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Abstract

Extensive study has been conducted on the identification of peptide sequences with
mass spectrometry. With the development of computer hardware and algorithms, de novo
sequencing has drawn attention from researchers for many years. Because it does not
require a protein database, de novo sequencing is able to serve as either a complement of
database searching or a stand alone method. As shown by Novor [1], the speed of de novo
sequencing significantly exceeds the speed of protein database searching. Improving the
accuracy of de novo sequencing is essential.

Overlapping peptides occur quite frequently in a typical heavy chain proteomics sam-
ple. In this thesis, we have proposed an algorithm to efficiently and reliably detect the
overlapping peptides. In addition, two strategies named labeling and voting are designed
to utilize overlapping peptides so as to improve the accuracy of de novo sequencing.

According to the results, the effect of our labeling strategy is not obvious with the
current version of Novor. Although the improvemnt made by the labeling strategy is not
significant, we still demonstrate the potential of the method. However, the performance of
our voting strategy is surprising and noteworthy. It is able to achieve significant improve-
ment of de novo sequencing with little running time.
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Chapter 1

Introduction

1.1 Motivation

In proteomics, identifying protein or peptide sequences is a common task. In a typical
experiment, protein samples are digested with enzymes and measured with tandem mass
spectrometry. Millions of spectra are generated in such an experiment. Each of these
spectra is presumed to come from the measurement of a single peptide and is thus used
to derive the peptide’s amino acid sequence. Due to the impracticability of manually
analyzing such a large amount of data, automatically analyzing those spectra by computer
is necessary.

At present, protein database searching and de novo sequencing are the two main com-
putational approaches to identify peptide sequences from mass spectrum data. In protein
database searching, each spectrum is compared to the peptides in a protein database in
order to find highly confident peptide-spectrum matches (PSMs). Protein database search-
ing has been studied for many years by a large number of researchers. When a protein
database is not available, de novo sequencing is an alternate choice. The de novo sequenc-
ing focuses on directly deriving sequences from the mass spectrum. Compared with protein
database searching, the accuracy and efficiency of de novo sequencing still have much room
for improvement.

With the development of Novor[1], the speed of de novo sequencing may exceed protein
database searching. Improving the accuracy of de novo sequencing is now urgent and
therefore is the main objective of this thesis.
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1.2 Research Objectives and Contributions

In proteomics, we frequently observe multiple peptides sharing a common substring. In
this thesis, we refer to these as overlapping peptides. In theory, there are a total of four
cases of overlapping peptides as shown in Figure 1.1. In this thesis, we address two of
these four cases in which one peptide’s sequence is the prefix or suffix of another peptide’s
sequence (see (a) and (b) in Figure 1.1). These two cases are the most common because
they can occur due to the enzyme non-specific cleavages during sample preparation.

Figure 1.1: Four types of overlapping peptide

If the ms/ms spectra of two overlapping peptides are used together in de novo sequenc-
ing, we would be able to improve the overall result. This thesis proposes two methods to
improve the de novo result, namely, labeling and voting. These two methods may be used
either separately or together.

The novel contribution of this thesis includes: (1) a general algorithm and a rigorous
scoring function to detect overlapping peptides in mass spectrum datasets, (2) a method
to classify fragment peaks into different ion types using overlapping peptides, and (3) an
innovative strategy to correct the errors in de novo sequencing results utilizing overlapping
peptides.
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1.3 Thesis Overview

1.3.1 Method

The overall procedure for our method consists of three parts: overlapping peptide detection,
labeling and voting. Overlapping peptide detection is a pre-requisite for the latter two
steps. The labeling and the voting are two parallel strategies that can be used together or
separately. The overall structure is shown as Figure 1.2. The functions of these parts are
summarized in this section.

Figure 1.2: Overall structure

Part 1. In the Overlapping Peptide Detection part, overlapping peptide pairs are
detected. A pairing score is calculated among the candidates and a threshold is used to
filter possible pairs.

Part 2. In the Labeling part, the original spectrum files are modified. Peaks of the
fragment ions containing the peptide’s N-terminus and C-terminus, respectively, are sepa-
rated and labeled. Novor is modified to process the labeled spectrum files and to generate
a new result.
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Part 3. The Voting part modifies the Novor result sequences based on the overlapping
peptide pairs. By comparing the amino acid score between two overlapping peptides, the
sequences with lower scores are modified.

Since the result of the overlapping peptides detection process directly affects the fol-
lowing two parts, the accuracy and efficiency of the overlapping peptides detection has a
significant influence on the overall performance of the method. A threshold must be set
to balance the precision and efficiency of the algorithm. We have drawn a precision-recall
curve to show the effects of different thresholds.

The labeling method only slightly improves Novor’s de novo result. According to the
experiments we conducted, the labeling strategy can achieve 1% improvement in terms of
correct amino acids for all overlapping peptides. The method also requires Novor to run
three times. The possible reasons why this method does not perform as well as we expected
are analyzed in Section 4.3.

Finally, the voting method greatly improves the de novo result creating an approxi-
mately 3-8% increase in correctly identified amino acids among overlapping peptides. The
experiment was conducted on multiple datasets and all of them show significant improve-
ment. Since the overlapping peptide detection part can be run in parallel with Novor and
the running time of the voting is fast, we conclude that the voting strategy is practical for
de novo sequencing.

1.3.2 Thesis Structure

This thesis consists of this introduction and an additional five chapters:

Chapter 2 introduces the background and related works.

Chapter 3 describes the algorithm and scoring function for overlapping peptide detec-
tion.

Chapter 4 introduces the method of separating different fragment ion peaks and the
modification of the Novor software to use such separation to improve de novo sequencing.

Chapter 5 describes the correction of de novo sequencing errors by utilizing overlapping
peptides.

In addition, experiment results for each of the above methods are presented in the
corresponding chapters.

Chapter 6 summarizes the thesis and proposes future work.
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Chapter 2

Background and Related Works

2.1 Background

2.1.1 Proteins, Peptides, and Amino Acids

Proteins are complicated biomolecules within an organism. Proteins are the main carrier
of any functions an organism performs. They are coded and translated from DNA. They
consist of one or more amino-acid chains.

Peptides are linear chains of amino acid residues. Peptides are distinguished from
proteins on the basis of size and there are no distinct boundaries between peptides and
proteins. Proteins are usually broken down into smaller peptide chains by digestive en-
zymes. Identifying the sequence of peptides is the main topic of this thesis.

Amino acids are organic compounds that contain an amino, a carboxyl, and a side
chain as shown in Figure 2.1. There are 20 different amino acids which differ by side chain.
Different side chains have different amino acid masses with the exception of Isoleucine(I)
and Leucine(L), which have the same mass. In this thesis, we are more concerned with the
residue mass of an amino acid. When amino acids combine to form peptides or proteins,
water is removed in this condensation reaction. In this case, the amino acid after the loss
of water is called an amino acid residue. Table 2.1 shows the residue mass table of 20
amino acids. The unit of mass is Da which equals 1/12 of the mass of carbon.

The mass of one peptide is equal to the sum of all amino acid residues’ masses plus the
mass of H2O. Thus, by measuring the mass of a protein sequence and its substring, it is
possible to identify the protein. This process is the basis of protein identification.

