
Stabilizing Weighted Graphs

by

Zhuan Khye Koh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2017

c© Zhuan Khye Koh 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

An edge-weighted graph G = (V,E) is called stable if the value of a maximum-weight
matching equals the value of a maximum-weight fractional matching. Stable graphs play
an important role in some interesting game theory problems, such as network bargaining
games and cooperative matching games, because they characterize instances which admit
stable outcomes. Motivated by this, in the last few years many researchers have investigated
the algorithmic problem of turning a given graph into a stable one, via edge- and vertex-
removal operations. However, all the algorithmic results developed in the literature so far
only hold for unweighted instances, i.e., assuming unit weights on the edges of G.

We give the first polynomial-time algorithm to find a minimum cardinality subset of
vertices whose removal from G yields a stable graph, for any weighted graph G. The algo-
rithm is combinatorial and exploits new structural properties of basic fractional matchings,
which may be of independent interest. In contrast, we show that the problem of finding a
minimum cardinality subset of edges whose removal from a weighted graph G yields a sta-
ble graph, does not admit any constant-factor approximation algorithm, unless P = NP .
In this setting, we develop an O(∆)-approximation algorithm for the problem, where ∆ is
the maximum degree of a node in G.

iii

Acknowledgements

I would like to extend my deepest gratitude to my advisor, Laura Sanità, without whom
this body of work would not have been possible. Her enthusiasm in research is infectious,
and has inspired me to probe the boundaries of my knowledge. The many hours we spent
brainstorming and discussing ideas have greatly influenced my approach to problem solving.
I was encouraged and given the freedom to explore new methods to better understand the
problem at hand. Moreover, she taught me how to properly communicate mathematics,
both verbally and in writing. I am grateful for the opportunity to work and grow as a
researcher under her guidance.

I would like to thank my committee members, Chaitanya Swamy and Joseph Cheriyan,
for expressing interest in my work. Their invaluable feedback has improved the structure
and presentation of this thesis. They also raised interesting questions, allowing me to view
the problem tackled in this thesis from a new perspective.

I would also like to thank all the other faculty members at C&O for creating a conducive
and supportive environment for learning mathematics. Special thanks to Melissa, Carol
and the administrative team for taking care of me throughout my graduate studies.

During my stint at the department, I have had the pleasure of making many friends –
to name a few: Sharat, Dhinakaran, Hemant, Anirudh, Karthik, Abhinav, Justin, Priya,
Sanchit, Jimit, Mali, Edward, ... You are one of those people who make my life better just
by being in it. Special thanks to Nishad for being a great mentor and a great friend. I
would also like to give a shout out to my frat boys Jimmy, Dean and Alex. I will always
cherish the memories and good times we share.

Lastly, I am thankful to my parents and brother for their unconditional love and sup-
port.

iv

To my beloved parents, Elene and Stanley.

Your unwavering support of my endeavours
means the world to me.

v

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Our results and techniques . 3

1.2 Related work . 5

2 Preliminaries and notation 7

2.1 Minimum stabilizers do not preserve ν(G) 10

3 Maximum fractional matching with minimum support 12

4 Computing vertex-stabilizers 20

5 Computing edge-stabilizers 29

6 Forcing an outcome 34

6.1 Finding augmenting walks . 36

6.2 The algorithm . 40

6.3 Proof of Theorem 2.4 . 43

References 50

vi

List of Figures

2.1 Simple examples of a blossom, a flower and a bi-cycle. 8

2.2 An example showing that the removal of any minimum edge-stabilizer does
not preserve ν(G). Bold edges indicate the maximum-weight matching. . . 10

2.3 An example showing that the removal of any minimum vertex-stabilizer does
not preserve ν(G). Bold edges indicate the maximum-weight matching. . . 11

3.1 Two examples of connectors. Bold edges indicate M . Vertices of the same
color belong to the same terminal set. White vertices are the ones in S0. . 13

3.2 The auxiliary graph G′ and the matching M ′. Vertices in the ellipse are
from the original graph G. Gray vertices represent pseudonodes. 17

4.1 An example of the graph induced by supp(x̂+ x̄) in Subcase 2.1. Black bold
edges are in M(x̄) while gray bold edges are in M(x̂). 23

