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Abstract 

The current distribution systems are typically not designed to accommodate a high level of renewable 

sources. Customer impact assessment studies are usually required by the distribution utility prior to 

the connection of DG. In these studies, the impacts of Distributed Generator (DG) on the system 

voltage profile, reverse power flow, short circuit level, and the system voltage unbalance are 

evaluated. If the DG failed to fulfill the distribution system technical requirement, the DG project 

application might be rejected. In some cases, the DG capacity may be reduced to fulfill the technical 

constraints. In other cases, the renewable based DG power may be curtailed (especially at peak 

generation). The reduction in DG capacity, as well as the DG active power curtailment, will badly 

affect the DG project investment. 

In order to eliminate the DG active power curtailment, the investor may connect a battery at the 

same point of the renewable DG. The battery can dispatch the DG generation; therefore, the peak DG 

power, that causes the violation to the system technical constraints, is shaved. However, the high 

capital cost of the batteries may negatively affect the investor profit. In such cases, the usage of 

second life (SL) batteries represents the most useful solution. SL batteries have significantly cheaper 

capital costs compared to new batteries. Thereby, the major driver for using SL batteries is the 

possibility of reducing costs and maximizing the DG investment by avoiding the utilization of new 

Li-ion batteries.  

The main aim of this research is to use batteries, which have lost part of their original 

performance during their first life, with the distribution system applications. The general objective is 

to utilize the SL batteries for smoothing the photovoltaic based DG power to increase the DG 

penetration while fulfilling the utility technical constraints. Another objective is to use the SL 

batteries connected at the same bus of the DG to maximize the DG project investment.  

 Towards the execution of the proposed research work, some ancillary studies  are presented in 

chapter (3); the results of these studies are used to solve the main problems under study presented in 

chapter (4). The studies presented in Chapter (3) comprises a probabilistic model for the PV DG,  a 

long-term forecasting technique for the system load, a load flow study to determine the maximum 

allowable injected DG power, and an economic assessment study  to determine the best PV DG 

capacity that increases the net present value of the profit of the PV DG project.  
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The results of the aforementioned studies are integrated with the main problems under study 

that were formulated and solved in Chapter (4). Two main objectives were presented in this chapter; 

i.e. the first objective is to obtain the optimal size of the SL batteries that achieve zero curtailment 

while minimizing the battery cost, the second objective is to obtain the optimal schedule of the 

batteries that maximize the net present value of the profit. 

The results obtained show that the SL batteries are adequate for the application, and they have 

superiority over the brand-new batteries in terms of cost. SLB batteries give a chance to the investor 

to purchase batteries at low prices at later years of the project rather than purchasing all the required 

batteries at the beginning of the project. Thus, the SL batteries offer a competitive solution for the 

cost problems associated with the battery integration with the distribution systems.  
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Chapter (1) 

Introduction 

1.1 General  

In the last few decades, the renewable based Distributed Generators (DGs) have been extensively 

integrated with the distribution network due to the increased environmental and economic benefits. 

DGs play an important role in reinforcing the main substations to satisfy the swelling demand. DGs 

can be connected or disconnected easily from the network, thus providing higher flexibility. 

Properly planned and operated DG installations have many benefits as savings due to decreasing 

system power loss, system reliability and security enhancement, Power Quality improvements, 

emissions reduction due to the usage of Renewable Energy Sources (RES). 

Despite the multiple economic and environmental benefits that integration of RES offers to 

the distribution network, the integration of RES also raises several uncertainty issues for the 

distribution system due to the intermittent nature of these RES. The RES are strongly correlated to 

the climate, ambient temperature, season, time, and geography; thus, they follow a stochastic 

distribution pattern dependent on their primary sources and the generation technologies.  

Several solutions were offered to mitigate the impacts of RES high variability; the most 

prominent solution to connect battery energy storage systems (BESS) at the same point of the RES. 

BESS can provide smoothing for the RES power so that the RES power can be dispatched on an 

hourly basis based on the forecasted conditions. In addition, the BESS could be used to maximize 

the total net profit of the DG investment project by allowing higher DG power without violating the 

distribution system technical constraints. 

On  the other hand, the Electric vehicles (EVs) witness an evolution in the latest few 

decades.. Due to this evolution it is expected that in the upcoming few decades a massive amount of 

second life electric vehicles batteries are required to be retired from the automotive life. However, 

the automotive end of life doesn’t mean that the battery can’t be used in further applications. In the 

automotive application the EV battery is considered to be inefficient when the capacity reaches 70-

80 % of its original capacity. However, the degraded capacity of the second life battery is still 

making it beneficial in some electric grid application. 
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Applications of the SL battery in the electric grid should be analyzed economically; this is 

because the planner has the choice either to install one brand new battery that will not suffer a high 

degradation along the project lifetime or to use multiple SL batteries installed at different years of 

the project lifetime. This thesis is handling the idea of using the second life batteries for increasing 

the penetration of PV DG, minimizing the DG active power curtailment, and maximizing the total 

income of the DG investement. Chapter 1 of this dissertation presents the main motivations of this 

work, the overall objectives of the presented research, and the outline of this thesis.  

1.2 Motivation 

The connection of RES to the distribution network is technically constrained as the current 

distribution systems are typically not designed to accommodate a high level of renewable DG 

sources. Customer impact assessment (CIA) studies are usually required by the distribution utility 

prior to the connection of DG. In these studies, the impacts of DG on the system voltage profile, 

reverse power flow, short circuit level, and the system voltage unbalance are evaluated. If the DG 

failed to fulfill the distribution system technical requirement, the DG project application might be 

rejected. In some cases, the DG capacity may be reduced in order to achieve the technical 

constraints. In other cases, the renewable based DG power may be curtailed (especially at peak 

generation). The reduction in DG capacity, as well as the DG active power curtailment, will badly 

affect the DG project investment. 

To eliminate the DG active power curtailment, the investor may connect BESS at the same 

point of the renewable DG. The BESS can dispatch the DG generation; therefore, the peak DG 

power, that causes the violation to the system technical constraints, is shaved. In addition, in case of 

the net metering type of connection, the BESS could be used for increasing the DG investment 

profit by storing energy at off-peak periods and releasing that energy at the peak periods.  

Despite all the aforementioned benefits, the net effect of BESS on the DG project investment 

may be negative due to the high BESS capital cost. Moreover, the system restriction on the DG 

penetration level could be alleviated over the project lifetime. For example, due to the growth of the 

distribution feeder loads, the utility may decide to expand its substations capacity or even build a 

new substation. Another alternative is to encourage customers to participate in Customer Demand 

Management (CDM) and Distributed Energy Resources (DER) programs. In other words, the utility 
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may allow more DG penetration to meet the growing demand. Therefore, in this case, the BESS 

will be used only for the first few years of the project lifetime. 

In such cases, the usage of second life (SL) batteries represents the most useful solution. 

Second life batteries have significantly cheaper capital costs compared to new batteries, and their 

reduced lifetime, the main disadvantage of these batteries is an advantage in this case. Thereby, the 

major driver for using SL batteries (retired from their first life automotive service) is the possibility 

of reducing costs and maximizing the DG investment by avoiding the utilization of new Li-ion 

batteries.  

Another motivation for this research is its environmental impact. The usage of SL batteries in 

smoothing the RES power will achieve several environmental benefits at the same time; the 

increased renewable power penetration will decrease the usage of fossil fuels. Moreover, the usage 

of SL batteries will minimize the environmental impacts; by avoiding the manufacturing of new 

batteries to cover the same application. Furthermore, due to the proliferated penetration of Electric 

Vehicles nowadays, thousands of SL batteries will be present during the next decade. these batteries 

should be employed in beneficial application and avoid the negative environmental impact of the 

batteries disposal.  

1.3 Research Objectives 

This research work aims to use batteries, which have lost part of their original performance during 

their first life, with the distribution system applications. The general objective is to utilize the SL 

batteries for smoothing the photovoltaic based DG power in order to increase the DG penetration 

while fulfilling the utility technical constraints. Another objective is to use the SL batteries 

connected at the same bus of the DG to maximize the DG project investment.    

The specific objectives of the presented work are discussed as follows; 

• Develop a long-term load forecasting technique in order to forecast the distribution system 

loading conditions   

• Develop a probabilistic modeling strategy for photovoltaic based DGs that considers their 

stochastic nature.    

• Determine the DG capacity that maximizes the net present value (NPV) of the DG 

investment profit while maintaining the distribution system technical constraints. 
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• Obtain the optimal capacity and the operation schedule of the SL batteries required to 

minimize the DG active power curtailment and to maximize the DG investment profit    
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   Figure 1.1 Thesis organization chart 
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1.4 Thesis Organization 

The proposed research in this thesis deals with the utilization of SL batteries for maximizing the 

photovoltaic DG investment profit while satisfying the system technical constraints. This thesis 

organization is shown in fig 1.1 and illustrated as follows;  

• In chapter (1), a brief introduction to the BESS integration with the distribution system is 

presented. Moreover, the thesis motivations, objectives, and organization are listed. 

•  In chapter (2), a quick survey on the Energy Storage Systems (ESS) is presented. The survey 

focuses on the Battery Energy Storage Systems BESS. In addition, the chapter presented a 

detailed review of the SL batteries performance parameters and expected lifetime as well as 

their potential applications.    

• In chapter (3), the probabilistic model of the photovoltaic based DGs is presented, and the 

long-term load forecasting technique is proposed. Moreover, the DG capacity selection 

technique for achieving the maximum investment profit is presented.  

• In chapter (4), the SL batteries Usage with the distribution system is studied; the optimization 

problem is formulated and solved. Furthermore, the results are presented and discussed. 

•  In chapter (5), a summary of the presented research, and contributions are presented. The 

recommendations for further work are provided. 
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Chapter 2 

Literature Review 

2.1 Introduction 

The renewable energy sources (RES) penetration in the power system is increasing because of its 

role in minimizing the negative environmental impacts of conventional fossil fuel-based 

technologies. However, the stochastic nature of the renewables creates high uncertainty in the 

energy production profile which makes it difficult for power system operators to rely on the RES in 

the power system and market operation. Thus, the energy storage systems (ESSs) are utilized to 

decrease the uncertainties associated with the RES. ESSs are important for voltage and power 

smoothing, as well as load leveling, peak shaving, energy management, and frequency regulation, 

also may be used as a standby generation during faults.  

On the level of the distribution systems based on the capacities, the utilized energy storage 

systems are battery-based energy storage systems (BESS). BESS has numerous applications in the 

distribution systems. However, the most common application from the customers or investors point 

of view is to maximize the benefits by using the BESS as arbitrage; in which the energy is stored in 

the off-peak times; when the energy cost is minimal and injected during the peak hours; when the 

energy cost is high. In the previous scenario, the utility seems to be losing the energy cost at the 

system peak. However, the utility function is to guarantee high quality and the continuity of the 

power supplied to the customers.  It would be preferable for the utility to take off the shoulders the 

running and fixed the cost of establishing new power plants or even operating the existing plants 

with light loading to solve the congestions problems. In this case, the injected power coming from 

compatible renewable-ESS will manage to offer energy with good quality and reasonable prices to 

the system.  

Several studies were carried out on the ESS to minimize its cost; either by developing less 

expensive materials or by creating ESS with higher energy density. However, ESS is still having 

high relative costs; which discourage the customers and the distribution system investors to 

integrate them with RES based generators; especially on the small scale investments. The 

aforementioned reason makes the second life batteries usage in the power system is a promising 

application; especially for the applications with light consumption compared to the automotive 
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application; such as the electric grid.  However; not all the second life batteries could be installed in 

the power system. According to the previous studies; the most important specs that should be 

considered while choosing a second life battery is the percentage fading of the capacity, the rate of 

charge and discharge during the first-hand usage, the remaining lifetime, the state of health, the 

percentage deterioration of the efficiency, and depth of discharge (DOD). All of these parameters 

should be considered during the modeling and adopting of the second life battery in the power 

system applications.  

This remaining of this chapter is organized as follows; section 2 introduces a general 

overview of different technologies of energy storage systems, and the applicability of each 

technology to the distribution system Section 3 focuses on the second life batteries and the main 

parameters and specifications that should be considered while choosing a second life electric 

vehicle battery in the distribution systems.  

2.2 Energy storage system technologies 

Energy storage technologies are based on storing the electrical energy in some forms and then 

retransform it into electric energy whenever needed. ESS can be categorized based on different 

aspects; such as the duration (short or long term), the type of the converted energy, or other criteria 

such as the efficiency, capacity and the capital cost or the impact on the environment. the surveyed 

EES technologies includes Pumped Hydro Systems (PHS) [1]-[5], Compressed Air Energy Storage 

(CAES) [5]-[9], flying wheel energy storage [10]-[13], and Battery Energy Storage Systems 

(BESS), Supercapacitors/ Ultracapacitors [2], [3], [8], Superconducting Magnetic Energy Storage 

(SMES) [13], [2], [20], [21] ,and  Hydrogen Energy Storage HES - Fuel Cells FC [2], [6], [13], [8], 

[5], [15]. The following section highlights the battery energy storage systems. 