5



Amino Acid Single Letter Code Residue Mass
Glycine G 57.02147
Alanine A 71.03712
Serine S 87.03203
Proline P 97.05277
Valine V 99.06842
Threonine T 101.04768
Cysteine C 103.00919
Isoleucine I 113.08407
Leucine L 113.08407
Asparagine N 114.04293
Aspartic D 115.02695
Glutamine Q 128.05858
Lysine K 128.09497
Glutamic E 129.04260
Methionine M 131.04049
Histidine H 137.05891
Phenylalanine F 147.06842
Arginine R 156.10112
Tyrosine Y 163.06333
Tryptophan W 186.07932

Table 2.1: Residue mass of amino acids
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Figure 2.1: Amino Acid Structure

2.1.2 Post-Translational Modifications (PTMs)

PTMs are chemical modifications that play a key role in functional proteomics because
they regulate activity, localization, and interaction with other cellular molecules such as
proteins, nucleic acids, lipids, and cofactors [2]. PTMs occur in amino acid side chains or
peptide linkages. These modifications include phosphorylation, glycosylation, ubiquitina-
tion, methylation, acetylation, lipidation and hydroxylation, as shown in Figure 2.2.

The existence of PTMs greatly complicates peptide identification. Hundreds of PTMs
have been discovered. Most peptide identification application supports only a few of them.
Typically, these applications let users include a small number (less than six) of known
PTMs during the set-up procedure for peptide identification. More inclusion of PTMs
would exponentially increase the running time of the software.

In this thesis, we intentionally created Cysteine carbamidomethylations to reduce and
block the disulphide bonds. Carbamidomethylation is a deliberate post-translational mod-
ification introduced to Cysteine (C) residues by reacting with iodoacetamide [4].

Peptides with PTMs must be distinct from overlapping peptides. A filtering procedure
is introduced for this purpose as discussed in detail in Section 3.2.2.
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Figure 2.2: Overview of PTMs [3]

2.1.3 Basics of Mass Spectrometry

Mass Spectrometry

Mass spectrometry (MS) is widely used in the fields of chemistry and biology. It has been
used since the 1980s to measure the mass of particles. In bioinformatics, mass spectrometry
analysis of proteins measures the mass-to-charge ratio (m/z) of ions to detect, identify and
quantify molecules in simple and complex mixtures [5].

A mass spectrometer contains an ion source, a mass analyzer, and an ion detector.
Samples are loaded into the ion source chamber and then vaporized and ionized. Ions
are accelerated because of the charges they receive. The mass analyzer accelerates ions
in magnetic fields or electrical fields and ions with different m/z are deflected by different
amounts. Thus, the mass analyzer can be used to separate ions for global analysis or to
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filter out specific ions for tandem mass spectrometry. The ion detector detects ions passing
through the mass analyzer and produces a signal from the separated ions. After the entire
process is complete, mass spectra are produced. A mass spectrum is an intensity vs. m/z
plot in which each peak represents a signal of the ions.

Figure 2.3: Overview of a TOF mass spectrometer [6]

At present, mass spectrometry used in proteomics have different mechanisms, which
can be differentiated by the type of ion source or mass analyzer. MALDI and ESI are two
different ion sources. Ions coming from MALDI [9] usually contain one positive charge while
ions from ESI [8] usually contain one or more charges. The most often used mass analyzers
in proteomics are ion trap [10], quadrupole [11], time of flight (TOF) [12], Fourier transform
[13] and orbitrap [14]. Figure 2.3 shows the flow chart of a TOF mass spectrometer.

In theory, every signal peak in a spectrum represents an ion from the sample. However,
in reality, spectra from the experiment are much more complicated than under theoretical
conditions. Isotope peaks, the mass error of the instrument and noise peaks are some types
of disturbance that must be taken into consideration in mass spectrometry.

Tandem Mass Spectrometry (MS/MS)

Tandem mass spectrometry (MS/MS) involves multiple steps of mass selection and analysis.
Ions of a particular m/z are filtered out in the first stage (MS1). These are called precursor
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ions. They are then fragmented by a fragmentation mechanism. The resulting fragment
ions are detected in the second stage (MS2). MS2 spectra are the final result. Masses of
fragment ions in tandem mass spectrometry provide the structural information of peptides
and thus makes peptide sequencing possible. In our research, MS2 spectra are the main
study focus.

Collision induced dissociation (CID) [16] is one of the most often used fragmentation
mechanisms. In theory, fragmentation can occur in any position of peptide chains and
form a, b, c, x, y and z fragment ions, as shown in Figure 2.4. The most significant
peaks in CID fragmentation represent b-ions and y-ions. Thus, given the sequence of the
peptide and the corresponding spectrum, we are able to calculate the theoretical fragment
ion mass and match it with the spectrum. Figure 2.5 shows an example of a peptide and
its CID spectrum match. Ideally, the matched peptide sequence meets the following two
conditions:

• Most high-intensity peaks can be explained by fragment ions;

• Most fragment ions can be matched with corresponding peaks in spectra.

Therefore, the above two conditions constitute the significant evidence when evaluating
the matched spectrum. Figure 2.5 shows an ideal match of peptide and spectra.

However, in reality, spectra from most experiments are not ideal. Since the fragment
mechanism is complex, some theoretical fragment ions calculated from such a simple model
may not be present in the spectrum, and some peaks in the spectra cannot be easily
explained. For example, peptides may be fragmented multiple times, resulting in internal
fragment ions. In such cases, peaks in the spectrum are very complicated and hard to
identify. The details of peptide identification are introduced in next section.

2.1.4 Peptide Sequence Identification

Peptide sequencing is the technique of determining the amino acid sequence of all or part
of a peptide. There are currently two approaches for sequence identification: database
searching and de novo sequencing.

Database Searching

Database searching is a common and well-developed peptide identification technique and
has long been studied. Common database searching tools include Mascot [18], SEQUEST
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Figure 2.4: Different fragment positions forms different types of ions [15]

Figure 2.5: Match of a peptide and an experiment spectrum [17]

[19], MaxQuant [20], OMSSA [21], X!Tandem [22], ProteinProspector [23] and MS-GFDB
[24].

The basic idea of database searching is to match the spectrum with an existing protein
database. The typical process of database searching for one spectrum is as follows. First, all
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peptides which have mass within a certain error tolerance of the precursor mass are selected.
Then, the theoretical spectra of candidate peptides are compared with an experiment
spectrum. A score function is calculated to select the best possible matches. The score
function is typically influenced by the current spectrum and the matching conditions of
other spectra in the same experiment sample.

Database searching is heavily dependent on the protein database. If a suitable database
is available, the accuracy and efficiency of this technique are assured. However, if the
protein database is not available, de novo sequencing better serves the role of peptide
identification.

De Novo Peptide Sequencing

De novo is a Latin phrase meaning from the beginning. Unlike database searching, de
novo sequencing attempts to derive peptide sequences directly from spectra. De novo
sequencing can be defined as a purely mathematical problem, so it draws attentions from
many mathematicians. Typical de novo sequencing software includes Novor, PEAKS [25],
PepNovo [26], Lutefisk [27], and NovoHMM [28]. A more comprehensive review of the de
novo sequencing software may be found in [29].

In more detail, the task of de novo sequencing can be defined as follows:

Find a peptide sequence that has the total residue mass equal to the given mass and its
fragment ions “adequately explain” the peaks in the spectra.

