs’s, and so the statement is true for all n, as desired. O

Surprisingly, this argument is mostly tight. For G = C} (n/5) , a balanced blow up of C5 with
n vertices, each vertex v € V(G) satisfies deg(v) = 22, and |E(G)| = %. Thus, for every
vertex v € V(G),

deg(v)? n? n?*
CE (1p@) - Y detw) | = -
uweE(G)



4n3

But M = Z deg(v)* = S5 80
veV(G)
M M n? n? n
— | |F —— ) == ==—.
4n (’ (@) n) 25 25 625

Since Cén/ % is regular, the equality conditions on the AM-GM and Cauchy-Schwarz in-
equalities hold.

The only slackness is in taking derivatives: We showed that the expression %( Y ];4 T %) is
maximised for fixed n when M = %, but in C’E()"/ 5), we have M = %. Because we cannot

establish bounds on M for graphs with n vertices maximising ¢(Cj; G), this argument is
not tight as is.

2.2 An Algebraic Perspective

In this section, we will detail a different elementary perspective from which someone might
look at the Erdés pentagon problem [16]. The pentagon problem asks about maximising
the number of pentagons over all triangle-free graphs, but it seems difficult to do this at
first glance, since it’s not clear what a triangle-free graph looks like in general.

Hence, we can think instead about how we might transform this problem to work over a
different space that we might understand more easily. In particular, there is a very nice
correspondence between graphs and certain types of matrices, and having the tools of linear
algebra at our disposal could be useful. If GG is a graph with n vertices, we can define an
n x n matrix A(G), called the adjacency matriz of G, through labelling the vertices of G
vy, ,Un, and then letting

1 if v; is adjacent to v;;
A =
Y 0 if v; is not adjacent to v;.

Note that by construction, A(G) is symmetric.

It turns out that we can relate the pentagon problem optimising over triangle-free graphs to
another problem optimising over the eigenvalues of the adjacency matrices corresponding
to triangle-free graphs, as follows: Let A = (A;;) be an n x n matrix. Recall that v # 0 is
an eigenvector of A with eigenvalue A if Av = Av. By induction, we must have that A" is

10



an eigenvalue of A™ for all n. Recall also that the trace of A is tr(A) =Y " | A;. In fact,
the sum of the eigenvalues of A is the trace of A:

Lemma 8. If A has eigenvalues Aq, - -, A, then tr(A) = > .

Proof. Suppose that A had eigenvalues A, -, \,. Recall that the characteristic polyno-
mial of A is p(A\) = det(A[—A) = \"+¢,, 1 A" +- - -+c1 A+ o, which has the eigenvalues of
A asits zeroes. Thus p(A) = (A—=X\y)--- (A—=A\,), so by expanding and equating coefficients,
it follows that ¢,—1 = —(A1 + -+ + An).

On the other hand, using the Leibniz formula to compute the determinant of B = A\l — A,

the only permutation o € S, which will yield a A»~! term in the product HBC,(Z'),Z- is
i=1

the identity permutation, so p(A) = (A — A1) -+ (A = Ann) — q(A) for some degree n — 2

polynomial g()\). Hence ¢, 1 = —(Ap+---+A,,) = —(tr(A)), and so tr(A) = M\ +-- -+ )\,

as desired. O

With this in mind, we can use the eigenvalues of an adjacency matrix to count the number
of closed walks of length £ in a graph, as follows:

Lemma 9. If A is the adjacency matrix of a graph G, then Afj is the number of walks of
length £ starting at v; and ending at v;.

Proof. We prove this by induction. For £ = 1, this is true by the definition of an adjacency
matrix. Consider that a walk of length k from vertex ¢ to vertex j could have any neighbour
of v; as the penultimate vertex in the walk, so by induction, the number of such walks is

Z AZAAU. But this is just Afj by the definition of matrix multiplication. O
=1

In particular, it follows that A% is the number of closed walks of length k from vertex i
to itself. Putting Lemmas 8 and 9 together, it follows that if G is a simple, triangle-free
graph with eigenvalues Ay, --- , \,, we can make the following conclusions:

e A\ +---+ )\, = 0. This follows as the sum of the eigenvalues of a matrix is the
trace of the matrix, and if GG is simple, then all diagonal entries in the corresponding
adjacency matrix will be zero.

e M+ .-+ )2 =2|E(G)|. This follows as the sum of the squares of the eigenvalues
of a matrix A is equal to the trace of A%, and if G is a graph, then each diagonal
entry in the corresponding adjacency matrix will count the number of closed walks

11



of length 2 in G. Thus, if G is simple, the trace of the adjacency matrix will count
each edge exactly twice.

e M +...+ )2 =0. This follows as the sum of the cubes of the eigenvalues of a matrix
A is equal to the trace of A3, and if G is a graph, then each diagonal entry in the
corresponding adjacency matrix will count the number of closed walks of length 3 in
G. Thus, if G is simple, the trace of the adjacency matrix will count each triangle
exactly 6 times, but since G is triangle-free, this number is zero.

e Recalling that ¢(Cs; G) is the number of copies of C5 in G, we see that A} +---+\> =
10¢(C5; G). This follows as the sum of the fifth powers of the eigenvalues of a matrix
A is equal to the trace of A% and if G is a graph, then each diagonal entry in the
corresponding adjacency matrix will count the number of closed walks of length 5
in G. A closed walk of length 5 in a triangle-free graph must be a cycle of length
5, and each of these cycles correspond to ten different closed walks of length 5,

starting at five possible vertices and moving in one of two possible directions. Hence,
tr(A®) =10 - ¢(Cs; G).

Thus, maximising ¢(Cs; G) over all triangle-free graphs is equivalent to maximising tr(A°)
over all A which are both adjacency matrices of a simple graph and satisfy tr(A3) = 0. It
follows Erdos’s conjecture is equivalent to the following statement:

If A is the adjacency matrix of a simple graph G for which ¢r(A%) = 0, then
tr(A%) < 55 (3)".
Erd6s proposed that this was maximised by the balanced-blow up of a pentagon, and
indeed, we can verify that the sum of the fifth powers of the eigenvalues of the adjacency
matrix for Cén/ ® is indeed 10 - (%)5 by directly computing the eigenvalues as follows:
Suppose that F is a field and A = (4;;) € M,,,(F), B = (B;;) € M,4(F). Then the
Kronecker product of A and B, denoted A ® B, is the block matrix

anB  apB - a,B
anB apB - ay,B

AeB=| "7 T T e Mypag(F).
CLmlB CLmQB cee amnB

One can verify the following lemma by the definition of the Kronecker product:

Lemma 10. If A € M,,,(F),B € M, ,(F),C € M, x(F),D € M, ;(F), then (A® B)(C®
D) = (AC) ® (BD).

12



This allows us to characterise the eigenvalues and eigenvectors of the Kronecker prod-
uct of two square matrices in terms of the eigenvalues and eigenvectors of each of these
matrices:

Lemma 11. Suppose that A € M, ,(F) and B € M;,(F), and that A has eigenvalues
{\i |1 <i<n}", and B has eigenvalues {p; | 1 < j < t}. Then the eigenvalues of A® B
are {\p; |1 <i<n,1<j <t}

Proof. Suppose that \; is an eigenvalue of A with eigenvector z and p; is an eigenvalue of
B with eigenvector y, so that Ar = \;x and By = p;y. Then by Lemma 10 we must have
that (A® B)(z ®y) = (Az) ® (By) = (Aiz) ® (1;y) = \ipj(x ® y), so it follows that A;u;
is an eigenvalue of A ® B with eigenvector x ® y. m

It turns out that the adjacency matrix of the balanced blow-up of a graph can be written
as the Kronecker product of the adjacency matrix of the graph and the all-ones matrix, so
its eigenvalues can be easily characterised:

Lemma 12. Suppose that G is a graph where A(G) has eigenvalues Ay, -+, \,. Then the
eigenvalues of G are t);,--- ,t\,, and 0 with multiplicity n(t — 1).

Proof. Suppose that G is a graph on n vertices. Let J; the t x t all-ones matrix. Firstly, we
claim that A(G®) = A(G)®.J,: Consider the corresponding graph to the adjacency matrix
A(G) ® Jy. By considering the columns k + in of this matrix for a fixed 1 < k < n and all
0 <i < n—1, we see that the respective vertices of the graph form an independent set with
the same adjacencies. Furthermore, each vertex in this independent set is adjacent to every
vertex in every independent set induced by the neighbours of vertex k£ in G. Thus, this is
the adjacency matrix of G*), as desired. Since the eigenvalues of J, are ¢t with multiplicity
1 and 0 with multiplicity ¢ — 1, the result follows from Lemma 11. O]

V5—1
2

(with multiplicity 2), and # (with multiplicity 2). Thus, by Lemma 12, the eigenvalues
of C’E()t) are 2t (with multiplicity 1), t'@ (with multiplicity 2), ¢- # (with multiplicity
2), and 0 (with multiplicity 5(¢t — 1)). In particular, if A;,---, A, are the eigenvalues of

A simple computation gives us that the eigenvalues of C5 are 2 (with multiplicity 1),

13



C’é"m, we can now verify that A} + -+ + X2 = 10¢(Cj; Cén/5)) =10 (%)5: Indeed,

5
o (9. (. VB
Nt ) = (2 5>+<5 — ]+

o] 3

as desired.

2.3 Structure in Extremal Graphs

Define a pentagon-extremal graph to be a triangle-free graph on n vertices containing the
maximum number of Cy’s for an n-vertex, triangle-free graph. Another perspective one
might take to approach the Erdos pentagon problem is that of trying to show that every
pentagon-extremal graph must indeed be the balanced blow-up of C5, so that the bound
proposed by Erdoés holds. The graph Cé"/ % has a number of nice properties, and we can
show that some of these properties must also hold in any pentagon-extremal graph.

With this in mind, Fiiredi observed that one can use Zykov symmetrisation to show that
in any pentagon-extremal graph, every vertex is contained in roughly the same number of
Cs’s, which is one property of a balanced blow-up of Cs:

Proposition 13. Let G be a pentagon-extremal graph on n vertices, and let z,y € V(G).
Then |¢(Cs; G, {x}) — ¢(Cs; G, {y})| < c(Cs; G, {z,y}) < nd.

Proof. 1f ¢(Cs; G, {x}) = ¢(Cs; G,{y}), then the conclusion is clearly true. Thus, without
loss of generality, suppose that ¢(Cs; G, {z}) > ¢(Cs; G,{y}). Construct G’ from G by
deleting all edges incident to y. Then note that ¢(Cs; G') = ¢(Cs; G) — ¢(C5; G, {y}), since
all C5’s in G are still present except those containing y, and ¢(Cs; G', {x}) = ¢(Cs; G, {x})—
c(Cs; G, {z,y}), since all C5’s in G containing x are still present except those containing y.

Now, construct G” from G’ by making y a clone of x through adding edges from y to
every vertex in Ng(x), so that N(z) = N(y). Counting the number of Cs’s in G”, we
get that ¢(Cs; G”) = ¢(C5; G') + ¢(C5; G, {z}) = ¢(C5;G) — ¢(C5; G, {y}) + ¢(Cs; G, {z}) —
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c(Cs; G, {z,y}), as every C5 in G’ is present and y is now a clone of x. Since G is pentagon-
extremal, we know that ¢(Cs; G”) < ¢(Cs; G), so therefore ¢(Cs; G, {x}) — ¢(Cs; G, {y}) <
c(Cs; G, {x,y}) < n3, as if two vertices of a Cs are fixed, the remaining three vertices of
the C5 can be chosen in at most (g) ways. O]

As a consequence of Fiiredi’s observation, we can actually deduce something more about
the structure of one of the pentagon-extremal graphs, namely that two vertices are not
contained in any copy of C5 only if their neighbourhoods are identical:

Proposition 14. There exists a pentagon-extremal graph G on n vertices such that for
all z,y € V(G), Ng(x) = Ng(y) iff ¢(Cs; G,{z,y}) = 0.

Proof. Let G’ be an arbitrary graph, and let v, w, x € V(G’). Define an equivalence relation
~ on V(G') so that v ~ w iff N(v) = N(w). This is clearly an equivalence relation as
N(v), N(w), N(z) are sets of vertices, and equivalence of sets is an equivalence relation.
Now, let G be a pentagon-extremal graph on n vertices such that V(G) has the fewest
number of equivalence classes under ~. We claim that for all z,y € V(G), Ng(x) = Ng(y)
iff ¢(Cs; G, {z,y}) = 0.

Let z,y € V(G). Firstly, we claim that if ¢(Cs; G, {x,y}) > 0, then Ng(z) # Ng(y): Since
c(Cs; G, {z,y}) > 0, x and y must be either adjacent or at distance two in some copy of
Cs. If zy € E(G), then Ng(x) # Ng(y), as y € Ng(z) but y € Ng(y). Now suppose that
x and y are at distance two in some copy of C5 where the vertices taken in cyclic order are
v,z,w,y, 2. If Ng(x) = Ng(y), then that implies that as v € Ng(z) and z € Ng(y), we
must have that v € Ng(y) and z € Ng(z). But that would imply that the three vertices
v, x, z form a triangle, contradicting that G is triangle-free.

Now, we claim that if ¢(Cs; G,{z,y}) = 0, then Ng(z) = Ng(y). If there are no pairs
(x,y) where ¢(Cs; G, {x,y}) = 0 and = ¢ y, then we are done. If this is not the case,
let  and y be two such vertices. For any vertices w,z € V(G) such that w ~ x and
y ~ z, it must also be true that ¢(Cs; G,{w, z}) = 0 and w # z: If ¢(C5; G,{w, z}) > 0,
then since Ng(w) = Ng(x) and Ng(y) = Ng(z), one could take a copy of Cj containing
w and z, replace those two vertices with x and y respectively, and thus obtain a copy of
C5 containing x and y, a contradiction. If w ~ z, that implies  ~ y by transitivity, a
contradiction.

Let S = {v € V(G) | v ~ y} be the equivalence class of vertices in G containing y. For
every v € S, it is true that ¢(Cs; G, {x,v}) = 0, so it follows from Proposition 13 that
c(Cs; G, {z}) = ¢(C5; G, {v}). Now, we can iteratively perform the construction described
in Proposition 13 by making each v € S a clone of x; observe that the graph we will obtain
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after each iteration of the construction must also be pentagon-extremal, because if G is
the graph obtained after making a fixed v a clone of z, we will have that ¢(Cs; Gy) =
c(Cs;G) — ¢(Cs; G, {v}) + ¢(C5; G, {z}) — ¢(C5; G,{z,v}) = ¢(C5; G). Furthermore, S is
finite, so we will only perform this construction a finite number of times. After doing
this, however, we will obtain a pentagon-extremal graph G’ such that V(G’) has fewer
equivalence classes than V(G) under ~, as every vertex in the equivalence classes of x and
y in G are now in the same equivalence class in GG'. This contradicts our selection of G,
and the desired result follows. O]

In C’én/ 5), every vertex has degree 2?" It turns out that one can also use Fiiredi’s observation
along with another tool from extremal graph theory to show that every sufficiently large
pentagon-extremal graph where n is divisible by 5 has this as an upper bound for the
degree of any vertex in that graph: By a hypergraph we mean a pair H = (V, &), where
V is a set of vertices and £ is a set of non-empty subsets of V called hyperedges. By
convention we will assume that for a hypergraph H, V(H) N E(H) = 0. The degree deg(v)
of a vertex v € V(H) is the number of hyperedges containing v, and the degree deg(v, w)
of two vertices v,w € V(H) is the number of hyperedges containing both v and w. A
r-uniform hypergraph is a hypergraph where every hyperedge contains r vertices.

Let H = (V, &) be a hypergraph. The point covering number t(H) is the minimum ¢ such
that there exist ¢ edges of H whose union is V(). In [10], Frankl and R6dl proved the
following:

Theorem 15. Given € > 0, r € N, and a real number a > 3, there exist §,n¢9 > 0 such
that for every n > ng and every r-uniform hypergraph H on n vertices, if for some D

one has degy, (v) € [(1 —d)D, (14 d)D] for all v € V(H) and degy, (v, w) < ﬁ for all
v,w € V(H), then t(H) < 29

r

We will not prove Theorem 15 here, but we can use this theorem to obtain the following
result [17]:

Proposition 16. Let € > 0. Then there exists n; > 0 such that for every n > n; where

n is divisible by 5, every pentagon-extremal graph G on n vertices must satisfy that every
(242€)n t (14-€)n?
5

= edges.

vertex in G has degree at most , and must contain at mos

Proof. For any graph G, define a 5-uniform hypergraph H(G) from this graph by let-
ting every copy of Cs in G be a hyperedge in H(G). For this hypergraph, we have that
degy ) (v) = ¢(C5; G, {v}) and degy ) (v,w) = ¢(Cs; G, {v,w}). If € > 0 is given, then
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by choosing a = 4, we know we can find constants d,ng > 0 satisfying the conditions in
Theorem 15. Now, choose n; to be large enough such that:

® Ny >n0;

e ny > and

26’

We claim that our choice of n, satisfies the condition given in the proposition.