2.2.1 Battery Energy Storage Systems   

Batteries are considered as the most well-known energy storage devices. In addition, they are 

configured as long-term energy storage devices. Batteries have high combinational flexibility to fit 

different loadings capacities as the battery cells could be connected in series and/or in parallel to 

match any loading profile.  
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Table 2-1 The main characteristics advantages and disadvantages of chemical batteries 

 Lead acid Ni-based 

 

Sodium-

sulfur 

 

Sodium 

Nickel 

Chloride 

Lithium-ion 

 

Flow 

batteries 

Lifetime 2-3 years 10-15 10–15 10-14 20 years 20 years 

Cost $/kwh 150–500 800–1500  300–500 150-300 600–2500 NI 

Efficiency  65–80% 60-70% 75–90% 90% 90–97% 60-85%  

Time 

response 

Fast <5msec <5ms Fast <5msec <5ms Fast <5msec NI 

Advantage ➢ High 

reliability 

and 

sustainabil

ity for 

power 

quality& 

spinning 

reserve. 

➢ Low self-

discharge 

rate<0.3%

/day 

➢ Low 

maintenan

ce cost. 

➢ Good 

performan

ce at low 

temperatur

es  

 

➢ High rated 

capacity 

244.8MW

h. 

➢ Low 

maintenan

ce need. 

➢ Nontoxic 

material. 

➢ 99% 

recyclable. 

➢ No 

maintenan

ce cost. 

➢ Very low 

self-

discharge 

➢ low 

maintenan

ce 

required. 

➢ Power 

density is 

relatively 

high  

➢ Better 

performan

ce at low 

temp.  

➢ Low self-

discharge 

rate 

<5%/yr  

➢ No self-

discharge 

rate. 

➢ No effect 

after deep 

discharge. 

➢ Long 

lifetime. 

➢ Low 

maintena

nce rate. 

➢ Can reach 

to 100% 

DoD  

Disadv. ➢ Low 

energy 

density. 

➢ Low 

specific 

power. 

➢ Limited 

life cycles. 

➢ High 

maintenan

ce 

requireme

nt. 

➢ Emits 

explosive 

gases. 

➢ Slow 

charge  

➢ Harmful 

to 

environme

nt  

➢ Maximum 

capacity 

decreases 

dramatical

ly  

➢ High cost 

 

➢ High 

operating 

cost 

($80/kW/y

ear) 

➢ Explosion 

hazards 

are 

possible.  

➢ The initial 

capital 

cost is 

high 

 

➢ low 

potential 

in power 

system 

application 

➢ The 

lifetime of 

the Li-ion 

is based 

on the 

operating 

temperatur

e. 

➢ Toxicity 

due to 

metal 

oxide 

electrodes 

if 

overchargi

ng or over 

dischargin

g 

➢ High 

investme

nt cost. 
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Batteries could be categorized into two main types; electrochemical and redox flow batteries 

(reduction-oxidation). Both of them are based on the chemical reactions; however, the techniques 

used in the chemical reactions are different. The main concept is the transformation of the direct 

current to chemical energy stored. Where the criteria the batteries store energy is by creating an 

ionic potential difference between the positive and negative plates with dielectric material in 

between to facilitate the mobility of the charges. In other words, during the charging process, the 

electric energy is transformed into chemical energy and during the discharge, the process is 

reversed taking into consideration that the flow of the electrons is fixed DC current. Table 2-1 

summarizes the types of BESS, their characteristics, efficiency, time response, and pros. and cons.  

2.3  Second Life (SL) Batteries  

The idea of SL batteries was aroused from the predicted growth of the electric vehicles in the 

upcoming years. Moreover, it was one of the solutions to maximize the salvage cost of the electric 

batteries which is considered to have a relatively high cost. The studies carried on this topic analyze 

the problems from different perspectives. Some studies are carried to determine the appropriate 

retirement time from automotive life to maximize the benefits. Other studies handled the reliability 

assessment of the SL batteries. In addition, some studies were carried out to handle the profitability 

of SL batteries. The following subsections discuss the idea of integrating the SL batteries in the 

active distribution networks, the parameters estimation, and the economic worth of adopting the 

second life batteries. In addition, different modeling techniques are presented to estimate the 

capacity of the SL batteries along the project’s life span 

2.3.1 Parameters Affecting the Capacity Fading in SL Batteries 

The following parameters affect the capacity fading in SL batteries: 

• State of health (SOH): it is the figure of merit of the battery compared to the mint 

condition. That includes any changes in the capacity or the internal parameters (e.g. 

capacitance, resistance) 

• State of charge (SOC): is the percentage charge of the battery. 

• Depth of discharge (DOD): is complimentary of the SOC, and it is advised by the 

manufacturer that it should be kept between 80% and 20%. 

• C-Rate: the ampere-hour charge and discharge per unit time 
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• Deterioration rate: the percentage of the capacity fade based on the time storage or the 

variation in the temperature. 

• Temperature: the ideal operation condition of the battery ranges between -20C and 60C, the 

performance is affected by the higher and lower temperatures. 

Number of complete discharges: this parameter causes damage to the battery and affects its life. 

Most of the modeling considering the capacity fading considers a number of complete discharges. 

2.3.2 Grid Applications of the SL Batteries  

Electric vehicles (EV) among its types plugged in hybrid electric vehicles invaded the market in the 

last decade, and it is expected to keep growing through the upcoming decades. The viability of the 

EV is contingent on the predicted economic value of the electric vehicle batteries. In spite of the 

positive environmental impact of the electric vehicles; the costs are relatively high. This was an 

impetus for the government to encourage the academic and practical projects to propose solutions 

that aim to increase the density of the batteries, as well as, the reduction of its cost. The EV 

manufacturers recommended the replacement of the EV batteries after capacity fade from 20-30%. 

This condition acted as an inspiration to the researchers in the electric field; as the characteristics of 

the EV after retirement matches some of the applications in the electric grid [36], [37]. The 

deterioration rate of the EV batteries returns to the exposure of the EVs to different climatic 

variations and consequently temperatures, Moreover, there is no a fixed pattern for the rate of 

discharging or the depth of discharging even with the advised directions of the manufacturers. This 

is not the case in the applications of the electric grid and the ancillary services; where the 

temperature is almost fixed and the pattern varies by the variation of the application but it still 

almost fixed. In addition to the remarkable difference between the new and the SL electric batteries; 

SL batteries are interesting material for research. The following applications area carried practically 

through different projects. 

1. The assistance of the ancillary systems 

The prominent application of the SL batteries are assisting the ancillary services; such as system 

balancing, spinning reserve and load following. Moreover, it could be applied in the smoothing of 

the energy penetration of renewable energy resources; either on the transmission level or on the 

distribution small scale level.  
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2. Assisting EV fast chargers 

In [36], an actual project was executed in which the SL batteries are used in fast EV charge; in 

which three fast EV chargers were connected and a grid connection of 70 kW power peak. Because 

of the lack in the power at the schedule, the project added SL batteries for assistance. 

3. Self-consumption 

In this case, the promising applications of smart energy management inside buildings are aroused. 

The SL batteries have a bright future in the projects of the net-zero metering or even the small-scale 

assistance of existing rooftop PV generators. On land small scale project was carried that assisted 

the generation of PV Based generator with 6 kWh through SL batteries [36]. 

4.  Area regulation: 

The area regulation is an additional service that the owner of the self- consumption can add when 

there is a surplus in the energy. Hence, area regulation is added to the self-consumption current 

profile which ends up with higher energy exchange. 

5.  Transmission Deferral  

In this application, the power is transmitted from one grid to neighbor grid transformer; it happens 

when the energy demand is higher than the transformer capability. Where the batteries charge 

during the off-peak periods and re-supply the power on demand. The main advantage of this 

application is the deferral of the transformer upgrade time. 

2.3.3 Economic Benefits of the SL Batteries 

Many studies were carried out to handle the economic benefits of SL batteries. The outcomes of 

these studies provided different conclusions; some are supporting the integration of the SL batteries 

with the system, while others are against this integration. It can be concluded that the SL batteries 

economic benefits should be evaluated based on numerous factors such as the application and the 

battery need for refurbishment. The following subsections discuss different point of views based on 

the economic benefits and the profitability of the SL batteries.  

2.3.3.1 Calculating the Market Price of the SL Battery [38]-[42]  

In order to calculate the market price SL battery, some parameters should be considered such as the 

state of health, the capacity fade, the number of cycles in the first life, the remaining life span after 
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the first life. The evaluation in most of the studies is based on tracking the performance of the first 

life, determining the total life cycles (rate of discharges) and the depth of the discharge determined 

by the manufacturer in the whole life of the of the EV battery, and monitor the average number of 

cycles at which the capacity remaining is between 70-80%. In order to evaluate an approximate 

range of the cost of the SL battery, based on the aforementioned items, a ratio between the first life 

cycles consumption and the total determined manufacturer cycles is calculated and multiplied by 

the cost of the new battery. The ratio takes into consideration the deterioration occurred due to the 

number of cycles in the first life and the state of health after being retired from the automotive life. 

Some of the studies subtracted an incentive value to encourage the investment of the SL batteries if 

compared to the new ones. In addition, in other studies, the refurbishment cost is added. 

2.3.3.2 The Profitability of Integrating the SL Battery   

The profitability of the SL battery is the benefits that the investor acquires from using such 

technologies. Thus, the study should consider two main points. First, the applications in which the 

customer has invested. Second, the study should include a comparison between the usages of the 

brand-new batteries and the SL battery. In [43], eighteen applications were illustrated to the profit 

applications in the SL battery. Moreover, the combination of these applications was mixed to 

maximize the profit.  

2.3.3.3 Market Potential to Adopt the SL Batteries  

The investors would be oriented towards the most profitable applications of the SL batteries. With 

the expected linear growth of the EV, the SL batteries will grow as well. The US growth of EV 

production raised from 25,000 in 2011 to 200,000 EVs in 2015 [39]. The system is still in need of 

the SL batteries and has not reached saturation yet. However, the expected consequences after the 

saturation are that the offered SL battery will be less than the needed and consequently low revenue 

to the owners of the EV and discourage to the EV.  

Authors in [41] suggested the grid-connected EV batteries in order to decrease the congestion 

of the system; as the saturation of such application based on the aggregation of the minimum and 

maximum capacities that will invade the market by 2063. This solution is expected to be a brilliant 

estimation if the batteries technologies laboratories did not come up to a proper solution for the 
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battery cost by 2063. In [42], it was predicted that by 2038 the expected power out of the SL 

batteries would be 584 GWh which could assist about 156 million rural households.  

Overall, the penetration of the SL batteries to the market might be achievable by reaching the 

mass market penetration on certain applications. However, another application which is based on 

adding a significant amount of batteries is sustained up until now due to the limited amount of SL 

batteries. Some of the most profitable applications are reserved for other technology as the SL 

batteries are still weak to invade. As a conclusion, all of these studies should be introduced as a 

preliminary approach; as the production of the EV is highly unpredictable.  

2.3.3.4 Minimize the Upfront Cost of the EV Batteries  

As previously mentioned the main impetus of the SL batteries is the increment of the salvage value 

of the electric vehicles batteries. A study proposed in [43] stated that the salvage value of the EV 

battery may decrease the monthly battery lease payment from 11% up to 24%. On the other hand, 

another study presented in [40] handled the problem from a different perspective by assessing the 

failure rate of the SL batteries. In this study, the refurbishment cost increased, and the salvage value 

dropped to a range from 6% to 26%.  

It is concluded from this section that the contribution of the salvage value in reducing the 

upfront cost of the EV battery is not enough to encourage the idea of adopting the EV based on this 

Idea, and consequently it would be better to have a scientific solution to enhance the energy density 

of the EV battery and use materials that decreases the upfront costs. 

2.3.3.5 Early Retirement of the EV Battery and Its Profitability  

In spite of the fact that the manufacturers determined specifications below which the EV battery is 

no more convenient for the automotive life, some studies were performed to test the early 

retirement on the EV batteries. These studies were aiming to elevate the salvage value of the EV 

battery and enhance the performance of the SL batteries. These studies were made with two 

different assumptions. First, there is no refurbishment cost after retirement from the automotive life. 

Second, the study considered the second life customer acceptance factor. In both cases, the results 

indicate that the more the EV last in the automotive life the more profitable impacts. However, 

there are a threshold specs above which a high deterioration rate will occur in the EV battery and 

then it is no more fitting for this application [39], [44]. 
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The proper linkage between economic and technical viability relies on the aging among the 

first and second lives, and the proper definition of each. The definition of the end of the automotive 

life is called first life end of life (FL-EOL). In addition, the maximum level of battery aging in the 

second life at which the threshold occurs is called second life end of life (SL-EOL). 

Finally, the battery performance while aging is an important study that needs decades to be 

executed; because of the fact that the EV battery performance is dependent on various parameters, 

such as the rate of discharge, the depth of discharge, and the number of complete discharges among 

the lifetime. Which is dependent on the owner behavior. The probabilistic models are most fitting in 

this case. However, it would need a high budget and a long time to be performed. The proper 

question now is what the viability of the SL batteries is, and if there is invasion would it be 

prominent. This is discussed in the following section [39], [44]. 

2.3.4 Technical Viability of SL Batteries 

In this section, the analysis of the suitability of the SL batteries for operating on certain applications 

is carried. In addition, SL batteries performance, power, and energy capabilities are evaluated. 