It is important to mathematically define adequately explain in the above statement. A
scoring function has been introduced to clearly define how well the fragment ions explain
the spectra. Dancik et al [30] devised a scoring function for de novo sequencing and
variations of their work have been widely used for modern de novo software packages.

De novo sequencing and protein database searching were once considered to be two
separate approaches for peptide identification. However, researchers have realized that
even if a protein database is available, experiment samples may contain peptides that are
not listed in databases. Moreover, de novo sequencing can be used to assist database
searching to improve sensitivity and accuracy. The Peaks DB [31] software relies heavily
on de novo sequencing results to improve the filtration and the scoring function. This
combination results in significantly improved sensitivity and accuracy in comparison to
existing database searching software.

De novo sequencing was once considered slow compared with protein databases search-
ing. However, with the release of Novor, speed is no longer a disadvantage of de novo
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sequencing. Novor can sequence more than 300 MS/MS spectra per second on a lap-
top computer. This surpasses the acquisition speed of current mass spectrometers and,
therefore, creates a new possibility to perform de novo sequencing in real time while the
spectrometer is acquiring the spectral data[1].

In this thesis, we focus on improving the accuracy of Novor. Therefore, a brief intro-
duction of Novor is presented below.

Novor was created on the basis of the decision tree modeling in machine learning. De-
cision trees with 169 features and thousands of nodes were derived from training data. A
new scoring function was designed to evaluate the match between a sequence and its spec-
trum. An algorithm combining both dynamic programming and heuristics was developed
to select the best matches.

Figure 2.6 shows an example of a Novor output file. Novor has output the overall con-
fidence score and amino acid score (aaScore). In this thesis, the labeling method compares
the overall confidence score among different cases while the voting strategy makes use of
the aaScore for peptide substring substitution.

Figure 2.6: Example of a Novor output file

2.2 Related works

Although the spectra of related peptides have been implemented to solve different problems,
they have not yet been used for improving the accuracy of de novo sequencing. In this
section, we will review two related works.

2.2.1 MS-PSA

Mass spectrometry-peak shift analysis (MS-PSA) [32] was developed by Thomas Wilhelm
and Alexandra M. E. Jones to identify post-translational modifications (PTMs).

13



Currently, most peptide identification software applications only allow users to include
a few (typically less than ten) known PTMs in an experiment sample before running the
experiment. Despite the fact that hundreds of PTMs have been discovered, a peptide iden-
tification algorithm is unable to consider all of these PTMs without increasing the running
time to an unacceptable level. In addition, there remain unknown PTMs, which further
complicates the peptide identification problem. MS-PSA is not restricted by these obsta-
cles and is complementary to standard protein database searching tools such as MASCOT
and SEQUEST.

MS-PSA focuses on related peptides. Two peptides are related if they share the same
substring. Unmodified and modified versions of the same peptide are related peptides. The
overlapping peptides discussed in this thesis are also considered related peptides.

MS-PSA uses the MS/MS spectrum as input. Spectra are divided into different groups
according to their precursor mass and peaks pattern. For each group, common peaks in
each spectrum are detected and combined into a “fingerprint”. This “fingerprint” is the
key feature for detecting related peptides. Two groups of spectra are recognized as related
by matching the peaks of their “fingerprints”. Potential peak shifts are identified if two
spectra are related. PTMs are detected based on peak shift.

2.2.2 Spectral Networks

Nuno Bandeira et al [33] have proposed a strategy to speed up peptide database searching
by building spectral networks.

These authors claim that existing approaches that compare spectra with those focused
in protein databases have reached a bottleneck. Consequently, they develop a new concep-
tual approach to protein database searching.

Their method detects related peptides by matching peaks and comparing patterns of
candidate spectra. After detecting related peptides, spectral networks are constructed.
Using these spectral networks, prefix and suffix laddering peaks are separated, noise peaks
are reduced, and peptide reconstructions that may contain the correct one are generated.

The database searching method is performed in an extremely fast pattern-matching
algorithm. Instead of comparing spectra with the database separately, spectra are consoli-
dated into clusters. By matching the features of each cluster with the protein database, the
speed of peptide identification is greatly accelerated. In addition, PTMs can be detected
by spectral networks.
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Chapter 3

Overlapping Peptide Pairs Detection

3.1 Overlapping Peptides

In this thesis, our main focuses are overlapping peptides sharing the same N-terminus or C-
terminus, as shown in case (a) and case (b) in Figure 1.1. During the sample preparation,
peptides are produced either intentionally or unintentionally overlapping. An enzyme,
trypsin, was used to digest the protein into shorter peptides. Normally, trypsin digests
after amino acids K or R but not before P. However, the enzyme digestion is not always
specific. One end (or sometimes both ends) of the resulting peptide may not follow the
trypsin digestion rule. The clustering of overlapping peptides shown in the red circle in
Figure 3.1 consists of one peptide, FSGSGSGTDRTLK, that follows the digestion rule,
and several other peptides that only follow the rule at the C-terminal end.

The goal in this chapter is to detect overlapping peptides in order to increase the de
novo sequencing accuracy. The peptide sequences are not available and we would have to
detect overlaps from spectra. Thus, we need to discover the special features of overlapping
peptides.

Based on observation, if two peptides are overlapping, their corresponding spectra
share the most b-ion peaks or y-ion peaks. Figure 3.2 shows the spectra of the sequence
VTC(Cam)VVVDISKD and the sequence VTC(Cam)VVVDISK. “Cam” inside parenthe-
sis represents the carbamidomethylation of the preceding Cysteine residue. In the figure,
b-ion peaks are highlighted in blue and y-ion peaks are highlighted in black. As we see,
the b-ion peaks in both spectra match and y-ion peaks are shifted by approximately 115
Da. Tables 3.1 and 3.2 show the theoretical masses of b-ion peaks and y-ion peaks. From
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Figure 3.1: Red circle shows an example of overlapping peptides [34]

the theoretical masses and spectrum data, we can conclude that all b-ions of sequence
VTC(Cam)VVVDISK match the b-ions (b1 to b9) of sequence VTC(Cam)VVVDISKD.
Furthermore, the differences between all y-ions of sequence VTC(Cam)VVVDISK and the
corresponding y-ions (y2 to y10) of sequence VTC(Cam)VVVDISKD are the same and are
equal to the mass difference of their corresponding precursor (115.02694 Da). The fifth
column of Table 3.2 illustrates this phenomenon.

For ease of description, we define two terms as follows. When comparing two spectra,
we define matching peaks to be those have same m/z in both spectra. In addition, we define
shifted peaks as follows: suppose spectrum s1 contains peak p1 and spectrum s2 contains
peak p2, if the difference between p1 and p2 is exactly equal to the precursor mass difference
of s1 and s2, then we define p1 and p2 to be shifted peaks. If two peptides overlap and
share the same N-terminus, then their shared b-ion peaks are matching peaks and most of
their y-ion peaks are shifted peaks, and vice versa.

Making use of the above observations is the main approach to identify overlapping
peptides. By searching matching peaks and shifted peaks in spectra and evaluating their
quality, we are able to detect overlapping peptides.

