
Quantum Cost Models for
Cryptanalysis of Isogenies

by

Samuel Jaques

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2019

c© Samuel Jaques 2019

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

I am the sole author of Chapters 1 and 5. Chapter 2 is partly based on “Surface codes:
Towards practical large-scale quantum computation” by A.G. Fowler, M. Mariantoni, J.M.
Martinis, and A.N. Clelaland. Chapters 2, 6, and 7 contain material from “Quantum
Cryptanalysis in the RAM model: Claw finding attacks on SIKE”, co-authored by myself
and J. Schanck. Chapter 3 is based on “Search via quantum walk” by F. Magniez, A.
Nayak, J. Roland, and M. Santha. Chapters 4 and 6 use methods from “Efficient dis-
tributed quantum computing” by R. Beals, S. Brierley, O. Gray, A.W. Harrow, S. Kutin,
N. Linden, D. Shepherd, and M. Stather.

iii

Abstract

Isogeny-based cryptography uses keys large enough to resist a far-future attack from
Tani’s algorithm, a quantum random walk on Johnson graphs. The key size is based on an
analysis in the query model. Queries do not reflect the full cost of an algorithm, and this
thesis considers other cost models. These models fit in a memory peripheral framework,
which focuses on the classical control costs of a quantum computer. Rather than queries,
we use the costs of individual gates, error correction, and latency. Primarily, these costs
make quantum memory access expensive and thus Tani’s memory-intensive algorithm is
no longer the best attack against isogeny-based cryptography. A classical algorithm due to
van Oorschot and Wiener can be faster and cheaper, depending on the model used and the
availability of time and hardware. This means that isogeny-based cryptography is more
secure than previously thought.

iv

Acknowledgements

I would like to thank my supervisors, Alfred Menezes and Michele Mosca, for their
advice and help throughout this project, my master’s program, and beyond.

I give particular thanks to John Schanck, for many discussions and explanations and
for a lot of the philosophy behind this thesis.

For helping me understand random walks, I thank Aswhin Nayak. Thank you to all of
the other students who made my time more fun, interesting, and educational, and thank
you to all of the staff in the Combinatorics and Optimization department and the Institute
for Quantum Computing.

Special thanks to my partner Tiffany Cassidy for supporting me during my education.

v

Table of Contents

List of Figures xi

List of Tables xiii

List of Costs xiv

Introduction 1

Outline . 3

1 Quantum Computing Background 6

1.1 Notation and Basic Concepts . 6

1.1.1 Classical Computing . 6

1.1.2 Quantum States . 8

1.1.3 Operations . 9

1.1.4 Computing . 11

1.2 Basic Techniques . 16

1.2.1 Uncomputing Ancillae . 16

1.2.2 Arbitrary Qubit Rotations . 18

1.2.3 Superpositions of Arbitrary Lists 18

1.2.4 Probabilistic Algorithms . 19

1.3 Difficulties . 21

vi

1.3.1 Reversibility . 21

1.3.2 No-Cloning Theorem . 22

1.3.3 Entanglement . 23

1.4 Error Correction . 24

1.4.1 Quantum Channels . 24

1.4.2 Fidelity . 25

1.4.3 Error Complexity . 26

1.4.4 Error Rates . 26

1.4.5 Logical Operators . 27

1.4.6 Passive versus Active Correction . 28

1.4.7 Syndrome Measurement . 29

2 Quantum Computational Models 30

2.1 Surface Codes . 31

2.2 Peripheral Models . 34

2.2.1 Description . 34

2.2.2 Control Costs . 36

2.2.3 Advantages . 37

2.3 Architectural Features . 39

2.3.1 Error Correction . 39

2.3.2 Computational Qubits . 41

2.3.3 QRAM . 41

2.3.4 Locality . 43

2.3.5 Latency . 44

2.4 Models . 45

2.4.1 Passively-Corrected Clifford+T Circuit 45

2.4.2 Actively-Corrected Clifford+T Circuit 45

2.4.3 Passively-Corrected Circuit with Latency 45

2.4.4 Actively-Corrected Circuit with Locality 46

2.4.5 QRAM with Latency . 46

vii

3 Quantum Walks 47

3.1 Grover’s Algorithm . 47

3.1.1 Reflections about the Average . 49

3.1.2 Rotations . 50

3.1.3 Important Points . 53

3.2 Classical Random Walks . 54

3.2.1 Random Walks as Search . 55

3.2.2 Greedy Random Walk . 58

3.3 Quantum Random Walks . 59

3.3.1 Szegedy’s Algorithm . 62

3.3.2 MNRS Algorithm . 63

3.3.3 Grover vs. Other Random Walks 67

4 Quantum Data 69

4.1 Quantum Memory Access . 70

4.1.1 Fanout Memory . 70

4.1.2 Sorting Network Memory Access 73

4.2 Quantum Data Structures . 76

4.2.1 Quantum Radix Trees . 79

4.2.2 Sliding Sorted Arrays . 85

4.3 Johnson Graphs . 91

4.3.1 Symmetric Differences . 91

4.3.2 Self loops . 93

4.3.3 Set-up . 95

5 Isogenies 97

5.1 Isogeny-based Cryptography . 97

5.1.1 Supersingular Isogeny-based Diffie-Hellman 98

viii

5.1.2 SIKE . 99

5.2 Attacks . 100

5.2.1 Naive Attack . 100

5.2.2 Meet in the Middle . 100

5.3 Isogeny Computations . 102

5.3.1 Quantum Estimates . 102

5.3.2 Classical Estimates . 103

6 Claw Finding 104

6.1 The Claw Finding Problem . 105

6.2 Meet in the Middle . 108

6.3 van Oorschot–Wiener . 110

6.3.1 Analysis . 112

6.3.2 Application to SIDH . 115

6.4 Grover’s Algorithm . 116

6.5 Tani’s Algorithm . 118

6.5.1 Basic Costs . 118

6.5.2 Analysis . 121

6.5.3 Parallelization . 124

6.6 Multi-Grover Search . 127

6.7 Comparisons . 129

6.7.1 Tani vs. Grover . 129

6.7.2 Tani vs. Multi-Grover . 130

6.7.3 Quantum vs. Classical . 132

7 Security of SIKE and SIDH 136

7.1 Isogeny-specific Attacks . 137

7.1.1 Ordinary Isogenies . 137

ix

7.1.2 Supersingular Isogenies . 137

7.2 Security Definitions . 139

7.2.1 Cost Parameters . 139

7.2.2 NIST’s Approach . 140

7.2.3 NIST Category Explanations . 141

7.2.4 Reductions for SIKE . 142

7.3 SIKE Security Tables . 142

7.3.1 Previous Analyses . 144

7.3.2 Discussion . 145

Conclusions and Open Problems 146

References 148

APPENDICES 153

A Analyses of Tani’s Algorithm 154

B Security Tables 157

x

List of Figures

1 Optimal Claw-finding Algorithms . 4

1.1 Example quantum circuit . 11

1.2 Example classical circuit . 12

1.3 NAND simulation with Toffolis . 14

1.4 Quantum “Staircase” . 27

2.1 Surface code . 33

2.2 Classical passsively-corrected memory . 39

3.1 Grover’s Algorithm . 48

3.2 Diffusion Operator . 49

3.3 Grover’s algorithm as average reflections 51

3.4 Grover’s algorithm as rotations . 52

3.5 Grover search projections . 53

3.6 Exponential growth for Grover’s algorithm 54

3.7 Analogies between classical and quantum random walks 59

3.8 Phase estimation circuit . 64

4.1 Fanout Circuit . 70

4.2 Fanout memory access . 72

4.3 Sorting Network Memory Access . 75

xi

4.4 Radix tree example . 79

4.5 Radix Tree Insertion . 82

4.6 Sliding Sorted Array Insertion . 87

4.7 Sliding Sorted Array Search . 89

4.8 Zig-zag array layout . 91

4.9 Naive array fanout . 92

5.1 SIKE Isogeny Graph . 101

5.2 SIKE Meet in the Middle . 102

6.1 Function graph for VW . 113

6.2 VW vs. Meet-in-the-Middle . 116

6.3 Graph Product . 119

6.4 Costs of Tani’s algorithm . 122

6.5 Multi-Grover costs . 129

6.6 Tani vs. Grover . 130

6.7 Tani vs. Multi-Grover . 131

6.8 Classical vs. Quantum . 133

7.1 BJS Algorithm . 138

xii

List of Tables

7.1 NIST Category Gate Counts . 141

7.2 SIKE Security Levels . 143

7.3 Security Recommendations . 144

xiii

List of Costs

4.1 Fanout circuit . 71

4.2 Fanout memory access . 73

4.3 Sorting . 76

4.4 Quantum radix tree insertion . 83

4.5 Quantum radix tree initialization – Knuth 84

4.6 Insertion into a sliding sorted array . 87

4.7 Augmented Sliding Sorted Array Insertion 90

4.8 Johnson graph set-up circuit . 96

5.1 Quantum Isogeny Computation . 103

6.1 Classical meet-in-the-middle . 110

6.2 VW Collision Finding . 115

6.3 VW Golden Collision Finding . 115

6.4 VW vs Meet-in-the-Middle . 116

6.5 Grover’s Algorithm for Claw-Finding . 117

6.6 Tani’s Algorithm Set-up . 120

6.7 Tani’s algorithm update . 121

6.8 Tani’s algorithm . 123

6.9 Tani’s algorithm in parallel . 124

6.10 Multi-Grover Claw Finding . 128

xiv

Introduction

Asymmetric cryptography was invented in the 1970s, and quantum computing was envi-
sioned in the 1980s. In the 1990s, these two fields collided with Shor’s algorithm — a
fast quantum algorithm to factor integers. This work put an expiry date on the current
methods of asymmetric cryptography. At some point we will need to switch to new meth-
ods, though we still don’t know when. Anticipating a long transition, the United States’
National Institute of Standards and Technology (NIST) began a process of standardizing
alternative, “post-quantum” approaches to asymmetric cryptography that will withstand
attacks from quantum computers. In the first round of submissions, they received 82 pro-
posals. Each proposal was either much slower than previous asymmetric cryptography,
or used much larger keys, or both. Everyone who needs secure communication now faces
a choice: keep the old methods and risk a quantum attack (potentially decades in the
future), or switch to the new methods and suffer substantial performance loss.

Part of the reason for the loss in performance is that the new methods must be secure
against both classical and quantum attacks. For almost every submission to NIST, the
“best” attack is quantum. Hence, each system needs to use keys large enough that even a far
future quantum computer will be unable to break it. This raises the bar for cryptanalysis:
Cryptographers need to analyze the difficulty of breaking a system with a type of computer
that does not exist yet.

Luckily for cryptographers, quantum algorithm analysis is a thriving research area.
We have well-studied models of the capabilities of quantum computers, several families of
quantum algorithms, and many results in complexity theory relating classical algorithm
complexity to quantum algorithm complexity. A basic result in this field is that quantum
computers are “more powerful” than classical computers. This means that any classical al-
gorithm can be converted to a quantum algorithm with only a constant overhead, but many
experts believe there are quantum algorithms that a classical computer cannot efficiently
simulate.

Many quantum algorithm analysts seem to take this result as carte blanche to use

1

any classical algorithm they want, at any point they want, in any quantum circuit they
want. This will not be possible. First, the conversion from a classical algorithm to a
quantum algorithm often produces many so-called “ancilla” qubits. These are extra pieces
of data that are essentially “garbage” but which cannot be removed without ruining the
computation. Many quantum algorithms rely on different computations interfering with
each other, but ancilla qubits can prevent this interference.

Second, interference in a quantum algorithm is a very physical phenomenon. Any data
must have a unique representation for interference to occur reliably. For example, there
will be interference between two linked lists containing the same data but with elements
at different memory addresses. Classical computers do not often worry about this issue,
and hence not every classical algorithm will work as part of a quantum algorithm.

These issues will come up again and again in this thesis, and show that many quantum
algorithms do not work as advertised. Further, all of the analyses require a theoretical
model of a quantum computer, and the model itself may be insufficient.

First, the most common model of quantum costs is the query model. Here, we have some
specific circuit called an oracle, treated as a “black box”, which performs some quantum
circuit. We build an algorithm that uses this oracle and we count how many times we
needed to perform the oracle circuit. We must interpret query complexity with care, as
it excludes costs that may be critical in certain applications. For some algorithms, the
query complexity is almost exactly the same as any other cost. For other algorithms, the
difference is enormous.

Even slightly more realistic models seem to just be based on a classical computer that
has extra quantum capabilities. Classical computers have a very particular architecture,
with a CPU performing sequential instructions and with access to a large array of random
access memory. With today’s technology there is no reason to expect quantum computers
to follow the same path, and in fact the quantum technology we do have suggests that they
will behave very differently. In particular, a major difference is that quantum computers
might not have physical “gates” printed onto chips like classical computers do, but that
gates (AND, OR, etc.) will remain processes that are applied to quantum data. This is a
subtle distinction but would have drastic implications for quantum random access memory.

Finally, quantum computers are noisy. This is why we do not have quantum computers
today. Early classical computers were noisy too, but the errors in a quantum computer are
fundamentally different and fundamentally more complicated. To protect against noise,
either an external process must intervene and repeatedly correct errors, or the system
must be cold enough that the noise is small enough not to cause problems. A classical
hard drive can use a two-dimensional magnetic disk to store memory and it will retain

2

that data for a long time without external intervention, even at room temperature. For
quantum systems, all known methods to encode data in an analogous way in two dimensions
require impossibly low temperatures, and many possible approaches are proven to have the
same issue [17, §4]. Thus, quantum data storage will likely need a continuous, costly error
correction process.

In short, post-quantum cryptography has created a clash of realism. Cryptographers are
comparing schemes on the scale of microseconds, where the fastest algorithm can depend
on just a few bits of keys. On the other hand, they are choosing keys based on quantum
algorithm complexity, a field based on more abstract and long-term thinking.

Considering how much classical computing technology changed since its creation, quan-
tum algorithm analysts have good reason to postpone analyses of specific architectures.
Especially in the realm of decades-long cryptography, we don’t want to be surprised by a
radical breakthrough in 30 years. However, we know enough now about quantum comput-
ers that we can start to narrow down the possibilities, and draw reasonable – though not
iron-clad – conclusions about the costs of quantum algorithms.

This thesis will show what such an analysis might look like. Adding only a few extra
assumptions about quantum computing ends up radically changing the costs of several
algorithms. For SIKE, a particular post-quantum asymmetric protocol, we show that we
can retain the same security but reduce key sizes by 42%, just by taking a closer look at
the quantum attacks used to estimate security. Figure 1 shows the conclusions for SIKE,
showing that under many assumptions of constraints and architecture, classical algorithms
are the best option. There are almost certainly other post-quantum protocols which are
more secure than current estimates suggest, for very similar reasons.

Outline

Chapter 1 introduces the notation and basic concepts of quantum computing, highlighting
some of the problems mentioned above.

In Chapter 2, we define the memory peripheral model of quantum computers. This
model emphasizes that quantum gates are processes that are enacted on data, rather
than objects that data passes through. This further highlights the costs of the classical
computation to control these gates. The formal definition gives a broad framework that
can accomodate many different physical assumptions. We choose five models within this
framework, based on whether error correction is “passive” or “active”, whether the model

3

Very limited hardware?

Quantum
Tani’s Algorithm

Cost: Õ(p1/4)

Latency negligible?

No
Yes

Passively-corrected
memory?

No

Classical
van Oorschot-Wiener
Cost: Õ(p3/4P−1/2)

Limiting factor:
time or hardware

N
o

Y
es

Quantum
Multi-Grover
Cost: Õ(p1/4)

Time Hardware

Y
es

Figure 1: Cost-optimal algorithms to attack SIKE under different constraints and assump-
tions for. Costs are given in terms of p, a prime used as a parameter for SIKE (typically
between 400 to 900 bits) and P , the number of parallel processors. Chapter 6 gives the
full analysis, including the units of cost.

4

accounts for the physical geometry of the computer, and whether we assume cheap quantum
random access memory.

We then explain the algorithms that we will analyze using these computational mod-
els. Chapter 3 introduces search algorithms based on quantum random walks, including
Grover’s algorithm and the Magniez-Roland-Santha-Nayak framework. The goal is to mo-
tivate quantum random walks with analogies to classical random walks, and describe the
main steps of the algorithms without proving correctness.

Chapter 4 gives different methods for quantum data structures and memory access.
Most quantum random walk applications use Johnson graphs, a type of graph where ver-
tices are sets. Hence, they need efficient, history-independent data structures. Basic oper-
ations on these data structures end up surprisingly expensive compared to their classical
analogues. This chapter shows that adapting basic data structures to the strengths and
weaknesses of a quantum computer is underexplored and the optimal approaches barely
resemble classical methods.

The focus is protocols based on supersingular isogenies, and we give a basic description
of isogeny-based cryptography in Chapter 5. This frames the schemes in a way where
attacks can be viewed as a claw finding problem. We also give estimates for classical and
quantum costs to compute an isogeny.

Since claw-finding can break isogeny-based cryptography, we analyze the classical and
quantum algorithms in Chapter 6. Specifically, we compare Grover, Tani, Multi-Grover,
meet-in-the-middle, and van Oorschot-Wiener. Accounting for the costs given in the pre-
vious chapters, all the algorithms have the same exponential relationship between the
total cost and the problem size. However, there are substantial differences in memory
requirements and parallelism that complicate the analysis. We conclude that the optimal
algorithm and the cost to run it will depend on the computational model and the budget
of memory, processors, and time. In most parameterizations, the quantum Multi-Grover
algorithm has the lowest cost, but accounting for physical geometry adds significant costs
that favour the classical van Oorschot-Wiener algorithm.

Chapter 7 uses these cost estimates. First we argue that claw-finding is the most
effective naive attack on supersingular isogeny-based cryptography and then we analyze
NIST’s security categories. We take an approach where security is based on comparisons:
when is one system as secure as another “benchmark” system, such as AES. With this
approach we evaluate the costs of attacks on isogeny-based cryptography and conclude
that SIKE, the protocol under consideration for standardization, uses keys that are too
large. Certain applications could use keys 42% smaller at the same security level.

5

Chapter 1

Quantum Computing Background

Section 1.1 gives the basic details of quantum computing, including the notation and tech-
niques used throughout this thesis. Section 1.2 describes a few basic techniques of quantum
computing that we will implicitly use later. Section 1.3 explains some of the difficulties
quantum computers face, and how they can be “more powerful” than classical computers
but be restricted in other ways. We discuss the particular issue of error correction in Sec-
tion 1.4 and why it is fundamentally more difficult for quantum computers and why it may
be a permanent component of quantum computers.

1.1 Notation and Basic Concepts

1.1.1 Classical Computing

Assuming the reader is familiar with classical computers, this section gives an unusual
introduction of a classical computer as a vector space.

A classical binary computer contains some physical components, called bits, that exist
in one of two states, denoted 0 or 1. These could be the magnetisation of a hard disc,
the voltage in a wire, the frequency of a radio signal, etc. We can consider these as basis
vectors of a 2-dimensional Hilbert space C2, denoted ‖0〉〉 and ‖1〉〉. This means we can
define unusual things like 1

2
‖0〉〉 − 5i ‖1〉〉, although such mathematical objects have no

physical meaning.

If we have two bits, then we can represent them as a tensor product: ‖b1〉〉⊗‖b2〉〉, which
can now exist in four distinct states: 00, 01, 10, and 11. For notational convenience, we

6

write this as ‖b1〉〉 ‖b2〉〉 or even ‖b1b2〉〉, where the tensor product is implied. This means
n bits live in a vector space C2n . Our computer can still only store one of 2n different basis
vectors, each of which represents a different possible bitstring. We call these basis vectors
the “computational basis”.

On these bits, we have gates. A gate maps input bits to output bits, with the output
determined precisely by the input bits. In the vector space, this means it maps basis vectors
to basis vectors, so we can extend it linearly and turn any gate into a linear transformation.

So far the vector notation adds nothing to the analysis. However, it helps with prob-
abilitistic algorithms. Suppose we don’t have a specific bitstring in the computer, but a
probability distribution of bitstrings. We can represent this as a state

‖p〉〉 =
∑

b∈{0,1}n
p(b) ‖b〉〉 . (1.1)

Suppose we have a gate G, represented as a linear transformation. Then we have

G ‖p〉〉 =
∑

b∈{0,1}n
p(b)G ‖b〉〉 . (1.2)

In other words, if we had probability p(b) of bitstring b, then after applying G, we still
have probability p(b) of the output bitstring when G is applied to b, as we should.

Further, we could define a probabilistic gate by defining the output to be a convex
combination of basis states. This implies that a gate must be column-stochastic.

Hence, we can capture any probabilistic algorithm with the convex hull of the compu-
tational basis. Anything outside the hull is still physically unrealistic. The vector notation
means that we can use the same objects to represent any probability distribution of bit-
strings, which we can call a “state”. It’s important to remember that for a basis state like
‖01101〉〉, the “01101” is just a label for the state, and that ‖01101〉〉 represents, in some
sense, the physical system storing that data, rather than the data itself.

Example 1.1.1. Let ‖0〉〉 =

(
1
0

)
and ‖1〉〉 =

(
0
1

)
. We can represent an AND gate as the

following matrix, acting on C2 ⊗ C2:

AND =

(
1 1 1 0
0 0 0 1

)
. (1.3)

We can represent the state of a bitstring formed by flipping 2 coins as:

(1
2
‖0〉〉+ 1

2
‖1〉〉)⊗ (1

2
‖0〉〉+ 1

2
‖1〉〉) = 1

4
(‖00〉〉+ ‖01〉〉+ ‖10〉〉+ ‖11〉〉) . (1.4)

7

Applying AND to such a state will give 3
4
‖0〉〉 + 1

4
‖1〉〉. In other words, flipping two coins

and taking the “AND” of the result will give 0 with probability 3/4 and 1 with probability
1/4.

Any deterministic circuit can be generated by a single gate, NAND:

NAND =

(
0 0 0 1
1 1 1 0

)
. (1.5)

This means that for any matrix with entries in {0, 1} for which each column has precisely
one entry equal to 1, there is some arrangement of NAND gates (and possibly extra bits
initialized to 0) which will be equivalent to that matrix.

Any column-stochastic matrix will be a convex combination of such {0, 1} matrices.
Adding a single “coin-flip” gate, which sends ‖0〉〉 to 1

2
(‖0〉〉+ ‖1〉〉), we could use rejection

sampling to produce any distribution we want, and use that distribution to decide which
deterministic circuit to apply. This will create the necessary convex combination. Thus,
NAND+“coin-flip” can generate any column-stochastic matrix.

Physically, we know many ways to construct NAND gates out of transistors, and many
computers have ways to extract randomness from their environment.

1.1.2 Quantum States

In the classical case we could only physically construct states in the convex hull of the
computational basis states. For a quantum computer, instead of that convex hull, states are
limited to the surface of the unit sphere in the Hilbert space spanned by the computational
basis. This implies we can have exotic states like

1√
2

(|0〉+ i |1〉), (1.6)

which raises the important question: What is such a state? The classical states were easy
to interpret, as probability distributions of physical phenomena like combinations of voltage
levels. Quantum states still describe physical systems, but answering what a specific state
physically represents is a heated, ongoing philosophical debate.

For our purposes, we use a Hilbert space because a quantum state must be a solution
to a linear equation called Schrödinger’s equation:

i~
d

dt
|ψ〉 = Ĥ |ψ〉 . (1.7)

8

Here Ĥ is a linear operator called the Hamiltonian and ~ is Planck’s constant.

We restrict to the unit sphere because we can perform a physical process that measures
a quantum state according to an orthonormal basis. If we measure a state |ψ〉 according
to a basis {|ψ1〉 , · · · , |ψn〉}, then the probability of reading the result “i” is |〈ψi|ψ〉|2. In
other words, the squared modulus of the coefficients of a quantum state form a probability
distribution of measurement results, and hence the state must be a unit vector in the
`2-norm.

If we consider the state in Equation 1.6, measuring it in the basis {|0〉 , |1〉} gives a
result of 0 with probability 1/2 and a 1 with probability 1/2.

We can also build quantum states out of a basis besides the computational basis,
and we can construct measurements that are not defined by a particular basis. These
generalizations do not impact the quantum algorithms we analyze in this thesis, so we will
ignore them.

1.1.3 Operations

Classically, preserving the convex hull meant restricting to column-stochastic linear trans-
formations. To preserve the unit sphere, transformations must be unitary. In an analogy
to universal NAND gates for classical computing, we define the following:

Definition 1.1.1. A set G of quantum gates is universal if, for any unitary U and any
ε > 0, there is a finite set of gates G1, · · · , Gn ∈ G such that

‖U −GnGn−1 · · ·G2G1‖ < ε, (1.8)

where ‖ · ‖ is the operator norm.

There are physically realizable universal sets of quantum gates, meaning that we can
apply any unitary we wish to a quantum computer by some set of gates. However, there
are practical concerns about how many gates we will need and how difficult it is to apply
each gate.

Clifford + T Gates

The most prominent universal gate set is the Clifford+T set.

9

It contains the single-qubit Pauli gates:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1.9)

These have some important properties:

1. Each non-identity gate has order 2, is unitary, and is Hermitian (it equals its own
conjugate transpose).

2. Adding in all scalar multiples by {±1,±i}, the Pauli gates form a multiplicative
group.

3. XY = −Y X = iZ, Y Z = −ZY = iX, and ZX = −XZ = iY .

These are all single-qubit gates, but we can construct the n-qubit Pauli group by
independently acting on different qubits with Pauli gates:

Pn = {P1 ⊗ · · · ⊗ Pn |Pi is a Pauli gate for all i} . (1.10)

The Clifford group is defined as the commutator of the n-qubit Paulis. This is the
group defined as

{U unitary |UPU∗ is an n-qubit Pauli gate, for all n-qubit Pauli gates P } . (1.11)

Together with the Pauli group, the following extra gates, acting on any qubit or pairs
of qubits, generate the Clifford group:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.12)

Two things make the Clifford group special. First, it can be classically simulated in
polynomial time (the “Gottesman-Knill Theorem”). Second, even though the Cliffords are
not a universal gate set, adding any other gate to it will give a universal gate set. The
typical choice is the T-gate:

T =

(
1 0
0 eiπ/4

)
. (1.13)

Adding the T-gate to the Clifford group makes it hard to simulate classically. High-fidelity
physical methods (those with error correction, Section 1.4) for Clifford gates typically have
trouble with T gates, and vice versa.

10

1.1.4 Computing

Circuits

By initializing the quantum states as bitstrings, and receiving output as bitstrings, we hope
to perform some computation with quantum states. We describe these using quantum
circuits, which might look like Figure 1.1.

• • • • T

• • T ∗ T ∗ S

H T ∗ T T ∗ T H

Figure 1.1: A quantum circuit

The wires represent individual qubits, and the boxes represent gates. Most gates are
drawn with a box with the name of the gate in the box, like the T and H gates. CNOT

gates are drawn with a • for the first qubit, the control, and a ⊕ for the second qubit, the
target, as the box in Figure 1.1 shows.

In a quantum circuit diagram, the horizontal axis represents time, flowing from left to
right. In Figure 1.1, the first thing to happen is an H gate is applied to the third qubit,
then a CNOT to the second and third qubits, etc.

Quantum circuit diagrams deliberately resemble classical circuit diagrams such as Fig-
ure 1.2, though classical circuit diagrams are an abstraction of a 2-dimensional layout of
wires and gates. To emphasize this distinction:

• Gates in a quantum circuit diagram represent a process enacted on the data;

• Gates in a classical circuit diagram represent an object.

In a classical circuit, data exists as electrical signals that move through the gates. Thus
we often equivocate between the gate as an object and the gate as a process of signals
moving through the gate.

We could interpret the horizontal axis in Figure 1.2 as time and hence the gates as
processes. One can imagine that the circuit diagram is printed as wires and gates onto
a physical chip, and signals enter at the left and propagate through the circuit as time
progresses.

11

Figure 1.2: A classical circuit made from NAND gates

This means that, classically, we can incur a fixed cost to construct a circuit, then each
time we use the circuit we only incur some cost to propagate the signal through. Often
this cost is energy or time. As an example, random access memory requires a large number
of gates, but once these gates are built, we can use them repeatedly, quickly, and cheaply.

Promising quantum computing technologies are different. The data is stationary and
the gates are applied to it; there is no object that corresponds to a gate. In this way,
quantum data more closely resembles a magnetic hard drive, where bits are stationary
magnetized regions, and the “gates” are patterns of bit flipping performed by a moving
disk head. The memory peripheral model of quantum computers (Section 2.2) formalizes
this analogy.

The implication is that if we design a quantum algorithm that uses one subroutine
many, many times (such as memory access), we have to pay the same cost each time we
use it. Whatever each gate costs, we must “pay” this cost every time we apply the gate.

Computing Power

Since all quantum gates are unitaries, which are invertible, every quantum computation
must be reversible, so we cannot directly apply a simple classical universal gate like NAND.

12

Instead we use a TOFFOLI gate, which looks like the following:

TOFFOLI =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (1.14)

Note that:

1. On computational basis inputs, the TOFFOLI gate has no effect on the first 2 bits,
and flips the final bit if and only if the first two bits are 1. This gate is also called a
“controlled controlled NOT”, because it is a NOT gate controlled by the first two bits.

2. This is a deterministic classical gate. In fact, Figure 1.2 gives a classical circuit to
implement it.

3. This is a unitary matrix, and Figure 1.1 gives a quantum circuit to implement it with
Clifford+T. Technically that circuit also uses T ∗ gates, but T ∗ = T 7, so it could be
implemented with just Clifford+T.

Importantly, TOFFOLI is universal for reversible classical computation [1]. Any non-
reversible classical computation can be simulated with a reversible computation. To do
this, we use ancillae. An ancilla (qu)bit is a (qu)bit that stores extra information before,
during, or after a computation, and is not involved in the full computation.

For example, Figure 1.3 shows how to implement a NAND gate with a TOFFOLI gate. We
start with the first two inputs, initialize an ancilla qubit to |1〉, then use the TOFFOLI. The
ancilla becomes the output data.

The two bits of input are left over and useless, since a NAND gate does not need them,
but we cannot remove them in a reversible computation. Hence, they must remain as
ancillae.

Since a TOFFOLI gate can simulate a NAND gate, anything we can do on a non-reversible
classical computer we can do reversibly, and anything we can do reversibly we can do with
quantum data. Thus, in an abstract sense, a quantum computer is at least as powerful as
a classical computer.

13

•
•

|1〉
(a) Circuit

Input Data
001 001

011 011

101 101

111 110

(b) Truth table. “Ancillae” are in grey.

Figure 1.3: Reversibly simulating a NAND gate with a TOFFOLI gate.

Superpositions and Interference

Arguably the two most important extra capabilities of quantum computers are superposi-
tion and interference.

Looking at the H gate in Section 1.1.3, called the HADAMARD gate, its action on the
|0〉 state produces 1√

2
(|0〉 + |1〉). We call this a uniform superposition: We have both

computational basis states with an equal probability of measuring either one.

If we apply H gates to many qubits in parallel, we get the following:

(H ⊗ · · · ⊗H)(|0〉 · · · |0〉) =
1

2n/2

∑
b∈{0,1}n

|b〉 . (1.15)

Here we have every possible n-bit string in superposition, after applying only n gates. If
we have some computation represented as a unitary U , we can apply U to this state:

U
1

2n/2

∑
b∈{0,1}n

|b〉 =
1

2n/2

∑
b∈{0,1}n

U |b〉 . (1.16)

Now our state is a uniform superposition over all possible outputs. It’s almost as though we
have computed every possible input at once. This seems very powerful for search problems,
however this is still no better than a probabilistic classical algorithm.

Suppose we define a classical “Hadamard”:

Hc =
1

2

(
1 1
1 1

)
. (1.17)

14

This takes any bit as input, and outputs 0 or 1 with equal probability. If we apply this to
n bits, we get the state

1

2n

∑
b∈{0,1}n

‖b〉〉 . (1.18)

and we could apply any circuit U and get

1

2n

∑
b∈{0,1}n

U ‖b〉〉 . (1.19)

This represents a distribution where we have equal probability of every possible output of
U . Note that this is exactly the distribution we would get from measuring the state in
Equation 1.16, so there is no quantum advantage yet.

The quantum advantage is interference. Unlike probabilistic classical computations,
states can have negative coefficients. This means we can have states that cancel out.

As a very basic example, consider that

H |0〉 = 1√
2
(|0〉+ |1〉). (1.20)

If we apply H again, we can compute its action on each basis state:

H 1√
2
(|0〉+ |1〉) = 1√

2
(H |0〉+H |1〉) (1.21)

=1
2

((|0〉+ |1〉) + (|0〉 − |1〉)) . (1.22)

Looking at this final state, we see that the |1〉 states cancel, so the final output is |0〉. This
means H2 |0〉 = |0〉; in fact, H2 = I.

In an extremely rough sense, all the useful quantum algorithms create a superposition
of desirable and undesirable outputs, then they find some way to cause good outputs to
interfere constructively and bad outputs to interfere destructively.

Gate requirements

If we build complicated circuits out of a small set of universal gates, it’s natural to ask
how many gates we need to build a circuit that will perform a specific task. For instance,
how many gates do we need to sort an array of elements?

There is a specific, obvious lemma that will be useful later. It essentially says that if
you have a circuit that has the potential to alter any one of n qubits, then it uses Ω(n)
gates.

15

Lemma 1.1.1. Let U be a circuit that acts on n qubits, built from gates that act on at
most k qubits. Then either:

• U uses as least n/k gates.

• Up to some fixed permutation of the qubits, U can be written as U = U ′ ⊗ I⊗m2 for
some U ′ and m ≥ 1.

Proof. Suppose the first statement does not hold, and U uses ` < n/k gates. Each gate
acts on at most k qubits, so together the gates act on at most `k < n qubits. The action
of U on the remaining qubits must be the identity, so we can write U = U ′ ⊗ I⊗(n−`k)2 .

Lemma 1.1.1 only applies to a model like the circuit model where any gate that might
be necessary must be used. In a different model, the computer may be able to use the
input to only apply the gates needed just for that one input. A dynamic model like
this is a reasonable way to model a classical computer. For this reason, the RAM model
(Definition 2.2.4) gives only unit cost to memory access, even though Lemma 1.1.1 states
that a random memory access circuit to n bits needs n/k gates of arity k.

