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Abstract

The näıve Bayes model is a simple model that has been used for many decades, often
as a baseline, for both supervised and unsupervised learning. With a latent class variable
it is one of the simplest latent variable models, and is often used for clustering. The esti-
mation of its parameters by maximum likelihood (e.g. using gradient ascent, expectation
maximization) is subject to local optima since the objective is non-concave. However, the
conditions under which global optimality can be guaranteed are currently unknown. I pro-
vide a first characterization of the optima of the näıve Bayes model. For problems with up
to three features, I describe comprehensive conditions that ensure global optimality. For
more than three features, I show that all stationary points exhibit marginal distributions
with respect to the features that match those of the training data. In a second line of
work, I consider the näıve Bayes model with an observed class variable, which is often
used for classification. Well known results provide some upper bounds on order of the
sample complexity for agnostic PAC learning, however exact bounds are unknown. These
bounds would show exactly how much data is needed for model training using a particular
algorithm. I detail the framework for determining an exact tight bound on sample com-
plexity, and prove some of the sub-theorems that this framework rests on. I also provide
some insight into the nature of the distributions that are hardest to model within specified
accuracy parameters.

iii



Acknowledgements

I would like express my sincerest thanks to Professor Poupart. His guidance and support
are very deeply appreciated, and I am very thankful for his remarkable enthusiasm. I would
like to thank George Trimponias, with whom I collaborated significantly over the past two
years. I am deeply thankful for his creativity, passion and optimism.

iv



Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background and Related Work 4

3 Characterizing the Optima of the Likelihood for Unsupervised Näıve
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Chapter 1

Introduction

The näıve Bayes model is one of the most basic models in machine learning. It was
introduced over half a century ago, and is widely used as a baseline model in various
settings. The näıve Bayes model has many advantages, such as its simplicity and its
scalability, which is due to its number of parameters being linear in the number of features.

The näıve Bayes model is effective for both supervised and unsupervised learning. When
the class variable is observed, it can be used for classification. It can be used in a variety
of settings, such as text classification [16], sentiment classification [30] and spam filtering
[34].

When the class variable is unobserved and its parameters are estimated in an unsuper-
vised fashion, it can be used for clustering. For instance, it is often used as a baseline for
clustering data with discrete features such as gene expression [35], behavioural data [12]
and text documents [22]. It is a special case of the latent Dirichlet allocation model [8]
where all the words in a document are forced to be generated by the same latent topic. It
can also be viewed as a discrete version of the popular Gaussian mixture model where the
Gaussian components are replaced by discrete distributions.

Despite the näıve Bayes being a well established and commonly used model, some of its
fundamental properties are not well understood. In this thesis, I will describe my research
into the characterization of the optima of the likelihood of the näıve Bayes model in the
unsupervised setting. I will then describe my research related to the data complexity of
the näıve Bayes model in the supervised setting.

A common approach for unsupervised training of a näıve Bayes model for clustering
consists of maximizing the likelihood of the data. Since the optimization objective is non-
concave, popular algorithms such as gradient ascent and expectation maximization [14]
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may get stuck in local optima. Despite the näıve Bayes model being one of the oldest
and most basic models in machine learning, there is no characterization of the optima of
the likelihood objective. This is a major gap in the theory of the näıve Bayes model that
translates into some uncertainty about the reliability of the clusterings found in practice.
With the democratization of machine learning, there is a need for software libraries that
produce reliable clusterings. However, at the moment, practitioners cannot trust that
a clustering produced by a näıve Bayes model is as good as possible (in terms of data
likelihood).

I provide a first analysis of the stationary points of the unsupervised näıve Bayes like-
lihood. For up to three binary features, I show that global optimality is attained unless
the optimum satisfies special degenerate properties. To support this, I provide general
conditions that ensure global optimality. In all cases, including problems with more than
3 features, I show that all stationary points possess marginal distributions of the features
that match those of the empirical data. This is a nice property that suggests that even
when a local optimum is found, it is still a reasonable solution.

In practice these simple conditions allow a user to check if there is a chance that the
local optimum that they have encountered may not be globally optimal. The user can
verify if the stationary point matches the conditions placed on the parameters at spurious
local optima, and if that is not the case, then the point must be globally optimal.

In the case of supervised learning with the näıve Bayes model, it is well known that
the log likelihood is concave. Hence, there are no sets of parameters that could be locally
optimal but not globally optimal. In practice, however, the parameters are chosen based
on a set of training data. Depending on how well that sample represents the underlying
distribution, the parameters that best describe the sample could lead to a different classifier
than the parameters that best describe the underlying distribution. The portion of the
classification error due to this effect is called the estimation error. If we are unlucky, and
the observations in the sample happen to be very unusual for the underlying distribution,
then the classifier we select may not generalize well beyond our sample. So, even though
there is only a single parameterization that is optimal, it is optimal for the finite training
sample, and not necessarily for the distribution.

In general, as our sample gets larger, by the central limit theorem the frequency of any
event in this sample will tend towards its true probability in the underlying distribution.
Hence, as our sample becomes larger, the probability of choosing an unrepresentative
sample will become smaller. For practitioners, it would be useful to know if there is a
certain sample size that will guarantee that with high probability the classifier selected will
have performance close to that of the optimal classifier. This way, they could control their
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sample size to make sure that the probability of encountering errors beyond a specified
threshold is sufficiently small. Or, if the amount of training data available is limited,
it would allow them to assess the probability that they are making errors of a certain
magnitude.

I present a strategy for determining the exact minimum number of training observations
needed for agnostic probably approximately correct learning using the näıve Bayes classifier
and maximum likelihood. Next, I complete the first steps for implementing this strategy,
in the restricted case of the single feature näıve Bayes classifier. This leads us to some
interesting insights into how the estimation error changes as the underlying distribution
changes. It also shows us the regions where the distributions with the greatest probability
of breaching our error threshold exist.

This technique, once completed in full, would allow a user to find out exactly how
many training observations they must use to probabilistically reach their desired accuracy.
In practice, our results show that for certain problems and accuracy levels this could be
93% lower than the generally known bound. This means that we could greatly reduce
the burden of storage and computational costs, while only sacrificing accuracy up to a
specified amount. Alternatively, if the amount of data is fixed, this technique allows the
user to assess with what probability they are guaranteed to reach a specified accuracy
target.

This thesis is structured as follows. Chapter 2 provides the reader with the necessary
background knowledge, and discusses related work. Chapter 3 illustrates my work describ-
ing the stationary points of the log likelihood of the näıve Bayes model in the unsupervised
setting. Chapter 4 details my work towards determining the minimum number of observa-
tions required for agnostic probably approximately correct classification using maximum
likelihood and the näıve Bayes model. Finally, Chapter 5 concludes this thesis and provides
some interesting directions for future work.
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Chapter 2

Background and Related Work

The näıve Bayes model is a very simple type of Bayesian network that has been in use for
over half a century [27]. As mentioned in Chapter 1, it is used in a variety of contexts, such
as text classification, spam filtering, or clustering gene expressions, often as a baseline. It
uses a single class variable, which I will denote C, and multiple features that are condi-
tionally independent given the class, which I will denote X1, X2, ..., Xn. We will assume
that the number of features, n, is finite.

Figure 2.1: The näıve Bayes model

C

X1 X2
... Xn

The näıve Bayes model represents distributions which factorize as follows:

P (C = c,X1 = x1, ..., Xn = xn) = P (C = c)
n∏
j=1

P (Xj = xj|C = c)

We assume that we are attempting to model a distribution D. PD(event) will denote
the probability of a certain event within the distribution. To construct the model, we will
be using a training sample S, which will consist of m i.i.d. observations from D. The
empirical distribution, or sample distribution, PS(event) will describe the frequency of the

specified event within the sample. For example, PS(X = x) =
# of obs s.t. X=x

# of obs
.
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I will also use the term marginal distribution, which refers to the distribution of a subset
of the variables, regardless of the values of the other variables. For example, if the system
has two binary features, then PS(X1 = 1) = PS(X1 = 1, X2 = 0) + PS(X1 = 1, X2 = 1).

One of the most common techniques for training a näıve Bayes model on a sample S is
finding the parameters that maximize the likelihood of S. This is equivalent to finding the
parameters that maximize the log likelihood of S. Let the model parameters be denoted Ω,
and the probability of a certain event as calculated using the model parameters be denoted
PΩ(event). In the supervised scenario, when the training data is labeled, the log likelihood
of S is:

L(S; Ω) =
∑

(c,x)∈S

logPΩ(C = c,X = x)

=
∑

(c,x)∈S

logPΩ(C = c)
n∏
j=1

PΩ(Xj = xj|C = c)

In the unsupervised scenario, when the training data does not include the class variable
C, which we assume to have domain C, the log likelihood of S is:

L(S; Ω) =
∑
x∈S

logPΩ(X = x)

=
∑
x∈S

log
∑
c∈C

PΩ(C = c,X = x)

=
∑
x∈S

log
∑
c∈C

PΩ(C = c)
n∏
j=1

PΩ(Xj = xj|C = c)

So, to train our näıve Bayes model using maximum likelihood, we must optimize the
likelihood over our parameter space. This will yield the parameters that have the highest
likelihood of having generated the dataset. We can then classify new, unlabeled observa-
tions x using the rule:

y = argmax
c∈C

PΩ(C = c|X1 = x1, ..., Xn = xn) = argmax
c∈C

PΩ(C = c)
n∏
j=1

PΩ(Xj = xj|C = c)
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Two popular techniques for optimizing the likelihood are gradient ascent [11] and ex-
pectation maximization [13]. To perform gradient ascent, we first initialize the model
parameters to some point. The gradient of the objective function (in this case, the log
likelihood) is then computed, and we change the parameters by moving them a small step
in the direction of the gradient, such that the objective is improved. We continue this
process until we reach a point that is locally optimal within the parameter space.

Expectation maximization is another optimization technique that is often used when the
model objective depends on unobserved features. To perform expectation maximization,
we begin by initializing the model parameters to some point. We then repeat the following
two steps until convergence to a point that is locally optimal within the parameter space:

• Perform an expectation step, in which we calculate a function of the parameters that
represents the expected value of the log likelihood based on the distribution of the
latent features given the observed features and the current parameter settings.

• Perform a maximization step, in which we determine the model parameters that
would maximize the expected log likelihood found in the previous step. We then set
the parameters to be the parameters found in this step.

Gradient ascent and expectation maximization are two very popular and commonly
used optimization techniques. However, gradient ascent and expectation maximization are
only guaranteed to converge to a local maximum. Hence, if the objective is concave, then we
know that any point that these methods converge to must be a global maximum. However,
if the function is not quasi-concave, then these methods may converge to a spurious local
maximum, which may have likelihood that is much lower than that at the global optimum.
Furthermore, without any understanding of the shape of the objective function, and the
nature of its local optima, we cannot determine, for any stationary point that is reached,
whether or not it might be a spurious local maximum.

In the case of supervised learning using the näıve Bayes model, it is a simple exercise
to show that the log likelihood is concave, so there are no risks of spurious maxima. In the
case of unsupervised näıve Bayes learning, however, the likelihood is not concave, and hence
it is valuable to understand the nature of any stationary points. Such a characterization
would allow us to know the conditions under which a stationary point might not be globally
optimal and how far from optimal it may be.

The problem of characterizing the stationary points of the likelihood has recently at-
tracted considerable attention in the machine learning community. While I am not aware
of such work in the case of unsupervised näıve Bayes, various characterizations exist for
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other latent variable models such as mixtures of Gaussians and matrix completion. For
instance, [37] provides a global analysis of Expectation Maximization for mixtures of two
Gaussians. Furthermore, [23] shows that arbitrarily bad local optima exist in the likeli-
hood of mixtures of at least three Gaussians and [1] shows that for certain data samples
the number of local optima can be unbounded. In contrast, for the problem of completing
a positive semidefinite matrix based on incomplete measurements, it was recently shown
that no spurious local optima exist (i.e., all local optima are global optima) despite the
non-convex nature of the objective [17, 7].

In a different line of work, researchers considered alternatives to maximum likelihood
to obtain provable guarantees about the estimation of latent variable models. For instance,
with the method of moments, it is possible to reliably estimate the underlying parameters
of mixtures of Gaussians [6, 28, 21], latent Dirichlet allocation [2] and other latent variable
models [3] with sufficient data and suitable minor conditions. However, techniques based
on maximum likelihood tend to be more data efficient and therefore often remain the
preferred choice of practitioners.

Even in cases, such as supervised näıve Bayes, where it is known that the log likelihood
is concave, there is still a question of how much data is needed to ensure that our model will
probabilistically achieve our desired accuracy levels. It is important that we have enough
data in our training sample so that it can replicate the underlying distribution sufficiently
well. However, there is also a trade off in terms of computational and storage complexity.
In practice, we generally need to accept a certain probability of having some error in our
learning tasks. Hence it is important to consider how much error is acceptable for the user,
and how much of our resources we are willing to spend to mitigate that error.

To discuss whether or not a classifier is accurate enough, we will first define agnostic
PAC learnability. A hypothesis class H is agnostic PAC learnable, if, ∀ε, δ ∈ (0, 1) and
for every distribution D, there exists an integer m and a learning algorithm such that,
if our dataset contains at least m i.i.d. observations from the distribution D, then with
probability at least 1− δ, the algorithm will choose a classifier h ∈ H such that:

LD(h) ≤ min
h′∈H

LD(h′) + ε

where LD(h) = P(x,y)∼D(h(x) 6= y).

Intuitively, this means that as long as our sample is large enough, there is a sufficiently
high probability that the algorithm will choose a classifier that performs to within at least
ε of the optimal classifier in the hypothesis class over the distribution.

We must also consider several other definitions:
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Shattering: A hypothesis class H with domain X shatters a finite set C ⊂ X if the
restriction of H to C is the set of all functions from C to {0, 1}.

VC Dimension: The VC-dimension of a hypothesis class H with domain X is the
maximal size of a set C ⊂ X that can be shattered by H.

There are several well known theorems that provide bounds on the sample complexity
for agnostic PAC learning. One of the most well known is the Fundamental Theorem of
Statistical Learning [9], which states:

Let H be a hypothesis class from a domain to {0, 1} with VC dimension d <∞. Then,
using the 0-1 loss function, there exists a constant c such that H is agnostic PAC learnable
to within ε with certainty 1− δ with sample complexity m ≤ cd+log(1/δ)

ε2
.

In the case of the näıve Bayes classifier with n features, we are mapping from the domain
{0, 1}n to {0, 1}. Therefore, any set that is shattered by this hypothesis space contains no
more than 2n elements, and so the VC dimension is finite and is at most 2n. Hence, the
Fundamental Theorem of Statistical Learning does apply in the case of the näıve Bayes
classifier.

To say that a certain hypothesis class is agnostic PAC learnable means that there exists
a learning algorithm such that with enough data we can ensure, with confidence ≥ 1− δ,
that our loss will be within ε of that of the optimal hypothesis. However, though we
know that such an algorithm exists, we may not know whether it holds for our particular
algorithm. We don’t even know whether the algorithm that does satisfy agnostic PAC
learnability is computationally tractable.

So, we know that there is a bound on the sample complexity for some learning algorithm,
and we have an idea of how it will change as the accuracy and confidence thresholds ε and
δ change. However, without knowing which algorithm to use, this result cannot be put
into practice.

Another important consideration for those who wish to use this Theorem in practice is
that it does not tell us exactly how many observations we need to use to reach our accuracy
goals. This result gives us the order of the sample complexity, but unless we find exact
values for the constant (for example, by examining the proof of the theorem) and find and
incorporate any lower order terms that may have been dropped, we can’t find an exact
number of observations needed. This theorem is more useful in terms of giving a broad
idea of the magnitude of data needed, for example saying that if we want to halve our
accuracy threshold ε, then we would expect to need four times as much data to achieve
the same confidence.
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Furthermore, the bound identified in this Theorem is not tight. Depending on the
hypothesis class and algorithm being used, it is possible that there is a tighter bound.

We will also define empirical risk minimization (ERM):

Empirical Risk Minimization: ERM is the learning algorithm that chooses the hypoth-
esis that minimizes the loss function over the training sample.

Another well known theorem provides an empirical bound for finite hypothesis classes
[9]:

If H is a finite hypothesis class from a domain to {0, 1}, then using the ERM algorithm

the class is agnostic PAC learnable with sample complexity m ≤ d2log(2|H|/δ)
ε2

e.

Note that though the parameter space for the näıve Bayes model is continuous, there are
regions of the parameter space that lead to identical classifier outcomes over the domain.
In fact, in our case there are only a finite number of different classifiers, since the classifiers
are functions that map from the finite feature domain, {0, 1}n, to the finite class domain,
{0, 1}. Hence, the hypothesis class is finite.

This theorem is more useful for our goal than the previous, since it provides an exact
value that can be calculated. It can give an upper bound after which we can be sufficiently
certain that our accuracy threshold is achieved through ERM. It is not, however, a tight
bound. And in the case of näıve Bayes (and many other models), the fact that |H| grows
exponentially with n, and that ε is generally quite small, means that this upper bound
will usually be quite large. However, by considering and exploiting the specific form of
the model and the classifiers created, I hope to find the exact number of observations that
is required, rather than an upper bound. Exploiting the structure of the hypothesis class
could lead to a precise sample complexity that is much lower than the upper bound found
in the general case of a finite hypothesis class.

There has been significant research for many years into sample complexity and PAC
learnability of differerent hypothesis classes. However, many of these results have been
related to the order of the sample complexity, both for the upper bound [25, 26] and the
lower bound [15]. A further direction of study has been to see whether the order of sample
complexity bounds can be tightened for specific models. For example, [4] tightens the
lower bounds for several classes such as linear halfspaces, [5] improves the upper bounds
for neural nets, and [32] shows a tight bound for sub-Gaussian distributions. However,
these works are all focused on the order of the sample complexity, so while they give a
good idea of how the data needs to grow in order to probabilistically achieve good accuracy,
they cannot be used to give exact values of how many training observations are needed.
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There has also been some work in bounding the sample complexity using quantities
other than the ones normally used in learning theory, such as VC dimension and accuracy
and confidence parameters. For example, [20] provides bounds on the sample complexity
of Bayesian learning using metrics derived from information theory. [24] describes extend-
ing sample complexity results to reinforcement learning, where additional factors such as
sampling models come into play.

So, most work in the field so far has been related to determining and tightening the
bounds on the order of the sample complexity in various settings. I have not found any
other work where the exact number of observations needed is calculated. Knowing the
exact sample size would be incredibly valuable in practice. For simplicity, I begin with
the simplest setting of one of the simplest models, the single feature näıve Bayes classifier,
but I design my approach in such a way that it can hopefully be extended to include more
features or to other models.
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Chapter 3

Characterizing the Optima of the
Likelihood for Unsupervised Näıve
Bayes

3.1 Problem Description

In this section I focus on the problem of unsupervised classification using the näıve Bayes
model. As discussed in Chapter 1, this is something that is often done in a variety of
contexts.