3.2 Methodology

This section describes the details of the overlapping peptide pairs detection method. The
method primarily consists of four procedures: preprocessing, filtering, matching peaks and
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Figure 3.2: Spectra of the peptide VTC(Cam)VVVDISKD (above) and
VTC(Cam)VVVDISK (below) share the most b-ions peaks (some fragment peaks
are missing during experiment)
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VTC(Cam)VVVDISKD VTC(Cam)VVVDISK
b1 100.07574 b1 100.07574
b2 201.12341 b2 201.12341
b3 361.15260 b3 361.15260
b4 460.22101 b4 460.22101
b5 559.28943 b5 559.28943
b6 658.35784 b6 658.35784
b7 773.38478 b7 773.38478
b8 886.46885 b8 886.46885
b9 973.50087 b9 973.50087
b10 1101.59584 - -

Table 3.1: Theoretical b-ion masses of VTC(Cam)VVVDISKD and VTC(Cam)VVVDISK

VTC(Cam)VVVDISKD VTC(Cam)VVVDISK Difference
y1 134.04483 - - -
y2 262.13979 y1 147.11285 115.02694
y3 349.17182 y2 234.14488 115.02694
y4 462.25588 y3 347.22894 115.02694
y5 577.28283 y4 462.25588 115.02695
y6 676.35124 y5 561.32430 115.02694
y7 775.41965 y6 660.39271 115.02694
y8 874.48807 y7 759.46112 115.02695
y9 1034.51725 y8 919.49031 115.02694
y10 1135.56493 y9 1020.53799 115.02694

Table 3.2: Theoretical y-ion masses of VTC(Cam)VVVDISKD and VTC(Cam)VVVDISK
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shifted peaks detection and scoring.

3.2.1 Preprocessing

In proteomics samples, we observe that immonium ions occur very frequently. Immo-
nium ions are special ions containing a single amino acid. Thus, immonium ions with the
same amino acids have the same mass. If ignored, they would be recognized as matching
peaks and would in turn affect the results of overlapping peptide detection. Therefore, all
immonium ions are removed.

Secondly, in our algorithm for detecting overlapping peptides, we assume all peaks are
charge-one peaks. Thus, all fragment peaks with two or more charges are removed.

In addition, to reduce the disturbance of noise peaks, only 15 peaks within a 100 Da
window are kept and all other peaks are treated as noise peaks.

3.2.2 Filtering

Before proceeding to the detection step, two other obstacles must be addressed.

As stated above, PTMs frequently occur in proteomics. In our approach of finding
overlapping peptide pairs, more matching peaks and shifted peaks between two spectra
indicates higher chances of overlapping. Compared with the original peptide, the spectra
of peptides with few amino acids modified would have a large number of matching peaks
and shifted peaks in their spectra. In this case, it is hard to distinguish overlapping peptide
from PTMs. As shown in Figure 3.3, the peptide after modification and the original peptide
can be easily recognized as an overlapping peptide pair.

We also noticed that mixture spectra occur quite frequently in the sample dataset.
This is because, in reality, multiple peptides are selected and fragmented concurrently
resulting in a single spectrum containing fragment peaks from multiple peptides. Due to
the limitation of the instrument, mass spectrometry cannot distinguish such spectra from
normal spectra. Certainly, such spectra should not be considered during our selection.

To avoid these two pitfalls, we limited the mass difference of two overlapping peptides
to be within a set C, which consists of all amino acid masses in addition to all combinations
of two amino acid masses. We recognize two peptides as overlapping only if their sequence
lengths differ by at most two. From our observation, such overlapping peptides are most
common among all overlapping peptides. Since the masses of Leucine(L) and Isoleucine(I)
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are the same, there are 19 different amino acid residue masses. The combination of any
two amino acid residues would contain 361 different masses. In total, we obtain set C
containing 380 elements.

It would be very unusual for the mass difference of two unrelated peptides to equals
one element from the set C. Thus this removes the disturbance from the mixture spectra.

It should be noted that this approach does not ensure removal of all disturbances
caused by PTMs. The reason is that mass differences caused by certain modifications
is exactly the same as certain amino acid residue masses. For example, the Cysteine
carbamidomethylation adds 57.02 Da to the original peptide. The mass change of this
modification is equal to the mass of an additional Glycine. Our filtering step is not able
to recognize whether two peptides differ in mass by the presence of one Glycine or by the
presence of one Cysteine carbamidomethylation.

Figure 3.3: Overlapping Peptide Pair vs. PTMs

3.2.3 Matching Peaks and Shifted Peaks Detection

After all the preprocessing steps, matching peaks and shifted peaks are sought. We consider
two peaks to be matched if their m/z difference is within a tolerance range of 0.03 Da.
The tolerance for shifted peaks is 0.05 Da. Note that these two figures might vary for a
different set of experimental data.
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3.2.4 Scoring

Finally, we build a scoring function to select candidate overlapping peptides. First, all
peak intensities are normalized. We set the maximum peak of a spectrum to be 1. All
other peaks are linearly normalized in proportion to the maximum peak.

We consider both the quality and quantity of matching peaks and shifted peaks. We
see that some of the spectra contain one or more peaks that have a much higher intensity
than other peaks. Figure 3.4 shows the spectra of sequence TTPPSVYPLAPG. The peak
of the y2 ion is significantly higher than the others, which makes the score highly dependent
on y2. Therefore, we decided to smooth the intensity by computing a logarithm. Since our
normalized intensity is always equal to or less than 1, to avoid having a negative value of
the logarithm, after removing all values less than 0.05, we multiplied all intensity value by
200.

Figure 3.4: The y2 peak significantly larger in the spectrum of sequence TTPPSVYPLAPG

For a pair of peaks, we prefer the case in which they have similar intensities rather than
a major difference. Therefore, we subtract the difference of the logarithm intensity values
from the lower logarithm intensity value of two peaks. Certainly, if the subtraction result
is less than 0, we ignore this pair of peaks rather than adding a negative value.
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We use m11,m12, ...,m1j to denote the normalized intensities of all matching peaks of
the first spectrum and m21,m22, ...,m2j to indicate the normalized intensities of all match-
ing peaks of the second spectrum. Meanwhile, s11, s12, ..., s1k represent the normalized
intensities of all shifted peaks of the first spectrum, and s21, s22, ..., s2k represent the nor-
malized intensities of all shifted peaks of the second spectrum. m(i) is the score of the ith
pair of matching peaks and s(i) is the score of ith pair of shifted peaks. We thus arrive at
the following scoring function:

m(i) = min(log(m1i), log(m2i))− | log(m1i)− log(m2i)|

s(i) = min(log(s1i), log(s2i))− | log(s1i)− log(s2i)|

Score =

j∑
i=1

max(m(i), 0) +
k∑

i=1

max(s(i), 0) (3.1)

A preset threshold θ is used. If the score is higher than θ, we consider this pair of
peptides as overlapping peptide pairs.

3.2.5 Overlapping Peptide Detection Algorithm

Based on the process described above, we build an algorithm to search for overlapping
peptides.
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Data: spectra dataset P , threshold θ
Result: a list L of overlapping peptide pairs

1 C ← all possible combination masses of one or two amino acid
residue ;

2 L← ∅ ;
3 preprocess spectrum P ;
4 for every p1 in P do
5 for every p2 in P where p1 6= p2 do
6 if |p1.precursor mass− p2.precursor mass| ∈ C then
7 M ← all matching peaks of p1 and p2 ;
8 S ← all shifted peaks of p1 and p2 ;
9 if score(M , S) > θ then

10 Add (p1, p2) to L ;
11 end

12 end

13 end

14 end
15 return L

Algorithm 1: Overlapping Peptides Detection

In the algorithm, line 3 is the preprocessing procedure described in Section 3.2.1. Line
6 is the filtering procedure in Section 3.2.2. Lines 7 and 8 are the matching peak and
shifted peak searches described in Section 3.2.3. Line 9 is the scoring function detailed in
Section 3.2.4.