Let G be a pentagon-extremal graph on n > n; vertices with n divisible by 5, and let

H = H(G). Then we know that ¢(Cs; G) > (%)5, since this is a lower bound given by the

graph G = 6’5("/5). Now, let k = H%/a%) c(Cs; G, {z}). We claim that k > ” : Observe that
xE

1
c(Cs;G) = R Z c(Cs; G {x}) = Z degy, (x
zeV(G) zEV
Since k > degy(x) for every z € V(G), it follows that tkn > ¢(C5;G) > and thus

nb
~— 55
4
n
kZ 54 *

By Proposition 13, it follows that for every x € V(G), we have that ¢(C5; G, {x}2 > k—nd.

Thus, it follows that there exists a D > ’;—: - %3 such that degy (z) € [D — %, D + ”73]

Since n; > ‘;’—Z, it then follows that %3 < 6D, and so we must have that degy(x) €
[(1=9)D, (1+0)D] for all x € V(H). Proposition 13 also tells us that for every x,y € V(G),

we have that 0(05;G {z,y}) = degy(z,y) < n®. As 2 Toe)T > 51, it also follows that

(log n1

degy (7, y) < log ; for this choice of D. By Theorem 15, it now follows that t(H) < (1*;)”,

(1+e)n (I+e)n
5 5

which means that hyperedges cover H, and thus one can select copies of Cf

in G such that every vertex in V(G) is in some copy of Cj.

If v € V(G), then v cannot be incident to three vertices of a single copy of Cj, or else G
would contain a triangle with v and two adjacent vertices of the Cs. Thus, v is incident
to at most two vertices on every copy of Cs, and so it follows that every vertex in GG has
degree at most @; if not, it would be adjacent to three vertices on one of our @
copies of C5 that cover V(G). By the Handshake Lemma, the maximum number of edges

in G is thus HE)" ) O
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Chapter 3

Flag Algebras and the Erdos
Pentagon Problem

3.1 Mantel, Erdos, and Razborov

Recall that Mantel’s problem asks what the maximum number of edges a graph without
triangles (that is, a graph that does not contain K3 as a subgraph) can have. If one
experiments with Mantel’s problem for small cases, one may find that a triangle-free graph
on n vertices with ["TQJ edges can be constructed by building a complete bipartite graph
between independent sets of size |5] and [5] respectively. In the same journal issue as
Mantel’s problem, Mantel, along with Wythoff and several others, showed that the bound

induced by this example is tight, establishing the following theorem:

Theorem 17. Suppose that G is a triangle-free graph on n vertices. Then G has at most

L”ZQJ edges.

Mantel’s theorem has many elegant proofs, one of which is as follows (see, for example,

[1]):

Proof 1 of Mantel’s Theorem. Let G be a triangle-free graph on n vertices, and let S be
a largest independent set in GG. The neighbourhood of every vertex v € V(G) must be
an independent set, or else G would contain a triangle. Thus, we must have deg(v) < |S]
for all v € V(G). Also, since S is independent, every edge is incident to some vertex in

18



V(G)\ S. Thus, we must have that

E@)< Y deg<v>S|5||V<G>\S|§Lgﬂgknf
veV(G)\S

by the AM-GM inequality (Theorem 2), and in fact, since the number of edges in a graph

n2

must be an integer, it is true that |E(G)| < LTJ. Furthermore, the second inequality

is only tight if every vertex in S is adjacent to every vertex in V(G) \ S, and the third
inequality is only tight if |S| = L%J or |[S| = [gL so the only extremal example is the
balanced complete bipartite graph described above. O

Mantel’s problem bears a resemblance to Erdés’s pentagon problem, in that it asks about
the maximal number of some subgraphs in an n-vertex graph (edges in one case, pentagons
in the other) subject to the non-existence of some other subgraphs (triangles). The method
of flag algebras, introduced by Razborov in [26], allows us to computationally tackle such
problems through providing a systematic framework generalising counting techniques in
graph theory. Though this method is relatively new, it has already been successfully used
to approach or solve many problems in extremal combinatorics (see the survey paper by
Razborov [27] for more details), and indeed, it was the method that was first used to resolve
the Erdos pentagon problem.

Razborov’s original paper was framed in the language of model theory, and the method of
flag algebras as it is outlined there works for an arbitrary universal first-order logic theory
without constants or function symbols. This is powerful because it can be applied to any
combinatorial structure possessing the hereditary property - namely, the property that any
subset of vertices of such a combinatorial structure gives rise to another such “induced”
structure. Notably, we can apply the method of flag algebras to graph-theoretic problems
where we forbid some set of induced subgraphs H: Call a graph G H-free if no induced
subgraph of GG is isomorphic to a graph in H. If G is H-free, it is clear that the subgraph
induced by any vertex subset of V(G) must also be H-free as a graph.

In this chapter, we will introduce the method of flag algebras specifically as it applies to
H-free graphs, drawing from [5, 12,20, 20] as references. We will use Mantel’s problem and
Mantel’s theorem as guiding examples, illustrating ideas from the method as they apply
to triangle-free graphs and providing several proofs of Mantel’s theorem. We will first
employ an asymptotic, density-based proof of Mantel’s theorem to motivate the study of
flag algebras. This will guide us through the construction of flag algebras; along the way, we
will see several important results and constructions found in [26]. Finally, we will introduce
the semidefinite method as a way that one can use flag algebras to computationally solve
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problems in extremal graph theory, and use the semidefinite method to present a solution
to the Erdés pentagon problem, as given by Grzesik [11] in 2012.

Note that throughout this chapter, we will be using pictures to represent graphs. Dashed
lines will be used to represent non-edges, and solid lines will be used to represent edges.
For example, the picture o represents the empty graph on two vertices, and the picture
A\ represents the path P; on three vertices.

3.2 An Asymptotic Proof of Mantel’s Theorem

In this section, we will introduce the notion of density and use this to provide an asymptotic
proof of Mantel’s theorem.

Recall that if G and F' are graphs, we defined ¢(F';G) to be the number of times F
appears as an induced subgraph of G. Define the density of F' in G to be p(F;G) =

c(F, G)(I&%I) ; namely, this is the probability that when |V (F')| vertices are selected

uniformly at random from V(G), we obtain an induced subgraph of G isomorphic to
F.

If G is an arbitrary graph, we can state some “density identities” on G that will enable
us to prove Mantel’s theorem: Firstly, if we choose a subset of three vertices from G, the
corresponding induced subgraph will be isomorphic to one of the four graphs /., oio, 2\
or A,. Thus, the following equation holds for all graphs G-

(M G) + (P G) + (A G) + (A G) =1 (11)

Consider also that we can compute the number of edges in G by first counting the number
of edges in each three-vertex subgraph of GG, and then counting the number of appearances
of each three-vertex subgraph in G-

c(o—3 g 2) (D G) + clo— 2 el By G) + el AN el G+l L) e( A G)
= (|V(G)| = 2)c(—; G),
as each edge is in |V (G)| — 2 subgraphs of size three. Then, we can turn this into a density

identity through dividing through by ('V G”) (V@) —-2) = 3(|V%G)‘), so that we obtain
an expression for p(e—; G):

0

S G) 3G + A G) + S0 A G) = i), (12
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Alternately, one can interpret this identity from a probability standpoint: If we want to
find the edge density of GG, we can consider the edge density in each possible three-vertex
subgraph, then factor this through the density of each three-vertex subgraph in G.

Unfortunately, these identities alone are not enough - to build the other identities needed
in this proof, we need to extend the notion of density to labeled graphs. Let G be a graph,
and let GV be the graph obtained from G by labeling the vertex v with the label 1. (In the
formalism of section 1.2, we have chosen kg = 1 and let 65(1) = v.) In our pictures, we
will represent a graph with a vertex labeled 1 by filling in the corresponding vertex. For
example, the picture /\ represents the path on three vertices where the vertex of degree
two is labeled.

Now, if F'is a graph with a vertex labeled 1, let ¢(F'; G¥) be the number of times F' appears
as an induced subgraph of GG where v is the distinguished vertex of F. In other words,
this is the number of sets U C V(G) \ {v} with |U| = |[V(F)| — 1 such that G[U U {v}] is
isomorphic to F' via an isomorphism that preserves the label 1. For example, for all triangle-
free graphs G and an arbitrary v € V(G), c¢(s—; G") = deg(v) and c¢(/\;G") = (de%(”)).
Then, analogously to our definition of density above, let p(F;G") = ¢(F; G”)(Igg%lj)_l

be the probability that a set U C V(G) \ {v} with |U| = |V(F')| — 1 chosen uniformly at

random is isomorphic to F' via a label-preserving isomorphism.

Firstly, note that we can obtain several density identities by relating counts of subgraphs
(hence densities) in unlabeled graphs and that of graphs with one labeled vertex: Let G
be a graph with |V(G)| = n. By fixing each vertex v in turn and looking at the edges
with this fixed vertex as one endpoint, we will consider each edge in G twice, so that
2¢(—; G) = Z c(+—=; G”). (This is a different formulation of what is usually known as
veV(G)
the Handshake Lemma.) We can obtain a density result from this by dividing both sides
by n(n — 1), so that
1 v
ple—=G) =~ > Pl GY). (13)
veV(Q)

Interpreting this from a probability standpoint, to obtain the edge density of GG, we can
average over the edge densities of G where one vertex of the edge is fixed.

We can obtain similar results for other subgraphs. For example, each three-vertex subgraph

with two edges A\ only has one vertex of degree two, so by fixing each vertex v in turn and

looking at subgraphs on three vertices in G with this fixed vertex, we will consider each

copy of this subgraph exactly once, and ¢(/\; G) = Z c(/A\; G"). Through dividing by
veV(G)
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3(“/(30”), we obtain a density result:

PG = 3 HAG). (1)

veV(G)

Again, we can interpret this from a probability standpoint: By taking the average density
of A in G over all vertices in G, we only obtain one-third of the density of A\ in G,
because if we pick a vertex in A\ at random, there’s only a % chance that we pick the
vertex of degree two.

Finally, for a fixed vertex v, consider the product p(s—; G¥)?. This is the probability that,
when two vertices in V(G)\ {v} (not necessarily distinct) are picked, both of these vertices
are adjacent to v. By considering the possible induced subgraphs on v and two other
vertices, if the two vertices picked are distinct, then the probability that both vertices are
adjacent to v is p(/\; G¥) + p(/\; G’). Otherwise, the probability that the two vertices

(d,f%(f;)z = C((?T_(’ f;). Thus, it follows that

picked are identical and adjacent to v is

c(s—; GY)

p(—;G")* = p(/\; G") + p(/\; GY) + o1 (15)

We now have the tools we need to prove Mantel’s theorem in the density sense. We will
prove the following theorem:

Theorem 18. Suppose that G is a graph on n vertices with p( A ; G) = 0. Then p(e—; G) <
n—1
2n—6"

Clearly, this implies Mantel’s theorem asymptotically.

Proof 2 of Mantel’s Theorem. Let G be a graph with [V(G)| = n and p(A;G) = 0. For
any vertex v € V(G), it is true that 0 < (1 — 2p(s—; G¥))?. By averaging this over all
vertices in V(G), we get that

0 3 (-2l

veV(Q)

Then, by expanding and applying identities 13, 14, and 15, we get that
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1
0<— (1 — 2p(s—; G¥))?

n veV(G)

1
= (1= 4p(s—=; G") + dp(+— G")?)

veV(Q)

1 —; (GY
= — 1 —4p(e—; G¥) + 4p(/\; G*) + 4p(/\,; G¥) + 4 - &)

" e (n—1)2

=1 —4p(—; G) + %p(A; G) + % > %
veV(Q)

But since p( A\, G) = 0, identity I2 tells us that

2

2p(e—; G) = (L G) + %p(f..\,% G).

Furthermore, by the Handshaking Lemma, we have that

4 c(e—; G 8c(o—o; G 4p(o—; G
Ly dm0)_wsQ) 0

nin—12  n-1
veV(G)

Thus, it follows that

4 4 c(e—; GY)
0<1—4p(o—;G)+ = :G)+ —
veV(G)
=1 2( G) 2(,9..G)+ 4 ( G)
- p J 3p o) n— 1p J
4
<1 —2p(o—s; (o
<12l )+ plei ),
and so it follows that p(e—; G) < 271__16, as desired. ]

This proof leaves something to be desired. It follows easily from the density identities we
built earlier, but how did we know that these were the right identities to derive? Further-
more, the first inequality in the proof helps us get where we want, but seems contrived; is
there a more natural way this inequality could arise? Or, to avoid this altogether, is there
a more systematic way that we could work with these density identities?
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In the next few sections, we will work to define flag algebras, structures that will enable
us to deal with density identities and density computations more easily. We will see how
all of the identities used in this proof arise naturally through working with different flag
algebras, and demonstrate how we can use flag algebras to generate proofs of results such
as Mantel’s theorem in an essentially mechanical manner.

3.3 Flags and Density

In this section, we will set up some of the machinery required to proceed with constructing
flag algebras. In the process, we will investigate a generalisation of the notion of density
defined in the previous section.

We are interested in looking at extremal graph theory problems concerning classes of
graphs which forbid given subgraphs - in the case of both Mantel’s theorem and the Erdés
pentagon problem, for example, we are interested in triangle-free graphs. For the remainder
of this chapter, fix H, a set of forbidden induced subgraphs. For example, in the case of
both Mantel’s theorem and the Erdds pentagon problem, we will have that # = { A\ }; in
general, though, we can forbid more than one subgraph.

We will now set up several definitions, using the formalism of labelled graphs defined in
section 1.2:

Definition 19 (Types and flags). Recall that [k] = {1,2,3,--- ,k} for £ € N, and [0] is
the empty set. Then:
A type of size k is a labelled H-free graph o with |V (0)| =k, = k.

e Let o be a type of size k, and F' be an unlabelled H-free graph with |V (F)| > k. An
embedding of o into F' is an injective map 60 : [k] — V(F') such that ¢ = Im(6) as
labeled graphs.

e Let 0 be a type of size k. A o-flag of size n is a pair (F,0) where F is an H-
free unlabelled graph with n = |V(F)| > k and # is an embedding of o into F.
(Alternately, a o-flag of size n is a labelled graph (V(F), E(F), k,0) where |V (F)| =

o Let (F,0) and (G,n) be o-flags. We say these are isomorphic (and denote flag
isomorphism by the symbol ) if there is a labelled graph isomorphism p : V(F) —
V(G) with p(0(i)) = n(i) for all ¢ € [|V(0)]].
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Note that when the embedding 6 of ¢ into a o-flag is irrelevant, we may write the o-flag
(F,0) as simply F. If it is clear that o is a fixed type, we may also refer to a o-flag as
simply a “flag”.

To rephrase these definitions more colloquially: A type is a labeled graph on k vertices
where every vertex has a distinct label, and we can embed types into a larger graph by
injectively mapping [k] into the vertex set of the larger graph to yield a labelled graph so
that the graph induced by the image of the map is isomorphic to the type as a labeled
graph. For a fixed type o, a o-flag is a labelled graph with an embedded copy of o, and
two o-flags are isomorphic if there is a labelled graph isomorphism preserving the labels of
o.

As the title of this chapter suggests, flags will be our central object of study for the
remainder of this chapter. To that extent, one might wonder how the term “flag” was
chosen, and whether the term “flag” is meant to bear any connection to other mathematical
objects labeled with the word “flag” in different fields. In a footnote of [28], Razborov
clarifies that there is no such connection:

“The choice of the term ‘flag’... is admittedly somewhat arbitrary. It is largely
suggested by a visual association: A few vertices are fixed rigidly while many
more are ‘free’ and ‘waving’ through the model we are studying. It has very
little to do with other usages of this term in mathematics... incidentally, I have
never seen a good explanation of what [flags in linear algebra] have to do with
corporeal flags, either.”

For a fixed type o, let F7 be the set of all o-flags up to isomorphism, and F7 C F? be
all the o-flags of size n up to isomorphism. We now present a brief example to illustrate
these definitions:

Example 20. Let # = {/A\\}. If we let 0 = & be the empty type, then F5, the set of
a-flags of size 3, consists of all unlabeled triangle-free graphs on three vertices. There are

three of them:
g ,'q\ ,'Q\ /\7
3 7 60 0 4D

If we let 0 = @ be the type on one vertex, then F3, the set of e-flags of size 3, consists of
all labeled triangle-free graphs on three vertices where a label has been assigned to exactly
one vertex. There are five of these:

-l A AANA
R VACATACFANAY S

Note that even though the underlying unlabeled graphs of /* and /A are isomorphic, as
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e-flags they are not isomorphic, because in %, the vertex of degree zero has been labeled,
whereas in \, a vertex of degree one has been labeled. Similarly, even though A and A
are isomorphic as unlabeled graphs, as e-flags they are not isomorphic, because in A\, a
vertex of degree one has been labeled, whereas in /\, the vertex of degree two has been
labeled.