Moreover, different modeling techniques and the estimation for the end of life (EOL) is discussed. 

2.3.4.1 Technical viability from Applications Perspective  

The sizing of the SL battery is little more complicated than the brand new due to the fact that the SL 

batteries require a relation between the number of cycles and the EOL. In [45], the application of 

the area regulation was carried; no major issues were recorded among the power and energy 

assessment. However, it was recognized that under high rate of cycles; 72 cycles/day two – three of 

the cells should be replaced. In addition, among the time horizon, two to three replacements are 

needed among 15 years of operation.  

The microgrid application was studied in [46], [47]. A multi-objective problem was carried, 

that indicated frequency regulation, ancillary services for local grid operator management while 

considering the time of use (TOU) and offering demand charge management for the customer. 

Based on the results, the SL batteries not only provided peak shaving of renewables DG at a 

reasonable price, but it also improved the voltage profile of the grid even with increasing the load 

factor. Moreover, it was recognized while applying SL batteries in the applications of the energy 

management services in distribution network [48], [49], [50]-[52] that the performance is 
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acceptable. However, the heterogeneity between cells and the reduction in the density from that 

indicated in the first life batteries is indicated. Which is normal after the batteries are subjected to 

harsh circumstances such as those in the automotive applications. However, it could be ignored 

with the larger sizes of the SL batteries. 

There are challenges that encounter some of the researches concerning optimal sizing of the 

SL batteries; because of the few data presented in the literature in this field. However, such studies 

could be considered as a compact topic that may cover the idea of SL battery as it considers the 

aging and the profitability of the SL batteries. A study presented in [53] considered the operation of 

SL batteries to assist the generation of the PV array; based on the system requirements the battery 

was in operation for 292 days on different locations in the US. The size of the PV and the SL 

batteries were evaluated. The aforementioned study is an extended work that was done in [54] in 

which the integration of PV with SL batteries for residential purposes was evaluated. The study aim 

was to manage the energy of building at the most profitable revenue. The results showed an 

enhancement in the energy storage capabilities which might reduce the system peaks up to 70 % 

during summer with less than 5% energy delivered to the grid.   

After studying the applications of the SL batteries in the grid; it was concluded that the SL 

batteries can assist the renewables on different applications the electric power grid; inside a 

building; in microgrid assistance, on the distribution level or in assisting the transmission level 

maintaining the ancillary services. In spite of the uncertainty of the SL batteries reliability; the 

practical applications did not show a huge drawback with respect to the cost difference between the 

new and SL batteries.  In the other side, the SL batteries contribute to the encouragement of 

adopting more renewables in the system with higher benefits. Moreover, the SL batteries can 

contribute to utility applications such as voltage regulation with minimal cost compared with 

alternative technologies. 

2.3.4.2 Technical viability from battery perspective  

Based on the previous studies [55]-[62], [53], the certain age of the SL batteries is still vague. 

While the applicability of any of the technical or economic applications is mainly based on battery 

degradation behavior. The most common observation is the unequal degradation of the batteries 

among the lifetime. Some of the studies applied the evolution of the Peukert number, which is a 
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method evaluating the degradation of the battery cells with the rate of discharge, round trip, and the 

internal resistance of the batteries. But none of them showed a certain reason in the unequal 

capacity fade of the cells. Other studies took over the determination of the number of cycles in the 

SL batteries with different DOD and different temperatures; before the batteries reach SL-EOL, and 

it showed a large spectrum in the number of cycles, in the second life, of SL batteries based on the 

type of the used batteries. However, it is mentionable that the Li-Ion based batteries show the 

highest number of cycles among the other types. On the other hand, some studies discussed the 

hazardous effects that might happen if the aging exceeded the threshold knee. The studies indicate 

that the applications are not possible after the knee threshold of the batteries. Which emphasizes the 

manufacturer stated specs of the EV battery.  

An interesting study that introduced an evaluation technique that is based on the diffusion 

coefficient and the remaining capacity in the evaluation of the SL batteries, this study gives an 

indication to the long term second life prediction. However, this study is not practical as it requires 

the disassembly of the battery components. Moreover, verification techniques carried out on the 

battery through the first year after retirement to indicate which is eligible and which is not during 

the second life batteries based on the deterioration rate and the variation in densities. 

2.3.4.3 First Life End of Life Criteria for EV Battery Retirement [63]-[65]  

In this sector of the literature, the focus is directed to the validity of the assumptions that the EV 

batteries should be retired after 70-80% of its capacity remaining as well as the power capability. 

Moreover, the criteria used in the first life end of life (FL-EOL) threshold. EV battery FL-EOL was 

first defined by USABC in 1996. It was mentionable that the battery should retire after reaching 

80% from its initial capacity. However, the studies were carried on the Nickel batteries. Meanwhile, 

there are numerous studies were carried indicating the maximum allowable capacity fading for the 

Li-ion batteries and it showed that the Li-ion based batteries might attain a good performance for 

the automotive life at capacity equals to 70%. Hence, in the literature, it is important to link the 

model of the battery and the duration of the research to the most recent applications.  

The determination of the FL-EOL is based on the rate of discharge and the DOD as 

mentioned in the previous sections. The aforementioned parameters are based on the owner and the 

type of ownership. It might follow any of the following three Battery ownership models (BOM): 



 

18 

 

1. The EV owner is the battery owner. 

2. The EV manufacturer is the battery owner, and the EV owner has a leasing agreement for 

the batteries. 

3. A third-party is the battery owner and the EV owner has a leasing agreement for batteries. 

In the second and the third scenarios the battery retirement could obey rules; based on the 

retirement specifications or on the warranty. This will lead to a large number of EV retired batteries 

at the same time with approximately relatively close state of health (SOH) as it is correlated to the 

kilometers driven by the car. This duration may vary from 10-12 years for a required replacement. 

It could be concluded from the studies that the variable SOH level at the FL-EOL might 

affect the assessment of the SL batteries. However, monitoring the first life battery through the 

ownership model control (BOM) will add an extra background on the behavior of the battery in the 

first life and offer a better chance for assessment at the start of the second life. 

2.3.4.4 SL Batteries Modeling Based on the Lifetime  

The modeling of the SL batteries is based on the behavior of the EV batteries [44], [66]-[68]; 

hence, it is characterized by high uncertainty. The model is for the percentage capacity fading along 

the second life period and determining the threshold deterioration rate beyond which the capacity is 

no more effective, and the battery should be recycled. There are many parameters that should be 

considered during this model such as the state of health the average depth of discharge based on the 

manufacturer recommendation, the average number with complete discharge (up to 100%), the state 

of health, the C- rate, and the temperature. However, in order to build a model that has a 

distribution probability function the monitoring should cost time and money to be performed on 

different EV batteries. On the other side, the modeling of the SL batteries does not require the 

monitoring of the temperature as it is almost constant. Moreover, based on the literature it was 

recognized that the deterioration rate of the capacity in the second life is more than that in the first 

life. This is because of the fact that there are higher lithium losses than when was at the automotive 

application. The capacity fade is multiplied then by 3.3% than that of the first life. Among the 

modeling, the deterioration either modeled by a straight line or by an exponential function.in order 

to describe the deterioration rate of different types of Li-ion batteries. Both are empirical functions 

and need laboratory readings to emphasize them and put them into reality. Hence, as it was 
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proposed the utilization of the probability distribution functions based on the performance every 

year and based on the correlation to different parameters is the most promising and expensive as 

well model. 

2.4 Summary 

ESS over the decades had different forms based on the kind of energy stored inside. The most 

important parameters that affect the decision of using a certain type of ESS are the energy density, 

the power density, the self-discharge rate, the efficiency, and the field of the project. Most of the 

ESS could find an appropriate application on the transmission level; this returns to the importance 

of the ESS in the market, TOU, reducing the system congestions, and might control the electricity 

prices. On the other hand, the profitability to the capacity ratio makes most of ESS deviate from the 

distribution level applications. However, the controller of this decision is economic benefits. There 

is no doubt that the most appropriate ESS for distribution system applications is batteries with its 

different types; this is because of the capacity flexibility and high efficiency. However, the high 

cost of the BESS may form a drawback; that may lead to discouragement to the customers or small 

investors in the distribution system to adopt batteries in their projects. In addition, the healthy 

environmental impact of the BESS if integrated with renewables, in the distribution network, made 

the governments encourage the usage of some projects such as net-zero metering and building 

energy efficiency management.  

On the other hand, it was recognized that obstacle that affect the growth of the EV 

technology is the cost of the batteries. This made the researches directed to find a solution to this 

problem. One of the solutions is to give the EV batteries a second life in the electric grid power 

applications. Many studies dealt with different perspectives; economically, study the viability, the 

market response, and it was tested in different applications. The target of these studies is to 

maximize the salvage value keeping into consideration the incentives to the second life users to 

adopt this idea instead of new batteries.  

The SL batteries have some drawbacks; the most prominent is the uncertainty of the state of 

health of them; the annual capacity fade, and the SL-EOL. It was discussed that the performance of 

the EV batteries in the first life affects second life applications. The performance could be 

controllable in case of battery ownership model control (BOM); the controllable scenario is when 
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the batteries are leased by a third party or by the manufacturer. In this case, the state of health is 

controllable along the lifetime of the first life. However, many studies were carried out in different 

grid applications and it was noticed that the power and energy performance were good. However, 

the heterogeneous performance of some cells among the others of the battery back was recognized.  

It could be concluded that the SL batteries have some drawbacks; however, these drawbacks 

will not affect the grid needs if the cost is a factor in the study. The SL batteries might encourage 

investments in the distribution system, which was economically discouraged in previous times.  
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Chapter 3 

Integration of Photovoltaic Distributed Generators with the Distribution 

System 

3.1 Introduction 

The target of this study is to evaluate the economic worth of the Second Life SL battery in the 

distribution grid applications. The application selected in this thesis is to utilize the SL battery to 

assist the PVDG so as to maximize the economic benefits of the PVDG project. In order to execute 

the aforementioned objective, two stages are considered. First, economic study is performed on 

PVDG alone then PVDG with SL battery. Moreover, to build up the system and check the 

constraints; load flow is performed considering the annual growth of the load. The target of the load 

flow is to determine the Maximum Allowable Injected Power (MAIP) that keeps the bus voltage 

and the reverse power to the substation within the limits set by the utility. In addition, a load 

forecasting technique is  developed; in which the growth of the load along the project lifetime  is 

considered; the forecasting technique is able to determine the minimal loading considering the 

typical day model of each season. Meanwhile, in order to integrate the PV DG a model was 

developed; which considers the stochastic nature of the PV DG a probabilistic model was 

developed which the gives the most likelihood output power per seasonal hours. 

The General objective of the work presented in this chapter is to select the suitable capacity 

of the photovoltaic DG to be connected with the distribution feeder. The rationale of the selection 

procedure is to determine the best DG size, among the candidate sizes, that maximizes the net 

present value of the DG investment project and maintain the distribution system technical 

constraints. In the presented analysis, it is assumed that the DG rated capacity may exceed the 

maximum allowable injected power (MAIP) at the DG bus. However, in this case, the utility will 

curtail the extra DG power that exceeds the maximum allowable value.  

The DG investor has two choices; the first is to connect as small size DG less than the MAIP 

power and the second choice is to connect a large size DG and allow the utility to perform the 

adequate curtailment. On the other hand, the MAIP is assumed to be a value that is determined by 

the utility at each bus. In case the DG power exceeded this value, the technical constraints (i.e. the 

voltage limits and the reverse power constraint) would be violated.  
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The maximum power value varies as the forecasted load changes; e.g. if the forecasted load 

at a certain year is larger than the base year load, the maximum allowable power injection MAIP 

will increase in return. Thus, a long-term forecasting technique is required to determine the 

forecasted load and the corresponding MAIP along the DG project life time. These forecasted 

values will give the DG investor a boarder view in order to select the most appropriate DG capacity. 

In this chapter, a load forecasting technique is presented to determine the forecasted load 

during the life time of the DG project. Moreover, a strategy is presented for probabilistic modeling 

of photovoltaic DG power considering the stochastic nature of solar irradiances. The results of the 

load forecasting technique and the modeling strategy are integrated with a load flow study in order 

to determine the maximum allowable power injection MAIP along the project life time. Finally, 

based on the obtained results, the best DG size is selected from the candidates’ sizes. The criterion 

of selection is based on the maximization of the net present value of the DG investment profit.  

3.2  Load Forecasting  

Load forecasting is a vital tool in the majority of power system studies. For reliable solution of the 

design, planning, operational planning, and operation problems, accurate load forecasting technique 

should be utilized first. Precise load forecasting helps the electric utility to make unit commitment 

decisions, reduce spinning reserve capacity and schedule device maintenance plan properly. 

Moreover, system demand prediction is a significant feature in the developments of power system 

models due to the modern deregulated electricity markets [69].  

Precise load forecasting is a challenging problem as electric loads are characterized by high 

unpredictable characteristics. However, the loads are strongly correlated to the weather conditions, 

season, time and geography [70]. Thus, load forecasting technique should consider the stochastic 

pattern of the loads as well as other correlated factors.  