3.3 Evaluation

This section defines the test group and presents the results of overlapping peptide detection.

3.3.1 Experiment Data

The data produced by Waters that we used to evaluate the overlapping peptide detection
is derived from an antibody-heavy-chain WlgG1 protein. The sample was digested by
Trypsin and fragmented by the Higher-energy collisional dissociation (HCD) technique.
The mass analyzer is the Fourier transform analyzer. The fragment ion error tolerance of
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the instrument is 0.03 Da and the precursor ion error tolerance is 15 ppm. The spectrum
data file format is .mgf.

3.3.2 Test Group

In total, the test dataset contains 5227 spectra. 1342 of these 5227 spectra were identi-
fied through database searching along with manual interpretation. Because identification
results generated by protein database searching are reliable, we assume that these 1342
identified results are true. They are used to test the effectiveness of overlapping peptide
pairs detection. Algorithm 2 was developed in order to build the test dataset. Most of the
steps in Algorithm 2 are the same as in Algorithm 1. In the experiment, we take only 1342
identified spectra as the initial spectra set, as we cannot evaluate the overlapping peptides
detection result if any unidentified spectra are included.

Data: spectra set E
Result: a list L of overlapping peptide sequence pairs

1 C ← all possible combination mass of one or two amino acid
residue ;

2 L← ∅ ;
3 for every e1 in E do
4 for every e2 in E where e1 6= e2 do
5 if |e1.precursor mass− e2.precursor mass| ∈ C then
6 if e1 is prefix and suffix of e2 then
7 Add (e1, e2) to L ;
8 else if e2 is prefix and suffix of e1 then
9 Add (e1, e2) to L ;

10 end

11 end

12 end
13 return L

Algorithm 2: Overlapping Peptide Test Set Construction

3.3.3 Result

Different thresholds θ affects the results of the experiment. A higher threshold makes
the program more selective. Thus, the precision of the result is increased in exchange for
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reducing the total number of overlapping peptide detected. A lower threshold would cause
more peptides to be recognized as overlapping and thus reduces the accuracy of detection.
It is important to balance the precision and recall of the program. We have set up an
experiment to determine the value of θ.

First, from the true sequences, we detected the true overlapping peptide pairs using
the string matching technique. Second, we run overlapping peptide detection experiments
with different θ values. Third, by comparing the detected overlapping peptide pairs with
the true overlapping peptide pairs, we calculated the precision and the recall.

We restricted the precision of our method to be greater than 90 %. We found that
a appropriate choice of θ is 80, at which the precision equals 91.15% and recall equals
43.53%.

In addition, to evaluate the performance of our scoring function (as shown in Function
3.1), we compared it with another scoring function (as shown in Function 3.2).

m(i) = min(m1i,m2i)− |m1i −m2i|

s(i) = min(s1i, s2i)− |s1i − s2i|

Score =

j∑
i=1

max(m(i), 0) +
k∑

i=1

max(s(i), 0) (3.2)

Function 3.2 is similar to Function 3.1 except that it does not take the logarithm of the
intensity of peaks.

Finally, we plotted precision-recall curves. As shown in the result, the scoring function
with the logarithm slightly outperforms the one without the logarithm, which implies that
smoothing the intensities of the peaks is helpful.

For a desktop computer with 16 GB of memory, the overlapping peptides detection
program takes approximately 2 seconds to run. As a comparison, Novor takes approxi-
mately 17 seconds to identifying 1342 spectra using the same computer. Since overlapping
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Figure 3.5: The precision-recall curve of the overlapping peptide pairs detection for different
scoring functions

peptides detection can be run in parallel with Novor, we conclude that overlapping pep-
tides detection should not affect the total running time of Novor for a spectrum dataset of
similar size.
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Chapter 4

Labeling

4.1 Misclassified Peaks in De Novo Sequencing

One of the difficulties in de novo sequencing is that a contiguous ion series might be
identified, but the direction of the sequence may be difficult to establish. In other words,
for CID data it may not be clear whether an ion series is y-type or b-type [29]. We
therefore devised an experiment to test how many peaks are misclassified in an incorrect
identification result.

The test dataset we used is the same as that described in Section 3.3. We used all 1342
identified peptides for this experiment and we used Novor for de novo sequencing. For each
spectrum, we have a de novo sequencing result and a database searching result. If the two
results match, we considered the de novo sequencing result as a correct identification, and
if not, we considered it to be an incorrect identification. To test for misclassified peaks,
we calculated all theoretical b-ion peaks from database searching result sequences and
calculated all theoretical y-ion peaks from de novo result sequences. We then check these
two groups of peaks and observed whether there is a match. There are two conditions that
can cause a match in this experiment. The first one is that Novor misclassifies a fragment
ion peak. The second one is that a b-ion peak coincidentally has exactly the same mass as
a y-ion peak. We divided the test group into a correct identification group and an incorrect
identification group and counted the total number of matches for each group. The results
are presented in Table 4.1.

For the incorrect identification group, clearly, Novor does not misclassify any ion peaks.
The only reason for a match is that a b-ion peak coincidentally has exactly the same mass
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# of spectrum # of match in total rate
correct 308 14 0.045
incorrect 1034 659 0.637

Table 4.1: Comparison of the number of misclassified peaks between the correct identifi-
cation group and the incorrect identification group

as a y-ion peak. The occurrence rate of this situation is around 0.045 match/spectra. In
the incorrect identification group, the probability of coincidences should be similar to the
probability for the correct identification group. From the experiment, however, we observed
a large difference in the match rate between the two groups (0.592 match/spectra). We
conclude that the incorrect direction of peaks classification occurs frequently in incorrect
de novo results.

Therefore, reducing the number of misclassified peaks would greatly improve the de
novo result. Using overlapping peptides, we are able to achieve this goal.

For misclassified spectra, a single spectrum does not usually contain sufficient informa-
tion to directly identify b-ion peaks or y-ion peaks. However, overlapping peptide pairs
would provide more information. As shown in Figure 3.2, sequences VTC(Cam)VVVDISKD
and VTC(Cam)VVVDISK are overlapping. Matching peaks contain the most b-ion peaks
while shifted peaks contain the most y-ion peaks. Figure 4.1 shows another example,
in which spectra from sequences SEIDNVKK and LRSEIDNVKK share the most y-ion
peaks(highlighted by black). Matching peaks contain the most y-ion peaks and shifted
peaks contain the most b-ion peaks.

In other words, if we have an overlapping peptide pair, we can separate the fragment
peaks into three groups: matching peaks, shifted peaks and others. Most b-ion peaks and
y-ion peaks could then be separated accordingly. Although we cannot directly tell which
group are the b-ion peak group, such separation will certainly assist de novo sequencing.

4.2 Methodology

This section introduces the method of correcting de novo sequencing errors by reducing
misclassified peaks. The method consists of two main parts: spectrum labeling and Novor
modification. In the spectrum labeling part, the peaks of spectra are labeled and a new
spectrum data file is created. In the Novor modification part, the Novor source code is
modified to adopt the new labeled spectrum data file.
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Figure 4.1: Spectra of peptide SEIDNVKK (above) and LRSEIDNVKK (below) share the
most y-ions peaks (some fragment peaks are missing during the experiment)
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4.2.1 Spectrum Labeling

The main purpose of this part is to generate a new spectrum file with labeled peaks. As
described in Section 4.1, most b-ions and y-ions can be separated by searching for matching
peaks and shifted peaks. Therefore, by labeling matching peaks and shifted peaks, b-ion
peaks and y-ion peaks can be labeled in different peak groups.