3

Finally, we can consider a larger example: If we let 0 = ,"Q\‘ , namely the graph with

2

V(o) = [3] and E(c) = {12}, then FJ consists of the six labeled triangle-free graphs on
four vertices where three vertices have been labeled with the labels {1,2,3} in a way that
admits an embedding of o:

9 ] 9 ‘ s
o KA [ReS KA S R ' R4
4 6—o6-9’ -0’ -0’ ¢—&-B’ o’ . )
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

(The edge e = 13 is not drawn into these pictures because e is not an edge of o, and hence
cannot be an edge of any o-flag.)

Note that F7 is always a finite set, but F? could be finite or infinite. For example, if
‘H consists of all graphs on three vertices, then the one-vertex type ¢ = e and the two
two-vertex e-flags o and «— are all H-free, but there are no e-flags of size three or larger.
If F7 is finite, we call o a degenerate type. Henceforth, we will assume that all types are
nondegenerate; that is, 7 is infinite.

Recall that in our asymptotic proof of Mantel’s theorem, we had to employ identities
considering densities of graphs with one labeled vertex - namely, e-flags. In our proof,
we mainly considered the density of one e-flag inside another e-flag, but notice that in
constructing identity I5, we asymptotically considered the density of fitting two e-flags
inside another e-flag so that the embedding of e is preserved. Motivated by this, we now
work to extend the idea of density to fitting a number of o-flags inside a larger o-flag.

Fix a type o. First, let us try to find the right idea for what it means to fit more than
one flag in a larger flag. Imagine trying to map two flags Fi, F5 into a very large flag G
so that the embedding of ¢ is preserved. If G is sufficiently large, the chance that the
images of Fi, Fy in G will overlap is small enough that we can disregard it in the limit.
(We will see a more formal explanation of this shortly.) Thus, in looking at how we can
construct the density of F} and F;, in G, it makes sense that we largely want to consider
the ways in which we can map F) and F; into G in such a way that they only overlap in
their embeddings of o.

This bears a resemblance to a sunflower in extremal set theory: A collection S, --- ,.5;
of finite sets is said to be a sunflower with centre C'if S; N S; = C for every two distinct
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i,7 € [t]. (In fact, in [26], Razborov defined density more generally in terms of sunflowers.)
As an analogy, one can compare this to a real-life sunflower, where each set is represented
by the union of a petal and the centre of the flower. In this situation, we essentially
want to build a “sunflower” of graphs rather than sets, where the graphs given by the
embeddings of the flags Fi, F; only overlap in their embeddings of ¢ in GG, and indeed, the
definition of density that we want to build is the probability that the sets generated by a
randomly chosen sunflower of appropriate size in V(G) yield sets whose induced subgraphs
are isomorphic to Fi, Fb:

Definition 21 (Density). Let o be a type of size k, and let Fy,--- | F;, G be o-flags. Define
the density p(Fy, -+, Fy;G) of Fy,--- | Fy in G to be as follows:
e We say that Fy,--- , F, fit in G if ([V(Fy)|—k)+---+ (|[V(F)| — k) < |V(G)| — k.
o If Fi,--- F, fit in G, then p(Fy,---, F;;G) is the probability that, if we choose

pairwise disjoint sets Sy, -+ ,S; € V(G) \ Im(€) of unlabeled vertices uniformly at
random such that |S;| = |V(F;)| — k for all i € [t], then G[S; UIm(#)] = F; for all
i€ [t

o If Fi,---, F, do not fit in G, then p(F, -+, F;G) = 0.

Note that the definition of fitting o-flags into a larger flag only depends on the numbers
|V(G)] and |V (F;)| rather than the flags themselves; it tells us whether or not we can find
a “sunflower” in G with a “centre” of size |o| and “petals” corresponding to the sizes of
|Fy\ |, -, |F; \ o|. Then, if we choose this sunflower randomly by fixing o and picking
sets S; corresponding to the “petals” one at a time, the density of the flags Fy,--- | F} is
the probability that for all ¢, S; along with ¢ induces a o-flag isomorphic to F;. Note that
if t = 1, this definition is precisely the definition of density we used previously.

However, there is one aspect of precision in this definition that we should be careful of. In
particular, we choose Si, - -+ ,.S; in order, and this does make a difference, as demonstrated
in the following example:

Example 22. Let 0 = o be the one-vertex type. Consider the e-flag

u v
e 4]

*
G = :':(, v
w - = -Gx

the graph on four vertices {u,v,w,x} with one edge {uv} where one endpoint u of the
edge is labeled. Then, we can fit the e-flags F| = e— F) = e F3 = e-o in G; let us
compute p(e—o, oo, oo (G). By considering the three two-vertex subgraphs of G induced
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by the vertex sets {u, v}, {u,w}, {u,z}, we see one of the subgraphs is a copy of «— and
two of the subgraphs are copies of e--.

However, this does not mean that p(e—e, oo, e-; G) = 1. Of the 3! possible ways to choose
the one-vertex sets Sy, Sy, S3 in order from {v,w, z}, only two of these will assign S; to be
v, so that G[S; U {u}] = e, G[S2 U {u}] = e, and G[S5 U {u}] = «-=. Thus, it follows
that p(e—o, e-o eo; G) = %

As seen from this example, computing the density of flags inside another small flag is not
difficult with careful counting. However, is there a way that one can easily compute the
density of flags in a much larger flag? Or, as is the case in many problems in extremal
combinatorics, what if we don’t know what this larger flag might look like, but know the
density of certain flags inside this larger flag? For example, in an extremal graph theory
problem working with triangle-free graphs, we may not know what a triangle-free graph G
looks like, but we will know that G would satisfy p(/\; G) = 0.

Recall that in our derivation of identity 12 in the previous section, we were able to relate
the edge density of a graph G to the density of three-vertex subgraphs in G by counting
the number of appearances of an edge in each three-vertex subgraph, then counting the
number of appearances of each three-vertex subgraph in GG. In an analogous way, we can
relate the density of smaller o-flags p(F'; G) to the density of larger o-flags as follows: If
we knew the densities of all the flags of a fixed size n in G, where |V(F)| < n < |[V(G)],
we could obtain another expression for p(F'; G) by considering the densities of F' in each
of these flags of size n, then factoring this through the density of each flag of size n in G.
That is, if [V(F)| <n < |V(G)|, it follows that

p(F;G) = > p(F;F')p(F';G).

F'eFg

We can more rigorously prove a generalisation of this accounting for the densities of multiple
flags ([20], Lemma 2.2):

Theorem 23. Let o be a type of size k. Let Fy,--- , F;,G be o-flags, and let 1 < s <t
and n € N be such that

o Fy, .- F, fit in a o-flag of size n, and

o A o-flag of size n along with Fy,q,--- , F; fit in G.

Then
PR, FiG)= > p(Fy, - F F)p(F, Fow, -+ F; G).
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Proof. Let | = |F?|, and fix an ordering of F7. Suppose that we first choose pairwise

disjoint sets S*,Ss11,--+,S C V(G) \ Im(0) of unlabeled vertices uniformly at random
such that |S*| =n—k and |Si| = |V (F;)|—k fori € {s+1,---,t}, and then choose pairwise
disjoint sets Sy,---,Ss € S* uniformly at random such that 1S;| = |V(F;)| — k for i € [s].

Let A be the event that G[S; UIm(6)] = F; for all i € [t]. For i € [I], let B; be the event
that both G[S* UIm(#)] is isomorphic to the ith element of 77 and G[S; UIm(6)] = F; for
alli e {s+1,--- t}.

Observe that By, --- , By are disjoint events. Furthermore, observe that the event A will
not occur if none of the events B; occur, since any choice of n — k unlabeled vertices
in G along with Im(#) will induce some o-flag of size n. Thus, it follows that P(A) =
P(A[B)P(By) + -+ + P(A|B)P(B).

Let F’ be the ith element of F7. By definition, we have that P(A) = p(F},- -, F;G),
P(B;) = p(F', Fsi1,- -+, Fi;G), and P(A|B;) = p(Fy,- -+, Fs; F'). The result follows by
substitution. O]

This is usually referred to as the chain rule, owing to the intuition that we can “chain”
the density of a flag through the densities of larger flags. We demonstrate this with a brief
example:

Example 24. Suppose that # = { A}, and let 0 = o be the one-vertex type. Observe
that the two e-flags «— o« fit in a e-flag of size 3. As noted in a previous example, we can
enumerate F3 as Fy = { ., M AL AN\ A\ Then for any e-flag G, the chain rule tells us

that
plo—o, o= G) = Y plo—e, o= F')p(F'; G) = p(s—o,—; A)p(/\: G),
F'eFs
as the only e-flag of size 3 in which we can embed two copies of «— overlapping only in the
one vertex o is the flag /A, but it follows that

ple—, = NP\ G) = p(A\; G),

since both possible ways to choose two disjoint sets of one non-e vertex in /A generate two
flags isomorphic to e—. Thus, we get that p(s—,+—; G) = p(/\; G) for every e-flag G.

Recalling the construction of identity I5 in our asymptotlc proof to Mantel’s Theorem, we
showed that When 7—[ { A} it is true that p(e—; G)* = p(/A\; G)+ L0 5o that asymp-

n127

totically, p(s—s; p(/\;G). This example shows us that p A G) = p(e—,o—; G)
exactly, so the difference between p(s—s; G)? and p(s—,+—s; G) should shrink as the size of
G grows larger. Indeed, we interpreted this difference as the probability that two indepen-
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dently picked vertices which were not a fixed vertex v € V(@) were identical and adjacent
to v. Using this idea, we can show in general that working with the density of several flags
is essentially equivalent asymptotically to working with the product of the density of these
individual flags ([20], Lemma 2.3):

Theorem 25. Let o be a type of size k. Then there exists a function f(n) = O(Z) such
that if Fy,--- | F}, G are o-flags,

t

p(Fy, - B G) = [ [p(F: O < F(IVG))).

i=1

Proof sketch. Suppose that we choose sets Sy, -+ ,S; C V(G) \ Im(6) of unlabeled vertices
uniformly at random such that |S;| = |V (F;)| — k; note that these sets do not need to be
pairwise disjoint. Let A be the event that G[S; UIm(#)] = F; for all ¢ € [t], and let B be
the event that Sy,--- ,S; are pairwise disjoint.

Now, by the definition of conditional probability, P(A)+ P(B)— P(A|B) < P(A)+P(B)—
P(ANB)=P(AUB) <1. Thus, P(A) — P(A|B) <1 — P(B). By construction, we also
know that P(A) = [[._, p(F;; G) and P(A|B) = p(F,--- , F;;G). Finally, we can also see
that

( V(G)|-k . )
_ 1 V)| =RV (F)| =k, [V (F) | =k V(G) [+ (E—1D)k—3T5_y [V (Fi)]
1-P(B)=1 IT (|V(G)|fk)
=1 \|V(F)|—k
is the probability that Si,---,5; are not pairwise disjoint, and it can be shown that
1
1—P(B)§O<W>. O

3.4 A Historical Aside

At this point, we want to provide the reader with some historical context in order to situate
the study of flag algebras in the graph theory landscape. Along the way, we will introduce
some definitions necessary for a more thorough discussion of flag algebras.

Compared to other fields of mathematics, graph theory is a relatively new field. The
foundational paper of graph theory was only published in 1736 when Euler published his
solution to the problem of the bridges of Konigsberg, and throughout most of the next
two centuries, the development of what we now see as “graph theory” was largely focused
on the exploration of specific graphs, specific types of graphs, or seen as an application to
another field. For example, Vandermonde, Kirkman, and Hamilton worked on the question
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of the existence of a Hamiltonian circuit in the specific context of the knight’s tour graph,
graphs of polyhedra, and the icosahedron graph respectively, and the four-colour theorem
was first posed in the context of colouring maps. In fact, even the term “graph” stemmed
from applications of graph theory to chemistry - it was first penned by Sylvester in 1878,
and was derived from chemistry’s “graphical notation”! (The interested reader can find
more about the early history of graph theory in [2].)

It still took several decades and many publications for graph theory to be recognised by
the greater mathematical community as a field of mathematics in its own right, though;
arguably, this happened when Ko6nig published the first textbook on graph theory in 1936.
As graph theory continued to blossom throughout the mid-20th century, mathematicians
working in the field wondered what connections could be made between graph theory
and other branches of mathematics, and how these connections could be exploited. For
example, would it be possible to find a way to discuss algebraic maps and structures in
relation to graphs in a way that one could employ the more powerful algebraic theories
being developed at the time?

Recall that a homomorphism, in general, is a map between two objects of the same structure
preserving the operations in that structure. For example, if ['y, 'y are groups with binary
operation %, amap f : I'y — I'y is a homomorphism if for all x,y € Ty, f(xxy) = f(x)*f(y).
In a 1961 paper [29], Sabidussi laid out an analogous definition for homomorphisms between
graphs: If Gy, Go are graphs, a map ¢ : V(G1) — V(Gs) is a graph homomorphism if for
all u,v € V(Gy), f(u)f(v) € E(Gy) when wv € E(G;). In this way, the “operation”
that is preserved between the graphs is edge adjacency - note, though, that this definition
does not require that non-adjacency be preserved, and does not require that the map ¢ is
injective.

Graph homomorphisms, defined in this sense, have remained an object of study since then.
There has been a lot of development in the study of graph homomorphisms in the last fifty
years, and a more thorough account of the progress in this field can be found in [18]. That
being said, one can view the efforts we are undertaking here as part of this study of graph
homomorphisms: In looking at the ways that a graph F' appears as an induced subgraph
of GG, we are really considering induced homomorphisms from F to G - homomorphisms
which are injective and preserve both adjacency and non-adjacency.

Accordingly, what we have previously defined as simply “density” for the one-graph case is
sometimes also known as induced homomorphism density, and in this sense represents the
proportion of possible choices of vertex sets which can yield induced homomorphisms. This
view of being able to “normalise” to see homomorphisms as a proportion rather than as a
count, though, did not arise for two decades after homomorphisms started to be studied;
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the first recorded instance of this was in a 1978 paper [3] by Erdés, Lovasz, and Spencer.
This paper was interested in obtaining results relating limit points of sequences of different
types of homomorphism densities of small graphs in increasingly large graphs. These
density parameters always lie between 0 and 1, so looking at limit points was a sensible
question framed from a density perspective, but not from a counting perspective.

If we want to study these limit points of sequences, it would be nice for these limit points
to exist in first place. Thus, we can try and define sequences for which we know these limit
points will exist. Let G be the set of all H-free graphs.

Definition 26 (Convergent sequence of graphs). Let (Gy)r>1 be a sequence of graphs in
G. We say that this sequence is convergent if, for every graph F' € G, klim p(F; Gy) exists.
—00

Interestingly, every increasing sequence of graphs (that is, a sequence of graphs (Gy) for
which |V(G;)| > |V (Gi-1)], Vi > 1) has a convergent subsequence, so given that we want to
look at the homomorphism densities of small graphs in increasingly large graphs, it would
really suffice to study convergent sequences of graphs.

Theorem 27. Let (Gy)r>1 be an increasing sequence of graphs in G. Then (Gy) has a
convergent subsequence.

Proof sketch. For a fixed F' and G;, we have that p(F;G;) € [0,1]. Note that [0,1] is
compact and G is countable; by Tychonoff’s theorem (Theorem 3), [0, 1]9 with the product
topology is a compact metrisable space. To see this as an explicit construction, fix an
arbitrary enumeration {F}, Fy,---} of G and let v, w be vectors in [0, 1]9 where v;, w; are
the ith entries of v,w. Then, D defined as follows is a metric on [0,1]9 whose induced
topology is equivalent to the product topology:

. |Un - wn‘
D(wyu) = 32 el
n=1

Then, for a fixed G;, we can identify the function p(-; G;) with the vector

(p(F1; Gy),p(Fy; Gy),-++) € ]0,1]9. In a metrisable space, every sequence has a convergent
subsequence; thus the sequence (p(-; Gi))x>1 has a convergent subsequence in [0,1]9, and
hence (Gy) has a convergent subsequence, as desired. ]

An analogous definition of convergence and argument can be made for sequences of o-flags,
using density as we have defined it for flags instead of graphs. (Such a definition will be
given shortly.) Observing that G = F?, we can work more generally in F°.
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In studying convergent sequences of graphs, we are not particularly interested in the densi-
ties of graphs in a fixed G, but rather in the limiting behaviour of homomorphism densities
in this sequence of graphs. To this end, we can explore the notion of “limiting behaviour”
in two different ways, depending on which objects we’d like to explore the limits of: For
one, we could ask whether there are limit objects for sequences of graphs for which we can
“read off” the information we’d like to know about homomorphism densities. This was first
answered by Lovdsz and Szegedy in their 2004 paper [23], who concluded that such limit
objects do exist, as symmetric measurable functions W : [0,1]> — [0,1]. These are now
known as graphons (short for “graph functions”), and a more complete theory of graphons
and limits of graphs that has developed in the years since then can be found in Lovasz’s

book [22].