Should we model quantum computations in the same way? In most quantum technolo-
gies, a classical controller must apply the gates. Since the classical controller cannot read
the contents of a quantum state without modifying or destroying the state, it cannot “dy-
namically generate” a quantum circuit in the same way that it can for a classical circuit.
Methods for a quantum controller to generate a circuit rely on controlled gates, but the
issue remains if a classical controller must apply the controlled gates.

1.2 Basic Techniques

1.2.1 Uncomputing Ancillae

Suppose we have some computable function f : {0, 1}n → {0, 1}n that is not injective.
Then we cannot construct a quantum circuit Uf such that

Uf |b〉 = |f(b)〉 (1.23)

since this is not reversible. We must have some ancillary data that would, in principle,
allow us to reconstruct b from f(b). Looking at the simulation of a NAND gate in Figure 1.3,

16

the well-known method is to simply keep the input b. This means that for any classically
computable function f , we would like to construct a quantum circuit Uf such that

Uf |b〉 |0〉n = |b〉 |f(b)〉n . (1.24)

However, many times we will instead have a circuit Uf such that

Uf |b〉 |0〉n |0〉m = |b〉 |f(b)〉n |g(b)〉m . (1.25)

Here, g is a function that produces ancilla qubits. To remove them, we introduce a fourth
register of n bits, and then apply Uf as normal:

Uf (|b〉 |0〉n |0〉m |0〉n) = |b〉 |f(b)〉 |g(b)〉 |0〉n . (1.26)

Then use a CNOT from the second register to the fourth:

|b〉 |f(b)〉 |g(b)〉 |0〉n 7→ |b〉 |f(b)〉 |g(b)〉 |f(b)〉 . (1.27)

Then reverse Uf on the first three registers:

U−1f (|b〉 |f(b)〉 |g(b)〉) |f(b)〉 = |b〉 |0〉n |0〉m |f(b)〉 . (1.28)

This has an overall action of
|b〉 |0〉n 7→ |b〉 |f(b)〉 , (1.29)

and it only doubles the computation and the space that Uf requires.

We can summarize this result as:

Theorem 1.2.1. Given a classical circuit of N NAND gates to compute a function f :
{0, 1}n → {0, 1}m, we can construct a quantum circuit Uf with N + n + 2m qubits and
2N +m gates with action on computational basis states:

Uf |b〉 |0〉2m |1〉N = |b〉 |f(b)〉 |0〉m |1〉N . (1.30)

The |1〉 states are used as ancilla to create NAND out of TOFFOLI, as in Figure 1.3. The
specific overhead will change for a classical circuit that uses different gates.

17

1.2.2 Arbitrary Qubit Rotations

Many algorithms need states of the form |ψp〉 :=
√
p |0〉 +

√
1− p |1〉. To construct this

from Clifford+T gates, we use Kliuchnikov, Maslov, and Mosca’s method [38] to map

1√
2
(|0〉+ |1〉) 7→ 1√

2
(|0〉+ eiθ |1〉) (1.31)

for some angle θ. The fidelity (Section 1.4.2) of this process is exponential in a parameter
k, and the circuit uses O(k) gates.

We then apply ZT 2H to the state, which maps it to

cos
(
θ
2

)
|0〉+ sin

(
θ
2

)
|1〉 . (1.32)

We will use Gp to denote the circuit with action Gp |0〉 = |ψp〉.
The method to find the state in 1.31 follows a very general construction, and there may

be a more efficient method specific to this problem.

1.2.3 Superpositions of Arbitrary Lists

Applying n Hadamard gates to |0〉n produces the following superposition:

1

2n/2

∑
b∈{0,1}n

|b〉 . (1.33)

In many applications, we may want to produce a superposition such as

1√
N

∑
b<N

|b〉 (1.34)

where N is not a power of 2. Here b is the integer that b represents.

One approach is to use arbitrary qubit rotations. When constructing these superpo-
sitions for powers of 2, we can consider that each Hadamard gate “splits the amplitude”
in half for each bit. With arbitrary superpositions, we want to “split the amplitude”
proportional to how many states have each bit equal to 0 or 1.

Suppose N is n bits long, meaning 2n < N < 2n+1. Let Nn · · · N1 be the binary represen-
tation of N , and let pm = 2Nn···Nm0···0/N . We start by creating the state

√
pn |0〉+

√
1− pn |1〉

in the first qubit.

We then iterate left to right through the remaining qubits, applying the following
controlled circuit to the mth qubit:

18

• If the current bitstring bn · · · bm is different than Nn · · · Nm, apply a Hadamard to the
mth qubit.

• If the current bitstring is the same, then control based on Nm−1:

– If Nm−1 = 0, do nothing.

– If Nm−1 = 1, apply the rotation circuit Gpm−1 .

Controlled gates will execute the “if” statements: A circuit will compare the current bit-
string, in superposition, and use the result to control the necessary circuit.

The comparison circuit, which compares to a fixed classical string of m bits, can be
done with O(m) gates. Since Gp requires O(k) gates for the precision parameter k, this
circuit will require O(lgN(lgN + k)) gates.

1.2.4 Probabilistic Algorithms

Often we design algorithms that only succeed with some probability. Suppose we want to
compute some function f and we have a probabilistic, classical circuit Cf that succeeds
with probability 1− p, and otherwise computes some undesirable function g. Assume that
Cf has some detection circuit that will detect if the computation of f failed. The action
of Cf will look like

Cf ‖x〉〉 = (1− p) ‖f(x)〉〉 ‖0〉〉+ p ‖g(x)〉〉 ‖1〉〉 , (1.35)

where the final bit indicates whether Uf succeeded or not.

Classically, we can apply another circuit that checks if the final bit is 1 — meaning the
computation failed — and if so, it erases everything, removes the check bit, and applies
Cf again:

(1− p) ‖f(x)〉〉 ‖0〉〉+ p ‖g(x)〉〉 ‖1〉〉 7→(1− p) ‖f(x)〉〉+ p(Cf ‖0〉〉) (1.36)

=(1− p2) ‖f(x)〉〉 ‖0〉〉+ p2 ‖g(x)〉〉 ‖1〉〉 . (1.37)

We can repeat this k times and drive the probability of failure down to pk, which is
exponential in the number of repetitions.

We would like a similar quantum procedure for a quantum circuit Uf , but the clas-
sical method required erasing g(x). In the quantum setting we cannot erase. We must
“uncompute” g(x) with some circuit U−1g , raising the following issues:

19

1. This may be computationally expensive or difficult to design.

2. It may be impossible. We may have two orthogonal states |x〉 and |y〉 such that
Uf |x〉 is orthogonal to Uf |y〉 (it must be, since Uf is unitary) but for which |g(x)〉 is
not orthogonal to |g(y)〉.

3. Even if we have some circuit U−1g that maps |g(x)〉 to |x〉, if we apply it to Uf |x〉
controlled by the failure detection qubit, we would get√

1− p |f(x)〉 |0〉+
√
p |x〉 |1〉 (1.38)

and if we then apply Uf again based on the control qubit, we end up with√
1− p |f(x)〉 |00〉+√p

(√
1− p |f(x)〉 |0〉+

√
p |g(x)〉 |1〉

)
|1〉

=
√

1− p2 |f(x)〉 |0〉 1√
1+p

(|0〉+
√
p |1〉)︸ ︷︷ ︸

=|ψp〉

+p |g(x)〉 |11〉 . (1.39)

Now we are stuck with an extra |ψp〉 state entangled with our result.

If we repeat the procedure k times, we end up with k garbage ancilla qubits in the same
state |ψp〉. We will give a classical and quantum approach to remove this.

Classical garbage removal

We can remove the extra qubits one at a time by measuring. After applying Uf once to
get the state in Equation 1.38, we measure the failure detection qubit.

With probability 1 − p, we measure 0, telling us the remaining register is |f(x)〉, and
we can continue the computation.

With probability p we measure 1 and we have |g(x)〉. Then we apply our uncomputation
U−1g , which restores our state |x〉, and then we can simply repeat.

Once we measure a 0, we stop and continue, with a guarantee that we have the right
output. This will take an average of 1/(1− p) repetitions.

The problem with this approach is that some applications do not “allow” the classical
computer to know whether Uf was applied at all. If we control the application of Uf with
another qubit and we measure 1 in the garbage removal, we know that the control qubit
must have been 1, and this destroys any superposition of the control qubit. Hence, for
many applications, classical garbage removal is insufficient.

20

Quantum garbage removal

The circuit Gp from Section 1.2.2 is made of Clifford+T gates, so its inverse has the same
cost. Then we can apply it to each ancillae. Since G−1p |ψp〉 = |0〉, this uncomputes the
effect of the circuit on the ancillae.

One drawback is that we need to know the precise value of p to construct the circuit
G−1p .

1.3 Difficulties

Because quantum computers can simulate classical computers, we might wish to build a
unitary to do anything a classical computer can, then combine it with a quantum circuit.
But there is no guarantee that our simulation of a classical computation will work well
with the quantum phenomena of interference and superposition.

This is frequently ignored or given little attention in the literature. Works on random
walks have included steps that are not reversible, set-ups not guaranteed to be free of
garbage ancillae, and sampling from potentially difficult-to-sample distributions. Some of
these “problems” are not problems in their original context using an oracle model, but this
is easy to forget when using the results in other contexts.

1.3.1 Reversibility

Consider the ancillae removal of Section 1.2.1. Suppose we are in the opposite situation:
We would like to keep the ancillae g(b), and “uncompute” the input b. There is no general
way to do this. We need a function h : {0, 1}n+m → {0, 1}n such that h(f(b), g(b)) = b.
This function might exist, but it might not be computationally feasible.

Further, we may have a function f that is bijective. It is then theoretically possible to
produce a circuit Uf such that

Uf |b〉 = |f(b)〉 (1.40)

but again, this may not be computationally feasible. There is no general technique to
produce such a Uf .

As an example, consider the problem of shuffling an array of n elements. One method
to do this is a Knuth shuffle: Start at the first element and work towards the end, and
for each element i, swap it with a random element j between i and the end of the array

21

(inclusive). We imagine this as a function whose input is a list of n elements and a list of
n random numbers from the appropriate range (the first number is from 1 to n, the second
is from 2 to n, etc.), and whose output is a shuffled list of n elements.

Immediately we see that since the original Knuth shuffle can shuffle any initial ordering
into any other ordering, it would be non-reversible if we output just the shuffled list; we
will assume we want the output to be the shuffled list and the initial list, but not the list
of n numbers.

This is possible with no asymptotic overhead but the solution is not trivial. Despite the
lack of such a technique in the literature, many algorithms rely on initializing a uniform
superposition of random subsets without leaving any “garbage” ancillae. Section 4.3.3
explores this issue in more detail.

1.3.2 No-Cloning Theorem

The “no-cloning” theorem states that there is no unitary that can take an arbitrary state
|ψ〉 |0〉 and map it to |ψ〉 |ψ〉. This is a simple consequence of the fact that unitaries preserve
distance. But it creates challenges for quantum computing, because we cannot arbitrarily
duplicate quantum data. This is something we are used to doing with classical data.

This should sound contradictory, since classical data is a subset of quantum data. If we
can duplicate classical data, shouldn’t we be able to duplicate classical data as represented
with quantum states? This is not a paradox because the no-cloning theorem states that
we cannot duplicate an arbitrary state |ψ〉. However, it is possible to construct a unitary
which duplicates a single fixed orthogonal basis.

For example, the CNOT gate from Section 1.1.3 has the following action:

CNOT |0〉 |0〉 = |0〉 |0〉 , CNOT |1〉 |0〉 = |1〉 |1〉 . (1.41)

Thus, it copies the computational basis states. On other states, the behaviour is the
linear extension, but it doesn’t copy:

CNOT 1√
2
(|0〉+ |1〉) |0〉 = 1√

2
(|00〉+ |11〉). (1.42)

This is not equal to two copies of the first qubit, which would instead be equal to:

1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉) = 1

2
(|00〉+ |01〉+ |10〉+ |11〉), (1.43)

22

though the state in Equation 1.42 is called a Bell state and is very important in its own
right.

Frequently, descriptions of quantum algorithms will say that a state is “copied” to
another register. This just means that the computational basis states are copied with CNOT

gates.

1.3.3 Entanglement

Formally, a state |ψ〉 ∈ HA⊗HB is called entangled if it cannot be written as |ψA〉⊗ |ψB〉.
For quantum computing, this means we have a state that maybe looks like this:

|00〉 |0〉+ |01〉 |1〉+ |10〉 |1〉+ |11〉 |0〉 . (1.44)

The last register is the XOR of the first 2. We cannot write this as a product of two states
in each system. In such a situation, we will say that register 3 is entangled with registers 2
and 3. This thesis will sometimes also refer to a specific state in superposition, like |01〉 |1〉,
and say that |01〉 is entangled with |1〉. This is imprecise since, as a single state, |01〉 |1〉
is not entangled, but this use implicitly refers to a state in superposition.

Entanglement can be very useful but it can also be a problem. Recall that HH |0〉 = |0〉.
But what if, after the first HADAMARD gate, we applied a CNOT gate like Equation 1.42, and
then tried to invert H. We would get:

(H ⊗ I)CNOT(H ⊗ I) |00〉 =(H ⊗ I)(|00〉+ |11〉 (1.45)

= |00〉+ |10〉+ |01〉 − |11〉 . (1.46)

This is not equal to |00〉! After the CNOT gate, the two registers are entangled, and the
desired interference does not occur.

This is especially problematic for reversible circuits. Suppose we create some superpo-
sition of inputs x with coefficients αx and compute some function f(x), such as∑

x∈X

αx |x〉 |f(x)〉 . (1.47)

We might wish to cause interference among the states |f(x)〉 based on some property of
f , but they are entangled with the inputs x, and so such interference cannot occur. We
would need to somehow uncompute |x〉 to remove the entanglement, and as discussed in
Section 1.2.1, there is no efficient general method to do this.

23

1.4 Error Correction

Computers exist in the real world, where they are imperfect and subject to noise. We can
model noise as a set of operations called noise operations. These are the same kind of
operations that we use to do computation: stochastic matrices for classical, unitaries for
quantum.

For example, we could imagine our set of noise operations is {I} ∪ {Ei|1 ≤ i ≤ n},
where Ei acts on n-bit strings and flips the ith bit. We imagine that during certain points
of our computation, a random noise operator (possibly just the identity!) is applied to our
state according to some probability distribution.

Classically, there is an enormous field of research in error correcting codes. An error
correcting code provides a way to encode a binary string s into a larger string s, with a
method to decode s back into s. We want our code to correct a set of noise operations,
meaning if we take any noise operator E in our set, apply E to s, then decode it, it should
still return s.

A quantum error-correcting code (QECC) is a similar process that encodes states |x〉
into states |x〉 in a higher-dimensional space, with some projection P that maps |x〉 back
to |x〉. We call an encoded qubit a “logical qubit”. For every QECC, we have some set N
of quantum noise operations, and we want:

P (E |x〉) = |x〉 , for all E ∈ N . (1.48)

This is very similar to classical error correction, with a few important differences.

1.4.1 Quantum Channels

Recall that the classical computing formalism we introduced can handle probabilistic op-
erations. Thus, given a set of noise operations N and some probability distribution P of
different noise operators, we can define

ΦN =
∑
E∈N

P (E)E (1.49)

and ΦN will still be a valid operator, which represents the entire noisy process, which we
could call a channel.

If we try this in the quantum setting, with noise operations N :

ΦN =
∑
U∈N

P (U)U (1.50)

24

this is no longer a unitary operator and thus is not a valid quantum operation in the
framework described so far.

The problem is that we have mixed classical probabilities with quantum operations.
Such operations require a more general formalism (density matrices and quantum chan-
nels). The definition of a memory peripheral (Definition 2.2.2) uses quantum channels, but
nothing else in this thesis needs these tools.

1.4.2 Fidelity

Classically if we try to compute some string x but our circuit produces a state such as

(1− p) ‖x〉〉+ p ‖y〉〉 (1.51)

we say that the circuit succeeded with probability 1−p. If we use this state as the input to
another algorithm that expects x as an input, then the probability of success will remain
1− p.

The same concept holds for quantum states. We define the fidelity between two quan-
tum states |ψ〉 and |φ〉 as

F (|ψ〉 , |φ〉) = |〈ψ|φ〉|2. (1.52)

This takes a value between 0 and 1. The fidelity is 1 if and only if |ψ〉 = |φ〉, and it is 0 if
and only if they are orthogonal.

To interpret fidelity, note that if we measure |φ〉 in a basis that contains |ψ〉, we will
measure ψ with probability equal to F (|φ〉 , |ψ〉).

Since unitary matrices preserve the inner product, we have

F (|ψ〉 , |φ〉) = F (U |ψ〉 , U |φ〉). (1.53)

This means that if we design a circuit U with well-defined behaviour on input |ψ〉, but
we give it some approximation |φ〉 as an input instead, the resulting state will have the
same fidelity with the intended output. This means we do not gain approximation error,
no matter the size of the circuit.

Fidelity plays a larger role with density matrices, where it captures both classical and
quantum senses of error. We will mostly use it in an imprecise sense to refer to how close
a state is to some desired state.

25

1.4.3 Error Complexity

A single-bit classical error operator can only be a bit flip. Single-qubit quantum errors
are more complex, since they could be any 2 × 2 unitary. However, we can simplify this
somewhat, noting that quantum operations are linear and the Pauli matrices span the set
of 2× 2 matrices. Thus, we can focus on only two errors: X errors and Z errors.

An X error is analogous to a bit flip, since its action is |0〉 7→ |1〉 and |1〉 7→ |0〉. A
Z error is called a “phase flip”, and it’s action is |0〉 7→ |0〉 and |1〉 7→ − |1〉. This has no
classical analogue. This extra dimension of errors makes error correction fundamentally
more complicated; see Section 2.3.

Since the Pauli Y gate is equal to iXZ, we can treat it as a Z error followed by an X
error. Since any single-qubit error can be written as a linear combination of I, X, Z, and
Y , and quantum operations are linear, then if our error correction circuit can correct an
X error, a Z error, and both, then it can correct any single-qubit error.

1.4.4 Error Rates

Though classical ECCs have extensive use in noisy applications like Wi-Fi or space probes,
they are less necessary within the components of a computer because the components have
very low rates of noise. A consumer-grade laptop can use a code that can correct 1 error
per 2048 bits and reasonably expect to never see a problem in its lifetime [30].

In contrast, quantum computing technologies are plagued by noise and it appears this
will not change. Multiple qubit errors are very likely in very short time spans, so we need
large error correcting codes and we need to apply the error correction very quickly.

Hence, we typically talk about “physical” versus “logical” qubits in quantum comput-
ing. The physical qubits are the actual physical objects that have the desired quantum
behaviour, such as a trapped ion or a superconducting loop of metal. A logical qubit is
a collection of physical qubits, together with some error correction circuitry, that stores
an encoding of a single qubit. We will need logical qubits to overcome noise and hence to
perform any quantum computation.

Devoret and Schoelkopf [24] created a diagram showing the path to scalable quantum
computing technologies that quantum scientists are pursuing today, which is included as
Figure 1.4.

26

Figure 1.4: The “staircase” of quantum computing technologies, from [24].

1.4.5 Logical Operators

Because the entire computation process is noisy, we don’t want to decode a logical qubit
until it must be measured. Thus, we want gates that apply to logical qubits, rather than
just physical qubits. A logical gate will be more complex than a physical gate.

For example, consider a code which uses 5 physical qubits to represent one logical qubit,
as follows: ∣∣0〉 = 1√

8
(|00000〉+ |11100〉 − |10011〉 − |01111〉

+ |11010〉+ |00110〉+ |01001〉+ |10101〉)∣∣1〉 = 1√
8
(|11111〉 − |00011〉+ |01100〉 − |10000〉
− |00101〉+ |11001〉+ |10110〉 − |01010〉). (1.54)

A logical X operator to flip these two states is

X = (X ⊗X ⊗X ⊗X ⊗X)(Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z), (1.55)

and a logical Z operator is
Z = (Z ⊗ I ⊗ Z ⊗ Z ⊗ I). (1.56)

Some general methods to construct logical gates include:

27

• Applying physical gates to each physical qubit in the logical qubit. This is called a
“transveral” gate.

• Using known commutation relations among gates to rearrange the quantum circuit
to move all instances of a particular gate to the end, and then using the result to
change how the measurement results are interpreted. We cannot do this for every
gate, otherwise quantum circuits would be easy to classicallly simulate. For example,
in a Clifford+T circuit, the X and Z operators can commute through the circuit to
the end.

• Preparing physical qubits to particular configurations (so-called “magic” or “re-
source” states), using error-correcting codes to refine these physical qubits into a
logical qubit in the resource state, then using this extra resource qubit to help per-
form a particular gate. This may require measuring the resource qubit and thus
destroying the resource state.

An important point is that, from the code’s perspective, there is no difference between
a logical operator and an uncorrectable error. If the code could “correct” the logical
operation and undo it, then we would be unable to change the encoded state and thus
could not perform any computation. Thus, there is some balance to strike such that the
controller can easily apply logical gates, but they are still unlikely to happen as a result of
noise.

1.4.6 Passive versus Active Correction

Correcting a classical ECC requires reading some or all of the extra bits to decide how
to correct it. This is because we need different operations to correct different errors. For
QECCs we cannot always “read” extra bits since measurement is destructive.

Suppose we have some circuit D that detects which error occured. For some set of
errors {Ei}, the circuit D has the action

D(Ei |ψ〉) |0〉 = Ei |ψ〉 |Ei〉 (1.57)

where |Ei〉 is some representation of the error Ei. We call this the syndrome. We have two
main design choices to correct this error:

Passive Correction: The correction is done entirely within the “quantum realm”. That
is, any classical controller or output does not know what error occurred.

28

Active Correction: We measure the syndrome and use a classical circuit to decide which
quantum error correction circuit to apply.

Passive error correction is often envisioned as a carefully-engineered Hamiltonian such
that its natural time evolution will correct any noise. This approach is preferable because
we would like the error correction to be a fixed cost. We would use extra resources to
construct a more complicated physical qubit, but afterwards it would be more resilient to
noise, without any additional effort. A classical magnetic hard drive has such a Hamiltonian
(see Section 2.3).

Active correction would be more difficult in the long run, because measuring the state
will heat the system and introduce more noise, and it will also require extra classical
computation to correct every error. However, it may be better in practice because it
moves most of the work to the classical realm, where we are already capable of high
fidelity computation. This reduces the number of noisy quantum operations.

1.4.7 Syndrome Measurement

Considering Equation 1.57, we can ask what happens when we measure the syndrome
during active error correction. Suppose our set of errors is the Pauli gates, and suppose
we represent our error as a linear combination of Paulis:

E = eII + eXX + eZZ + eY Y. (1.58)

If we apply a circuit that detects Pauli errors, it will produce the state:

eI |ψ〉 |I〉+ eXX |ψ〉 |X〉+ eZZ |ψ〉 |Z〉+ eY Y |ψ〉 |Y 〉 . (1.59)

If we measure the syndrome, this will “collapse” our state into one of the Pauli errors. For
example, with probability |eX |2, we will measure X and the resulting state will be X |ψ〉.
From there, we can apply the X correction circuit.

More importantly, for “small” errors, the largest component will be eI . With probability
|eI |2, we will measure I — “no errors” — and the resulting state will just be |ψ〉. In
summary: Just measuring the syndrome will, with some probability, correct the error.

This fact is important for the function of surface codes, in Section 2.1.

29

Chapter 2

Quantum Computational Models

Only a rash person would declare that there will be no useful quantum com-
puters by the year 2050, but only a rash person would predict that there will
be.

-N. David Mermin, Quantum Computer Science: An introduction [45]

To motivate this chapter, consider that Turing machines, Lambda calculus, and the
WORD RAM model are all equivalent abstractions of computers. Yet of these, the WORD
RAM model is the most realistic and useful, not for any fundamental reason, but because
computers engineers happened to find a way to build large and cheap random-access mem-
ory.

This is somewhat surprising: Consider the architecture of a 2-dimensional DRAM chip.
The bits are stored in a rectangular grid, and to access or write a bit in location (i, j),
a current is sent along a wiring running at horizontal position i, and another at vertical
position j, and they will only affect the memory at the point of intersection.

To select the ith wire out of n wires requires at least log n binary decisions about where
to send the current, which implies that there are n “gates” of some kind in the RAM chip.
If there are n wires on each side, there are n2 bits of memory; thus, the total number of
gates for N bits of memory scales as O(

√
N). This seems expensive, but miraculously, we

can build these gates cheaply. Even more surprising, these gates are substantially cheaper
than the gates inside a CPU.

For quantum computers, there is also a zoo of equivalent computational models: Circuit
models, distributed quantum computing, quantum Turing machines, measurement-based

30

computers, and others. At this point, it seems premature to choose one model. Yet,
for cryptanalysis, we need to choose a model. If we make a statement like “Grover’s
algorithm solves brute-force search with cost O(

√
N)”, we are implicitly using some model

of computation. Hence, we would like to make the best guess we can.

With that in mind, in this chapter we will start with a motivating example of surface
codes (Section 2.1). These show clearly how quantum gates are processes, not physical
objects, as well as highlighting the large overhead for error correction.

In Section 2.2 we give the peripheral model of quantum computation. In this model,
we treat the quantum computer as a peripheral for a classical computer, in principle no
different than a monitor or printer. This emphasizes the costs of classical control, which
are asymptotically the dominant cost of quantum computing.

The peripheral model is very general and can accomodate a range of features. Sec-
tion 2.3 gives several examples. We choose five specific models in Section 2.4, which we
use throughout this thesis. Two of the models come from previous work, while the other
three are first attempts at more realistic model of quantum computing.

2.1 Surface Codes

Surface codes are a particular type of topological error-correcting codes. This section
describes some basic features of surface codes to give a sense of what a quantum computer
might be like and to motivate some of the assumptions of the models that will follow.
Fowler et al. [25] provide at excellent survey of surface codes. They use qubits on the
vertices of a large 2-dimensional grid, though other lattices would work. Half the qubits
are designated “measurement” qubits and the other half are “data” qubits, arranged in a
checkerboard pattern.

Active Correction: To correct errors, we repeat a “measurement cycle”, where the
measurement qubits are entangled with the data qubits and then measured. This has the
effect of syndrome measurement as in Section 1.4.7, so it will either correct errors or force
X, Y , or Z errors in the data qubits. If an X error occurs on a data qubit, we detect it
because it flips the measurement results of two adjacent measurement qubits.

If two X errors occur next to the same measurement qubit, the errors will “cancel out”
and be undetectable by that qubit. To be completely undetectable we would need an X
error on every qubit from one edge of the code to another — hence, the probability of

31

having so many errors decreases exponentially with the size of the qubit grid. The same
logic applies to the other Pauli errors, and by linearity to all single-qubit errors.

Physical Overhead: The error correction keeps the system in a fixed logical state, but
we must be able to deliberately change the state to do any computation. To do this, we
turn off small sections of qubits to form “holes”. A series of errors from the edge of one
hole to the edge of another hole would be undetectable, for the same reason that errors
from one edge of the grid to the other are undetectable. Such a string of “errors” acts as
a logical operator. Each pair of holes induces such an operator, and hence acts as a single
logical qubit.

We need the holes to be sufficiently far from each other, and from other pairs of holes,
that these logical operators do not occur from noise. The number of qubits between two
holes is the distance of the code.

We can see from this construction that the probability of error in each logical qubit in
each time step decreases exponentially wtih the distance, and the number of physical qubits
for every logical qubit increases quadratically with the distance. If we have a computation
on Q logical qubits for depth D, we need to suppress the per-qubit-per-time-step error
below O(QD). This means the physical:logical qubit ratio is Θ(log2(QD)). This is optimal
for a family of codes called “stabilizer codes” [15].

Computational Overhead: In every measurement cycle, a classical controller must
entangle and measure half of all the physical qubits. It needs to either store that data or
process it immediately. This implies at least Ω(Q log2(QD)) operations in every time step.
Further, the control hardware must solve a perfect matching problem in every time step
for every logical qubit. This control can be done in O(1) time with Ω(1) parallel processors
per physical qubit [26].

Stationary Qubits: Gates are applied “on top” of a surface code, mostly by changing
the pattern of measurements. Different measurement patterns can move logical qubits
without moving any of the physical qubits. Hence, we cannot pay a fixed cost to build a
gate, then use it many times for free; we need to pay the same computational cost every
time we use a gate.

The control cost ends up the same for doing nothing to the qubit as it is for performing
a gate. This means the identity “gate” has approximately the same cost as any other
Clifford gate.

32

It happens that T gates are unusually expensive for a surface code. These are a sig-
nificant component of the total computation, but are asymptotically the same cost as the
rest of the circuit.

a b

c
d

Data qubit
Measure
Qubits

X Error
Z Error
Y Error
Detected

Errors

Figure 2.1: An illustration of a surface code of distance 3. a: A single logical qubit with a
detectable set of errors. b: A logical qubit with an undetectable (logical) error. c: A patch
showing errors occuring at a rate of 2%. d: Two qubits showing part of the process of a
CNOT gate.

33

2.2 Peripheral Models

2.2.1 Description

Jaques and Schanck [34] introduced the peripheral model of quantum computation. Our
goal was to formalize a model of quantum computation where a classical controller must
perform computational work to manage a quantum computer, and to emphasize the costs
of this classical computation. This section summarizes the definitions in our paper.

The Hamiltonian of a quantum state governs its evolution through time. For the
quantum state to perform some computation, either some external “force” acts on it, or
it evolves naturally by its Hamiltonian. The latter is known as “ballistic” computation.
The peripheral model captures both approaches: Either the controller queues and applies
transformations, or it performs some actions to change the Hamiltonian. In both cases the
controller performs significant computations.

The first part of the model is the memory peripheral, which captures the physical state
of the quantum computer at a specific point in time.

Definition 2.2.1 (Definition 1, [34]). A memory peripheral is a tuple A = (HA, HA
sys),

where HA is a Hilbert space and HA
sys is a Hamiltonian acting on HA, referred to as the

system Hamiltonian.

Here the “state” of the computer just describes which qubits are active, where the qubits
are, and what Hamiltonians are acting on them, but this is distinct from the quantum
“state” of the computer, which would be a vector in HA. Hence, the state of the peripheral
governs what quantum states it can possibly hold.

The controller can apply memory operations to the peripheral.

Definition 2.2.2 (Definition 2, [34]). A memory operation is a morphism between periph-
erals, (HA, HA

sys)→ (HB, HB
sys), where the map from HA to HB is a quantum channel.

On this, we define a parallel composition of memory peripherals, denoted A ⊗ B. If
A = (HA, HA

sys) and B = (HB, HB
sys), then

HA⊗B =HA ⊗HB (2.1)

HA⊗B
sys =HA

sys ⊗ IB + IA ⊗HB
sys. (2.2)

We can extend morphisms to parallel composition: Given f : A → C and g : B → D,
then we can define a morphism f ⊗ g : A⊗ B→ C⊗ D, with the natural action.

34

There are many possible morphisms we can define, but only some of them may be
physically realizable, such as Clifford+T gates. This leads us to the full definition of a
memory peripheral model :

Definition 2.2.3 (Definition 3, [34]). A memory peripheral model is a tuple (C, ◦,⊗, 1)
where:

• C is a collection of memory peripherals.

• The morphisms between the objects of C are memory operations.

• ◦ represents sequential composition of morphisms.

• ⊗ represents parallel composition of objects and morphisms.

• There is a “void” memory peripheral 1 such that A⊗ 1 = 1⊗ A = A for all A in C.

This definition naturally leads to the idea of irreducible memory peripherals and mor-
phisms. A memory peripheral A is irreducible if it cannot be written as a parallel compo-
sition of two non-void memory peripherals. A similar definition applies to morphisms.

In many cases we can describe a memory peripheral model by a finite set of irreducible
memory peripherals and morphisms. For example, a qubit memory with Clifford + T gates
can be described this way: There is one irreducible memory peripheral, Q = (C2, 0). A
trivial Hamiltonian means it undergoes no time evolution. The morphisms are Clifford+T
gates applied to single qubits or pairs of qubits. These can be composed in sequence and
parallel to produce an infinite set of memory peripherals and morphisms.

In the qubit memory and Clifford+T gate example, the set of irreducible morphisms
acted on at most 2 irreducible memory peripherals. Hence, we call it a 2-ary memory
peripheral model. In general, we say a memory peripheral model is k-ary if every irreducible
morphism acts on a composition of at most k irreducible memory peripherals.

For measuring an algorithm on a memory peripheral, we refer to the depth and width.
The width is the total number of irreducible memory peripherals that form a specific
memory peripheral. In most cases this is simply the number of active qubits. The depth
is the total number of sequential memory operations.

“Depth” will also refer to the total run-time in cases where different operations take
different times. This is technically incorrect, but it is a reasonable equivocation because:

• some gates with a large run-time are actually abstractions of a sequence of smaller
gates;

35

• the focus is opportunity cost, so the run-time will reflect the depth of some circuit
that could be run.

2.2.2 Control Costs

In a memory peripheral model, a computation is a series of morphisms on an initial pe-
ripheral. We assume that there is a classical computer that executes these morphisms
somehow.

The simplest and most natural model for classical control is a word-RAM model. This
attempts to model a typical classical computer, with a CPU that performs basic arithmetic
on elements of a larger random access memory.

The following definition is based on Homer and Selman [29], though with a more general
set of functions and relations.

Definition 2.2.4. A Word-RAM computer consists of:

• an array A of n words of ω bits, where 2ω ≥ n;

• a finite set F of functions f : {0, 1}kω → {0, 1}ω, each with some arity k ∈ N;

• a finite set R of relations r : {0, 1}kω → {0, 1}, each with some arity k ∈ N.

A RAM program for this computer is a finite sequence (o1, · · · , oN) of RAM operations.
The computer sequentially executes the operations, which have one of the following forms:

• A function f ∈ F and k+1 addresses a1, · · · , ak+1. The operation computes f(A[a1], · · · , A[ak])
and writes the result to A[ak+1].