First, we modified Algorithm 1 to find only the most possible overlapping peptide
for each spectrum. We refer to this peptide as its spouse. Note that, unlike the literal
meaning of spouse, the spouse in this thesis is not a reflexive relationship. In other words,
if spectrum A’s spouse is spectrum B, spectrum B’s spouse is not necessarily spectrum A.
By modifying Algorithm 1, we restrict each spectrum to have only zero or one spouse.

Data: spectra dataset P , threshold θ
Result: an array A of spouse information for each spectrum

1 C ← all possible combination mass of one or two amino acid
residue ;

2 A← an empty array with length equals the number of P ;
3 preprocess spectrum P ;
4 for every p1 in P do
5 for every p2 in P where p1 6= p2 do
6 if |p1.precursor mass− p2.precursor mass| ∈ C then
7 M ← all matching peaks of p1 and p2 ;
8 S ← all shifted peaks of p1 and p2 ;
9 score← score(M , S) ;

10 if score > θ then
11 if A[p1] is not initialized or A[p1].score < score

then
12 A[p1].score← score ;
13 A[p1].spouse← p2 ;

14 end

15 end

16 end

17 end

18 end
19 return A

Algorithm 3: Best Spouse Searching
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Algorithm 3 returns an array rather than a list. The overlapping peptide with the
highest score to be the spouse of spectrum p1 is selected in steps 11 to 13.

The labeling procedure is then relatively simple, as shown in Algorithm 4.

Data: spectra dataset P , array A of spouse information for
each spectrum produced by Algorithm 3

Result: a spectrum file F of labeled spectrum
1 F ← empty file ;
2 for every p1 in P do
3 if A[p1] is initialized then
4 p2 ← A[p1].spouse ;
5 M ← all matching peaks of p1 and p2 ;
6 S ← all shifted peaks of p1 and p2 ;
7 Remove common peaks from M and S ;
8 Label all peaks of M as ’M’ ;
9 Label all peaks of S as ’S’ ;

10 Append labeled spectrum p1 to F ;

11 end

12 end
13 return F

Algorithm 4: Spectrum Labeling

In Algorithm 4, all matching peaks and shifted peaks are marked except for peaks
appearing in both groups (step 7). Peaks appearing in both groups cannot be treated only
as matching peaks or only as shifted peaks, so they are not labeled.

A new file format .mgfl has been created on the basis of the .mgf format. The only
difference from .mgf is that a label “M” or “S” is added to the ion list. Figure 4.2 shows
an example of an .mgfl file.

4.2.2 Novor Modification

We modified the Novor software to handle the labeled spectra. After the spectrum labeling,
all peaks are divided into three groups: unlabeled peaks, peaks marked as “M” and peaks
marked as “S”.

In reality, some fragment ion peaks might not be presented in the spectra. As a result,
for certain fragment ion peaks, corresponding matching or shifted peaks might be missing,
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Figure 4.2: An example of the labeled spectrum file

which causes those fragment peaks to be unlabeled. Therefore, for unlabeled peaks, we
cannot ignore the possibility that they are fragment peaks rather than noise.

Novor is modified to treat a cluster of labeled peaks only as b-ion peaks or y-ion peaks.
For example, for all peaks labeled as “M”, Novor considers them only as b-ion peaks which
include b-ion fragment peaks and their −NH3 peaks, −H2O peaks etc. Novor treats all
unlabeled peaks as it normally does since all unlabeled peaks may be either b-ion peaks or
y-ion peaks.

For each spectrum, Novor is then run three times. First, the labeling feature is ignored
and Novor is run as usual. Second, all peaks labeled “M” are treated as b-ion peaks and
all peaks labeled “S” are treated as y-ion peaks. Third, all peaks labeled “S” are treated
as b-ion peaks and all peaks labeled as “M” are treated as y-ion peaks. The sequencing
result with the highest confidence score calculated by Novor is selected. In addition, we
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export all three sequencing results and their confidence scores for further investigation.

4.3 Evaluation

4.3.1 Experiment Data

We use the same experiment dataset as in Section 3.3.

4.3.2 Test Group

Again, we use only 1342 out of 5227 identified spectra to examine our result. We consider
a match between the de novo sequencing result and the database searching result to be a
correct sequencing.

In theory, by directly comparing the sequencing result before and after the labeling,
we will see the effect of the method. However, at the time the experiment was conducted,
Novor only supported a few types of PTMs. For some peptides with PTMs not covered
by Novor, Novor produces inaccurate results. For example, Novor does not support Car-
bamidomethyl on the N-terminus. A sequence such as (N-term|Cam)GQPAENYK would
not be correctly identified. Instead, Novor will produce GGQPAENYK since the modifica-
tion of Carbamidomethy on the N-terminus would add 57.02 Da to the N-terminus, which
is similar to adding a Glycine to the front of the sequence.

For this reason, we developed another way to test our results. We mapped a sequence
to a residue mass array. To make the description more intuitive, we use a segmented line
to represent the mass array. As shown in Figure 4.3, each point represents the sum of
residue masses of the previous amino acids. We mapped results generated by the database
searching and results from de novo sequencing to arrays. Then, for each database search-
ing result sequence, we checked every amino acid to determine whether its two boundaries
appear in the corresponding de novo sequencing result array. Finally, we counted the to-
tal number of matched amino acids. In the example shown in Figure 4.3, every amino
acid of (N-term|Cam)YYC(Cam)TR has its boundaries appear in the array of sequence
GYYC(Cam)TR even though Carbamidomethyl on the N-terminus is not correctly inter-
preted.
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Figure 4.3: Mapping a sequence into an array of residue masses

4.3.3 Result

By comparing the number of matched amino acids, we can evaluate the performance of
the labeling method. In the experiment, we set the threshold θ to be 80. In Figure 3.5,
the threshold of 80 is the point at which the recall equals 43.53% and the precision equals
91.15%. We favor precision over recall. This experiment includes 650 identified peptides
that are labeled. There are 11521 amino acids in total. For the result produced by the
modified version of Novor, we count the number of correctly interpreted amino acids. The
result is shown in the first column of Table 4.2.

In addition, we set up another experiment to test the best potential improvement.
Instead of selecting the sequence with the most confidence scores, we selected the best
sequencing results that have the most matched amino acids compared with the true peptide
sequences. Since we consider database searching results as true peptide sequences, we pick
the one with the most matched amino acids based on the database searching result. The
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Sequence with highest score Sequence with best matches
Total labeled peptide 650 650
Total AA 11521 11521
Matched AA before the labeling 7033 7033
Matched AA after the labeling 7092 7327
Improvement Ratio(%) 0.84 4.18
Peptides become better 47 117
Peptides become worse 32 0

Table 4.2: Result of labeling under current confidence scoring function and theoretical
theoretical improvement of a different scoring function

result is shown in the second column of Table 4.2.