On the other hand, we could look at “limiting behaviour” from the perspective of small
graphs rather than the increasing sequence of graphs: Consider that for a convergent
sequence of o-flags (Gy), we can build a well-defined function ¢ : F° — R such that
O(F) = lgl_glop(F, Gr). We can then read off the density of fixed flags in the limit of a

convergent sequence of flags by evaluating this function. More generally, though, if we
can understand what the entire space of these functions looks like, we can obtain results
that link back to extremal graph theory: For example, if we look at the maximum value of
¢(—=) over all convergent sequences of triangle-free graphs, we can obtain an asymptotic
result about edge density in triangle-free graphs. We can give a more precise definition:

Definition 28 (Limit functionals). Call ¢ : F7 — R a limit functional if there exists a
convergent sequence (Gy)x>1 of flags in F7 such that ¢(F) = klim p(F; Gy), for all F' € F°.
—00

Define ® to be the set of all limit functionals. In a nutshell, Razborov’s theory of flag
algebras gives a characterisation of ® that lets us see more easily the relationships between
homomorphism densities of small graphs in large H-free graphs. By optimising over the
space generated by ® under this characterisation, we can then obtain asymptotic results
about the density of graphs - in particular, this will help us provide a solution to the Erdés
pentagon problem.

3.5 Flag Algebras

In this section, we will guide the reader through the construction of flag algebras.

We would eventually like to use the tools of mathematical optimisation to help us derive
results about extremal graph theory, and to that extent, it would help if we could view
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the domain of a limit functional ¢ as a vector space rather than a set. Define RF? to be
the free real vector space generated by all o-flags - that is, the set of all formal, real, finite
linear combinations of o-flags. We can now redefine limit functionals over these vector
spaces by extending the function linearly: That is, if ¢ is defined on F7?, we can define ¢
on RF? by letting ¢(F1 + Fy) = ¢(F1) + ¢(Fz) and ¢(cF) = co(F), for Fy, F, € F° and
¢ € R. Thus, we can write the following modified definitions:

Definition 29. Let (Gi)r>1 be a sequence of graphs in F?. We say that this sequence is
convergent if, for every flag F' € F7, klim p(F; Gy) exists. Then, call ¢ : RF? — R a limit
— 00

functional if ¢ is linear and there exists a convergent sequence (Gj)x>1 of flags in F7 such
that ¢(F) = klim p(F;Gy), for all F' € F°.
—00

It is easy to understand what linear functionals RF° — R look like (they are uniquely
defined by their values on each element of F7), but how can we go from here to try and
understand what a limit functional on RF? looks like? Recall that the chain rule (Theorem
23) in its simplest form tells us that for flags F,G € F? and |[V(F)| < n < |V(G)],
p(F;G) = Z p(F; F')p(F'; G). For example, identity 12 from our asymptotic proof of
F/eFg

Mantel’s theorem was a particular example of this, stating for 0 = & and H = {/\} that
plo—=; G) = 5p(5; G) + 3p(L\: G)-

Since identity 12 holds true for every graph G, it follows that if we had a convergent sequence
of graphs (Gj) with an associated limit functional ¢, it would be true that p(e—;G;) =
(2 Gi) + 2p(A\; Gy) for each G; € (Gy) and hence, taking limits, ¢(—) = 36(/%,) +
26(A\). By linearity, this means that ¢(e— — 5 — 2 A) = 0. Interestingly, this implies

5 — 3N
that the linear combination o— — £ A — 2 A 'is in the kernel of every limit functional
Q.

More generally, if (G}) is a convergent sequence of flags associated with a limit functional ¢,
it follows that for each F' € F7, a sufficiently large G; € (Gy), and |V(F)| < n < |V(G;)|,

p(F;G;) = Y p(F; F')p(F';G). By taking limits, we get that

F'eFg

HF)=¢| > pF;F)F |,

FeFg

so that F — Z p(F; F')F' € Ker(¢) for every limit functional ¢.
FIeFg
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This is some progress towards trying to understand what limit functionals ¢ : RF? — R
look like - not every linear functional will be a limit functional, because we require that
the kernel of ¢ contains particular vectors in RF?. Instead of trying to restrict our space
of linear functionals by enforcing each of these infinitely many relations, though, it would
be useful to look at the quotient space induced by these relations. Let K7 be the set of all

finite linear combinations of vectors in the set < F' — Z p(F;F)-F :FeF' n>1
F'eFyg

This is a subspace of RF7, so we can quotient it out; accordingly, let A? be the quotient

RF?/K?. Now, any vector in K7 is in the kernel of every limit functional, so every limit

functional RF? — R is still a linear functional 47 — R.

At this point, it seems like our job has gotten more difficult, since it’s less easy to see
what vectors in this new vector space look like. The benefit of passing to the quotient
A, though, is that there is now a natural way to equip this vector space with a bilinear
product so that we can take advantage of the structure of an algebra.

How might we go about defining this product? Recall that in Example 24 above, we showed
that when H = { A\ } and o = e, we had that p(e—,+—; G) = p(/\; G) for every e-flag G.
In this way, there is a relation of sorts between the two ﬂags —o oo and the single flag A\
that is not encoded in K7 (as the “basis” of relations in K7 only relate one flag - rather
than multiple flags - to a linear combination of other flags). Ideally, we’d like to encode
in the definition of our product any similar relation that we could generate via the chain
rule, and we can do so as follows.

Firstly, define a product - : 77 x F? — A7, through supposing that Fi, F, are o-flags that
fit in a o-flag of size n, and defining

Z p(Fy, Fy; F)F + K°.
FeFe

We want to extend this to a product from A” to itself, but before we do this, we should
make sure this product is indeed well-defined, through showing that the definition of the
product does not depend on our choice of n.

Theorem 30. If Fi, F;, are o-flags that fit in a o-flag of size n and m > n, then

S p(FL B F)F — Y p(Fy, Fy; F)F € K°.

FeFg FeFg,

In other words, the definition of the product does not depend on our choice of n.
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Proof. By applying the chain rule (Theorem 23), it follows that

S p(FLEsF)F= Y S p(Fy, By F)p(F'; F)F

FeFg FeFg F'eFg,
= > p(F, By F) Y p(F F)F,
F'eFg, FeFg

and since F' — Z p(F'; F)F € K7 for each F' € F7, it follows that
FeFg

Z p(Fr, By F)F = Z p(Fy, Fo; F')FY,

FeFg F'eFg,
as desired. ]

Before we continue, we can illustrate the definition of the product and the previous theorem
with an example:

Example 31. Firstly, we can use our new machinery to reframe Example 24: Suppose
that H = { A}, and let 0 = o be the one-vertex type. The two e-flags e—,+— fit in a
e-flag of size 3. Recall that Fy = { %, A, A\ 2\ A} Then by setting n = 3 and using
the same reasoning as in Example 24, we get that

—o0 - —0 — Zp(o—o,O—o;F)F:Aa

FeFs

aligning with our earlier result that p(e—e, e—; G) = Z ple—o,—; F')p(F"; G) = p(/\; G).
FreFs

Furthermore, consider that the two e-flags e—, «— also fit in a e-flag of size 4, and F}
consists of twelve flags, as follows.
&--0 &---0 &—O &--

" " "
RO O

&0 &% &L

36



By setting n = 4 and expanding the product, we then get that

—o.o—o=— Zp(o—o,o—o;F)F

FeFs?
1oy
SR

But now observe that by definition, as A\ — Z p(/\; F)F € K°, it follows that A —
FeFy
N — % € K*, so that our two expressions for «— - +— differ by an element of IC°.

At this point, we have defined a product - : F7 x F? — A7, but we would like to extend
this to a product from A” to itself. To do this, we can first extend this product bilinearly
(that is, linearly in each component), so that if ¢ € R and f,g,h € F7, then (c¢f)-g =

feleg)=c(f-9), (f+9)-h=(f-h)+(g-h),and f-(g+h)=(f-g)+ (f-h). In this
way, this extends the product to the tensor product (RF?) ® (RF?) — A“, so that the
generator f® g of (RF?)® (RF?) would map to f-g under this product and the product is
linear in each component. If we considered the induced product on A? defined on f + K?
and g + K¢ instead of f and g, we can show that this induced product turns A° into a
commutative associative algebra ([20], Lemma 2.4):

Theorem 32.

(a) The definition of the product on (RF?)® (RF?) induces a symmetric bilinear product
A7 @ A7 — A7, by letting (f +K7) @ (g +K7) — (f-g) + K°.

(b) If Fy,--- , F, are o-flags that fit in a o-flag of size n, then

(Fi-Fy) - Fy-.)-Fr=Y p(B,--  F; F)F+K°.

FeFg

(c) If o is a non-degenerate type, then A% with the induced product A7 ® A7 — A7 is a
commutative associative algebra with identity element o.

The proof of most of these parts relies simply on repeated applications of the chain rule
(Theorem 23):

Proof. (a): Firstly, observe that by construction, the density function is symmetric in
all of its arguments; in particular, for o-flags F, Fy, F', we will always have that
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p(F1, Fo; F) = p(Fy, Fy; F). Thus, it follows that the operation - is symmetric. Fur-

thermore, since we extended the product bilinearly to (RF?) ® (RF7), it suffices to
show that if f € K% and ¢ € RF?, then f-¢g € K?. Since the product as we
have defined it is bilinear on (RF?) ® (RF?), we can assume that f is of the form
F— Z (F; F")F" and g = G is a o-flag; the result will then hold by linearity. Thus,

FeFg
we want to prove that F - G = Z p(F; F') (F'-G)+ K.

F'eFg

Suppose that [ is sufficiently large so that F' and G fit in a o-flag of size [, and F’ and
G fit in a o-flag of size [. By the definition of the product and Theorem 30, we then
have that

F.-G= Z (F,G;H)H +K°

HeFy?
> p(F;FY)( = > > pF;F)p(F,G;H)H +K°,
F'eFg HEeFy FIeFg

and by the chain rule, the desired equality follows.

: Weinduct on t. For ¢t = 1, the construction of K7 tells us that F}— Z p(Fy, - F; F)F €

FeFg
K?. Now suppose we knew that ((Fy-F3)-Fs-...)-F;_1 = Z p(F1, -+, Fio; HHH4K?,
HEF?
for some ¢ > 2 and | < n where Fy,--- | F,_; fit in a o-flag of size [. (We can assume

that [ < n by Theorem 30.) Then by the definition of the product and the chain rule,
it follows that

(Fy-Fy) - Fy-.)- F,=(((F\-Fy)-Fy-...)- F,y) - F
( p(Fy,-- Fi_; H)H +K° | - F}

= Y p(Fr,- P HY(H - F) +K°

HeF?
= Z Z p(F1, -, Fo_; H)p(H, Fy; F)F + K°
FeFg HEF?
- Z p(Fy, -+ Fy; F)F 4+ K°,
FeFg
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and hence induction is complete.

(c): By part (b) and because the operation - is symmetric, it follows that - is commutative
and associative. Furthermore, ¢ is the identity element of A%: Let F' be a o-flag.
Then since the probability that the embedding of ¢ in I with zero other vertices
induces a flag isomorphic to o will always be 1, it follows that p(o; F) = 1 and
plo, Fi, -+ ,F; F)=p(Fy, -+, Fy; F). Thus, if F fits in a flag of size n, then

F-o=0-F= )Y ploF;F\F'= Y pF;F)F'=F+K".

F'eFg F'eFg

Finally, to show that A7 is a nontrivial space, we need to show that o & K?. Let S be
a finite set of relations of the form F' — Z p(F, F')F', and let [ be an upper bound
F'eFg
for the size of all the flags that appear in all these relations. As ¢ is non-degenerate,
we can assume that F; is nonempty, so that we can choose a G' € F7. But now, if f
is a linear combination of elements of S, then by considering the linear extension of
the density function p(-, G), we have that p(f; G) = 0 while p(o; G) = 1. This tells us

that o ¢ span(.S) and hence o € K7, as desired.

]

The algebra A% equipped with the product - is called the flag algebra of type o.

There is a natural map between an element f € RF? and an element f + K? € A7; so far,
we have taken care to distinguish between cosets in A% and their representatives in RF7,
but henceforth we will generally write elements of A? by writing their representatives.

Recall that our original goal was to find a way to characterise ®, the set of all limit
functionals, in such a way that they would be easier to work with. We’ve previously
managed to show that all limit functionals are linear functionals from 47 to R, but we
haven’t managed to make much more progress beyond that. Now that we understand that
A carries an algebra structure (rather than just a vector space structure), we can wonder
whether limit functionals are well-behaved with respect to the product we defined. Indeed,
they are; in fact, we can show that limit functionals preserve the product operation and
hence are homomorphisms:

Theorem 33. Let f,g € A%, and let ¢ : A2 — R be a limit functional associated with a
convergent sequence of graphs (Gg)r>1. Then ¢ is a homomorphism from A7 to R: That
is, it satisfies that ¢(o) = 1 and ¢(f o g) = o(f) égb(g). Furthermore, this homomorphism

is positive, that is, ¢(F) > 0 for every o-flag F.
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Proof. If F' € F?, then by definition, ¢(F') = klim p(F; Gy) must exist and be in [0, 1] by
— 00

the definition of density, so ¢(F") > 0 for any o-flag F'.

By linearity, it suffices to assume that f = F and g = G satisfy F,G € RF?. Now, observe

that for each G; € (Gy), p(o,G;) = 1; thus it follows from taking limits that ¢(o) = 1.
Now, consider that by the definition of a limit functional,

O(F) - 9(G) = lim p(F; Gy)p(G: Gy),
and by the definition of the product in A7 and the chain rule (Theorem 23), for any n such
that F' and G fit in a o-flag of size n, it follows that

JF-G)=¢| > p(F.GiH)H
HeFg
HeFyg
= lim Y p(F.Gy H)p(H; Gy)
HeFg

= klim p(F,G;Gy).

By Theorem 25, though, we know that klim Ip(Fy, Fy; G) — p(Fy; G)p(Fy; G)| = 0, so it
—00
follows that ¢(f e g) = o(f) . ®(g) for any f,g € A7, as desired. O]

So, continuing Example 31, suppose that H = { A} and o = e. Since we know that
—-e—= A in A° it follows that ¢(s—)? = ¢(/\) for every limit functional ¢. Observe

that in a way, this is a “limit formulation” of identity I5 that we constructed in our
asymptotic proof of Mantel’s theorem!

In general, it will be useful to develop notation for the set of homomorphisms from A% to
the reals and the set of positive homomorphisms from A to the reals: Denote the former
set by Hom (A%, R) and the latter set by Hom™ (A%, R). Thus, the above theorem showed
that every limit functional ¢ is in Hom™ (A%, R). While this is certainly a nice property for
limit functionals to have, it doesn’t give us a complete characterisation of ®. Surprisingly,
though, the converse is also true ([23], Theorem 2.2; [26], Theorem 3.3):

Theorem 34. A linear functional ¢ : A% — R is a limit functional if and only if it is
in Hom™ (A%, R). That is, every limit functional is a positive homomorphism, and every

40



positive homomorphism is a limit functional.

Proof. The forward direction is shown in Theorem 33, so it suffices to show that every

positive homomorphism is a limit functional. Let ¢ € Hom™ (A%, R), and let n € N. We

claim that the quantities ¢(F), for F' € F7, define a probability measure over F2: Observe

that Z ®(F) = 1; one can view this as a generalisation of identity I1. As ¢ is linear,
FeFg

and therefore countably additive (note that F? is finite), it follows that ¢ is a probability

measure over . Thus, we can consider the corresponding product measure on | | Fr.
n=|V (o)

Now, choose a sequence of flags S = {F}}r>1, where Fj, € F, for each k € N, at random
according to this measure. We claim that with probability 1, S converges, and ¢ is a limit
functional for S. Since F7 is countable, it suffices to prove that for every fixed F' € F7
and fixed € > 0, with probability 1 there exists a [y such that for all [ > [y and F} € S,
Ip(F; Fy,) — ¢(F)| < e. This will show that ¢(F) = kh_{gop(F, F}) with probability 1. Fix a
F ¢ F7 and an € > 0. We will now prove a claim:

Claim. For every F; € S satisfying 2 > n, p(F; F}) is a discrete random variable with
expected value ¢(F) and variance O ().

Proof. Let F; € S satisfy > > n. Since F; was randomly chosen from F3 according to our
probability measure, it follows that p(F’; F}) is a discrete random variable over the sample
space J3; label this random variable X. Every outcome G € Fj has a probability of ¢(G)
of occurring and a value of p(F;G). Thus, we can calculate the expected value of this
random variable:

E(X) = 3 p(F;G)6(G) = 6(F),

GeFy,

where the last equality follows from the construction of A7 (since F'— Z p(F;G)G € K9).
GeFy

Furthermore, through linearity of expectation and ¢, we can calculate the variance of this

random variable:

Var(X) = E(X?) — (E(X))?
= " D(F;G)%6(G) — ((F))?