From the perspective of the time horizon, load forecasting technique could be categorized 

into four main categories; the very short term, the short-term, the medium-term, and the long-term 

load forecasting. A brief summary of the four categories and the corresponding applications of each 

are introduced in Table 3-1 [71]-[72]. 
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Table 3-1 Classification of Load Forecasting According to Time Horizon 

Forecasting 

horizon 

Time scale Application 

Very short-term few minutes to an hour 

ahead  

• Power system frequency control 

• Energy purchasing 

• Demand side management 

Short-term from one hour to one 

week 

• Economic dispatch  

• Reserve requirement  

• Day-ahead electricity market 

• unit commitment 

• Demand side management 

Medium-term One week to one year • Planning of future needs for expansion, equipment 

purchases, or staff hiring. 

• Energy purchasing 

Long-term longer than one year • scheduling fuel supplies and unit maintenance 

• Financial planning 

The system demand is highly correlated with the meteorological /seasonal conditions. Thus, 

the network planners are in need of a load forecasting technique that is capable of considering the 

stochastic nature of the electric system demand and the meteorological/seasonal conditions. 

In this section, a novel Copula based approach is proposed for load forecasting. This 

approach takes into account the stochastic nature of the electric loads by determining the most 

adequate cumulative distribution functions (CDFs) from the available historical data of the loads. 

Moreover, the effects of the meteorological conditions on accurate forecasting are taken into 

consideration by dividing the available data based on a seasonal/hourly/nature classification. The 

introduced approach employs Monte-Carlo simulation MCS in conjunction with Gaussian Copula 

method for considering the stochastic dependence between different time segments of the 

forecasted load. 

3.2.1 The Proposed Forecasting Technique  

In order to obtain the annual MAIP that keeps the bus voltages and the reverse power within 

the preset utility limits the worst case loading is considered in the planning problem .Thus, the load 

forecasting technique should be able to determine the annual mimimum loading, which is 

considered to be the minimum annual load, taking into consideration the annual load growth. The 

proposed load forecasting technique consists of two main stages. First, is to forecast the load 

variation trend. The second stage aims to determine the typical day model, for each of the four 



 

24 

 

seasons, for the base year. Based on the trend forecast and the base year typical day model, the 

typical day models for the forecasted years could be obtained. 

A. Load Variation Trend 

In order to determine the trend for the load variation over the forecasted period the following 

algorithm is proposed; 

1. Divide the available historical load data based on seasonal/annual classification. Firstly, the 

available data is classified based on the year (each year data is separated). Secondly, each year 

data is separated again based on the season. Thus, the total number of datasets is equal to 4 N (N 

historical years X 4 seasons). 

2. Determine the CDF corresponding to each dataset separately based on the available data in this 

dataset ((𝐹𝑤1, 𝐹𝑤2, … . 𝐹𝑤𝑁), (𝐹𝑠𝑝1, 𝐹𝑠𝑝2, … . 𝐹𝑠𝑝𝑁), (𝐹𝑆1, 𝐹𝑆2, … . 𝐹𝑆𝑁), (𝐹𝑓1, 𝐹𝑓2, … . 𝐹𝑓𝑁))      

where(𝐹𝑤𝑁, 𝐹𝑠𝑝𝑁 , 𝐹𝑆𝑁 , 𝐹𝑓𝑁) are the CDFs of year N for winter, spring, summer and fall. 

Gaussian CDF is selected for simulating the random behavior of the load. 

3. For the winter season datasets (N datasets), determine the rank correlation between the CDFs of 

each dataset and the CDF of the first-year dataset; i.e. 𝜌𝑛,1. 

4. Generate (N) independent uniformly distributed random numbers (𝑢1,𝑢2 … … … . . 𝑢𝑁) 

5. Convert the independent random numbers to correlated uniform random numbers 

(𝑢𝑐1,𝑢𝑐2 … … … . . 𝑢𝑐𝑁) using the Gaussian- Copula method and the calculated rank correlation 

using (3.1). 

),(
1,1

1

11

nUV
uuCu

uu

ncn

c

−=

=

 

 

(3.1) 

           

6. For each random number, the inverse of the corresponding CDF 

(𝐹𝑤1
−1(𝑢𝑐1), 𝐹𝑤2

−1(𝑢𝑐2), … . 𝐹𝑤𝑁
−1 (𝑢𝑐𝑁)) is used to determine the load at the current simulation (i) 

(𝐿𝑊1
𝑖 , …..𝐿𝑊𝑁

𝑖 )  

7. Repeat the Monte Carlo Simulations, for very high number, to obtain the most likely load for the 

winter season for each year.   The dynamic average is calculated using (3.2) 



 

25 

 


=

=
mc

i

i
wn

ave
wn L

mc
L

1

1
 

 

(3.2) 

Where:
ave
wnL  the expected value of the load for winter season at year n and mc is the total 

number of MCS.  

8. Determine the linear equation that fits the obtained expected average loads at the N years and 

use this equation to forecast the expected loads for each year over the period of the study. 

9. Repeat steps 3-8 for the other seasons. 

B. Typical Day Model 

In order to determine the typical day model (i.e. 24 values of the expected load representing the 24 

hours of the day) for the four seasons for the base year, the following algorithm is proposed; 

1. To remove the effect of the trend, the available historical data (for each season for each year) is 

divided by the corresponding most likely value of the season and the year (obtained from the 

previous algorithm).  

2. Divide the trend-free load data based on seasonal/hourly classification. Firstly, the available data 

is classified based on the season (each year data is separated). Secondly, each season data is 

separated again based on the hours. Thus, the total number of datasets is equal to 96 (24 hours X 

4 seasons). 

3. Determine the CDF corresponding to each dataset separately based on the available data in this 

dataset. Gaussian CDF is selected for simulating the random behavior of the load. 

4. For a dataset, generate mc (very high number enough for MCS convergence) independent 

uniformly distributed random numbers. 

5.  Determine the load corresponding to each random number from the inverse of the CDF of the 

dataset.  

6. Determine the most expected load for the dataset (the average of mc random loads obtained from 

the MCS)  

7. Repeat steps 3-6 for the other datasets to determine the most expected load at all seasons at all 

hours. 
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3.2.2 Results of the Forecasting Technique  

The load forecasting technique presented in section 3.2.1 is applied to a 7 years of historical load 

data collected in Canada from 2012 to 2018. The obtained results are discussed as follows;  

C. Results for the Load Trend 

The available historical data is separated to 28 datasets (4 seasons X 7 years) and the Gaussian CDF 

is obtained for each dataset. The rank correlations are obtained between the CDF of the year 2012 

and the remaining years CDFs for each season.  

The expected load values for each dataset is obtained using the algorithm described in section 

3.2.1, A. Moreover, the trend equation that fits the obtained loads is determined for each season; a 

sample of the trend equation for the winter season is presented in Figure 3.1. The trend equations 

are used for forecasting the expected load for each season over the period of the study (i.e. 20 years 

from 2019 to 2038). The complete results for the forecasted loads as ratio to the most likely load of 

the base year (2018) are presented in Figure 3.2 to Figure 3.5. 

 

Figure 3.1 Trend Equation for Winter Season 
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   Figure 3.2 Trend Forecast for Winter Season 

 

   Figure 3.3 Trend Forecast for Spring Season 
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      Figure 3.4 Trend Forecast for Summer Season 

 

Figure 3.5 Trend Forecast for Fall Season 
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A. Typical Day Model for the Base Year 

The available historical data is firstly divided by the corresponding most likely load values for each 

year for season and then separated to 96 datasets (4 seasons X 24 hours) and the Gaussian CDF is 

obtained for each dataset. The algorithm presented in section 3.2.1, B is applied to determine the 

expected typical day model for each season for the base year (2018). The obtained hourly results 

(the 96 values) are then divided by the maximum value of the 96 hours to determine the normalized 

typical day model for the four seasons. The normalized typical day models are presented in Figure 

3.6.   

 

Figure.3.6 Typical Day Model for the Four Seasons 

B. Typical Day Model for the forecasted Years 

The results obtained from sections A and B are used to determine the typical day models for the 

forecasted years. The ratios obtained in section A are multiplied by the typical day models of the 

base year; to determine the forecasted typical day models over the period of the study. A sample of 

the results (the forecasted day models for the last forecasted year; 2038) are presented in Figure 3.7.  

 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
o

ra
liz

ed
 L

o
ad

 (
p

.u
.)

Winter

Spring

Summer

Fall



 

30 

 

 

Figure 3.7 Forecasted Day Model for year 2038 

3.3 Photovoltaic DG Modeling  

3.3.1 The Proposed PV DG Modeling Technique 

A similar algorithm to that presented in section 3.2.1, B is used to determine the most probable 

output power from the PV DG. The PV DG modeling algorithm is discussed as follows; 

1. Divide the available historical solar irradiances data based on seasonal/hourly classification. 

Firstly, the available data is classified based on the season (each year data is separated). 

Secondly, each season data is separated again based on the hours. Thus, the total number of 

datasets is equal to 96 (24 hours X 4 seasons). 

2. Determine the CDF corresponding to each dataset separately based on the available data in 

this dataset. Beta CDF is selected for simulating the random behavior of the solar irradiance. 

3. For a dataset, generate mc (very high number enough for MCS convergence) independent 

uniformly distributed random numbers. 

4.  Determine the simulated solar irradiance corresponding to each random number from the 

inverse of the CDF of the dataset.  
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5. Calculate the corresponding PV DG power corresponding to each simulated solar irradiance 

obtained from the previous steps using (3.3 – 3.7) [73] 

)
8.0

20
(

−
+= OT

aac

N
STT  (3.3) 

)]25([ −+= cisca TKISI  (3.4) 

cvoc TKVV −=  (3.5) 

scoc

MPPMPP

IV

IV
FF




=  (3.6) 

IVFFNPs =  (3.7) 

Where  

cT  Cell temperature °C 

aT
 

Average hourly ambient temperature °C 

aS
 

Simulated solar irradiance kW/m² 

OTN
 

Nominal operating temperature of cell °C 

I  Module current (A) 

scI
 

Short circuit current (A) 

iK
 

Current temperature coefficient A/°C 

V  Module voltage (V) 

ocV
 

Open-circuit voltage (V) 

vK  Voltage temperature coefficient (V/°C) 

FF  Fill factor 

MPPV  Voltage at maximum power point (v) 

MPPI  Current at maximum power point (A) 

sP  Simulated output power of the PV module 

N  The number of modules per array. 

6. Determine the most probable PV DG for the dataset (the average of mc PV powers obtained 

from the MCS)  

7. Repeat steps 3-6 for the other datasets to determine the most probable PV DG powers for all 

seasons for all hours. 
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3.3.2 The Results of the PV Modeling  

The algorithm presented in section 3.3.1 is applied to ten years of historical data collected from 

Ontario, Canada during the period 2009 – 2018.  Table 3-2 presents the values of the constants and 

parameters required to calculate the PV output per module. The 24 hours PV module converged 

powers for the four seasons are presented in Fig 3-8 (for a 10 kW DG consists from 40 modules).  

Table 3-2 characteristics of the PV module [74] 

Module characteristics Features 

Watt peak (W) 250 

Open circuit voltage (V) 37.1 

Short circuit current (A) 8.91 

Voltage at maximum power (V) 29.8 

Current at maximum power (A) 8.39 

Voltage temperature Coefficient (mV/°C) 132 

Current temperature Coefficient (A/°C) 5.52 

Nominal cell operating temperature (°C) 46 
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Figure.3.8 PV DG Expected Powers 

3.4 Maximum Allowable Injected Power 

3.4.1 Problem Formulation 

In this subsection, the maximum allowable power, that is allowed to be injected at a certain bus, is 

determined. This allowable power should be determined by the utility in order to maintain the 

system technical constraints. In addition, this allowable power is to be obtained for each year over 

the period of study.  

The problem is formulated to maximize the DG penetration at a certain bus #j for a certain year y: 

max 𝑃𝑖𝑛𝑗(𝑗, 𝑦)   (3.8) 

Subjected to the following technical constraints: 

• Substation reverse power: the reverse power at the substation bus is limited to 40 % of the 

substation power. 

• Voltage limits: all voltages for all system buses are constrained as follows; 

maxmin VVV i   (3.9) 
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In the presented analysis it was assumed that the DGs are allowed to connect to a certain bus of the 

feeder determined by the utility. Moreover, it is assumed that the loading condition is set to the 

minimum loading condition for each year; i.e. the minimum loading for a year is used to determine 

the maximum allowable power at this year; since the modeling is based on the worst case scenario.   

3.4.2 Results 

The problem formulated in section 3.4.1 is solved using MATLAB and tested on the IEEE 33 bus 

test feeder shown in Figure 3.9. It was assumed that DGs are allowed to connect to bus number 32 

only. The minimum loading condition in each year is used to determine the maximum allowable 

injected power. The minimum loading ratios for all years over the period of study are presented in 

Table 3-3; the loading ratio, for a certain year, is multiplied times the original loading of all buses 

of the IEEE 33 bus system to simulate the minimum loading conditions for this year. The 

maximum allowable injected powers for the period of study are determined and presented in Table 

3-4.   

 
 

Figure 3.9 Layout of the 33-bus feeder.  
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Table 3-3 Minimum Loading Ratio Over the Study Period 

Year Minimum Loading Ratio (p.u.) 