4.2 An example of the graph induced by supp(x∗ + x̄) in Subcase 2.2. Black
bold edges are in M(x∗) while gray bold edges are in M(x̄). 23

4.3 An example of the graph induced by supp(x∗ + x̂) in Subcase 2.3. Black
bold edges are in M(x∗) while gray bold edges are in M(x̂). 24

4.4 An example showing that the bound of 2
3

can be asymptotically tight. . . . 25

4.5 The gadget graph G∗. 26

5.1 The gadget graph G∗. 30

5.2 An example showing that γ(G) is not a lower bound. The unique maximum-
weight matching is shown in the left, while the unique maximum-weight
fractional matching is shown in the right. Gray edges have value 1

2
. 32

vii

6.1 An example of G(S) for a given graph and matching. 44

viii

Chapter 1

Introduction

Several interesting game theory problems are defined on networks, where the vertices rep-
resent players and the edges model the way players can interact with each other. In many
such games, the structure of the underlying graph that describes the interactions among
players is essential in determining the existence of stable outcomes for the corresponding
games, i.e., outcomes where players have no incentive to deviate. Popular examples are co-
operative matching games, introduced by Shapley and Shubik [21], and network bargaining
games, defined by Kleinberg and Tardos [16], both extensively studied in the game the-
ory community. Instances of such games are described by a graph G = (V,E) with edge
weights w ∈ RE

≥0, where V represents a set of players, and the value of a maximum-weight
matching, denoted as ν(G), is the total value that the players could get by interacting with
each other.

An important role in such games is played by so-called stable graphs. An edge-weighted
graph G = (V,E) is called stable if the value ν(G) of a maximum-weight matching equals
the value of a maximum-weight fractional matching, denoted as νf (G). Formally, νf (G) is
given by the optimal value of the standard linear programming relaxation of the matching
problem, defined as

νf (G) := max
{
w>x : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0

}
(P)

Here x is a vector in RE, δ(v) denotes the set of edges incident to the node v, and for
a set F ⊆ E, x(F) =

∑
e∈F xe. Feasible solutions of the above LP are called fractional

matchings.

The relation that interplays between stable graphs and network games is as follows. In
cooperative matching games [21], the goal is to find an allocation of the value ν(G) among

1

the vertices, given as a vector y ∈ RV
≥0, such that no subset S ⊆ V has an incentive to form

a coalition to deviate. This condition is formally defined by the constraints
∑

v∈S yv ≥
ν(G[S]),∀S ⊆ V , where G[S] denotes the subgraph induced by S, and an allocation y that
satisfies the above set of constraints is called stable. Deng et al. [11] proved that a stable
allocation exists if and only if the graph describing the game is a stable graph. This is
an easy consequence from LP duality. If y is a stable allocation, then y is a feasible dual
solution of value ν(G), showing that νf (G) = ν(G). Conversely, if νf (G) = ν(G), then an
optimal dual solution yields a stable allocation of ν(G).

In network bargaining games [16], each edge e represents a deal of value we. A player
can enter in a deal with at most one neighbor, and when a deal is made, the players have
to agree on how to split the value of the deal between them. An outcome of the game is
given by a pair (M, y), where M is a matching of G and stands for the set of deals made
by the players, and y ∈ RV

≥0 is an allocation vector representing how the deal values have
been split. Kleinberg and Tardos have defined a notion of stable outcome for such games,
as well as a notion of balanced outcome, that are outcomes where players have no incentive
to deviate, and in addition the deal values are “fairly” split among players. They proved
that a balanced outcome exists if and only if a stable outcome exists, and this happens if
and only if the graph G describing the game is stable.

Motivated by the above connection, in the last few years many researchers have inves-
tigated the algorithmic problem of turning a given graph into a stable one, by performing
a minimum number of modifications on the input graph [8, 1, 13, 9, 17, 6, 7]. Two natural
operations which have a nice network game interpretation, are vertex-deletion and edge-
deletion. They correspond to blocking players and blocking deals, respectively, in order
to achieve stability in the corresponding games. Formally, a subset of vertices S ⊆ V is
called a vertex-stabilizer if the graph G \ S := G[V \ S] is stable. Similarly, a subset of
edges F ⊆ E is called an edge-stabilizer if the graph G \ F := (V,E \ F) is stable. The
corresponding optimization problems, which are the focus of this thesis, are:

Minimum Vertex-stabilizer: Given an edge-weighted graph G = (V,E), find a minimum-
cardinality vertex-stabilizer.
Minimum Edge-stabilizer: Given an edge-weighted graph G = (V,E), find a minimum-
cardinality edge-stabilizer.