• A relation r ∈ R, k addresses a1, · · · , ak, and an integer i ∈ [N]. The operation com-
putes r(A[a1], · · · , A[ak]), and if the result is 1, skips to operation oi, and otherwise
continues as normal.

• A WAIT operation that does no computation.

Every operation takes unit time and unit cost, except WAIT, which has unit time but no
cost.

Typical choices for functions are bitwise AND, OR, XOR, right- and left-shifts, addition,
and subtraction. Typical choices for relations are equality, ≤, and ≥.

36

We further consider a parallel word-RAM model, where we have P distinct word-RAM
computers (“processors”) with access to a shared memory. They each execute one operation
at every time step. If two processors attempt to access the same memory location in the
same step, there is some method that grants access to only one processor.

The memory peripheral model adds special operations to the usual word-RAM model.
For each k-ary memory peripheral A, the controller has an instruction set, which is a list of
the possible irreducible morphisms. We add an APPLY operation, which takes k + 1 argu-
ments: k different memory peripheral addresses, and one argument for the morphism. The
controller executes this operation, which queues that particular morphism. For morphisms
on separate systems in the memory peripheral, the controller is allowed to schedule parallel
operations. For example, if it schedules a CNOT gate between qubits 1 and 2, it could also
schedule a CNOT gate between qubits 3 and 4.

The other instruction is “STEP”. This starts the physical process that will apply all of
the scheduled morphisms to the memory peripheral.

2.2.3 Advantages

The peripheral model has three main advantages over the circuit model:

Highlights physical assumptions:

By including the Hamiltonian in the model, we bring the physical assumptions to the
foreground. The simplest and least realistic assumption is that the Hamiltonian for every
memory peripheral is 0, in which case we recover the circuit model. Including a Hamiltonian
of 0 is a reminder that such a model is a very idealistic abstraction of the physical system.

With other Hamiltonians, we can capture noise terms. Since a quantum channel can
represent any noise terms, by the Stinespring Dilation Theorem we can represent these as
interactions with an external system. Hence, the Hamiltonian can produce the noise terms.

From a noisy Hamiltonian, we can either add another passively error-correcting Hamil-
tonian or add some active error correction. In the former case, we are again making an
explicit physical assumption. In the latter case, we could group the active error correction
memory peripherals together into a larger peripheral which behaves like a single logical
qubit. In doing so, we would need to include all the operations we used for the active error
correction into the costs for the basic operations on the logical qubit.

37

Captures ballistic computations:

If we have a non-trivial Hamiltonian then it is time–independent for each memory periph-
eral. Thus, the quantum state evolves according to the Schrodinger equation as:

i~
∂

∂t
|ψ(t)〉 = HA

sys |ψ(t)〉 (2.3)

which has a solution of
|ψ(t)〉 = eiH

A
syst/~ |ψ(0)〉 . (2.4)

Here the exponent is the usual matrix exponent: eiH
A
syst/~ =

∑∞
n=0

(iHA
syst/~)n

n!
, which is a

unitary. We assume that there is necessarily some small time interval δ0 between memory
operations, so that the operator eiH

A
sysδ0/~ acts on the state between each memory operation.

While the circuit model focuses on time-dependent Hamiltonians created by interactions
with an external system, such as shooting a laser at a qubit to alter the state, this formalism
allows us to model ballistic computations. The name is meant to evoke a computer where
computation is done by billiard balls bouncing around inside of it. We perform substantial
work to set up the state of the computer, then we drop a ball in and let it evolve on its
own. Similarly, a ballistic quantum computation would involve carefully creating a precise
Hamiltonian, then simply letting the system evolve by the action of that Hamiltonian.

One can easily show (since the Hamiltonian evolution is unitary) that ballistic compu-
tation is robust against small errors in the initial state, but the effect of noise in the initial
Hamiltonian is under-explored. This thesis will mostly ignore ballistic computation, since
there are few serious proposals for ballistic quantum computation.

Permits direct comparison of classical costs:

In the circuit model, we can give a cost in gates or depth or number of qubits, but it’s
difficult to compare to classical algorithms. We need some sort of common unit between
the two. In a practical setting, this will probably be some currency: is it cheaper to run the
algorithm on the quantum or classical computer? But at this point, it’s nearly impossible
to guess at the costs of quantum computing.

The memory peripheral model has a fundamental assumption that any quantum tech-
nology will rely on a classical controller. We then ignore all of the costs to build and
maintain the quantum aspects, and focus solely on the work that the classical controller
does. This turns the cost into an opportunity cost: What else could we do with the classical
controller if it were not busy running our quantum computation?

38

This is necessarily an underestimate of quantum computation costs, but probably not
by much. More importantly, it gives a common unit for the costs of classical and quantum
algorithms. This allows us to compare them and to give reasonable analyses of algorithms
with a large mix of quantum and classical computation.

2.3 Architectural Features

This section gives various features that could be included in a computational model. We
will not use all of them, and some of them simply demonstrate different ways to think about
quantum computing and how one might account for extra costs in a memory peripheral
model.

2.3.1 Error Correction

Section 1.4.6 introduced passive and active error correction, and here we will follow previous
work [34] and suggest that passive error correction is unlikely.

For classical computers, passive error correction is possible in 2 physical dimensions.
A magnetic hard disk demonstrates this and Figure 2.2 shows the principle. The system’s
energy is lowest when all the magnetism lines up, and if one component gets flipped, it
naturally “falls” back down to the lowest energy configuration. To flip the “logical” bit
means flipping all the bits, which is only energetically neutral if a full row of magnetization
is flipped. The probability of such a large error, under an independent, random noise model,
decreases exponentially with the lattice size [48].

noise

Energy: Low High Low

Figure 2.2: An idealization of a lattice of magnets that passively corrects small errors.

For a quantum code, this is more difficult. Bravyi and Terhal prove that for a lattice of
qubits with a stabilizer code, two-dimensional quantum memory cannot passively correct

39

itself [15]. There is an explicit construction of six-dimensional self-correcting memory
[23], and without a universal gate set, it can be done in four dimensions [4]. The three
dimensional case is open.

In practice we can build, at most, a three-dimensional memory. Cooling and control
issues make a two-dimensional memory much more likely. For three-dimensional memory,
we may be able to “stack” layers of two-dimensional memory, but for this to scale in the
same way as truly three-dimensional memory will require difficult engineering.

Thus, a passively-corrected memory is not just an assumption about future engineer-
ing capabilities, but an assumption of fundamental physical results. It may be proven
impossible in the future.

In a memory peripheral model, passive correction is contained in the Hamiltonian, and
hence it induces no extra costs for the classical controller.

We can view active correction as four distinct steps to apply a single memory operation
f , shown in Algorithm 1. This is what a surface code does. We suppose that we wish to
apply f to the qubits in addresses Ri1 , · · · , Rik , and the error correction will use ancillae
at addresses Rj1 , · · · , Rjm .

Algorithm 1 Active error correction in a memory peripheral.

APPLY f to Ri1 · · · Rik

STEP

for ` = 1 to m do
APPLY measure to Rj` and save to the result to Sj`

end for
STEP

CORRECT(Sj1 , · · · , Sj` , Ri1 , . . . , Rik , Rj1 , · · · , Rjm)

The CORRECT operation in Algorithm 1 takes the results of the measurements of the
ancillae, the addresses of the data qubits and the ancillae and computes the necessary steps
to correct the errors. This may involve several SCHEDULE operations to queue memory op-
erations that will physically correct the errors, followed by a STEP operation. Alternatively,
like a surface code, it may simply use the control hardware to account for the errors.

In Lines 2 and 6, there will be some time intervals δ1 and δ2 when the system will
undergo some evolution, which may include errors. Hence, even if the morphism f is just
the identity, the error correction is still necessary, just like the surface code.

To add these correction costs in a memory peripheral model, we need to decide

40

• what kind of errors occur, and how frequently, and

• the necessary steps to correct them.

Though this should technically be described with Hamiltonians and explicit gates, it is
easier and just as thorough to take an average error correction cost for each gate, and then
use that for the cost of the gate.

For example, in a surface code of distance d a Hadamard gate requires Θ(d) sequential
operations. Correcting a single qubit requires Θ(log2(DQ)) operations on average, so any
“idle” qubits will also incur this cost for their error correction while the Hadamard gate is
applied.

2.3.2 Computational Qubits

Are we able to apply any gate we want to any qubit we want, and apply as many as we
can at the same time? In the surface code, this is true for all Clifford gates. Yet this is
distinctly untrue for classical computers, and explicitly modelled in a Word-RAM model,
which can only apply arbitrary operations to CPU memory, and must work hard to copy
memory between different cache levels to perform well.

Many quantum computing papers explicitly make this assumption (e.g., [25, 7]), and
it is implicit in others. Others ([16]) consider things like a “QPU” (quantum processing
unit) and describe ways to teleport data in and out of the QPU for computations.

In a memory peripheral model, we could make two different types of irreducible periph-
eral, a computational qubit QC and a storage qubit QS. The model would contain only
some operations on QS and would have some operation to swap the state between the two
types.

2.3.3 QRAM

Suppose we have a “quantum memory”, consisting of a large array of qubits |x1〉 · · · |xN〉.
We want random access, meaning we can take a state |i〉 as input and have some operation
such that

|i〉 |y〉 |x1〉 · · · |xN〉 7→ |i〉 |xi〉 |x1〉 · · · |xi−1〉 |y〉 |xi+1〉 · · · |xN〉 , (2.5)

analogous to classical RAM. Adding this circuit to a gate set is equivalent to adding the
following two circuits:

|i〉 |y〉 |x1〉 · · · |xN〉 7→ |i〉 |y〉 |x1〉 · · · |xi−1〉 |xi ⊕ y〉 |xi+1〉 · · · |xN〉 (2.6)

41

|i〉 |y ⊕ xi〉 |x1〉 · · · |xN〉 7→ |i〉 |y〉 |x1〉 · · · |xi−1〉 |xi〉 |xi+1〉 · · · |xN〉 . (2.7)

Classical random access can be done with a classical controller, which can decide which
gates to apply. For quantum data, the classical controller cannot read the input |i〉 to
decide which gates to apply without also destroying the quantum state. Thus, the classical
controller must apply all gates that may be necessary for any input state, and use gates
like TOFFOLI or CNOT to implement any conditional logic.

The controller will need to apply some sort of operation to each qubit |xj〉 in memory.
In a k-ary memory peripheral model, a single operation can only apply to k objects at
once, so the total cost of the operation in Equation 2.5 will grow linearly with N , since
k does not scale. In a circuit model, the same result holds. The proof is trivial but for
completeness it will follow.

Theorem 2.3.1. In a circuit model with a finite set of gates of fanin less than some
constant, a random access circuit to an N-bit array requires Ω(N) gates.

Proof. Let U be the random access circuit as a unitary. Considering its action in Equation
2.5 we can see that, for every bit in memory, there is some input such that U alters that
bit. Thus, U cannot be written as U = U ′ ⊗ I⊗m2 for m ≥ 1. By Lemma 1.1.1, U requires
at least N/k = Ω(N) gates.

There is a slight trick here: By using the circuit model, we require U to be built entirely
out of gates, and in between applying gates, the quantum state does not change. It has
not been proven impossible for memory access to be fast, cheap, and ballistic, where some
initial set-up would cause the quantum Hamiltonian to do the hard work of moving memory.
It remains a topic for future research to decide if there are fundamental requirements on
the precision of the set-up of such a Hamiltonian that force ballistic memory to have linear
cost as well.

Ballistic memory access resembles the “bucket-brigade” QRAM proposal from Giovan-
netti, Lloyd, and Maccone (GLM)[27], which imagines photons travelling through a series
of gates. The controller may be able to send a single photon into the system and have it
propagate without external intervention.

Bucket-brigade QRAM faces some issues. It is mostly interested in memory access in
small superpositions, while our interest is a more general QRAM. Arunachalam et al. [6]
show that error rates for the gates involved must decrease linearly with the memory size
for a quantum search involving the QRAM. It remains an interesting challenge to model
both the computational cost and the error rate of the gates in bucket-brigade QRAM.

42

Alternatively, we could imagine a future situation where we simply have separate sec-
tions of hardware that are dedicated specifically to memory access, analogous to classical
RAM. Even though we require O(N) gates for memory access, perhaps these can be assem-
bled and controlled by hardware that is much less expensive than the rest of the quantum
computer. Our primary cost in a memory peripheral model is the opportunity cost of the
control hardware, so here we assume that the QRAM hardware, because it’s dedicated to
this one task, would be incapable of performing any other computations.

With passive correction this may be reasonable, but not with active correction, where
we would need substantial computation just to store memory.

Cheap QRAM is unlikely. Still, we can include it in a peripheral memory model in
several ways:

• We could assume that we have some random access operation that is either not k-
ary or ballistic, requiring only O(1) control operations to execute. This also models
QRAM built from O(N) gates that are controlled by specialized hardware.

• We could give a cost of O(N) for the random access gate, using that gate as shorthand
for O(N) k-ary memory operations that must be performed to execute the gate.
Section 4.1 gives explicit circuits for this.

• We could ignore random access and build alternative memory access circuits for
different use cases, as we did in Jaques and Schanck [34] and which Section 4.2.2 will
describe.

2.3.4 Locality

In the surface code, both logical CNOT and T gates require the qubits to be physically near
to each other. Moreover, the physical CNOT gates only affect physically adjacent qubits. In
this way, operations on the surface code are local.

This sense of locality is different than the idea of a “k-local Hamiltonian”. A k-local
Hamiltonian is a Hamiltonian H =

∑n
i=1Hi where each Hi acts only on k different systems,

but there are no restrictions on the physical proximity of those systems.

If the gates of a quantum computer are local, then we need some way to physically
move qubits. Some papers refer to “flying qubits”, which are physically moved around.
Other options are quantum teleportation or movements like the surface code. All require
intervention by the controller.

43

A memory peripheral model does not naturally have a spatial layout, but we can account
for it by restricting the set of memory options to those that act only on physically close
objects. From there, to give the precise costs of a computation, we would need to describe
the physical layout of the architecture. For many algorithms and analyses, such precision
is unnecessary. Instead we could give approximations. For example, if there are N objects
in a memory peripheral model of a 2-dimensional architecture, a 2-ary memory operation
could have a cost of O(

√
N), which would be the average cost to move the qubits near to

each other.

2.3.5 Latency

Latency is subtly distinct from locality. Here we do not give restrictions on which parts of
the computer can interact, but we account for the time it takes for the signals to propagate
between them. For example, with quantum teleportation we may be able to move any qubit
to any other part of the computer in a constant number of operations, but we still need
both locations to have one qubit out of a pair of entangled qubits. Sending the entangled
qubits may take some time.

Including latency costs switches the unit of cost from bit operations to time, and hence
the RAM model is no longer appropriate. We could simply give a constant time cost for
each sequential RAM operation, but then we are accounting for latency in the quantum
computer and not its classical controller. For consistency, we should use another model for
the classical controller that accounts for latency.

For a formal model, Candidate Type Architecture accounts for latency, but focuses on a
subtly different application, where we have many parallel machines that have high-latency
communication costs between them. Bernstein approaches similar questions to this thesis
[8] and simply states, absent a formal model, that “random access to an N -element array
takes time N1/2”.

We will add some formality and define a model of “RAM with latency”, where the cost
is in units of processor-hours. Basic arithmetic operations have cost 1, and random access
to an N -element array has cost N1/d for d-dimensional memory. The idea is that if a RAM
machine must make a lengthy query to a large memory array, it’s wasting time that it
could use to do some other computation.

A rigorous version of this model is a task for future work.

44

2.4 Models

Here we give a list of the models we will use, and the cost metrics that are most natural.

2.4.1 Passively-Corrected Clifford+T Circuit

In this model, taken from Jaques and Schanck [34], we have a unique irreducible memory
peripheral Q̂ = (C2, 0), which is a single qubit with a trivial Hamiltonian, so it undergoes
no time evolution. The irreducible memory operations are the Clifford+T gate set.

The physical assumption is that we have somehow built logical qubits that passively
correct themselves.

This model ignores locality and latency and assume uniform gate costs. This means
the cost metric is just the gate count. We refer to this model as “Passive Circuit”.

2.4.2 Actively-Corrected Clifford+T Circuit

This is the second model from Jaques and Schanck [34]. It’s the same as the previous
model, but with active correction, so that the identity gate has O(1) RAM operation cost.

This makes the cost metric equal to the depth of an algorithm times its “width”,
measured in logical qubits. We may need to cost different stages of an algorithm separately,
if the width changes drastically. We refer to this model as “Active Circuit”.

2.4.3 Passively-Corrected Circuit with Latency

This is the same as the passively corrected model, but accounts for latency. A full treatment
of latency would require specifying a physical layout, but instead we will simply assume
that, unless otherwise specified, a gate between two qubits in a memory of width N takes
time O(N1/d), where d > 1 is the dimension of the architecture.

To equate time with the classical control, we will assume that the control is formed of
parallel processors that would be capable of some computation during the time that a high-
width gate operates. In some sense this contradicts the spirit of the passively-corrected
model, since we are not giving a cost to any idle time of the classical control. To justify this
cost, we assume that applying a gate that takes time T requires O(T) RAM operations,
meaning that controlling a long gate requires more computation.

45

This gives a total cost metric that is proportional to “gate-time”: the sum of the time
taken by all gates used in the circuit. This means that using many gates simultaneously is
still expensive, even if they are used for a very short amount of time.

We refer to this model as “Passive Latency”.

2.4.4 Actively-Corrected Circuit with Locality

This is the actively-corrected analog of the previous model. Again, if we don’t specify a
particular physical layout for a circuit, we will simply assume that gates require O(N1/d)
time to execute when used on memory of size N in dimension d. This could be signal
propagation time or physical rearrangement. We assume the architecture is similar to a
surface code, where the qubits require error correction at regular, frequent intervals. Thus,
the O(N1/d) time translates to O(N1/d) error correction operations on each qubit.

For a cost metric, we assume something that scales similarly to a surface code. Using
Bravyi and Terhal’s result [15] and the same property of surface codes, we assume that
for a circuit of Q qubits active for D time steps, each logical qubit requires O(logd(DQ))
physical qubits, each of which requires, on average, one RAM operation per time step.
Thus, once the full time D of the circuit is computed, including latency, the cost becomes
O(DQ logd(DQ)).

We refer to this model as “Active Local”.

2.4.5 QRAM with Latency

Here we assume passively-corrected “computational” qubits, and a distinct quantum mem-
ory. We assume access to N -bit quantum memory in dimension d is a single gate that takes
time O(N1/d). There are two natural cost metrics here: The gate count and the time. The
final cost will be the maximum of the two.

We will refer to this model as “QRAM”.

46

Chapter 3

Quantum Walks

Quantum walks are a major family of quantum algorithms that perform searches by re-
peatedly taking random steps, in superposition, on a graph or Markov process. In most
applications, they give exponential costs with smaller exponents than the corresponding
classical algorithms, though many of these results are only query complexity.

Section 3.1 explains Grover’s algorithm, which is the simplest unstructured quantum
search algorithm. Quantum random walks are an extension of Grover’s algorithm and
share many properties.

To show how random walks can be used as a search algorithm, Section 3.2 explains a
classical search by random walk. The relationship between a classical brute force search
and a random walk is almost the same as the relationship between Grover’s algorithm and
a quantum random walk.

Section 3.3 gives two approaches to random walks, Szegedy’s algorithm (Section 3.3.1)
and the Magniez, Nayak, Roland, and Santha (MNRS) algorithm (Section 3.3.2).

These algorithms can only improve on a naive Grover search when the cost to take a
random step in a graph is substantially less than the cost to sample a vertex completely
at random.

3.1 Grover’s Algorithm

Grover’s algorithm solves a very generic search problem. There is some small subset S of
the set of n-bit strings. We have a reversible circuit US which tests membership; its action

47

is:

US |b〉 |c〉 =

{
|b〉 |c〉 , b /∈ S
|b〉 |c⊕ 1〉 , b ∈ S

. (3.1)

where c is another bit. We want a circuit to output some b from the set S.

Grover’s algorithm uses US and another operator U0 that flips a bit if b is not the
all-zeros string:

U0 |b〉 |c〉 =

{
|b〉 |c〉 , b = 0n

|b〉 |c⊕ 1〉 , b 6= 0n
. (3.2)

Actually, Grover’s algorithm needs reflections instead, but these are easy to construct
using a single ancilla initialized to |−〉 := 1√

2
(|0〉 − |1〉) = H |1〉. First note that if b /∈ S,

then US |b〉 |−〉 = |b〉 |−〉. If b ∈ S, then:

US |b〉 |−〉 = |b〉 1√
2
(|0⊕ 1〉 − |1⊕ 1〉) (3.3)

= 1√
2
|b〉 (|1〉 − |0〉) (3.4)

=− |b〉 |−〉 . (3.5)

Thus, the full action is:

US |b〉 |−〉 =

{
− |b〉 |−〉 , b ∈ S
|b〉 |−〉 , b /∈ S

. (3.6)

Since the ancilla |−〉 is unchanged, there is no unwanted entanglement. We use a similar
circult to turn U0 into a reflection.

With these two operators, Figure 3.1 shows a circuit for Grover’s algorithm.

Repeat
√

2n

|S| times

|0〉n H⊗n US H⊗n U0 H⊗n · · · US H⊗n U0 H⊗n

|−〉 · · · |−〉

︷ ︸︸ ︷

Figure 3.1: Grover’s algorithm. The dashed line circles a single “step”, which we will call
a Grover step.

The rest of this section gives two intuitive explanations. Both rely on viewing Grover’s
algorithm as a series of 2 reflections, with analysis due to Boyer, Brassard, Høyer, and

48

Tapp [13]. The operation US is clearly a reflection over the subspace spanned by |s〉 for
s ∈ S.

The circuit U0 reflects over the uniform superposition. This would be difficult to de-
tect directly, so we use Hadamard gates to transform the entire space. This maps the
uniform superposition to the state |0〉n, which is easy to detect. We denote the uniform
superposition as

|φ0〉 :=
1√
2n

∑
b∈{0,1}n

|b〉 . (3.7)

The operator U0 flips the sign (the phase) over |0〉 and acts as the identity on orthogonal
states, with a simple circuit (Figure 3.2). Since H is a unitary, H⊗nU0H

⊗n will flip the
sign on |φ0〉 and act as the identity on orthogonal states.

X • X

X • X

X • X

X • X

|−〉
(a) Using an unbounded fanin CNOT.

=

X • • X

X • • X

|0〉 • |0〉

X • • X

X • • X

|0〉 • |0〉
|−〉
(b) Using TOFFOLI and ancilla qubits.

Figure 3.2: The operator U0 in Grover’s algorithm, for 4-bit strings. In general this circuit
uses Θ(n) X gates, Θ(n) TOFFOLI gates, and Θ(log n) ancilla qubits initialized to |0〉.

Viewing Grover’s algorithms as reflections about an average value is more sensible as
a computation, but viewing it as rotations is more geometrically intuitive.

3.1.1 Reflections about the Average

In a uniform superposition over n-bit strings, the probability of measuring a string in S
is |S|/2n, the same as classically picking a random string. We can think of the steps in
Grover’s algorithm as a method to concentrate the amplitude of the state onto the strings
in S.

49

Lemma 3.1.1. The operation H⊗nU0H
⊗n will reflect a state about its average coefficient

with respect to the computational basis. That is, suppose we have a superposition of n-bit
strings, as

|φ〉 =
∑

b∈{0,1}n
αb |b〉 (3.8)

for some αb ∈ C. Then

H⊗nU0H
⊗n |φ〉 =

∑
b∈{0,1}n

(αb − 2α) |b〉 (3.9)

where α is the average value of αb.

The proof is omitted. Figure 3.3 demonstrates how reflections about the average in-
crease the necessary amplitude(s).

Part 3.3e is the maximum possible amplitude for the marked state, yet there is still
a 13% chance of measuring a non-marked state. This is a normal property of Grover’s
algorithm: It is inherently probabilistic. Since each step is a discrete jump in amplitude,
for most values of n we cannot achieve 100% probability of measuring a marked state.

3.1.2 Rotations

We can take the state |φ0〉 and decompose it as:

|φ0〉 = 1√
|S|

∑
b∈S

|b〉︸ ︷︷ ︸
:=|S〉

+ 1√
2n−|S|

∑
b/∈S

|b〉︸ ︷︷ ︸
:=|S⊥〉

. (3.10)

The state |S〉 is the uniform superposition of elements in S, and
∣∣S⊥〉 is the uniform

superposition of elements not in S.

The states reached by Grover’s algorithm will remain in the two-dimensional sub-
space spanned by |S〉 and

∣∣S⊥〉. This means that US is really a reflection over
∣∣S⊥〉

and H⊗nU0H
⊗n is a reflection over |φ0〉.

We recall a fact of geometry: In a two-dimensional vector space, given two vectors ~x
and ~y, reflecting a third vector ~z over ~x and then over ~y will have the effect of rotating ~z
by twice the angle between ~x and ~y. This means we can visualize Grover’s algorithm with
Figure 3.4.

50

US →

S

α

(a)

H⊗nU0H
⊗n →

α

(b)

US →

α

(c)

H⊗nU0H
⊗n →

α

(d)

US → · · ·

α

(e)

Figure 3.3: Grover’s algorithm applied to a superposition of 7 elements. Each dot is a
different state, and the height represents the amplitude of that state in the superposi-
tion. The reflection US ensures that the average value (the dotted line) stays between
the marked state, which is in S, and the other states. This ensures that the amplitude
of the marked state is further from the average. This means that the reflection over the
average will exaggerate the differences in amplitudes. If the process were to continue
past step 3.3e, it would reverse, and shrink the difference in amplitude between the
marked state and the average.

51

∣∣S⊥〉

|S〉

|φ0〉

(a) Initial state (red)

∣∣S⊥〉

|S〉

|φ0〉

ref(S⊥)

(b)

∣∣S⊥〉

|S〉

|φ0〉

ref(φ0)

(c)

∣∣S⊥〉

|S〉

|φ0〉

ref(S⊥)

(d)

Figure 3.4: Grover’s algorithm in the subspace spanned by |S〉 and
∣∣S⊥〉. The red dot

is the current state of the algorithm. By reflecting over
∣∣S⊥〉 and |φ0〉, the state rotates

towards |S〉.

This perspective makes the complexity analysis easy. The angle between |φ0〉 and
∣∣S⊥〉

is

θ0 := cos−1(
〈
φ0|S⊥

〉
) = cos−1

(√
2n − |S|

2n

)
≈
√
|S|
2n
. (3.11)

52

To reach |S〉, we need to rotate by π
2
− θ0. Hence the total number of rotations is

π
2
− θ0
θ0

≈ π

2

√
2n

|S|
. (3.12)

If |S| = 1, then this gives us the familiar O(
√

2n) run-time, assuming each rotation takes
time O(1). As |S| increases, the required number of rotations decreases.

A single Grover step will always rotate by the same value, meaning that once we reach
a state close to |S〉, more Grover steps will overshoot the marked elements! To get close
to |S〉, we need to know |S|, yet sometimes we don’t have this information.

Since the state is rotating around, its projection onto |S〉 forms a sinusoidal wave,
shown in Figure 3.5. Picking a random t between 2 and 2n/2 picks a random point on a
wave with at least 1/4 of a full rotation. The probability of measuring something in S
will thus be the integral of this wave, which is approximately 1/2. Thus, repeating this
procedure with different random t will exponentially decrease the chance of failure.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Grover Iterations

P
ro

je
ct

io
n

on
to
|S
〉

Figure 3.5: Probability of measuring an element of S, as a function of the number of Grover
steps.

3.1.3 Important Points

Grover’s algorithm requires O(2n/2) applications of the “oracle” operator US. This is
provably optimal for such an oracle [58]. Unless we exploit some underlying feature of our

53

search problem, there is no algorithm that can outperform Grover.

Looking carefully at the algorithm, we need to uncompute any intermediate compu-
tations that US uses to ensure the proper interference when using H⊗nU0H

⊗n. We may
find an application where the total search space is small but US is expensive. This is the
motivation between quantum random walks.

A second approach for an unknown size of S is Figure 3.6. We run the algorithm
repeatedly, with a different number of total iterations t each time. If we triple t each
time, we cannot “overshoot” an ideal range (shaded in the figure) where the probability of
success is at least 86%. This method is necessary for quantum random walks.

∣∣S⊥〉

|S〉

t = 27

t = 81

t = 243

t = 729

(a) |S| = 1

∣∣S⊥〉

|S〉

t = 9

t = 27

t = 81

t = 243

(b) |S| = 10

∣∣S⊥〉

|S〉

t = 1

t = 3

t = 9

t = 27

(c) |S| = 1000

Figure 3.6: Exponentially increasing iterations for Grover’s algorithm for X = {0, 1}15

3.2 Classical Random Walks

Let X be any finite set. A Markov process M on X is a sequence of random variables
X1, X2, · · · on X with the “Markov property”, which means that the process is forgetful:

p(Xt = x|Xt−1 = yt−1, · · · , X1 = y1) = p(Xt = x|Xt−1 = yt−1). (3.13)

It’s time-homogeneous if p(Xt = x|Xt−1 = y) = p(X2 = x|X1 = y), for all t ≥ 2. This is a
random walk: We can start at any point x ∈ X, and imagine walking to different, random
elements in X at every time step.

We can capture all the information with a |X| × |X| transition matrix P , where Pxy =
P (X2 = x|X1 = y). Following the notation for classical computation from Section 1.1.1,

54

we represent a probability distribution on X as a vector ‖x〉〉. Then P ‖x〉〉 gives the
probability distribution after one step. Hence, P n ‖x〉〉 gives the probability distribution
after n steps. P will be row-stochastic.

We sayM is irreducible if every state is reachable from every other state, meaning for
any x, y ∈ X, there is some n such that (P n)xy > 0. By the Perron-Frobenius theorem,
this implies P will have an eigenvalue 1 with a unique eigenvector with positive coordinates
that we denote ‖π〉〉. This is called the stationary distribution, because it stays “stationary”
under the Markov Process, and because we can normalize the positive coordinates to make
it a valid probability distribution.

3.2.1 Random Walks as Search

Suppose we have the same set-up as Grover’s algorithm: A subset S ⊆ X, a circuit to
decide if b ∈ S for a string b, and we want to output an element b from S.

The classical analogue to Grover’s algorithm is Algorithm 2, a brute force search.

Algorithm 2 A classical brute force search.

1: Initialize the state x as a random element of X
2: for t steps do
3: Check if the current state x is in S; if so, output x and halt
4: Choose another random element of X
5: end for
6: If the previous steps did not halt, declare S = ∅

For Algorithm 2 to succeed with high probability, we need t = Ω(1/ε), where ε =
|S|/|X|. If we let S be the cost of sampling a random element, and C the cost of checking
a random element, then Algorithm 2 costs

S +
1

ε
(S + C). (3.14)

If we add a Markov process structure to X, then in Step 4 we could choose a new
element according to the transition probabilities. As an example, perhaps from an element
x the Markov chain will preferentially choose new elements y such that y can be computed
more efficiently using information from x.

This leads us to Algorithm 3.

55

Algorithm 3 A classical random walk search.

1: Initialize the state x as a random element of X
2: for t2 steps do
3: Check if the current state x is in S; if so, output x and halt
4: Take t1 random steps in the Markov chain
5: end for
6: If the previous steps did not halt, declare S = ∅

We might expect that we could take t1 = 1 and t2 = Ω(1/ε), the same as before. This
will not work because we are not selecting new elements independently anymore. If we pick
an x particularly “far” from S, then in the next step we will still be “far” from S.

To fix this, we use an important fact of Markov processes: Starting from any distribution
on X, if we take enough random steps, we will approach the stationary distribution. Since
the stationary distribution is unique, then after enough steps, the resulting distribution will
be independent of where we started.

Hence, in Step 4, we take t1 large enough to get close to the stationary distribution and
“forget” where we started. Then we move to Step 3 and check. The algorithm now acts
like repeated independent random samples from the stationary distribution, so we would
need to set t2 = Ω(1/ε) for

ε =
∑
x∈S

πx, (3.15)

i.e., ε is the probability of selecting an element of S when sampling from the stationary
distribution.

To find t1, we need to introduce the spectral gap. The spectral gap of P is the difference
between the largest and second-largest eigenvalue of P , and will be denoted δ. Since the
largest eigenvalue of P is 1, δ = 1− λ2 for second-largest eigenvalue λ2. Perron-Frobenius
says δ > 0, and it could be arbitrarily small though not arbitrarily large.

Proposition 3.2.1. The spectral gap of a Markov chain is at most 1, and this minimum
is achieved if and only if P = 1

|X|J , where J is the all-ones matrix.

Proof. We know that the trace is the sum of eigenvalues, so Tr(P) = 1 +
∑

λ<1 λ. For a
fixed trace, we maximize 1 − λ2 by setting all eigenvalues equal. There are at most |X|
eigenvalues, so this gives Tr(P) = 1 + (|X| − 1)λ2. Thus

δ = 1− λ2 ≤ 1− Tr(P)− 1

|X| − 1
=
|X| − Tr(P)

|X|
. (3.16)

56

Every entry of P is non-negative, so Tr(P) ≥ 0. Thus, δ ≤ 1.

The spectral gap is important for the mixing time: Starting from any distribution, how
many steps do we need to take to be close to the stationary distribution?

Proposition 3.2.2. LetM be a Markov process on X such that the transition matrix P is
diagonalizable. Let |p〉 be any probability distribution on X and define d0 = ‖ ‖p〉〉− ‖π〉〉 ‖.
Then ‖P n ‖p〉〉 − ‖π〉〉 ‖ ≤ d0(1− δ)n.

Here we are using ‖p〉〉 to represent a classical probability distribution, following the
notation of Section 1.1.1.

Proof. Since P is diagonalizable, we can decompose the input probability distribution ‖p〉〉
into orthonormal eigenvectors ‖πλ〉〉 of P for each eigenvalue λ, with coefficients aλ:

‖p〉〉 = a1 ‖π〉〉+
∑
λ

aλ ‖πλ〉〉 . (3.17)

Since ‖πλ〉〉 is orthogonal to ‖π〉〉 for all λ, then the sum of components of ‖πλ〉〉 is 0 for each
λ. Hence, the sum of components of ‖p〉〉 is just a1. Since ‖p〉〉 is a probability distribution,
we have a1 = 1.