2019 0.758051 

2020 0.76667 

2021 0.77529 

2022 0.783909 

2023 0.792528 

2024 0.801148 

2025 0.809767 

2026 0.818387 

2027 0.827006 

2028 0.835625 

2029 0.844245 

2030 0.852864 

2031 0.861483 

2032 0.870103 

2033 0.878722 

2034 0.887342 

2035 0.895961 

2036 0.90458 

2037 0.9132 

2038 0.921819 
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Table 3-4 Maximum Allowable Power Results 

Year Maximum Allowable Injected Power (kW) 

2019 700.9 

2020 710.8 

2021 721.4 

2022 729.2 

2023 730.5 

2024 738.2 

2025 746.4 

2026 751.6 

2027 768.8 

2028 774.1 

2029 785.3 

2030 790.5 

2031 804.3 

2032 812.2 

2033 814.1 

2034 819.5 

2035 828.7 

2036 840.3 

2037 846.1 

2038 854.7 

 

3.5 Selection of DG size based on the profitability 

In this section, the most profitable DG size is selected in order to maximize the DG investment 

project. In this selection algorithm, it was assumed the DG is connected to a certain bus of the 

distribution system (i.e. bus 32) without any energy storage. Also, it was assumed that the utility 

will curtail the portion of DG power greater than the maximum allowable injected power calculated 

from section 3.4. Since the maximum allowable injected power is increasing over the forecasted 

period (the project life time), the amount of active power curtailed from PV DG will decrease all 

over the project life.  
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As shown in the demonstrative example presented in Figure 3.10, for a DG capacity of 1 

MW, for the first year of the DG project life the curtailment will be any DG power greater than 

700.9 kVA. The curtailed power will decrease all over the project life and the active power 

curtailment for the 20th year will be 854.7 kVA. This means if the DG size is 700 kW, no 

curtailment will occur during the project lifetime. Also, if the DG size is 800 kW, active curtailment 

will occur for the years 2019-2030 and no curtailment will occur for the remaining years. Thus, the 

DG investor should select the optimal DG size that maximizes the net present value of the DG 

project investment taking the potential active power curtailments into account.  

 

Figure 3.10 Impact of the Active Power Curtailment 

3.5.1 Economic Evaluation of the DG Project 

In order to calculate the NPV of the DG project, the after-tax cash flow, presented in [73], is 

performed.  This cash flow considers the inflation rate, the escalation rate, the taxes, the 

depreciation rate, and the capital cost allowance. The after-tax cash flow algorithm is discussed as 

follows;  
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1. Calculate the DG capital cost (CAP) using (3.10) [73] 

)cos( tcapitalunitPerPCAP rated
DG =  (3.10) 

 

2. Calculate the income per year for the project lifetime. [73] 


= =

+=
4

1

24

1

1-y )],Pr(,[esc%)(191
S hr

DG hrShr)(SP(y)Income  (3.11) 

Where (y)Income is the DG project income for certain year (y), hr)(SPDG , is the DG generated 

power (energy as the power is assumed constant over the hour) at certain hour (hr) at certain season 

(S) for certain year, ),Pr( hrS  is the energy prices at certain season and hour, esc is the escalation 

rate of the feed-in-tariffs, and 91 represents the number of days per season.      

3. Calculate the capital cost allowance (CCA) per year, for each year of the project life time, using 

(3.12) [73] 

][
1

0


−

=

−=
y

j

CCA(j)CAPdep(y)CCA(y)  (3.12) 

Where dep(y) is the depreciation rate at a certain year (y).   

4. The CCA is used for taxes calculation; the taxes for each year are determined using (3.13) [73] 

)())(( yrateTaxyCCAIncome(y)Taxes(y) −=  (3.13) 

5. Calculate the inflation adjusted after tax cash flow (C(y)) for each year using (3.14) [73] 

y)(

Taxes(y)Income(y)-
C(y)

inf1+
=    (3.14) 

Where inf  is the inflation index  

6. Calculate the NPV for the DG project using (3.15) [73]; 

CAP
)(

C(t)
NPV

N

y
y
−

+
=

=1 int1
   (3.15) 

Where NPV is the net present value, N is the project lifetime, and int is the interest rate. 

3.5.2 Maximizing the Profit of DG Project 

The method of determining the best DG size; in order to maximize the DG profit, is carried out 

heuristically by evaluating all possible DG sizes economically. It is assumed that the available DG 

sizes are multiple of 10 kW and the maximum available DG size is 1000 kW. Thus, the economic 
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evaluation procedure presented in section 3.5.1 is tested for all the available DG sizes between 10 

kW and 1000 kW to determine the size that achieves the maximum NPV of the profit. The 

economic parameters presented in Table 3-5 is used to perform the required economic evaluation. 

Moreover, the PV DG energy selling prices for two test cases, fixed and variable, are presented in 

Table 3-6. 

Table 3-5 PV DG Parameters [73] 

Parameter Value 

DG capital cost  2.8 $/W 

DG investment lifetime  20 yr 

Escalation percentage  0% 

Fixed operation and maintenance cost  10 $/kW. yr 

Variable operation and maintenance cost 0 

Depreciation rate  20%, 10% for the first year 

Corporate tax rate  26 % 

Inflation rate 2 % 

Interest Rate 3 % 

 

 

Table 3-6 Selling Prices for PV DG Energy [73] 

Test case  
PV Energy Selling 

Prices 
Time/season 

Case #1: Fixed prices 0.288 $/kWh  for all hours for all seasons 

Case #2: Variable prices 

0.33 $/kWh for peak 

hours  

(11 am-5 pm for Summer and Spring) (7am-

11 am and 5pm-7pm for Winter and Fall) 

0.2375 $/kWh for 

mid-peak hours 

(11 am-5 pm for Winter and Fall) (7am-11 

am and 5pm-7pm for Summer and Spring) 

0.1625 $/kWh for 

off-peak hours 
7 pm- 7 am for all seasons 
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Test Case #1: Fixed Prices 

For the fixed prices scenario, the results for the economic evaluation procedure show that the 

optimal DG size is 1000 kW; i.e. the maximum NPV (3,847,766) occurs at DG size equals to 1000 

kW. These results could be explained that increasing the DG size increases the amount of output 

energy even if the active power curtailment is considered. A sample of the obtained NPVs for the 

profit for different DG sizes in presented in Table 3-7 . Moreover, the complete after-tax cash flow 

for the optimal DG size is summarized in Table 3-8. Furthermore, total income reduction (for the 

1000 kW DG) due to active power curtailment for each year over the project lifetime is presented in 

Table 3-9. 

Table 3-7 DG Profit for Test Case #1 

DG Size (kW) NPV of the DG profit ($) 

600 2,558,405 

700 2,984,806 

800 3,377,240 

900 3,657,516 

950 3,762,832 

1000 3,847,766 

The results presented in Table 3-9 show that the income reduced due to curtailment is 

decreasing along the project lifetime due to decreasing curtailment. The NPV of the income 

reduction is 416, 242 $; i.e. 10.82% of the profit NPV.  
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Table 3-8 After-Tax Cash Flow for the Optimal DG Size for Test Case #1 

Year Income ($) CCA ($) Taxes ($) C(Y) 

Present Value 

($) 

1 641640 280000 94026.4 536876.1 521238.8976 

2 645272.4 504000 36730.83 584911.2 551334.8777 

3 649125 403200 63940.5 551432.4 504638.7745 

4 651782.5 322560 85597.84 523067.1 464738.3287 

5 652225.4 258048 102486.1 497915.8 429506.538 

6 654848.8 206438.4 116586.7 477961.3 400285.1024 

7 657642.6 165150.7 128047.9 461044.1 374871.0092 

8 659414.2 132120.6 137096.4 445793.3 351913.341 

9 665274.4 105696.5 145490.3 434932.1 333339.2274 

10 666865.2 84557.17 151400.1 422860.9 314648.2348 

11 670094 67645.73 156636.6 412954.9 298327.3727 

12 671593.1 54116.59 160543.9 402958.8 282627.2049 

13 675571.5 43293.27 164392.3 395158.1 269083.4409 

14 677849 34634.62 167235.7 386981 255840.037 

15 678396.7 27707.69 169179.1 378356.1 242852.4133 

16 679953.5 22166.15 171024.7 370727 231024.8242 

17 682605.7 17732.92 172866.9 364036.4 220247.9816 

18 685672 14186.34 174586.3 357841.5 210194.159 

19 687040.1 11349.07 175679.7 351013.5 200178.1113 

20 689068.6 9079.257 176797.2 344743.9 190876.3646 
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Table 3-9 Income Reduction Due to Curtailment for Test Case #1 

Year 

Income Reduction ($) due to active 

power curtailment 

1 66,762 

2 63,129 

3 59,277 

4 56,619 

5 56,176 

6 53,553 

7 50,759 

8 48,988 

9 43,128 

10 41,537 

11 38,308 

12 36,809 

13 32,831 

14 30,553 

15 30,006 

16 28,449 

17 25,797 

18 22,730 

19 21,362 

20 19,334 

 

Test Case #2: Variable Prices 

For the variable prices’ scenario, the optimal DG size is also 1000 kW; i.e. the maximum NPV 

(3,592,090) occurs at DG size equals to 1000 kW. A sample of the obtained NPVs, for the profit for 

different DG sizes, is presented in Table 3-10. Moreover, the complete after-tax cash flow for the 

optimal DG size is summarized in Table 3-11. Furthermore, total income reduction (for the 1000 

kW DG) due to active power curtailment for each year over the project lifetime is presented in 

Table 3-12. 
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Table 3-10 DG Profit for Test Case #2 

DG Size (kW) NPV of the DG profit ($) 

600 2,457,778 

700 2,867,407 

800 3,234,267 

900 3,460,487 

950 3,531,755 

1000 3,592,090 

 

Table 3-11 After-Tax Cash Flow for the Optimal DG Size for Test Case #2 

Year Income ($) CCA ($) Taxes ($) C(Y) 

Present Value 

($) 

1 612444.4 280000 86435.54 515695 500674.7 

2 615946.5 504000 29106.1 564052.7 531673.8 

3 619696.3 403200 56289.03 530911.2 485859 

4 622455.5 322560 77972.84 503017.8 446924.8 

5 622915.4 258048 94865.52 478271 412560.8 

6 625639.3 206438.4 108992.2 458767.8 384210.8 

7 628540 165150.7 120481.2 442295.8 359626.9 

8 630379.5 132120.6 129547.3 427455.5 337437.3 

9 636464 105696.5 137999.6 417092.8 319666.9 

10 638338.9 84557.17 143983.3 405543.8 301762.7 

11 642300.9 67645.73 149410.3 396413.7 286377.7 

12 644140.4 54116.59 153406.2 386940.6 271392.3 

13 649022.2 43293.27 157489.5 379970.7 258741.6 

14 651816.8 34634.62 160467.4 372381.4 246188 

15 652488.9 27707.69 162443.1 364111.2 233709.1 

16 654399.2 22166.15 164380.6 356952 222440.7 

17 657653.7 17732.92 166379.4 350849.7 212269.8 

18 661502.6 14186.34 168302.2 345318.9 202838.4 

19 663225.2 11349.07 169487.8 338916.6 193279.4 

20 665779.4 9079.257 170742 333146 184454.8 

 

The results presented in Table show that the income reduced due to curtailment is 

decreasing along the project lifetime due to decreasing curtailment. The NPV of the income 

reduction is 504, 206 $; i.e. 12.3% of the profit NPV. This high reduction in income may encourage 
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the DG investor to connect battery energy storage at the same bus of the DG to reschedule the DG 

output power in order to minimize the curtailment and maximize the profit as discussed in Chapter 

(4).  

Table 3-12 Income Reduction Due to Curtailment for Test Case #1 

Year 

Income Reduction ($) due to active 

power curtailment 

1 77,679 

2 74,177 

3 70,427 

4 67,668 

5 67,208 

6 64,484 

7 61,584 

8 59,744 

9 53,660 

10 51,785 

11 47,823 

12 45,983 

13 41,101 

14 38,307 

15 37,635 

16 35,724 

17 32,470 

18 28,621 

19 26,898 

20 24,344 

 

3.6 Summary  

This chapter presents a novel methodology for optimal integration of PV DGs with the distribution 

network; while maintaining the distribution system technical constraints. To achieve this objective, 

four techniques were presented; i.e. long-term load forecasting technique, PV power modeling 

strategy, determination of the maximum allowable injected power at the potential DG bus, and the 

selection of the PV DG size for maximizing the DG profit.  
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The obtained results show that the active power curtailment is causing a NPV reduction of 

10.82% of the expected DG income. Thus, the use of battery storage at the same bus of the DG may 

positively affect the NPV of the DG profit. However, the high capital cost of the new batteries as 

well as the dropping income reduction along the project lifetime may make the base case without 

the battery more profitable. In other words, the battery usage will be decreasing over the project 

lifetime as the potion of DG power requiring reschedule is dropping over the lifetime. 