Novor runs three times for labeled spectra. Despite the long running time, the actual
result improvement is not remarkable being only 0.84%. A possible reason is that the
current Novor confidence score function does not take the labeling feature into considera-
tion. As shown in Table 4.2, we are able to reach 4.18% potential improvement. Another
reason is that fragment ion peaks classification has already been taken into consideration
in Novor. The labeling strategy might duplicate the effort of Novor.
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Chapter 5

Voting

5.1 Correcting De Novo Results with Low aaScore

As discussed in [29], de novo sequencing often produces partially correct sequences. A
strategy to increase the accuracy of peptide identification is to combine de novo sequencing
with database searching. In this chapter, we propose another strategy to deal with partially
correct sequences.

In addition to a peptide confidence score, Novor also produces an Amino Acid Con-
fidence Score (aaScore) for each identified spectrum. The aaScores list is a list of scores
representing the confidence of each amino acid. They range from 0 to 99. Larger scores
stand for more confidence that this amino acid is correctly interpreted. For example, Novor
correctly identified the sequence GQPAENYK and its aaScores are 78-91-99-96-96-95-82-
70 (first row in Table 5.1). All aaScores in the sequence are high. However, for some other
spectra, Novor produces results with lower aaScores such as the sequence GGQPAENYK
(second row in Table 5.1). The sequence GQGPAENYK is a partially correct result pro-
duced by Novor. By comparison with the true sequence, the second and the third amino
acid are incorrectly interpreted while all others are accurate. In addition, the aaScores of
the second and the third amino acid are low. Such partially correct results are typically
caused by low-quality spectra such as those with fragment peaks missing.

Novor currently processes each spectrum independently. In this thesis, we have con-
structed relations between spectra using overlapping peptides. By utilizing overlapping
peptides, we are able to supply additional information to Novor and thus improve the
accuracy.

36



True Sequence Novor Result Sequence aaScore
GQPAENYK GQPAENYK 78-91-99-96-96-95-82-70
GGQPAENYK GQGPAENYK 85-12-3-91-98-96-97-91-92

Table 5.1: Novor’s interpretation of an overlapping peptide pair

We realized that two sequences in Table 5.1 are considered to overlap. The first sequence
is the suffix of the second one. By aligning two de novo result sequences and taking the
aaScores into consideration, we are able to modify the partially correct result by reversing
the order of the second and the third amino acid.

The main method of detecting overlapping peptides is described in Chapter 3. In this
chapter, we show the method for replacing incorrect subsequences in Novor results.

5.2 Methodology

Voting consists of two steps: alignment and replacement. In the alignment step, it is
determined whether the shorter sequence is the prefix or suffix of the longer sequence.
In addition, two peptides are aligned. In the replacement step, amino acids with lower
aaScores are replaced according to their alignment.

5.2.1 Alignment

Similar to the spectrum labeling method introduced in Section 4.2.1, we restrict each
spectrum to only zero or one spouse.

Two significant problems arise when given an overlapping peptide pair. First of all,
it is important to decide whether the two sequences share the same prefix or share the
same suffix. A wrong decision would certainly make all the ensuing procedures invalid.
The second problem is deciding how amino acids are replaced. A basic rule is that we
need to keep the residue mass of the sequence unchanged after replacement. Clearly, we
cannot replace an Alanine(A) with an Arginine(R) since residue masses of A and R are
different. However, we could replace two Glycine(G) with an Asparagine(N) since their
residue masses are be same. We could replace [AQG] by [GAQ] since the latter is a
permutation of the former.

To resolve these two problems, we make an alignment of the overlapping peptide pair.
Since the shorter sequence is either the prefix or suffix of the longer sequence, we try both
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cases and select the better one. We add a mass gap to either the head or tail of the shorter
sequence in order to match the total residue mass of the longer sequence. Then, similar to
the method of mapping a sequence to an array as described in Section 4.3.2, we map two
sequences into two arrays of residue mass. By aligning the two arrays of residue masses,
alignment with more overlapping masses indicates a higher probability of being the correct
one. Finally, we count the number of overlapping masses in the two arrays and select the
larger one.

After alignment, the sequences are partitioned into a number of segments. Each segment
from one peptide has the same residue mass as the corresponding segment from the other
peptide. These segments are used in the next step for replacing amino acids.

The overall flow of alignment is shown in Figure 5.1.

The dark circle in Figure 5.1 represents a gap. The length of the gap is equal to the
precursor mass difference of the two sequences. We insert the gap to either the head or the
tail of the shorter sequence. When the gap is inserted to the head, there are 10 overlapping
masses, which is larger than the number of overlapping masses when the gap is inserted
to the tail. Thus, we choose the left alignment and the sequences are partitioned into 9
segments.

The detail procedure of aligning two residue mass arrays is shown in Algorithm 5.

Data: mass array l1 and l2
Result: an alignment t of l1 and l2

1 i1 ← 0 ;
2 i2 ← 0 ;
3 t← ∅ ;
4 while i1 < l1.length or i2 < l2.length do
5 if l1[i1] overlaps l2[i2] then
6 Add index i1 and i2 to t ;
7 Increment i1 ;
8 Increment i2 ;

9 else if l1[i1] > l2[i2] then
10 Increment i2 ;
11 else
12 Increment i1 ;

13 end
14 return t

Algorithm 5: Alignment
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Figure 5.1: Flow of alignment
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5.2.2 Replacement

After generating an alignment of sequences, the sequences are also partitioned into a num-
ber of segments. The replacement step is based on segments.

In the sequence GQGPAENYK in Table 5.1, the aaScores of the second and the third
amino acid are low. This is shown in Figure 5.2. After aligning with the sequence ?GQ-
PAENYK where the mass of “?” is 57.02, we replace the second segment QG in GQG-
PAENYK with the second segment GQ in ?GQPAENYK. Since the masses of correspond-
ing segments from two sequences are same, we are able to safely replace them. So far, we
have successfully corrected the second and the third amino acids in the sequence GQG-
PAENYK. The remaining two sequences are exactly the same, so we leave them unchanged.

Figure 5.2: Flow of replacement
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Data: alignment t, multiplier α
1 for every pair of segments (seg1, seg2) in t do
2 if seg1 not equal seg2 then
3 if seg1 not contains gap and seg2 not contains gap then
4 x1 ← total aaScore of seg1 ;
5 x2 ← total aaScore of seg2 ;
6 if x1 > α · x2 then
7 Replace seg2 by seg1
8 end
9 if x2 > α · x1 then

10 Replace seg1 by seg2
11 end

12 end

13 end

14 end
Algorithm 6: Replacement

Algorithm 6 presents the detailed explanation of how segments are replaced. Align-
ment structure t contains all the information needed for replacement such as the identified
sequences, the aaScores of each amino acids and the segment array of alignments. We also
set a multiplier α. Whenever the total aaScores of one segment is α times greater than the
other, we substitute the lower one. In Step 3, we ensure that none of segments contains
a gap. If there is a gap, it is meaningless to substitute segments. Steps 7 and 10 are the
replacement procedures.

5.3 Evaluation

5.3.1 Experiment Data

In addition to the sample data we used in Section 3.3.1, we include more samples in order
to evaluate the voting strategy. We use antibody samples RN-R206-IS and RN-R207-
IS. These samples are digested by AspN, Chymotrypsin, Pepsin and Trypsin respectively,
forming eight spectrum datasets in total. These eight groups of data have been produced
recently and thus more convincing in terms of the evaluation strategy.
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5.3.2 Test Group

We use the same method in Section 4.3.2 to test the improvement of Novor after applying
the voting strategy. We treat the result sequences generated by the protein database
searching technique as the true sequences. The numbers of matched amino acids between
the de novo sequencing results and database searching results are the main indicator of
measurement. For all sample data, we select the spectra that were identified through
database searching as input for the voting program.