GG]—'ZU2
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GeFy
= D p(FG)?(G) — Y p(F, F;G)o(G)
GeFy GeFy
1 c
<o(z)<w
for some positive real number ¢, where the last line follows from Theorem 25. n

Recalling that we fixed a F' € F? and an € > 0, our claim above says that for every k > /n,
p(F; Fy) is a discrete random variable with expected value ¢(F') and variance less than 5.
Thus, for every k > /n, let X}, be the random variable given by p(F'; F},) and define the

event Ay by P(| Xy — ¢(F)| > e).

Recall that Chebyshev’s inequality (Theorem 4) states that if a random variable X has
expected value p and variance 72, then P(]X p| > m7) < =5 Considering Var(Xj) <

for each k and substituting m = W for each X, 1t follows that P(Ag) < =533

observing that c¢ and e are fixed constants, let ¢’ = 5. Furthermore, observe that our
events are indexed over a subset of N. Thus, considering the infinite sequence of events
{Ak} k> s it follows that

> P Amz;i

k> k> k=1

ﬁl“

and by the Borel-Cantelli Lemma (Theorem 5), it follows that the probability that infinitely
many of these events occur is 0. Thus, it follows that there exists an [y such that for all
[ >1lpand Fj, € S, |p(F; Fy) — ¢(F)| <€, and we are done. O

In particular, this tells us that the linear extension of ® is precisely Hom™ (A%, R). Thus,
we’'ve achieved our goal of finding a nice characterisation of the set ®, and providing
another answer to the question of what limit objects of convergent sequences of graphs or
flags look like.

3.6 The Downward Operator
In this section, we will introduce an operator relating flag algebras of different types.
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Recall that in our asymptotic proof of Mantel’s theorem, in order to obtain a result about
o-flags (or unlabeled graphs), we had to think about the density of e-flags (or graphs
where we labeled one vertex), and relate this to the density of the corresponding @-flags.
It turns out this is no fluke: To obtain results about unlabeled graphs, we often need to
think about flags of different types.

At this point, we have found generalisations for several of the density identities we origi-
nally constructed in our asymptotic proof of Mantel’s theorem, but we have not yet found
generalisations of identities I3 and 14, where we considered the relationship between flags
of two different types. How might we go about doing this?

Recall that identities I3 and 14 stated that

and

PG = 3 A

veV(Q)

respectively. The process of deriving these two identities was nearly identical: We wanted
another way to think about the subgraph count (and hence density) of a given unlabeled
graph in a larger graph G. An alternate way to count the number of such subgraphs is
to look at a labeled version of that subgraph (where one vertex is labeled), see how many
times that labeled version appears in a labeled G¥ (where a vertex v € V(G) is selected to
be labeled), sum this over all choices of v, and then divide to correct for overcounting. To
obtain a density relation instead of a counting relation, we would simply need to take an
average instead of a sum. Still, these two identities seem quite different in one respect: The
left-hand side of identity I3 has a coefficient of 1 in front of the density, and the left-hand
side of identity 14 has a coefficient of % in front of the density. Where does this difference
come from?

From a counting perspective, one could say that this comes about as we “correct for
overcounting”: By fixing one vertex of G at a time and looking at the counts of the
subgraph «— over all fixed vertices, we’ll count each such subgraph twice, one for each end.
On the other hand, if we look at the counts of the subgraph A\ over all fixed vertices, we’ll
only count each such subgraph once, because each such subgraph only has one vertex of
degree two. From a density perspective, though, one could look at the numbers 1 and % as
the probabilities that labeling a vertex of e— and A\ respectively induce flags isomorphic
to «— and A\, since we need vertices to be specifically labeled in this way in order for the
original graphs to be “counted” in the right-hand side of the identities!
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With this in mind, we can construct a generalisation of the above identities by relating
elements in F7 (and hence A%) with their corresponding unlabeled graphs in F2:

Definition 35 (Downward operator). Define the downward operator [-], : A — A? as
the linear extension of the operator defined on F' € F? by

[Flo = - (F)(LF),

where | F' is the unlabeled version of F' in F? and ¢, (F') is the probability that a random
injective mapping 6 : V(o) — V({F) is an embedding of o into |F yielding a o-flag
isomorphic to F.

This is also sometimes called the averaging operator, with good reason - roughly speaking,
we can see this as a generalisation of averaging the density of a o-flag p(F';G) over all
possible ways to embed ¢ in F. We will show momentarily that [-], is indeed a linear
operator, but first, we introduce an example to show what “generalised density identities”
look like as relations in flag algebras:

Example 36. Let H = { A} and 0 = e be the one-vertex type. If we select a vertex of
the o-flag — at random, the probability that we will obtain a flag isomorphic to e is 1.
If we select a vertex of the @-flag A at random, the probability that we will obtain a flag

isomorphic to /\ is %, and the probability that we will obtain a flag isomorphic to A is

2. Thus, it follows that

o= IAR=3A  LAL=ZA

Since these relations hold between the flag algebras A® and A9, it follows that for all limit
functionals ¢,

Bl = 66— AL =36, HIAL) = 26

One can view the first two of these equations as the natural generalisations in A® of the
density identities we constructed earlier.

Here is a slightly less trivial example. Suppose that ¢ and F are as follows:

Then, out of 4-3-2 = 24 possible injective maps from V(o) to V(| F), there are 8 injective
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maps which yield a o-flag isomorphic to F' (there are 4 ways to map 1 and 2 to an edge,
and 2 ways to select vertex 3), and hence [F], = 3(1F). Accordingly, for every limit
functional ¢, it follows that ¢([F],) = to(LF).

3

Note that we did gloss over one technicality in the definition of the downward operator.
While it is easy to extend the operator defined on F7 linearly to RF?, it is not entirely
clear why this then defines a linear mapping on the quotient A”. We can remedy this by
showing that elements in K7 will map to elements in K? ([20], Theorem 2.5):

Theorem 37. If f € K7, then [f], € K?. Thus, [-], is indeed a linear mapping A7 — A“.

Proof. By linearity, it suffices to assume that f is of the form F' — Z p(F; F')F', where
FleFg
F € F°. Applying the downward operator to f, we get that

l]F— > p(F;F’)F’ﬂ = 4o (F)UF) = > qo(F)p(F; F')(LF).

FIeFg FIeFg

If we consider that we can also expand |F' as a linear combination of @-flags, namely by
writing | F = Z p(F; F)F, by comparing coefficients of F, it then suffices to show that
FeFrf?

foraﬁxedFG}""andFG}"f,

GW(Fp(F;F) = Y g (F)p(F; F),
F'eFg, |F'=F

Indeed, suppose we choose a random injective mapping 6 : V(o) — V(F'), and then choose

aset S of |[V(F)|—|V(o)| vertices uniformly at random from V() \Im(6). The probability
that F[Im(6) U S] = F as o-flags is then equal to both sides of the above equation, where
the terms on the right side are split up by the isomorphism type of F’ as a o-flag. O

3.7 Motivating the Semidefinite Method

In this section, we will provide motivation for the semidefinite method, a systematic way
to approach problems such as Mantel’s problem and the Erdds pentagon problem.

Now that we’ve built up some of the machinery behind flag algebras, we can return to
some of the questions we first asked after giving our asymptotic proof of Mantel’s theorem.
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Recall that the first line of this proof stated that 0 < % Z (1 — 2p(s—; G¥))?, and

veV (G
that we wondered at the time where this could have naturally(cz)me from. We can now
recognise the averaging happening on the right-hand side of this inequality as corresponding
to a downward operator in the respective flag algebra A®, but what about the squaring?
Razborov proved a flag-algebraic version of the Cauchy-Schwarz inequality in relation to
the downward operator which allows us to generate many inequalities for limit functionals
([26], Lemma 3.14):

Theorem 38. Let f,g € A°. For every positive homomorphism ¢ € Hom™* (A7, R),

o[/ 1o)e(lg’le) = (LS - 9]-)*

In particular, letting g = o, it follows that
o([f*]o) = ¢([f*]o)o(Lo) = &([f]0)* = 0.

Henceforth, our use of the phrase “Cauchy-Schwarz inequality” will reference this theorem.
We will demonstrate the use of this theorem as a source of limit functional inequalities while
providing another example of some of our flag algebra machinery through rephrasing our
asymptotic proof of Mantel’s theorem through the lens of flag algebras:

Theorem 39. Let H = { A\\}. For all positive homomorphisms ¢ € Hom" (A%, R),

Furthermore, there exists a ¢ with ¢(e—) = , so this bound is tight.

Proof 3 of Mantel’s Theorem. Let & be the empty flag; note that p(&; G) = 1 for any flag
G by the definition of density and hence ¢(&) = 1. Also, the Cauchy-Schwarz inequality
tells us that

¢([(& — 20—)*]s) > 0.
By the definition of the product in A°, we have that

(O — 20— =@ — do—o + 4\
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and the definition of the downward operator tells us that

4
[[@—4H+4A]].:®—4H+§A,

so by linearity it follows that

L= 49(e—) + 50(A) 2 0.

However, note that e— — 3 A — 2 A € K*, so that 2¢(—) — 26(,) — 30(/\) = 0. By

T 3PN T 3
adding this to the previous equation and noting that ¢ is positive, we see that

1= 26() — 26(2) > 0
1 — 2¢(o—) >0
1

¢(°_°) < 5

v

Let (Gk)r>1 be the sequence of graphs defined by the balanced complete bipartite graphs
on 2k vertices, that is G,, = K,,, for every n € N. This sequence is convergent: Every
induced subgraph of K, ,, is itself complete bipartite, so that the limiting density of every
non-complete bipartite graph in (G}) is zero and the limiting density of the complete
bipartite graph K, is (lﬁm) /2!7m=1 (this can be seen through assuming we have a complete
bipartite graph with a large number of vertices and choosing, in turn, which part of the
bipartition to place each of the [ + m vertices in). Then ¢, the limit functional associated
1

with this convergent graph sequence, satisfies ¢(—) = 3, since by definition,

(5) 1

P(o—) = lim p(o—; G) = lim 0 "2

[]

Though we have now translated our asymptotic, density-based proof of Mantel’s theorem
into a much more compact flag algebra-based proof, one element of the proof still remains a
mystery: It’s clear how the Cauchy-Schwarz inequality generates the first inequality in this
proof, but how did we know that we were supposed to pick this particular inequality to work
with? Is there a way we could arrive at such a proof which requires “less ingenuity”?

Surprisingly, it turns out that there is indeed a way to generate proofs of results such as
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Mantel’s theorem in an essentially mechanical manner, through viewing extremal graph
theory problems as optimisation problems over the space of limit functionals. This is called
the semidefinite method, as these optimisation problems reduce to semidefinite program-
ming problems.

If we don’t want to use the clever inequality used to start our previous two proofs of
Mantel’s theorem, we should go back and rethink our proof strategy. Let ¢ be a limit
functional, and let # = {/\}. Then by taking the limits of identity I2 or considering
elements of the kernel of ¢, we see that

0 oy, 1 o0 2
Bo) = 36(2) + 5002 + S0
B < S+ A A A)

2

5

where the last line comes as a result of taking limits in identity I1. This immediately tells
us the edge density in a triangle-free graph must be less than or equal to %, but it isn’t
quite enough to get us Mantel’s theorem.

Could we adapt this idea to work, though? What if, more generally, we managed to
find constants ci,cs,c3 € R such that for all positive homomorphisms ¢, we had that
0 <cao(f) + o) + cso(A\)? Then it would follow that

o= a0l + (ea ) 002+ (a4 3) oA

1 2
¢(e—) <max (cr,ca+ 5,3+ 5 |
3 3
and if we can get this to be % (and show, as above, that this is tight) we’d arrive at Mantel’s
theorem asymptotically.

It seems tough at first glance to figure out how to do this. All we've got at the moment
that allows us to generate inequalities for positive homomorphisms is the Cauchy-Schwarz
inequality, which tells us that a positive homomorphism applied to the square of an element
in A% will yield a positive number. By linearity, this is also true for sums of squares of
elements in A°.

Sums of squares are nice objects that we see in a lot of other places in mathematics, and
we can ask whether there’s a way to use tools from other fields to approach these particular
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sums of squares. Considering in particular that we can really rephrase Mantel’s question
(asymptotically) as trying to find the maximum possible value of ¢(—) over all possible
positive homomorphisms, we might see whether sums of squares come up in mathematical
optimisation, so we can use tools from that field.

Indeed, they do, in that there’s a strong connection between positive semidefinite matrices
and sums of squares of vectors, and solving optimisation problems over positive semidefinite
matrices has been well studied. Recall that a n X n real symmetric matrix M is said to
be positive semidefinite if vI Mv > 0 for all vectors v € R®; we usually denote that M
is positive semidefinite by writing M > 0. It is well known (see, for example, [3]) that
a multivariate polynomial p(z) in n variables and of even degree 2d is a sum of squares
if and only if there exists a positive semidefinite matrix @) (the Gram matrix) such that
p(x) = 27Qz, where z is the vector of all monomials up to degree d. It turns out a similar
relation holds in A7, in that a vector x can be written as a sum of squares if and only if
there’s a positive semidefinite matrix M such that z = v Mv, where v is a finite vector of
elements in F7. (We will prove this in the next section, as Theorem 41.)

How could we exploit this? Given that we want to eventually say that some linear com-
bination of /., A A will be nonnegative under the image of any limit functional ¢ and
that sums of squares satisfy this property, we can try and find a vector v in A% where
vT Mv will be a linear combination of o-flags for which the underlying @-flags are /A,
and A. If o = e, we can generate such flags by taking various products of - and s—. So
let’s try this out and see what happens when we try and reprove the first part of Theorem

39:

Proof 4 of Mantel’s Theorem. Let o = e be the one-vertex type, and let v = (s-o, e—o)7
be the vector consisting of all elements of F5. By Theorem 41, we know that if M =
(Z g) is a 2 x 2 positive semidefinite matrix, then vT Mv can be written as a sum of

squares in A*, and thus by the Cauchy-Schwarz inequality (Theorem 38), we will have
that ¢([vT Mv],) > 0 for every positive homomorphism ¢. We claim that by finding the
maximum value of ¢([v” Muv],) over all possible M, we can show that ¢(o—) < % for every
positive homomorphism ¢.

Consider that by the definition of the (commutative) product on A* and the definition of
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the downward operator, we can rewrite the inequality ¢([v? Mv],) > 0 as

AT M) = 9{[aes- +-2) + 2efore - o) & b - L)
o([a, + aly, + N\ + e\ + A

a o, 2,

a o . 2C b
=6 (ad.__:b—i— 36,_b+§°,_-b+ 3A+ 3/\>

= a6+ L0 + AN 2 0

for every positive homomorphism ¢. This is an inequality of the form described in our
work above, so it follows that

1 2¢c 2+b+2
$(o—) < max [ a, +a+ c7 + 0+ 2Zc
3 3
over all possible M > 0. But we can rewrite this as a semidefinite program:
minimise A
subject to a <\

1+a+2c <)

— 3 =

2+ ?)3 + 2¢ <)

a ¢
()

This program can easily be solved using standard semidefinite programming techniques
1 1

(which we will not detail in this exposition) to yield A = 1 with M = <_§l
2

2> , showing

1 o . . .
that ¢(e—) < 5 for all positive homomorphisms ¢, as desired. O

1
2

3.8 The Semidefinite Method

In this section, we will delve more into the theory behind the semidefinite method, and
show how the previous proof of Mantel’s theorem can essentially be generated automatically
using the semidefinite method. We note that our exposition in this section in particular
closely follows that of [5].
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As we have seen in the last few sections, we can reframe extremal graph theory problems
such as Mantel’s theorem and the Erdds pentagon problem as optimisation problems over
the space of limit functionals. For example, fixing H = { A}, we can rewrite Mantel’s
problem as the following mathematical optimisation problem:

maximise ¢(o—)
subject to ¢ € Hom™* (A% R).

Any positive homomorphism ¢ will generate a feasible solution to this problem, since
¢(—) > 0 is well-defined by construction. Mantel’s theorem, however, states that the
optimal solutions to this problem are given by the positive homomorphisms ¢ for which
P(o—) = % - that is, % is the maximal value or the optimal value of the objective func-
tion.