In this case, the idea of second life battery may be the adequate solution. Second life batteries 

have significantly cheaper capital costs compared to the new batteries, and their reduced life time, 

the main disadvantage of these batteries, is an advantage in this case. Thereby, the major driver for 

using SL batteries is the possibility of reducing costs and maximizing the DG investment by 

avoiding the utilization of new Li-ion batteries. The impacts of the second life battery utilization are 

compared to the new batteries; this is the core of the study presented in the next chapter. 
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Chapter 4 

Enhancement of Photovoltaic DG Investment using Second Life Batteries  

4.1 Introduction 

The main goal of the research work presented in this chapter is to introduce the idea of integrating 

the second life batteries, which have lost part of their original performance during their first life, 

with the distribution system.  The specific objective is to utilize the SL batteries for rescheduling 

the PV DG power in order to increase the DG penetration (minimize the active power curtailment) 

while fulfilling the utility technical constraints. Another objective is to use the SL batteries 

connected at the same bus of the DG to maximize the DG project investment. 

Based on the work presented in Chapter (3), it was concluded that it is better for the DG 

investor to connect a large size DG and allow the utility to perform active power curtailment. This 

option achieves a higher profit compared to connect a small size DG less than the maximum 

allowable power injection specified by the utility. However, the results also showed high-profit 

reduction (10.82% - 12.3% of the profit NPV) due to this curtailment. This significant reduction 

introduces the idea of integrating battery energy storage to reschedule the PV DG power for the 

sake of maximizing the profit.  

In this chapter, the idea of the integration of SL batteries with the distribution system to 

enhance the PV DG penetration and profit is proposed. The maximization problem for the 

incremental profit NPV (the difference between the profit NPV before and after the addition of the 

battery) is formulated. The optimization problem is solved, and the optimal battery size and 

operation schedule is obtained for different test cases; i.e. the fixed and variable energy prices. For 

all analysis presented, the SL batteries integration is compared to the brand-new batteries.  

4.2 Modeling of the SL Batteries 

The main difference, in terms of modeling, between the brand-new batteries and SL batteries is the 

deteriorated performance of the SL batteries. SL batteries have already consumed a part of their 

capacities during their first life which is known as capacity fading.  Accurate modeling of the 

capacity degradation of the SL batteries plays a role in the determination of the lifetime duration of 
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the battery in its second life, and hence it would provide more precise data for the second life 

planning.  

4.2.1 Modeling of the Capacity Degradation of Batteries 

Capacity degradation of EV batteries is dependent on several factors, such as the battery aging, 

operating temperature, battery chemical component, and size. However, the most effective factors 

that cause capacity fading are storage loss and the discharge cycle loss. The storage capacity loss is 

defined as the loss which happens to the battery with aging; even if the battery is not in operation. 

The discharge cycle loss is the capacity loss due to the discharging of the battery. Every discharge 

cycle of the battery contributes by a percentage in the capacity degradation for a certain depth of 

discharge (DoD). The depth of discharge is variable for every cycle based on the system 

requirements. For the new batteries, the DOD is recommended not to exceed 70% of the battery 

capacity; i.e. the state of charge is recommended not to be less than 30% of the capacity. 

 In order to calculate the capacity degradation of each cycle, equation (4.1) is used [75]. The 

equation describes the capacity degradation taking into consideration different factors affecting the 

capacity fading. The degradation of each cycle is dependent on the depth of discharge, the rate of 

discharge, the annual capacity fade that happens due to the storage, and the operating temperature at 

which the battery is used.  

))(*)*)*)(*)(((
1

tempfYrCapCapFtempfDoDfnDergadatioCapacity storage
cy

CY

cy
+=  =

 (4.1) 

Where: 

)(DoDf : A factor that is corresponding to DOD. 

)(tempf : Temperature factor. 

CapF : A factor that is corresponding to capacity fading per cycle. 

storageCap : the capacity fading due to storage per year 

Yr : The number of service years of the battery. 

cy: The number of discharge cycles. 

CY: The total number of discharge cycles. 

 

The aforementioned factors are discussed as follows; 

 

A. Temperature Factor 
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Arrhenius model is used to model the capacity fading due to the temperature variation. The 

temperature factor could be calculated using (4.2). However, based on the surveyed studies, any 

operating temperature range between -20C and 40C has a minimal impact on the capacity fading 

rate. Therefore, in the proposed study, the temperature effect is considered negligible; i.e. the 

temperature factor is set to one.  

))/1/1(/exp()( referencea TTREtempf −−=  (4.2) 

Where: 

aE : The activation energy. 

R : The gas constant. 

T: the operating temperature during the cycle. 

referenceT : The reference operating temperature.  

B. Depth of Discharge Factor 

The percentage of capacity fading affects the percentage of capacity degradation; e.g. the capacity 

fade corresponding to DoD=35% is less than the capacity fade corresponding to DoD=60%. In 

order to model the impact of the DOD on the capacity degradation, equations (4.3) and (4.4) are 

used [76]. The two equations present an approximate model for the percentage capacity fading for 

different ranges of DoD. Equation (4.3) is used when the DOD is greater than 51% of the battery 

manufacturing capacity, while (4.4) is used when the DOD is less than 51% of the battery 

manufacturing capacity. 

% 51DOD ,  51%)-0.025(DOD+1)( =DODf  (4.3) 

% 51DOD ,  DOD)-0.025(51%-1)( =DODf  (4.4) 

C. Capacity Fading Factor 

The capacity fading can be calculated through the fitting empirical formula of the second life Li-ion 

battery which represent the percentage capacity remaining after a number of cycles (Cy) regardless 

of the depth of the discharge. Equations (4.5) and (4.6) [75] could be used for calculating the 

capacity fading factor per cycle.  
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37.100)(008.0)(*10*3)(*10*4 26310 +−+−= −− cycycyCapacitycy  (4.5) 

1−−= cycy CapacityCapacityCapF  (4.6) 

D. Capacity Fading Due to storage 

This factor represents the capacity degradation due to the aging of the battery regardless it was in 

service or not. Based on the practical testing results presented in [76], the factor corresponding to 

capacity fading capacity due to storage (𝐶𝑎𝑝𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ) can be considered constant and equal to 0.033 

of the manufacturing capacity per year. Thus, the capacity of the battery will be reduced by 0.033 of 

the original capacity for each year due to the aging factor only.  

4.2.2 SL Battery Model  

Based on the factors and equations presented in subsection 4.2.1, the SL battery model is 

introduced as follows;  

A. SL Battery Starting Capacity 

At the beginning of its second life, the capacity of the SL battery is assumed to be 80 % of the 

manufacturing capacity; i.e. 20 % capacity degradation. As shown in Figure 4.1 that is obtained 

from equation (4.5), a remaining capacity of 80.362 % is equivalent to a number of cycles of 5,500. 

Taking the aging effect into consideration, the SL batteries are usually sold after spending ten years 

on average during their first life. Thus, additional capacity fading of 0.33% (10 times 0.033) is 

deducted from the remaining capacity. To sum up, the initial capacity of SL batteries used in the 

presented study is 80 % of the rated capacity and this is considered equivalent to 5,500 cycles of 

discharge. Therefore, for the cycle counter, the initial value of cycles number will be set to 5,500 

cycles; i.e. equation (4.5) will be changed to (4.7).    

)*()*)(((
5001

YrCapCapFDoDfnDergadatioCapacity storage
n

CY

cy
+=  =

 (4.7) 
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Figure 4.1  Battery fading 

B. SL Battery Available Capacity 

The available capacity for the SL battery is the difference between the starting capacity of the SL 

battery and the capacity threshold (i.e. minimum SOC). The majority of the batteries’ 

manufacturers recommend that the SOC of the EV batteries should not be reduced beyond 30 % of 

the manufacturing capacity. This recommendation is to decrease the capacity degradation and to 

extend the battery lifetime. However, in the presented study, the available capacity of the SL battery 

is assumed to be equal to the total remaining capacity; i.e. 80% of the manufacturing capacity.   

C. SL Battery Lifetime 

The capacity beyond which the battery is not reliable and is not efficient for any application is set to 

be 30% of the manufacturing capacity. Thus, if the capacity degradation of the SL batteries reached 

50% (in addition to the 20% degraded in the first life), the battery will be no longer usable and 

should be replaced. Therefore, in the presented work, the SL battery lifetime is determined in terms 

of used cycles, not in terms of years. As shown in Figure 4.1, the number of discharge cycles at 

which the battery is useless is approximate equals to 7,800 cycles (while neglecting the storage and 

DOD effects). Thus, during its second life, the battery could be used for 2,300 cycles only due to 
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the dramatic degradation of the battery during its second life. The lifetime of the SL batteries will 

be dependent upon the application. Therefore, if the battery is used on a daily basis (i.e. 365 

discharge cycles per year), the average lifetime will be 7.6 years. However, if the DOD is exceeding 

51%, the SL battery will be degraded faster.     

D. SL Battery Manufacturing Capacity and Price 

 

There is a huge range of EV batteries’ capacities from different EV manufacturers and makes. 

Moreover, the batteries capital costs vary based on the technology used and the EV make. In 

addition, the capacity in kWh and the power ratings in kW largely affects the battery price. Several 

studies [77] [tackled the pricing exercise of the SL batteries; the most common price of the SL 

battery fluctuates between 33% to 50% of the brand-new battery. For simplicity, the SL batteries 

used in the presented study are multiple of 30 kWh (manufacturing capacity), and the SL price is 

assumed to be 33 % of the brand-new battery (the price of the brand-new battery is in range of 130-

228 C$/kWh for the year 2018). To conclude, the size of SL batteries used in the proposed work are 

multiples of 30 kWh (24 kWh starting capacity), and the per unit price is 33% of the brand-new 

battery (the SL battery price is 1,722 C$ based on 2018 prices and the new battery will cost 5,370 

C$).  

E. SL Battery Price Forecast 

 

Since the batteries used in the proposed study is SL batteries, most likely they will be replaced 

during the project lifetime (i.e. 20 years). Therefore, it is very important to develop a forecast for 

the price variations of the SL batteries all over the twenty years. In other words, if the investor 

decided to purchase another SL battery in any year of the project, the price at this year should be 

estimated. It is well known that the batteries technology is mounting rapidly, and the batteries 

prices are falling dramatically. Thus, historical data for the average Li-ion battery price presented in 

Figure 4.2 is used to develop the price forecast. This data was collected from the Li-ion battery 

price survey conducted in [78]. The Trend of the historical data is obtained, and it found to be 

decaying exponential as shown in Figure 4.3. The forecast for the expected battery prices during the 

project lifetime is developed and the results are presented in Table 4-1 
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Figure 4.2  Historical Battery Prices 

 

 

Figure 4.3   Exponential Trend of the Battery Price Variations 
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Table 4-1  New Battery Price Forecast 

Year 
Price 

($/kWh) 
Year 

Price 

($/kWh) 

2019 144.32 2029 37.76 

2020 119.79 2030 35.12 

2021 100.62 2031 33.01 

2022 85.53 2032 31.36 

2023 73.55 2033 30.11 

2024 63.99 2034 29.20 

2025 56.31 2035 28.62 

2026 50.12 2036 28.42 

2027 45.11 2037 28.38 

2028 41.05 2038 28.33 

 

4.3 Battery Integration for Minimizing Active Power Curtailment 

In this subsection, the battery is connected at the same bus of the PV DG to prevent the active 

power curtailment while minimizing the SL batteries cost. As determined from chapter (3), the 

optimal DG size to maximize the profit is 1000 kW. The expected PV DG power for this DG size 

as compared to the maximum allowable power curtailments is presented in Figure 4.4. It is clear 

that the maximum curtailment occurs at Spring season for the first year as shown in the typical day 

model for the Spring season presented in Figure 4.5. As shown in the figure, the maximum curtailed 

power is 299.1 kW and occurs at hour =13 (1:00 pm) and the maximum curtailed energy for one 

day is 1,474 kWh. Based on the curtailed energy, the optimal battery size is to be selected in order 

to minimize the net present value of the capital cost of the battery while maximizing the DG energy 

injected to the system. The optimal battery ratings should ensure that no power curtailment will 

occur for all seasons over the project lifetime. The optimization problem should consider the 

dramatic degradation of the SL battery; thus, the number of battery replacements over the project 

lifetime should be determined. The problem is formulated and solved in the following subsections.  
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Figure 4.4 DG Power Profile for the Four Seasons 

 

Figure 4.5 Curtailed Energy for Spring Season 

4.3.1 Battery Cost Minimization Problem Formulation  

The problem under study aims to determine the minimum net present value of the batteries capable 

of saving all the curtailed energies from the PV DG (for all seasons and all years). The objective of 

this problem is expressed in (4.8).  
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𝑀𝑖𝑛 ∑
𝐶𝑎𝑝 𝐶𝑜𝑠𝑡(𝑦𝑏)

(1 + 𝑖)𝑦𝑏

𝑅𝑃

𝑏=1

 (4.8) 

Where; 

𝐶𝑎𝑝 𝐶𝑜𝑠𝑡: is the capital cost of the battery. 

𝑦𝑏: is the year at which the battery is purchased and connected. 

𝑅𝑃: is the total number of battery placements/ replacements required over the project lifetime. 

i: is the interest rate 

The following constraints are used; 

𝐸𝑐ℎ = 𝜂𝑐ℎ𝐸𝑐,𝑚𝑎𝑥 (4.9) 

𝐸𝑐𝑎𝑝 ≥ 𝐸𝑐ℎ  ∀ 𝑎𝑙𝑙 𝑠𝑒𝑎𝑠𝑜𝑛𝑠 ∀ 𝑎𝑙𝑙 𝑦𝑒𝑎𝑟𝑠 (4.10) 

Where; 

𝐸𝑐ℎ: is the energy to be stored in the battery during one day . 