After n steps of the Markov process:

P n ‖p〉〉 =P n ‖π〉〉+
∑
λ

aλ(P
n ‖πλ〉〉) (3.18)

= ‖π〉〉+
∑
λ

aλλ
n ‖πλ〉〉 . (3.19)

Then we have

‖P n ‖p〉〉 − ‖π〉〉 ‖2 =
∑
λ

a2λλ
2n (3.20)

≤
∑
λ

a2λ(1− δ)2n (3.21)

=d20(1− δ)2n. (3.22)

57

If n = Ω(1
δ
), the distance between P n ‖p〉〉 and ‖π〉〉 is approximately 0, for any input

probability distribution ‖p〉〉. Thus, the “mixing time” of a Markov process, which we will
not formally define, will be approximately equal to 1

δ
, the inverse of the spectral gap.

Thus in Algorithm 3, we take t1 = Θ(1
δ
). Let U be the cost of selecting a new element

according to the Markov process, and S and C be defined as for the brute force search.
Then Algorithm 3 costs

S +
1

ε

(
1

δ
U + C

)
. (3.23)

Equation 3.14 states that a naive search costs

S +
1

ε
(S + C). (3.24)

Thus if 1
δ
U ≤ S, a random walk is cheaper than a naive search.

3.2.2 Greedy Random Walk

Algorithm 3 might seem inefficient; why not do a greedy algorithm?

Algorithm 4 A greedy classical random walk.

1: Initialize the state x as a random element of X
2: for t3 steps do
3: Check if the current state x is in S; if so, output x and halt
4: Take one random step in the Markov chain
5: end for
6: If the previous steps did not halt, declare S = ∅

Algorithm 4 will succeed with constant probability if t3 ≥ 1
δε

, since by that point it has
done all the same steps as Algorithm 3, but with more check steps. Thus we can bound
the cost as

O
(
S + 1

εδ
(U + C)

)
. (3.25)

If the check cost C is substantial, this bound is higher than that of Algorithm 3. How-
ever, it’s possible that it will take many fewer steps if there is a high probability of finding
marked elements in all of the extra check steps. In general it is diffitcult to decide whether
the greedy version is cheaper. The answer will depend on the underlying Markov process.
Hence, we avoid Algorithm 4 only because there is no proof that it will be an improvement.

58

3.3 Quantum Random Walks

Quantum walks are the natural quantum analog of the classical walks we just described.
Despite many previous results, the first improvement over Grover’s algorithm was not until
Ambainis in 2003 [5], after which there has been substantial work. The seminal paper now
is Magniez, Nayak, Roland, and Santha [44], who unified previous results, proved a general
algorithm, and introduced the standard notation.

The analogies between classical walks, quantum walks, and Grover’s algorithm are as
follows:

• In place of a “check”, we use a conditional phase flip, just like US in Grover’s algo-
rithm.

• In place of a random step, we reflect over a subspace based on the transition proba-
bilities, like H⊗nU0H

⊗n in Grover’s algorithm.

• Where Grover’s algorithm “diffused” uniformly to every element, in a random walk
we diffuse according to the underlying Markov process.

Figure 3.7 visualizes these relationships for random walks on graphs.

Brute force
Classical

Random Walk

Grover
Quantum

Random Walk

Only randomly

select neighbours

Random7→ diffuse to
superposition

Check 7→phase flip

Random7→ diffuse to
superposition

Check 7→phase flip

Only diffuse

to neighbours

Use the complete graph

Use the complete graph

Figure 3.7: A diagram of classical and quantum random walk algorithms. In the category
of hand-waving analogies, this diagram commutes.

59

More formally, to convert the classical algorithm to quantum, we first need to make it
reversible. To do this, we use “edges”, rather than elements, and think about our Markov
process as a graph, with edges weighted by probability, and edges of probability 0 removed.
The quantum walks use pairs (x, y) ∈ X2. Thus, at every point in the algorithm, we have
a state like ∑

x,y∈X

αxy |x〉 |y〉 , (3.26)

where αxy ∈ C. Denoting the set of edges incident to a vertex x as I(x), we could also use
states of the form ∑

x∈X

∑
e∈I(X)

αxe |x〉 |e〉 . (3.27)

These two equations store the same information, so there is no difference to the function
of the algorithm which one we use, so long as all the operations work properly. We use the
vertex-and-edge method in Section 4.3.

In almost all applications there is also data associated to each element of x, so we also
store the data for each element, denoted |x〉d.

As in most quantum analogues of classical algorithms, we replace probability distribu-
tions with superpositions. Thus we have a natural stationary “state”:

|π〉 =
∑
x∈X

√
πx |x〉d . (3.28)

The outcome of measuring this state precisely follows the classical probability distribution
‖π〉〉.

We want to initialize the algorithm to this state, so we let S be an operator that does
this. Many applications have uniform stationary distributions, which makes this easier: S
would be a parallel set of Hadamard gates, then the bijection from bitstrings to elements
of X, and then a computation of the associated data.

In Grover’s algorithm, where we might classically use a check operation, we instead
used a conditional phase flip. We do the same thing here. The classical random walk,
Algorithm 3, was really two simultaneous searches: One for elements of S within the
stationary distribution, and another search for the stationary distribution. Thus, we do
the same thing in the quantum setting.

We use walk steps to search for the stationary distribution. A walk step W involves
two subroutines. First, we apply an update operator U , whose action on each state is like

60

a random walk step:

U |x〉d |0〉 =
∑
y∈X

√
Pyx |x〉d |y〉d . (3.29)

But we also include, in analogy with the operator U0 in Grover’s algorithm, a reflection
R0 about |0〉n, whose action is defined on computational basis states |y〉 as:

R0 |x〉d |y〉 =

{
− |x〉d |y〉 , y 6= 0n

|x〉d |y〉 , y = 0n
. (3.30)

Algorithm 5 describes a full quantum walk step.

Algorithm 5 A quantum random walk step, due to Szegedy [53].

1: Apply U−1
2: Apply R0

3: Apply U
4: Swap the first and second registers
5: Repeat Steps 1 to 3.

In this, U is analogous to H⊗n in Grover’s algorithm. Together with R0 it has the effect
of reflecting about the average coefficient of “neighbours” of x.

For the check step, we flip the phase of those |x〉d for x ∈ S with an operator C:

C |x〉d |y〉d =

{
− |x〉d |y〉d , x ∈ S
|x〉d |y〉d , x /∈ S

. (3.31)

Algorithm 6 A quantum random walk in the style of Ambainis.

1: Apply S to |0〉 |0〉 to create |π〉 |0〉.
2: for t1 times do
3: Apply C
4: Apply W for t2 repetitions
5: end for
6: Measure the state.

Our first attempt at a quantum random walk is to assemble these operators in the
same way as a classical random walk, which is Algorithm 6. This is the original quantum

61

random walk that Ambainis described [5]. The analysis is tricky: It’s not clear what W
actually does. Ideally, it would reflect over |π〉 and rotate in a two-dimensional subspace
just like Grover’s algorithm. However, W does not reflect over |π〉, nor is it constrained
to a two-dimensional subspace. Thus, it may not solve the search problem and measuring
the final state may not yield an element of S.

Ambainis designed a particular Markov process to solve the element distinctness prob-
lem, then proved that Algorithm 6 will solve the search problem for that particular Markov
process. However, there is no proof that Algorithm 6 works for other Markov processes.

3.3.1 Szegedy’s Algorithm

Algorithm 7 Szegedy’s random walk algorithm.

1: Apply S to |0〉 |0〉 to create |π〉 |0〉.
2: for t3 times do
3: Apply C
4: Apply W
5: end for
6: Measure the state.

Szegedy expanded on Ambainis’ approach [53] and analyzed a quantum version of the
Algorithm 4, the greedy walk. Szegedy proved that we can use Algorithm 7 to solve the
decision problem, where we want to decide if S is empty or not. If S is empty, then C
acts as the identity. It should also be clear that W acts as the identity on |π〉 |0〉. Thus,
if S is empty, the output will always be |π〉 |0〉. Szegedy showed that if S is non-empty,
if t3 = O(1√

εδ
), with ε and δ defined in the same way as for classical random walks, then

the output state will be different than |π〉 |0〉. More precisely, the inner product between
the two states will be below a constant value. Thus, we can use entanglement to solve the
decision problem, giving Algorithm 8.

Algorithm 8 has cost

O

(
S +

1√
εδ

(U + C)

)
. (3.32)

For any Markov process, if t3 = O(1√
εδ

), then if M is empty, Algorithm 8 will always

measure |+〉, and if M is non-empty, there is a constant probability of measuring |−〉.

62

Algorithm 8 Szegedy’s random walk decision algorithm.

1: Initialize an ancilla qubit to |+〉
2: Use the ancilla qubit to control the following steps:
3: Apply S to |0〉 |0〉 to create |π〉 |0〉.
4: for t3 times do
5: Apply C
6: Apply W
7: end for
8: Measure the ancilla qubit in the {|+〉 , |−〉} basis.

In many cases it is straightforward to divide the set X to perform a binary search, thus
solving the search problem with Szegedy’s decision algorithm. The total cost will depend
on how S, U, and C scale as the search space gets smaller.

3.3.2 MNRS Algorithm

MNRS manged to constrain the algorithm to the 2-dimensional subspace spanned by |π〉
and the marked vertices. To do this they reflect over |π〉; to do that, they use phase
estimation. They wrapped the phase estimation in a Recursive Amplitude Amplification
to keep the errors low throughout the algorithm.

Phase Estimation

Phase estimation is a common quantum technique. It’s famously used in Shor’s algorithm,
and Cleve, Ekert, Macchievello, and Mosca (CEMM) [22] gave a general form, Algorithm
9. Figure 3.8 shows a circuit for it.

Algorithm 9 Phase estimation.

Require: A circuit W , a state |φ〉, and an integer s
1: Apply H⊗s to an ancilla register of |0〉s
2: Use the ancilla to control the number of applications of W , i.e., |n〉 |φ〉 7→ |n〉Wn |φ〉
3: Apply an s-bit inverse quantum Fourier transform to the ancilla

63

|0〉 H · · · •

QFT−1
|0〉 H · · · •

...
...

|0〉 H • · · ·

|0〉 H • · · ·

|φ〉 W W2 · · · W2s−2 W2s−1

Figure 3.8: Circuit for phase estimation.

SinceW is a unitary, all its eigenvalues have the form eiθ; we will let specW denote the
set of all such θ. We can decompose any input |φ〉 as

|φ〉 =
∑

θ∈specW

αθ |ψθ〉 , (3.33)

where |ψθ〉 are the eigenvectors of W .

Theorem 3.3.1 ([22]). Applying phase estimation to |φ〉 will produce state 3.34 in the
ancillae. ∑

θ∈specW

αθ |bθ〉 , (3.34)

The value bθ is close to an s-bit approximation to θ, and satisfies∣∣〈b| ⌊2sθ
2π

⌉〉∣∣ ≥ 2/π. (3.35)

Proof. Let |φ〉 be an eigenvector of W with eigenvalue eiθ. After Step 2, we have the
following state:

1

2s/2

∑
n∈{0,1}s

|n〉Wn |φ〉 =
1

2s/2

∑
n∈{0,1}s

|n〉 einθ |φ〉 . (3.36)

Applying an inverse quantum Fourier transform gives:

QFT−1
1

2s/2

∑
n∈{0,1}s

|n〉 einθ |φ〉 =
1

2s

∑
n∈{0,1}s

∑
m∈{0,1}s

e2πi
nm
2s |m〉 einθ |φ〉 (3.37)

=
1

2s

∑
m∈{0,1}s

 ∑
n∈{0,1}s

ein(−
2πm
2s

+θ)


︸ ︷︷ ︸

(A)

|φ〉 (3.38)

64

≈
∣∣⌊2sθ

2π

⌉〉
|φ〉 (3.39)

This works because the sum in 3.38 (A) is approximately a sum of roots of unity if 2πm
2s
6≈ θ,

and it’s approximately a sum of 1s if 2πm
2s
≈ θ. We will omit the precise details.

Our goal was to use the eigenvalues to distinguish |π〉 from orthogonal states in order
to reflect over |π〉. The phase θ for |π〉 will be 0, and for any orthogonal eigenvector of W ,
the phase θ will be non-zero. We need the minimum value of s such that for all θ 6= 0,
b2sθ/2πe 6= 0. This resembles the spectral gap, and Szegedy made this connection precise.

Theorem 3.3.2 (Theorem 1, [53]). Let P be an irreducible Markov chain, andW be defined
as before. Let cos(θ1), · · · , cos(θ`) be the singular values of P , such that δ = 1 − cos(θ1).
Then the eigenvalues of W are {

±1, e±2iθ1 , · · · , e±2iθ`
}
. (3.40)

Theorem 3.3.2 implies that the maximum non-unit eigenvalue of W , e2θ1i, has θ1 equal
to 2 cos−1(1 − δ) ≈ 2

√
δ. Thus, we need 2s2

√
δ/2π > 1/2, and thus 2s > π

2
√
δ
. Phase

estimation requires applyingW up to 2s times, so the bound of 2s means we need to apply
it O(1√

δ
) times.

Equation 3.35 implies that after phase estimation the fidelity is only 2/π. We could
increase fidelity by increasing s, but the cost of phase estimation, dominated by the re-
peated applications of W , increases exponentially with s. Instead, we can simply repeat
the phase estimation k times. If the output phases are stored in registers |ω1〉 , · · · , |ωk〉,
then after phase estimation we have

|ψ〉 |ω1〉 · · · |ωk〉 . (3.41)

Suppose |ψ〉 is an eigenvector of W for a non-unit eigenvalue. We want to flip its phase.
This uses the following operator:

Rπ,s,k |ψ〉 |ω1〉 · · · |ωk〉 =

{
− |ψ〉 |ω1〉 · · · |ωk〉 , ωi 6= 0 for any i

|ψ〉 |ω1〉 · · · |ωk〉 , ω1 = · · · = ωk = 0.
. (3.42)

We can constructRπ,s,k by combining Toffoli gates to make a multi-OR gate of “ωi 6= 0”, and
use the output to control a NOT on an ancilla |−〉 state, just like with Grover’s algorithm.

Since each |ωi〉 has projection 2/π onto the space orthogonal to |0〉, the projection of
|ψ〉 |ω1〉 · · · |ωk〉 onto the −1 eigenspace of Rπ,s,k will be 1−(2

π
)k. Thus, repeating the phase

65

estimation k times, which only increases the cost by a linear factor, reduces the error by
an exponential factor.

If we denote s-bit phase estimation on W repeated k times as P(W , s, k), then we
define the full phase-estimation-and-flip subroutine as

R(W , s, k) = P(W , s, k)Rπ,s,kP(W , s, k). (3.43)

Analysis:

MNRS showed that their algorithm solves the search problem after 1/
√
ε iterations. If W

is the cost to reflect over the stationary distribution, the total cost becomes:

O

(
S +

1√
ε
(W + C)

)
. (3.44)

Since the reflection uses phase estimation, which uses O(1√
δ
) repetitions of the update plus

some negligible extra gates (the QFT and HADAMARDs), the total cost becomes

O

(
S +

1√
ε

(
1√
δ
U + C

))
. (3.45)

This should remind you of the cost of Algorithm 3, Equation 3.23. If the analogy holds,
it suggests that phase estimation and reflecting over the uniform distribution is analogous
to the classical technique of taking enough random steps to sample from the stationary
distribution. We do not have any intuition for the connection between these processes.

Recursive Amplitude Amplification:

The algorithm we described from MNRS uses ancilla qubits for each phase estimation, but
these would need to be maintained after the phase estimation. This would result in 1/

√
ε

different, useless ancilla registers. To avoid this, MNRS invented Recursive Amplitude
Amplification (RAA).

For RAA we use ` different “layers” of phase estimation, each using increasing precision
and each using distinct ancilla qubits to hold the phase estimations. Thus, we define si
and ki for each layer, and we have states of the following form:

|ψ〉 := |vd〉 |ud〉 |ω1〉s1k1 |ω2〉s2k2 · · · |ω`〉s`k` . (3.46)

66

That is, each state |ωi〉siki contains ki separate si-bit phase estimation results. Then we
define Rπ,i:

Rπ,i |ψ〉 =

{
− |ψ〉 , ωj 6= 0 for any j ≤ i

|ψ〉 , ω1 = · · · = ωi = 0
. (3.47)

This lets us define the circuit Ai recursively: A0 is the identity, and for i ≥ 0:

Ai+1 = AiCA−1i Rπ,iP(W , si, ki)Ai. (3.48)

Careful accounting will show that Rπ,i and P(W , si, ki) are each called 3`−i times over the
course of RAA, and C is called 1

2
(3`+1 − 1) times.

From MNRS, ki = log
(

18
4π3

γ
i2

)
, for a positive precision parameter γ ≤ 1/40. Adding up

the size of the ancillas shows that we need O(log(1/εδ)) ancilla qubits for all the layers of
phase estimation.

3.3.3 Grover vs. Other Random Walks

Grover’s algorithm can be viewed as a random walk [52]. The underlying Markov process
is uniform: starting from any x ∈ X, the probability of walking to any y is constant,
equal to 1

|X| . This means δ takes its maximum value of 1. We can further conclude that
the update cost for Grover’s algorithm is equal to the set-up cost, since in both cases, a
random element is selected. Thus, in the MNRS language, Grover’s algorithm has cost

O

(
S +

1√
ε
(S + C)

)
. (3.49)

Hence, if we have a random walk where S ≤ 1√
δ
U, we are better off ignoring whatever

original Markov structure was present and just using Grover’s algorithm. This is analo-
gous to the classical case, though since 1√

δ
≤ 1

δ
, this is less restrictive than the classical

requirement.

This is still a strong requirement and limits the practical applicability of random walks.
The most common method to achieve the required inequality is to use random walks on a
Johnson graph.

Definition 3.3.1. A Johnson graph on a set X, for an integer R, is a graph J(X,R)
whose vertices are all the subsets of X of size R, and two vertices v and u are adjacent,
denoted v ∼ u, if and only if |v ∩ u| = R− 1.

67

Algorithms for information set decoding [37], triangle-finding [43], subset-sum [9], claw-
finding [55], and element distinctness [5] use random walks on a Johnson graph, and we are
unaware of any applications of quantum random walks that do not use Johnson graphs in
some way. The rationale is that the vertices can be kept as sorted lists, and then insertion
and deletion are much faster than the construction of the full list. However, the idea that
insertion into a list is cheaper than constructing a list is a heuristic borrowed from classical
algorithms, and as we argued in Section 1.3, not every classical heuristic will transfer to
quantum.

68

Chapter 4

Quantum Data

As most quantum walks are memory-intensive algorithms, we need to discuss quantum
memory and data structures.

With the perspective of “gates as processes”, random memory access becomes very
expensive because access to N bits of memory requires Ω(N) gates, and every memory
access incurs the full gate cost. Sections 4.1.1 and 4.1.2 give two potential random access
circuits which nearly match the lower bounds.

Section 4.2 gives details on specific data structures necessary for quantum random
walks. The primary difficulty is that a quantum data structure must be history independent
for it to interfere properly in quantum algorithms. This means the physical memory layout
cannot depend on how the data was constructed. Most classical data structures fail this
requirement.

Quantum Radix Trees (Section 4.2.1) rely on many random memory accesses, and ac-
counting for the full cost makes radix trees expensive. Instead, the easiest way to maintain
a history independent list is to keep it physically sorted. Classically this is rare because
every insertion and deletion must move most of the elements. In a quantum computer, we
already pay a linear cost for memory accees, so this approach is more palatable. Section
4.2.2 explains a “sliding sorted array” that uses this method and ends up cheaper than a
quantum radix tree.

Section 4.3 gives some specific details for how these data structures work in Johnson
graphs.

69

4.1 Quantum Memory Access

Using QRAM is common in random walks. In his seminal paper on random walks on
Johnson graphs, Ambainis adds an extra “random access” gate to the usual gate set, the
same as in Section 2.3.3. Jeffery takes the cost at O(logN) for N bits of memory [35],
while Beals et al. [7] define memory access as a single time step, though they later show
that it does require O(logN) steps if the memory access gate is built from smaller gates.

These are reasonable estimates of time, but Theorem 2.3.1 shows that the gate costs
are high. Here we give two different memory access approaches that nearly match this
lower bound, with logarithmic depth.

4.1.1 Fanout Memory

A fanout gate of size N has the following action on computational basis states:

|y〉 |x1〉 · · · |xN〉 7→ |y〉 |x1 ⊕ y〉 · · · |xN ⊕ y〉 . (4.1)

Fanout acts like a multi-target CNOT. We can construct a fanout circuit recursively using
only CNOT. Clearly when N = 1, a single CNOT suffices. For any other N , we use the circuit
in Figure 4.1, letting n+m = N and denoting an n-element fanout with Fn:

|xN〉
Fn−1 Fn−1...

...
|xm+2〉
|xm+1〉 • •
|xm〉

Fm...
...

|x1〉
|y〉 • •

(a) Recursive circuit

|x7〉
|x6〉 • • • •
|x5〉
|x4〉 • • • •
|x3〉
|x2〉 • •
|x1〉
|y〉 • • •

(b) Circuit for 7 memory elements.

Figure 4.1: General and specific circuits for fanout.

This tree structure is due to Moore [46]. This gives a recursive relationship that lets
us conclude that FANOUT requires O(N) CNOT gates, in depth O(logN). If we assume an

70

optimal memory layout in d-dimensional space, we can conclude that the CNOT gate requires
O(N1/d) time; this gives a total time of O(N1/d) as well.

For the passive local model, the ith layer in the recursion uses 2i CNOT gates, each of
distance N/2i, so the gate-time cost is 2i(N/2i)1/d. Summing this over all logN layers
gives a gate-time cost of O(N). This assumes the qubits are laid out in an efficient way.

Cost 4.1 summarizes the costs.

We can use half as many gates if we have a parallel array of memory; this does not
change the asymptotics, but it’s the circuit we show in Figure 4.2.

Cost 4.1 Fanout circuit

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(N)

Active
Circuit (2.4.2)

Total O(N logN)
Depth O(logN)
Width O(N)

Passive
Latency (2.4.3)

Gate-Time O(N)

Active
Local (2.4.4)

Total O(N1+1/d(logN)d)
Depth O(N1/d)
Width O(N)

Moore also notes that if we conjugate a FANOUT with HADAMARD gates, it swaps the roles
of control and target. That is, it will have the action

|y〉 |x1〉 · · · |xN〉 7→ |y ⊕ x1 ⊕ · · · ⊕ xN〉 |x1〉 · · · |xN〉 , (4.2)

what he calls a PARITY gate - an enormous, multi-input XOR. The use of HADAMARD gates
does not change the asymptotics of any cost measure we consider, so PARITY has the same
cost as FANOUT.

A fanout memory access (from [34]) to an array A first fans out the address i to a
second array A′. Then at each cell, we can copy the contents, in parallel, conditioned on
whether the address of that cell equals the address in A′. This will only be true for one
cell, i, so we only copy out the necessary contents. This method is very similar to a sliding
sorted array [34].

Figure 4.2 summarizes the following steps. We want to access the ith element of an
N -cell array A. We use three ancilla arrays A′, A′′, and A′′′, all initialized to zero.

71

Fanout: Use a fanout to copy the input address i to every cell of A′.

Compare: For each cell j, compute the boolean value of (A′[j] == j) and copy the result
to A′′. Note that this can use custom circuits for each cell. Since A′[j] = i for all j,
then after this step A′′[j] = δij.

We also want to use smaller fanout circuits to copy the result to all m bits in each
cell of A′′.

Copy: For each cell j, use A′′[j] to control a copy from A[j] to A′′′[j] (i.e., m Toffoli gates).
After this step, A′′′[j] = 0 for all j 6= i, and A′′′[i] = A[i].

Fanin: Use a PARITY gate from all cells of A′′′ to the output register. Since all but one
cell of A′′′ are zero, this will simply copy the non-zero cell, which is A′′′[i] = A[i].

Uncompute: Uncompute all the previous steps to clear the ancilla arrays back to zero.

i

0 0

...
...

...
...

A :

A′ :

a1 · · · ai−1 ai ai+1 · · · · · · aN

0 · · · 0 0 0 · · · · · · 0

⊕
•

⊕
•

⊕ • ⊕• ⊕ • ⊕•

⊕

•

⊕
•

⊕

•

⊕
•

⊕
•

⊕

•

⊕
•

⊕

•

(a) Fanout

A :

A′ :

A′′ :

a1 · · · ak−1 ak ak+1 · · · aN

i · · · i i i · · · i

0 · · · 0 0 0 · · · 0

•= 1? • •= i− 1? •= i? •= i+ 1? • •= N?
•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

(b) Compare

A :

A′ :

A′′ :

A′′′ :

a1 · · · ai−1 ai ai+1 · · · aN

i · · · i i i · · · i

0 · · · 0 1 0 · · · 0

0 · · · 0 0 0 · · · 0

• • • • • • •

• • • • • • •

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(c) Copy

A :

A′ :

A′′ :

A′′′ :

a1 · · · ai−1 ai ai+1 · · · · · · aN

i · · · i i i · · · · · · i

0 · · · 0 1 0 · · · · · · 0

0 · · · 0 ai 0 · · · · · · 0

0

0 0

...
...

...
...

⊕
•

⊕
•

⊕• ⊕ • ⊕• ⊕ •

⊕

•
⊕
•

⊕

•
⊕
•

⊕
•

⊕

•
⊕
•

⊕

•

(d) Fanin

Figure 4.2: Memory access with fanout, drawing heavily from [34]. See text for full de-
scription.

72

Cost 4.2 gives all the costs for m-bit memory. We assume that m is small enough that
latency is irrelevant, and use a comparator circuit of O(m) gates, depth O(logm) and with
O(m) [56].

Cost 4.2 Fanout memory access

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(Nm)

Active
Circuit (2.4.2)

Total O(Nm logN)
Depth O(logN)
Width O(Nm)

Passive
Latency (2.4.3)

Gate-Time O(Nm)

Active
Local (2.4.4)

Total O((Nm)1+1/d(log(Nm))d)
Depth O((Nm)1/d)
Width O(Nm)

QRAM
(2.4.5)

Gates 1
Time O((Nm)1/d)

4.1.2 Sorting Network Memory Access

It’s clear looking at Figure 4.2 that large portions of the memory and gates are doing
very little useful work. This is what Beals et al. [7] decided about single-element memory
access, and set out with the loftier goal of a multi-element memory access circuit UN,N ,
with action:

|j1〉 · · · |jN〉 |y1〉 · · · |yN〉 |x1〉 · · · |xN〉
7→ |j1〉 · · · |jN〉 |y1 ⊕ xj1〉 · · · |yN ⊕ xjN 〉 |x1〉 · · · |xN〉 . (4.3)

The key to their approach is that since we can apply gates simultaneously to all qubits,
we can turn them into a sorting network. That is, each memory cell can compare itself to
a neighbouring cell, and they will swap if need be. The depth of such a sorting network
depends on how many “neighbours” a qubit has. Ignoring physical layout and letting each
qubit connect to every other qubit leads to O(logN) depth.

We can also achieve O(logN) depth with “hypercube” connectivity. This means each
qubit has O(logN) neighbours. If the neighbours are within a bounded physical distance,

73

then the number of cells within graph distance D grows exponentially with D - but the
physical space they can occupy only grows as Dd in d-dimensional space. Hence, the density
of cells must increase exponentially to fit into Euclidean space, which is not realistic.

In a two-dimensional grid, a sort has depth O(N1/2); we assume that in d dimensions
a sort has depth O(N1/d).

Figure 4.3 shows the memory access. First we make tuples (i, dout, din, b), where b is a
boolean flag indicating either “query” (0) or “answer” (1). The registers dout and din store
data inputs and outputs, and i stores the memory address.

Each index register |ji〉 means we want to query the data in location ji and XOR it with
the data yi. Thus, we format a “query” tuple (ji, yi, 0, 0) for each register |yi〉.

Each data register |xi〉 may need to be an answer to a query, so we format each one
into an “answer” tuple (i, 0, xi, 1).

Then we sort, based on the following order: First sort based on the address register,
and if multiple tuples have the same address, sort on the anser/query flag. After the sort,
we will end up with data ordered as:

· · · |(jk, yk, 0, 0)〉 |(i, 0, xi, 1)〉 · · · (4.4)

where jk = i. Then the data can simply be copied from din of the answer tuple to dout
of (potentially several) query tuple(s). Then the sort is reversed, putting everything back
where it is supposed to be.

There are more complications to do this properly, but we will skip these and focus
on the cost of this circuit. We follow Beals et al. [7] and use the comparator circuit of
[56], which compares m-bit strings using a binary tree of O(m) gates, O(logm) depth, and
O(m) width. We assume m is small enough that logm dominates any signal propagation
time.

The sorting step dominates the costs for all metrics. We use their proof of Theorem 5
[7] to get the full costs. For locality and latency, we assume that the d-dimensional case is
limited to a d-dimensional lattice connectivity, such that a sorting network takes O(N1/d)
depth and O(N1+1/d) comparisons.

A sort necessarily requires O(logN) ancilla qubits to store a bitstring which represents
the permutation. Without these ancillae, sorting is obviously irreversible. It’s unclear how
many ancillae a specific sort will need. For example, Cheng and Wang [20] describe a
quantum merge sort based on quantum comparators, each of which performs a single swap
but requires its own ancilla qubit. This would make the number of ancillae equal to the

74

(j1, y1) (j2, y2) (j3, y3) (j4, y4) x1 x2 x3 x4

1,00 4,00 3,00 2,00 23 03 08 04

Format:
1,00,0 4,00,0 3,00,0 2,00,0 1,23,1 2,03,1 3,08,1 4,04,1

Sort:
1,00,0 4,00,03,00,02,00,01,23,1 2,03,1 3,08,1 4,04,1

Cascade:
1,23,0 4,04,03,08,02,03,01,23,1 2,03,1 3,08,1 4,04,1

Unsort:
1,23,0 4,04,0 3,08,0 2,03,0 1,23,1 2,03,1 3,08,1 4,04,1

Unformat:
1,23 4,04 3,08 2,03 23 03 08 04

(j1,y1⊕xj1) (j2,y2⊕xj2) (j3,y3⊕xj3) (j4,y4⊕xj4) x1 x2 x3 x4

Figure 4.3: Multi-address memory access with a sorting network. Only one of din and dout
is shown.

number of comparisons, which is what Beals et al. assume [7]. This is far from optimal,
but without a method to “compress” the ancillae, we will use the same conclusion.

This means a d-dimensional sorting network needs O(N1+1/d) ancillae. Each processor
now has a latency of O((N1/d+m)1/d) to send its data to a neighbour to do the comparison.
Arguably, we could simulate a higher connectivity with a series of predetermined swaps
between adjacent qubits. This would not improve the total depth, but it would reduce
the number of comparisons and hence the number of ancillae. We will not analyze this
approach.

Cost 4.3 shows the cost of a single sort, which is asymptotically the same as a sorting
network memory access.

75

Cost 4.3 Sorting N elements of m bits each

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(Nm logN)

Active
Circuit (2.4.2)

Total O(N logN logm(m+ logN))
Depth O(logN logm)
Width O(N(m+ logN))

Passive
Latency (2.4.3)

Gate-Time O(N1+1/d(m+N1/d2))

Active
Local (2.4.4)

Total O(N1+2/d+1/d2) + o(N1+2/d+1/d2)

Depth O(N1/d(logm+N1/d2))
Width O(N(N1/d +m))

QRAM
(2.4.5)

Gates O(N logN(m))
Time O(N logN(Nm)1/d)

Comparing fanout to a sorting network, we see that fanout is simpler and costs less.
However, the sorting network is much more powerful, since it can perform N simultaneous
memory accesses. As Beals et al. [7] put it:

There is a sense in which the gates in a typical circuit for [single memory access]
can be said to be “not working very hard” (although this idea is hard to quantify
precisely), and this inefficiency points to the need for a parallel algorithm.

Physical layout, and hence reduced connectivity, makes the sorting network noticeably
more expensive. This may be more palatable for particular applications.

4.2 Quantum Data Structures

A sorted list is a basic building block of many classical algorithms. It is also essential to
quantum random walks on graphs whose vertices are sets.

In our paper [34], we used the requirements that Jeffery set out [35]. The most basic
way to define a quantum sorted list is as follows:

Definition 4.2.1. A quantum sorted list data structure for a set X is a map from sub-
sets S ⊆ X to unique states |S〉, along with a sequence of unitaries UI(N) and UL(N)
parametrized by an integer N , that satisfy the following properties for all x ∈ X and all
S ⊆ X with |S| = N :

76

Look-up: UL(N) |S〉 |x〉 |0〉 =

{
|S〉 |x〉 |1〉 , x ∈ S
|S〉 |x〉 |0〉 , x /∈ S

.

Insertion: UI(N) |S〉 |x〉 = |S ∪ {x}〉 |x〉.

A popular classical approach uses a linked list that implements a binary tree. That
is, for some total ordering of X, we store S as a set of memory cells, each containing an
element x and pointers to other nodes in the tree. We ensure that the pointer to the
“right” points to a tree of elements y such that y > x, and that the pointer on the “left”
points to a tree of elements y such that y ≤ x.

In many classical applications, we leave the particulars of the memory layout to to the
system. It’s largely irrelevant which particular RAM address the nodes happen to occupy.
In a quantum algorithm we do not have this luxury. Two different lists, |S〉 and |S ′〉,
storing the same set S, but in a different order, will not interfere properly: |S〉 − |S ′〉 6= 0.
For quantum walks and many other algorithms we need interference, hence why we require
a unique state |S〉.

This is known as “history independence” and it was known to Ambainis [5] who solved
it with a hash-table and skip-list. Bernstein, Jeffery, Lange, and Meurer [9] introduced
the quantum radix tree, which Jeffery [35] expanded on. Jaques and Schanck [34] simply
translated a classically history independant data structure, a dynamic sorted array, to the
quantum setting. There we called it a “Johnson Vertex”, after our main application, but
in this thesis we call it a “sliding sorted array” for more generality.

The quantum radix tree takes a history dependent data structure, and uses a uniform
superposition over all possible layouts, while the hash-table and skip-list uses a randomized
but history independent layout with poor worst-case performance, then uses a superposition
of possible hash functions to approach the average-case performance.