A common approach for unsupervised training of a näıve Bayes model for clustering
consists of maximizing the likelihood of the data. However, since the optimization objective
is non-concave, popular algorithms such as gradient ascent and expectation maximization
[14] may get stuck in local optima. Despite the näıve Bayes model being one of the oldest
and most basic models in machine learning, there is no characterization of the optima of
the likelihood objective. This is a major gap in the theory of the näıve Bayes model that
translates into some uncertainty about the reliability of the clusterings found in practice.

I provide a first analysis of the stationary points of the unsupervised näıve Bayes likeli-
hood. For up to three binary features, I show that global optimality is attained unless the
point satisfies special degenerate properties. To support this, I provide general conditions
that ensure global optimality. In all cases, including problems with more than 3 features,
I show that all stationary points possess marginal distributions of the features that match
those of the empirical data. This is a nice property that suggests that even when a local
optimum is found, it is still a reasonable solution.
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This characterization is useful in practice to verify the possibility of having achieved
a local optimum after choosing parameters using a gradient based technique. By simply
comparing the point reached to the forms of the spurious local optima as specified in the
upcoming theorems, we can assess whether the point is globally optimal or not.

In Section 3.2, I introduce the notation and define the model and objective function.
In Section 3.3 I discuss my contributions and their significance. In Sections 3.4-3.7 I prove
the theorems stated in Section 3.3.

3.2 Definitions and Notation

The näıve Bayes model is a very simple type of Bayesian network with one class variable
and multiple features that are conditionally independent given the class. While the näıve
Bayes model is typically used for classification in supervised learning, it can also be used
for clustering by unsupervised learning where each class corresponds to a different cluster.

For a class variable C with domain C = {1, 2, ..., |C|} and features X = (X1, X2, ..., Xn),
the näıve Bayes model represents a joint distribution that factorizes as follows:

PΩ(C = c,X1 = x1, ..., Xn = xn) = PΩ(C = c)
n∏
j=1

PΩ(Xj = xj|C = c)

where xj is the observed value of feature Xj, and PΩ(Event) is the likelihood of Event
based on the model parameters Ω. The classifier assigns class y to an observation x based
on the rule:

y = argmax
c∈C

PΩ(C = c|X1 = x1, ..., Xn = xn) = argmax
c∈C

PΩ(C = c)
n∏
j=1

PΩ(Xj = xj|C = c)

Without loss of generality, we assume binary features1. Let us define some important
symbols and functions.

Let Ω = (θ,Φ) denote the parameters of the näıve Bayes model, where θc is the proba-
bility of class c (i.e., θc = PΩ(C = c)) and φc,j is the probability that feature j is 0 given
class c (i.e., φc,j = PΩ(Xj = 0|C = c)). Note that θ|C| = 1− θ1 − ...− θ|C|−1. In this work,

1Categorical features can always be converted to binary features. For instance, the conversion of
categorical features to binary features is common practice in industrial recommender systems.
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we consider the problem of learning the parameters of the näıve Bayes model by maximum
log likelihood. When the class is unobserved, the log likelihood of a sample S is:

L(S; Ω) =
∑
x∈S

logPΩ(X = x) =
∑
x∈S

log
∑
c∈C

PΩ(C = c,X = x)

=
∑
x∈S

log
∑
c∈C

PΩ(C=c)
n∏
j=1

PΩ(Xj=xj|C=c) =
∑
x∈S

log
∑
c∈C

θc

n∏
j=1

φ
1−xj
c,j (1−φc,j)xj

Note that the above objective is not concave in Ω due to the sum over the hidden
classes. For example, consider the case of a single binary feature and a single binary
class. If the empirical probabilities are PS(X = 0) = 5

16
and PS(X = 1) = 11

16
, then the

points (θ, φ0,1, φ1,1) = (1
4
, 1

2
, 1

4
) and (θ, φ0,1, φ1,1) = (3

4
, 1

4
, 1

2
) both generate distributions that

exactly match the sample empirical distribution, and have log likelihood −0.2697. If we
take the point (θ, φ0,1, φ1,1) = (1

2
, 3

8
, 3

8
) that is midway between them, however, it generates

a distribution with log likelihood −0.2734. This simple construction shows that the log
likelihood may be non-concave.

As a result, algorithms such as gradient ascent and expectation maximization could be
subject to local optima. While EM optimizes a lower bound of the log likelihood at each
step, it converges to a stationary point (i.e., point at which the derivative is zero) of the
log likelihood [36]. Hence, my analysis of the stationary points of the log likelihood will
help practitioners to understand when the parameters found by gradient ascent and EM
are local and global optima.

I will also use PS(Event) to denote the probability of Event based on its frequency

within the sample S. For example, PS(X = x) =
# of observations with X=x

# of observations in S
. Define,

λx = PS(X=x)
PΩ(X=x)

, the ratio between the probability of (X = x) based on the sample and the
parameters.

It will also be more convenient to work with the average log likelihood AL(S; Ω), which
is equivalent to the log likelihood objective up to a constant scaling factor:

AL(S; Ω) =
1

size of S
L(S; Ω) =

1

size of S
∑
x∈S

logPΩ(X = x)

=
∑

x∈{0,1}n
PS(X = x)logPΩ(X = x)

(3.1)

Hence, to perform clustering by maximum likelihood with the näıve Bayes model, we
must find the parameters Ω that maximize the objective (3.1).
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3.3 Contributions

This work is focused on the case of unsupervised classification using the näıve Bayes model.
As discussed in Section 1, this is something that is often done in a variety of contexts for
clustering.

We suppose that the observed data shows the values for all of the features, which are
assumed to be binary, but does not show which class each observation belongs to. We
then want to find the näıve Bayes parameters that will maximize the log likelihood of
the observations as defined in Equation (3.1). As discussed in the previous section, this
optimization problem is non-concave due to the sum over the classes within the log portion
of the equation, however I show that the stationary points still satisfy some nice properties.

For this work, I have restricted the scope to include only points that are stationary
w.r.t. each of the parameters. It is important to note that in practice, this optimization
problem is constrained since each parameter must be between 0 and 1. In optimization, a
point that is on the boundary of the feasible region may have a non-zero derivative in the
direction normal to that boundary. Hence, this work shows how any local optima must
either be on the boundary of the parameter space (i.e. at least one of the parameters is 0
or 1), or they must belong to the forms specified. An analysis of the form of local optima
on the boundary of the parameter space would require use of a more general optimality
condition, such as KKT conditions, and would be a promising direction for future research.

I will use the language ”interior of the parameter space” to represent the portion of the
parameter space where no parameter is 0 or 1.

My first contribution (formalized in Theorem 1 in Section 3.4) reveals an interesting
property of the log likelihood of the unsupervised näıve Bayes model with any number
of binary features. At any point that is stationary w.r.t. all of the parameters (i.e. any
local optimum in the interior of the parameter space), the marginal distribution of any
feature must match its empirical distribution. Hence, if Ω is a stationary point of the log
likelihood for a sample S, then PΩ(Xj = 0) = PS(Xj = 0) ∀j. Thus, even when the näıve
Bayes estimate does not match the distribution seen in the sample, it still satisfies the nice
property of having the correct distribution for any individual feature.

My second contribution (formalized in Theorem 2 in Section 3.5), relates to the log
likelihood of the unsupervised näıve Bayes model with a single binary feature. I show that
any point that is stationary w.r.t. all of the parameters (i.e. any local optimum in the
interior of the parameter space) is globally optimal, and in fact that it exactly replicates
the empirical distribution. Hence, if Ω is a stationary point of the log likelihood for a
sample S, then PΩ(X = x) = PS(X = x)∀x.
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My third contribution (formalized in Theorem 3 in Section 3.6) consists of a description
of the stationary points of the log likelihood of the unsupervised näıve Bayes model with
two binary features. It shows that any point Ω that is stationary w.r.t. all of the parameters
(i.e. any local optimum in the interior of the parameter space) is either globally optimal
and matches the distribution of the sample S, or has a specific form. Furthermore, I show
that if the features are independent in the empirical distribution, then all stationary points
in the interior of the parameter space are globally optimal. The possible stationary points
are summarized in Table 3.1.

Table 3.1: Stationary points of the log likelihood of the unsupervised näıve Bayes model
with two features in the interior of the parameter space

Stationary points Optimality
φc,j = PS(Xj = 0) Globally optimal if features are independent
∀j,∀c ∈ C s.t. θc > 0 in empirical distribution
All others Always globally optimal, and PΩ(x) = PS(x) ∀x

My fourth contribution (formalized in Theorem 4 in Section 3.7) consists of a description
of the stationary points of the log likelihood for the 3 binary feature case of the näıve Bayes
model. If a point is stationary w.r.t. all of the parameters (i.e. if it is a local optimum
in the interior of the parameter space), then either it is globally optimal and it matches
the distribution of the sample S, or it takes one of 3 forms. Furthermore, I show that all
stationary points in the interior of the parameter space are globally optimal if the features
are independent in the empirical distribution. The stationary points are summarized in
Table 3.2.

For up to three features, I show that if the features of the empirical distribution are
independent, then any stationary point of the likelihood in the interior of the parameter
space will be a global optimum, and no spurious local optima are possible for classification.
So, if the features are independent, then algorithms such as gradient ascent and expectation
maximization can be used without any risk of converging to suboptimal solutions in the
interior of the parameter space.

The three feature case (formalized in Theorem 4) is particularly interesting because
for a system with n features, the derivatives are formulated as a system of polynomials of
order n − 1. So in the 1 and 2 feature cases, we have conditions for stationarity that can
be solved linearly. In the 3 feature case, however, I show that we can create a decoupled
system of equations for each class, and that by doing novel combinations of these equations,
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Table 3.2: Stationary points of the log likelihood of the unsupervised näıve Bayes model
with three features in the interior of the parameter space

Stationary Points Optimality
φc,j = PS(Xj = 0) ∀c ∈ C s.t. θc > 0 Globally optimal if features are independent
∀j except at most one in empirical distribution
∃j∗ s.t. φc,j = PS(Xj = 0|Xj∗ = 0) Globally optimal if features are independent
∀j 6= j∗,∀c ∈ C s.t. θcφc,j∗ > 0 in empirical distribution
∃j∗ s.t. φc,j∗ = PS(Xj∗ = 0) Globally optimal if features are independent
∀c ∈ C s.t. θc > 0 and in empirical distribution
PΩ( ∧

j 6=j∗
Xj = xj) = PS( ∧

j 6=j∗
Xj = xj)

All others Always globally optimal, and PΩ(x) = PS(x) ∀x

we can still generate linear systems. This observation, along with some empirical testing,
encourages us to believe that these results could be extended to an arbitrary number of
features.

My results show that even though spurious local optima can occur when the features
are not independent, they must take specific forms. This provides a simple test to confirm
whether the stationary point is a local optimum: we just need to check whether it has one
of the specific forms described in the above tables. If not, then we can be certain that the
stationary point is a global optimum.

For example, in the two feature case, if we arrive at a stationary point Ω, then we only
need to check for each feature whether φc,j is the same for each class c with θc > 0, or if
some of the parameters are 0 or 1. In this case, we may be at a local optimum. Otherwise,
we can guarantee that we have attained a global optimum. Similar conditions can be drawn
for the 3 feature case. Hence, if our stationary point is not globally optimal, we will be
able to detect this by comparing it to the forms described in the tables above.

3.4 Estimated Marginals Match Empirical Marginals

Theorem 1. Suppose we estimate a distribution with binary features and an unobserved
class using the näıve Bayes formulation. If Ω is a stationary point of the likelihood (Eq. 3.1)
in the interior of the parameter space for a sample S, then the marginal probabilities for
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each feature as estimated using Ω match those of the sample:

PΩ(Xj = xj) = PS(Xj = xj) ∀j,∀x ∈ {0, 1}n

Proof. Note that we can write:

AL(S,Ω) =
∑

x∈{0,1}n
PS(X = x)logPΩ(X = x)

=
∑

x∈{0,1}n
PS(X = x)log

∑
c∈C

θc
∏

j∈{1,...,n}

φc,j

=
∑

x∈{0,1}n
PS(X = x)

· log(
∑

c∈|C|−1

θc
∏

j∈{1,...,n}

φc,j + (1− θ1 − ...− θ|C|−1)
∏

j∈{1,...,n}

φ|C|,j)

If Ω is a stationary point in the interior of the parameter space, then by setting the
derivatives of (3.1) to 0, we see that it must satisfy the following equations ∀j and ∀c ∈ C:

0 =
δAL(S,Ω)

δθc
=

∑
x∈{0,1}n

λx[PΩ(x|c)− PΩ(x | C = |C|)] (3.2)

0 =
δAL(S,Ω)

δφc,j
= θc

∑
x∈{0,1}n

λx
(−1)xjPΩ(x|c)
φ

1−xj
c,j (1− φc,j)xj

(3.3)

If we rearrange Equation (3.2), we get that:∑
x∈{0,1}n

λxPΩ(x|c̃) =
∑

x∈{0,1}n
λxPΩ(x|ĉ) ∀c̃, ĉ ∈ C
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Combining this with the fact that
∑
c∈C

θc = 1 reveals:

∑
x∈{0,1}n

λxPΩ(x|c̃) =
∑
c∈C

θc
∑

x∈{0,1}n
λxPΩ(x|c̃)

=
∑
c∈C

θc
∑

x∈{0,1}n
λxPΩ(x|c)

=
∑

x∈{0,1}n
λx
∑
c∈C

θcPΩ(x|c)

=
∑

x∈{0,1}n
PS(x)

= 1

(3.4)

If we rearrange Equation (3.3), we find that, ∀c s.t. θc > 0:∑
x∈{0,1}n
xj=1

λx
PΩ(x|c)

(1− φc,j)
=

∑
x∈{0,1}n
xj=0

λx
PΩ(x|c)
φc,j

∑
x∈{0,1}n
xj=1

λxPΩ(x|c) =
(1− φc,j)
φc,j

∑
x∈{0,1}n
xj=0

λxPΩ(x|c)
(3.5)

By combining Equations (3.4) and (3.5), we see that if θc > 0, then for any feature j:

1 =
∑

x∈{0,1}n
λxPΩ(x|c)

=
∑

x∈{0,1}n
xj=0

λxPΩ(x|c) +
∑

x∈{0,1}n
xj=1

λxPΩ(x|c)

= (1 +
(1− φc,j)
φc,j

)
∑

x∈{0,1}n
xj=0

λxPΩ(x|c)

⇒φc,j =
∑

x∈{0,1}n
xj=0

λxPΩ(x|c) (3.6)

Finally, note that the näıve Bayes estimate of the marginal probability PΩ(Xj = 0) is of
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the form: ∑
c∈C

θcφc,j =
∑
c∈C

θc
∑

x∈{0,1}n
xj=0

λxPΩ(x|c)

=
∑

x∈{0,1}n
xj=0

λx
∑
c∈C

θcPΩ(x|c)

=
∑

x∈{0,1}n
xj=0

PS(x)

= PS(Xj = 0)

Hence, at any stationary point, the marginal probability estimated using the näıve Bayes
parameters matches the marginal probability from the sample.

3.5 Optima in the One Feature Case

Theorem 2. Suppose we estimate a distribution with a single binary feature and an un-
observed class using the näıve Bayes formulation. Then every stationary point Ω of the
likelihood (Eq. 3.1) in the interior of the parameter space for a sample S is globally optimal
and exactly matches the empirical distribution:∑

x∈{0,1}n
PS(x)logPΩ(x) ≥

∑
x∈{0,1}n

PS(x)logPΩ̃(x) ∀Ω̃ ∈ [0, 1]2|C|−1

and

PΩ(x) = PS(x) ∀x

Proof. If Ω is a stationary point in the interior of the parameter space for a single feature,
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then choose a class ĉ s.t. θĉ > 0 and Equation (3.3) simplifies to:

0 = λ0 − λ1

PS(X1 = 0)∑
c∈C

θcφc,1
=

PS(X1 = 1)∑
c∈C

θc(1− φc,1)

PS(X1 = 0)∑
c∈C

θcφc,1
=

1− PS(X1 = 0)∑
c∈C

θc(1− φc,1)

PS(X1 = 0)
∑
c∈C

θc(1− φc,1) = (1− PS(X1 = 0))
∑
c∈C

θcφc,1

PS(X1 = 0) =
∑
c∈C

θcφc,1

Hence, if there is a single feature, then the distribution defined by any stationary point
matches the empirical distribution.

Furthermore, as shown in [18], the maximum value that the log likelihood can take
is if the modeled distribution exactly matches the empirical distribution. Since we know
that any stationary point matches the empirical distribution, it must also be globally
optimal.

3.6 Optima in the Two Feature Case

Theorem 3. Suppose we estimate a distribution with two binary features and an unob-
served class using the näıve Bayes formulation. Then the possible stationary points Ω of
the likelihood (Eq. 3.1) that are in the interior of the parameter space for a sample S are
described in the table below:

Stationary Points Optimality
φc,j = PS(Xj = 0) Globally optimal if features are independent in empirical
∀j,∀c ∈ C s.t. θc > 0 distribution, spurious maximum otherwise
All others Always globally optimal, and PΩ(x) = PS(x) ∀x

Furthermore, if the features are independent then every stationary point in the interior
of the parameter space will be globally optimal and exactly match the empirical distribution.

Proof. In the two feature case, Equation (3.3) simplifies to the following two equations
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which must hold ∀c s.t. θc > 0:

0 = (λ00 − λ01 − λ10 + λ11)φc,2 + (λ01 − λ11) (3.7)

0 = (λ00 − λ01 − λ10 + λ11)φc,1 + (λ10 − λ11) (3.8)

Hence, if we take c̃, ĉ ∈ C s.t. θc̃, θĉ > 0, then φc̃,2 and φĉ,2 must satisfy the same linear
equation, (3.7). Note that though λ∗∗ depends on the θ and φ variables, it is not specific
to a particular class (the denominator, PΩ(X = ∗∗), sums over all of the classes). So, the
λ coefficients in those equations are the same for every c s.t θc > 0. So either φc̃,2 and φĉ,2
are equal, or the coefficients in Equation (3.7) are 0.

If the coefficients in (3.7) are 0, then this means that λ01 = λ11 and λ00 = λ10. However,
this would also mean that λ10 = λ11 by Equation (3.8).

Hence, if the coefficients in (3.7) are 0, then we have that λ00 = λ01 = λ10 = λ11. Since
the numerator of each of these expressions is a probability, they add up to 1. The same
can be said for the denominators. Hence, we must have that λx = 1 ∀x. This implies
that PS(x) = PΩ(x)∀x, and so the probabilities generated by the Bayesian approximation
exactly match those in the empirical distribution.

If the coefficients are not 0, then we must have φc̃,1 = φĉ,1 and φc̃,2 = φĉ,2 ∀c̃, ĉ ∈ C s.t.
θc̃, θĉ > 0.

Then, using Theorem 1 we see that ∀c s.t. θc > 0, φc,j = PS(Xj = 0). Hence, the
probabilities estimated using the näıve Bayes parameters will be the product of each of the
true marginal probabilities. For example, if θ1 > 0:

PΩ(X1 = 0, X2 = 0) =
∑
c∈C

θcφc,1φc,2

= φ1,1φ1,2

= PS(X1 = 0)PS(X2 = 0)

In this case we find that if the features are independent in the empirical distribution, then
the modeled joint probabilities will match the empirical joint probabilities. Hence, if the
features are independent in the empirical distribution, then any stationary point of the
likelihood will be globally optimal. If the features have dependencies, we find that the only
stationary points that might not be globally optimal are those where φc,j = PS(Xj = 0)
∀c ∈ C s.t. θc > 0, ∀j ∈ {1, 2}, which intuitively means that the features are not informative
of the class.