𝜂𝑐ℎ: is the charging efficiency. 

𝐸𝑐,𝑚𝑎𝑥: is the maximum curtailed energy for one day. 

𝐸𝑐𝑎𝑝 : is the available capacity of the SL battery. 

The constraints ensure that the battery available size is enough to store all the curtailed energy. It 

should be noted that the available battery size is decreasing due to capacity fading. Thus, the 

capacity of degradation per year is calculated using the degradation model presented in section 

4.2.2. Here, the investor has two options; the first is to use a battery size just equals to the curtailed 

energy. This battery will suffer from high degradation due to the high DOD during every cycle. 

Therefore, the investor may require making one or two replacements for the SL batteries over the 

project lifetime. The second option is to use a larger battery size; thus, the DOD will decrease and 

consequently, the capacity degradation will do. Therefore, a smaller number of battery 

replacements are required. The solution of the optimization problem will advise the investor with 

the optimal battery size that minimizes the NPV of the batteries cost while saving all available 

energy from curtailment.  

4.3.2 The Optimization Method 

The Firefly optimization method is used for solving all optimization problems proposed in this 

chapter. The firefly optimization algorithm is inspired by the natural behavior of the fireflies; a 
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firefly of the maximum brightness has the largest ability to attract other fireflies. The brightness of 

a firefly is affected or determined by the landscape of the objective function. For a maximization 

problem, the brightness can simply be proportional to the value of the objective function [79], 

whilst for a minimization problem; the brightness is inversely proportional to the value of the 

objective function. The brightest firefly is the best solution for the objective function, it attracts the 

other fireflies (other candidate solutions). In their journey, other fireflies may find a better solution 

for the objective function; therefore, the position of the brightest firefly changes. This process 

continues until all fireflies reach one optimal position (may be local or absolute optima) or until the 

allowable maximum number of iterations is reached.   

The distance between the brightest firefly and the other fireflies, (
ijr ) is calculated using (4.4) 

kjki xx ,, , are the positions of firefly i and j. 


=

−=
d

k

kjkiij xxr
1

2
,, )(  (4.11) 

The brightest firefly (best solution within a certain iteration) attracts the less attractive one and the 

positions of the other fireflies are updated using (4.12)  

)
2

1
()()exp(

2

0 −+−−+= randxxrxx ijijii   (4.12) 

Where the first term is the old firefly position, the second term is used to update the firefly position 

based on the brightness of the fireflies and the third term is used to randomize the movement of 

Firefly. β0 is the initial attractiveness, γ is the absorption coefficient, the values of these parameters 

are determined according to the optimization problem. α is a randomization parameter that 

decreases at each iteration by equation (4.13) and rand is a random number generator uniformly 

distributed between [0,1]. 

max

1

max

1 )
2

1
(

kkk

K
 =+

 (4.13) 

4.3.3 The Proposed Technique for Capital Cost Minimization 

The proposed optimization technique aims at determining the optimal battery that will minimize the 

net present value of battery costs (initial capital cost and extension costs) within the whole period of 

the project duration and prevent the curtailment of the DG power. The outputs of this technique are 
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the optimal battery sizes and the corresponding installation year. The proposed technique is 

described in the following steps: 

Step (1): Determine the energy curtailment for all seasons for all years over the project lifetime. 

Step (2): Generate a set of random battery sizes (fireflies, i.e. each firefly has one dimension 

represents the battery size.). This set contains the candidate sizes of the batteries to be installed at 

the beginning of the project (year=0). The generated battery sizes should satisfy the constraint 

presented in (4.3); i.e. the battery capacity should be enough to store the maximum curtailed energy 

(energy curtailed from the spring season of the first year; Figure 4.5).  

Step (3): For a generated battery size, calculate the degradation of the battery for each year using 

the DOD and equations (4.3) to (4.6). 

Step (4): At a certain year 𝑦𝑏 if the remaining battery size is less than the maximum curtailed 

energy at this year, a battery replacement is required.  Therefore, set the replacement battery 

capacity to the nearest size just above the maximum curtailed energy at this year (year, 𝑦𝑏).   

Step (5): Calculate the degradation of the replacement battery starting from year 𝑦𝑏+1 up to the end 

of the project. If another battery replacement is required repeat step (4).  

Step (6): Calculate the NPV of the installed batteries using (4.8). 

Step (7): Repeat steps (3) to (6) for all remaining battery sizes of the generated set of random sizes. 

Step (8): Determine the size that achieves the lowest NPV (the brightest firefly) and updates the 

other sizes using the updating equations (4.11) to (4.13). 

Step (9): Repeat steps (3-8) until all sizes in the set converge to one optimal size. 

Step (10): Set the battery size to be installed at the start of the project to the value obtained in (9) 

and calculate the battery degradation and the year of replacement. 

Step (11): At the year of replacement, generate a new set of random battery sizes; this set contains 

the candidate sizes of the batteries to be installed at the year, 𝑦𝑏 .   

Step (12): Repeat Steps (3-11) to determine the optimal battery size at the replacement year; in the 

NPV calculations, the cost of the battery installed at the beginning of the project is fixed and 

determined based on the optimal size obtained from step (9). 
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Step (13): Repeat Steps (11) and (12) for any required replacements.   

4.3.4 Results of the Optimal sizing of SL Batteries 

As discussed earlier, the objective is to determine the optimal sizes of the batteries that will 

minimize the net present value of battery costs (Placement capital cost and successive 

replacements) within the whole period of the project duration and prevent the curtailment of the DG 

power. The optimization technique will determine the best solution among the following choices; 

the first is to choose a large size of the battery with a decent DoD. This large size of battery will 

prevent the battery from steep degradation, and therefore, remains for a will last for a larger number 

of years. The second choice is to choose a smaller size of the batteries that last for shorter periods, 

with deep DoD. Therefore, multiple replacements of these batteries are required over the project 

duration. The proposed technique is implemented in the field of MATLAB to find an answer to the 

aforementioned questions. 

Table 4-2   Curtailed Energy Per Day for All Seasons 

Year Curtailed Energy (kWh) 

Spring Summer Fall Winter 

2019 1,473.7 1,073.7 19.1 0 

2020 1,404.4 1,004.4 9.2 0 

2021 1,330.2 931.6 0 0 

2022 1,275.6 884.8 0 0 

2023 1,266.5 877 0 0 

2024 1,212.6 830.8 0 0 

2025 1,155.2 781.6 0 0 

2026 1,118.8 750.4 0 0 

2027 998.4 647.2 0 0 

2028 965.4 619.5 0 0 

2029 898.2 563.5 0 0 

2030 867.0 537.5 0 0 

2031 784.2 468.5 0 0 

2032 736.8 429 0 0 

2033 725.4 419.5 0 0 

2034 693.0 392.5 0 0 

2035 637.8 346.5 0 0 

2036 578.5 288.8 0 0 

2037 549.5 265.6 0 0 

2038 506.5 231.2 0 0 
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First, the energy curtailment for all seasons for all years over the project lifetime are obtained 

and presented in Table 4-2. As shown from the table the curtailed energy is decreasing over the 

years due to the increasing constraint of the maximum allowable injected power. The available 

battery size at each year should be greater than maximum curtailed energy occurs in this year. 

However, taking the charging efficiency into consideration as declared in equation (4.9), the 

charging energy will be decreased by the charging efficiency.  The charging efficiency is assumed 

to be 90%, and the minimum battery capacity that should be available at each year is obtained and 

presented in Table 4-3. It was assumed that a multiple of 24 kWh SL batteries (30 kWh 

manufacturing capacity) are only available; the minimum number of SL batteries at each year is 

determined and presented in Table 4-3. 

Table 4-3   Minimum Battery Sizes 

Year Maximum 

Curtailed Energy 

(kWh) 

Corresponding 

Charging Energy 

(kWh) 

Minimum 

Battery Size 

(kWh) 

Number of 

Battery 

Units  

2019 1,473.7 1326.33 1344 56 

2020 1,404.4 1263.96 1272 53 

2021 1,330.2 1197.18 1200 50 

2022 1,275.6 1148.04 1152 48 

2023 1,266.5 1139.85 1152 48 

2024 1,212.6 1091.34 1104 46 

2025 1,155.2 1039.68 1056 44 

2026 1,118.8 1006.92 1008 42 

2027 998.4 898.56 912 38 

2028 965.4 868.86 888 37 

2029 898.2 808.38 816 34 

2030 867.0 780.3 792 33 

2031 784.2 705.78 720 30 

2032 736.8 663.12 672 28 

2033 725.4 652.86 672 28 

2034 693.0 623.7 624 26 

2035 637.8 574.02 576 24 

2036 578.5 520.65 528 22 

2037 549.5 494.55 504 21 

2038 506.5 455.85 456 19 
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The optimization technique described in the previous subsection implemented and the 

optimal battery size and years of replacement were determined. Table 4-4 shows the obtained 

optimal values. The annual degradation of the SL batteries for this optimal scenario is obtained and 

presented in Table 4-5 and 4-6. The results show at the end of the 9th year, the SL battery connected 

at the beginning of the project is still in working conditions (i.e. the available capacity was greater 

than 30% of the manufacturing capacity). However, the available capacity in year #10 is less than 

the maximum charging energy in this year. Thus, to fulfill the constraint described in (4.9) and 

(4.10), battery replacement is required at the beginning of year #10. 

Table 4-4   Optimal Battery Installation Scenario 

Optimal Battery Size (kWh); manufacturing capacity 1,710 1,110 

Connected at the beginning of Year # 1 10 

Per unit price of the brand-new (C$/kWh) 144.32 41.05 

Total price of the SL battery (C$) 81,439.78 15,036.62 

Net Present Value of the total capital cost (C$) 92,964.08 

 

Table 4-5 Degradation of the First battery  

Year 

Maximum 

Charging Energy 

(kWh) 

Annual 

Degradation (% of 

manufacturing 

capacity) 

Cumulative 

Degradation (% of 

manufacturing 

capacity) 

New Size of the 

battery at end of the 

year (kWh) 

1 1326.33 2.21 2.21 1330.04 

2 1263.96 2.47 4.69 1287.776 

3 1197.18 2.73 7.4286 1240.97 

4 1148.04 3.01 10.446 1189.367 

5 1139.85 3.31 13.76 1132.695 

6 1091.34 3.62 17.38 1070.74 

7 1039.68 3.94 21.329 1003.268 

8 1006.92 4.28 25.61 930.0168 

9 898.56 4.63 30.24 850.8268 

10 868.86 N/A N/A N/A 
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Table 4-6 Degradation of the second battery  

Year 

Maximum Charging 

Energy (kWh) 

Annual Degradation 

(% of manufacturing 

capacity) 

Cumulative 

Degradation (% of 

manufacturing 

capacity) 

New Size of the 

battery at end of the 

year (kWh) 

10 868.86 2.22 2.22 863.377 

11 808.38 2.47 4.68 835.971 

12 780.3 2.7 7.42 805.608 

13 705.78 3.0 10.43 772.162 

14 663.12 3.31 13.74 735.4585 

15 652.86 3.6 17.36 695.3166 

16 623.7 3.94 21.297 651.594 

17 574.02 4.27 25.57 604.155 

18 520.65 4.6 30.19 552.856 

19 494.55 4.98617241 35.17933347 497.5093985 

20 455.85 5.363425026 40.54275849 437.9753807 

 

To clarify the importance of integrating the SL battery for minimizing the active power 

curtailment, the same task was performed using a brand-new battery. In this case, there is no need 

for battery replacement; i.e. one battery installed at the beginning of the project is enough. 

Moreover, there is no need for the optimization technique as the battery size is determined based on 

the maximum curtailed energy only. A comparison between the net present values of the SL battery 

scenario and the brand-new battery scenario is presented in Table 4-7. The comparison shows that 

the SL battery scenario achieves a 52.28 % savings in the costs while achieving the same task. 

Table 4-7 Comparisons between SL and Brand-new Batteries  

 Brand-new Battery Scenario SL Battery Scenario 

Optimal Battery Size (kWh); 

manufacturing capacity 

1,350 1,710 at beginning of year #0 

1,110 at beginning of year #10 

Net Present Value of the total 

capital cost (C$) 

194,832 92,964 

 

In order to evaluate the impact of the integrated SL batteries on the investor income, the 

saving in curtailed energy is converted to C$. The fixed price scenario of 0.288 $/kWh is used to 
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calculate the additional income achieved due to battery integration. The discharging efficiency of 

the battery is included in the calculations; a discharging efficiency of 90% is multiplied times the 

charging energy to calculate the energy discharged from the battery to the grid. Table 4.8 shows the 

present values of the additional income achieved due to battery installation. The net present value is 

543,700 C$ which is 585% of the SL battery capital cost. These results clarify the significance of 

integrating the SL batteries with the system in terms of investment profits. This conclusion leads to 

the profit maximization analysis presented in the next section.  