The above problems have been studied quite intensively in the last few years on un-
weighted graphs. In particular, Bock et al. [8] have showed that finding a minimum-
cardinality edge-stabilizer is hard to approximate within a factor of (2 − ε), assuming
Unique Game Conjecture (UGC) [14]. On the positive side, they have given an approxi-
mation algorithm for the edge-stabilizer problem, whose approximation factor depends on

2

the sparsity of the input graph G. In other work, Ahmadian et al. [1] and Ito et al. [13] have
shown independently that finding a minimum-cardinality vertex-stabilizer is a polynomial-
time solvable problem. These (exact and approximate) algorithmic results, developed for
unweighted instances, do not easily generalize when dealing with arbitrary edge-weights,
since they heavily rely on the structure of maximum matchings in unweighted graphs. In
fact, unweighted instances of the above problems exhibit a very nice property, as shown in
[8, 1]: the removal of any inclusion-wise minimal edge-stabilizer (resp. vertex-stabilizer)
from a graph G does not decrease the cardinality of a maximum matching in the resulting
graph. This property ensures that there is at least one maximum-cardinality matching
that survives in the modified graph, and this insight can be successfully exploited when
designing (exact and approximate) algorithms. Unfortunately, it is not difficult to realize
that this crucial property does not hold anymore when dealing with edge-weighted graphs
(see Section 2.1), and in fact, the development of algorithmic results for weighted graphs
requires substantial new ideas.

1.1 Our results and techniques

Our main results are as follows:

Vertex-stabilizers. We give the first polynomial-time algorithm to find a minimum-
cardinality vertex-stabilizer S, in any weighted graph G. Our algorithm also ensures that
ν(G\S) ≥ 2

3
ν(G), i.e., the value of a maximum-weight matching is preserved up to a factor

of 2
3
, and we show that this factor is tight in general. Specifically, as previously mentioned,

a minimum-cardinality vertex-stabilizer for a weighted graph might decrease the value of a
maximum-weight matching in the resulting graph. From a network bargaining perspective,
this means we are decreasing the total value that the players are able to get, which is of
course undesirable. However, we can show this is inevitable, since deciding whether there
exists any vertex-stabilizer S that preserves the value of a maximum-weight matching (i.e.,
such that ν(G \S) = ν(G)) is an NP-hard problem. Furthermore, we give an example of a
graph G where any vertex-stabilizer S decreases the value of a maximum-weight matching
by a factor of essentially 2

3
, i.e., ν(G \ S) ≤

(
2
3

+ ε
)
ν(G) (for an arbitrary small ε > 0).

This shows that the bounds of our algorithm are essentially best possible: the algorithm
finds a vertex-stabilizer S whose cardinality is the smallest possible, and preserves the
value of a maximum-weight matching up to a factor of 2

3
, that is the tightest factor that

holds for all instances.

The algorithm exploits new structural properties of basic fractional matchings which
may be of independent interest. Its analysis relies on a suitable lower bound on the car-

3

dinality of a minimum vertex-stabilizer, which generalizes the lower bound used in the
unweighted setting, and is based on the structure of optimal basic solutions of (P). In
particular, it was shown in [1] that a lower bound on the cardinality of a vertex-stabilizer
for unweighted graphs is given by the minimum number of odd cycles in the support of
an optimal basic solution to (P). We show that this lower bound holds also for weighted
graphs, though the proof is much more involved and requires different ideas. As a byprod-
uct of our results, we develop a combinatorial algorithm for computing an optimal basic
solution to (P) with the smallest number of odd cycles in its support, for weighted graphs.