Furthermore, note that for any underlying distribution, by using two classes and setting
θ1 = PS(X1 = 0), φ1,1 = 1, φ1,2 = PS(X2 = 0|X1 = 0), φ2,1 = 0, φ2,2 = PS(X2 = 0|X1 = 1),
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then the modeled distribution will exactly match the empirical distribution. Hence, there
is always at least one point where the modeled distribution exactly matches the empirical
distribution. If, at any stationary point, the distribution does not match the empirical
distribution, then the likelihood will be lower than that at the point that is constructed
to match, by [18], and so this must be a spurious maximum. Hence if the features are not
independent, then stationary points of the form φc,1 = PS(X1 = 0) and φc,2 = PS(X2 = 0)
∀c ∈ C s.t. θc > 0 will be spurious local maxima.

3.7 Optima in the Three Feature Case

Theorem 4. Suppose we estimate a distribution with three binary features and an unob-
served binary class using the näıve Bayes formulation. Then the possible stationary points
Ω of the likelihood (3.1) in the interior of the parameter space for a sample S are described
in the table below:
Stationary Points Optimality
φc,j = PS(Xj = 0) ∀c ∈ C s.t. θc > 0 Globally optimal if features are independent
∀j except at most one in empirical distribution
∃j∗ s.t. φc,j = PS(Xj = 0|Xj∗ = 0) Globally optimal if features are independent
∀j 6= j∗,∀c ∈ C s.t. θcφc,j∗ > 0 in empirical distribution
∃j∗ s.t. φc,j∗ = PS(Xj∗ = 0) Globally optimal if features are independent
∀c ∈ C s.t. θc > 0 and in empirical distribution
PΩ( ∧

j 6=j∗
Xj = xj) = PS( ∧

j 6=j∗
Xj = xj)

All others Always globally optimal, and PΩ(x) = PS(x) ∀x
Furthermore, if the features are independent then every stationary point in the interior of
the parameter space will be globally optimal and exactly match the empirical distribution.

In the three feature case, the system of equations that a stationary point in the interior
of the parameter space must satisfy, generated by derivatives as expressed in Equation
(3.6) have the form:

1 =(λ000 − λ001 − λ010 + λ011)φc,2φc,3 + (λ001 − λ011)φc,2 + (λ010 − λ011)φc,3 + λ011 (3.9)

1 =(λ100 − λ101 − λ110 + λ111)φc,2φc,3 + (λ101 − λ111)φc,2 + (λ110 − λ111)φc,3 + λ111 (3.10)

1 =(λ000 − λ001 − λ100 + λ101)φc,1φc,3 + (λ001 − λ101)φc,1 + (λ100 − λ101)φc,3 + λ101 (3.11)

1 =(λ010 − λ011 − λ110 + λ111)φc,1φc,3 + (λ011 − λ111)φc,1 + (λ110 − λ111)φc,3 + λ111 (3.12)

1 =(λ000 − λ010 − λ100 + λ110)φc,1φc,2 + (λ010 − λ110)φc,1 + (λ100 − λ110)φc,2 + λ110 (3.13)

1 =(λ001 − λ011 − λ101 + λ111)φc,1φc,2 + (λ011 − λ111)φc,1 + (λ101 − λ111)φc,2 + λ111 (3.14)
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The complete proof of this theorem will follow after I first prove three lemmas. The
idea behind the proof is that even though the derivatives w.r.t. φc,j will no longer be linear
in φc,j, under certain conditions we can do variable elimination to cancel out the higher
order terms, and generate a system that is linear. Then, for a class ĉ, we will have a system
with 3 equations that are linear in the three variables φĉ,j, and under certain conditions
we can uniquely solve for them.

Lemma 1 will show an important property that will be useful in the subsequent lemmas.
Lemma 2 will show that if the derivatives are such that we are unable to create a linear
system, then if the features are independent every stationary point of the likelihood in the
interior of the parameter space will be globally optimal. Lemma 3 will show that if we are
able to create a linear system, then if the features are independent every stationary point
of the likelihood in the interior of the parameter space is globally optimal.

Lemma 1. If a point Ω satisfies φĉ,j = φc̃,j ∀ĉ, c̃ ∈ C s.t. θĉ, θc̃ > 0 for every feature j
except at most one, then the point will be globally optimal if the features are independent.

Proof. Start by noting that for a feature j, if φc̃,j = φĉ,j ∀c̃, ĉ ∈ C s.t. θc̃, θĉ > 0, then by
Theorem 1 φc̃,j = PS(Xj = 0). Without loss of generality, assume this property is satisfied
at a point Ω for every feature except perhaps feature 1. Then, ∀x ∈ {0, 1}n:

PΩ(x) =
∑
c∈C

θcPΦ(x|c)

=
∑
c∈C
θc>0

θcφ
1−x1
c,1 (1− φc,1)x1φ1−x2

c,2 (1− φc,2)x2 · ... · φ1−xn
c,n (1− φc,n)xn

=PS(X2 = x2) · ... · PS(Xn = xn)
∑
c∈C
θc>0

θcφ
1−x1
c,1 (1− φc,1)x1

=PS(X2 = x2) · ... · PS(Xn = xn)PS(X1 = x1)

Hence, if the features are independent then PΩ(x) = PS(x) ∀x ∈ {0, 1}n.

Lemma 2. Suppose that at least 1 of the 3 pairs of Equations (3.9)(3.10), (3.11)(3.12), and
(3.13)(3.14) cannot be combined to create an equation linear in φc,j∀j and the features of
the empirical distribution are independent. Then the distribution defined by any solution to
this system of equations matches the empirical distribution and therefore is globally optimal.

Proof. Based on Equation (3.6), as shown during the proof of Theorem 1, the following
equations must hold at any stationary point in the interior of the parameter space ∀c ∈ C
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s.t. θc > 0, ∀j:

1 =
∑

x∈{0,1}n
xj=0

λxPΦ(x|c)
φc,j

=
∑

x∈{0,1}n
xj=1

λxPΦ(x|c)
(1− φc,j)

In the 3 feature case, this yields the following system of equations, ∀c ∈ C s.t. θc > 0:

1 =λ000φc,2φc,3 + λ001φc,2(1− φc,3) + λ010(1− φc,2)φc,3 + λ011(1− φc,2)(1− φc,3)

1 =λ100φc,2φc,3 + λ101φc,2(1− φc,3) + λ110(1− φc,2)φc,3 + λ111(1− φc,2)(1− φc,3)

1 =λ000φc,1φc,3 + λ001φc,1(1− φc,3) + λ100(1− φc,1)φc,3 + λ101(1− φc,1)(1− φc,3)

1 =λ010φc,1φc,3 + λ011φc,1(1− φc,3) + λ110(1− φc,1)φc,3 + λ111(1− φc,1)(1− φc,3)

1 =λ000φc,1φc,2 + λ010φc,1(1− φc,2) + λ100(1− φc,1)φc,2 + λ110(1− φc,1)(1− φc,2)

1 =λ001φc,1φc,2 + λ011φc,1(1− φc,2) + λ101(1− φc,1)φc,2 + λ111(1− φc,1)(1− φc,2)

Note that though these equations must all hold at any stationary point in the interior of
the parameter space, there is some redundancy amongst them, for example the final one
can be deduced from the prior equations.

If we rearrange the equations, we get a system with the following form. Unlike the two
feature case, however, those equations are not linear in φc,j.

1 =(λ000 − λ001 − λ010 + λ011)φc,2φc,3 + (λ001 − λ011)φc,2 + (λ010 − λ011)φc,3 + λ011 (3.9)

1 =(λ100 − λ101 − λ110 + λ111)φc,2φc,3 + (λ101 − λ111)φc,2 + (λ110 − λ111)φc,3 + λ111 (3.10)

1 =(λ000 − λ001 − λ100 + λ101)φc,1φc,3 + (λ001 − λ101)φc,1 + (λ100 − λ101)φc,3 + λ101 (3.11)

1 =(λ010 − λ011 − λ110 + λ111)φc,1φc,3 + (λ011 − λ111)φc,1 + (λ110 − λ111)φc,3 + λ111 (3.12)

1 =(λ000 − λ010 − λ100 + λ110)φc,1φc,2 + (λ010 − λ110)φc,1 + (λ100 − λ110)φc,2 + λ110 (3.13)

1 =(λ001 − λ011 − λ101 + λ111)φc,1φc,2 + (λ011 − λ111)φc,1 + (λ101 − λ111)φc,2 + λ111 (3.14)

Now, note that if we separate these equations into groups of two by common non-
linear term, then under certain conditions we can combine the two equations to create an
equation that is linear in two parameters. We would like to use this to create a system of
3 linear equations with 3 variables.

For example, consider combining Equations (3.9) and (3.10) (though we could have
chosen any set of two corresponding equations). Then under the following circumstances
we may not be able to combine them to yield a linear equation:
1. All of the coefficients for one of the equations are 0.
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2. The coefficients of the first equation can all be multiplied by the same non-zero constant
to yield the coefficients of the second equation.

Start by considering case 1: suppose that all of the coefficients in (3.10) are 0. This
is equivalent to saying that 1 = λ111 = λ101 = λ110 = λ100. Then Equations (3.11)-(3.14)
become:

0 =(λ000 − λ001)φc,1φc,3 + (λ001 − 1)φc,1

0 =(λ010 − λ011)φc,1φc,3 + (λ011 − 1)φc,1

0 =(λ000 − λ010)φc,1φc,2 + (λ010 − 1)φc,1

0 =(λ001 − λ011)φc,1φc,2 + (λ011 − 1)φc,1

So, if φc,1 6= 0, then we have two linear equations each in φc,2 and φc,3. Note that
the only way that both of the equations for one of the variables can be redundant is if
1 = λ011 = λ001 = λ010 = λ000, and in this case the stationary point will be globally
optimal. Otherwise, due to linearity, if a solution does exist then it will be unique for φc,2
and φc,3, ∀c ∈ C s.t. θc > 0. Let’s denote these unique solutions as φ̄2 and φ̄3.

So, ∀c ∈ C s.t. θc > 0, we must have that either φc,1 = 0 or φc,2 = φ̄2, φc,3 = φ̄3.

Then PΩ(X = 000) =
∑
c∈C

θcφc,1φc,2φc,3 = φ̄2φ̄3PS(X1 = 0) and similarly PΩ(X = 001) =

φ̄2(1 − φ̄3)PS(X1 = 0), PΩ(X = 011) = (1 − φ̄2)φ̄3PS(X1 = 0) and PΩ(X = 011) =
(1− φ̄2)(1− φ̄3)PS(X1 = 0).

Now, by solving one of the linear equations in φc,2 with non-zero coefficients, we find
that:

φ̄2(λ000 − λ010) = 1− λ010

φ̄2(
PS(X = 000)

φ̄2φ̄3PS(X1 = 0)
− PS(X = 010)

(1− φ̄2)φ̄3PS(X1 = 0)
) = 1− PS(X = 010)

(1− φ̄2)φ̄3PS(X1 = 0)

φ̄3 =
PS(X1 = 0, X3 = 0)

PS(X1 = 0)

Doing the same for one of the linear equations in φc,3, we find that φ̄2 = PS(X1=0,X2=0)
PS(X1=0)

.

So, if all of the coefficients for the second equation are 0, then at any stationary point
in the interior of the parameter space PΩ(X = 0ab) = PS(X1=0,X2=a)PS(X1=0,X3=b)

PS(X1=0)
.

Even if all of the coefficients for one of the equations are 0, we can still deduce some
information about the stationary points, and furthermore we can say that if the features are
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independent that any stationary point of the log likelihood in the interior of the parameter
space will be globally optimal.

Now, consider the second case where we cannot create a linear system of equations:
when one equation is a non-zero multiple of its related equation.

Taking Equations (3.9) and (3.10) again as examples, this is equivalent to saying that
∃α 6= 0 s.t. α(λ011 − 1) = λ111 − 1, α(λ010 − 1) = λ110 − 1, α(λ001 − 1) = λ101 − 1 and
α(λ000 − 1) = λ100 − 1.

Substituting these into Equations (3.11)-(3.14) yields:

0 =(1− α)(λ000 − λ001)φc,1φc,3 + (1− α)(λ001 − 1)φc,1 + α(λ000 − λ001)φc,3 + α(λ001 − 1)

0 =(1− α)(λ010 − λ011)φc,1φc,3 + (1− α)(λ011 − 1)φc,1 + α(λ010 − λ011)φc,3 + α(λ011 − 1)

0 =(1− α)(λ000 − λ010)φc,1φc,2 + (1− α)(λ010 − 1)φc,1 + α(λ000 − λ010)φc,2 + α(λ010 − 1)

0 =(1− α)(λ001 − λ011)φc,1φc,2 + (1− α)(λ011 − 1)φc,1 + α(λ001 − λ011)φc,2 + α(λ011 − 1)

Combining the first two equations and the last two equations yields:

0 =[(λ000 − λ001 − λ010 + λ011)φc,2 + λ010 − λ011][(1− α)φc,1 + α]

0 =[(λ000 − λ001 − λ010 + λ011)φc,3 + λ001 − λ011][(1− α)φc,1 + α]

Suppose that (α− 1)φc,1 = α ∀c ∈ C s.t. θc > 0. Then, by Theorem 1, φc,1 = PS(X1 =
0) ∀c ∈ C s.t. θc > 0.

We know that α(λ000− 1) = λ100− 1. But then using (α− 1)PS(X1 = 0) = α, this can
be rewritten as:

1 = PS(X1 = 0)λ000 + PS(X1 = 1)λ100

=
PS(X1 = 0)PS(X = 000)∑

c∈C
θcφc,1φc,2φc,3

+
PS(X1 = 1)PS(X = 100)∑
c∈C

θc(1− φc,1)φc,2φc,3

=
PS(X2 = 0, X3 = 0)∑

c∈C
θcφc,2φc,3

Then, at any stationary point of this nature, PΩ(X = abc) = PS(X1 = a)PS(X2 = b,X3 =
c). If the features are independent, then any stationary point of this nature will be globally
optimal.

Next, suppose that ∃ĉ ∈ C s.t. θĉ > 0 and (α − 1)φĉ,1 6= α. Without loss of generality,
assume ĉ = 1. Then, φ1,2 and φ1,3 are uniquely determined.
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By substituting 0 = (λ000−λ001−λ010+λ011)φ1,2+λ010−λ011 into Equation (3.9), we see
that (λ001−λ011)φ1,2 = 1−λ011, and substituting this back shows (λ000−λ010)φ1,2 = 1−λ010.
This shows that φ1,2(λ001−1) = (φ1,2−1)(λ011−1) and φ1,2(λ000−1) = (φ1,2−1)(λ010−1).

Similarly for φ1,3, we see that φ1,3(λ010 − 1) = (φ1,3 − 1)(λ011 − 1) and φ1,3(λ000 − 1) =
(φ1,3 − 1)(λ001 − 1).

This shows that (3.9) is a multiple of (3.10), (3.11) is a multiple of (3.12) and (3.13) is
a multiple of (3.14).

Note that if φ1,2 = 0, then we have that 1 = λ010 = λ011 = λ110 = λ111. This, however,
would mean that Equation (3.12) would have all 0 coefficients, which is a case that we
have already dealt with. A similar case arises if φ1,2 = 1 or if φ1,3 ∈ {0, 1}. So, assume
0 < φ1,2, φ1,3 < 1.

Define β = −φ1,2

1−φ1,2
and γ = −φ1,3

1−φ1,3
.

Next, note that λx can be defined in terms of λ000, α, β and γ ∀x. We can in fact
substitute these values into Equation (3.9), which must hold ∀c s.t. θc > 0. This becomes:

0 =(1− β)(1− γ)(λ000 − 1)φc,2φc,3 + γ(1− β)(λ000 − 1)φc,2 + β(1− γ)(λ000 − 1)φc,3 + βγ

=(λ000 − 1)[φc,2φc,3 +
γ

1− γ
φc,2 +

β

1− β
φc,3 +

β

1− β
γ

1− γ
]

=(λ000 − 1)(φc,2 +
β

1− β
)(φc,3 +

γ

1− γ
)

Doing the same substitution for Equations (3.11) and (3.13) yields:

0 =(λ000 − 1)(φc,2 +
β

1− β
)(φc,3 +

γ

1− γ
)

0 =(λ000 − 1)(φc,1 +
α

1− α
)(φc,3 +

γ

1− γ
)

0 =(λ000 − 1)(φc,1 +
α

1− α
)(φc,2 +

β

1− β
)

If λ000 = 1, then we can easily verify that λx = 1 ∀x, and therefore this stationary point is
globally optimal.

Note that for class 1, we know that φ1,2 = −β
1−β and φ1,3 = −γ

1−γ .

For class 2, if φ2,2 = φ1,2 and φ2,3 = φ1,3, then by Lemma 1, if the features are indepen-
dent the point is globally optimal. If this is not the case, then we must have φ2,1 = −α

1−α ,
and either φ2,2 = φ1,2 or φ2,3 = φ1,3.
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Suppose φ2,1 = −α
1−α , and φ2,2 = φ1,2. Then:

φ2,1(λ000 − λ010) = 1− λ010

PS(X = 000)− φ2,2PS(X = 010)

1− φ2,2

= θ1φ1,1φ1,3 + θ2φ2,1φ2,3 −
PS(X = 010)

1− φ2,2

PS(X1 = 0, X3 = 0) = θ1φ1,1φ1,3 + θ2φ2,1φ2,3

We obtain PΩ(X = abc) = PS(X2 = b)PS(X1 = a,X3 = c). Similarly, had we chosen
φ2,3 = φ1,3, we would have found that PΩ(X = abc) = PS(X3 = c)PS(X1 = a,X2 = b). If
the features are independent, then these points match the empirical distribution.

So we have now proven that if we are unable to create a linear equation out of each of
the 3 pairs of equations (3.9)(3.10), (3.11)(3.12) and (3.13)(3.14), and if the features are
linearly independent, then every stationary point of the likelihood in the interior of the
parameter space is globally optimal and replicates the sample distribution.

Lemma 3. Suppose in that we have successfully combined each pair of equations (3.9)(3.10),
(3.11)(3.12) and (3.13)(3.14) to create 3 equations that are linear in φc,j∀j and the fea-
tures of the empirical distribution are independent. Then all solutions of this linear system
match the empirical distribution and are therefore globally optimal.

Proof. Assume we have manipulated the equations to create the linear system. We will
then be able to use standard results to show when a unique solution exists. Start by noting
that, for a pair of equations, say (3.9) and (3.10), if either one of them has a coefficient for
the non-linear term that is non-zero, then we can multiply each equation by the appropriate
amount and take the difference. For now, assume that in each pair of equations at least
one of them has a non-zero non-linear coefficient.