By the same logic as Theorem 2.3.1, insertion, deletion, and lookup will require Ω(N)
gates. The quantum radix tree exceeds this bound by a logarithmic factor, but a sliding
sorted array meets it.

For the claw-finding random walks in Chapter 6, we need to support three other op-
erations: selection, claw check, and complement sampling [34]. We assume that we have
two sets, X and Y , with a quantum data structure on each, and functions f : X → S and
g : Y → S. Then we require the following circuits:

Selection US(N): For any set S ⊆ X with |S| = N ,

US(N) |S〉 =
1√
N

∑
x∈S

|S〉 |x〉 . (4.5)

77

Claw check UC(N1, N2): For any two sets S1 ⊆ X and S2 ⊆ Y with |S1| = N1 and
|S2| = N2,

UC(N1, N2) |S1〉 |S2〉 |0〉 =

{
|S1〉 |S2〉 |1〉 , S1, S2 have a claw

|S1〉 |S2〉 |0〉 , otherwise.
, (4.6)

where S1 and S2 “have a claw” if there is some x ∈ S1 and y ∈ S2 such that
f(x) = g(y).

Complement sampling UK(N): For any set S ⊆ X with |S| = N :

UK(N) |S〉 =
1√

|X| −N
|S〉

∑
x∈X\S

|x〉 . (4.7)

We also need Selection and Complement sampling circuits for Y as well.

Jaques and Schanck introduced complement sampling [34]. Previous approaches did
not include this; in a query model, this can be done in the naive way by iterating over the
entire data structure without using any queries. Jaques and Schanck avoided the issue by
showing that sampling from the full set introduces errors small enough to ignore.

Here we will give a method to perform complement sampling directly. What we do is
first create a uniform superposition over the full set X:

|S〉 7→ |S〉
∑
x∈X

|x〉 . (4.8)

After this, we use the lookup circuit:

|S〉
∑
x∈X

|x〉 7→ |S〉
∑
x∈X\S

|x〉 |0〉+ |S〉
∑
x∈S

|x〉 |1〉 . (4.9)

This matches the probabilistic algorithm setup of Section 1.2.4. Here, the “garbage” ancilla
could be uncomputed by the inverse of the Selection circuit. Hence, we can use any method
listed in Section 1.2.4 to get arbitrarily close the intended action of complement sampling.

With the assumption of arbitrary superpositions, this can be done with roughly the
same cost as a single look-up.

78

4.2.1 Quantum Radix Trees

We follow the description of quantum radix trees from Jeffery [35]. Our conclusion, from
[34], is that a radix tree is less efficient than a sliding sorted array (Section 4.2.2), though
we will give explicit details for the radix tree. Many of these details are missing from the
literature, and they serve as an illustration of the subtle and difficult issues of reversibly
implementing traditional classical algorithms.

Classical Radix Trees

A radix tree is binary tree based on strings. Each edge denotes a substring. A path from
the root node to a leaf node stores the string formed by concatenating all the edges in that
path. Figure 4.4 gives an example of a classical radix tree, though the radix trees we will
consider are assumed to store only binary strings.

ut ve

bo cute

a

ats

ts th

o

bo

(a) The data as a tree.

1: (a,4),(bo,2)
2: (ats,⊥),(o,5)
3: (ut,⊥),(ve,⊥)
4: (bo,3),(cute,⊥)
5: (ts,⊥),(th,⊥)

(b) Memory cells storing the radix tree. “⊥”
indicates the end of the string.

Figure 4.4: An example of the modelled layout and the actual memory layout of a radix
tree storing the words about, above, acute, boats, booth, and boots. Note that the memory
layout is non-unique for this tree: The root cell is fixed, but there are 4! = 24 possible
arrangements of the other 4 cells.

Rather than describe insertion and look-up in full generality, we will simply walk
through the example tree.

To look up “acute” in the tree, we would first check the root node, with two outgoing
edges, (a,4) and (bo,2). Since “a” is the prefix of “acute”, we go to memory location 4 and
find the node with edges (bo,3) and (cute,⊥). “cute” matches the remainder of our search
string, so we found the correct string.

To insert “actor”, we would look up in the same way, and find the cell with edges (bo,3)
and (cute,⊥). Since the first character of “cute” matches our input string, we change the

79

edge from (cute,⊥) to (c,6), then insert a new node at location 6 with edges (ute,⊥) and
(tor,⊥).

To delete “acute”, we would look it up first, then notice that memory location 4 only
contains (bo,3) and (cute,⊥), so we would need to delete all data in memory location 4
and move “bo” up the tree. We would go back to memory location 1 and combine (a,4)
with (bo,3) to become (abo,3). Note that this fragments the memory, since location 4 is
empty. We would rely on some sort of garbage collection to eventually fix this.

In short, a radix tree is just a binary tree, but with the information stored in the edges.

Quantum Modifications

To make a radix tree history-independent, we use a superposition over all possible memory
layouts. The fragmentation problem is worse now, because classically, a radix tree cannot
be fragmented until there have been deletions. This creates a difference in layout between
a freshly-initialized radix tree and one produced by several insertions and deletions. Hence,
we either need to pre-fragment the quantum radix tree, or prevent fragmentation. Previous
literature opts to pre-fragment by choosing a random memory location for insertion.

This means we need some method to store a list of the empty cells. Here we propose
storing this tree within the empty nodes themselves.

The left half of Figure 4.5 shows how this might look. Since memory cells are not
“empty”, we will use “data-free” to refer to a cell that does not contain the useful data.
It may either be blank or contain a node of the tree which tracks data-free cells. The
data-free-cell tree will store memory locations as binary strings. In Figure 4.5, we have
entire substrings for the edges at each node, rather than the next available substring as in
a classical radix tree. Section 4.2.1 explains this.

A radix tree needs N − 1 memory cells to store N strings. Hence, if it is allocated
to store N strings but currently holds only n, there will be N − n data-free cells. Then
N−n−1 of these cells will store the tree of data-free cells, meaning there is one completely
empty cell.

Insertion

Inserting a new element x into the tree will require a new data node. Whatever the
address of this node, we will need to delete this address from the data-free-cell tree. This
will remove one node from the data-free-cell tree, which is the node we want to use for the

80

data tree. We need to ensure that if we delete the node at address i from the data-free-cell
tree, that we also delete the string “i” from the content of the tree. These will not always
match.

To make this work, we first select the random memory address i from the data-free-cell
tree. To do this, we start at the root of the tree, then randomly select a branch, weighted
by the number of nodes under each branch. Hence, we need to append a “size” to each
node of the tree. In Figure 4.5 the root, cell 12, has a left branch of size 3 and a right
branch of size 4. Thus, we want to follow the left branch with probability 3/7 and the
right branch with probability 4/7.

To actually accomplish this, we would initialize a superposition

1√
N − n− 1

N−n−1∑
b=0

|b〉 (4.10)

and compare b to the size of the left branch. If b is greater, we would subtract the size of
the left branch from b, take the right branch, and recurse. If b is smaller, we would take
the left branch and recurse. This will select a random element of the data-free-cell tree
with uniform probability. This will be a memory location; call it i.

Since our goal is for i to contain data, we need to delete the string “i” from the data-
free-cell tree. This alters the structure of the data-free-cell tree; in particular, we will need
to delete some node. Let j be the memory location of this node. Once this node is deleted,
we swap memory location i with memory location j, updating the appropriate pointers.
This means i will be blank, so we can add the new data node to location i and update the
tree as necessary.

Figure 4.5 shows this process. In the figure, the new element x is “actor”. We randomly
chose i = 6. To delete the string “6” from the data-free-cell tree, memory location 10 must
change so that the substring “101” terminates, meaning we will need to delete memory
location 3 from the data-free-cell tree. Once it is deleted, we move the data in memory
location 6 to memory location 3, which means we need to update the pointer in the parent
of the node at address 6, which in this case is at address 5. Then we can save the new
data node in location 6.

Deletion is just the inverse of insertion.

Assuming the objects in the tree have m bits, this process involved, at worst O(m)
memory accesses, comparisons, and additions. As in Section 4.1.1, m-bit comparisons use
O(logm) depth, O(m) gates and O(m) width. Takahashi, Tani, and Kunihiro [54] provide

81

ut ve

bo cute

a

ats

ts th

o

bo

ut ve

bo c

tor ute

a

ats

ts th

o

bo

(a) The data tree.

3

5 6

8 9

10

12

0 1

011 1

01 10

0 100

0 10

0 1

3 5

6

8 9

10

12

0 1

011 101 0 100

0 10

0 1

(b) The data-free-cell tree. Leaf labels are for ease of interpretation only.

Left Right
1. (a,2) (bo,4)
2. (abo,7) (acute,⊥)
3. (0101,⊥) (0110,⊥)
4. (boats,⊥) (boo,11)
5. (10,6) (1100,⊥)
6. (100,8) (1010,⊥)
7. (about,⊥) (above,⊥)
8. (1000,⊥) (1001,⊥)
9. blank
10. (0011,⊥) (01,3)
11. (boots,⊥) (booth,⊥)
12. (0,10) (1,5)

Left Right
1. (a,2) (bo,4)
2. (abo,7) (ac,6)
3. (100,8) (1010,⊥)
4. (boats,⊥) (boo,11)
5. (10,3) (1100,⊥)
6. (actor,⊥) (acute,⊥)
7. (about,⊥) (above,⊥)
8. (1000,⊥) (1001,⊥)
9. blank
10. (0011,⊥) (0101,⊥)
11. (boots,⊥) (booth,⊥)
12. (0,10) (1,5)

(c) Memory cells as tuples of (substring, memory location), for edges to the right and left. “⊥”
indicates the end of the string. Data is in bold.

Figure 4.5: Left: A radix tree with data and data-free-cells. For this data, the tree layout
is fixed, but the memory layot is not. Right: Inserting the string “actor” into the tree.
Changes to the data are shown in blue and changes to the data-free-cells are shown in red.

82

a circuit for m-bit addition with O(logm) depth and O(m) gates. Using the fanout memory
access gives Cost 4.4.

Cost 4.4 Quantum radix tree insertion

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(Nm2)

Active
Circuit (2.4.2)

Total O(Nm2 log(N)
Depth O(m log(N))
Width O(Nm)

Passive
Latency (2.4.3)

Gate-Time O(Nm2)

Active
Local (2.4.4)

Total O((Nm)1+1/dm log(Nm))dm)
Depth O((Nm)1/dm)
Width O(Nm)

QRAM
(2.4.5)

Gates O(m2)
Time N1/dm

Initialization

We can initialize a quantum radix tree with a Knuth shuffle (see Section 4.3.3). The total
cost is

O(N(CRAM + A)). (4.11)

where CRAM is the cost of a random access and A is the cost of m-bit addition. Combining
these with the standard random access costs and addition costs gives Cost 4.5.

83

Cost 4.5 Initializing a quantum radix tree with a Knuth shuffle

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(N2m)

Active
Circuit (2.4.2)

Total O(N2m logN)
Depth O(N logN)
Width O(Nm)

Passive
Latency (2.4.3)

Gate-Time O(N2m)

Active
Local (2.4.4)

Total O(N2+1/dm1+1/d log(Nm))d)
Depth O(N(Nm)1/d)
Width O(Nm)

QRAM
(2.4.5)

Gates O(Nm)
Time O(N1+1/dm1/d)

Augmented Radix Trees

For claw-finding, we have functions f : X → S and g : Y → S, and we want to be able
to find if there is some x in our list such that f(x) = z, for some input string z. We will
need a similar structure for both X and Y but we will focus on X. To do this, the tree
will store strings of (f(x), x). The function value f(x) is the prefix of this string so that
we can search for z in the tree, and simply stop after the length of z. Further, since each
node stores the weight of the subtree underneath itself, once we find f(x) we can read the
weight to learn how many x ∈ S have this value of f .

The following method is Schanck’s take on Jeffery’s data structure [51, 35]. For a state
|S1〉 |S2〉 storing subsets of X and Y , respectively, we will keep another register |C〉, which
stores a claw counter:

C = |{(x, y) ∈ S1 × S2 |f(x) = g(y)}| . (4.12)

This counts unordered pairs that form claws. This means if we have three elements x1, x2,
and y such that f(x1) = f(x2) = g(y), we count this as 2 claws.

To maintain this counter, when we insert an element x into S1, we need to check if f(x)
matches any g(y) in S2. This is a straightforward query. If there is a match, we add the
number of such y to the claw counter. This is where we use the weight of the node with
the prefix g(y).

84

This adds some complexity to the insertion operation. However, this is only O(logm)
memory accesses and O(logm) additions, which the radix tree already needed to do, so
the asymptotic complexity of insertion, Cost 4.4, will not change.

Selection: Since the tree includes the “weight” of each node (the number of strings
stored in that branch), it is straightforward to use this weight to select random nodes in
superposition, just as we did to randomly insert.

Check: With the claw counters, a check is a single comparison: We look at the claw
counter of the root node, and check if it is equal to 0 or not.

4.2.2 Sliding Sorted Arrays

A classical dynamic sorted array is an array of elements that are physically in order,
meaning the ith element in the array is the ith largest element (or smallest, depending on
the ordering used). This is clearly history independent, and search is fast, but inserting
a new element means potentially moving all elements in the array. Classically, this is
tremendously costly.

For a quantum computer, Theorem 2.3.1 means we are already prepared to spend a
linear number of gates for insertion. In the sliding sorted array, insertion into an n-element
array can require moving up to n elements, but each element moves only 1 “cell”. Hence,
this can actually be implemented with a low gate cost. In the QRAM model, it’s the same
issue as classical computers, so the cost is enormous; we will not consider the QRAM model
for sliding sorted arrays.

For this section we assume that the elements are arranged in non-increasing order. The
details come from our paper [34], though there we called this structure a “Johnson vertex”,
because we limited ourselves to lists without duplicates and focused only on applications
to Johnson graphs. However, the structure works more generally. We will use “cell” to
refer to a specific piece of data stored in the array, and any extra data it requires for the
array to function.

Initialization

To initialize we only need to set every cell to a specified bottom string ⊥, which is defined
so that x ≥ ⊥ for all x that we may want to insert in the array. For later steps we require
⊥ to be the all-zeros string.

85

Insertion and Deletion

Here we will describe the full steps for insertion, following [34]. We are inserting an element
x into an array A which contains elements a1, · · · , aR. We will require two ancilla arrays A′

and A′′ both initialized to 0; A′ stores cells of the same length as A, and A′′ stores binary
cells. Figure 4.6 shows the insertion process.

Fan-out: The first step uses a fan-out circuit (as in Equation 4.1) to fill A′ with x, Figure
4.6a. We also use CNOT gates to copy x to the final, empty cell in A; we explain why
in the swap and un-fan-out steps.

Compare: We compare every cell A[i] in A to the corresponding A′[i], and save the
boolean evaluation of “A[i] ≤ A′[i]” to A′′[i], Figure 4.6b. Since every A′[i] is x, this
means A′′[i] = (A[i] ≤ x).

Swap: The bits in A′′ are used as controls for two swaps: one diagonal swap and one swap
straight down, Figure 4.6c and 4.6d. This moves all the necessary elements to the
right by one cell, and puts x in the new cell that this opens in the middle of the
array.

Because the diagonal swap will not change the last element of the array, Figure 4.6
shows how, if we had not copied x over the bottom string in the fan-out step, we
would end up with the bottom string in A′[N] after this step.

Un-compare: We do the same comparion as the compare step, and this will clear the
comparison array A′′, Figure 4.6e. It was necessary to use ≤, so that the newly
inserted x will still clear the comparison bit above itself.

Un-fan-out: Starting from the state shown in Figure 4.6f, we invert the fanout circuit to
clear A′. This finishes the insertion. Here it’s clear that the final element of A′ must
be x to be properly cleared.

We assume that we build this circuit such A[i], A′[i], and A′′[i] are all physically close, so
that the swap step does not have any latency or locality concerns. Using Cost 4.1 and the
cost of a comparison, we give the full sliding sorted array insertion cost as Cost 4.6. This
is noticeably less expensive than the radix tree. Memory access is “non-local”, in the sense
that the input is physically far from everywhere it needs to be for the computation. Hence
for sorted lists, the expensive operation is the non-local memory access, and the sliding
sorted array saves cost by only doing 2 non-local fanouts, and using local operations for
the rest.

86

x

0 0

...
...

...
...

A :

A′ :

a1 · · · ak−1 ak ak+1 · · · aN ⊥

0 · · · 0 0 0 · · · 0 0

⊕
•

⊕
•

⊕ • ⊕• ⊕ • ⊕•

⊕

•

⊕
•

⊕

•

⊕
•

⊕
•

⊕

•

⊕
•

⊕

•

⊕
•

(a)

A :

A′ :

a1 · · · ak−1 ak ak+1 · · · aN x

x · · · x x x · · · x x

0 · · · 0 0 0 · · · 0 0

• • • • • • • •
•

⊕

≤?

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

(b)

A :

A′ :

a1 · · · ak−1 ak ak+1 · · · aN x

x x · · · x x x · · · x

0 · · · 0 1 1 · · · 1 1

× × × × × × ×
× × × × × × ×

• • • • • • •

(c)

A :

A′ :

a1 · · · ak−1 x x · · · x x

x · · · x x ak · · · aN−1 aN

· · · 0 0 1 · · · 1 1 1

× × × × × × ×
× × × × × × ×

• • • • • • •

(d)

A :

A′ :

a1 · · · ak−1 x ak · · · aR−1 aR

x · · · x x x · · · x x

0 · · · 0 1 1 · · · 1 1

• • • • • • • •
•

⊕

≤?

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

(e)

A :

A′ :

a1 · · · ak−1 x ak · · · aN−1 aN

x · · · x x x · · · x x

0 · · · 0 0 0 · · · 0 0

(f)

Figure 4.6: Insertion into a sliding sorted array A, from [34]. See text for full description.

Cost 4.6 Insertion into a sliding sorted array

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(Nm)

Active
Circuit (2.4.2)

Total O(Nm logN)
Depth O(logN)
Width O(Nm)

Passive
Latency (2.4.3)

Gate-Time O(Nm)

Active
Local (2.4.4)

Total O((Nm)1+1/d log(Nm))d)
Depth O((Nm)1/d)
Width O(Nm)

This data structure works perfectly well with repeated elements (i.e., to store a multi-
set). If x is already in the array, a newly inserted x will always be inserted into the front.

87

This means that the comparator must use full string equality to check ≤, or else we lose
history independence.

Search

Search is essentially the same as insertion. For an element x, we still need ancilla arrays
A′ and A′′ initialized to 0. The steps are as follows:

Fanout: Fanout x to A′, Figure 4.7a.

Compare: For all i, set A′′[i] to the result of A[i] == A′[i], Figure 4.7b.

OR-tree: We use a binary tree of logical OR gates to find the logical OR of all elements of
A′′, Figure 4.7c. A quantum OR requires one ancilla, initialized to 0, which will store
the result. Hence each layer of the OR-tree will need new ancillae, for a total of N new
ancillae bits. Once the OR-tree is finished, the final result is copied to some output
register, then the tree is uncomputed.

Uncompute: Reverse the comparison and fanout circuits.

This has the same cost as insertion. An interesting point here is that the search does
not require the array to be sorted. Sorting the array is actually only necessary for history
independence.

Augmented Sorted Arrays

Augmenting a sliding sorted array follows many of the same methods as the radix tree.
The cells will now store tuples (x, f(x)) or (y, g(y)). We also add a counter the start of the
array which counts the number of unordered pairs that form claws, the same as Equation
4.12. From now on, assume we have two parallel arrays S1 ⊆ X and S2 ⊆ Y .

Selection: Selection is easy, since the classical controller knows the size N of the array.
It produces a superposition of integers up to N , and uses these as input to a fanout memory
access.

88

x

0 0

...
...

...
...

A :

A′ :

a1 · · · ak−1 x ak+1 · · · aN−1 aN

0 · · · 0 0 0 · · · 0 0

⊕
•

⊕
•

⊕ • ⊕• ⊕ • ⊕•

⊕

•

⊕
•

⊕

•

⊕
•

⊕
•

⊕

•

⊕
•

⊕

•

(a)

A :

A′ :

a1 · · · ak−1 x ak+1 · · · aN−1 aN

x · · · x x x · · · x x

0 · · · 0 0 0 · · · 0 0

• • • • • • • •
•

⊕
==?

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

•

⊕

(b)

OR OR OR OR

...
...

...
...

OR OR

OR

A :

A′ :

a1 · · · ak−1 x ak+1 · · · aN−1 aN

x · · · x x x · · · x x

0 · · · 0 1 0 · · · 0 0

(c)

Figure 4.7: Searching into a sliding sorted array A. See text for full description

Claw detection: If we properly maintain the claw counter, we can simply check that
counter to decide if the pair (S1, S2) contains a claw. To maintain the counter, we augment
the insertion operation.

When inserting an element x into S1, we count the number of y ∈ S2 such that f(x) =
g(y). The following steps will accomplish this, using two parallel arrays A′ and A′′, although
now we require A′′ to have logN bits, where N is the size of the array.

Fanout: Fanout f1(x) to A′.

Compare: Compare A′[i] to A[i] for all i. In particular, since A[i] = (yi, g(yi)), we only
compare to g(yi). The result is saved in A′′ as an integer.

Sum: Use a binary tree of addition circuits to add up all elements of A′′. An in-place
addition circuit will map (a, b) to (a, a + b) [54]. A tree of such circuits can add up
all N numbers in depth O(log2N), since each integer has logN digits, and this tree
will require O(N logN) gates. The result is added to the claw counter.

89

We apply this counting circuit with the roles of S1 and S2 reversed when we insert an
element into S2.

Performing this count dominates the insertion cost and gives Cost 4.7. We assume logN
is in O(m), otherwise there are fewer possible strings to insert into the array than cells
allocated in the array. When accounting for latency, we assume the N1/d terms dominate
the extra cost of addition. It is still cheaper than the radix tree by logarithmic factors in
all the cost models.

Remark 4.2.1. In the tree of integer addition, we know that in the ith layer, the results will
have at most i+1 bits. Hence, we can use smaller addition circuits in the first layer, which
requires the most addition circuits. Unfortunately, this optimization has no asymptotic
impact on the depth or gate count.

Cost 4.7 Insertion into an augmented sliding sorted array

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(Nm)

Active
Circuit (2.4.2)

Total O(Nm(logm+ log2N))
Depth O(logm+ log2N)
Width O(Nm)

Passive
Latency (2.4.3)

Gate-Time O(Nm)

Active
Local (2.4.4)

Total O((Nm)1+1/d logd(Nm)))
Depth O((Nm)1/d)
Width O(Nm)

Physical Layout

For geometric models, there is some question about the layout of this array. Figure 4.6
shows it as a linear list, but we would like a d-dimensional memory array.

Considering the various processes, the primary requirement is that sequential elements
are physically next to each other. Many layouts have this property; in 2-dimensions, we
could simply lay out the memory in a zig-zag pattern.

This makes the comparison steps local and fast. For the fanout, we are already prepared
to spend O(N1/d) depth and O(N) gates, so we could either find some way to build a depth-

90

Figure 4.8: An example of the physical layout of the elements in a sliding sorted array,
sorted from lightest to darkest.

optimal tree, or we could do it the naive way like Figure 4.9. Both will have the same
asymptotic costs.

4.3 Johnson Graphs

There are a few special tricks to help with walks on Johnson graphs. Recall Definition
3.3.1, which states that two vertices u and v are adjacent if they differ by exactly two
elements, i.e., |u \ v| = |v \ u| = 1.

4.3.1 Symmetric Differences

The states in a random walk are of the form |v〉 |u〉, with v adjacent to u. Since u is almost
exactly the same data as v, we can define

∆(v, u) := (v \ u, u \ v). (4.13)

There is an easily-computable bijection from states of the form |v〉 |u〉 to states |v〉 |∆(v, u)〉.
Hence, we can simply store the symmetric difference.

We need to store the symmetric difference anyway. For the update step, we start with
|v〉 |0〉 and we want to construct adjacent vertices. The steps are:

91

x

Figure 4.9: Naive fanout in a 2-dimensional array. Arrows indicate a CNOT, red is early in
the process, black is later.

1. Copy v to the second register: |v〉 |v〉.

2. Perform a selection and a complement sample on the second register:

|v〉 |v〉
∑
x∈X\v

|x〉
∑
y∈v

|y〉 . (4.14)

3. Insert x into the second register and delete y from the second register:

|v〉
∑
x∈X\v

∑
y∈v

|(v ∪ {x}) \ {y}〉 |x〉 |y〉 . (4.15)

The final state can be rewritten:

|v〉
∑
x∈X\v

∑
y∈v

|(v ∪ {x}) \ {y}〉 |x〉 |y〉 = |v〉
∑
u∼v

|u〉 |∆(v, u)〉 . (4.16)

If we want to get rid of the symmetric difference, we would need to uncompute it from
|v〉 |u〉, which is straightforward with a sliding sorted array, but unnecessary. We can simply
choose to keep |∆(v, u)〉 instead of |u〉.

92

Swaps

The walk step requires swapping |u〉 and |v〉. The original method, using |u〉 |v〉, can easily
accomodate swapping by just using bit-wise swaps on every bit. Alternatively, one can
simply reverse the action of all the components of the update step.

Using the symmetric difference means we have to change |v〉 |∆(v, u)〉 to |u〉 |∆(u, v)〉.
For this, let ∆(v, u) = (x, y). We first delete y from v, then insert x into v, then swap the
order of x and y. This does not change which edge is represented, but changes the order
in which v and u are represented.

4.3.2 Self loops

For both MNRS and Szegedy, the walk steps are controlled by ancilla so we cannot use the
measurement-based garbage collection of Section 1.2.4. Instead of using quantum garbage
collection, we could ignore the problem.

Our solution in Jaques and Schanck [34] ignored complement sampling and modified the
graph structure to include edges of the form {v, v} (called “loops”). The design challenge
was to ensure that the sets stay the same size and maintain history independence.

We ned to give the self edges a weight R times greater than the other edges. This
means

puv =

{
1

R(|X|−R)
, u 6= v

1
X−R , u = v

. (4.17)

To represent edges, we use |∆(v, u)〉 = |x, y〉 for edges between distinct vertices, and
we set

|∆(v, v)〉 :=
1√
R

∑
x∈v

|x〉 |x〉 (4.18)

to be the state representing a loop. These edges are all still orthogonal.

We defined the edges in this way because it is easy to modify the update operation.
The new update does the following:

1. From a state |v〉 |0〉, create a uniform superposition of elements ofX: |v〉 |0〉
∑

x∈X |x〉.

2. Perform a membership check and save the result in an ancilla:

|v〉

 ∑
x∈X\v

|x〉 |0〉+
∑
x∈v

|x〉 |1〉

 . (4.19)

93

3. Use the negation of the final ancilla to control a selection circuit:

|v〉

 ∑
x∈X\v

∑
y∈v

|x〉 |y〉 |0〉+
∑
x∈v

|x〉 |0〉 |1〉

 . (4.20)

4. Copy x to the blank register, controlled by the final ancilla:

|v〉

 ∑
x∈X\v

∑
y∈v

|x〉 |y〉 |0〉+
∑
x∈v

|x〉 |x〉 |1〉

 . (4.21)

5. Perform a membership text on the second-last register to clear the final ancilla:

|v〉

 ∑
x∈X\v

∑
y∈v

|x〉 |y〉 |0〉+
∑
x∈v

|x〉 |x〉 |0〉

 . (4.22)

The left two registers are
√
pvu |∆(v, u)〉 for all u, including u = v. Hence, this is the

correct update operation.

Spectral Gap

Loops cause an important change in the random walk algorithms. Let P be the adjacency
matrix of the original graph, including normalization. Our new walk essentially decides
to take a loop with probability R/|X| and otherwise walks according to P , so the new
transition matrix P ′ will be

P ′ =
R

|X|
I +

(
1− R

|X|

)
P. (4.23)

This gives us all the eigenvalues of P ′ in terms of the eigenvalues of P . Since the spectral
gap of P is δ = 1− λ2, we can find the new spectral gap as

δ′ = 1− λ′2 =1−
(
R

|X|
+

(
1− R

|X|

)
λ2

)
(4.24)

=δ

(
1− R

|X|

)
(4.25)

If we set R ≤ |X|
2

, then we have δ′ ≥ 1
2
δ. Considering Equation 3.45, this change to

the graph will at most double the the number of walk steps. For the applications in this
thesis, R/|X| is negligible and δ′ ≈ δ.

94

4.3.3 Set-up

The set-up step needs to generate a random subset. It’s natural to think we could just
generate random elements of X and insert them sequentially, but this runs into two prob-
lems:

1. For large R, there is an overwhelming probability of picking duplicate elements at
some point;

2. We need to preserve history dependence, but our insertion operation is only |v〉 |x〉 7→
|v ∪ {x}〉 |x〉. That is, it keeps the new element as an ancilla, and it must do this to
be reversible.

Solving the complement sampling problem will solve the first issue but not the second.
To solve them both at once, we constructed two new algorithms: A repeated sort-and-
measure and a reversible Knuth shuffle.

A Knuth shuffle uses a list A of N random integers to randomly permute a list S of
size N . The ith element of A, ai, is a random integer between i and N ; we iterate from
i = 1 to N and swap S[i] with S[ai]. Note that if we stop after j steps, the first j elements
are in their final positions. Thus, to construct a random subset of some set X, we let ai
between a random integer between i and |X|, and initialize S to the first N elements of
|X|. If we want to swap S[i] with S[ai] for some ai > N , we simply simulate having the
extra elements in the array. This requires an ancilla array of size at most N .

Uncomputing the ancilla A is tricky but ultimately the same cost as the original shuffle.
If we initialize S in a fixed order, then this is reversible and leaves no ancillae. We will not
give the full details here.

To initialize a random list with a “sort-and-measure” technique, we independently
construct a superposition of random elements in every cell. This will almost certainly
generate duplicates, so we sort the array, check for duplicates, clear the duplicates, then
measure the check bits. This tells us where to recreate superpositions. We repeat this until
there are no duplicates. The trick in the analysis is to ensure that the measurements leave
a uniform superposition of the remaining list; again, we omit the full details.

We assume the QRAM model uses the Knuth shuffle to initialize a radix tree, which
has cost

O(R(CRAM logR + A + F)) (4.26)

where F is the cost to compute any associated data with the vertices.

95

The other models use a sort-and-measure to initialize a sorted sliding array; this requires
O(logR) sorts, O(R logR) comparisons, and O(R) elements initialized. Note that if the size
of each element in the array m is smaller than the number of ancillae that the oracle needs,
FW , then we cannot simultaneously initialize all R elements for the sort-and-measure, if
only Rm qubits are available. Thus, we assume that the sort-and-shuffle is used to initialize
an array of integers with no duplicates, and then these integers are sequentially mapped
to function values.

This gives Cost 4.8, showing that set-up is roughly a linear cost for passively-corrected
models, but quadratic for actively-corrected.

Cost 4.8 The set-up step for a Johnson graph J(X,R).

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(Rm log2R +RFG)

Active
Circuit (2.4.2)

Total O(RFD(Rm+ FW))
Depth O(RFD)
Width O(Rm+ FW)

Passive
Latency (2.4.3)

Gate-Time O(R1+1/d logR(m+R1/d2) +RFG)

Active
Local (2.4.4)

Total O(R2+1/dFD logd(R2+1/dFD)) + o(R2)

Depth O(R1/d logR(logm+R1/d2) +RFD))
Width O(R(R1/d +m) + FW)

QRAM
(2.4.5)

Gates O(R(logR +m+ FG))
Time O(R(R1/d logR +m+ FD))

96

Chapter 5

Isogenies

Here we introduce two cryptographic protocols, Supersingular Isogeny-based Diffie-Hellman
(SIDH) and Supersingular Isogeny-based Key Encapsulation (SIKE). These are intended
to be safe against attack from both quantum and classical computers. Section 5.1 gives a
basic outline of the protocols, just enough to outline some of the naive attacks in Section
5.2. This frames the attack as a “claw-finding” problem, which Chapter 6 will analyze.

Section 5.3 gives estimates for the costs of quantum and classical computers to compute
isogenies. We use these costs in later chapters to give costs for attacks on SIDH and SIKE.
The quantum costs are based on previous work on elliptic curve arithmetic on a quantum
computer, while the classical costs come from a specification for SIKE.

5.1 Isogeny-based Cryptography

We assume the reader is familiar with the basics of elliptic curves. We denote elliptic
curves as

E : y2 = x3 + ax+ b (5.1)

for a, b ∈ F. By “E” we mean the equation. We use E(F) to denote the set of all pairs
(x, y) ∈ F2 that satisfy the equation, plus the point at infinity O.

Since elliptic curves are groups, they can have group homomorphisms between them.
Isogenies are a special kind of homomorphism between elliptic curves, and separable isoge-
nies are a special kind of isogeny and the only kind we consider. As a homomorphism, an
isogeny’s kernel is a subgroup. This uniquely defines the isogeny:

97

Theorem 5.1.1 (Velú). Let E be an elliptic curve and let G be a finite subgroup of E(F).

Then there is an isogeny with G as its kernel. We denote this isogeny as φ�G, and the

image curve as E�G. For separable isogenies, the isogeny and image curve are unique up
to isomorphism.

The size of the kernel is called the degree of the isogeny. Theorem 5.1.1 comes with an

algorithm to compute the action of φ�G:

Theorem 5.1.2 (Velú). Let E be an elliptic curve and G a finite subgroup of E(F) of size

d. There is an algorithm to compute φ�G(P) for any point P ∈ E(F) that requires d − 1
elliptic curve point additions and d+ 1 finite field additions.

Isogenies add a graph structure to the set of all isomorphism classes of elliptic curves.

Definition 5.1.1. For a natural number `, the `-isogeny graph is the graph formed by:

Vertices: All isomorphism classes of elliptic curves

Edges: (E1, E2) are adjacent if there is a degree-` isogeny from E1 to E2.

For this definition, we consider all isomorphisms and isogenies defined over the algebraic
closure.

Every isogeny φ : E1 → E2 has a dual isogeny φ̂ : E2 → E1, so we can treat the graph as
undirected1. If ` is a prime that does not divide the characteristic of F, then the `-isogeny
graph is `+ 1 regular and connected.