5.3.3 Result

Different choices of multiplier α in Algorithm 6 and threshold θ in Algorithm 3 can affect the
results of the experiment. A greater value of α indicates more caution when the algorithm
decides whether to modify the result sequences and thus leads to fewer sequences being
corrected and fewer mistakes being made. Threshold θ, described in Section 3.2.4, affects
the total number of overlapping peptides detected.

Therefore, we set up an experiment to test the effects from different values for θ and α.
We again use the 1342 identified spectra from WlgG1 data and calculate the improvement
ratio as follows:

improvement ratio =
matched AA after the voting −matched AA before the voting

matched AA before the voting

Table 5.2 shows the results for different values of α with θ at 80. In the overlapping
peptide detection experiment, when θ equals 80 the precision equals 0.9115 and recall
equals 0.4353.

From Table 5.2, we see that as α increases, the number of modified peptides decreases.
However, the improvement decreases. The improvement ratio reaches its maximum when
α equals 1, which implies that the algorithm should act more aggressively. When a pair of
different segments is found, the one with the lower aaScore should always be replaced.

Table 5.3 shows the different values of θ with α set at 1. As seen in Table 5.2, the
algorithm performs best when α equals 1. Since different values for θ restrict the total
number of overlapping peptides detected, we define the affected peptide ratio. The term
affected peptides denotes peptides with spectra that match with a “spouse”. Only spectra
with a “spouse” are modified in the voting. The affected peptide ratio is calculated as
follows:
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affected peptide ratio =
affected peptides

total number of peptides

Choice of α 1 3 6 10
Total labeled peptide 639
Total AA 11374
Matched AA before the voting 6862
Matched AA after the voting 7207 7034 6956 6928
Improvement Ratio (%) 5.03 2.51 1.37 0.96
Peptide become better 106 42 26 20
Peptide become worse 32 2 1 0

Table 5.2: Result of Voting when α equals 1, 3, 6 and 10

Choice of θ 40 80 120 160
Precision of experiment in Section 3.3 0.6275 0.9115 0.9509 0.9897
Recall of experiment in Section 3.3 0.7968 0.4353 0.1915 0.0863
Total affected peptide 1099 639 400 230
Total affected AA 17451 11374 7796 4904
Affected peptide ratio (%) 81.9 47.6 29.8 17.1
Matched AA before the voting 10568 6862 4690 2936
Matched AA after the voting 10553 7207 4979 3137
Improvement Ratio (%) -0.14 5.03 6.16 6.85
Peptide become better 95 106 81 56
Peptide become worse 86 32 22 13

Table 5.3: Result of Voting when θ equals 40, 80, 120 and 160

In Table 5.3, as θ increases, the precision of overlapping peptides detection also in-
creases. As a result, the improvement ratio increases as well. However, the number of
affected peptides decreases. We set θ at 80 for the following experiments as it balances the
improvement ratio and the number of affected peptides.

After choosing the value of θ and α, we evaluated the voting method with antibody
samples RN-R206-IS and RN-R207-IS. Table 5.4 shows the result.

In summary, by testing different sample data, we reached improvement ratios ranging
from 3% to 8% for overlapping peptides. The voting spends 165 milliseconds correcting
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Data index Enzymes Improvement ratio (%) Affected peptide ratio (%)
R206 AspN 6.81 54.91
R206 Chymotrypsin 4.67 66.44
R206 Pepsin 4.79 70.88
R206 Trypsin 3.10 60.26
R207 AspN 7.27 43.38
R207 Chymotrypsin 3.59 67.96
R207 Pepsin 6.13 70.11
R207 Trypsin 3.75 62.05

Table 5.4: Experiment results for Samples R206 and R207 with α = 1 and θ = 80

the de novo sequencing result for a 1342-spectrum sample on a desktop computer with 16
GB of memory. As mentioned in Section 3.3.3, the overlapping peptide detection program
takes approximately 2 seconds to run and Novor takes 17 seconds for the same sample.
Since overlapping peptide detection and Novor can run simultaneously, the added time of
the voting is extremely small compared with the significant improvement of the de novo
sequencing accuracy.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Due to the improvement of computing algorithms and desktop computer hardware, de
novo sequencing has now become practical. With the establishment of Novor, the speed
of de novo sequencing can greatly outperform the speed of the protein database searching.
Increasing the accuracy of de novo sequencing has become an urgent goal.

In this thesis, we focus on improving de novo sequencing using overlapping peptides.
We propose a method of detecting overlapping peptides directly from the spectrum without
the need for database searching.

The labeling and the voting are the two strategies we designed to improve the result
from de novo sequencing using overlapping peptides.

The labeling strategy relies on separating fragment peaks to reduce the number of
misclassified fragment ions. Although the evaluation experiment indicates that the labeling
strategy does not produce remarkable outcomes, we still find that potential improvement
can be achieved.

The voting strategy depends on substituting substrings in the Novor results. With the
great improvement of accuracy and the short running time, the voting strategy was proven
to be a worthy supplement of de novo sequencing. Although all experiments involving de
novo sequencing were performed by Novor, the voting should be added not only to Novor
but also to all de novo sequencing tools that output amino acid confidence scores.

Furthermore, the idea of voting can be applied to the method of protein database
searching and other sequence identification tools.
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6.2 Proposed Future Work

This section proposes topics for future studies.

6.2.1 Substitution Algorithm of the Voting

This thesis uses a straightforward substitution algorithm to replace the lower score sub-
string. A more accurate and complicated algorithm might be developed to further improve
the accuracy of de novo sequencing. For example, machine learning techniques could be
added to detect an incorrect substring.

6.2.2 Overlapping Peptide Cluster

Ideally, it would be more intuitive if we could construct overlapping peptide clusters after
finding overlapping peptide pairs. An overlapping peptide cluster is a group of overlapping
peptides all sharing the same prefix or suffix.

To make the description more clear, we use a graph to represent spectrum data. Initially,
the graph consists of a number of vertices without any edges. Each vertex represents a
spectrum. By finding overlapping peptide pairs, vertices would be connected accordingly.
An edge exists only if its connected vertices (spectra) overlap. In graph theory, a clique is
defined as the maximal complete subgraph of an undirected graph[35]. A clique would be
a perfect representative of a cluster overlapping peptides. Therefore, once all overlapping
peptide pairs have been found, finding the overlapping peptide clusters is the same as
finding cliques (see Figure 6.1).

There exist many obstacles to overlapping peptide cluster construction:

• Clique detection is NP-hard and thus an appropriate approximate algorithm is needed.

• In practice, some overlapping peptide pairs may not be successfully detected due to
the low quality of spectra. Undetected overlapping peptides result in missing edges,
which complicates the detection of the overlapping peptide clusters.

Once an overlapping peptide cluster is available, the ideas of labeling and voting can
be applied to improve de novo sequencing. Instead of a single spectrum, a group of spectra
must be considered together. The problem of assignment of matching and shifted peaks
from different overlapping peptides has to be solved.
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Figure 6.1: Graph representation of overlapping peptide clusters
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