Then, define:
α1 = λ000 − λ001 − λ010 + λ011

β1 = λ100 − λ101 − λ110 + λ111

α2 = λ000 − λ001 − λ100 + λ101

β2 = λ010 − λ011 − λ110 + λ111

α3 = λ000 − λ010 − λ100 + λ110

β3 = λ100 − λ110 − λ110 + λ111

Then by doing β1(3.9)−α1(3.10), β2(3.11)−α2(3.12) and β3(3.13)−α3(3.14), we get the
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following linear system of three equations with three φc,j variables:

β1(λ011 − 1)− α1(λ111 − 1)

= [β1(λ001 − λ011)− α1(λ101 − λ111)]φc,2 + [β1(λ010 − λ011)− α1(λ110 − λ111)]φc,3

β2(λ101 − 1)− α2(λ111 − 1)

= [β2(λ001 − λ101)− α2(λ011 − λ111)]φc,1 + [β2(λ100 − λ101)− α2(λ110 − λ111)]φc,3

β3(λ110 − 1)− α3(λ111 − 1)

= [β3(λ010 − λ110)− α3(λ011 − λ111)]φc,1 + [β3(λ100 − λ110)− α3(λ101 − λ111)]φc,2

By taking the determinant, we find that the matrix representation of this system will be
full rank unless:
[β1(λ010−λ011)−α1(λ110−λ111)][β2(λ001−λ101)−α2(λ011−λ111)][β3(λ100−λ110)−α3(λ101−
λ111)]
= −[β1(λ001 − λ011) − α1(λ101 − λ111)][β2(λ100 − λ101) − α2(λ110 − λ111)][β3(λ010 − λ110) −
α3(λ011 − λ111)]

If we insert the values of αk, βk, then this is equivalent to:

[(λ100 − λ101)(λ010 − λ011)− (λ000 − λ001)(λ110 − λ111)]

[(λ010 − λ110)(λ001 − λ101)− (λ000 − λ100)(λ011 − λ111)]

[(λ001 − λ011)(λ100 − λ110)− (λ000 − λ010)(λ101 − λ111)]

= −
[(λ100 − λ101)(λ010 − λ011)− (λ000 − λ001)(λ110 − λ111)]

[(λ010 − λ110)(λ001 − λ101)− (λ000 − λ100)(λ011 − λ111)]

[(λ001 − λ011)(λ100 − λ110)− (λ000 − λ010)(λ101 − λ111)]

If this relation does not hold, then the system is full rank and has at most one solution,
and so there is only a single possible value for (φc,1, φc,2, φc,3), regardless of the class c.
Hence, ∀c ∈ C s.t. θc > 0, φc,j = PS(Fj = 0), and by Lemma 1, if the features are
independent then every stationary point in the interior of the parameter space is globally
optimal.

If this relation does hold, then at least one of the expressions must be zero. Say, for
example, (λ010 − λ110)(λ001 − λ101) = (λ000 − λ100)(λ011 − λ111). If there is a factor that is
zero on both sides, say λ010 = λ110 and λ000 = λ100, then one equation (in this case, (3.13))
will be redundant. This is a case that we have already dealt with in Lemma 2.

Otherwise, we have (λ010−λ110)
(λ000−λ100)

= (λ011−λ111)
(λ001−λ101)

and (λ010−λ110)
(λ011−λ111)

= (λ000−λ100)
(λ001−λ101)

. Intuitively,
what these relationships mean is that the φc,1 term will cancel out when we combine either
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(3.11) and (3.12) or (3.13) and (3.14). Since we have already dealt with the case where one
equation is a multiple of the other in Lemma 2, assume that they are not. Then combining
(3.11) and (3.12) will create an equation that is linear in φc,3 with a non-zero coefficient,
and similarly for φc,2. Hence, φc,2 and φc,3 are uniquely determined ∀c ∈ C s.t. θc > 0. By
Lemma 1, if the features are linearly independent then this stationary point will match the
sample distribution.

The final case that we must verify is when both of the non-linear coefficients for a
set of equations are zero, so we cannot multiply across both equations. Suppose λ000 =
λ001 + λ010 − λ011 and λ100 = λ101 + λ110 − λ111. Then Equations (3.9) and (3.10) become:

0 = (λ001 − λ011)φc,2 + (λ010 − λ011)φc,3 + λ011 − 1
0 = (λ101 − λ111)φc,2 + (λ110 − λ111)φc,3 + λ111 − 1

Since we have already dealt in Lemma 2 with the case where one equation is a multiple
of the other, or where either equation is redundant we know that these equations must
have a unique solution. Hence, φc,2 = PS(X2 = 0) and φc,3 = PS(X3 = 0) ∀c ∈ C s.t.
θc > 0. By Lemma 1 if the features are linearly independent then this stationary point will
match the sample distribution.

We can now complete the proof of Theorem 4.

Proof. Start by attempting to create a system of 3 equations linear in φc,1, φc,2 and φc,3
based Equations (3.9)-(3.14), which are generated from the derivatives. If the terms λx
are such that we are unable to do so and the features of the empirical distribution are
independent then by Lemma 2 any stationary point of the likelihood in the interior of the
parameter space will match the empirical distribution.

Otherwise, assume that we have created a linear system out of Equations (3.9)-(3.14).
By Lemma 3, if the features are independent then any stationary point of the log likelihood
in the interior of the parameter space will be globally optimal and will match the sample
distribution.

The characterization of the stationary points in the interior of the parameter space
that may not be globally optimal is created by looking at the cases where a linear system
cannot be created as identified in the proof of Lemma 2, as well as the solutions to the
linear system as identified in the proof of Lemma 3.
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3.8 Example of Spurious Local Optima

I will now illustrate an example. I will use the two feature case, and describe the optima
in the interior of the parameter space.

Suppose that we are observing two features, X = (X1, X2), and that we have a sample
S with 16 observations. Suppose the observations are distributed as follows:

PS(X = (0, 0)) PS(X = (0, 1)) PS(X = (1, 0)) PS(X = (1, 1))
3
16

2
16

6
16

5
16

Then, we have that PS(X1 = 0) = 5
16

and PS(X2 = 0) = 9
16

.

By the result from Theorem 3, we know that any spurious local optimum in the interior
of the parameter space must have the form φc,j = PS(Xj = 0). Indeed, if construct a
parameterization where φc,1 = 5

16
and φc,2 = 9

16
, then this point will be stationary regardless

of the values of any θ parameters. Hence, any point Ω′ of this form will be locally optimal.
Furthermore Ω′ encode the following distribution:

PΩ′(X = (0, 0)) PΩ′(X = (0, 1)) PΩ′(X = (1, 0)) PΩ′(X = (1, 1))
45
256

35
256

99
256

77
256

and Ω′ will have average log likelihood −0.5668.

Now, however, consider the point Ω∗ = (θ, φ0,1, φ0,2, φ1,1, φ1,2) = (1
4
, 1

2
, 3

4
, 1

4
, 1

2
).

Ω∗ has average log likelihood −0.5674, and encodes the distribution:

PΩ∗(X = (0, 0)) PΩ∗(X = (0, 1)) PΩ∗(X = (1, 0)) PΩ∗(X = (1, 1))
3
16

2
16

6
16

5
16

Ω∗ and Ω′ are both stationary points in the interior of the parameter space. However, Ω∗

is globally optimal and exactly matches the empirical distribution, whereas Ω′ is spuriously
locally optimal, and only matches the marginal empirical distribution for each individual
feature.

This is an example of how spurious local optima can occur. In this case, if we were to
use gradient ascent to converge to a point in the interior of the parameter space, then we
would check whether the point satisfies φc,1 = 5

16
and φc,2 = 9

16
for each class c. If this is

not the case, then we know that we have achieved a global optimum. On the other hand, if
the φ values are as specified, then by simply checking whether the features are independent
in the distribution of our sample, we can finally verify whether we are in a spurious local
optimum.
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3.9 Conclusion of Work Describing Unsupervised Like-

lihood Optima

In this Chapter I proved several interesting results related to the stationary points of the
likelihood of the unsupervised näıve Bayes model, which is commonly used as a baseline
for clustering.

First of all, I showed that for any number of features that at any stationary point
in the interior of the parameter space, the marginal probabilities for single feature will
exactly match those from the sample. I then provided the first description of the optima
for cases with up to three features. I showed that global optimality is generally attained
unless special conditions are met. Using these conditions, it is possible to assess, at any
stationary point that might be encountered during training, whether it is possible that the
algorithm might be stuck at a spurious maximum.

This is the first detailed description of the optima of the likelihood of the unsupervised
näıve Bayes model, and leads to some interesting future work which will be described in
the thesis conclusion in Chapter 5.

32



Chapter 4

Sample Complexity of the Näıve
Bayes Classifier

When modeling a distribution, the choice of optimal parameters will depend on what is seen
in the training sample. Hence, when building a model it is desirable to have a probabilistic
guarantee about how well the sample represents the underlying distribution.

This chapter begins an investigation into the sample complexity of the näıve Bayes
model. The goal of this work is to show that given confidence and accuracy thresholds δ, ε
for agnostic PAC learning, we can create an algorithm to determine the value m that rep-
resents the minimum sample size required to achieve the specified accuracy with sufficient
confidence using maximum likelihood. This will be described in more detail in Section
4.1. In fact, this result has not yet been fully proven, but I did complete some proofs
of intermediate results. I also developed a conjecture, which, if proven, would determine
an exact sample complexity which is much lower than the upper bounds found using the
known thoery.

This result, once the proof is complete, will allow users to save on storage and computa-
tional costs. They will be able to know exactly how much data they need to probabilistically
achieve their accuracy goals, and use only that amount.

4.1 Problem Description

Suppose the näıve Bayes model is being used for supervised classification. There is some
set of näıve Bayes parameters that will most accurately represent the true underlying
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distribution. However, during training we select the parameters that best describe the
sample. Depending on the sample used, we may end up choosing parameters that lead to
different classifications than the optimal classifier.

In general, as the sample size gets larger the probability of choosing a non-optimal
classifier will become smaller, since by the central limit theorem the distribution of differ-
ent feature and class values in the sample will converge towards their true probabilities.
However, there are also costs for using more data, for example higher computation time,
computation power and data storage requirements. In cases where there are lots of data
available and we are striving for probabilistically near-optimal learning, it is possible that
we could achieve our accuracy goals using only a portion of the data. In this case, it would
be advantageous to know exactly how much data we need to guarantee that we are within
a specified accuracy margin of the optimal classifier with sufficiently high probability. This
will allow us to balance strong model performance with reasonable computational costs.
In this chapter, I outline my progress so far on determining bounds on the amount of data
needed for probabilistically near-optimal learning.

Since our learning task is agnostic, we will consider the estimation error, that is the error
that is incremental to that of the optimal näıve Bayes classifier. Error will be measured
by the misclassification percentage over the true distribution.

For this work, we want to know, for given confidence and accuracy thresholds δ, ε ∈
(0, 1), can we find the minimum integer m such that if the training set contains at least m
observations, then the probability of having estimation error greater than ε is less than δ,
regardless of the true underlying distribution?

To simplify the analysis, I started by considering the case of a single binary feature and
a binary class.

4.2 Definitions and Notation

Let X be the single binary feature, and C be the binary class.

I will use a representation of a näıve Bayes classifier with the lowest misclassification
error over the distribution throughout this work. The parameters for this classifier will be
θ∗ = P (C = 0), φ∗0 = P (X = 0|C = 0) and φ∗1 = P (X = 0|C = 1).

To describe the sample, I will use m to represent the number of observations. For
c ∈ {0, 1}, kc will represent the number of observations of class c. Similarly for c, x ∈ {0, 1},
kcx will represent the number of observations of class c with feature x.
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For agnostic P.A.C. learning, ε will be the threshold that we want to bound the error
by and δ will be the probability with which we allow ourselves to exceed that threshold.
So, we want to find m such that, if the sample S has at least m i.i.d. observations (x, c)
from the distribution D, then with probability at least 1−δ, we select h ∈ H that satisfies:

PD(h(x) 6= c) ≤ min
h′∈H

PD(h′(x) 6= c) + ε

4.3 Problem Formulation

Consider that for the distribution, there are parameters (θ∗, φ∗0, φ
∗
1) that define an opti-

mal näıve Bayes classifier as selected using ERM and misclassification loss. If our sample
generates a different set of parameters for the classifier, then we might have more misclassi-
fication error than the optimal classifier. Since the training sample is finite, any algorithm
might choose such a sub-optimal parameterization.

We want to be guaranteed that with high probability, the classifier we choose will be
nearly optimal, regardless of what the true underlying distribution is. Moreover, we want
to find the minimum sample size m that yields this guarantee.

Formally, for user defined ε and δ values and where err is the estimation error, the
optimization problem is:

min(m ∈ N s.t. min
(θ∗,φ∗0,φ

∗
1)∈[0,1]3

P (err < ε) ≥ 1− δ) (4.1)

Where P (err < ε) will be defined later in this section. Note that to use many conven-
tional search algorithms over m, we will also need to show that min

(θ∗,φ∗0,φ
∗
1)∈[0,1]3

P (err < ε) is

monotonically increasing w.r.t. m. This will be done on page 41.

To solve this problem, we first need a way to determine, if an optimal classifier for the
underlying distribution was (θ∗, φ∗0, φ

∗
1) and we took a sample of size m, what would be the

probability that we would end up with estimation error < ε? However, when we actually
build our model, the distribution is unknown, and we want our model to be sufficiently
accurate regardless of what the true distribution is. So, if we can define that probability
∀(θ∗, φ∗0, φ∗1) ∈ [0, 1]3, then we can minimize over the cube to find which set of parameters
yields the lowest probability of being within ε of the optimal classifier. Then we know
that regardless of what the true underlying distribution is, the probability of choosing a
sufficiently good model is at least as high as it is at the minimum.
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Once we determine how to evaluate the probability P (err < ε) for a fixed θ∗, φ∗0, φ
∗
1

and m, then the main difficulty will be figuring out how to minimize this over the space of
parameters (θ∗, φ∗0, φ

∗
1) ∈ [0, 1]3. If we had a simple method for finding this minimum, then

we could iterate over m values (or, use a more efficient algorithm such as binary search)
until we find a value m∗ such that min

(θ∗,φ∗0,φ
∗
1)∈[0,1]3

P (err < ε) ≥ 1− δ is satisfied at m = m∗,

but not at m = m∗ − 1.

Since we know exactly how to solve the problem once we can solve min
(θ∗,φ∗0,φ

∗
1)∈[0,1]3

P (err <

ε) for a fixed m, the focus of this section will primarily be on deriving the function P (err <
ε) for a fixed θ∗, φ∗0, φ

∗
1 and m, and discussing its properties to give us some insights into

how to minimize it.

Start by defining the misclassification error of the optimal classifier:

erropt = min{P (C = 0, X = 0), P (C = 1, X = 0)}
+min{P (C = 0, X = 1), P (C = 1, X = 1)}

This is because when the classifier sees X = 0, it will select the most likely class. So,
any observations with X = 0 and the less likely class, given X = 0, will be misclassified.
This will happen with probability min{P (C = 0, X = 0), P (C = 1, X = 0)}, and similarly
for X = 1.

Note that since (θ∗, φ∗0, φ
∗
1) is an optimal classifier, if P (C = 0, X = 0) ≥ P (C = 1, X =

0) then the classifier must have θ∗φ∗0 ≥ (1− θ∗)φ∗1, and vice versa. So, P (C = 0, X = 0) ≥
P (C = 1, X = 0)⇔ θ∗ ≥ φ∗1

φ∗0+φ∗1
.

Similarly, P (C = 0, X = 1) ≥ P (C = 1, X = 1)⇔ θ∗ ≥ 1−φ∗1
2−φ∗0−φ∗1

.

Furthermore, for this work, I will assume that (θ∗, φ∗0, φ
∗
1) perfectly represents our distri-

bution, since any single feature distribution can be expressed using näıve Bayes parameters.
In future, however, I would like to expand this work to cover cases with multiple features.
In this case, not every distribution can necessarily be represented using näıve Bayes pa-
rameters, so a different approach to the problem formulation will need to be used.
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The misclassification error of the optimal classifier is:

erropt =


P (C = 0, X = 0) + P (C = 0, X = 1) if θ∗ ≤ φ∗1

φ∗0+φ∗1
and θ∗ ≤ 1−φ∗1

2−φ∗0−φ∗1
P (C = 1, X = 0) + P (C = 0, X = 1) if θ∗ ≥ φ∗1

φ∗0+φ∗1
and θ∗ ≤ 1−φ∗1

2−φ∗0−φ∗1
P (C = 0, X = 0) + P (C = 1, X = 1) if θ∗ ≤ φ∗1

φ∗0+φ∗1
and θ∗ ≥ 1−φ∗1

2−φ∗0−φ∗1
P (C = 1, X = 0) + P (C = 1, X = 1) if θ∗ ≥ φ∗1

φ∗0+φ∗1
and θ∗ ≥ 1−φ∗1

2−φ∗0−φ∗1

=


θ∗ if θ∗ ≤ φ∗1

φ∗0+φ∗1
and θ∗ ≤ 1−φ∗1

2−φ∗0−φ∗1
φ∗1 + θ∗(1− φ∗0 − φ∗1) if θ∗ ≥ φ∗1

φ∗0+φ∗1
and θ∗ ≤ 1−φ∗1

2−φ∗0−φ∗1
1− φ∗1 + θ∗(φ∗0 + φ∗1 − 1) if θ∗ ≤ φ∗1

φ∗0+φ∗1
and θ∗ ≥ 1−φ∗1

2−φ∗0−φ∗1
1− θ∗ if θ∗ ≥ φ∗1

φ∗0+φ∗1
and θ∗ ≥ 1−φ∗1

2−φ∗0−φ∗1

Suppose we create a näıve Bayes model based on a sample from a distribution. The
sample is described by: m, the number of observations, kc the number of observations of
class c, and kcx the number of observations of class c with feature x.

For a model trained using any ERM rule and the misclassification loss, it will classify
new observations based on the following probabilities:

PNB(C = 0|X = 0, k00, k10) =


1 if k00 > k10
1
2
if k00 = k10

0 if k00 < k10

PNB(C = 0|X = 1, k01, k11) =


1 if k01 > k11
1
2
if k01 = k11

0 if k01 < k11

Then the classifier error depends on the relative values of k00, k01, k10 and k11 from the
sample, as well as the underlying distribution:

errtot =P (X = 0)[PNB(C = 0|X = 0, k00, k10)P (C = 1|X = 0)

+ PNB(C = 1|X = 0, k00, k10)P (C = 0|X = 0)]

+P (X = 1)[PNB(C = 0|X = 1, k01, k11)P (C = 1|X = 1)

+ PNB(C = 1|X = 1, k01, k11)P (C = 0|X = 1)]

Based on the values of kcx, the total classifier error is as follows:
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1. k00 < k10, k01 < k11 → errtot = θ∗

2. k00 = k10, k01 < k11 → errtot = θ∗ + 1
2
(φ∗1 − θ∗(φ∗0 + φ∗1))

3. k00 > k10, k01 < k11 → errtot = θ∗ + φ∗1 − θ∗(φ∗0 + φ∗1)
4. k00 < k10, k01 = k11 → errtot = 1

2
− 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

5. k00 = k10, k01 = k11 → errtot = 1
2

6. k00 > k10, k01 = k11 → errtot = 1
2

+ 1
2
(φ∗1 − θ∗(φ∗0 + φ∗1))

7. k00 < k10, k01 > k11 → errtot = 1− θ∗ − φ∗1 + θ∗(φ∗0 + φ∗1)
8. k00 = k10, k01 > k11 → errtot = 1− θ∗ − 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

9. k00 > k10, k01 > k11 → errtot = 1− θ∗

For the estimation error, we will need to subtract the approximation error from the
total error. So we will need to consider the nine different circumstances for the sample
parameters kcx, as listed above, as well as the four possible cases for the optimal error, based
on the underlying distribution. So, there will be four regions, each with nine subcases.