More generally, let’s say we're interested in looking at the maximum density of a certain
fixed graph C' among all H-free graphs. In Mantel’s problem, we have H = {/A} and
C = o—; in the case of the pentagon problem, we have H = { A} and C' = C5. We can
rewrite all such problems as mathematical optimisation problems:

maximise o(C)

P1
subject to ¢ € Hom™ (A? R). (P1)

One key concept in mathematical optimisation is that of duality. This says that optimi-
sation problems can be viewed from two equivalent perspectives, through the lens of a
primal problem and a dual problem. The “P” in our labelling of the above problem stands
for “primal”; the corresponding dual problem is as follows:

minimise A

subject to #(C) <X V¢ € Hom" (A7, R). (D1)

In general, dual problems provide bounds on the optimal solutions of primal problems; in
this instance, any feasible solution to (D1) provides an upper bound for the optimal value
of (P1). By construction, we also have here that the optimal values to (P1) and (D1) are
equal (though this is not true for optimisation problems in general).

In order to formulate the semidefinite method, we want to relate (P1) and (D1) to a second
set of optimisation problems. Let us first define a few terms:

Definition 40. Let ¢ be a fixed type. Define the semantic cone of type o to be the set of
all elements of the corresponding flag algebra A% which are nonnegative under the image
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of every positive homomorphism, namely:
ST ={feA”:¢(f) >0 V¢ € Hom*(A7,R)}.

Let (A7)* be the dual vector space to A7 - that is, the space of all linear maps from A7
to R. Then, define the dual cone of type o to be the elements of (LA7)* which map every
element of §? to a nonnegative real number, namely:

(S ={oe (A7) :¢(f) >0 VfeS}.

It is worth noting that by Theorem 37, it follows that the image of S under the downward
operator is a subset of S. Note that by definition, the dual cone of type o contains all
positive homomorphisms, or elements of Hom™ (A%, R). As noted in the proof of Theorem
39, we also have that ¢(@) = 1 for every positive homomorphism ¢, so it follows that

max C) < max C),
¢€Hom+(AZ,R)¢( )_ ¢e(s@)*,¢(@):1¢( )

as every ¢ satisfying the constraints on the right-hand side also satisfies the constraints on
the left-hand side. We can also rewrite the right-hand side into a mathematical optimisation
problem, as follows:

maximise (C)
subject to o€ (87) (P2)
$(2) = 1.

Then the previous equation tells us that the optimal value of (P1) is less than or equal to
that of (P2).

At first glance, (P2) may look like a more difficult problem to analyse than (P1). However,
there is a key difference between these two problems, in that (P2) is a conic programming
problem, as we are optimising over the intersection between a cone (§7)* and a subspace
generated by the relation ¢(@) = 1. This is actually good for us, in that we have more
tools from mathematical optimisation to be able to work with conic programs than we do
to be able to work with limit functionals. Still, though, it’s unclear as to how we might go
about working with the problem (P2) directly, and how we can reasonably do this when
the optimal value of (P2) only provides a bound for the optimal value of (P1). To see this,
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we need to look at the dual problem to (P2), which is as follows:

minimise A
| . (D2)
subject to o —CeS”°.

Every solution to (D2) provides an upper bound to the optimal value of (P2), since if
A — C € 87, then by definition ¢p(A& — C) > 0, and by linearity, ¢(C) < A. In fact,
the optimal values of (P2) and (D2) are equal (though we will not show this here). More
importantly, though, the optimal values of (D1) and (D2) are equal, since ¢(C') < X for all
positive homomorphisms ¢ if and only if (A& —C') > 0 for all ¢, if and only if \&—C' € S§?.
This means that all four of our optimisation problems - (P1), (D1), (P2), and (D2) - have
the same optimal value, and so we can look at our original problem, (P1), through the lens
of any of these four problems.

It so happens that (D2) will be the most useful formulation of this problem for us. In its
current formulation, though, it seems that solving this problem requires us to understand
the global structure of the cone . There’s no immediately apparent way to do this,
but we could try and look at this cone more locally through taking a look at individual
elements of this cone: More generally, in §7, any conic combination of o-flags - that is, a
linear combination where all coefficients are nonnegative - is in &7, by the definition of a
positive homomorphism. But also, we know that if f € A7 is a sum of squares of elements
in A” - that is, if f can be written as g +- - - + g7 for elements gy, - - , g; € A°, then by the
Cauchy-Schwarz inequality (Theorem 38), we will have that ¢(f) = ¢(g?) + -+ - + ¢(g?) =
#(g1)*+ - -+d(g;)? > 0 for all homomorphisms ¢ (and therefore all positive homomorphisms
¢) and therefore f € S7. All of these elements of S will generate a subcone of §7, and
if we optimise over this subcone instead, we’ll get a feasible solution to (D2) which may
or may generate the optimal value for (D2); either way, this in turn will provide an upper
bound for the optimal value to (P1).

One might ask why it is useful here to restrict our optimisation problem to a subcone of
87, especially when we are no longer guaranteed to get back the optimal value for (P1). As
mentioned in the previous section, this is useful because there is a correspondence between
vectors which can be written as sums of squares in A” and positive semidefinite matri-
ces, and there is a more well-developed theory behind solving semidefinite programming
problems.

We first introduce some definitions. Recall that the size of a flag is the number of vertices
in the flag. Define the degree of a vector f € RF7 to be the largest size of a flag appearing
in the linear combination f, and by convention, define the degree of the zero vector to be
-1. (This is to distinguish between the degrees of the vector @ and the zero vector.) We
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can extend this definition and define the degree of a vector f+K? € A7 to be the minimum
degree of any g € f + K?. Finally, for a fixed type o and n > |V(0)|, define v,,, to be
the |F7| x 1 vector of elements in A” enumerating the elements of F? as representatives of
elements in A% in some fixed order. For example, if H = { A}, we can let vy 9 = (o, o—o)”
and ve3 = (. M\ AN\ A)T Now, we can detail this correspondence between sums
of squares in A? and positive semidefinite matrices more precisely:

Theorem 41. Let o be a fixed type, f € A7, and n > |V(o)|. Then there are vectors
g1, ,g; € A% for some t > 1, each of degree at most n, for which f = ¢? +--- + g2 (that
is, f can be written as a sum of squares in A”) if and only if there exists a |F7| x |F?|
positive semidefinite matrix ) with f = UganUa,w

We remark that that the proof of this theorem uses the fact that a symmetric matrix A
is positive semidefinite if and only if it can be factored as A = BBT for some matrix B,
which we proved as Theorem 1. By the properties of matrix multiplication, this is true if
and only if A can be written as A = bybl + -+ + b;b! for some vectors by, - - - , b;.

Proof. (=) Suppose that we had vectors gy, - , g, of degree at most n in A% where f =
g3+ ---+g?. Note that using the chain rule (Theorem 23), any flag of size less than n can
be written as a linear combination of flags of size exactly n, and so it follows that there
are vectors hq,--- ,h; € RF? such that h; € g; + K? is a linear combination of flags of
size exactly n for each 1 < i <t. Extracting the coefficients of each element of F7 in the
fixed order determined by v,,, from each of the vectors h; into a |F?| x 1 vector b;, we can
rewrite each h; as h; = bl-TvUVn, for all 1 < ¢ <t. Then it follows that

t

t t
2 T 2 T 13T

E hi = E (b; Vo)™ = E :Ua,nbibi Vo,ns

i—1 i=1

=1

t
so we know that () = Z b;b! is a positive semidefinite matrix by Theorem 1, and it follows
i=1
that f = v}, Quspn in A%, as desired.

(<) Suppose that we had a |F7| x |F]| positive semidefinite matrix Q with f = v}, QUqp.

By Theorem 1, there are some vectors by, - - - , b; so that we can write Q = b1bT +- - +bbl.
But letting g; = b vy, for every 1 < i < ¢, it follows that f = g? 4+ --- + g7 and every g;
has degree at most n in A°. O

In light of the work we've done here, let’s reformulate our optimisation problem: If we
have a fixed vy, and @, then v}, Qug, is a sum of squares (by Theorem 41) and thus is
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in 87; by Theorem 37, it follows that [["U?;,nQ’UU,n]]U € S§?. Also, as stated above, we know
that any conic combination ~y of @-flags is in §?. Therefore, any feasible solution to the
following problem yields an upper bound for an optimal value of (P1):

minimise A
subject to Ao —C =7+ [v],Qusnlo

. . e (D3)
~ is a conic combination of @-flags

Q is a |F7| x |F7| positive semidefinite matrix.

Though we know how to solve semidefinite programs, at the moment, (D3) is not a semidef-
inite program - to be a semidefinite program, the condition “\@ — C' = v + [[vganvg,n]]g”,
which is currently an identity on elements of A?, needs to be a linear constraint (or linear
constraints) on A and the entries of (). Furthermore, to use our semidefinite programming
tools, we need to find some way to not additionally deal with optimising over the space of
conic combinations of @-flags.

Let’s try and rewrite our condition first. The space of n X n matrices is endowed with the

n n

inner product (A, B) = tr(ATB) = Z Z a;;b;;. Considering that () is a matrix of real
i=1 j=1

numbers, we can then write:

[[Uzranvcr,n]]cr = [[(Ucr,nvgtna Q)]]a - <Hva,nvznﬂaa Q>7

where the downward operator applied to a matrix signifies that the operator is applied
pointwise to every entry of the matrix. Thus, our first condition in (D3) now reads A@—C' =
¥ + ([vomve ], Q). Furthermore, this is a condition in .A”, and to work with this more
concretely we can lift this to RF? by choosing a representative for C' from C' + K¢ and
a representative for every element of A? in the matrix [v,,vZ, ], from their respective
cosets.

To demonstrate what this looks like in practice, we’ll now provide an example that will
later help us systematically recreate our previous proof of Mantel’s theorem (recalling that
we are proving the first part of the statement from Theorem 39 by showing that ¢(e—) < %
for all positive homomorphisms ¢ € Hom™ (A%, R)):

Example 42. Let 0 = e be the one-vertex type and v = v, = (+,+—)” be the vector
enumerating all elements of F5. Then any feasible solution to the following program yields
an upper bound for the maximum possible value of ¢(s—) over all positive homomorphisms
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¢ € Hom™ (A% R):
minimise A
subject to MO —C =7+ ([ov']., Q)

7 is a conic combination of @-flags

Q is a | F3| x |F5| positive semidefinite matrix.

Now, by applying the definition of the product in A* (as in Example 31) and choosing the
representatives in RF7 of smallest size, we get that

and by applying the downward operator pointwise to each entry of this matrix (following
Example 36), we get that

o= ({5730 145,

We will now take a pause from this example as we figure out how we might proceed in our
recreation of our previous proof of Mantel’s theorem. At the moment, we're working with
representatives in RF?, but we need the identity A& — C' = v + ([vsn07,]o, @) to hold
in A?. This can be remedied, though: Firstly, let us extend the density function p(F’; G)
linearly to RF7 (so that p(Fy + Fy; G) = p(F1;G) + p(Fy; G) and p(cF; G) = cp(F; G) for
flags Fi, F5 and constant ¢ € R). Then, we can show that our identity on vectors in A%
will be satisfied if a set of analogous relations holds in RF? for densities over every flag G
in a sufficiently large Fx:

wl»—t

Proposition 43. Suppose that p(A& — C; G) = p(v; G) +p(<[[va,nvf,n]]m Q): G) for every
G e .Ff,, where some N > 0 is fixed. Then \@ — C =~ + ([[va,nvf,n]]a, Q) in AZ.

Proof. Let {H;};>1 be a convergent sequence of graphs. Then, by expanding using the
chain rule (Theorem 23), it follows that

p()\@ - C - Y= <[[Ua,nvgjn]]au Q>7 HZ) = Z p(A@ - C - ) <|:[Ua,nvg,n]]07 Q>a G)p(G7 HZ)
GeFy
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for every i € N. Since {H;} is convergent, we can take the limit of both sides, yielding that

(A2 — C =7 = {[Vonvl, ], @) = > (A2 = C =7 = ([Vonv],]o: Q) G)(G)

GeFg

for every limit functional ¢. But every term on the sum on the right-hand side is zero, since
by hypothesis, p(A@ — C' — 7 — ([Von?l ] 0. Q); G) = 0 for every G € Fg. Furthermore, by
construction, we have that

AZ = C =y = [0on02,]e: Q) = Y p(AD = C =7 = ([vomvr,]s. Q); G)G € K.

GeFg

Hence it follows that A& —C' — v — ([vgnv],]o, @) € K7 and thus A& —C' = v+ ([vv ], Q)
in A%, as desired. O

Recall that we also wanted to find some way to do away with v - namely, to avoid dealing
with also optimising over the space of conic combinations of @-flags. Working in RF?
allows us to do this, because if v is a conic combination of @-flags, then p(y; G) > 0 for
every G € F7, because density is always nonnegative!

Bearing all this in mind, let’s rewrite our constraint from (D3) one last time. Recall that
the original identity we wanted to satisfy in A“ is

Ao —C = ’Y+ <[[’UUT]]U7Q>7

for some conic combination v of @-flags and some positive semidefinite matrix ). We
proved in Proposition 43 that we can show this identity is satisfied through showing that
the relation

p(A2 — C;G) = p(7; G) + p({[Vomva n]ar Q) G)

is satisfied for every G € Fx, where N > 0 is fixed. Because p(v;G) > 0 as 7 is a conic
combination of @-flags, it follows that if this identity is satisfied, then

p(A2 — C;G) = p({[vonvs,Jo: Q) G)

for every G € Fx. The converse is also true, but this requires a short proof:

Proposition 44. Let N > 0 be fixed. If p(A& — C;G) > p(([venv],]o, Q); G) for every
G € Fj, then there exists a conic combination v of @-flags such that p(A@ — C;G) =
p(7; G) + p({[venvl )]s, Q); G) for every G € F3.
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Proof. Let Fy be enumerated as {G, -+ , Gy }. By hypothesis and linearity, it follows that
there exist nonnegative constants oy, - - - , o such that

p(AD = C — ([ ] Q); Gi) = a; > 0

k

for every ¢ € [k]. Now, let v = ZaiGi. This is a conic combination of @-flags, and
i=1

p(; Gi) = aip(Gy; G;) = o for every i € [k], so the result follows. O

Finally, for a matrix M with entries in RF?, let p(M; G) denote the matrix generated by
applying the (linearly extended) density function p(F'; G) to every entry in M. By linearity
and through noting that p(&;G) = 1, we get that

p(A2 — C;G) = p(7; G) + p({[Vonvtn]er Q) G)

for every G € Fy if and only if

A > p(C;G) + (p([venvl,]0: G), Q)

for every G € Fg. This is now a finite number of linear constraints on A and the entries
of @, which is what we wanted to rewrite (D3) into a semidefinite program! Therefore,
any feasible solution to the following semidefinite program yields an upper bound for an
optimal value of (P1):

minimise A
subject to A > p(C;G) + (p([venve,]e; G), Q) VG € Fy, N > 0 fixed (D4)

Q is a |Fy| x |Fy| positive semidefinite matrix.

Let’s see what this looks like in practice through finishing our recreation of our previous
proof of Mantel’s Theorem:

Proof 5 of Mantel’s Theorem. Recall from Example 42 that we defined v = vq 5 = (o0, e—0)7

and that . L a s A)
G A PANNE (FAN A )
v o = H )
7= (5508 PIA
Rewriting our program as described above, any feasible solution to the following program
yields an upper bound for the maximum possible value of ¢(-—) over all positive homo-
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morphisms ¢ € Hom™ (A% R):
minimise A
subject to A > plo—; G) + (p([vv']e; G), Q) VG € Ff, N > 0 fixed

Q is a | Fy| x | F5| positive semidefinite matrix.

Let us write this program out in more detail. Let ) = <CCL lc)) be a positive semidefinite

matrix. We will choose N = 3 here. There are three flags in F5: A, A and A\, so we

&--0) o)

will get three linear constraints in our semidefinite program, as follows:

10

e For G = A, we see that p(e—;G) = 0 and p([vv'].; G) = (0 0

AZ<<33»Q>:w

e For G = A we see that po—;G) = 1 and p([ov']e; G) = (

), so the linear

constraint generated here is

3

), so the linear

O |00 | =
O Wi

constraint generated here is

1 11 1+a+2c
A> - ;o3 ==
—3+<(§ o)’Q> 3

e For G = A\, we see that p(c—;G) = 2 and p([vv”].; G) = (

constraint generated here is
240+ 2c
) ,Q> =3

SERC

wi= O
W ==

>, so the linear

wi= O

Lol
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This generates the same semidefinite program as before:

minimise A
subject to A>a
\ > 1+a+2c
- 3
\ > 24+b+2c
- 3
a ¢
o= (1 ;) =0
so it follows that ¢(e—) < 5 for all ¢ € Hom™(A?,R), as desired. ]

In general, we note that we are not restricted to working with a single type. Because
[vf,Quon]e € 87 for any given ¢ and n, it follows that we could actually use multiple
types oy, - -+ , 0, with associated n; > |V (0;)|, 1 < i <t, to write (D3) as follows:

minimise A
t
subject to Ao —C=~+ oL Qe nllos
-] ,y ZZI[[ Ul,le [X) z]] k3 (DS;)

~ is a conic combination of @-flags, 1 <i <t

Qi is a | F 1| x |F

positive semidefinite matrix, 1 <7 < t.
Following the same procedure as above, we can then rewrite (D4) as follows:
minimise A
subject to A > p(C;G) + (P([Voy 08 0 ]0: G), Qi) VG € FR,N; >0 fixed, 1 <i <t
Qi is a | Fi| x | F7i| positive semidefinite matrix, 1 <4 <t.