5.1.1 Supersingular Isogeny-based Diffie-Hellman

The Supersingular Isogeny-based Diffie Hellman (SIDH, [33]) protocol uses isogenies over a
special class of elliptic curves, the supersingular curves. The protocol starts with a public
elliptic curve E0, and has public parameters `A, `B, eA, and eB.

Alice takes a random walk in the `A-isogeny graph of length eA, starting from E0, to
reach some curve EA. Her public key is EA and her private key is the path she used to
reach it. Bob takes a similar random walk of length eB from E0 in the `B-isogeny graph to

1Curves with j-invariants of 0 or 1728 are slightly unusual (see [2]) but that does not impact this thesis.

98

reach EB. Then Alice does her “same” secret walk starting from EB, Bob does his secret
walk from EA, and they arrive at the same curve EAB, which is the shared secret.

In general it does not make sense to move a path in a graph from one vertex to another.
For SIDH, the parameters of the curve and the paths are chosen in a precise way to make
this possible. More specifically:

• The curve is defined over Fp2 for a prime p such that p = `eAA `
eB
B f − 1.

• We choose `eAA ≈ `eBB ≈ p1/2.

• E0 has a group structure of:

E0(Fp2) ∼=
(
Z`eAA

)2
⊕
(
Z`eBB

)2
⊕ (Zf)2 (5.2)

where Zn is the additive group of integers modulo n.

• All curves with isogenies to E0 will have same group structure.

• Denoting Alice’s secret isogeny as φA, she must output φA(PB) and φA(QB), where
PB and QB generate the subgroup isomorphic to (Z`eBB)2.

Because Alice’s image curve is public, it is easy for an adversary to pick a random path
in the isogeny graph, compute the image curve, and compare it to Alice’s public key. For
a given elliptic curve E : y2 = x3 + ax+ b, we define the j-invariant to be

j(E) =
1728(4a3)

4a3 + 27b2
. (5.3)

Two curves are isomorphic if and only if they have the same j-invariant. Hence, it is easy
to check if two curves are isomorphic.

5.1.2 SIKE

Supersingular Isogeny-based Key Encapsulation (SIKE) is a specific variant of SIDH that
was submitted for standardization [32]. For SIKE, we take `A = 2 and `B = 3.

Throughout this thesis, “SIKE-n” will refer to an instantiation of SIKE that uses an
n-bit prime p.

99

5.2 Attacks

Jao and de Feo define the following:

Problem 5.2.1 (Computational Super-Singular Isogeny Problem (CSSI), [33]). Given
public parameters E0, `A, `B, eA, and eB for an instance of SIDH, and a public key EA,
determine a path of length eA in the `A-isogeny graph from E0 to EA.

We will assume that breaking SIDH or SIKE is equivalent to solving CSSI.

5.2.1 Naive Attack

For a naive attack on SIKE, we would enumerate all possible paths in the isogeny graph
that start at E0, compute the isogeny they define, and check if the j-invariant of the output
curve matches EA.

There are `+ 1 degree-` isogenies starting from E0 and each leads to a separate curve.
Each of these curves will have another `+ 1 isogenies, but one will be the dual of the first
and will go back to E0. In SIDH, we never go backwards. Thus, the total number of paths
of length e is at most (` + 1)`e−1 ≈ `e + `e−1. Since `e ≈ p1/2, that is how many paths we
need to check, illustrated in Figure 5.1.

5.2.2 Meet in the Middle

Instead of checking every path individually, we could instead enumerate all paths of half
the total length that start from E0, and all paths of half the total length that start from
EA, shown in Figure 5.2. There should be only one point where they intersect, and this is
easy to check with the j-invariant of the image curve.

There will be (`+ 1)`e/2 ≈ p1/4 paths from each curve, so there are only 2p1/4 paths to
check in total. However, we run into a problem: Suppose we have a path p1 from E0 that
leads to a curve E1. The only known way to decide if p1 is the first half of Alice’s secret
path is to find another path p2 from EA that also leads to E1. But finding this second
curve is difficult in its own right.

This is a type of claw-finding problem, which Chapter 6 will address.

100

E�A

E0

Figure 5.1: The subgraph of the 2-isogeny graph used in SIKE, induced by all paths of
length at most 128. In this diagram, the length of each edge decreases exponentially with
its distance from E. Vertices are at the intersections between edges. The red path is Alice’s
secret isogeny, a series of random degree-2 isogenies.

101

E0
E�A

Figure 5.2: Paths of length 64 from E0 and paths of length 64 from E�A, in the style of

Figure 5.1. The secret isogeny from E0 to E�A is in red.

5.3 Isogeny Computations

5.3.1 Quantum Estimates

To estimate quantum costs, we need to know how much it will cost a quantum computer
to compute an isogeny. We previously used a very conservative estimate [34]; here, we will
use specific figures from specific circuits.

Theorem 5.1.2 states that we need `− 1 elliptic curve point additions and ` + 1 finite
field additions. Roetteler et al. [50] give the cost of a single point addition over a field of
an n-bit prime as

224n2 lg n+ 2045n2 (5.4)

gates and 7n+ 2 lg n+ 9 qubits. A single finite field addition costs

16n lg n− 26.9n (5.5)

gates and uses 2n qubits. Thus a degree-2 isogeny has cost

224n2 lg n+ 2045n2 + 48n lg n− 54n (5.6)

and uses 8n + 2 lg n + 9 qubits. Roetteler et al. find that the depth is almost exactly the
same as the gate count.

102

In the SIKE specification, they give a method to compute the full isogeny which requires
e lg e point additions, e lg e isogeny computations, has depth e lg e and requires storing lg e
points. We know that e = 1

2
lg p and that over Fp2 , n = 2 lg p.

For concrete cost estimates, we will assemble these costs automatically. The expressions
are unwieldy so Cost 5.1 only shows the dominant terms.

Cost 5.1 Quantum isogeny computation

Model Measure Cost

Clifford+T
Gates 448 lg3 p(lg lg p)2 + o(lg3 p(lg lg p)2)
Depth 448 lg3 p(lg lg p)2 + o(lg3 p(lg lg p)2)
Width 2 lg p lg lg p+ o(p lg lg p)

Is this a good estimate? It might be an under-estimate because Roetteler et al. base
their costs on circuits that are tailor-made to add one specific point to an input point,
rather than any two inputs. It may be an over-estimate because this was the first paper
with a full circuit.

5.3.2 Classical Estimates

Classical methods can be irreversible, which seems to give them an advantage. The SIKE
specification [32] gives implementation results in thousands of CPU cycles for various values
of the prime p. We will assume that a CPU cycle involves 4 RAM operations, since the
CPU used has 4 cores.

The specification gives concrete values instead of asymptotics. Hence, we will assume
the cost, in RAM operations, scales according to

a2 lg2.5 p(lg lg p) + a1 lg p+ a0 (5.7)

and extrapolate. This is based on a O(lg1.5 p) cost for Fp2 multiplication. This gives a cost
of

0.0809 lg2.5 p(lg lg p)− 9082 lg p+ 3.27× 106. (5.8)

This is for the reference implementation. A similar approach to the memory used gives

76.4 lg p+ 82, 527 (5.9)

bits of memory.

103

Chapter 6

Claw Finding

The meet-in-the-middle attack on SIDH can be framed as a claw finding problem. This
chapter will introduce and analyze several classical and quantum algorithms.

Section 6.1 introduces the problem and show the close connection between claw finding
and collision finding. After that, we give two classical algorithms, Meet-in-the-middle
(Section 6.2) and van Oorschot-Wiener (Section 6.3), and conclude that van Oorschot-
Wiener is cheaper in both RAM operations and run-time.

Following this are three quantum algorithms, Grover’s algorithm (Section 6.4), Tani’s
Algorithm (Section 6.5), and Multi-Grover search (Section 6.6). Using the memory costs
from Chapter 4, the latter two algorithms are significantly more expensive than previous
analyses.

Section 6.7 compares the algorithms. Though they all scale in the same way with respect
to the problem size, Tani’s algorithm does slightly better than Grover’s algorithm because
it saves in oracle computations. Multi-Grover parallelizes better than Tani’s algorithm,
but requires a more complicated architecture and suffers heavily from latency and locality
costs.

Comparing classical and quantum algorithms, the overall pattern is that with large
memory, classical algorithms can run faster and cheaper. When memory is limited but
time is available, quantum algorithms are cheaper.

104

6.1 The Claw Finding Problem

Problem 6.1.1 (Claw Finding). Given two functions f : X → S and g : Y → S, find a
claw: A pair (x, y) ∈ X × Y such that f(x) = g(y).

Throughout this chapter, X and Y will refer to the sizes |X | and |Y|.
Claw finding is closely related to collision finding:

Problem 6.1.2 (Collision Finding). Given a function h : V → W , find a collision: Two
distinct elements v1, v2 ∈ V such that h(v1) = h(v2).

Obviously the difficulty of these problems will depend heavily on the functions and the
image set; e.g. if the set S or W has two elements, both problems are easy. We distinguish
a sub-problem:

Problem 6.1.3 (Golden Claw/Collision Finding). A claw finding (resp. collision finding)
problem is called golden if there are O(1) claws (resp. collisions).

If we assume that f and g are random, there is a simple, imprecise method to compute
the expected number of claws or collisions. For claws, consider that any pair (x, y) could
be a claw, and the probability is 1/|S|. The probability that a different pair (x′, y) is a
claw will depend slightly on whether (x, y) is a claw, but the dependence is small and so
we can assume these are independent events. Thus, the expected number of claws is

E[number of claws] =
|X ||Y|
|S|

. (6.1)

Similar logic shows that for collision finding,

E[number of collisions] =
|V |2

|W |
. (6.2)

This quickly gives some intuition behind the “birthday paradox”: V only needs to be of
size ≈

√
|W | to expect at least one collision, because

√
|W | elements gives |W | pairs, each

of which has (approximately) a 1/|W | probability of making a collision.

Hence, if the image set is much larger than the domain set, this will give us a golden
claw or collision problem.

Because of these size constraints, we can parameterize an algorithm to solve these
problems by the sizes of X , Y , and S. Then we can make precise comparisons between
claw finding and collision finding. Importantly, these lemmas depend on claw and collision
problems on functions that are indistinguishable from random.

105

Lemma 6.1.1. Let A be an algorithm that solves claw-finding for |X | = nx, |Y| = ny and
|S| = ns. Then we can solve a collision finding problem for a function h : V → W with
|V | = nx + ny and |W | = ns with O(1) calls to A.

Proof. Divide the set V into two sets X and Y with X ∪ Y = V and |X | = nx and
|Y| = ny. Use S = W , f : X → S as f(v) = h(v) and similarly for g : Y → S, and give
these parameters to the claw-finding algorithm.

If A returns a pair v1 ∈ X and v2 ∈ Y such that f(v1) = g(v2), this is a collision for h.
If A returns no claw, there may still be a collision. Let v1, v2 be a pair with h(v1) = h(v2).
If our partition of V puts both v1 and v2 into X or both into Y , A will not find them. Since
we chose X and Y randomly, this has probability 1/2 for each collision. We can repeat
O(1) times with different X and Y to find the collision; if all iterations return no claw, we
conclude there is no collision.

Lemma 6.1.2. Let A be an algorithm that solves collision-finding for h : V → W with
|V | = hv and |W | = hw. Assuming heuristics 6.1 and 6.2, we can solve a claw-finding
problem for functions f : X → S and g : Y → S for |X | = chv and |Y| = (1 − c)hv with
c ∈ (1

2
, 1), |S| = hw with O(c

1−c) calls to the collision oracle.

Proof. Let V equal the disjoint union of X and Y (i.e., we may need to append a 0 to all
elements of X and 1 to all elements of Y) and let W = S. Let h : V → W be defined as
h(v) = f(v) if v ∈ X and h(v) = g(v) if v ∈ Y . Then we give this to the collision-finding
oracle.

The collision-finding oracle will either return a claw or a collision of either f or g. The

expect number of collisions of f is |X |
2

|S| , the expected number of collisions of g is |Y|
2

|S| , and

the expected number of claws is |Y||X ||S| . Hence, we expect to need

|X |2 + |X ||Y|+ |Y|2

|X ||Y|
= 1 +

chv
(1− c)hv

+
(1− c)hv
chv

= O

(
c

1− c

)
(6.3)

calls to the collision oracle.

Collision finding for large image sets can be reduced to small image sets with a linear
cost:

Lemma 6.1.3. Let f(n) be the cost function for a collision finding algorithm for h : V →
W where |V | ≈ |W | = n. If the heuristic of 6.2 holds, then there is an algorithm for
|W | = NW > n with cost O(NW

n
f(n)).

106

Proof. The idea is that we construct a random function h′ : W → W ′ where |W ′| = |V |.
Then h′ ◦ h : V → W ′ has the appropriate size so we run our original collision finding
algorithm. Every collision of h is also a collision for h′ ◦ h, though there will be more.

We expect roughly |V |2
|W ′| = n collisions for h′ ◦ h. We expected |V |2

|W | = n2/NW collisions

originally, so the probability that a h′ ◦ h collision is an h collision is n
NW

. Hence, we run

the original collision finder for NW
n

times and check each collision it finds.

We can also reduce collision finding for large domain and range to smaller domain and
range, thanks to the technique of van Oorschot and Wiener [57]:

Lemma 6.1.4. Suppose we have a collision-finding algorithm with cost f(n,H, p) for func-
tions h : {0, 1}n → {0, 1}n that cost H to evaluate and have p22n collisions (i.e., the
probability of a random pair (x, y) ∈ {0, 1}2n colliding is p). Then we can construct a
collision-finding algorithm for any h : {0, 1}∗ → {0, 1}N with N ≥ n at cost

O

(
f

(
Nθ,

H

θ
,
p

θ2

)
+

H

θ

)
(6.4)

for any θ ∈ (0, 1).

Proof. There are two tricks here: The first is that the domain of h contains its range, so we
can compose h with itself. Let W = {0, 1}N ; we can then treat h as a function h : W → W .

The second trick is to create a random subset Wd ⊆ W formed of “distinguished”
points. In practice we often just pick a certain number of leading 0s — if h is random, this
will produce random subsets.

Then we construct a function hd : Wd → Wd as follows: The function h : W → W also
acts as h : Wd → W . So we apply this function repeatedly until we find an element of W
that is contained in Wd. We assume |Wd| = θ|W | for some θ ∈ (0, 1), so we expect O(1/θ)
applications of h.

Note that if there is any collision for h, it “lifts” to a collision in hd: Once we collide in
h, subsequent applications of h will maintain that collision. Further, any collision for hd
is necessarily a collision for h. Hence, we have p22n collisions for hd, but its domain and
range have size 2nθ, so hd has a much higher probability of collision, p/θ2.

Hence, we apply our collision-finding algorithm on hd, at cost f(Nθ,H/θ, p/θ2). It
returns a collision w1 and w2 with hd(w1) = hd(w2). We use h to recreate the “path” of
function applications to find the collision of h with a binary search, with cost H/θ.

107

Corollary 1 (van Oorschot–Wiener Algorithm). Claw finding for a function h : {0, 1}∗ →
{0, 1}n with probability of collision p costs at most

O

(
H

1√
pM

+ logM

)
(6.5)

when using O(Mn) bits of memory.

Proof. The simplest collision-finding algorithm is to build a list of M random elements and
the evaluation of h on each element, sort this list, then check for collisions. This has cost
O(M(H+logM)), roughly; there are potential time-memory trade-offs and parallelizations
that we will leave to Section 6.3. The probability of a collision in the list is pM2, so we
repeat the entire process O(1/pM2) times and get a total cost of

O

(
1

pM
(H + logM)

)
. (6.6)

Arguably, instead of repeating the full process, we should replace a single element at a
time. This now functions as a random walk on a Johnson graph, as analyzed in Section 3.2,
which concluded that both approaches have the same asymptotic cost.

Using the naive collision-finding as the oracle f , we apply Lemma 6.1.4 and get a cost
of

θ2

pM

(
H

θ
+ logM

)
+

H

θ
. (6.7)

We optimize by setting θ =
√
pM to give the total cost.

Lemmas 6.1.1 to 6.1.4 show that claw-finding and collision finding are essentially the
same problem. For individual algorithms, often there are simple modifications that allow a
direct conversion from collision finding to claw finding and vice versa, rather than using the
reductions in this chapter. Further, these lemmas show that collision finding can mostly
be reduced to collision finding for a random function.

6.2 Meet in the Middle

To perform a meet-in-the-middle attack on the claw-finding problem, we enumerate a list
Sx consisting of pairs (x, f(x)) for x ∈ X , sorted by the value of f(x). Then for each

108

y ∈ Y , we compute g(y) and search in Sx for a pair (x, f(x)) with g(y) = f(x). When we
find this, we have found the claw.

With unlimited memory, we would enumerate all of X , then we only need to check each
y once. With limited memory, we would repeat the procedure with disjoint subsets of X .
For each subset, we need to check all of Y .

Let Rx be the size of the set Sx and H be the number of RAM operations to compute
f or g. Without latency, the total number of RAM operations for each subset Sx is:

• O(Rx(logRx + H)) operations to construct each list Sx.

• O(|Y |(logRx + H)) operations to look for a claw that matches Sx.

There will be |X|
Rx

subsets, making the total cost

O

(
|X |
Rx

(Rx + |Y|) (logRx + H)

)
. (6.8)

The optimal here is to take Rx = |X |. Choosing X to be the smaller set (without loss of
generality) saves logarithmic factors.

When we account for latency in dimension d, using Section 2.3.5, reading or writing to
the list Sx costs R

1/d
x . This leads to:

• O(Rx(R
1/d
x + H)) time to construct each list.

• O(|Y|(R1/d
x + H)) time to look for the claw.

Assuming H is dominated by R
1/d
x , this leads to a total cost of

O

(
|X |

R
1−1/d
x

(Rx + |Y|)
)
. (6.9)

Again, the optimal is to choose X to be the smaller set and take Rx = |X |.

Parallelism

To parallelize, assume we have P processors with shared memory of size M . The obvious
parallelization is to build the list Sx in parallel, then search it in parallel.

109

We store Sx as a hash table to avoid simultaneous memory access issues. We initialize
the memory into approximately M/ logM sorted lists. Each processor computes a tuple
(x, f(x)), hashes f(x) somehow, and uses that to decide which list to send the tuple to.
As long as M is in Ω(P 2), then collisions are unlikely and each processor can insert into
its list without issue, using any standard technique to handle shared memory access.

Once the list is constructed, we can similarly divide Y into subsets and have each
processor search through a different subset of Y . The same arguments apply to show that
we will not suffer significant latency from processors accessing the same hash list.

This takes the costs without latency to:

• O
(
Rx
P

(logRx + H)
)

for construction;

• O
(
|Y|
P

(logRx + H)
)

to search Y .

In other words, this parallelizes perfectly, up to P = O(
√
M).

Cost 6.1 gives the costs to search X and Y for claws with a meet-in-the-middle using P
processors with M total memory (in units of the bit-length of (x, f(x))) with M in O(|Y|).
For the depth of this algorithm, simply divide the cost by P .

Cost 6.1 Classical meet-in-the-middle.

Model Measure Cost

No latency RAM ops O
(
|X ||Y|
M

(logM + H)
)

Latency proc. hrs. O
(
|X ||Y|
M1−1/dH

)

6.3 van Oorschot–Wiener

van Oorschot–Wiener (VW) collision finding is a parallelization of Pollard’s rho algorithm
[57]. Pollard originally designed the rho algorithm to find collisions of hash functions. The
idea is that a hash function H : {0, 1}∗ → {0, 1}n can be composed with itself. From any
input x, this gives a chain

x −→
H
H(x) −→

H
H2(x) −→

H
H3(x) −→

H
· · · (6.10)

110

This chain will eventually cycle, meaning there will be integers m and n such that Hm(x) =
Hm+n(x). If m is the least such integer, then the two strings Hm−1(x) and Hm+n−1(x)
have the same hash value. There are various methods to detect when such a cycle has
occured.

To parallelize, van Oorschot-Wiener used the idea of “distinguished points”. This is
the idea behind Lemma 6.1.4, and here we will give more precise details from their paper
[57].

The easiest way to produce distinguished points is to use the hash function itself, which
acts as a random function. Then we consider the first s bits: If they are all zero, we call
the point distinguished. Each hash has probability θ := 2−s of producing a distinguished
point. We store distinguished points in a shared list, and check for collisions within this
list. If we find a collision of distinguished points, we go back to the last distinguished point
on either side and carefully check each hash for collisions.

We store distinguished points as (x1, x2, n), where x1 is the starting point, x2 is the next
distinguished point found, and n is the number of hashes such that x2 = Hn(x1). Given
two pairs (x1, x2, n) and (y1, x2,m), we compute Hm−n(y1) (assuming WLOG m ≥ n) and
sequentially hash this value and x1 until we find the actual collision. This requires O(1/θ)
hashes and comparisons.

To parallelize, we simply have each parallel processor perform its own chain of hash
function iterations, but save the distinguished points in a shared memory. If the memory
gets full before finding a collision, we simply discard a value. Assume we store distinguished
points in a hash table to facilitate parallel memory insertions.

For claw-finding, we use Lemmas 6.1.2 and 6.1.4. We need to define a random function
H : X ∪ Y → X ∪ Y such that if f(x) = g(y), then H(x) = H(y). We actually use the set
X tY = (X × {0})∪ (Y × 1), but the effect is the same. We take a suitably random hash
function h : {0, 1}∗ → X t Y , and construct H as follows for an input string z = (x, b):

H(z) =

{
h(f(x)) , b = 0 and x ∈ X
h(g(x)) , b = 1 and x ∈ Y

. (6.11)

This H satisfies our requirements and we can perform van Oorschot-Wiener collision find-
ing. We can construct h out of a hash function with an n-bit output by simply iterating it
until it the output is in the required set.

As in Lemma 6.1.2, this reduction produces a lot of collisions that do not represent
claws. On average, we expect O(|X |+ |Y|) collisions in this problem. We perform a brute

111

force search on all collisions, checking each collision we find to see if it is the solution of
the original claw problem. Thus, we expect to need to find about O(|X |+ |Y|) collisions.

Here we notice that VW collision finding is more likely to find certain collisions than
others. Figure 6.1 shows this phenomenon. Our random function h that we used to
construct H might put our golden collision in a bad place, so we need to regularly change
to a different random function h′. Adj et al. [3] go over the full analysis and provide some
experimental evidence that this works, and that the heuristic constants are accurate, in
particular for isogenies.

6.3.1 Analysis

We follow VW’s analysis here [57]. Consider the “trail” of elements leading to a distin-
guished point (e.g., in Figure 6.1a, 31 and 45 are on the trail of 40). If distinguished points
occur with probability θ, we expect 1/θ points in each distinguished point’s trail. Hence, if
we have M distinguished points in memory, there are roughly O(M/θ) points that would
lead to one of these distinguised points. Hence, each processor has a

M/θ

|X |+ |Y|
(6.12)

probability of selecting a point that will lead to a distinguished point already in memory,
and thus probably a collision. Once a collision is found among the distinguised points, we
need 2/θ steps to find the actual collision. This leads to a total cost of

|X |+ |Y|
M/θ

+
2

θ
(6.13)

RAM operations to find each collision. There are some issues with this analysis that VW
address, but they only change constant factors. Distinguished point finding parallelizes
perfectly but trail retracing does not parallelize, so Equation 6.13 does not change with
parallelization. We can optimize for RAM operations and get an optimal

θ =

√
M

|X |+ |Y|
. (6.14)

To crudely estimate latency, consider that the algorithm computes roughly |X |+|Y|
M/θ

points
before finding a collision. Roughly θ of those points will be distinguished and need to be

112

02

55 54

3052

04

00
10 40

23

50

14
12

15

31

01

03

05

20

32

41

43
44

34

45

42

35

21

25

24

53

13

33

11

22

51

(a) Function graph under one choice of h.

02

22

45

11

42

15 10
30

50

21

33
03

01

35

23

40

34

00

12

31

55

13

43

05

20 04 52

14
41

51

44
53

24

25

54

32

(b) Function graph under one choice of h.

Figure 6.1: Function graphs of two random functions on the same data. Distinguished
points (red) are those that end in 0 or 3; the golden collision is golden orange. In 6.1a, the
golden collision ends up in a bad place and will only be found if one processor starts with
“00” and another starts with 44, 14, or 10. In contrast, 6.1b shows an excellent random
function, where the majority of starting points will lead to the golden collision.

113

inserted into memory. Thus, we end up with a memory insertion latency term of

O

(
|X |+ |Y|
M/θ

θM1/d

)
= O

(
θ2
|X |+ |Y|
M1−1/d

)
, (6.15)

where memory insertion take time O(M1/d).

Assume that each processor perfroms the sequence of “iterate function, find distin-
guished point, insert to memory, retrace trail to find collision” independently of the other
processors. That is, one might be retracing its steps while most of the others are still
iterating the function. This assumption means that we can average the time for each step
over all of the processors. Hence, the total cost in processor-hours is independent of the
number of processors. Thus, the total cost with latency is

O

(
θ2
|X |+ |Y|
M1−1/d + θ

|X |+ |Y|
M

H +
2

θ
H

)
. (6.16)

The two right-hand terms include H, the cost to compute the function H, which is not
included in the memory insertion. Optimizing this directly is cumbersome. Instead we can
note:

• If 1/θ > M1/d/H, memory is low so the middle term of computation time dominates;

• If 1/θ < M1/d/H, memory is large and the left term of insertion time dominates.

Using X and Y to denote |X | and |Y|, optimizing each case separately yields:

θ =


O

(
3

√
M1−1/dH
X+Y

)
,M in Ω

(
(X + Y)

d
2+dH

3d
2+d

)
O
(√

M
X+Y

)
,M in O

(
(X + Y)

d
2+d

)
.

(6.17)

Astute readers may notice that these equations are inconsistent: If M is in Θ((X +

Y)
d

2+d), the recommended values of θ are different. Since this is a rough approximation,
we will ignore this issue.

Storing distinguished points with a hash table means we will overwhelm the memory
insertion with too many points at once. Thus, we only want to find roughly O(M) distin-
guished points in every time step. We expect to find O(θP) distinguished points in every
step, so we need P in O(M/θ), or

P in O
(√

M(|X |+ |Y|)
)
. (6.18)

114

This gives the costs with and without latency for finding a single collision; see Cost 6.2.
This cost looks odd because the cost with latency seems to scale slower than the cost in
RAM operations, but this is only because memory is assumed to be so large in the latency
case; with that much memory, the RAM operation cost scales better.

Cost 6.2 Finding a single collision with VW. The latency cost only applies so long as M

is in Ω
(

(X + Y)
d

2+d

)
. Here X = |X | and Y = |Y|.

Model Measure Cost

No latency RAM ops. O
(√

X+Y
M

H
)

Latency proc. hrs. O
(

3

√
X+Y
M1−1/d

)
We will need to find O(X + Y) collisions, on average, to find the golden collision. This

gives Cost 6.3. This cost includes extra terms for the total expected number of memory
insertions: this is the total number of iterations multiplied by θ. This is necessary if we
consider cases with more than X + Y memory cells.

Cost 6.3 Finding a golden collision with VW, with the same notation and limitations as
Cost 6.2.

Model Measure Cost

No latency RAM ops. O

(√
(X+Y)3

M
H +X + Y

)
Latency proc. hrs. O

(
3

√
(X+Y)4

M1−1/d +M1/d(X + Y)

)
For both Costs 6.2 and 6.3, we can find the depth by dividing by the number of

processors.

6.3.2 Application to SIDH

For SIDH, |X | = |Y| = p1/4 and H is O((log p)3). This leads to Cost 6.4. Figure 6.2
compares the two algorithms, showing that VW has a lower cost except for extremely high
memory. Since both algorithms parallelize perfectly, this means that VW also has lower
depth. Hence, we will ignore meet-in-the-middle and assume VW is the better algorithm.

In Figure 6.2, “SIKE-610” means an instantiation of SIKE with a 610 bit prime.

115

Cost 6.4 Comparison of VW and Meet-in-the-middle for SIDH.

Model Algorithm Measure Cost

No Latency
VW RAM ops. O

(
p3/8√
M

log3 p+ p1/4
)

MitM RAM ops. O
(
p1/2

M

(
log3 p+ logM

))
Latency

VW proc. hrs. O
(

p1/3

M
d−1
3d

+M1/dp1/4
)

MitM proc. hrs. O
(

p1/2

M
d−1
d

)

0 20 40 60 80 100 120 140 160

200

250

300

Memory M

C
os

t

VW
MitM

Latency
No Latency

Figure 6.2: van Oorschot-Wiener vs. Meet-in-the-middle costs for attacking SIKE-610.
For latency, the dimension is 2 and costs are processor-hours; without latency, costs are
RAM operations. Axes are log base 2.

6.4 Grover’s Algorithm

To apply Grover’s algorithm to claw-finding, we consider a boolean function on X × Y ,
with value 0 on (x, y) if f(x) 6= g(y), and 1 otherwise. This will search for claws. The
space has size |X ||Y|, so we need √

|X ||Y| (6.19)

116

oracle calls.

To parallelize Grover’s algorithm, the optimal method [58] just divides the search space
and assign different pieces to different independent processors. With P processors, each
processor needs √

|X ||Y|
P

(6.20)

oracle calls. Since all processors do this, the total number of oracle calls increases pro-
portional to

√
P . Suppose that calling f and g cost FG gates, requires FD depth, and FW

qubits. Then we can compute the total cost in all the different models and give Cost 6.5.
Assume the costs to compute the functions f and g are logarithmic in the size of the search
space, meaning we can say that in all the cost models we consider, the cost is

Õ(
√
P |X ||Y|). (6.21)

Cost 6.5 Claw finding with Grover’s algorithm. This ignores latency or locality costs
because each processor only uses FW . Here X = |X | and Y = |Y|.

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O

(√
PXY FG

)
Active

Circuit (2.4.2)

Total O
(√

PXY FDFW
)

Depth O
(√

XY
P
FD
)

Width O(PFW)
Passive

Latency (2.4.3)
Gate-Time O

(√
PXY FG

)
Active

Local (2.4.4)

Total O
(√

PXY FDFW logd
(√

PXY FDFW
))

Depth O
(√

XY
P
FD
)

Width O(PFW)

QRAM
(2.4.5)

Gates O
(√

PXY FG
)

Time O

(√
XY |
P

FD

)

117

6.5 Tani’s Algorithm

Tani’s algorithm applies Szegedy’s quantum random walk to claw finding [55]. We need to
build a special graph to do this.

Definition 6.5.1. Given two graphs G1 and G2, the direct graph product is the graph
G1 ×G2 with:

• V (G1 ×G2) = V (G1)× V (G2).

• Two tuples (v1, v2) and (u1, u2) are adjacent in G1 × G2 if and only if v1 ∼ u1 and
v2 ∼ u2.

Figure 6.3 shows an example of a graph product. To take a random step on a graph
product G1 × G2, we take a random step in the first graph, then a random step in the
second graph (or take both steps simultaneously).

For Tani’s algorithm, we take the product of two Johnson graphs: J(X , Rx)×J(Y , Ry).
A single vertex is a pair of lists (Sx, Sy). To take a single step in the graph from such a
vertex, first we choose some x ∈ Sx and some y ∈ Sy. Then we remove x and y from their
respective lists, choose a new x′ /∈ Sx and y′ /∈ Sy, and insert the new elements into each
list.

6.5.1 Basic Costs

Recalling Section 3.3, the full cost of Tani’s algorithm needs the setup cost S, the update
cost U, and check cost C, the spectral gap δ, and the fraction of marked vertices ε.

Marked Vertices:

We define a vertex (Sx, Sy) to be marked if there is a claw between Sx and Sy: Some x ∈ Sx
and y ∈ Sy such that f(x) = g(y). Assuming a unique claw (x, y), there will be

(
Rx−1
|X |−1

)
lists containing x out of

(
Rx
|X |

)
total, which gives

ε =

(
Rx−1
|X |−1

)(
Rx
|X |

) (Ry−1|Y|−1

)(
Ry
|Y|

) =
RxRy

|X ||Y|
. (6.22)

118

a

b c

d

×

1

2 3

4

=

a1

b1 c1

d1 a2

b2 c2

d2

a3

b3 c3

d3 a4

b4 c4

d4

a1

b1 c1

d1 a2

b2 c2

d2

a3

b3 c3

d3 a4

b4 c4

d4

Figure 6.3: An example graph product of C4 with itself. Even for these simple graphs, the
resulting product is nearly impossible to comprehend visually.

Spectral gap:

The spectral gap of a Johnson graph J(X , R) is O(1/R). The spectral gap of a graph
product is the minimum of the two spectral gaps. We can see this by noting that the
adjacency matrix of a graph product is the tensor product of the two constituent adjacency
matrices. Thus, the spectral gap for Tani’s algorithm

δ = min

{
1

Rx

,
1

Ry

}
= O

(
1

max{Rx, Ry}

)
. (6.23)

As Section 4.3.2 showed, this differs by only a constant factor if we add loops and
assume max{Rx, Ry} ≤ |X |/2.

Set-up:

To initialize Tani’s algorithm, we need to initialize two lists that satisfy the data structure
requirements of Section 4.2. This raises two issues:

119

Element Selection: As defined, Tani’s algorithm requires the lists to be sets without
repeated elements. Thus, we need some way to choose a random subset of X (and
Y) without choosing duplicates.

Setting Claw Check Bit: The data structures use extra claw-checking bits for the entire
set. If we intialize the lists Sx and Sy separately, then we have a separate claw finding
problem to solve for Sx and Sy.

Section 4.3.3 describes the set-up routine, but we must also search for claws.

In the extended Knuth shuffle, we initialize one list as normal. As we initialize the
second list, every time we swap a new element y into the list, we search for g(y) in the first
list. Asymptotically, this adds no cost, since we already needed to perform a search in a
sorted list.

With a sample-and-sort, once we have initialized both lists, we can sort them together
by the values of f(x) and g(y). Simultaneous comparisons of sequential elements can
detect any claws, and the results can be summarized with a binary tree of additions (like
the “Sum” step from Section 4.2.2).

Altogether this gives Cost 6.6.

Cost 6.6 Set-up for Tani’s algorithm. The QRAM model uses an extended Knuth shuffle
to populate a quantum radix tree; the rest uses a sample-and-sort to populate a sliding
sorted array.