Region A: θ∗ ≤ φ∗1
φ∗0+φ∗1

and θ∗ ≤ 1−φ∗1
2−φ∗0−φ∗1

1. k00 < k10, k01 < k11 → err = 0
2. k00 = k10, k01 < k11 → err = 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

3. k00 > k10, k01 < k11 → err = φ∗1 − θ∗(φ∗0 + φ∗1)
4. k00 < k10, k01 = k11 → err = 1

2
− θ∗ − 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

5. k00 = k10, k01 = k11 → err = 1
2
− θ∗

6. k00 > k10, k01 = k11 → err = 1
2
− θ∗ + 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

7. k00 < k10, k01 > k11 → err = 1− 2θ∗ − φ∗1 + θ∗(φ∗0 + φ∗1)
8. k00 = k10, k01 > k11 → err = 1− 2θ∗ − 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

9. k00 > k10, k01 > k11 → err = 1− 2θ∗

Region B: θ∗ ≥ φ∗1
φ∗0+φ∗1

and θ∗ ≤ 1−φ∗1
2−φ∗0−φ∗1

1. k00 < k10, k01 < k11 → err = θ∗(φ∗0 + φ∗1)− φ∗1
2. k00 = k10, k01 < k11 → err = 1

2
(θ∗(φ∗0 + φ∗1)− φ∗1)

3. k00 > k10, k01 < k11 → err = 0
4. k00 < k10, k01 = k11 → err = 1

2
− θ∗ + 3

2
(θ∗(φ∗0 + φ∗1)− φ∗1)

5. k00 = k10, k01 = k11 → err = 1
2
− θ∗ + θ∗(φ∗0 + φ∗1)− φ∗1

6. k00 > k10, k01 = k11 → err = 1
2
− θ∗ + 1

2
(θ∗(φ∗0 + φ∗1)− φ∗1)

7. k00 < k10, k01 > k11 → err = 1− 2θ∗ + 2(θ∗(φ∗0 + φ∗1)− φ∗1)
8. k00 = k10, k01 > k11 → err = 1− 2θ∗ + 3

2
(θ∗(φ∗0 + φ∗1)− φ∗1)

9. k00 > k10, k01 > k11 → err = 1− 2θ∗ + (θ∗(φ∗0 + φ∗1)− φ∗1)
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Region C: θ∗ ≤ φ∗1
φ∗0+φ∗1

and θ∗ ≥ 1−φ∗1
2−φ∗0−φ∗1

1. k00 < k10, k01 < k11 → err = 2θ∗ − 1 + φ∗1 − θ∗(φ∗0 + φ∗1)
2. k00 = k10, k01 < k11 → err = 2θ∗ − 1 + 3

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

3. k00 > k10, k01 < k11 → err = 2θ∗ − 1 + 2(φ∗1 − θ∗(φ∗0 + φ∗1))
4. k00 < k10, k01 = k11 → err = θ∗ − 1

2
+ 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

5. k00 = k10, k01 = k11 → err = θ∗ − 1
2

+ φ∗1 − θ∗(φ∗0 + φ∗1)
6. k00 > k10, k01 = k11 → err = θ∗ − 1

2
+ 3

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

7. k00 < k10, k01 > k11 → err = 0
8. k00 = k10, k01 > k11 → err = 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

9. k00 > k10, k01 > k11 → err = φ∗1 − θ∗(φ∗0 + φ∗1)

Region D: θ∗ ≥ φ∗1
φ∗0+φ∗1

and θ∗ ≥ 1−φ∗1
2−φ∗0−φ∗1

1. k00 < k10, k01 < k11 → err = 2θ∗ − 1
2. k00 = k10, k01 < k11 → err = 2θ∗ − 1 + 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

3. k00 > k10, k01 < k11 → err = 2θ∗ − 1 + φ∗1 − θ∗(φ∗0 + φ∗1)
4. k00 < k10, k01 = k11 → err = θ∗ − 1

2
− 1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

5. k00 = k10, k01 = k11 → err = θ∗ − 1
2

6. k00 > k10, k01 = k11 → err = θ∗ − 1
2

+ 1
2
(φ∗1 − θ∗(φ∗0 + φ∗1))

7. k00 < k10, k01 > k11 → err = −(φ∗1 − θ∗(φ∗0 + φ∗1))
8. k00 = k10, k01 > k11 → err = −1

2
(φ∗1 − θ∗(φ∗0 + φ∗1))

9. k00 > k10, k01 > k11 → err = 0

So now, if we have a specific distribution parameterized by (θ∗, φ∗0, φ
∗
1), a sample of

size m and a bound ε on the estimation error, then first we can use the parameters to
figure out which of the four regions we are operating in (based on θ∗ ≥ / ≤ φ∗1

φ∗0+φ∗1
and

θ∗ ≥ / ≤ 1−φ∗1
2−φ∗0−φ∗1

). Next, we look through the nine subcases to identify which ones

satisfy err ≤ ε. Then, to find the probability that err ≤ ε, we must simply determine the
probability of selecting a sample such that the kcx values satisfy one of the relationships
defined between the kcx identified in the previous step. These probabilities can be expressed
as products of binomials.

As an example, consider the arbitrary case where ε = 0.05 and (θ∗, φ∗0, φ
∗
1) = (0.1, 0.2, 0.7).

Then this point belongs to Region A, since θ∗ ≤ φ∗1
φ∗0+φ∗1

and θ∗ ≤ 1−φ∗1
2−φ∗0−φ∗1

. Furthermore,

by putting the values of (θ∗, φ∗0, φ
∗
1) into the error expressions for the nine subcases, we see
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that the only one that satisfies err < ε is the first one, where k00 < k10 ∧ k01 < k11. Hence,
P (err < ε) = P (k00 < k10 ∧ k01 < k11). This can be expressed as:

P (k00 < k10 ∧ k01 < k11)

=
m∑

k0=0

k0∑
k00=0

m−k0∑
k10=0

1{k00<k10∧k01<k11} ·
(
m

k0

)
θ∗k0(1− θ∗)m−k0

·
(
k0

k00

)
φ∗0

k00(1− φ∗0)k0−k00

(
m− k0

k10

)
φ∗1

k10(1− φ∗1)m−k0−k10

=

bm−2
2 c∑

k0=0

b k0−1
2 c∑

k00=0

bm−k0−1
2 c∑

k10=0

(
m

k0

)
θ∗k0(1− θ∗)m−k0

·
(
k0

k00

)
φ∗0

k00(1− φ∗0)k0−k00

(
m− k0

k10

)
φ∗1

k10(1− φ∗1)m−k0−k10

In general, at any particular point in the parameter space, the probability of choosing
a sample of size m that yields a model with low error is:

P (err < ε) =
m∑

k0=0

k0∑
k00=0

m−k0∑
k10=0

1{err<ε|k00,k01,k10,k11,θ∗,φ∗0,φ
∗
1} ·
(
m

k0

)(
k0

k00

)(
m− k0

k10

)
· θ∗k0(1− θ∗)m−k0φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10

(4.2)

Where 1{err<ε|k00,k01,k10,k11,θ∗,φ∗0,φ
∗
1} is an indicator function that returns 1 whenever k00,

k01, k10, k11 satisfy a relationship that yields err < ε for the given (θ∗, φ∗0, φ
∗
1).

Hence, for any given ε, (θ∗, φ∗0, φ
∗
1) and m, we can find the probability that a sample of

size m will have estimation error < ε if the underlying distribution is defined by (θ∗, φ∗0, φ
∗
1).

If we minimize over the cube of all possible values of (θ∗, φ∗0, φ
∗
1), then we can say that no

matter what the true underlying distribution is, the probability of having having err < ε
for a sample of size m is at least as great as the value at the minimum.

Note that as we vary (θ∗, φ∗0, φ
∗
1), and move throughout the cube, the binomial terms

above will change continuously. However, when we hit certain surfaces, then this might
change the number of subcases which satisfy err < ε, and so the values of k00, k01, k10, k11

that we consider acceptable in the indicator function will change as well. When this
happens, then there will suddenly be additional or fewer terms that are included in the
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summation. As such, the function (4.2) is continuous over the cube except for certain
surfaces of discontinuity which correspond to err = ε for any of the subcases.

Furthermore, note that for any point (θ∗, φ∗0, φ
∗
1) that falls within Region A, there is

a symmetric point (1 − θ∗, φ∗1, φ∗0) that will fall within Region D, and will have the same
probability of err < ε. Similarly for a point (θ∗, φ∗0, φ

∗
1) that falls within Region B, there is

a symmetric point (1 − θ∗, φ∗1, φ∗0) that will fall within Region C whose distribution leads
to an equal probability of choosing a good sample. So, to find the minimum value over the
cube, we can simply find the minimum value over Regions A and B.

Once we know the minimum probability of choosing a good classifier for a fixed m,
we will want to find the minimum m such that this probability is sufficiently high. To
show that this is a feasible approach to take, we must also show that this probability is
monotonically increasing with m.

This follows directly from the Central Limit Theorem [19]. This theorem states that
the distribution of the mean of sequences of m i.i.d. random variables each with mean µ
and finite variance σ2 converges in probability to a normal distribution with mean µ and
variance σ2

n
.

Hence, in our samples, as m gets higher, then the frequency of any particular feature
value will approach a normal distribution about its expected value based on the true
distribution, with lower and lower variance. Since the variance lowers as m becomes higher,
the probability of having the frequency of a certain feature value less than a fixed distance,
such as ε, away from its expected value will be higher. P (err < ε) is constructed by having
products of the probabilities of having sample frequencies within a fixed distance from
their means. Hence, as m increases, so will P (err < ε).

Figure 4.1 provides a visualization of the surface P (err < ε) for fixed θ∗ = 0.10 and
m = 10 and for a given value ε = 0.17 as we vary φ∗0 and φ∗1. This helps illustrate
the symmetry in the surface, and also the way that it has a finite number of lines of
discontinuity, with continuous surfaces between them.

The colours are more red where P (err < ε) is high (i.e. we have high probability
of selecting a good classifier, and more blue where P (err < ε) is low (i.e. we have low
probability of selecting a good classifier).
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Figure 4.1: Surface illustrating P (err < ε) for m = 10, θ∗ = 0.10 and ε = 0.17.

Note that, based on ε, within any of the four regions, we will always be summing over
the conditions for the one or more of the 9 settings of k00, k01, k10 and k11 that yield error
< ε. However, we can also show that there is a hierarchy amongst the 9 subcases, so if
certain subcases satisfy err < ε, then there are others that are necessarily smaller, and they
must also be included. For example, in Region A, subcase 1 has err = 0, so it will always
be included. Furthermore, in Region A the error for subcase 2 is half that of subcase 3, so
if subcase 3 satisfies err < ε, so will subcase 2.

Fully, for Region A, the relationships are as follows in Figure 4.2, where each node
indicates the number of a subcase, and an arrow from subcase x to subcase y indicates
that the error for subcase x is less than or equal to that for subcase y.
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Figure 4.2: Hierarchy of subcase errors in Region A, where a child node has error at least
as great as its parents.

1: k00 < k10, k01 < k11

2: k00 = k10, k01 < k11 4: k00 < k10, k01 = k11

3: k00 > k10, k01 < k11 5: k00 = k10, k01 = k11 7: k00 < k10, k01 > k11

6: k00 > k10, k01 = k11 8: k00 = k10, k01 > k11

9: k00 > k10, k01 > k11

Hence, we can see that for any node that has err < ε, all of its ancestor nodes must also
have err < ε. So, depending on the values of (θ∗, φ∗0, φ

∗
1) and ε, two example configurations

that could lead to err < ε are highlighted below in Figures 4.3 and 4.4.
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Figure 4.3: Example of subcases with err < ε in Region A highlighted

1: k00 < k10, k01 < k11

2: k00 = k10, k01 < k11 4: k00 < k10, k01 = k11

3: k00 > k10, k01 < k11 5: k00 = k10, k01 = k11 7: k00 < k10, k01 > k11

6: k00 > k10, k01 = k11 8: k00 = k10, k01 > k11

9: k00 > k10, k01 > k11

Figure 4.4: Example of subcases with err < ε in Region A highlighted

1: k00 < k10, k01 < k11

2: k00 = k10, k01 < k11 4: k00 < k10, k01 = k11

3: k00 > k10, k01 < k11 5: k00 = k10, k01 = k11 7: k00 < k10, k01 > k11

6: k00 > k10, k01 = k11 8: k00 = k10, k01 > k11

9: k00 > k10, k01 > k11

At some places, the conditions can be described using one or two relations that must
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both be satisfied simultaneously. For example, in the case where ε is so small that err > ε in
every subcase except subcase 1, where err = 0, then the condition that must be satisfied
is (k00 < k10 ∧ k01 < k11). In the case described in Figure 4.3, the condition would be
(k01 < k11). These cases where no OR conditions are needed are called ”consolidated
conditions”. If we need to use OR conditions in our logical statement, then these are
”unconsolidated conditions”. An example of unconsolidated conditions is in Figure 4.4,
where the condition is (k00 < k10 ∨ (k00 = k10 ∧ k01 ≤ k11)).

Similarly, the subcases of Region B follow the hierarchy in Figure 4.5:

Figure 4.5: Hierarchy of subcase errors in Region B, where a child node has error at least
as great as its parents.

3: k00 > k10, k01 < k11

2: k00 = k10, k01 < k11 6: k00 > k10, k01 = k11

1: k00 < k10, k01 < k11 5: k00 = k10, k01 = k11 9: k00 > k10, k01 > k11

4: k00 < k10, k01 = k11 8: k00 = k10, k01 > k11

7: k00 < k10, k01 > k11

The subcase hierarchy for Regions C and D are not shown, since, as previous demon-
strated, these Regions are symmetric to Regions A and B.

Based on the derivations from this section, I have formulated the problem of finding
the minimum amount of data that guarantees agnostic P.A.C. learning as an optimization
problem, as stated in Equation (4.1). I detailed how the most challenging part of this
optimization task will be the subtask of minimizing (4.2). I have begun to describe this
function, and showed how it has surfaces of discontinuity over the cube of the parameter
space, but is otherwise continuous.
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4.4 Finding Distributions Unlikely to Yield Good Clas-

sifiers

In the previous section, I formulated the problem by describing how the most challenging
part of this problem is finding the distribution(s) that minimize the probability of choosing
a sample that leads to an adequately accurate model. I showed that this will involve
minimizing over the unit cube (i.e. the parameter space), and that the objective function
(4.2) has surfaces of discontinuity throughout it but is otherwise continuous.

Before proceeding, I would like to define a few concepts that will be prevalent for the
rest of the section:

Log-concave function: A function f : Rn → R+ is log-concave if its domain is a convex
set and, ∀a, b ∈ domain(f), ∀α ∈ (0, 1): f(αa+ (1− α)b) ≥ f(a)αf(b)1−α

Quasi-concave function: A function f :W → R defined on a convex subsetW of a real
vector space is quasi-concave if, ∀a, b ∈ W , ∀α ∈ (0, 1): f(αa+(1−α)b) ≥ min{f(a), f(b)}.

A well known property of log-concave functions is that they are also quasi-concave [10],
and a well known property of quasi-concave function is that their minima must be achieved
at the boundary of their domain [10].

My goal when I began working on the proof was to complete the following steps:

• Show that in the continuous areas, the function (4.2) is monotonic or log-concave
w.r.t. one of its variables

• Show that the function (4.2) is log-concave w.r.t. one of its variables over the con-
tinuous areas of the surfaces of discontinuity

• Show that the function (4.2) is log-concave w.r.t. one of its variables over the con-
tinuous areas of the faces of the cube

• Identify where, at the intersections of the surfaces of discontinuities and faces, a
minimum could occur

The first step would show that in any continuous region of the cube, any minimum
must be achieved at its borders (i.e. the surfaces of discontinuity or the cube borders).
This is because if, in a certain area, the function is monotonic w.r.t. one of its variables,
then by changing that variable and holding the others constant we can move in such a
way that the objective function will only get smaller or remain the same. Hence, we would
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know that the minimum must be achieved at the border of this continuous area, which is
either the cube’s border or one of the surfaces of discontinuity. The same can be said if
the function is log-concave w.r.t. one of its variables.

We were able to prove this in the consolidated cases (i.e. cases when the conditions on
the sample parameters can be expressed without OR statements). The extension to non-
consolidated cases is still to follow. A deeper description will follow later in this Section,
and the proof will follow in the next Section.

Next, in the second step, I wanted to show that the function is log-concave w.r.t. one
of its variables over the continuous areas of the surfaces of discontinuity. If I am able
to accomplish this, then we will know that the functions minimum over these surfaces of
discontinuity must occur at their borders, i.e. at the borders of the cube or where a surface
of discontinuity insects another. However, I have not, as of yet, completed this proof.

In the third step I hope to show, again using log-concavity, that the minimum of the
function over any face of the cube must be achieved at it’s boundaries or where it meets
a surface of discontinuity. Hence, we would know that the minimum must be achieved at
the intersection of surfaces of discontinuity or faces of the cube.

Finally, I would optimize over each of these possible intersections to obtain a list of
points that could potentially yield the minimum.

Then once I have a finite list of points that are candidate minima for the objective
function over the cube, we can simply iterate through them, calculating the probability
defined by the objective function (4.2) at each one, to find the true minimum.

For the rest of the discussion, we will focus on step 1, which I was able to prove in the
consolidated case. Though I have not yet completed the later steps, this first step is still
interesting since it allows us to get a fuller understanding of where within the parameter
cube we might encounter the distributions that have the lowest probability of yielding
samples that will lead to a sufficiently accurate classifier.

Before introducing the results, I will formally define several terms:

Consolidated area: The consolidated area of the function P (err < ε), as defined in
Equation (4.2), is the area where θ∗, φ∗0 and φ∗1 are such that the conditions on k00, k01, k10

and k11 can be expressed without the use of use of logical OR conditions. These conditions
are determined by looking at the set of conditions on page 38 that satisfy err < ε.

Continuous area: The continuous area of the function P (err < ε), as defined in Equa-
tion (4.2), is the area where the function is continuous w.r.t. θ∗, φ∗0 and φ∗1. This occurs
everywhere except where θ∗, φ∗0 and φ∗1 are such that one of the error expressions for the
corresponding regions as defined on page 38 is exactly equal to ε.
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The results are as follows:

Theorem 5. In the consolidated continuous area of Region A, the objective function (4.2)
is monotonically decreasing w.r.t. θ∗. That is to say, the probability of choosing a sample
that yields a classifier that is accurate within ε of optimal is monotonically decreasing w.r.t.
θ∗. Under the same conditions in Region D, (4.2) is monotonic increasing w.r.t. θ∗.