(D4’)

In general, using more types will obtain a better bound for the optimal value of (P1),
but will be computationally more difficult, as one needs to consider more constraints and
optimise over the entries of more semidefinite matrices. Sometimes, though, it is necessary
to use more types to achieve a tight bound, as we will see in the next section.
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3.9 A Solution to the Pentagon Problem

In this final section, we will show how using the semidefinite method as described above
generates a solution to the Erdos pentagon problem: First, we will use the semidefinite
method to find an upper bound for the value of ¢(C5) in the space of triangle-free graphs.
Then, we will show how this implies that the Erdés pentagon problem can be answered
in the affirmative. We note that this solution was first found by Grzesik [ 1], and many
notation choices here align with that used in his paper.

Theorem 45. Let H = { /A\\}. For all positive homomorphisms ¢ € Hom™ (A%, R),

24

4(C5) < g3z

Proof. We will use the semidefinite method to prove this theorem. Consider three types
00,01, 02 on the vertex set {1,2,3}, as follows:

3 3
Q Q i
0.0 = S/ “\ 9 0-1 == S/ “\ 9 02 = B .
1G=-=--02 1G—02 1 2

That is, oy is the type with no edges, o, is the type with the edge {12}, and o9 is the type
with two edges {12,23}. We will choose n,, = n,, = n,, = 4, noticing that 4 > |V (o;)| in
each instance, and No = N; = Ny = 5.

Now, note that |F7°| = 8, |F7'| = 6, and |FJ?| = 5 - namely, there are eight oo-flags of
size four, six o;-flags of size four, and five oy-flags of size four. Thus, we can construct the
following vectors:

2 f J T
= <ooo’ / o ol : /l 9\, o/\ I\o /I\>
1 2 3 1 3 1 2 1 3

2 3 2 1

9
(6 4 A A A
?_?. 1 3 o d_o.
( ) cz—o: o O"'I\‘o’ o"':: A AD)

(We will not draw the non-edge 13 into any of these flags, since 13 is not an edge in any
of 09, 01,0,.) Henceforth, we may refer to the ith entry of v; as “the ith o;-flag”. Now,

following the semidefinite method above, we want to show that 2 @ is a feasible value for
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the following semidefinite program:
minimise A
subject to A > p(Cs; G)
+ <p([[U0Ug]]UO; G)? P)
+ <p([[1}11}?]](71; G>7 Q>
+ (p([v2v2]0s; G), R) VG € FE
P,Q,R > 0.

Note that by our definition of vy, v1, vo, we will have that P is an 8 x 8 matrix, ) isa 6 X 6
matrix, and R is a 5 X 5 matrix. Henceforth, we will use the notation P;;, Q);;, R;; to denote
entry ij of the matrices P, @, R respectively as determined by our fixed ordering of F;* in
Vg, U1, V9. There will be 14 linear constraints in this program, each one corresponding to a
different element of F;, the graphs in which can be enumerated as follows.

We will not go through the process of manually computing each of the constraints in this
exposition via computing the matrices [vov [y, [V107 [0y, [U201 [, but we will demonstrate
a more strategic computation of one of these constraints as an example.

A

Si-i-p

More specifically, we will compute the constraint for when G' = qd_d , the five-vertex graph
with one edge. Clearly, p(C5;G) = 0 in this instance. Then, we can ask about which
entries of the matrices [vovd [oo, [10] Joy, [2v3 |5, Will contain a term with the flag G,
and thus which entries of the matrices P, Q), R will appear with nonzero coefficients in our
constraint. By definition, an entry of a matrix [v;v]],, will contain a term with the flag
G if and only if we can place the two corresponding o;-flags inside GG in such a way that

the fourth vertices of the two flags are distinct.

Since G has only one edge, we cannot place two oo-flags inside G, since o, as a type has
two edges. It is possible to place two o1-flags inside GG, but since o as a type has one edge
already, the two flags cannot contain any edges that are not between vertices in the type,
so we can only place two copies of the first oi-flag inside GG. Finally, we can also place two
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oo-flags inside GG, but since G has only one edge and o( as a type has no edges, only one
of the flags we place can contain an edge, and the flag that contains an edge must contain
exactly one edge. Thus, we can place two copies of the first og-flag inside G (by letting
the edge in G go between the fourth vertices of the two copies of the flag), or a copy of the
first op-flag and a copy of the second, third, or fifth oy-flags inside G.

Thus, the only entries of the matrices which will appear in our constraint are pq1, p12, P13,
P15, and g11. (The entries po1, p31, and ps; will appear as well, but positive semidefinite
matrices are symmetric by definition, so that p12 = pa1, p13 = p31, and p15 = psi.) This
essentially leaves us with three cases to deal with:

e First, we have the case where we try to place two copies of the first o(-flag, d'ﬁ‘-‘b ,

inside G. The only way we can do this is to map the three vertices of oy to the three
vertices of degree zero. Thus, by the definition of the product, the corresponding
entry of voul will be

2
2
"9 "?“ _ ! :-:-“-:l 3
G N S A ‘t‘ ,'“‘:'\‘ . + )
bk b B ok S B

and applying the downward operator, we get that the corresponding entry of [vov ],

will be ]
|l1 ;E}"'-?‘:.‘-:-psﬂ _ 6 gy
Vs e 60 d:;d
as of the 5 -4 -3 = 60 injective maps from {1,2,3} to V(G), there will be 3! maps
which map all of {1,2,3} to vertices of degree zero. Thus, the corresponding term of
(p([vovd Joo; G), P) that will appear in our constraint is &pi1.

e Next, we have the case where we try and place one copy of the first oy-flag, dl-'i‘-‘b , and

one copy of the second oy-flag, {/;O , inside G. (The cases where we try and place

one copy of the first oy flag and one copy of the third or fifth oy-flag are identical
by symmetry.) The only way we can do this is to map vertex 1 in oy to a vertex of
degree 1 in G, and map vertices 2 and 3 in o( to a vertex of degree 0 in G. Thus, by
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the definition of the product, the corresponding entry of vovd will be

'9‘ N 1 ~‘--v-l-‘-- 2

K ' \“ . ' \“ e 5 “s'z(": + U
' '

9 9 88,

and applying the downward operator, we get that the corresponding entry of [vgvd s,
will be

as of the 60 injective maps from {1,2,3} to V(G) we can choose a vertex of degree
1 to map the vertex 1 to in 2 ways, and vertices of degree 0 to map the vertices 2
and 3 to in 3 -2 = 6 ways. Thus, the corresponding term of (p([vvd [s,; G), P) that
will appear in our constraint is %pm. Noting that we could place two flags in G in

two different orders (corresponding to two different products), though, we will also

get a term of %p% appearing in our constraint. Thus, by the symmetry of P and
considering that we could use the third or fifth oy-flag instead of the second oy-flag,

the terms Stp13 and 25p;5 will also appear in (p([vovd Jo,; G), P).

Finally, we have the case where we try and place two copies of the first o;-flag, d_zo ,

inside G. The only way we can do this is to map vertices 1 and 2 in o7 to the vertices
of degree 1 in G, and map vertex 3 in o7 to a vertex of degree 0 in G. Thus, by the
definition of the product, the corresponding entry of vyv! will be

9 ;-

L -

S i e
R . s T “ L3N ," . + 5
’ : - - I’Q~ ’

1 2 ? 1 2 .? 16'—62

and applying the downward operator, we get that the corresponding entry of [v;v] [,
will be

'o’ ':~~ 6 'o'ﬂ~’.
g || O gl
) v ) v

. "t:“ N 60 ' ":Q:“ N
16 2 o1 —9

as of the 60 injective maps from {1,2,3} to V(G), there are 2! ways to map the
vertices 1 and 2 to vertices of degree 1 in G, and 3 ways to map vertex 3 to a vertex
of degree 0 in G. Thus, the corresponding term of (p([viv] ||5,; G), Q) that will appear
in our constraint is Zqi;.
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Thus, it follows that the constraint corresponding to G' € F7 reads

A> 12p11 + 24p1g + 24p1s + 24p15 + 12¢11).

1
120 20"
By computing the remaining constraints, either in a similar way to the above or through
manually computing the matrices [uovd ]]UO, [v1v],,, [vev]s,, we can rewrite our semidef-

inite program as follows, where the constraints correspond to the flags in F¢Z in the order
given above:

minimise A

1
biject t A > 120
subject to = 120( Pn)

> 120(12]911 + 24p1o + 24p13 + 24p15 + 12¢11)

1
A> 120 ——(8p12 + 8p13 + 8p1a + 8p1s + 8p1s + 8pi7 + 4pae + 4Apss + 4pss+
+ 8q12 + 8qu3 + 4r11)

> 120(12]914 + 12p16 + 12p17 + 12p15 + 6¢20 + 6¢33 + 12113)

1
A Z 120 (48])18 + 247‘33)

1
A > 120(16]923 + 16p2s + 16p35 + 8¢11 + 16¢14)

1
A> 120(82927 + 8ps6 + 8pas + 8G14 + 8Gos + 8qza + 4qus + 4711)

A2 1;0 (4pa3 + 4pay + 4pos + 4pas + 4psa + 4Apss + 4psy + Apse + 4ps7+
+4q12 + 4013 + 4q15 + g1 + Aqos + 4r1z + 4r1)
Az 1;0 (4pa7 + 4pas + 4pse + 4Apss + 4pas + 4pss + 4q15 + 4que + 4qos+
+ 4qse + 4r13 + 2ro9 + 4raz + 4r3s + 2r44)
Z 790 —— (8pasa + 8pes + 8pr7 + 16¢o3 + 16715)
Az 1;0 (4pas + 4pes + 4prs + Aqas + 4qss + 2q55 + 2qes + 4115 + Aros+

+ 47“25 + 47”34 + 47’35 + 47”45)
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1
)\ > m(lZpgg —+ 247"35 =+ 127“55)

1
A > EO(4P46 + 4par + 4Aper + 4qaa + 4qos + 4q3a + 4q3s + 4qus + 4quet

+ 47’12 + 47’14 + 47"24)

1
)\ Z 1 + E(QO(]% + 20T24)

P,Q,R*>0
This semidefinite program can be solved to yield the positive semidefinite matrices

24 -36 36 24 —-36 24 24 —36
=36 277 97 =79 97 =79 =259 54
—36 97 277 =79 97 =259 79 54
p_ 1 24 =79 =79 247 239 67 67 —36

625 | —36 97 97 =239 277 =79 =79 54 |~

24 =79 —-239 67 =79 247 67 —36

24 =259 =79 67 =79 67 247 —-36
—36 54 24 —36 4 36 —-36 54

1728 —1551 —1551 —1308 687 687

—1551 2336 742 908 2557 —4084

1 —1551 742 2336 908  —4084 2557
Q‘M —1308 908 908 1728 —254 —-254 |’

687 2507 —4084 —254 15264 —14424

687 —4084 2557 —254 —14424 15264

1512 568 —380 568 —376

1 568 475 —191 0 =93

R=—| -380 —101 192 —191 2 |,
51 568 0 —191 475 —93
376 —93 -2 —93 190
and A = 2L as desired. ]

625°

Finally, we can use the previous theorem to yield a solution to the Erdos pentagon problem:

Theorem 46. Let G be a triangle-free graph on n vertices. Then ¢(C5; G) < (%)5

Proof. By way of contradiction, suppose there exists a triangle-free graph GG on n vertices
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with ¢(Cs; G) = (%)5 +a > (%)5, for some o > 0. Consider the sequence of graphs
(Gr)rs1 given by G, = G™ for all m € N - that is, let G,, be the balanced blow-up of
G where every vertex of GG is replaced by an independent set of m vertices and every edge
of GG is replaced by a complete bipartite graph K, ,,. Observe that by construction, every

graph in the sequence (Gy) is triangle-free, and the graph G,, will have nm vertices and
c(Cs; Gp) > <(%)5 + a) m?, as one way to choose a 5-cycle in G, is to first choose a 5-cycle

in GG, then choose a 5-cycle in G,,, by selecting one vertex from each of the corresponding
independent sets in G,,.

It is well-known that such a sequence of blow-up graphs is convergent (see, for example,
[1]). For some brief intuition as to why this is true, consider that for a fixed graph H,
p(H; Gy) converges to the probability that the vertices of H can be “coloured” with num-
bers corresponding to vertices in V(G) such that vertices of a given colour v are only
adjacent to vertices with colours corresponding to vertices in Ng(v). Thus, there is a limit
functional ¢ associated with the sequence (Gy,).

But now, consider that ¢(C5) can be bounded as follows:

¢(Cs) = kh_{gop(ca Gr)

120 (%) + ak?)

= Ok
24 120«
~ 625 + nb
24
> @,
contradicting Theorem 45. O
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Chapter 4

Further Work

4.1 A Survey of Results on the Pentagon Problem

While Grzesik’s 2012 paper [11] resolved Erdés’s original problem by showing that every
triangle-free graph on n vertices contains at most (%)5 pentagons, it is worth noting that
several others have obtained further results on the pentagon problem. In this section, we
will briefly detail these results.

In [15], Hatami et al. also used flag algebras to give a different, independent proof of
Theorem 46. However, they made two further contributions to our existing knowledge of
the problem: Firstly, we proved in Theorem 45 that ¢(Cs) < 2t for all ¢ € Hom™ (A?,R)
when H = {/\}, but one might wonder precisely which positive homomorphisms achieve
this upper bound, and how the corresponding convergent sequences of graphs might be
related (if at all) to blow-ups of the pentagon. Indeed, we noted in our proof of Theorem
46 that for a fixed graph G, the sequence of blow-up graphs (Gy)i>1 given by G, = G(™)
for all m € N is convergent. Theorem 34 then tells us that there is a corresponding limit
functional to this convergent sequence of graphs, which we will denote ¢o. Hatami et al.

then proved the following ([15], Theorem 3.2):

Theorem 47. Let H = {/A\}. The homomorphism ¢ = ¢¢, is the unique element in
Hom™ (A%, R) satisfying ¢(C5) = &=.

Returning to the original graph-theoretic formulation of the problem, one might ask which
graphs G meet the upper bound ¢(Cs; G) = (%)5 We certainly know that the balanced

blow-up of the pentagon, C’én/ 5), meets this upper bound, but are there any other graphs
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that do? Hatami et al. also proved that there are no other such graphs ([15], Corollary
3.3):

Theorem 48. Let G be a triangle-free graph on n vertices. Then ¢(Cs; G) = (g)5 only
when n is divisible by 5 and G = C{™.

While this provides a tight upper bound to the parameter ¢(Cs; G) for the instances where
|[V(G)] is a multiple of 5, this does not resolve the question of what the tightest possible

upper bound is when |V(G)]| is not a multiple of 5. Because the upper bound ¢(Cs; G) =
(%)5 is only achieved by the balanced blow-up of the pentagon, a natural construction to
consider would be trying to make a blow-up of the pentagon “as balanced as possible”, by

having each of the five independent sets in the graph consist of either | %] or [F] vertices.

In 2017, Lidicky and Pfender showed that this construction resulted in a tight upper bound
for every n > 5, with one sporadic exception ([21], Theorem 2):

4 .
Theorem 49. Let G be a triangle-free graph. Then ¢(Cs; G) < H VL ;— !

J . Moreover,
i=0

! .
the only triangle-free graphs on n > 5 vertices for which ¢(Cs; G) = H {HTHJ are the
i=0
, and the Mo6bius ladder M Lg for n = 8.

L2122 1282 L D)

5 5

blow-ups of a 5-cycle C’éL%J’

The graph M Lg is as follows:

We can easily confirm that we do have ¢(C5; M Lg) = 8: Indeed, there are eight pentagons in
this graph, the vertex sets of which can be found by taking any five consecutively-numbered
vertices in the cycle (considering the numbers mod 8).
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4.2 A Modification of the Pentagon Problem

In this section, we will discuss an elementary proof of a modification of the pentagon
problem, recently found by Grzesik and Kielak [13].

While the pentagon problem asks about the maximum number of pentagons in triangle-
free graphs, one might wonder about analogous questions for longer cycles. For example,
what’s the maximum number of C;’s in graphs without C5’s or C5’s, the maximum number
of Cy’s in graphs without C3’s, C5’s, or C7’s, and more generally, the maximum number
of odd cycles (' in graphs without any smaller odd cycles? Based on Erdés’s original
statement of the pentagon problem, one might in particular wonder whether this number
can be maximised by balanced blow-ups of the odd cycle Cy. In their paper, Grzesik and
Kielak proved that this is indeed the case, by showing the following theorem:

Theorem 50. For each odd integer k > 7, any graph on n vertices without odd cycles of
length less than k contains at most (%)k cycles of length k.