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O

(
R(m logR + log2R + FG)

)
Active

Circuit (2.4.2)

Total O
(
R(m+ FW)

(
log2R logm+ FD

))
Depth O

(
log2R logm+ FD

)
Width O (R(m+ FW))

Passive
Latency (2.4.3)

Gate-Time O
(
(Rm)1+2/d log2R

)
Active

Local (2.4.4)

Total O
(
R1+2/dm1/d log2+dR(m+ FW)

)
+ o(R1+2/d)

Depth O
(
(Rm)1/d log2R + FD

)
Width O

(
R(R1/d +m+ FW)

)
QRAM
(2.4.5)

Gates O (R(logR +m2 + FG))
Time O

(
R1+1/d logR

)

120

Update:

For the update, we follow the approach with loops from Section 4.3.2. This is dominated
by Cost 4.7, updating the claw counter, so Tani’s algorithm’s update cost, 6.7, is the same.

Cost 6.7 Update step in Tani’s algorithm

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(Rm+ FG)

Active
Circuit (2.4.2)

Total O((Rm+ FW)(logR log logR + FD))
Depth O(logR log logR + FD)
Width O(Rm+ FW))

Passive
Latency (2.4.3)

Gate-Time O(Rm+ FG)

Active
Local (2.4.4)

Total O((Rm)1+1/d + o((Rm)1+1/d)
Depth O((Rm)1/d + FD)
Width O(Rm+ FW)

QRAM
(2.4.5)

Gates O(m2 + FG)
Time O(R1/dm+ FT)

Check:

By the construction of the augmented data structure, the check uses a single control bit.
This is one local gate, and hence it’s cost is O(1) in each cost model.

6.5.2 Analysis

Assembling the costs in each model gives completely inscrutable equations. To explain
what’s happening, Figure 6.4a shows how the total cost changes with R in each model.
Appendix B analyzes the costs under each model, and chooses an R to minimize costs.
The optimal values of R are:

Passively-Corrected: R = FG/m.

Actively-Corrected: R = FW/m.

QRAM: R = (|X ||Y|)1/d.

121

50 100 150
150

200

250

300

350

Memory

T
ot

al
co

st

50 100 150
150

200

250

300

350

Total Hardware

Passive Circuit
Active Circuit

Passive Latency
Active Locality

QRAM

50 100 150
120

140

160

180

200

Memory

T
ot

al
D

ep
th

(a) Increasing memory

50 100 150
120

140

160

180

200

Total Hardware

(b) Increasing parallelism after optimal memory

Figure 6.4: Costs and depths of Tani’s algorithm for CSSI for SIKE-610 at different memory
levels. For 6.4a, the increased memory is used for increased R in a single instance. For
6.4b, the increased hardware (memory over all parallel processors) is used to parallelize
instances that use the cost-optimal R. The dimension d is 2. Axes are log base 2.

To explain these optima, the total number of walk steps will decrease as R increases.
As long as the oracle computation is the dominant cost in the insertion step, this makes
the total number of gates decrease as R increases. When R gets too large, the memory
operations become the dominant cost. The cost of each memory operation increases faster
than the number of walk steps decreases, so the cost starts to increase with R. Roughly
speaking, the optimal is always at the point where a memory operation is the same cost
as an oracle computation.

A few other features of Figure 6.4a:

• The set-up step, using a sort-and-measure technique, requires many ancillae for the

122

sorting algorithm. This increases the necessary number of qubits, and much more for
geometric models with locality or latency. This makes the geometric models seem
cheaper in Figure 6.4a, because the costs grow slower with increased memory. In
reality, the costs grow slower because the algorithm gets less efficient: it’s “wasting”
all of its extra memory just storing ancilla qubits for the set-up sort. Figure 6.4a
shows that the geometric models have a much slower decrease in depth.

This also explains the sudden jump of the active circuit model at R ≈ 2125: at this
memory level, set-up costs start to dominate. The active locality model will show a
similar jump but it will occur at higher memory levels.

• In the QRAM model, the cost plateaus at R ≈ 273. This is only because we chose
d = 2, so that once latency terms dominate in the update step, the increase in latency
of each step, proportional to

√
R, precisely cancels out the reduction in the number

of steps, also proportional to
√
R.

Cost 6.8 Total costs of Tani’s algorithm, with the set size optimized. Here X = |X | and
Y = |Y|

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(

√
XY FGm)

Active
Circuit (2.4.2)

Total O
(√

XY FWmFD
)

Depth O
(√

XYm
FW

FD
)

Width O(FW))
Passive

Latency (2.4.3)
Gate-Time O

(√
XY FGm

)
Active

Local (2.4.4)

Total O
(√

XY FWmFD logd(
√
XY FWmFD)

)
Depth O(

√
XYm
FW

FD)

Width O(FW)

QRAM
(2.4.5)

Gates O
(
(XY)1/3(m2 + FG)

)
Time O

(
(XY)

d+1
3d m

)
Cost 6.8 summarizes all of the costs at the optimal value of R. Here we see that in all

the cost models except QRAM, the cost scales as Õ(
√
|X ||Y|) with |X | and |Y|, the same

as Grover’s algorithm. Tani’s algorithm ends up slightly cheaper than Grover’s algorithm,
by factors of roughly

√
FG/m (passively-corrected) or

√
FW/m (actively-corrected). For

isogeny computations, this is actually noticeable.

123

In the QRAM model, the optimal R is (|X ||Y|)1/3, the same as Tani’s original param-
eters. The latency terms dominate, but the optimal memory size R is when the set-up
cost equals the cost of the main loop of the random walk. At this optimal, the total cost
depends on d; with d = 2, the cost scales as Õ(

√
|X ||Y|), and as d approaches infinity, the

cost approaches Õ((|X ||Y|)1/3), which was Tani’s original result.

6.5.3 Parallelization

Naive

The naive parallelization is to simply divide the search space, the same way that Grover’s
algorithm parallelizes. With P parallel processors, each one will search a space of size
|X ||Y|/P . Using this in Cost 6.8 gives Cost 6.9.

Cost 6.9 Costs of Tani’s algorithm with naive parallelization. Here X = |X | and Y = |Y|.

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(

√
PXY FGm)

Active
Circuit (2.4.2)

Total O
(√

PXY FWmFD
)

Depth O
(√

XYm
PFW

FD
)

Width O(PFW)
Passive

Latency (2.4.3)
Gate-Time O

(√
PXY FGm

)
Active

Local (2.4.4)

Total O
(√

PXY FWmFD logd(
√
PXY FWmFD)

)
Depth O(

√
XYm
PFW

FD)

Width O(PFW)

QRAM
(2.4.5)

Gates O
(
P 2/3(XY)1/3(m2 + FG)

)
Time O

(
(XY/P)

d+1
3d

)
As with Grover’s algorithm, the depth decreases while the total cost increases, both pro-

portional to
√
P , for all non-QRAM models. In the QRAM model, the total time decreases

in proportion to P
d+1
3d , while the gates increase as P 2/3. Thus, when P ≤ (|X ||Y|)

1
3d+1 ,

the time cost dominates, and above that the gate costs. Hence, this is in some sense the
“optimal” parallelization, as it minimizes the cost.

124

Figure 6.4b shows how the costs generally increase with parallelization. The curves
have roughly the same shape as Figure 6.4a, since costs increase with the square root of
either memory or parallelism. The depth, on the other hand, is much lower with naive
parallelization than increased memory, since there is less time wasted with a longer sort in
the update step.

In the QRAM model, we parallelized at the memory level where latency matched com-
putation. This prevents the plateau of depth, but increases the costs.

Increased Memory

This is not really a method of parallelization, but another depth-width tradeoff. We could
use larger values of R to decrease the depth, but this would increase both the width and
total cost. Looking at the costs in Appendix A shows that in all (non-QRAM) cost models,
the total cost increases roughly proportional to

√
R and the depth decreases proportional

to
√
R as well. This means the trade-off scales approximately in the same way as naive

parallelization.

Increasing the memory requires all of the memory to be capable of quantum communi-
cation with the rest of the memory, while for naive parallelization, each parallel quantum
computer can act independently. Further, logarithmic factors in R lead to slightly higher
costs when using higher memory. Thus, using increased memory is an inferior approach to
a depth-width tradeoff.

Jeffery, Magniez, and de Wolf

Jeffery, Magniez, and de Wolf (JMW) [36] give a query-optimal parallelization of Ambainis’
algorithm for element-distinctness that is easily modified for claw-finding. For P processors,
we construct a product of Johnson graphs:

G = J(X , Rx)× · · · J(X , Rx)︸ ︷︷ ︸
P copies

× J(Y , Ry)× · · · J(Y , Ry)︸ ︷︷ ︸
P copies

. (6.24)

Each vertex is a p-tuple of subsets of X and a p-tuble of subsets of Y , i.e.,

v = (vx,1, · · · , vx,P , vy,1, · · · , vy,P), (6.25)

and each subset vx,i has the same size Rx, and each vy,j has size Ry. Two vertices u
and v are adjacent if |vx,i \ ux,i| = 1 for all i, and similarly for y. The spectral gap of a

125

graph product is the minimum of the spectral gaps, so the spectral gap will be Ω(1/R),
for R = max{Rx, Ry}. Each processor stores a separate set, for RP total memory.

We set marked vertices to be the those where there is some claw in any of the subsets.
That means there is some i and j, with x ∈ vx,i and y ∈ vy,j such that f(x) = g(y). This
makes the fraction of marked vertices ε equal to Ω((RP)2/|X ||Y|). Hence, the cost per
processor (letting X = |X | and Y = |Y|) is

SJMW +

√
XY

RP

(√
RUJMW + CJMW

)
. (6.26)

The naive parallelization gives the same spectral gap, but ε changes to Ω(R2P/XY), so
the cost per processor ends up as

S +

√
XY

R
√
P

(√
RU + C

)
. (6.27)

An update step in the JMW parallelization involves insertion and deletion into 2P John-
son graphs, each with size R, but this is the entire update step for the naive parallelization.
A similar argument applies to the set-up step; the check step for naive parallelization is
O(1). Thus, each graph operation in the JMW parallelization is at least as expensive as
naive parallelization.

The check step is much more difficult for JMW because when each processor adds a
new element to its list, it needs to check P − 1 other lists to see if it forms a claw with any
of the other lists. We will assume that for the check step, they work together as a sorting
network and sort all the lists together, treating them as a single list. Ignoring latency this
gives a O(PR log(PR)) gate cost to the check step, with depth O(log(PR)).

This gives a total depth of roughly

logR +

√
XY

P
√
R

logR +

√
XY

PR
log(PR) (6.28)

The middle term will dominate. To fit in a given depth D, we need P =
√
XY/RD2.

Substituting for gate cost over all processors gives
√
XY R

D
logR +

√
XY R +

√
XY log(PR) (6.29)

Hence, it parallelizes well enough that decreasing depth adds no extra cost. However,
this was a very approximate derivation. Because JMW relies on highly connected quantum
processors, we will ignore it in favour of the Multi-Grover search, which also uses sorting
networks and gives a similar cost.

126

6.6 Multi-Grover Search

In “Efficient Distributed Quantum Computing” [7], Beals et al. use a computational model
where many small quantum computers interact in a “low-degree” graph. They show that
this is equivalent in depth to a QRAM model, or to a circuit model where bounded fanin
gates can be simultaneously applied to any non-overlapping sets of qubits in memory.

There are two main issues with this model:

• They use a hypercube as a “low-degree” graph, where the degree of each vertex
grows as O(logN) with the number of vertices. As Section 4.1.2 argued, this is not
embeddable into Euclidean space.

• They focus on depth, not on gate count. This leads to some bizarre algorithms that
seem to have extraordinarily good run-times, but careful analysis shows enormous
gate costs.

Specifically, they give an algorithm for element distinctness that is easily adapted to
claw-finding. The algorithm resembles the BHT algorithm [14] for collision finding.

The basic idea is that with P processors, each processor can store some piece of data
while simultaneously searching within the data that they themselves store, using the multi-
memory access circuit from Section 4.1.2. This means that if each processor i stores
(xi, f(xi)), then it can also compute (yi, g(yi)), and each one can simultaneously search for
some j such that (yi, g(yi)) = (xj, f(xj)).

Let S be the set {(x1, f(x1)), · · · , (xP , f(xP))} of tuples stored by each processor. The
method just described allows each processor to compute the following boolean function:

g(y) =

{
1 , there exists some i such that g(y) = f(xi)

0 , otherwise.
(6.30)

Hence, each processor can perform a Grover search on the set Y for such a claw. In
fact, they can divide the set Y into |Y|/P pieces, and each one will search that subset. If
one half of the claw is in the set S a Grover search will require

√
|Y|/P iterations to find

it.

The function g requires P calls to the oracle and then one sort. If S is the sorting cost,
the cost of g is

S + PF (6.31)

127

so, given some initial list S, the cost of Grover search on Y for a claw in S will cost

O

(√
|Y|
P

(S + PF)

)
. (6.32)

If each processor picks a random x, the probability that one half of the claw is in S
will be P/|X |. We can then wrap the entire algorithm in another Grover search, where
we search through these random sets. This will require

√
|X |/P repetitions of the Grover

search subroutine. Hence, the total cost will be

O

(√
|X ||Y|
P

(S + PF)

)
, (6.33)

where S is the cost of the sort used in the middle of the algorithm. This uses Cost 4.3 for
the sort cost with Pm as the size of the list to be sorting.

Cost 6.10 Claw-finding with a Multi-Grover search, with X = |X | and Y = |Y|.

Model Measure Cost
Passive

Circuit (2.4.1)
Gates O(

√
XY (m logP + FG))

Active
Circuit (2.4.2)

Total O(
√
XY (log2 P logm) + o(

√
XY log2 P)

Depth O
(√

XY
P

(logP logm+ FD)
)

Width O(P (logP + FW))
Passive

Latency (2.4.3)
Gate-Time O(

√
XY (P 1/d(P 1/d2 + FG))

Active
Local (2.4.4)

Total O(
√
XY P 2/d+1/d2 logd(XY P)) + o(

√
XY P 2/d+1/d2)

Depth O(
√
XY
P

(P 1/d(logm+ P 1/d2) + FD))
Width O(P (P 1/d + FW)

When we ignore latency, multi-Grover parallelization is much more efficient than Tani’s
or Grover’s algorithms. In passive latency, parallelization is better if the dimension is 3 or
more; with active locality, parallelization is better if the dimension is at least 5.

Recall that for the sorting network used in multi-Grover, the dimension plays a big
role because the depth of the sort (in gates) depends on the connectivity of the qubits,
which must be embedded into some physical device. That is, one can imagine using a
model without latency for Tani’s algorithm, relying upon the signal speeds of the control

128

circuitry to be so fast that they can be ignored, but it’s much harder to believe that one
could connect qubits into a graph with more than constant connectivity.

50 100 150

200

250

300

Total Width RP

T
ot

al
co

st

(a) Total cost

50 100 150
50

100

150

200

Total Width RP

T
ot

al
d
ep

th
/t

im
e Passive Circuit

Active Circuit
Passive Latency
Active Locality

(b) Depth and time

Figure 6.5: Multi-Grover search for SIKE-610, with dimension 2. Axes are in log base 2.

Figure 6.5 shows the costs and depth including both sorting and oracle costs. With
latency, there is an optimal parallelization where latency costs match oracle costs. Without
latency, the costs stay constant.

6.7 Comparisons

6.7.1 Tani vs. Grover

Figure 6.6 compares Tani’s algorithm to Grover’s algorithm. This is identical to Figure 6.4b
but with Grover’s algorithm added. Though this figure is specific to SIKE, the patterns in
it are more general.

Grover’s algorithm is more expensive. In the passively-corrected models, memory is only
expensive to access, not to maintain, so Tani’s algorithm provides modest improvements by
balancing memory access with oracle calls. In contrast, in the actively-corrected models,
it is expensive just to store the memory while the oracle computation runs, so there is
less room for advantage by increasing memory, and the gap between Tani and Grover is
smaller. In the QRAM model, Tani’s algorithm is vastly superior.

129

If we set R = 1 in Tani’s algorithm, we get a Johnson graph J(X , 1), which is the
complete graph. Grover’s algorithm is a random walk on the complete graph, so we can
view Grover’s algorithm as a limiting case of Tani’s algorithm. Massive parallelization of
small instances of Tani’s algorithm is not much different than parallel Grover.

50 100 150
150

200

250

300

Total Width RP

T
ot

al
co

st

Tani Grover

(a) Total cost

50 100 150
120

140

160

180

200

Total Width RP

T
ot

al
d
ep

th
/t

im
e Passive Circuit

Active Circuit
Passive Latency
Active Locality

QRAM

(b) Depth and time

Figure 6.6: Costs of Tani’s algorithm vs. Grover’s algorithm for SIKE-610, with dimension
2. Axes are in log base 2.

6.7.2 Tani vs. Multi-Grover

Here there is no comparison in the QRAM model, since Multi-Grover does not use any
QRAM.

Figure 6.7 compares the algorithms. Like Grover’s algorithm, the total cost of Tani’s
algorithm increases as it parallelizes. Since it must parallelize to reduce depth, the cost
increases as depth decreases (6.7c). Multi-Grover parallelizes much more efficiently, so it
only sees the same effect in models with latency where sorting costs much more.

We see that for passively-corrected models, Tani’s algorithm has an advantage for small
memory. Multi-Grover calls the oracle for every processor in every iteration, but Tani
only calls it once per iteration. Hence, the increase in oracle costs precisely cancels the
reductions in steps for Multi-Grover. For Tani’s algorithm, increasing memory is “free” up
to about 245 bits, since the memory costs are still dwarfed by oracle calls, but Tani does
not need to increase the number of oracle calls. Once memory insertions start to dominate

130

50 100 150

200

250

300

Total Width RP

T
ot

al
co

st

(a)

50 100 150
50

100

150

200

Total Width RP

T
ot

al
d
ep

th
/t

im
e

(b)

60 80 100 120 140 160 180 200

200

250

300

350

Total Depth

T
ot

al
co

st

Tani
Multi-Grover

Passive Circuit
Active Circuit

Passive Latency
Active Locality

(c)

Figure 6.7: Tani and Multi-Grover for SIKE-610. The dimension d is 2. Axes are log base
2.

and Tani parallelizes, it parallelizes less efficiently than Multi-Grover and soon loses the
advantage.

In actively-corrected models, Tani’s algorithm almost immediately suffers increased
costs from increased memory, because maintaining the memory dominates the costs. This
means it is almost immediately more expensive than Multi-Grover. Accounting for latency,
Tani’s algorithm is eventually cheaper beacuse Multi-Grover relies on so many sorts.

We assumed neither algorithm can use more than
√
|X ||Y|+FW memory. Since Multi-

Grover parallelizes better, in non-geometric models it can achieve much lower depths. At
the extreme, it’s roughly equal to a single oracle call and a single sort, which is essentially

131

the optimal high-memory approach: Initialize a list of all of X and another list of all of Y ,
compute the oracle for every element in each list, sort the lists together, and look for any
collisions.

The best algorithm depends on the depth, memory, and model assumptions.

6.7.3 Quantum vs. Classical

To compare quantum and classical, we will use the best quantum algorithm and compare it
to van Oorschot-Wiener, which Section 6.3 showed was the best classical algorithm. Here
there is some ambiguity on how to compare, since we have underspecified the computa-
tional resources. The costs of each algorithm vary greatly depending on the amount of
parallelization, the maximum depth allowed, and for VW, the amount of shared memory.

One way to make the comparisons “fair” is to assume that if a quantum algorithm
uses M qubits of memory, then VW has access to M bits of memory, since the quantum
memory will have some classical control that could store the data for VW. In Jaques and
Schanck [34], we also assumed that VW has one processor for each qubit of memory. We
will continue to make this assumption for all models except the QRAM.

To compute the costs of parallel VW with latency, we used Equation 6.16 directly,
taking whichever value of θ from Equation 6.17 produces the lower total cost. Figure
6.8a shows the results and compares them to the quantum algorithms. This figure shows
that increased memory reduces the total cost of VW, while it increases the cost of Tani’s
algorithm and does not change the cost of Multi-Grover. The depth of each algorithm
decreases when they use more hardware (Figure 6.8b), but for Tani’s algorithm, the depth
reduction comes at a cost of increased gates. For VW, reduced depth also reduces the total
amount of computation. We can also see that latency has a negligible impact on VW until
it uses ≈ 2140 bits of shared memory.

Figure 6.8a may seem odd, since costs increase with the available resources. Could we
not simply choose to ignore the extra memory for Tani’s algorithm to minimize costs? We
could, but the underlying assumption is that we want to minimize depth. Hence, depth
decreases as costs increase. We can see that in Figure 6.8c.

Let X = |X | and Y = |Y|. A single instance of Tani’s algorithm scales as O(
√
XY)

while VW scales as O((XY)3/4), which explains why Tani’s algorithm has a lower depth
when parallelization is limited. By assumption, increased “hardware” means both proces-
sors and memory increase for VW. This means if Q is the total number of qubits, Tani’s
algorithm decreases in depth by O(Q1/2) while VW decreases in depth by O(Q3/2). Hence,

132

50 100 150
150

200

250

300

Total Width RP

T
ot

al
co

st

(a)

50 100 150

100

200

Total Width RP

T
ot

al
d
ep

th
/t

im
e

(b)

60 80 100 120 140 160 180 200
150

200

250

300

Total Depth

T
ot

al
co

st

VW
Tani

Multi-Grover
Passive Circuit
Active Circuit

Passive Latency
Active Locality

QRAM

(c)

Figure 6.8: Classical vs. quantum algorithms for SIKE-610. The dimension d is 2. Axes
are log base 2.

VW becomes faster than Tani’s algorithm when there is plenty of hardware available. In
general, the crossover will be where the following equation holds:

(XY)3/4

Q3/2︸ ︷︷ ︸
VW depth

≈ (XY)1/2

Q1/2︸ ︷︷ ︸
Tani depth

(6.34)

which occurs when Q = (XY)1/4. This is approximate since we ignored logarithmic factors.
If Q is below this threshold, then Tani’s algorithm requires at least (XY)1/4 depth and
VW requires at least (XY)3/8 depth.

133

Similarly, Multi-Grover scales as O(
√
XY) and the depth decreases by O(Q). This is

still slower than VW; however, if we solve the same equation,

(XY)3/4

Q3/2︸ ︷︷ ︸
VW depth

≈ (XY)1/2

Q︸ ︷︷ ︸
Multi-Grover depth

, (6.35)

we conclude that the crossover, where VW becomes faster than Multi-Grover, occurs when
Q = (XY)1/2. This is an absurd memory requirement. Many of the assumptions we used
in the analysis start to break down with that much memory.

One last perspective on these costs is to compare the total cost to the depth, shown in
Figure 6.7c. This figure asks: How much hardware would be necessary to fit in the required
depth, and hence what is the total cost? This shows that costs decrease with depth or stay
the same for quantum algorithms, but increase with depth for VW.

Multi-Grover outperforms VW in the passive circuit model and for high depth in the
active circuit model. VW is better in the active locality model, and at low depths is better
than the passive latency model. VW is better than QRAM, because the QRAM model
assumes a quantum processor is very expensive, but a single qubit has the same cost as a
classical processor.

Our final conclusions about these algorithms (P is the total hardware available):

1. With very limited memory, Tani’s algorithm is the best, with cost scaling approxi-
mately as O((|X ||Y|)1/2).

2. If memory is available and latency is not an issue (i.e., one can connect one’s
qubits in a hypercube) then Multi-Grover is the best algorithm. The cost scales
as O((|X ||Y|)1/2 logP).

3. If latency is an issue, Multi-Grover generally performs better until the sort costs
dominate the oracle costs.

(a) With actively-corrected memory, VW is better, with cost scaling roughly as
O((|X ||Y|)3/4P−1/2).

(b) With passively-corrected memory (including QRAM), VW is better for low
depth, but quantum algorithms, either Tani or Multi-Grover, perform better
with low memory.

(c) If one has less than O((|X ||Y|)1/4) hardware and less than O((|X ||Y|)1/4) time,
the problem cannot be solved.

134

That third conclusion is something we should really emphasize. Consider SIKE-751.
To break it with claw-finding, one needs either 294 time (roughly the age of the universe in
nanoseconds) or 294 hardware (roughly the surface area of the earth in square micrometers).
So covering the Earth’s surface in 1 micrometer2-sized qubits, running Tani, VW, or Multi-
Grover for the age of the universe, would just barely solve CSSI for SIKE-751.

Smaller parameters have feasible limits, like 254 for time and hardware for SIKE-434,
though the total cost is still high at roughly 2108 RAM operations.

135

Chapter 7

Security of SIKE and SIDH

The United States’ National Institute of Standards and Technology (NIST) is standardizing
post-quantum cryptography and is considering SIKE. Hence, we need analyses of SIKE’s
security. The goal of the previous analyses was to present a more realistic picture of attacks
on isogeny-based cryptography.

“Security” is a nebulous idea, since there are many avenues of attack. There may
be implementation issues that allow side-channel attacks, fault attacks, or attacks on the
protocols. The point when an adversary would use their quantum computer to attack
SIKE will probably be after they have tried and failed to use any simpler and cheaper
attack. Since our focus is quantum costs, we will assume all the implementation issues are
fixed and that an adversary is forced to solve the Computational Super-Singular Isogeny
problem (CSSI, Problem 5.2.1) if they want to break SIKE.

This chapter will first address why other potential attacks do not work for SIKE and
SIDH, thus making claw-finding the best attack. Since the classical and quantum algo-
rithms have different “cost landscapes” of hardware, depth, parallelization, and cost, we
consider NIST’s security definitions and conclude that the appropriate way to give costs
is relative to other algorithms. Combining the results of all the previous chapters, we
conclude that:

1. The cost of breaking SIKE or SIDH with claw-finding grows on the order of p1/4;

2. In a realistic computational model, SIKE-434 gives as much security as AES-128 or
SHA-256.

These are lower than previous estimates, meaning one can use smaller keys – and hence
improve performance – without sacrificing security.

136

7.1 Isogeny-specific Attacks

Chapter 6 only focused on generic claw-finding attacks, and ignored the structure of the
isogeny problem. There have been a few attempts to provide a specific quantum attack to
find secret isogenies; we list them here.

7.1.1 Ordinary Isogenies

Childs, Jao, and Soukharev (CJS) [21] provided a subexponential time and subexponential
space quantum algorithm to find hidden ordinary isogenies. They frame the problem
as an abelian hidden shift problem. They use either Kuperberg’s [41] or Regev’s [49]
algorithm to solve it. Since their paper, Kuperberg refined his method with a more general
algorithm that subsumes Regev’s technique [40]. There is an oracle-call vs. space tradeoff,
where the space ranges from polynomial to subexponential. The number of oracle calls is
superpolynomial under any parameterization.

The oracle in question must compute an isogeny from its representation as an arbitrary
element of the ideal class group. CJS provided a method to compute this, but it used
subexponential time and space.

There is a new protocol known as CSIDH [18] that uses supersingular curves over Fp.
These have similar algebraic structure to ordinary curves, so CJS is the best attack. This
resulted in a sudden surge of results improving on the isogeny oracle. Two methods have
exponential asymptotic complexity but are fast for practical key sizes [12, 31], and another
method optimizes constants [10]. The exponential component is to solve a lattice problem,
but the lattices for concrete CSIDH instances are low-dimensional. Supersingular curves
over Fp2 lack some of the algebraic structure of ordinary curves, so the CJS attack will not
work on SIDH.

7.1.2 Supersingular Isogenies

Biasse, Jao, and Sankar (BJS) [11] provided a quantum method to compute a supersingular
isogeny over Fp2 between some E1 and E2. Their method uses a Grover search to find an
isogeny from E1 to some curve defined over Fp, denoted E ′1. A similar isogeny can be found
between E2 and some E ′2. Then the CJS algorithm can find an isogeny between E ′1 and
E ′2. Composing these three isogenies, as in Figure 7.1, gives an isogeny between E1 and
E2.

137

E0

E�A

Grover
CJS

Grover

Figure 7.1: The BJS algorithm. The rectangle represents all supersingular curves over Fp2 ,
and the blue dots represent curves defined over Fp.

There are two problems with this approach. The first is that this technique finds some
isogeny between E1 and E2, but not necessarily the secret isogeny of a specified degree
that would solve CSSI. This issue may be inconsequential [39].

More pressing is the Grover search. There are about p/12 supersingular elliptic curves
over Fp2 , and there are roughly p1/2 supersingular curves over Fp. Thus, the fraction of
curves that the Grover step needs to find is O(p−1/2). In CSSI, if one searches the p1/2

isogenies reached by paths of length 1
2

log p from the starting curve E1, precisely one path
should be the correct isogeny, meaning the fraction of correct curves is also O(p−1/2). Thus,
the number of iterations in a Grover search will be the same for these two searches. The
oracle cost to compute a single isogeny will be almost exactly the same. Hence, the BJS
algorithm starts with a Grover search that has the same cost as simply solving the CSSI
problem directly!

There are no other isogeny-specific quantum algorithms that do better, or even close, to
Grover’s algorithm. It remains an open question whether this is because CSSI is genuinely
a hard problem and will remain exponential, or whether it is simply because few people
have enough expertise in both isogenies and quantum algorithms to solve the problem.

From this, we will conclude that for now generic claw-finding attacks are the best attack
against CSSI, so they will define the security of SIDH and SIKE.

138

7.2 Security Definitions

7.2.1 Cost Parameters

The conclusions at the end of Chapter 6 are fairly compact and complete, but they leave
a hard task for someone trying to decide on a secure set of parameters for a cryptosystem.
What computational model is the most realistic? How much hardware will an adversary
have?

The reason this is more difficult for quantum algorithms may be that many crypto-
graphically relevant classical algorithms parallelize perfectly. This includes:

• a brute force key search,

• van Oorschot-Wiener applied to collision finding,

• VW applied to discrete log,

• the number field sieve (more or less).

Hence, if we conclude that the “complexity” of an attack is 2128, then we know we need
to do 2128 operations somehow, whether we spread that out over many machines or use
only a few machines for a very long time. Thus cryptographers seem to ignore this issue,
and simply try to hit benchmarks of complexity. In contrast, a quantum algorithm like
Grover’s has a gate count that varies with the number of machines.

One reason that cryptographers might ignore the classical trade-off is that the attacks
all have the same tradeoff. Thus, if you have already chosen a 128-bit symmetric cipher,
then it’s only reasonable to choose a 256-bit hash function, a 256-bit elliptic curve, or a
3072-bit RSA key. This consistency has two nice features:

• If you’ve already chosen one component of a cryptosystem, and it has n bits of
security, you only need to choose n bits of security for your other systems, since any
attack powerful enough to break one will be powerful enough to break the other.

• If you want to compare two cryptosystems, you only need to compare them at the
same “complexity”, for the same reason.

Moving forward, we think this consistency is the important feature we should retain to
compare systems with different attack landscapes.

139

7.2.2 NIST’s Approach

Consistency is an important feature and seems to be the philosophy behind NIST’s security
levels. They define each security level as

Any attack that breaks the relevant security definition must require compu-
tational resources comparable to or greater than those required for [breaking
various protocols].

Each security level is defined by which protocol is the benchmark of computational
resources:

Level 1: Key recovery for AES-128

Level 2: Collision for SHA-256

Level 3: Key recovery for AES-192

Level 4: Collision for SHA-384

Level 5: Key recovery for AES-256

NIST claims that these are in increasing order, which says something about their pro-
cess. BHT [14] give a quantum algorithm for collision-finding of an n-bit hash that runs
in time O(2n/3) but uses space O(2n/3). This has been controversial (q.v. [8]), and if we
focused only on run-time, this fits NIST’s ordering: the required time for each task is then
264, 285, 296, 2128, and 2128.

However, in terms of gate cost without QRAM, BHT’s algorithm costs approximately
O(2n/3). This means level 2 requires 2170 gates, while level 3 only requires 296 gates
(ignoring the gates to actually compute AES or SHA). One might conclude that NIST is
thus assuming an adversary will have QRAM. However, NIST may be totally agnostic on
the issue, since they go on to define each category in terms of gates. Categories 2 and 4
are only defined by classical gates. Our guess is that NIST did not want to take a stance
on whether BHT is a realistic threat or not.

140

Category Computational Task Quantum Gates FG FD Classical Gates H
1 AES-128 2170/MAXDEPTH 223.8 218.1 2143 225

2 SHA-256 – – – 2146 228

3 AES-192 2233/MAXDEPTH 224.4 218.3 2207 225

4 SHA-384 – – – 2210 228

5 AES-256 2298/MAXDEPTH 225.0 218.5 2272 225

Table 7.1: Gate counts for NIST categories. The quantum gate counts and depth for
individual AES calls (FG and FD) come from Grassl et al. [28] and we deduce the classical
gate counts below.

7.2.3 NIST Category Explanations

It’s worth explaining how NIST derived their categories. They only cite Grassl et al. [28],
so the following is a reconstruction of their logic. Table 7.1 shows their figures. The
“MAXDEPTH” is the value of the maximum depth of a quantum circuit, which they assume
will be either 248, 264, or 296.

The classical gate counts are straightforward. For n-bit AES, the gate counts are
2n+25, suggesting NIST envisions a brute force attack that requires 225 gates for a single
AES-evaluation. For an n-bit hash, the gate counts are 2n/2+18. This scales like van
Oorschot-Wiener collision finding, where a hash computation requires 218 gates. Note that
this ignores any shared memory available, since VW doesn’t benefit from extra memory if
it only needs to find a single collision.

For the quantum figures, we have to consider parallel Grover. If we want to search a
space of size N , and computing a single oracle call costs FG, then we need

√
NFG gates. If

we parallelize to P machines, each machine will search a space of size N/P and thus it will
require

√
N/PFG gates. Counting the gates over all the machines totals

√
PNFG gates.