Theorem 6. In the consolidated continuous area of Region B, the objective function (4.2)
is monotonically increasing w.r.t. φ∗0 and monotonically decreasing w.r.t. φ∗1. That is to
say, the probability of choosing a sample that yields a classifier that is accurate within ε
of optimal is monotonically increasing w.r.t. φ∗0 and monotonically decreasing w.r.t. φ∗1.
Under the same conditions in Region C, (4.2) is monotonically decreasing w.r.t. φ∗0 and
monotonically increasing w.r.t. φ∗1.

Theorem 7. In the consolidated continuous area of Regions B and C, the objective function
(4.2) is log concave w.r.t. θ∗. That is to say, the probability of choosing a sample that yields
a classifier that is accurate within ε of optimal is log-concave w.r.t. θ∗.

The proofs for Theorems 5 and 6 were primarily developed by my collaborator George
Trimponias of Huawei. Since they are not my original work I will omit them from the body
of this thesis. I will nonetheless include them for the reader’s reference in Appendix A.
However, I will still discuss their impact here, since this discussion was done collaboratively
and supports the understanding of the structure of the objective function. The proof of
Theorem 7 will be included in Section 4.5.

Based on Theorem 5, we know that whenever we are within the consolidated continuous
area of Region A or Region D, the function will be monotonic w.r.t. θ∗. If we start at
any point inside this area, then by keeping φ∗0 and φ∗1 constant and varying θ∗, we will be
able to move to the edge of the continuous area (we must eventually hit either a surface of
discontinuity or the border of the cube), while either maintaining or lowering the objective
function (4.2). Hence, within the consolidated areas of Regions A and D, the minimum
value of P (err < ε) must be achieved either on the borders of the cube or at one of the
surfaces of discontinuity.

Theorems 6 and 7 describe the characteristics of the consolidated continuous area of
Regions B and C. In Theorem 6, I show that within this area the objective function (4.2)
is monotonic w.r.t. both φ∗0 and φ∗1. Similarly to the results for Theorem 5, we know that
by keeping θ∗ and one of the φ∗ variables constant, and then varying the other, we will
again move to the edge of the continuous area, while either maintaining or lowering the
objective function (4.2). So again, within the consolidated areas of region B and C, we
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know that the minimum value P (err < ε) must be achieved on either the borders of the
cube or at one of the surfaces of discontinuity.

Theorem 7 shows that within the consolidated continuous area of Regions B and C,
that (4.2) is log-concave w.r.t. θ∗. As previously mentioned, it is well known that functions
that are log-concave with a closed domain achieve their minimum at the border of their
domain [10]. Hence, at any point in the consolidated continuous area of Regions B and
C, by keeping φ∗0 and φ∗1 constant then the minimum along that line must be achieved by
either setting θ∗ to it’s minimum or maximum value within that area. Hence, the minimum
of the objective is again achieved on either the borders of the cube or at one of the surfaces
of discontinuity.

The combination of Theorem 5 with either Theorem 6 or Theorem 7 is sufficient to
complete step 1 from the proof strategy within the consolidated continuous areas. Though
the proof for Theorem 6 is much shorter and perhaps simpler than the proof for Theorem 7,
I pursued the proof for Theorem 7 nonetheless because it allows us to more fully characterize
how the probability of choosing a sample that yields a bad classifier changes throughout
the cube. It also allows us to completely understand how that probability changes as θ∗

changes over the consolidated continuous regions of the cube. Furthermore, I believe that
the proof of Theorem 7 will help us in later, as of yet incomplete, advances of this work.
Hence, the proof of Theorem 7 is important for understanding and future work, and is
presented in the following Section.

4.5 Proof of Theorem 7

This section will detail the proof of Theorem 7. As mentioned previously, the proofs for
Theorems 5 and 6 were done by my collaborator George and are included in Appendix A.

First, however, I will give a brief overview of the idea behind the proof. Theorem 7
states that the function (4.2) is log concave with respect to θ∗ in certain circumstances.
Based on a result from [29] , for a mixture of consecutive binomial terms, if the coefficients
form a log concave sequence, then the mixture is log concave with respect to its parameter.

In this case, the function is of the form:

m−1∑
k0=0

(
m

k0

)
θ∗k0(1− θ∗)m−k0

k0∑
k00=max(1,2k0−m+1)

min(k00−1,m−2k0+k00−1)∑
k10=0(

k0

k00

)(
m− k0

k10

)
φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10
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This is simply a mixture of binomial terms
(
m
k0

)
θ∗k0(1− θ∗)m−k0 with coefficients:

ck0 =

k0∑
k00=max(1,2k0−m+1)

min(k00−1,m−2k0+k00−1)∑
k10=0

(
k0

k00

)(
m− k0

k10

)
· φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10

Hence, to show that the entire function is log concave with respect to θ∗, it is sufficient
to show that the series of coefficients ck0 is log concave. That is, it is sufficient to show
that c2

k0
≥ ck0−1 · ck0+1 ∀k0.

In the formal proof I will show that when we multiply two expressions of the form ck0

together, we get a sum of the form shown in Lemma 4. In these expressions, τ is the sum
of the k00 values from both of the ck0 terms, and τ1 is the k00 value attributed to the first
ck0 term. Similarly, λ is the sum of the k10 values from both of the ck0 terms, and λ1 is the
k10 value attributed to the first ck0 term.

Lemma 4 shows a combinatorial inequality that is sufficient to show that the series ck0

is log concave. The full derivation of this inequality follows in the proof of Theorem 7.
The proof of Lemma 4 follows at the end of this section.

Lemma 4. Suppose m ∈ N. Then, ∀k0, τ, λ s.t. 1 ≤ k0 ≤ m−2
2

, 2 ≤ τ ≤ 2k0, 0 ≤ λ ≤ τ−2:

min(τ−1,k0)∑
τ1=max(1,τ−k0)

(
k0

τ1

)(
k0

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0

λ1

)(
m− k0

λ− λ1

)
(4.3)

≥
min(k0−1,τ−1)∑

τ1=max(1,τ−k0−1)

(
k0 − 1

τ1

)(
k0 + 1

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0 + 1

λ1

)(
m− k0 − 1

λ− λ1

)

Theorem 7. In the consolidated continuous area of Regions B and C, the objective function
(4.2) is log concave w.r.t. θ∗. That is to say, the probability of choosing a sample that yields
a classifier that is accurate within ε of optimal is log-concave w.r.t. θ∗.

Proof. Start by noting that if we prove this result in Region B, then by symmetry the result
will also hold in Region C. In the consolidated area of region B, the objective function will
have the form:
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P (err < ε) =
m∑

k0=0

k0∑
k00=0

m−k0∑
k10=0

1{k00†k10∧k01‡k11} ·
(
m

k0

)(
k0

k00

)(
m− k0

k10

)
· θ∗k0(1− θ∗)m−k0φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10

Where † means that, if there is a relational requirement between k00 and k10, it will be
either k00 > k10 or k00 ≥ k10, and ‡ indicates that any relational requirement between k01

and k11 will be either k01 < k11 or k01 ≤ k11.

Depending on the accuracy threshold ε, and the values of the parameters (θ∗, φ∗0, φ
∗
1),

different sample characteristics will yield a model that is sufficiently accurate. Because
we are in a consolidated area of Region B, we know that the condition on the sample
parameters can be expressed using † and ‡.

For this proof I will explicitly consider the case where the condition is of the form
{k00 > k10 ∧ k01 < k11}, however the exact same proof method can be used in any of the
consolidated cases.

In this case, the objective function will have the form:

P (err < ε) =
m∑

k0=0

k0∑
k00=0

m−k0∑
k10=0

1{k00>k10∧k01<k11} ·
(
m

k0

)(
k0

k00

)(
m− k0

k10

)
· θ∗k0(1− θ∗)m−k0φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10

Note that the condition k11 > k01 implies k11 ≥ 1, which means that we must have
k1 ≥ 1 and k0 < m.

Now, note that the second condition can be rewritten:

k01 < k11 ⇔ k0 − k00 < m− k0 − k10

⇔ k10 < m− 2k0 + k00

Furthermore, since k10 ≥ 0, we must have that m − 2k0 + k00 > 0, and hence k00 >
2k0 −m.

Replacing this into the objective function yields:
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P (err < ε) =
m∑

k0=0

k0∑
k00=0

m−k0∑
k10=0

1{k10<k00∧k10<m−2k0+k00} ·
(
m

k0

)(
k0

k00

)(
m− k0

k10

)
· θ∗k0(1− θ∗)m−k0φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10

=
m−1∑
k0=0

k0∑
k00=max(1,2k0−m+1)

min(k00−1,m−2k0+k00−1)∑
k10=0

(
m

k0

)(
k0

k00

)(
m− k0

k10

)
· θ∗k0(1− θ∗)m−k0φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10

=
m−1∑
k0=0

(
m

k0

)
θ∗k0(1− θ∗)m−k0

k0∑
k00=max(1,2k0−m+1)

min(k00−1,m−2k0+k00−1)∑
k10=0(

k0

k00

)(
m− k0

k10

)
φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10 (4.4)

Equation (4.4) is simply a mixture of binomial terms
(
m
k0

)
θ∗k0(1 − θ∗)m−k0 with coeffi-

cients:

ck0 =

k0∑
k00=max(1,2k0−m+1)

min(k00−1,m−2k0+k00−1)∑
k10=0

(
k0

k00

)(
m− k0

k10

)
· φ∗0

k00(1− φ∗0)k0−k00φ∗1
k10(1− φ∗1)m−k0−k10

As shown in [29], for a mixture of consecutive binomial terms, if the coefficients form a
log concave sequence, then the mixture is log concave with respect to its parameter.

In this case, that means that if the sequence of coefficients ck0 is log concave, then the
function (4.4) is log concave w.r.t. θ∗. Hence, to prove our result, we need only show that
the sequence ck0 is log concave, i.e. c2

k0
> ck0−1 · ck0+1 ∀k0 ∈ {1, ...,m− 2}.

To remove the min and max statements and simplify the expression for ck0 , the proof will
be divided into three cases. The first will cover the case when k0 is such that m− 2k0 ≥ 2,
the second will cover the case when m − 2k0 ≤ −2 and the third will be the case that
m− 2k0 ∈ {−1, 0, 1}.

For the first potential k0 values, consider the case where m− 2k0 ≥ 2. This also means
that m− 2k0 ≥ 0, m− 2(k0− 1) ≥ 0 and m− 2(k0 + 1) ≥ 0. Then, the mixture coefficients
will be:
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ck0 =

k0∑
k00=1

(
k0

k00

)
φ∗0

k00(1− φ∗0)k0−k00

k00−1∑
k10=0

(
m− k0

k10

)
φ∗1

k10(1− φ∗1)m−k0−k10

I will now show that c2
k0
≥ ck0+1 · ck0−1. Start by determining the expressions on each

side of the inequality. τ will be the sum of the k00 value from both ck0 expressions, and
τ1 will be the k00 value from the first. λ will be the sum of the k10 value from both ck0

expressions, and λ1 will be the k10 value from the first.

c2
k0

=

{
k0∑

k00=1

(
k0

k00

)
φ∗0

k00(1− φ∗0)k0−k00

k00−1∑
k10=0

(
m− k0

k10

)
φ∗1

k10(1− φ∗1)m−k0−k10

}2

=

2k0∑
τ=2

min(τ−1,k0)∑
τ1=max(1,τ−k0)

(
k0

τ1

)(
k0

τ − τ1

)
φ∗0

τ (1− φ∗0)2k0−τ

(
τ1−1∑
k10=0

(
m− k0

k10

)
φ∗1

k10(1− φ∗1)m−k0−k10

)(
τ−τ1−1∑
k10=0

(
m− k0

k10

)
φ∗1

k10(1− φ∗1)m−k0−k10

)

=

2k0∑
τ=2

min(τ−1,k0)∑
τ1=max(1,τ−k0)

(
k0

τ1

)(
k0

τ − τ1

)
φ∗0

τ (1− φ∗0)2k0−τ

τ−2∑
λ=0

min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0

λ1

)(
m− k0

λ− λ1

)
φ∗1

λ(1− φ∗1)2m−2k0−λ
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ck0+1 · ck0−1

=

{
k0+1∑
k00=1

(
k0 + 1

k00

)
φ∗0

k00(1− φ∗0)k0+1−k00

k00−1∑
k10=0

(
m− k0 − 1

k10

)
φ∗1

k10(1− φ∗1)m−k0−1−k10

}

·

{
k0−1∑
k00=1

(
k0 − 1

k00

)
φ∗0

k00(1− φ∗0)k0−1−k00

k00−1∑
k10=0

(
m− k0 + 1

k10

)
φ∗1

k10(1− φ∗1)m−k0+1−k10

}

=

2k0∑
τ=2

min(k0−1,τ−1)∑
τ1=max(1,τ−k0−1)

(
k0 − 1

τ1

)(
k0 + 1

τ − τ1

)
φ∗0

τ (1− φ∗0)2k0−τ

(
τ1−1∑
k10=0

(
m− k0 + 1

k10

)
φ∗1

k10(1− φ∗1)m−k0+1−k10

)
(

τ−τ1−1∑
k10=0

(
m− k0 − 1

k10

)
φ∗1

k10(1− φ∗1)m−k0−1−k10

)

=

2k0∑
τ=2

min(k0−1,τ−1)∑
τ1=max(1,τ−k0−1)

(
k0 − 1

τ1

)(
k0 + 1

τ − τ1

)
φ∗0

τ (1− φ∗0)2k0−τ

τ−2∑
λ=0

min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0 + 1

λ1

)(
m− k0 − 1

λ− λ1

)
φ∗1

λ(1− φ∗1)2m−2k0−λ

Hence, to show that c2
k0
≥ ck0+1 · ck0−1, we must show that:

54



2k0∑
τ=2

τ−2∑
λ=0

φ∗0
τ (1− φ∗0)2k0−τφ∗1

λ(1− φ∗1)2m−2k0−λ

min(τ−1,k0)∑
τ1=max(1,τ−k0)

(
k0

τ1

)(
k0

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0

λ1

)(
m− k0

λ− λ1

)
≥
2k0∑
τ=2

τ−2∑
λ=0

φ∗0
τ (1− φ∗0)2k0−τφ∗1

λ(1− φ∗1)2m−2k0−λ

min(k0−1,τ−1)∑
τ1=max(1,τ−k0−1)

(
k0 − 1

τ1

)(
k0 + 1

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0 + 1

λ1

)(
m− k0 − 1

λ− λ1

)

Note that the limits of summation over τ and λ are the same for c2
k0

and ck0+1 · ck0−1,
as well as the φ∗0 and φ∗1 terms. Hence, to show that the inequality holds over the entire
summation, it is sufficient to show that it holds over each term in the summations over τ
and λ.

To prove our result, it is hence sufficient to show that the following inequality holds
∀2 ≤ τ ≤ 2k0, 0 ≤ λ ≤ τ − 2:

min(τ−1,k0)∑
τ1=max(1,τ−k0)

(
k0

τ1

)(
k0

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0

λ1

)(
m− k0

λ− λ1

)
(4.5)

≥
min(k0−1,τ−1)∑

τ1=max(1,τ−k0−1)

(
k0 − 1

τ1

)(
k0 + 1

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0 + 1

λ1

)(
m− k0 − 1

λ− λ1

)

By Lemma 4, we know that this inequality holds.

So, the series of coefficients ck0 is log concave when k0 ≤ m−2
2

.

Next, consider the case where k0 ≥ m+2
2

. This is equivalent to looking at the terms
cm−k0 when k0 ≤ m−2

2
. So, assume that k0 ≤ m−2

2
and then we can change the order of
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summation and do variable substitution:

cm−k0

=

m−k0∑
k00=m−2k0+1

−m+2k0+k00−1∑
k10=0

(
m− k0

k00

)(
k0

k10

)
φ∗0

k00(1− φ∗0)m−k0−k00φ∗1
k10(1− φ∗1)k0−k10

=

k0−1∑
k10=0

m−k0∑
k00=m−2k0+k10+1

(
m− k0

k00

)(
k0

k10

)
φ∗0

k00(1− φ∗0)m−k0−k00φ∗1
k10(1− φ∗1)k0−k10

=

m−k0∑
k11=m−2k0+1

4k0−2m+k11−1∑
k01=2k0−m

(
m− k0

k0 − k01

)(
k0

m− k0 − k11

)
· φ∗0

k0−k01(1− φ∗0)m−2k0+k01φ∗1
m−k0−k11(1− φ∗1)2k0−m+k11

=

k0∑
k11=1

2k0−m+k11−1∑
k01=2k0−m

(
m− k0

k0 − k01

)(
k0

k0 − k11

)
φ∗0

k0−k01(1− φ∗0)m−2k0+k01φ∗1
k0−k11(1− φ∗1)k11

=

k0∑
k11=1

k11−1∑
k01=0

(
m− k0

k01

)(
k0

k11

)
φ∗0

m−k0−k01(1− φ∗0)k01φ∗1
k0−k11(1− φ∗1)k11

Note here that once we have rewritten cm−k0 as above, the limits of the summations
and the binomial terms are identical to those found in the expansion of ck0 .

In the part of the proof for k0 ≤ m−2
2

, we saw that when we multiply the coefficients
together, the φ∗0 and φ∗1 terms in c2

k0
and ck0+1 · ck0−1 cancel out. Hence, in this case, once

those terms are removed, we will be left with an expression identical to Inequality (4.5),
which we already know holds. Hence, when k0 ≥ m+2

2
, then ck0 is log concave.

The final case to consider is where k0 ∈ {m−1
2
, m

2
, m+1

2
}. This case is quite simple.

Consider, for example, k0 = m
2

.

Then:

ck0 =

k0∑
k00=1

k00−1∑
k10=0

(
k0

k00

)
φ∗0

k00(1− φ∗0)k0−k00

(
m− k0

k10

)
φ∗1

k10(1− φ∗1)m−k0−k10

ck0−1 =

k0−1∑
k00=1

k00−1∑
k10=0

(
k0 − 1

k00

)
φ∗0

k00(1− φ∗0)k0−1−k00

(
m− k0 + 1

k10

)
φ∗1

k10(1− φ∗1)m−k0+1−k10

ck0+1 =

k0+1∑
k00=1

k00−3∑
k10=0

(
k0 + 1

k00

)
φ∗0

k00(1− φ∗0)k0+1−k00

(
m− k0 − 1

k10

)
φ∗1

k10(1− φ∗1)m−k0−1−k10
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In this case, however, we see that the expressions for ck0 and ck0−1 are identical to those
that we saw in the derivation for the case when k0 ≤ m−2

2
. The expression for ck0+1 is

similar, except that the upper bound of summation over k10 is lower. Hence, we have the
same expression for c2

k0
, but ck0+1 · ck0−1 will be less. Hence, c2

k0
≥ ck0+1 · ck0−1 still holds.

The same is true for the cases that k0 = m−1
2

and k0 = m+1
2

.