It is worth mentioning that the method Grzesik and Kielak used to prove Theorem 50 was
based on that used in a paper by Kral’, Norin, and Volec [19], which showed that every
n-vertex graph has at most ?—k induced cycles of length k. That result was the farthest
progress towards resolving a 1975 conjecture of Pippenger and Golumbic [25], which states

that for every k > 5, an n-vertex graph has at most % induced cycles of length k.

We will now follow the proof of Theorem 50 as given in [13], and our notation choices here
will align with that of their paper.

Proof. Let k > 7 be a fixed odd integer, and let G be a graph on n vertices without odd
cycles of length less than k. Observe that every C} is an induced cycle - if there is a chord,
there will be a smaller odd cycle as k is odd. Recall that d(v,w) denotes the minimal
distance between v, w € V(G).

Let vouy - - - vx_1 be a fixed cyclic ordering of the vertices of a k-cycle. Now, define a good
sequence to be a sequence of vertices D = (zi)f;ol, where z; = v; for ¢ = 0,1, and i > 4,
and 2z, = w3, 23 = v9. Note that there are 2k different cyclic orderings of a given k-cycle
and one good sequence for every fixed ordering, so there are 2k different good sequences
corresponding to each k-cycle in G.

Furthermore, define a partial good sequence to be any sequence of [ < k vertices which
could extend to a good sequence: If [ = k — 1, a partial good sequence must be a good

sequence. If [ = 0,1 0or 3 <1 <k —1, a partial good sequence D = (zl-)i;é must satisfy
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that zpz12322...2,_1 is an induced path in G. Finally, if [ = 2, a partial good sequence
D = (z)?_, must satisfy that 202, € E(G), d(21, 22) = 2, and 23 & N(z).

Now, for any good or partial good sequence of vertices D = (zi)égé, where [ < k, let the

special sets Ag, -+, A;_1 be defined on D as follows:
AO D — V(G),
Al D) = N(Zo),

Ay(D) ={w | w € V(G), zpz12322w is an induced path},
Ai(D) ={w | w € V(G), 2021232224 - - - zi_1w is an induced path} for 5 <i <[ —2
A1 (D) ={w | w € V(G), 2021232224 - - - 12w is an induced path} when [ < k,
{ (G)

, 2021232224 - + - z1—ow is an induced cycle} when [ = k.

We make two observations: Firstly, for all [ < k and 1 < i < [ — 1, A;(D) depends
only on the vertices zg, - ,2;_1. Secondly, the set of vertices A;(D) is the maximal set
of vertices which could extend a partial good sequence zg, - -- , z;_1 with ¢ vertices to be a
(partial) good sequence with i+ 1 vertices. In terms of GG, most of these sets of vertices are
those which would extend the corresponding previous vertices in the good sequence to be
a (induced) path, save for Ay_1(D) when [ = k, which instead is the set of vertices which
extend the previous vertices in the good sequence to be an induced cycle, and As(D), which
is the set of second neighbours of z; which are not neighbours of 2.

Now, for a good sequence D = (2;)¥=}, define the weight w(D) of D as

k—1 1
v 0r=

(2

It is worth noting that this is well-defined for every good sequence, since z; € A;(D) for all

0 <i <k —1 and hence |A;(D)| is positive for every i. In fact, for the same reason, the
-1

product H m is well-defined even if D is a partial good sequence with [ < k vertices.
i=0 "7

We will now prove a lemma concerning the sum of weights over all good sequences in G:

Lemma 51. The sum of weights of all good sequences in G is at most 1.
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Proof. We will show that for all 0 < [ < k — 1 and for every partial good sequence
D = (zo,---, 2), the sum of the weights of all good sequences starting with D is at most

l
1

H |4,(D)|’ In particular, letting [ = 0, the sum of weights of all good sequences starting

=0 177

with a given vertex is at most % and thus the sum of weights of all good sequences is 1.

We will demonstrate this by backward induction on [, using the base case [ = k — 1 and
showing that the result for a given [ < k — 1 implies the result for [ — 1. The base case
[ = k — 1 follows from the definition of the weight, since zy,--- , zx_1 only corresponds to
one good sequence. Now suppose that the sum of weights of all good sequences starting
!
1
with any partial good sequence D with [ + 1 vertices is at most Hm
i=0 17
partial good sequence D’ with [ vertices, we want to bound the sum of weights of all good
sequences starting with D’.

Let D' = (z9,--+,2-1) be fixed. By the induction hypothesis, for any w € V(G), if

Dy = (20, ,2-1,w) is a partial good sequence, then the sum of weights of all good
1

!
1 1
sequences starting with D,, is at most | | —_ = | | ———— since |A;(D,,)| = |A;(D)|

For any

for 0 < i <[ and the number |Al(Dw5| only depends on z,- -, 2;_1, which are fixed, so
that |A;(Dy)| = |A;(D)]| for every w. However, there are only |A;(D)| choices of w that
could feasibly extend zg, - - , z,_1 to be a partial good sequence, so it follows that the sum
l
1
of weights of all good sequences starting with z, - - - , 2,1 is at most |A;(D)]|- H A =
i=0 177

Ly

, as desired. O
- [Ai(D)]
Let vgvy - - - vg_1 be a fixed cyclic ordering of a k-cycle in G, and let C' = {wvg, v1,- -+ ,vp_1}

be the set of its vertices. Half the good sequences corresponding to C' can be generated by
shifting the indices of our fixed ordering and then swapping the third and fourth vertices in
the resulting vertex sequence: Namely, letting D; = (v, Vj41,Vj43, Vj12, Vjta, - =+ Vjik—1)
where the indices are considered mod &, D; will be a good sequence for all 0 < j <k — 1.
In general, when considering indexed vertices in C' in the remainder of this proof, we will
consider the indices mod k. We will now prove several lemmas:

Lemma 52. Any vertex w € V(G) has at most two neighbours in C.
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Proof. Suppose there exists a w € V(G) with three neighbours in C. If w = v, € C,
then w will be adjacent to three vertices vy, 1, V41, v; for some ¢ and v,,v; will be a chord,
which must create a smaller odd cycle (as C' itself is an odd cycle and hence one of the two
paths from v, to v; will have even length), a contradiction.

If w¢ C, then w will be adjacent to some three vertices v;,v;,v; € C, where @ < j < L.
If two of these three vertices are adjacent in C, we will have a triangle, a contradiction.
Considering the three paths v;vi41 - - vj, VjUj41 - - Uy, VU4 - - - V4, one of these paths must
have odd length as C' is an odd cycle. Since no two of these three vertices were adjacent
in C', by adding the two edges from the endpoint of this path to w, we will get a smaller
odd cycle, a contradiction. O]

Lemma 53. Let w € V(G). There are at most three vertices in C' at distance exactly 2
from w, and any two such vertices are not adjacent.

Proof. 1f there are two vertices v;,v;11 € C at distance exactly 2 from w, then v; and v;14
either share a common neighbour outside of C' - a contradiction, since this creates a triangle
- or have two disjoint paths to w, in which case this creates a pentagon, a contradiction as
k > 7. In the event that £k = 7, this condition alone means that there are at most three
vertices in C' at distance exactly two from w.

Now let k > 9, and suppose there are four vertices in C, v;,v;,v;, vy, at distance exactly
2 from w, no two of which are adjacent, and where ¢ < 7 < [ < m. Considering the
four paths v;viy1 -+~ v, VU441V, VUL Uy UmUmer - - U, one of these paths must
have odd length as C' is an odd cycle. Consider the paths from the two endpoints of this
odd-length path to w. These paths either meet at a common vertex that is not w or meet
at w; in both cases, since none of v;, v;, v, vy, are adjacent, it follows that by adjoining the
odd-length path (which has length at most & — 6) to the symmetric difference of the two
paths from the endpoints to w (which has length at most 4), we will get an odd cycle in
G of length at most k£ — 2, a contradiction. m

Now, let n;; = |A;(D;)|. We will use the previous two lemmas to prove a lemma which
bounds a certain sum of n;;’s over most ¢ and j, which will leave the final result to be
obtainable from the AM-GM Inequality:

k—1 k—1
Lemma 54. Z (% + an) <n(k—1).
=0 =2
Proof. If w € V(G) is in a given A;(D;), it will contribute 1 to n; ;. Thus, recalling that
[V(G)| = n, to show that this bound holds, it suffices to show that every w € V(G)
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contributes at most k — 1 to the sum on the left-hand side of the above inequality. Lemma
52 allows us to break this up into three cases, where w has zero, one, and two neighbours
in C' respectively.

Case 1: Suppose that w has no neighbours in C. For every Dj, it follows that w ¢
Ay(Dj), A3(D;), As(Dj), - -, Ak—1(D;), since all of these sets only contain vertices that
are adjacent to some vertex in C, so w can only contribute to ny;. If we happen to
have d(w,v;) = 2 for some j, then by Lemma 53, it follows that d(w,v;—;) > 2 and
d(w,vj+1) > 2, so w would not contribute to ng;_s or ny ;. Thus w contributes at most
k — 2 to the left-hand side of the inequality.

Case 2: Suppose that w has one neighbour in C'; without loss of generality, let it be vj.
For every D, it follows that w & A3(D;), Ax—1(D;), since these sets only contain vertices
that are adjacent to two vertices in C. First, let us consider the case of w contributing to
n;; when ¢ # 2: If w contributes to ny;, it needs to be adjacent to v;. If w contributes
to n,; ; for 4 <1i < k — 2, it needs to be adjacent to v;;;_1. Thus, in this case, w can only
contribute to N1,0,MNg,k—3, N5 k—4," " i k—i+1," ", Nk—23-

If w contributes to ngy ;, it must satisfy w € N(v;) and d(v;+1, w) = 2. By Lemma 53, there
are at most three vertices in C' at distance exactly 2 from w, but one of them is v; and
v1 € N(vp), so w contributes to at most two different ny ;’s. Thus, counting both cases, w
contributes at most k — 3 + % to the left-hand side of the inequality.

Case 3: Suppose that w has two neighbours in C. If these neighbours are not at dis-
tance 2 in C, then by considering the odd-length path in C' between these neighbours and
appending the two edges to w, we will get an odd cycle of length shorter than k in G, a
contradiction. Without loss of generality, let the neighbours of w in C' be vx_; and vy, so
that w contributes to ny ;z_1,n1,1, and no other n; ;. Since w has exactly two neighbours
in C, this also means that w contributes to ns;_o, and no other ng ;.

By Lemma 53, it follows that the only vertices in C' which can be at distance exactly 2
away from w are vi_9, vp, and ve. Thus, it follows that w contributes only to ng,_s and
no other ny ;’s. Finally, in order for w to contribute to n;; for 4 <7 < k — 1, the vertex
immediately before w in the induced path or cycle must be v,_1, as if it is v;, the path or
cycle will also contain vi_; and hence it would not be induced. Thus, for 4 <i <k —1, w
contributes to n4—4,M5 k-5, ,Nik—i, - ,Ng—1, and no other n; ;. Counting all cases, w
contributes exactly k — 1 to the left-hand side of the inequality, as desired. m

By the definition of the weight of a good sequence and since ng ; = n for every 0 < j < k—1,
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it follows that

1

k—1 T k(k—1) k—1k—1 F@%ﬂ
o) - i)

j=0 =0 j=0

1
k_17l k—1 k(k—1)
kok 1
= n-2 H T H nm-
7=0 1=2
1
k_l7l k—1 k(k—1)
1 1,9
= (2”) k—1 H _’j H nl,j ,
2 -
=2

Jj=0

and applying the AM-GM inequality (Theorem 2) to the given product of n;;’s, we get

that )
k-1 TRER-D 1 k1 k-1
(271) k-1 n1,j
(gw(Dj)> < Wk —1) > 5 T an :

Now, by Lemma 54, it follows that

k—1 _E@%ﬁ 1
(2n)*1n(k —1)
(jHOw(Dj)> S TR = D)

_ @iy
S Lk

and simplifying, we get that equivalently,
1
k—1 k k‘kil
7=0

Finally, by applying the AM-GM inequality to the product on the left-hand side, we get
that

kk—l
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so that
k-1

k,k
D;) > —-.
7=0
Since the D; account for only half the good sequences corresponding to C, it follows that
the sum of weights of all good sequences corresponding to a fixed copy of Cj is at least

(%)k By Lemma 51, the sum of weights of all good sequences in G is at most 1, and

therefore the number of copies of C in G is at most (%)k, as desired. O]

It should be noted that Grzesik and Kielak also showed that the bound in Theorem 50 is
only tight for the balanced blow-ups of a k-cycle, thus extending Hatami et al.’s result [15]
on the equality case for the pentagon problem:

Theorem 55. The balanced blow-ups of a k-cycle C’,E%) are the only graphs for which
n\k
o(CrG) = (%)".

Proof sketch. If a graph GG contains the maximum number of copies of Cj, every inequality
we considered must be an equality. In particular, the bound we achieved in Lemma 54 is
only tight if, for every k-cycle C, all other vertices of G are connected with two vertices
of C, which are at distance 2 apart from each other. This implies that G is the blow-up
of a k-cycle, and the tightness of the AM-GM inequality shows that this blow-up must be
balanced. O

One might wonder why a good sequence is defined to be the cyclic ordering of the vertices
in a cycle with two vertices swapped. Observe that for Lemma 51 to work, our sets A;(D)
need to be the maximal possible sets of vertices which could possibly extend a fragment
of a good sequence to its next vertex. Thus, if we simply defined a good sequence as the
cyclic ordering of the vertices in a cycle, in Case 3 of Lemma 54, every vertex w which is
adjacent to vy, v,_; would get counted twice among the n4 ;’s (as it’s adjacent to both vy
and vj,_1), twice among the ng ;’s (as vy_ovp_1w and vov;w are both induced paths), and
once among each subsequent set of n; ;’s, which would not enable us to reach the bound
of k — 1 necessary for the ensuing computations to work. We can avoid this problem by
defining A5(D) differently (and thus necessarily defining a good sequence differently) to
allow this counting to work.

Observe that the theorem applies only to odd integers k£ > 7, so this unfortunately does
not amount to an elementary proof of the pentagon problem. That being said, one might
wonder where exactly this proof breaks down for the pentagon case. When applied to the
pentagon, there is no analogue to Lemma 53, as two adjacent vertices in a cycle C' being
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at distance exactly two from another vertex w ¢ C' would simply mean that the paths
from w to C' would need to be disjoint, and adding in the edge in C, would induce another
pentagon. This would mean that the best possible version of Lemma 53 we could obtain
would be that the number of vertices in C' at distance exactly 2 from w is at most the
number of vertices in C' that w is not adjacent to, and cases 1 and 2 of Lemma 54 would
no longer work accordingly. Changing the weighting of the terms in the left-hand side
of 54 (through factoring out different numbers from n; ; instead of a 2 from n, ;) would
not work, and similar situations occur, albeit perhaps with case 3 of Lemma 54 breaking
instead, even if one modifies the definition of a good sequence to be a different permutation
of (vg, v1, V2, V3, Vy).

4.3 Conclusion

The Erdés pentagon problem asks about the maximum number of copies of C5 a triangle-
free graph on n vertices can have. In this thesis, we have seen how this simply-stated
problem is much more difficult to resolve: While we examined this problem from multiple
perspectives, including a simple approach by Gyéri (section 2.1), an algebraic approach
(section 2.2), and an approach investigating structure in extremal graphs (section 2.3), the
only approach which managed to yield a solution was through the semidefinite method for
flag algebras (section 3.9).

While we could certainly conjecture and prove modifications of the pentagon problem
(as we did in section 4.2), the most tantalising open question is whether there exists an
elementary solution to this problem. The proof by flag algebras resolves Erdos’s pentagon
problem asymptotically and has been accepted by the mathematical community, but it
was aided by a computer (in solving the semidefinite program); in fact, all known proofs
to date resolving the pentagon problem have been computer-assisted.

Some may see the resolution to this problem as unsatisfying: While many proofs of theo-
rems in extremal graph theory such as our first proof of Mantel’s theorem (Theorem 17)
are able to tell us something about the elementary structure of a graph (often, an ex-
tremal graph) that causes the theorem to be true, this has continued to elude us here. If
anything, the proof we presented signals to us that this task may be daunting, since we
were only able to investigate the pentagon density in a triangle-free graph through looking
at the densities of every other triangle-free graph on five vertices, which in turn required
us to “factor through” the densities of all four-vertex flags corresponding to all possible
three-vertex types.
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The late Erdés often talked about proofs that he thought to be from “The Book”, where
“the perfect proofs for mathematical theorems” are maintained [1]; these were often suc-
cinct and elegant solutions for simply asked questions. Perhaps the pentagon problem has
a solution which Erdés might exclaim to be in The Book, but if it does, it still remains to
be seen what exactly this might look like.
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