The total depth for each machine will be
√
N/PFD, where FD is the depth of a single

oracle call. This will be the total depth of the algorithm. If we assume that, without
parallelization, the depth would be greater than MAXDEPTH, then we are forced to parallelize.
We want to parallelize as little as possible to fit in the depth limit, so we want√

N

P
FD = MAXDEPTH. (7.1)

Solving this equation gives
√
P =

√
NFD

MAXDEPTH
. We can substitute that into the total gate

count to get
NFGFD

MAXDEPTH
. (7.2)

141

If we use the values from Grassl et al. [28] to find FG and FD for AES, we get
2169.9/MAXDEPTH, 2234.7/MAXDEPTH, and 2299.6/MAXDEPTH for AES 128, 192, and 256. Hence,
this was probably how NIST came up with these results.

This means that, in NIST’s view, quantum algorithms will be depth-limited.

7.2.4 Reductions for SIKE

If we have SIKE-n for some prime p of n bits then this induces a claw-finding problem with
|X | = |Y| = 2n/4 and |S| = 2n/2. By Lemma 6.1.1, solving this claw-finding problem is as
hard as finding a collision (likely unique) for a hash function h : V → W with |V | = 2n/4+1

and |W | = 2n/2. Since restricting the input size cannot increase the difficulty (we can just
ignore some inputs), this means that SIKE-n is at least as hard as collision finding for an
n/2 bit hash. Hence, we can definitely meet NIST categories 2 and 4 with primes of length
512 and 768, respectively.

Conversely, we can only reduce a golden collision search to claw-finding, not a generic
collision. However, security levels 2 and 4 are defined in terms of a generic collision. We
can apply Lemma 6.1.3 but this does not give a tight bound.

The concrete analysis shows that the first bound, that SIKE-n is as hard as collisions
for an n/2-bit hash, is essentially tight, up to differences in difficulty between computing
a hash and computing isogenies.

7.3 SIKE Security Tables

For each cost model, we will provide a table showing the cost of each algorithm for collision
finding for SHA-256 and SHA-384. This will provide the benchmarks for NIST categories
2 and 4. For categories 1, 3, and 5, we will compute the cost of a Grover search, based on
the calculations described in the last section.

To properly analyze NIST categories 2 and 4, we would need to do the same analysis as
Chapter 6, but applied to collision finding. Instead, we will simply re-use the analysis but
with |X | = |Y| = N1/2, when the hash’s output space has size N . This works for Tani’s
algorithm and Multi-Grover search – in essence, it turns Tani’s algorithm into Ambainis’
algorithm – but it does not work for VW, which only needs one collision. Equation 6.13
gives the average cost per collision, but the cost for a single collision will be different. We

142

Prime Length Model NIST Level Best Attack
Passive Circuit 1 VW/Multi-Grover
Active Circuit 1 VW

434 Passive Latency 2 VW/Multi-Grover
Active Locality 2 VW

QRAM 2 VW
Passive Circuit 3 VW/Multi-Grover
Active Circuit 2 VW

610 Passive Latency 3 VW
Active Locality 3 VW

QRAM 3 VW
Passive Circuit 4 VW/Multi-Grover
Active Circuit 4 VW

751 Passive Latency 5 VW
Active Locality 5 VW

QRAM 5 VW

Table 7.2: Security levels of SIKE under different choices of primes and cost models.

will need to first fill the memory, which has size M . Thus, the total cost will be

M

θ
+
Nθ

M
+

1

θ
(7.3)

hash evaluations. Optimizing θ gives θ = M/
√
N , and substituting gives a total cost of√

N . Hence, we will simply use NIST’s figures for VW.

Appendix B gives tables detailing the results for each model. Table 7.2 summarizes the
results.

The main difference in security is between models with or without latency. The security
benchmarks do not suffer any losses from latency, because VW does not need high memory
to find a single collision, and key search parallelizes without communication. However,
latency has a big impact in the high-memory attacks against CSSI. Hence, accounting for
latency raises the security of CSSI relative to the security of the benchmarks.

Thus, it seems reasonable to recommend SIKE-434, -610, and -751 for levels 1, 3, and
4 (respectively) if we optimistically assume latency is no issue, and for levels 2, 3, and 5
otherwise.

143

SIKE Prime Length Recommendation
NIST Level This Thesis

SIKE Submission [32]
No Latency Latency

1 434 – 503
2 610 434 –
3 – 610 751
4 751 – –
5 – 751 964

Table 7.3: Recommendations for SIKE prime lengths for NIST’s security levels.

7.3.1 Previous Analyses

The original description of SIDH used Tani’s algorithm as the best attack and hence used
a 768-bit prime for 128 bits of security. In this sense, AES-256 only has 128 bits of security
because of Grover’s algorithm, so this nearly matches our conclusions here. The SIKE
submission (shown in Table 7.3) also used Tani’s algorithm and compared it to a single
instance of Grover’s algorithm. They left substantial safety margins, and if they “tightly”
matched the security levels, they would have recommend primes of 389, 583, and 778 bits,
respectively.

These analyses gave similar recommendations to mine because they used lower costs for
both the attack and the benchmark for the attack. Grover’s algorithm becomes substan-
tially more expensive under depth limits because it parallelizes so badly, so our analysis
had a higher security threshold for the NIST levels than the SIKE submission. We in-
cluded Multi-Grover and VW, which do better under depth limits than Grover, reducing
the relative security of SIKE.

For absolute security, our most conservative analysis gave 223 “bits of security” to SIKE-
751, though “bits of security” is undefined without specifying limits for either processors,
memory, or depth. One only needs a 434 bit prime to achieve 128 bits of security, which
is 42% smaller than the previous 768 bit recommendation.

Adj et al. [3] consider just classical attacks, and give a fixed memory limit of 280 words
for VW. They also used “bits of security” rather than comparing to the NIST categories.
The final conclusions end up essentially the same.

Most of this thesis came from Jaques and Schanck [34]. That paper ignored Multi-
Grover because of the locality issues in a sorting network, but it made much more con-
servative assumptions about the cost of computing an isogeny. That is, in this thesis we

144

traded realism in the search algorithm for realism in the oracle cost. The results are mostly
the same, though the geometric models are likely more realistic in both aspects and the
security is correspondingly higher.

7.3.2 Discussion

It’s worth noting that most of the attacks are hopelessly unrealistic. In the most realistic
model — active locality — with a max depth of 264, VW needs 2116 bits of memory to
break SIKE-434, which is absurd. Of course, with max depth 296, it “only” uses 279 bits
of memory — but then the depth is “the approximate number of gates that atomic scale
qubits with speed of light propagation times could perform in a millennium” [47].

In short, all of the calculations in Appendix B show attacks that are frankly ridiculous.
Even with extremely optimistic assumptions about the scale and speed of future qubits,
the attacks would need planet-sized networks of quantum computers running for hundreds
of years. It’s reasonable, though somewhat bold, to say that none of the attacks in this
thesis will ever break SIKE-610. A more likely threat is an improved algorithm. None of
the attacks in this thesis use the isogeny structure, and the CSSI problem (originating with
[19]) has only withstood 13 years of analysis. Further, this chapter’s assumption may be
wrong and SIDH and SIKE may be easier than CSSI.

145

Conclusions and Open Problems

We showed that most previous analyses underestimated the security of SIDH, but we
suspect other cryptosystems understimated their security as well. The “best” attack on
code-based cryptography is quantum information set decoding [37], which also uses random
walks on a Johnson graph. Quantum lattice sieving [42] is the best attack on lattice-based
cryptography and it too uses exponential memory. If we can confidently increase our secu-
rity estimates for these schemes, we can shrink the parameters and improve performance.

The cost of the claw-finding problem scales as O(
√
XY) for all of the quantum and

classical algorithms we analyzed. However, these algorithms were designed with other cost
metrics in mind; there may be other algorithms that perform better under the metrics
we used. In a query model, it’s pointless to trade total iterations for query costs in each
update operation; however, in other models, this would permit optimal parameterizations
with more expensive memory operations. Using distinguished points in Tani’s algorithm
may provide such a tradeoff.

As far as we are aware, all the quantum random walk search algorithms use Johnson
graphs. Since query costs drastically underestimate memory access costs, in other cost
models these algorithms will probably lose their advantage. Further work could determine
which algorithms still offer an improvement over classical algorithms, and could try to find
random walk applications that do not use a Johnson graph.

Most of our conclusions sprang from an assumption that quantum random access mem-
ory is expensive. This is true if memory is actively-corrected or if the random access gate
must be constructed from bounded fan-in gates; however, either assumption might be
wrong. Further work could prove that passively-corrected quantum memory is impossible
in greater dimensions or with larger families of error-correcting codes. There is also no
work that we are aware of that tries to quantify the computationally difficulty of engineer-
ing precise Hamiltonians to perform complicated operations like memory access. This is
essentially the opposite approach of quantum chemical simulations. Lower bounds on this
problem would give more weight to our assumptions on memory access.

146

The models we used were ad-hoc and there is substantial room for more rigour and
justification. As a basic example, we equated latency with gate costs, so the time to send
a signal past one qubit was the same as the time to perform a gate on that qubit. The
difference between these will be a constant factor, but the constant may be large enough
to affect non-asymptotic analyses.

Further, the algorithms we analyzed used quantum processors that were either highly
connected and communicating very frequently (Multi-Grover) or had no quantum commu-
nication (parallel Grover and parallel Tani). An algorithm in between these two extremes
would need a model with a more precise description of quantum communication between
processors. The equivalence between the Distributed Quantum Computing, circuit, and
QRAM models [7] only holds under a depth metric and non-Euclidean physical layouts.

As quantum cryptanalysis becomes more important for real parameter choices, we need
to take a closer look at the results from complexity theory, which often hide aspects of the
computation that are irrelevant for the theory, but which will be important in practice. We
need more quantum algorithm analysis at a medium level of realism, where we can trust
the conclusions to hold under many possible routes of quantum architectures, but which
include as many costs as we can.

147

References

[1] S. Aaronson, D. Grier, and L. Schaeffer. The classification of reversible bit operations.
arXiv:1504.05155, 2015. available at https://arxiv.org/abs/1504.05155.

[2] G. Adj, O. Ahmadi, and A. Menezes. On isogeny graphs of supersingular elliptic
curves over finite fields. Finite Fields and Their Applications, 55:268 – 283, 2019.

[3] G. Adj, D. Cervantes-Vázquez, J.-J. Chi-Domı́nguez, A. Menezes, and F. Rodŕıguez-
Henŕıquez. On the cost of computing isogenies between supersingular elliptic curves.
In Selected Areas in Cryptography – SAC 2018, pages 322–343. LNCS 11349.

[4] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki. On thermal stability of
topological qubit in Kitaev’s 4d model. Open Systems & Information Dynamics,
17:1–20, 2010.

[5] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Computing,
37:210–239, 2007.

[6] S. Arunachalam, V. Gheorghiu, T. Jochym-OConnor, M. Mosca, and P. Varshinee
Srinivasan. On the robustness of bucket brigade quantum ram. New J. Physics,
17(12):123010, 2015.

[7] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd, and
M. Stather. Efficient distributed quantum computing. Proc. Royal Soc. London A:
Mathematical, Physical and Engineering Sciences, 469, 2013.

[8] D. J. Bernstein. Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? Workshop Record of SHARCS09: Special-purpose Hardware for
Attacking Cryptographic Systems, 2009.

148

https://arxiv.org/abs/1504.05155

[9] D. J. Bernstein, S. Jeffery, T. Lange, and A. Meurer. Quantum algorithms for the
subset-sum problem. In Post-Quantum Cryptography – PQCrypto 2013, pages 16–33.
LNCS 7932.

[10] D.J. Bernstein, T. Lange, C. Martindale, and L. Panny. Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In Eurocrypt 2019. To appear.
Available at https://eprint.iacr.org/2018/1059.

[11] J.-F. Biasse, D. Jao, and A. Sankar. A quantum algorithm for computing isogenies
between supersingular elliptic curves. In Progress in Cryptology – INDOCRYPT 2014,
pages 428–442. LNCS 8885.

[12] X. Bonnetain and A. Schrottenloher. Quantum security analysis of CSIDH and
ordinary isogeny-based schemes. Version 20181219:085722. Available at https:

//eprint.iacr.org/2018/537.

[13] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 46(45):493–505, 1998.

[14] G. Brassard, P. Hoyer, and A. Tapp. Quantum algorithm for the collision problem.
Third Latin American Symp. on Theoretical Informatics (LATIN’98), pp. 163-169,
1998. LNCS 1380, 1997.

[15] S. Bravyi and B. Terhal. A no-go theorem for a two-dimensional self-correcting quan-
tum memory based on stabilizer codes. New J. Physics, 11, 2009.

[16] K. A. Britt and T.S. Humble. High-performance computing with quantum processing
units. J. Emerg. Technol. Comput. Syst., 13(3):39:1–39:13, March 2017.

[17] B.J. Brown, D. Loss, J.K. Pachos, C.N. Self, and J.R. Wootton. Quantum memories
at finite temperature. Rev. Mod. Phys., 88:045005, Nov 2016.

[18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An effi-
cient post-quantum commutative group action. In ASIACRYPT 2018, pages 395–427.
LNCS 11274.

[19] D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions from
expander graphs. J. Cryptology, 22(1):93–113, Jan 2009.

[20] S.-T. Cheng and C.-Y. Wang. Quantum switching and quantum merge sorting. IEEE
Trans. Circuits and Systems I, 53(2):316–325, Feb 2006.

149

https://eprint.iacr.org/2018/1059
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2018/537

[21] A. M. Childs, D. Jao, and V. Soukharev. Constructing elliptic curve isogenies in
quantum subexponential time. J. Math. Cryptology, 8:1–29, 2014.

[22] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited.
Proc. Royal Society A, 454(1969), 1998.

[23] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. J.
Mathematical Physics, 43, 2002.

[24] M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum informa-
tion: An outlook. Science, 339:1169–1174, 2013.

[25] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes:
Towards practical large-scale quantum computation. Physical Rev. A, 86, Sep 2012.

[26] A. G. Fowler, A. C. Whiteside, A.C. Hollenberg, and C. L. Lloyd. Towards practical
classical processing for the surface code. Phys. Rev. Lett., 108:180501, May 2012.

[27] V. Giovannetti, S. Lloyd, and L. Maccone. Architectures for a quantum random access
memory. Phys. Rev. A, 78, Nov 2008.

[28] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt. Applying Grover’s
algorithm to AES: Quantum resource estimates. In Post-Quantum Cryptography –
PQCrypto 2016, pages 29–43. LNCS 9606.

[29] S. Homer and A.L. Selman. Computability and Complexity Theory, 2e. Springer
Science and Business Media, 2011.

[30] Micron Technology Inc. Technical note: Error correction code (ECC) in Micron
single-level cell (SLC) NAND. Micron Technology Inc. technical note, 2011. avail-
able at https://www.micron.com/-/media/client/global/documents/products/

technical-note/nand-flash/tn2963_ecc_in_slc_nand.pdf.

[31] M.J. Jacobson Jr. J.-F. Biasse, A. Iezzi. A note on the security of CSIDH. arXiv
preprint, 2018. Available at https://arxiv.org/abs/1806.03656.

[32] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, and D. Ur-
banik. Supersingular isogeny key encapsulation. Submission to NIST post-quantum
project, November 2017. Available at https://sike.org/#nist-submission.

150

https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2963_ecc_in_slc_nand.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2963_ecc_in_slc_nand.pdf
https://arxiv.org/abs/1806.03656
https://sike.org/#nist-submission

[33] D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In Post-Quantum Cryptography – PQCrypto 2011, pages 19–
34. LNCS 7071.

[34] S. Jaques and J. Schanck. Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE. Version 20190205:012259. Available at https://eprint.iacr.org/
2019/103.

[35] S. Jeffery. Frameworks for Quantum Algorithms. PhD thesis, University of Waterloo,
2014.

[36] S. Jeffery, F. Magniez, and R. De Wolf. Optimal parallel quantum query algorithms.
Algorithmica, 79(2):509–529, Oct 2017.

[37] G. Kachigar and J.-P. Tillich. Quantum information set decoding algorithms. In
Post-Quantum Cryptography – PQCrypto 2017, LNCS 10346, pages 69–89. Springer.

[38] V. Kliuchnkikov, D. Maslov, and M. Mosca. Asymptotically optimal approximation of
single qubit unitaries by Clifford and T circuits using a constant number of ancillary
qubits. Physical Rev. Letters, 110, May 2013.

[39] D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On the quaternion `-isogeny path
problem. LMS J. Computation and Mathematics, 17A:418–432, 2014.

[40] G. Kuperberg. Another Subexponential-time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem. In Theory of Quantum Computation, Communication and
Cryptography – TQC 2013, LIPIcs 22, pages 20–34.

[41] G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput., 35:170–188, 2005.

[42] T. Laarhoven, M. Mosca, and J. van de Pol. Finding shortest lattice vectors faster
using quantum search. Designs, Codes and Cryptography, 77:375–400, Dec 2015.

[43] F. Le Gall and S. Nakajima. Quantum algorithm for triangle finding in sparse graphs.
Algorithmica, 79:941–959, Nov 2017.

[44] F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. SIAM
J. on Computing, 40:142–164, 2011.

[45] N. David Mermin. Quantum Computer Science: An Introduction. Cambridge Univer-
sity Press, 2007.

151

https://eprint.iacr.org/2019/103
https://eprint.iacr.org/2019/103

[46] C. Moore. Quantum circuits: Fanout, parity, and counting. arXiv preprint, 1999.
available at https://arxiv.org/abs/quant-ph/9903046.

[47] National Institute of Standards and Technology. Submission requirements and
evaluation criteria of the post-quantum cryptography standardization pro-
cess. 2017. available at https://csrc.nist.gov/csrc/media/projects/

post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.

pdf.

[48] R. Peierls. On Ising’s model of ferromagnetism. In Mathematical Proc. Cambridge
Philosophical Society, volume 32, pages 477–481. Cambridge University Press, 1936.

[49] O. Regev. A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space. arXiv:quant-ph/0406151, 2004. available at https://arxiv.
org/abs/quant-ph/0406151.

[50] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter. Quantum resource estimates
for computing elliptic curve discrete logarithms. In Advances in Cryptology – ASI-
ACRYPT 2017, pages 241–270. LNCS 10625, 2017.

[51] J. Schanck, 2019. personal communication.

[52] N. Shenvi, J. Kempe, and K. B. Whaley. Quantum random-walk search algorithm.
Phys. Rev. A, 67:052307, May 2003.

[53] M. Szegedy. Quantum speed-up of markov chain based algorithms. In 2004 IEEE
Symposium on Foundations of Computer Science, pages 32–41, Oct.

[54] Y. Takahashi, S. Tani, and N. Kunihiro. Quantum addition circuits and unbounded
fan-out. Quantum Info. Comput., 10:872–890, September 2010.

[55] S. Tani. An improved claw finding algorithm using quantum walk. In Mathematical
Foundations of Computer Science – MFCS 2007, pages 548–558. LNCS 4708.

[56] H. Thapliyal, N. Ranganathan, and R. Ferreira. Design of a comparator tree based
on reversible logic. In 2010 IEEE International Conference on Nanotechnology, pages
1113–1116.

[57] P.C. van Oorschot and M.J. Wiener. Parallel collision search with cryptanalytic ap-
plications. J.Cryptology, 12(1):1–28, Jan 1999.

[58] C. Zalka. Grover’s quantum searching algorithm is optimal. Physical Rev. A, 60, Oct
1999.

152

https://arxiv.org/abs/quant-ph/9903046
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://arxiv.org/abs/quant-ph/0406151
https://arxiv.org/abs/quant-ph/0406151

APPENDICES

153

Appendix A

Analyses of Tani’s Algorithm

These are the costs of Tani’s algorithm in each model. Here I have set R = Rx = Ry; I
omitted the middle step which shows that they will always be equal at the optimal values.
For each model the cost is unwieldy, so I will analyze each individually. I further assume
that R ≤

√
|X||Y |, and I will use X and Y to refer to the sizes of the sets X and Y .

Passive Circuit

The total cost is

O

(
R(m log2R + FG) +

√
XY

R
(Rm+ FG)

)
. (A.1)

It’s clear to see that the update steps dominate the cost. Costs will be minimized when
Rm = FG, and after that, increasing R will increase total costs, at a rate proportional to√
R.

At the cost-minimizing R, assuming
√
XY ≥ FG, the total cost is approximately

O
(√

XY FGm
)
. (A.2)

Comparing to Cost 6.5, Tani’s algorithm saves a factor of
√

FG/m. For something like
isogeny computations, this can be substantial. Essentially, the more expensive FG becomes,
the closer we get to the idealized oracle model where Tani originally proposed the algorithm.

At the optimal value of R, Tani’s algorithm scales as Grover’s algorithm with respect
to X and Y .

154

Active Circuit

The total cost is

O

(
RFW logR(logR logm+ FD) +

√
XY

R
(Rm+ FW)(logR log logR + FD)

)
. (A.3)

Here, the optimal value of R is FW/m. Assuming FD ≥ log(FW/m), this gives an
optimized cost of

O
(√

XY FWmFD
)
. (A.4)

Here the savings are only
√
FW/m compared to Grover’s algorithm. This factor is at

least 1 since computing the functions must use at least m bits, so FW ≥ m.

Passive Latency

The total cost is

O

(
R(R1/d logR(m+R1/d2 + FG) +

√
XY

R
(Rm+ FG)

)
. (A.5)

The optimal is the same as the passive circuit, with Rm = FG, for an optimal cost of

O
(√

XY FGm
)
. (A.6)

Active Locality

Ignoring the logarithmic factors for error correction, which will scale in the same was as
depth×width, the cost would be

O

(
R1+2/d+1/d2 logd+1(R) +

√
XY

R
((Rm)1/d + FD)(Rm+ FW)

)
. (A.7)

Here the optimal will be Rm = FW . Note that if (Rm)1/d ≥ FD but Rm ≤ FW , then the
right-hand term will still decrease with increasing R. At the optimal, if we assume the
set-up costs are negligible and that FD ≥ F

1/d
W , the total cost ends up as

O
(√

XY FWmFD log2(
√
XY FWmFD)

)
. (A.8)

155

QRAM

The total cost is

O

max

 R(logR + FG) +
√

XY
R

(m2 + FG)

R(R1/d logR +m+ FT) +
√

XY
R

(R1/dm+ FT)


 . (A.9)

Since the right-hand term always decreases with increasing R, each term is minimized
by setting terms of the sum equal. The gate-cost minimum is when

R(logR + FG) =

√
XY

R
(m2 + FG). (A.10)

Assuming logR ≈ m, we get a optimal R of

R = (XY)1/3
(
m2 + FG
m+ FG

)2/3

(A.11)

leading to a minimum gate cost of

O
(
(XY)1/3(m2 + FG)2/3(m+ FG)1/3

)
. (A.12)

To minimize time is more complicated. If we assume R1/dm ≤ FT then the mini-
mum would be R = (XY)1/4, which will probably contradict the assumption, unless FT
is enormous. I will ignore the edge case where R1/d logR ≤ FT ≤ R1/dm, and focus on
R1/dm ≥ R1/dlogR ≥ FT . This gives us

R1+1/d logR =
√
XY R1/d−1/2m. (A.13)

Assuming logR ≈ m, we get R = (XY)1/3. This was Tani’s original parameterization, and
produces a total time of

O
(

(XY)
d+1
3d m

)
. (A.14)

Except for exceptionally high dimension d or cost FG, the time will be higher than the gate
cost, so the optimal cost for Tani’s algorithm is Equation A.14 in the QRAM model.

156

Appendix B

Security Tables for SIKE

For each cost model, I calculate the cost of attacks on CSSI, attacks on AES, and attacks
on SHA. Comparing the costs of CSSI to the other costs gives the NIST security levels.

In some models, the costs permute the order of the security levels. This means some
parameters may achieve NIST level 4 but not level 3, for example. I will denote such a
case as “Level 2/4”, and similarly for other ambiguous levels.

Because Grover’s algorithm suffers no penalties from latency, the costs of AES key
search are the same in the passive circuit, passive latency, and QRAM models. I included
all the tables for completeness.

Where an algorithm couldn’t meet the depth limits, I included the lowest-depth pa-
rameterization, but made the font gray. I used bold font to indicate the lowest-cost attack.

For classical SHA collisions and AES, the depth and width are excluded from the table,
since these can be made (almost) arbitrarily small or large as needed.

157

Passive Circuit Model

SHA Collision Finding
Max. Hash Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 256 203 76 141 153 48 105 146 – – 2
48 384 299 108 205 217 48 170 210 – – 4
64 256 203 76 141 153 64 89 146 – – 2
64 384 299 108 205 217 64 153 210 – – 4
96 256 182 96 100 153 96 57 146 – – 2
96 384 299 108 205 217 96 122 210 – – 4

AES Key Finding
Max. AES – Grover Classical NIST
Depth Size C D W C D W Level

48 128 – – – 122 48 80 143 – – 1
48 192 – – – 187 48 144 207 – – 3
48 256 – – – 252 48 210 272 – – 5
64 128 – – – 106 64 48 143 – – 1
64 192 – – – 171 64 113 207 – – 3
64 256 – – – 236 64 178 272 – – 5
96 128 – – – 88 82 12 143 – – 1
96 192 – – – 139 96 48 207 – – 3
96 256 – – – 204 96 114 272 – – 5

CSSI
Max. Prime Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 434 176 93 126 152 48 121 142 48 110 1
48 610 243 116 171 197 48 167 187 48 154 3
48 751 296 135 207 233 48 203 223 48 191 4
64 434 176 93 126 152 64 104 148 64 99 2
64 610 243 116 171 197 64 151 193 64 144 3
64 751 296 135 207 233 64 188 228 64 180 4
96 434 173 96 120 152 96 72 159 96 77 3
96 610 243 116 171 197 96 119 203 96 122 3
96 751 296 135 207 233 96 156 239 96 158 5

158

Active Circuit Model

SHA Collision Finding
Max. Hash Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 256 216 76 142 153 48 105 146 – – 2
48 384 313 108 206 217 48 170 210 – – 4
64 256 216 76 142 153 64 89 146 – – 2
64 384 313 108 206 217 64 153 210 – – 4
96 256 196 96 101 153 96 57 146 – – 2
96 384 313 108 206 217 96 122 210 – – 4

AES Key Finding
Max. AES – Grover Classical NIST
Depth Size C D W C D W Level

48 128 – – – 128 48 80 143 – – 1
48 192 – – – 193 48 144 207 – – 3
48 256 – – – 258 48 210 272 – – 5
64 128 – – – 112 64 48 143 – – 1
64 192 – – – 177 64 113 207 – – 3
64 256 – – – 242 64 178 272 – – 5
96 128 – – – 94 82 12 143 – – 1
96 192 – – – 145 96 48 207 – – 3
96 256 – – – 210 96 114 272 – – 5

CSSI
Max. Prime Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 434 219 93 127 168 48 121 142 48 110 1
48 610 287 116 172 215 48 167 187 48 154 2
48 751 342 135 208 252 48 203 223 48 191 4
64 434 219 93 127 168 64 104 148 64 99 2
64 610 287 116 172 215 64 151 193 64 144 3
64 751 342 135 208 252 64 188 228 64 180 4
96 434 216 96 121 168 96 72 159 96 77 3
96 610 287 116 172 215 96 119 203 96 122 3
96 751 342 135 208 252 96 156 239 96 158 5

159

Passive Latency Model

SHA Collision Finding
Max. Hash Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 256 203 76 141 224 96 192 146 – – 2
48 384 299 108 205 336 144 288 210 – – 4
64 256 203 76 141 224 96 192 146 – – 2
64 384 299 108 205 336 144 288 210 – – 4
96 256 183 96 101 224 96 192 146 – – 2
96 384 299 108 205 336 144 288 210 – – 4

AES Key Finding
Max. AES – Grover Classical NIST
Depth Size C D W C D W Level

48 128 – – – 122 48 80 143 – – 1
48 192 – – – 187 48 144 207 – – 3
48 256 – – – 252 48 210 272 – – 5
64 128 – – – 106 64 48 143 – – 1
64 192 – – – 171 64 113 207 – – 3
64 256 – – – 236 64 178 272 – – 5
96 128 – – – 88 82 12 143 – – 1
96 192 – – – 139 96 48 207 – – 3
96 256 – – – 204 96 114 272 – – 5

CSSI
Max. Prime Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 434 176 93 135 190 81 163 159 48 116 2
48 610 243 116 180 267 114 229 228 48 166 4
48 751 296 135 216 329 141 282 283 51 205 ∞
64 434 176 93 135 190 81 163 152 64 102 2
64 610 243 116 180 267 114 229 221 64 153 4
64 751 296 135 216 329 141 282 277 64 193 5
96 434 173 96 129 152 96 85 158 95 79 3
96 610 243 116 180 267 114 229 208 96 125 3/5
96 751 296 135 216 329 141 282 263 96 166 5

160

Active Locality Model

SHA Collision Finding
Max. Hash Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 256 232 76 142 304 96 192 146 – – 2
48 384 329 108 206 449 144 288 210 – – 4
64 256 232 76 142 304 96 192 146 – – 2
64 384 329 108 206 449 144 288 210 – – 4
96 256 211 96 101 304 96 192 146 – – 2
96 384 329 108 206 449 144 288 210 – – 4

AES Key Finding
Max. AES – Grover Classical NIST
Depth Size C D W C D W Level

48 128 – – – 142 48 80 143 – – 1
48 192 – – – 208 48 144 207 – – 3
48 256 – – – 274 48 210 272 – – 5
64 128 – – – 125 64 48 143 – – 1
64 192 – – – 192 64 113 207 – – 3
64 256 – – – 258 64 178 272 – – 5
96 128 – – – 107 82 12 143 – – 1
96 192 – – – 159 96 48 207 – – 3
96 256 – – – 225 96 114 272 – – 5

CSSI
Max. Prime Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 434 235 93 127 260 81 163 159 48 116 2
48 610 304 116 172 360 114 229 228 48 166 4
48 751 359 135 208 440 141 282 283 51 205 ∞
64 434 235 93 127 260 81 163 152 64 102 2
64 610 304 116 172 360 114 229 221 64 153 4
64 751 359 135 208 440 141 282 277 64 193 5
96 434 231 96 121 195 96 85 158 95 79 3
96 610 304 116 172 360 114 229 208 96 125 3
96 751 359 135 208 440 141 282 263 96 166 5

161

QRAM Model

SHA Collision Finding
Max. Hash Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 256 208 80 141 203 203 143 146 – – 2
48 384 305 112 205 300 300 208 210 – – 4
64 256 208 80 141 203 203 143 146 – – 2
64 384 305 112 205 300 300 208 210 – – 4
96 256 192 96 108 203 203 143 146 – – 2
96 384 305 112 205 300 300 208 210 – – 4

AES Key Finding
Max. AES – Grover Classical NIST
Depth Size C D W C D W Level

48 128 – – – 122 48 80 143 – – 1
48 192 – – – 187 48 144 207 – – 3
48 256 – – – 252 48 210 272 – – 5
64 128 – – – 106 64 48 143 – – 1
64 192 – – – 171 64 113 207 – – 3
64 256 – – – 236 64 178 272 – – 5
96 128 – – – 88 82 12 143 – – 1
96 192 – – – 139 96 48 207 – – 3
96 256 – – – 204 96 114 272 – – 5

CSSI
Max. Prime Tani Multi-Grover VW NIST
Depth Length C D W C D W C D W Level

48 434 161 116 126 173 173 126 159 48 116 2
48 610 207 121 171 240 240 170 228 48 166 4
48 751 258 139 207 293 293 206 283 51 205 ∞
64 434 161 116 126 173 173 126 152 64 102 2
64 610 207 121 171 240 240 170 221 64 153 4
64 751 258 139 207 293 293 206 277 64 193 5
96 434 161 116 126 173 173 126 158 95 79 3
96 610 207 121 171 240 240 170 208 96 125 3/5
96 751 258 139 207 293 293 206 263 96 166 5

162

	List of Figures
	List of Tables
	List of Costs
	Introduction
	Outline

	Quantum Computing Background
	Notation and Basic Concepts
	Classical Computing
	Quantum States
	Operations
	Computing

	Basic Techniques
	Uncomputing Ancillae
	Arbitrary Qubit Rotations
	Superpositions of Arbitrary Lists
	Probabilistic Algorithms

	Difficulties
	Reversibility
	No-Cloning Theorem
	Entanglement

	Error Correction
	Quantum Channels
	Fidelity
	Error Complexity
	Error Rates
	Logical Operators
	Passive versus Active Correction
	Syndrome Measurement

	Quantum Computational Models
	Surface Codes
	Peripheral Models
	Description
	Control Costs
	Advantages

	Architectural Features
	Error Correction
	Computational Qubits
	QRAM
	Locality
	Latency

	Models
	Passively-Corrected Clifford+T Circuit
	Actively-Corrected Clifford+T Circuit
	Passively-Corrected Circuit with Latency
	Actively-Corrected Circuit with Locality
	QRAM with Latency

	Quantum Walks
	Grover's Algorithm
	Reflections about the Average
	Rotations
	Important Points

	Classical Random Walks
	Random Walks as Search
	Greedy Random Walk

	Quantum Random Walks
	Szegedy's Algorithm
	MNRS Algorithm
	Grover vs. Other Random Walks

	Quantum Data
	Quantum Memory Access
	Fanout Memory
	Sorting Network Memory Access

	Quantum Data Structures
	Quantum Radix Trees
	Sliding Sorted Arrays

	Johnson Graphs
	Symmetric Differences
	Self loops
	Set-up

	Isogenies
	Isogeny-based Cryptography
	Supersingular Isogeny-based Diffie-Hellman
	SIKE

	Attacks
	Naive Attack
	Meet in the Middle

	Isogeny Computations
	Quantum Estimates
	Classical Estimates

	Claw Finding
	The Claw Finding Problem
	Meet in the Middle
	van Oorschot–Wiener
	Analysis
	Application to SIDH

	Grover's Algorithm
	Tani's Algorithm
	Basic Costs
	Analysis
	Parallelization

	Multi-Grover Search
	Comparisons
	Tani vs. Grover
	Tani vs. Multi-Grover
	Quantum vs. Classical

	Security of SIKE and SIDH
	Isogeny-specific Attacks
	Ordinary Isogenies
	Supersingular Isogenies

	Security Definitions
	Cost Parameters
	NIST's Approach
	NIST Category Explanations
	Reductions for SIKE

	SIKE Security Tables
	Previous Analyses
	Discussion

	Conclusions and Open Problems
	References
	APPENDICES
	Analyses of Tani's Algorithm
	Security Tables