So, the series ck0 is log concave. By the result in [29], the mixture
m−1∑
k0=0

ck0

(
m
k0

)
θ∗k0(1−

θ∗)m−k0 is log concave w.r.t. θ∗.

This concludes the proof of Theorem 7.

Now, I will show that the Lemma does indeed hold. Recall Lemma 4:

Lemma 4. Suppose m ∈ N. Then, ∀k0, τ, λ s.t. 1 ≤ k0 ≤ m−2
2

, 2 ≤ τ ≤ 2k0, 0 ≤ λ ≤ τ−2:

min(τ−1,k0)∑
τ1=max(1,τ−k0)

(
k0

τ1

)(
k0

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0

λ1

)(
m− k0

λ− λ1

)
(4.6)

≥
min(k0−1,τ−1)∑

τ1=max(1,τ−k0−1)

(
k0 − 1

τ1

)(
k0 + 1

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0 + 1

λ1

)(
m− k0 − 1

λ− λ1

)

Proof. First consider the case where 1 > τ − k0, and this becomes:

τ−1∑
τ1=1

min{τ1−1,λ}∑
λ1=max{0,τ1+λ+1−τ}

(
k0

τ1

)
·
(

k0

τ − τ1

)
·
(
m− k0

λ1

)
·
(
m− k0

λ− λ1

)

≥
τ−1∑
τ1=1

min{τ1−1,λ}∑
λ1=max{0,τ1+λ+1−τ}

(
k0 − 1

τ1

)
·
(
k0 + 1

τ − τ1

)
·
(
m− k0 + 1

λ1

)
·
(
m− k0 − 1

λ− λ1

) (4.7)

To show that inequality (4.7) holds, first consider the left side of the inequality. This
amounts to the number of combinations that can be made from 2m elements such that, if
we consider the elements divided up into two sections of size k0 and two sections of size
m− k0, the following conditions must hold:
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k0 k0 m− k0 m− k0

kth0 element m+ k0 + 1thelement

• 1.1: from the first section of k0 elements, at least 1 is chosen

• 1.2: from the second section of k0 elements, at least 1 is chosen

• 1.3: between the first and second sections of k0 elements, τ are chosen

• 1.4: from the first section of m − k0 elements, fewer elements are chosen than from
the first section of k0 elements

• 1.5: from the second section of m−k0 elements, fewer elements are chosen than from
the second section of k0 elements

• 1.6: between the first and second sections of m− k0 elements, λ are chosen

Similarly, the right side of inequality (4.7) amounts to the number of combinations that
can be made from 2m elements such that, if we consider the elements divided up into a
sections of size k0 − 1, k0 + 1,m − k0 + 1 and m − k0 − 1, the following conditions must
hold:

k0 − 1 k0 + 1 m− k0 + 1 m− k0 − 1

kth0 element m+ k0 + 1thelement

• 2.1: from the section of k0 − 1 elements, at least 1 is chosen

• 2.2: from the section of k0 + 1 elements, at least 1 is chosen

• 2.3: between the sections of k0 + 1 and k0 − 1 elements, τ are chosen

• 2.4: from the section of m − k0 + 1 elements, fewer elements are chosen than from
the section of k0 − 1 elements

• 2.5: from the section of m − k0 − 1 elements, fewer elements are chosen than from
the section of k0 + 1 elements
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• 2.6: between the sections of m− k0 + 1 and m− k0 − 1 elements, λ are chosen

So, showing that inequality (4.7) holds is equivalent to showing that the number of
combinations of 2m elements that satisfy the first set of conditions but not the second set
is greater than the number of combinations that satisfy the second set but not the first set.

Start by considering the combinations that satisfy the first set of conditions but not
the second. By satisfying the first set of conditions, conditions 2.2, 2.3, 2.5 and 2.6 are
also necessarily satisfied. Also, note that if condition 2.1 is not satisfied, then neither is
condition 2.4. So, we only need to count the number of combinations that satisfy the first
set of conditions but fail condition 2.4.

Since the first set of conditions are satisfied, we know that the number of elements in the
first section of m−k0, denoted nm−k0 , is less than the number of elements in the first section
of k0, nk0 . If nm−k0 = nk0 − 1, then condition 2.4 will fail if either the m+ k0 + 1th element
is selected or if the kth0 element is selected and the m+ k0 + 1th is not. If nm−k0 = nk0 − 2,
then condition 2.4 will fail if both the kth0 and m+ k0 + 1th elements are selected.

Hence, the number of combinations that satisfy the first set of conditions but not the
second is:

λ∑
τ1=1

[(
k0

τ1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)
+

(
k0 − 1

τ1

)(
k0

τ − τ1 − 1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)]
+

λ+1∑
τ1=1

(
k0 − 1

τ1 − 1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1 + 1

)

Next, consider the number of combinations that satisfy the second set of conditions
but not the first. By satisfying the second set of conditions, conditions 1.1, 1.3, 1.4 and 1.6
are also necessarily satisfied. Also note that if condition 1.2 is not satisfied, then neither
is condition 1.5. So, we only need to count the number of combinations that satisfy the
second set of conditions but fail condition 1.5.

Since the second set of conditions are satisfied, we know that the number of elements
in the section of m− k0 − 1, denoted nm−k0−1, is less than the number of elements in the
section of k0 + 1, nk0+1. If nm−k0−1 = nk0+1 − 1, then condition 1.5 will fail if either the
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m + k0 + 1th element is selected or if the kth0 element is selected and the m + k0 + 1th is
not. If nm−k0−1 = nk0+1 − 2, then condition 1.5 will fail if both the kth0 and m + k0 + 1th

elements are selected.

So, the number of combinations that satisfy the second set of conditions but not the
first is:

λ∑
τ1=1

[(
k0 − 1

τ − τ1

)(
k0 + 1

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

)
+

(
k0 − 1

τ − τ1 − 1

)(
k0

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

)]
+

λ+1∑
τ1=1

(
k0 − 1

τ − τ1

)(
k0

τ1 − 1

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

)
Showing that Inequality 4.7 holds is equivalent to showing that the following holds:

λ∑
τ1=1

[(
k0

τ1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)
+

(
k0 − 1

τ1

)(
k0

τ − τ1 − 1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)]
+

λ+1∑
τ1=1

(
k0 − 1

τ1 − 1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1 + 1

)

≥
λ∑

τ1=1

[(
k0 − 1

τ − τ1

)(
k0 + 1

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

)
+

(
k0 − 1

τ − τ1 − 1

)(
k0

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

)]
+

λ+1∑
τ1=1

(
k0 − 1

τ − τ1

)(
k0

τ1 − 1

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

)

(4.8)

To show that Inequality (4.8) holds, and hence that Inequality (4.7) holds, it is sufficient
to break it into three inequalities and show that they each hold:
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λ∑
τ1=1

(
k0

τ1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)

≥
λ∑

τ1=1

(
k0 − 1

τ − τ1

)(
k0 + 1

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

) (4.9)

λ∑
τ1=1

(
k0 − 1

τ1

)(
k0

τ − τ1 − 1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)

≥
λ∑

τ1=1

(
k0 − 1

τ − τ1 − 1

)(
k0

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

) (4.10)

λ+1∑
τ1=1

(
k0 − 1

τ1 − 1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1 + 1

)

≥
λ+1∑
τ1=1

(
k0 − 1

τ − τ1

)(
k0

τ1 − 1

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

) (4.11)

Note that, for Inequalities (4.9), (4.10) and (4.11), there are certain values of τ1 for
which the term on the left is less than the corresponding term on the right.

Now, consider (4.9):

λ∑
τ1=1

(
k0

τ1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)

≥
λ∑

τ1=1

(
k0 − 1

τ − τ1

)(
k0 + 1

τ1

)(
m− k0 − 1

τ1 − 1

)(
m− k0

λ− τ1

)

Using the same approach, we can see that the left side of the inequality consists of the
number of combinations of 2m− 1 elements, such that, if we consider the elements divided
up into sections of size k0, k0,m− k0 and m− k0 − 1:
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k0 k0 m− k0 m− k0 − 1

k0 + 1thelement m+ kth0 element

• 3.1: in the first section of k0 elements, at least 1 and at most λ elements are chosen

• 3.2: between the first and second sections of k0 elements, τ are chosen

• 3.3: the section of m − k0 elements has one less selected than the first section of k0

elements

• 3.4: between the sections of m− k0 and m− k0 − 1 elements, λ− 1 are chosen

Similarly, the right side of the inequality consists of the number of combinations of
2m − 1 elements, such that, if we consider the elements divided up into sections of size
k0 + 1, k0 − 1,m− k0 − 1 and m− k0:

k0 + 1 k0 − 1 m− k0 − 1 m− k0

k0 + 1thelement m+ kth0 element

• 4.1: in the section of k0 + 1 elements, at least 1 and at most λ elements are chosen

• 4.2: between the sections of k0 + 1 and k0 − 1 elements, τ are chosen

• 4.3: the section of m−k0−1 elements has one less selected than the section of k0 + 1
elements

• 4.4: between the sections of m− k0 − 1 and m− k0 elements, λ− 1 are chosen

Now, consider combinations that satisfy the third set of conditions but not the fourth.
By satisfying the third set of conditions, then conditions 4.2 and 4.4 must also be satisfied.
Also, note that if condition 4.1 is not satisfied, then neither is condition 4.3. So, we need
only consider combinations that satisfy the third set of conditions but fail condition 4.3.

This can occur if either the k0 + 1th element is selected, or if the k0 + 1th element is not
selected but the m+ kth0 element is.
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λ∑
τ1=1

(
k0

τ1

)
·
(

k0 − 1

k − τ1 − 1

)
·
(
m− k0

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1

)

+
λ−1∑
τ1=1

(
k0

τ1 + 1

)
·
(

k0 − 1

k − τ1 − 1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

)
Now, consider combinations that satisfy the fourth set of conditions but not the third.

By satisfying the fourth set of conditions, then conditions 3.2 and 3.4 must also be satisfied.
Also, note that if condition 3.1 is not satisfied, then neither is condition 3.3. So, we need
only consider combinations that satisfy the fourth set of conditions but fail condition 3.3.

This can occur if either the k0 + 1th element is selected, or if the k0 + 1th element is not
selected but the m+ kth0 element is.

λ∑
τ1=1

(
k0

τ1 − 1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0

λ− τ1

)

+
λ−1∑
τ1=1

(
k0

τ1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

)
So, showing that Inequality (4.9) holds is equivalent to showing that the following

inequality holds:

λ∑
τ1=1

(
k0

τ1

)
·
(

k0 − 1

τ − τ1 − 1

)
·
(
m− k0

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1

)

+
λ−1∑
τ1=1

(
k0

τ1 + 1

)
·
(

k0 − 1

τ − τ1 − 1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

)
≥

λ∑
τ1=1

(
k0

τ1 − 1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0

λ− τ1

)

+
λ−1∑
τ1=1

(
k0

τ1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

)
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Hence, to show that Inequality (4.9) holds, it is sufficient to show that the following
two results hold:

λ∑
τ1=1

(
k0

τ1

)
·
(

k0 − 1

τ − τ1 − 1

)
·
(
m− k0

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1

)

≥
λ∑

τ1=1

(
k0

τ1 − 1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0

λ− τ1

) (4.12)

λ−1∑
τ1=1

(
k0

τ1 + 1

)
·
(

k0 − 1

τ − τ1 − 1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

)

≥
λ−1∑
τ1=1

(
k0

τ1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

) (4.13)

Overall to show that Inequality (4.7) holds, it would be sufficient to show that the
following set of inequalities hold:

λ∑
τ1=1

(
k0

τ1

)
·
(

k0 − 1

τ − τ1 − 1

)
·
(
m− k0

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1

)

≥
λ∑

τ1=1

(
k0

τ1 − 1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0

λ− τ1

)(4.12 revisited)

λ−1∑
τ1=1

(
k0

τ1 + 1

)
·
(

k0 − 1

τ − τ1 − 1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

)

≥
λ−1∑
τ1=1

(
k0

τ1

)
·
(
k0 − 1

τ − τ1

)
·
(
m− k0 − 1

τ1 − 1

)
·
(
m− k0 − 1

λ− τ1 − 1

)(4.13 revisited)
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λ∑
τ1=1

(
k0 − 1

τ1

)(
k0

τ − τ1 − 1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1

)

≥
λ∑

τ1=1

(
k0 − 1

τ − τ1 − 1

)(
k0

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

) (4.10 revisited)

λ+1∑
τ1=1

(
k0 − 1

τ1 − 1

)(
k0

τ − τ1

)(
m− k0

τ1 − 1

)(
m− k0 − 1

λ− τ1 + 1

)

≥
λ+1∑
τ1=1

(
k0 − 1

τ − τ1

)(
k0

τ1 − 1

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

) (4.11 revisited)

Next, consider Inequality (4.12). Using binomial decomposition on the
(
m−k0

x

)
terms,

we can say that to show that Inequality (4.12) holds, it is sufficient to show that the
following inequalities hold:

λ∑
τ1=1

(
k0

τ1

)(
k0 − 1

τ − τ1 − 1

)(
m− k0 − 1

τ1 − 1

)(
m− k0 − 1

λ− τ1

)

≥
λ∑

τ1=1

(
k0

τ1 − 1

)(
k0 − 1

τ − τ1

)(
m− k0 − 1

τ1 − 1

)(
m− k0 − 1

λ− τ1

) (4.14)

λ∑
τ1=2

(
k0

τ1

)(
k0 − 1

τ − τ1 − 1

)(
m− k0 − 1

τ1 − 2

)(
m− k0 − 1

λ− τ1

)

≥
λ−1∑
τ1=1

(
k0

τ1 − 1

)(
k0 − 1

τ − τ1

)(
m− k0 − 1

τ1 − 1

)(
m− k0 − 1

λ− τ1 − 1

) (4.15)

Similarly for Inequality (4.10), we can do the variable substitution τ ′1 = λ − τ1 + 1 on
the left side and then do binomial decomposition on the

(
k0

x

)
terms. Then, showing that

the following two inequalities hold is sufficient to show that Inequality (4.10) holds.
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λ∑
τ1=1

(
k0 − 1

λ− τ1 + 1

)(
k0 − 1

τ − λ+ τ1 − 3

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

)

≥
λ∑

τ1=1

(
k0 − 1

τ − τ1 − 1

)(
k0 − 1

τ1 − 1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

) (4.16)

λ∑
τ1=1

(
k0 − 1

λ− τ1 + 1

)(
k0 − 1

τ − λ+ τ1 − 2

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

)

≥
λ∑

τ1=1

(
k0 − 1

τ − τ1 − 1

)(
k0 − 1

τ1

)(
m− k0

λ− τ1

)(
m− k0 − 1

τ1 − 1

) (4.17)

For Inequality (4.11), do the variable substitution τ ′1 = λ− τ1 + 2 on the left side and
then do binomial decomposition on the

(
k0

x

)
terms. Then, showing that the following two

inequalities hold is sufficient to show that Inequality (4.11) holds.

λ+1∑
τ1=1

(
k0 − 1

λ− τ1 + 1

)(
k0 − 1

τ − λ+ τ1 − 3

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

)

≥
λ+1∑
τ1=2

(
k0 − 1

τ − τ1

)(
k0 − 1

τ1 − 2

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

) (4.18)

λ+1∑
τ1=1

(
k0 − 1

λ− τ1 + 1

)(
k0 − 1

τ − λ+ τ1 − 2

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

)

≥
λ+1∑
τ1=1

(
k0 − 1

τ − τ1

)(
k0 − 1

τ1 − 1

)(
m− k0

λ− τ1 + 1

)(
m− k0 − 1

τ1 − 1

) (4.19)

So in total, I have shown that in order to prove that Inequality (4.7) holds, it is sufficient
to show that Inequalities (4.13), (4.14), (4.15), (4.16), (4.17), (4.18) and (4.19) hold.
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Each of these inequalities has the nice property that the sum of the first and last terms
on the left is greater than the sum of the first and last terms on the right. The same can
be said of the sums of the second and second from last terms, and so on until we reach the
center. I will prove this next.

Start by considering Inequality (4.13). If we use a change of variable τ ′1 = λ − τ1 on
the left side of the inequality, then this yields the following inequality:

λ−1∑
τ1=1

(
k0

λ− τ1 + 1

)(
k0 − 1

τ − λ+ τ1 − 1

)(
m− k0 − 1

λ− τ1 − 1

)(
m− k0 − 1

τ1 − 1

)

≥
λ−1∑
τ1=1

(
k0

τ1

)(
k0 − 1

τ − τ1

)(
m− k0 − 1

λ− τ1 − 1

)(
m− k0 − 1

τ1 − 1

)
⇐⇒

λ∑
τ1=1

[(
k0

λ− τ1 + 1

)(
k0 − 1

τ − λ+ τ1 − 1

)
−
(
k0

τ1

)(
k0 − 1

τ − τ1

)](
m− k0 − 1

λ− τ1 − 1

)(
m− k0 − 1

τ1 − 1

)
≥ 0

So, this is a weighted sum of terms of the form
(

k0

λ−τ1+1

)(
k0−1

τ−λ+τ1−1

)
−
(
k0

τ1

)(
k0−1
τ−τ1

)
, with

coefficients of the form
(
m−k0−1
λ−τ1−1

)(
m−k0−1
τ1−1

)
.

Start by noting the well known property that consecutive binomial coefficient (ex.
(
(
a
0

)
,
(
a
2

)
, ...,

(
a
a

)
)) form a log concave sequence, and products of log concave sequences are

also log concave. Hence, the summation coefficients
(
m−k0−1
λ−τ1−1

)(
m−k0−1
τ1−1

)
form a log concave

sequence in τ1.

Furthermore, note that the coefficients are symmetric around τ1 = λ
2
:

(
m− k0 − 1

λ− (λ
2

+ n)− 1

)(
m− k0 − 1

(λ
2

+ n)− 1

)
=

(
m− k0 − 1

(λ
2
− n)− 1

)(
m− k0 − 1

λ− (λ
2
− n)− 1

)

Where λ
2
± n are natural numbers.

Hence, the coefficients
(
m−k0−1
λ−τ1−1

)(
m−k0−1
τ1−1

)
form a log concave sequence that is symmetric

around λ
2
, which must therefore be its maxima. Hence, the coefficients form a sequence

that is non-decreasing until λ
2
, and is non-increasing in a symmetric manner thereafter.
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Next, note that the summation term
(

k0

λ−τ1+1

)(
k0−1

τ−λ+τ1−1

)
−
(
k0

τ1

)(
k0−1
τ−τ1

)
has a symmetry

about τ1 = λ+1
2

where the expressions on one side of λ+1
2

are the negative of those on the
other. That is to say that the summation term corresponding to λ+1

2
+ n is the negative

of the one corresponding to λ+1
2
− n:

(
k0

λ− (λ+1
2

+ n) + 1

)(
k0 − 1

τ − λ+ (λ+1
2

+ n)− 1

)
−
(

k0

(λ+1
2

+ n)

)(
k0 − 1

τ − (λ+1
2

+ n)

)
=

(
k0

(λ+1
2
− n)

)(
k0 − 1

τ − (λ+1
2
− n)

)
−
(

k0

λ− (λ+1
2
− n) + 1

)(
k0 − 1

τ − λ+ (λ+1
2
− n)− 1

)
= −

[(
k0

λ− (λ+1
2
− n) + 1

)(
k0 − 1

τ − λ+ (λ+1
2
− n)− 1

)
−
(

k0

(λ+1
2
− n)

)(
k0 − 1

τ − (λ+1
2
− n)

)]

Where λ+1
2
± n are natural numbers.