Table 4-8  Additional Income Due to SL Batteries 

Year 

Additional annual 

energy delivered to 

the grid (kWh) 

The present value 

of the additional 

income (C$) Year 

Additional annual 

energy delivered to 

the grid (kWh) 

The present value 

of the additional 

income (C$) 

1 189,177 54,483 11 107,742 23,089 

2 178,231 49,835 12 103,526 21,539 

3 166,717 45,258 13 92,337 18,652 

4 159,243 41,970 14 85,931 16,852 

5 157,997 40,429 15 84,391 16,068 

6 150,619 37,418 16 80,012 14,791 

7 142,762 34,433 17 72,553 13,021 

8 137,779 32,264 18 63,929 11,139 

9 121,297 27,577 19 60,081 10,164 

10 116,823 25,786 20 54,376 8,931 

 

4.4 Incremental Profit Maximization 

In this section, the effect of the SL batteries integration with the PV DG on the investment profit is 

evaluated. The objective is to determine the optimal battery size, charging/discharging schedule, 

and time of placement/replacement in order to maximize the investor profit. Since the investor is 

already achieving a profit from the selling the energy of the PV DG alone as discussed in chapter 

(3), the focus here will be on the incremental profit due to battery installation.  

It was clarified in section (4.3) that the SL batteries increase the income, such that the 

additional income due to battery installation is 585% of the battery cost. Thus, it can be concluded 

that the battery size has a minor impact on the incremental profit as compared to the optimal battery 

schedule. In other words, the most important for the investor is to determine the optimal battery 
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charging/discharging schedule that maximizes the income and consequently the profit as the battery 

cost is not affecting the profit that much. Therefore, the problem under study is formulated to 

maximize the income through determining the battery scheduling, and the battery size will be 

calculated based on the optimized schedule as shown in the following subsections. 

4.4.1  Income Maximization Problem Formulation  

The problem under study aims to determine the optimal battery charging/discharging schedule to 

maximize the investor income. The objective of this problem is expressed in (4.14) by considering 

the power of the DG and the battery fixed over one hour.  

𝑀𝑎𝑥 ∑ )Pr()]([ hrhrP(hr)P batterryDG +

24

ℎ=1

 

(4.14) 

Where; 

(hr)PDG : is the DG output power 

)(hrPbatterry : is the battery output power (+ve for discharging and -ve for charging) 

)Pr(hr : is the variable energy price described in chapter (3) 

The problem is constrained by; 

• The maximum allowable injected power (MAIP) constraint 

MAIPhrP(hr)P batterryDG + )(  (4.15) 

• The minimum injected power is zero; this means the battery cannot absorb energy from the 

grid and it can only be used for managing the PV DG energy.  

• The battery SOC constraint; the SOC at the start and the end of the day must be equal 

(assumed to be 50% of the available capacity); i.e. the sum of charging and discharging 

battery powers should be zero.  

0)(
24

1
=

=
hrPbatterry

hr
 

(4.16) 

The optimization problem is solved using the firefly optimization method where the fireflies 

here are the candidate battery powers at each hour. The problem is solved for each typical day 

separately; i.e. the problem is solved 80 times (4 season typical days per year X 20 years). Based on 

the optimal battery schedule, the corresponding capacity required to accommodate this schedule is 

calculated for each solution of the 80 solutions. Then, based on the capacity degradation model, the 
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best sizes of the SL batteries are obtained along with the replacement times. In other words, two 

replacements are only allowed over the project lifetime (as the expected lifetime of the SL battery is 

7.6 years in case of 365 cycles per year as discussed in section 4.2.2). If the battery size is adequate 

for the battery schedule, but its capacity degradation is high and cause more than two replacements, 

the upper battery size will be used.  

4.4.2 Results of the Profit Maximization  

The optimization problem is solved in MATLAB and the optimal charging/discharging schedules 

for all seasons and years are obtained based on the variable energy prices discussed in chapter (3). 

To simplify the problem the charging/discharging efficiencies were assumed to be 100% and the 

battery rated powers were left unconstrained. The optimal battery schedules for the four seasons for 

the first year of the project are presented in Figures. 4.6 to 4.9. Moreover, the total injected power 

(i.e. the sum of the PV DG and the battery powers) for the spring season is compared to the PV 

power and presented in Figure 4.10. In all figures, the power flow to the battery is -ve (i.e. 

charging) and the power flow from the battery is +ve (i.e. discharging). 

 

 

Figure 4.6  Battery schedule for Winter Season 
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Figure 4.7  Battery schedule for Fall Season 

 

Figure 4.8  Battery schedule for Summer Season 
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Figure 4.9 Battery schedule for Spring Season 

 

Figure 4.10  Total Injected Power for Spring Season 
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It can be noted that the highest battery powers are in the winter and fall seasons; this is due to 

the energy prices. In the Winter and Fall, the peak PV DG power coincides with the mid-peak 

energy prices (hours 11 to15 and price of 0.2375 C$/kWh), therefore, the battery absorbs energy 

occurs at the mid-peak prices and discharge it at the peak energy prices (hours 7 to11, 15 to 16 and 

price of 0.33 C$/kWh). This is not the case for the Summer and Spring seasons, as the peak PV DG 

power coincides with the peak energy prices. However, for Summer and Spring, the PV DG 

generated power is higher than the MAIP constraint. Thus, the battery absorbs the amount of energy 

above the MAIP and redistributed it in the mid-peak price hours. This is obvious in Figure 4.9, as 

the total injected power to the grid is shaved to the MAIP (i.e. 700.9 kW). This shaved energy is 

rescheduled in the mid-peak hours; the amount of shaved energy is sufficient to settle the injected 

power to the MAIP for all mid-peak hours, and the remaining energy is injected during the off-peak 

hours.  

The required battery capacity to achieve the optimal battery schedule is calculated based on 

the schedule and the assumption of the SOC (SOC at the first hour of the day is assumed to be 50% 

of the available capacity). Therefore, for the Fall season, for example, the 50% SOC covers the 

discharging occurs at hours 7-10; see Figure 4.7. The total discharging energy during these hours is 

1,953 kWh. Since this energy is corresponding to 50% of the available capacity; then the available 

capacity should be at least 3,907 kWh. As previously defined, the available capacity of the SL 

battery is 80% of the manufacturing capacity, then the later should be at least 4,884 kWh. The 

manufacturing capacity of the SL battery, as a multiple of the 30-kWh unit, is then determined to be 

4,890 kWh. The discusses sizing algorithm is executed to the 80 battery schedules obtained (4 

Seasons X 20 years), and the highest size among the four seasons is determined for each year. 

Moreover, the obtained SL battery capacity is tested to determine the capacity degradation and the 

remaining capacity at each year. Based on this capacity degradation analysis, the best battery sizing 

scenario is obtained, and the purchasing costs are determined as presented in Table 4-9. We can 

note that the required battery capacity is increasing over the project lifetime, this occurs as the 

MAIP constraint is relaxed over the project lifetime. Thus, the battery can inject higher power and 

higher energy in return. However, thanks to the falling battery costs, the corresponding battery costs 

are significantly lower than the cost of the battery installed at the beginning of the project. Here 

appears the importance of the SL batteries, as they give the chance to the investor to purchase 
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batteries at very low prices at later years of the project rather than purchasing all required batteries 

at the beginning of the project (the case of brand-new batteries). 

Table 4-9   Required SL Battery Capacity and Costs 

SL Battery capacity (kWh) Installation Year Cost (C$) 

5,340 Beginning of 1st year 254,285 

6,000 Beginning of 8th year 99,237 

6,180 Beginning of 15th year 61,406 

 

To evaluate the impact of the SL batteries on the incremental income and the incremental 

profit, the new income is calculated for each year based on the optimized power schedule (the sum 

of PV DG and battery). Then the incremental income is calculated as the difference between 

incomes before and after battery installation. The NPV of the incremental income, as well as the 

NPV of the SL battery cost, are calculated to determine the NPV of the incremental profit. The 

NPV calculations are presented in Table 4-10; the total NPV for the incremental profit is 1,059,891 

C$ which proves the importance of the SL battery integration. In the case of the brand-new 

batteries, the required battery size is 4,950 kWh and the corresponding cost is 714,285 C$. All these 

costs should be paid at the beginning of the project; thus, the total NPV of the incremental profit is 

721,177 C$. This show the superiority of using the SL batteries over the brand-new for this 

application as they achieve 47% more profit as compared to the new batteries.    
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Table 4-10  Net Present Value of the Incremental Profit 

Year 

Incremental 

Income (C$) 

Battery costs 

(C$) 

The present 

value of 

incremental 

income (C$) 

The present 

value of 

battery costs 

(C$) 

The present 

value of Profit 

(C$) 

1 107,342 254,285 104,216 254,285 -150,070 

2 106,176  100,081 0 100,081 

3 104,568  95,694 0 95,694 

4 103,088  91,592 0 91,592 

5 102,825  88,698 0 88,698 

6 101,268  84,810 0 84,810 

7 99,609  80,991 0 80,991 

8 98,558 99,238 77,802 80,689 -2,887 

9 96,371  73,860 0 73,860 

10 95,697  71,207 0 71,207 

11 93,842  67,794 0 67,794 

12 93,181  65,355 0 65,355 

13 91,209  62,109 0 62,109 

14 90,205  59,636 0 59,636 

15 89,963 61,406 57,744 40,597 17,147 

16 89,277  55,634 0 55,634 

17 87,776  53,106 0 53,106 

18 86,097  50,573 0 50,573 

19 84,960  48,452 0 48,452 

20 83,275  46,107 0 46,107 

Net Present Value of the Incremental Profit (C$) 1,059,891 

4.5 Summary 

This chapter presented an innovative application of the SL batteries in the distribution grid. A 

comprehensive model for the SL batteries that considers the capacity degradation due to several 

factors were presented. Based on the capacity degradation model, the SL batteries were integrated 

to achieve two separate objectives; minimizing the curtailed energy and maximizing the investor 

profit. The two optimization problems were solved in MATLAB and the results show a significant 

advantage of the SL batteries over the brand-new ones. The main advantage of the SL batteries is 

that they give the chance to the investor to purchase batteries at very low prices at later years of the 

project rather than purchasing all the required batteries at the beginning of the project.  
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Chapter 5 

Conclusion and Future Work 

5.1 Summary of the Work 

The proposed study aimed to integrate batteries, which have lost part of their original performance 

during their first life, with the distribution system applications. Two main objectives were 

formulated and solved; the first was to minimize the capital cost of the SL batteries required for 

smoothing the PV DG power in order to increase the DG penetration while fulfilling the utility 

technical constraints. The second objective was to use the SL batteries connected at the same bus of 

the DG to maximize the investment profit though maximizing the investment income.    

The following research works were developed and presented throughout the proposed study; 

A long-term load forecasting technique: used to forecast the distribution system loading conditions 

and to determine the maximum allowable injected power constraints for each year of the project 

lifetime.  

• A probabilistic modeling strategy for PV power that considers their stochastic nature: this 

strategy was used to determine the expected PV powers for all hours and seasons. In other 

words, the typical day models for all season were obtained in order to calculate the PV DG 

income and amount of energy to be curtailed.    

• A procedure to select the best DG size that achieves the maximum net present value of the 

DG profit while maintaining the distribution system technical constraints. 

• A novel model for the SL batteries that consider their capacity degradation due to 

charging/discharging cycles, DOD, and storage factor. Moreover, the falling prices of the 

batteries were forecasted and included in the model. 

• An optimization technique to determine the optimal SL batteries capacity in order to 

minimize the capital cost while smoothing the PV DG power and minimizing curtailed 

energy. 

• An optimization technique to determine the operation schedule of the SL batteries required 

to maximize the DG investment profit.   
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5.2  Conclusions and Contributions 

The presented research work proposed a novel idea which is the integration of SL batteries with the 

distribution grid. Although few studies used the SL battery for different application, none of them 

used the SL batteries for smoothing the PV DG power and maximizing the investor profit. The 

presented work used a comprehensive model of the SL batteries that consider their starting 

capacity, capacity fading, lifetime, and price forecast. The main conclusion derived from the 

presented study is that the SL batteries are adequate for the application and they have superiority 

over the brand-new batteries in terms of cost. Although the SL batteries suffer from very high 

capacity degradation compared to the new batteries, they give the chance to the investor to purchase 

batteries at very low prices at later years of the project rather than purchasing all the required 

batteries at the beginning of the project. Thus, it can be concluded that the SL batteries offer a 

competitive solution for the cost problems associated with the battery integration with the 

distribution systems. Therefore, this hot research topic should be studied from different 

perspectives to ensure the reliability of the SL batteries for utilization for different power system 

applications.  

5.3 Future Work 

The usage of the SL batteries that spent a part in their life in an automotive application, for different 

applications, has a great potential due to the proliferated numbers of the electric vehicles. 

Therefore, a huge number of SL batteries are expected to be disposed of in the next few years. The 

distribution system can acquire some benefits from adopting the usage of the SL batteries; however, 

this requires several studies. The proposed study tackled the idea of smoothing the PV power and 

improving profit. However, this idea should be comprehensively studied to ensure its suitability in 

terms of reliability and security. We suggest a study that evaluates the failure rate of the SL 

batteries to determine their impact on the distribution system reliability. Moreover, the usage of SL 

batteries on the residential scale to minimize the electricity bill would be very beneficial for the 

utility to decrease the peak demand and defer the substations upgrade.  
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