Furthermore we can show that the term is non-negative for τ1 <
λ+1

2
. We therefore

have a sum where any negative term has a corresponding positive term of equal magnitude
with a coefficient that is at least as great.

Start by using the following identity, where b ≤ a:

(
a− 1

b

)
=

(a− 1)!

b! · (a− b− 1)!

=
a! · (a− b)

a · b! · (a− b)!

=
a− b
a
·
(
a

b

)
Then, we can rewrite the terms as:

(
k0

λ− τ1 + 1

)(
k0 − 1

τ − λ+ τ1 − 1

)
−
(
k0

τ1

)(
k0 − 1

τ − τ1

)
=

(
k0

λ− τ1 + 1

)(
k0

τ − λ+ τ1 − 1

)
k0 − τ + λ− τ1 + 1

k0

−
(
k0

τ1

)(
k0

τ − τ1

)
k0 − τ + τ1

k0
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Then, note that whenever τ1 ≤ λ+1
2

, the fraction in the first term will be at least as
great as that in the second:

k0 − τ + λ− τ1 + 1 ≥ k0 − τ + τ1

⇐⇒
λ+ 1

2
≥ τ1

Next, I show that if τ1 ≤ λ+1
2

, then
(

k0

λ−τ1+1

)(
k0

τ−λ+τ1−1

)
≥
(
k0

τ1

)(
k0

τ−τ1

)
.

By the result from Sagan’s paper [33], we have that
(
n
j

)(
n
l

)
≤
(
n
j+1

)(
n
l−1

)
for 0 ≤ j < l ≤

n. By applying this recursively, we get that
(
n
j

)(
n
l

)
≤
(
n
j+x

)(
n
l−x

)
with x ≥ 0 and j + x ≤ l.

If it holds that τ1 + (τ − λ− 1) ≤ τ − τ1, then we can use this result with n = k0, j =
τ1, l = τ − τ1 and x = τ − λ− 1. This yields:

(
k0

τ1

)(
k0

τ − τ1

)
≤
(

k0

τ1 + (τ − λ− 1)

)(
k0

τ − τ1 − (τ − λ− 1)

)
⇐⇒(

k0

τ1

)(
k0

τ − τ1

)
≤
(

k0

λ− τ1 + 1

)(
k0

τ − λ+ τ1 − 1

)
However, the condition τ1 + (τ − λ− 1) ≤ τ − τ1 is equivalent to τ1 ≤ λ+1

2
.

Hence, whenever τ1 ≤ λ+1
2

, then the summation term must be non-negative.

Finally, note that since τ1 is summed from 1 to λ, λ+1
2

is the midpoint of the sum-
mation. As such, in inequality (4.13), every negative term in the summation will have a
corresponding positive term with weight greater than or equal to its weight.

Inequalities (4.14), (4.15), (4.16), (4.17), (4.18) and (4.19) are proven using the exact
same technique.

Hence, I have shown that Inequality 4.3 holds whenever 1 > τ − k0.

For the case that 1 < τ − k0, the exact same approach and techniques are used. Again,
we use the combinatorial meaning of the inequality to find terms that are on one side but
not the other. We then use binomial decomposition, and end up with a set of sufficient
inequalities that all hold over pairs of symmetric points.
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The final case is where 1 = τ − k0. In this case, Inequality (4.3) becomes:

τ−1∑
τ1=1

(
k0

τ1

)(
k0

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0

λ1

)(
m− k0

λ− λ1

)
(4.20)

≥
τ−2∑
τ1=1

(
k0 − 1

τ1

)(
k0 + 1

τ − τ1

) min(τ1−1,λ)∑
λ1=max(0,λ−τ+τ1+1)

(
m− k0 + 1

λ1

)(
m− k0 − 1

λ− λ1

)

This inequality is easy to verify, since the left side is equal to the left side in Inequality
(4.7), and the right side is less than the right side in Inequality (4.7).

Hence, since we already know that Inequality (4.7) holds, Inequality (4.3) also holds.

4.6 Conjecture on Minimum and Results

Throughout the work detailed in this Chapter so far, we have been examining Equation
(4.2), which is the probability of selecting a sample that yields a classifier within ε of
the optimal classifier, given the optimal parameterization of the underlying distribution.
I showed how this function is mostly continuous, with surfaces of discontinuity over the
parameter space [0, 1]3. Furthermore, I proved that the minimum of this function must be
achieved on either one of those surfaces of discontinuity, or on the boundary of the cube.

Beyond this, I have done some work towards showing where, precisely, on the disconti-
nuity surfaces or the boundary surfaces such minima could occur. Because the proofs are
not yet complete I have not included them here. However, I have strong reasons to believe
that the minimum must be achieved at one of a finite list of points. Hence, we know that
the underlying distribution with the lowest probability of selecting a sample that yields an
adequately accurate classifier must have one of several optimal model parameterizations.

Then, for a given m, by simply assessing the probability of choosing a good sample as
defined in Equation (4.2) at each of these candidate minima, we can find the minimum
probability of generating a sufficiently accurate classifier using a sample of size m. We
can then be certain that, regardless of what the actual underlying distribution is, the
probability of choosing a sample that yields a satisfactory classifier is at least as high as it
is at the minimum. Finally, we can iteratively increase m until the probability of selecting
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a sufficiently accurate classifier is at least 1 − δ at each of the candidate minima. We
will then have found the smallest possible integer m that provides confidence above our
threshold 1− δ that we will meet our accuracy target.

Due to the symmetry of the objective function (4.2), as described earlier in this Chapter,
we can restrict ourselves only to Regions A and B, since Regions C and D will achieve the
same minimum. Then, I believe the minimum of Equation (4.2) will be achieved at one of
the points identified in Conjecture 1.

Conjecture 1. Suppose we create a näıve Bayes classifier using an i.i.d. sample of m
observations from the distribution D and ERM with misclassification loss. Furthermore,
suppose that we would like our classifier to have misclassification error over D that is within
ε of that of the optimal näıve Bayes classifier for D, for some small threshold ε > 0. Then,
the distribution D that is least likely to yield a sample that will generate a model that meets
our accuracy target will have an optimal näıve Bayes parameterization (θ∗, φ∗0, φ

∗
1) from the

following list:

• (1
2
− 2ε, 1

2
, 1

2
)

• (1
2
− ε, 1

2
, 1

2
)

• (1
2
− 2

3
ε, 1

2
, 1

2
)

• (1
2
, 1

2
+ 2ε, 1

2
− 2ε)

• (1
2
, 1

2
+ ε, 1

2
− ε)

• (1
2
, 4ε, 0)

• (1
2
− 2ε, 0, 4ε

1+4ε
)

• (2ε, 1, 0)

• (1− 2ε, 1, 0)

• (0, 0, 2ε)

• (0, 0, 1− 2ε)

I’ve also done an investigation into what the implications of this result will be, once I
can fully validate the conjecture. These results give us a concrete way to measure what
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sample size is needed to reach a desired accuracy threshold with the desired confidence.
Or, alternatively, it could tell us, if we know that we have a specific number of observations
in our training set, what is the probability that we will reach our desired accuracy.

Start by assuming that we have a fixed sample size m and a parameter ε > 0 that
represents how much misclassification in addition to that of the optimal classifier that we
are willing to tolerate. Then, determine the minimum probability that we will achieve this
accuracy, over the space of distributions. This is done by evaluating Equation (4.2) over
the list of points in Conjecture 1, and finding the minimum. Then, we will know that no
matter what the underlying distribution actually is, the probability of selecting a sample
that yields a sufficiently accurate classifier is at least as great as the minimum we found.

Table 4.1 uses ε = 0.05, and shows, for different sample sizes m, the probability of
selecting a model with misclassification error within ε of the optimal näıve Bayes classi-
fier. It shows this probability at each of the candidate minima, and from those finds the
minimum. This minimum is the overall guaranteed probability that we have of obtaining
a sufficiently accurate classifier. It could also be thought of as the minimum value that δ
can take before m is too small to guarantee that our learned classifier is within ε of optimal
with probability 1− δ.

Table 4.1: Probability of generating classifier within 0.05 of optimal by sample size for
candidate minima parameterizations of the optimal distribution

Point: (θ∗, φ∗0, φ
∗
1) m = 10 m = 50 m = 100 m = 200

(1
2
− 2ε, 1

2
, 1

2
) 0.52 0.75 0.87 0.96

(1
2
− ε, 1

2
, 1

2
) 0.80 0.86 0.92 0.96

(1
2
− 2

3
ε, 1

2
, 1

2
) 0.84 0.85 0.89 0.93

(1
2
, 1

2
+ 2ε, 1

2
− 2ε) 0.52 0.75 0.87 0.96

(1
2
, 1

2
+ ε, 1

2
− ε) 0.80 0.89 0.94 0.97

(1
2
, 4ε, 0) 0.62 0.79 0.87 0.94

(1
2
− 2ε, 0, 4ε

1+4ε
) 0.62 0.79 0.87 0.94

(2ε, 1, 0) 1.0 1.0 1.0 1.0
(1− 2ε, 1, 0) 1.0 1.0 1.0 1.0
(0, 0, 2ε) 1.0 1.0 1.0 1.0
(0, 0, 1− 2ε) 1.0 1.0 1.0 1.0
MINIMUM 0.52 0.75 0.87 0.93

So, if we have only 10 observations, then regardless of the underlying distribution, we
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know that the probability that the sample chosen will yield a classifier with misclassification
error within 0.05 of the optimal classifier is at least 52%. If the sample size jumps to 200
observations, then we know that with probability at least 92%, we will reach our accuracy
target.

Hence, as shown in Table 4.1, for a given sample size, we can find the probability of
choosing a sample that yields our desired accuracy at each point. One interesting point
to note is that based on my empirical results, it seems that there are some points that
usually yield lower confidence of high accuracy than others. For example, the last four
points all seem to generate sufficiently accurate classifiers with near certain probability
for all of the sample sizes that I tested. This is because these are the near-deterministic
cases, when each feature is perfectly correlated to the class. So, as long as our sample
contains observations from each class, we are guaranteed to find the optimal classifier, and
this will happen with near-certain probability unless the sample is very very small (<10
observations). So, though it is possible in certain cases that these points could be the true
minimum, in practice they can safely be ignored unless the sample is tiny.

We can also use this result to determine what is the minimum sample size needed to
guarantee that we meet our accuracy and confidence thresholds. Note that an upper bound
on this sample complexity can also be calculated using the Theorem of PAC Learning of
Finite Hypothesis Classes, which shows that m ≤ d2log(2|H|/δ)

ε2
e. In Table 4.2, for selected

values of δ and ε, I show the exact number of observations needed as calculated using the
candidate minima and the upper bound as calculated using the Theorem from learning
theory. This table also shows what percent my exact value is of the upper bound. It will
be presented as: exact sample complexity/learning theory bound on sample complexity
(exact as % of bound).

Table 4.2: Exact sample complexity/learning theory bound (exact as % of bound) for
selected ε and δ values

ε = 0.10 ε = 0.05 ε = 0.02
δ = 0.10 27/381 (7%) 137/1,523 (9%) 867/9,515 (9%)
δ = 0.05 69/441 (16%) 303/1,763 (17%) 1,813/11,021 (16%)
δ = 0.01 195/581 (34%) 809/2,323 (35%) 4,693/14,515 (32%)

The results in Table 4.2 show that indeed, the learning theory results, which are known
to be loose upper bounds, can in fact be significantly higher than the precise amount of data
needed based on Conjecture 1. It would be interesting to see, if I am able to generalize my
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result to multiple features, whether the difference would be so significant once the model
becomes somewhat more complex.

Also, based on empirical tests, the precise sample complexity becomes larger as a per-
cent of the learning theory bound as the confidence parameter δ becomes more restrictive.

Though these results are based on a conjecture, they show that there is promise in
pursuing exact sample complexity bounds for specific models, since they can yield great
reductions from the known loose upper bounds. As this is a conjecture, my results are
not complete, and it is possible that this list is non-exhaustive. Nonetheless, there is
sound reasoning behind it, and I hope to prove its validity in upcoming work, as well as
extend this result to include more features and other models, though this would involve
reformulating the approach to the problem.
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Chapter 5

Conclusion

This thesis provides insights into the näıve Bayes classifier. I proved some important results
related to the optima of the likelihood in the case of unsupervised learning, and outlined
a framework to determine exactly how many observations are required to learn a near-
optimal classifier with high probability using maximum likelihood in the case of supervised
learning.

Chapter 3 provides the first characterization of the stationary points of the likelihood
function of the näıve Bayes model in unsupervised learning. I showed that global optimality
is generally attained for problems with up to three features unless special conditions are
met. These conditions can be used in practice to detect whether maximum likelihood
techniques such as gradient ascent and expectation maximization could be stuck in a
spurious local optimum. I also showed that for settings with any number of features, all
the stationary points in the interior of the parameter space possess marginal distributions
that match the empirical marginals of the training data. Hence, even if a stationary point
is not globally optimal, it still has some nice structure.

This work can be extended in several directions. First of all would be to incorporate
cases where the parameters may be 0 or 1, and thus local optima may not be stationary
with respect to every parameter. It would also be interesting to apply this comprehensive
characterization of stationary points to more than three features. The challenge is that
first-order conditions lead to polynomial equations with an increasing degree. Nonetheless,
I have performed over 200 experiments by randomly generating distributions with 4-10
features, and using gradient ascent to maximize the likelihood. All of this experimentation
supports my conjecture that the characterization described in Theorem 3 should extend to
any number of features.
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Another important direction for investigation is the quantification of suboptimality of
spurious local optima. While we have so far been concerned only with the näıve Bayes
model, I hope to extend the characterization of stationary points to arbitrary Bayesian
networks with latent variables.

Chapter 4 introduces an algorithm to determine exactly how many observations are
needed to ensure with high probability that a classifier that is close to optimal is chosen.
Though many previous results give loose bounds on sample complexity, or describe its
order with respect to the VC dimension and accuracy and confidence thresholds, this is
the first proposal of a method to determine the exact number of points needed using a
specific model and algorithm. I also showed that the probability of selecting a sample that
yields a sufficiently accurate classifier is monotonic or log concave with respect to one of
the model parameters. Hence, I showed that the distributions that are most likely to yield
samples that don’t meet our accuracy threshold must be on the border of the parameter
space or one of the surfaces of discontinuity.

There are several natural continuations for this work. First of all, I would like to fill in
several gaps in the proof, so that I can validate the list of points in Conjecture 1. Once this
is complete, I would like to do a thorough study of different sample complexity bounds,
and compare the exact bound obtained using our method with the loose bounds obtained
through learning theory.

Another significant line of study is to see how this result could be extended to include
more features, and eventually to other Bayesian networks. However, due to the structure
of the argument made, this would require a fundamental reformulation of the problem.

76



References
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Appendix A

Additional Proofs by Collaborators

These two proofs were completed by my collaborator George Trimponias at Huawei.

Theorem 5. In the consolidated continuous area of Region A, the objective function (4.2)
is monotonic decreasing w.r.t. θ∗. That is to say, the probability of choosing a sample that
yields a classifier that is accurate within ε of optimal is monotonic decreasing w.r.t. θ∗.
Under the same conditions in Region D, (4.2) is monotonic increasing w.r.t. θ∗.

Proof. Assume we are in the consolidated continuous area of Region A. By symmetry, if
the result holds in Region A, it will hold in Region D.

Assume first that we are in a continuous area where θ∗ is such that the only subcase
satisfying err < ε is subcase 1, where k00 < k10, k01 < k11 and err = 0. The proof follows
the exact same logic for any of the consolidated continuous areas.

Then we have:

P (err < ε) =

m∑
k0=0

k0∑
k00=0

m−k0∑
k10=0

P (k0|m, θ∗)P (k00|k0, φ
∗
0)P (k10|m− k0, φ

∗
1)I(k00 < k10 ∧ k01 < k11)

Hence, we are finding the probability of choosing a sample with k00 < k10 ∧ k01 < k11.
Note that θ∗ denotes the probability of C = 0 in the underlying distribution. As θ∗ gets
smaller, then the probability of having C = 0 in our sample will become smaller. So, k00
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and k01 will tend to become smaller in most samples. Since we know that there are m total
observations, then by elimination, k10 and k11 will tend to become larger in most samples.
Hence, as θ∗ gets smaller, P (k00 < k10 ∧ k01 < k11) will become larger.

Therefore, in the consolidated continuous area of Region A, the objective function (4.2)
is monotonic decreasing w.r.t. θ∗.

Theorem 6. In the consolidated continuous area of Region B, the objective function (4.2)
is monotonic increasing w.r.t. φ∗0 and monotonic decreasing w.r.t. φ∗1. That is to say, the
probability of choosing a sample that yields a classifier that is accurate within ε of optimal
is monotonic increasing w.r.t. φ∗0 and monotonic decreasing w.r.t. φ∗1. Under the same
conditions in Region C, (4.2) is monotonic decreasing w.r.t. φ∗0 and monotonic increasing
w.r.t. φ∗1.

Proof. Assume we are in the consolidated continuous area of Region B. By symmetry, if
the result holds in Region B, it will hold in Region C.

Assume first that we are in a continuous area where θ∗ is such that the only subcase
satisfying err < ε is subcase 3, where k00 > k10, k01 < k11 and err = 0. The proof follows
the exact same logic for any of the consolidated continuous areas.

Then we have:

P (err < ε) =

m∑
k0=0

k0∑
k00=0

m−k0∑
k10=0

P (k0|m, θ∗)P (k00|k0, φ
∗
0)P (k10|m− k0, φ

∗
1)I(k00 > k10 ∧ k01 < k11)

Hence, we are finding the probability of choosing a sample with k00 > k10 ∧ k01 < k11.
Note that φ∗0 denotes P (F = 0|C = 0) in the underlying distribution. As φ∗0 gets larger,
then the probability of having F = 0, C = 0 in our sample will become larger. So, k00 will
tend to become larger in most samples. Since this means that 1 − φ∗0 is getting smaller,
we will similarly have that P (F = 1|C = 0) will become smaller. Hence, k01 will tend to
become smaller in most samples. Therefore, as φ∗0 gets larger, P (k00 > k10∧k01 < k11) will
become larger.

Similarly, φ∗1 denotes P (F = 0|C = 1) in the underlying distribution. As φ∗1 gets
smaller, then the probability of having F = 0, C = 1 in our sample will become smaller.
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So, k10 will tend to become smaller in most samples. Since this means that 1−φ∗1 is getting
larger, we will similarly have that P (F = 1|C = 1) will become larger. Hence, k11 will tend
to become larger in most samples. Therefore, as φ∗1 gets smaller, P (k00 > k10 ∧ k01 < k11)
will become larger.

Therefore, in the consolidated continuous area of Region B, the objective function (4.2)
is monotonic increasing w.r.t. φ∗0 and monotonic decreasing w.r.t. φ∗1.
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