Edge-stabilizers. When dealing with edge-removal operations, the problem becomes
harder, already in the unweighted setting. It is shown in [8] that finding a minimum
edge-stabilizer is as hard as vertex cover, and whether the problem admits a constant
factor approximation algorithm is an interesting open question. We here show that the
answer to this question is negative for weighted graphs, since we prove that the minimum
edge-stabilizer problem for a weighted graph G does not admit any constant-factor ap-
proximation algorithm, unless P = NP . From an approximation point of view, we show
that the algorithm we developed for the vertex-stabilizer problem translates into a O(∆)-
approximation algorithm for the edge-stabilizer problem, where ∆ is the maximum degree
of a node in G.

Once again, the analysis relies on proving a lower bound on the cardinality of a minimum
edge-stabilizer. It was shown in [8] that a lower-bound on the cardinality on a minimum
edge-stabilizer for unweighted graphs is again given by the minimum number of odd cycles
in the support of an optimal basic solution to (P) (called γ(G)). Interestingly, we show that,
differently from the vertex-stabilizer setting, here this lower bound does not generalize, and
γ(G) is not a lower bound on the cardinality of an edge-stabilizer for arbitrary weighted
graphs. However, we are able to show that dγ(G)/2e is a lower bound on the cardinality
of a minimum edge-stabilizer, and this is enough for our approximation purposes.

Additional results. Lastly, we also generalize a result given in [1] on finding a minimum
vertex-stabilizer which avoids a fixed maximum matching M , on unweighted graphs. We
prove that if M is a maximum-weight matching of a weighted graph G, then finding a
minimum vertex-stabilizer that is element-disjoint from M is a polynomial-time solvable
problem. Otherwise, if M is not a maximum-weight matching, the problem is at least as
hard as vertex cover. We supplement this result with a 2-approximation algorithm for this
case, that is best possible assuming UGC.

4

1.2 Related work

Biró et al. [6] were the first to consider the edge-stabilizer problem in weighted graphs, and
they showed NP-hardness for this case through a reduction from the independent set prob-
lem. Stabilizing a graph via different operations on the input graph (other than removing
edges/vertices) has also been studied. In particular, Ito et al. [13] have given polynomial-
time algorithms to stabilize an unweighted graph by adding edges and by adding vertices.
They also considered the scenario in which one can add different edges at different costs.
Specifically, given a graph G = (V,E) and a cost function c :

(
V
2

)
\ E → R≥0, they were

interested in finding a set of edges F ⊆
(
V
2

)
\E such that the unweighted graph (V,E ∪F)

is stable and c(F) is minimized. They proved that this problem is NP-hard, and left the
complexity of the vertex addition variant as an open problem.

Chandrasekaran et al. [9] have recently studied the problem of stabilizing unweighted
graphs by fractionally increasing edge weights. Given an unweighted graph G = (V,E),
a fractional additive stabilizer is a vector w ∈ RE

≥0 such that the graph G with edge
weights 1+w is stable. They proved that finding a minimum additive stabilizer, that is, a
fractional additive stabilizer of the smallest weight 1>w, has no o(log |V |)-approximation

unless P = NP . In addition, they showed that an O(|V |1/24−ε)-approximation algorithm

for this problem where ε > 0 would lead to an O(|V |1/4−6ε)-approximation algorithm for
the densest k-subgraph problem. This would be an improvement over the currently best
known approximation factor of ≈ O(|V |1/4) for densest k-subgraph [5]. On the positive
side, they gave a polynomial time algorithm to compute a minimum additive stabilizer
in factor-critical graphs. They also presented a (non-polytime) algorithm to compute a
minimum additive stabilizer for any graph G. Its runtime is exponential in |A(G)|, where
A(G) is the Tutte set of G.

Ahmadian et al. [1] have also studied the vertex-stabilizer problem on unweighted
graphs, but in the more-general setting where there are (non-uniform) costs for remov-
ing vertices. Given a graph G = (V,E) with vertex costs cv ≥ 0 ∀ v ∈ V , they considered
the following two problems. The min-cost vertex-stabilizer problem asks to find a vertex-
stabilizer S which minimizes c(S), while the max-cost vertex-stabilizer problem asks to
find a vertex-stabilizer S which maximizes c(V \ S). They showed that both problems are
NP-hard even if there are only two different costs. They gave a 2-approximation algorithm
for the max-cost vertex-stabilizer problem, and an O(|A(G)|)-approximation algorithm for
the min-cost vertex-stabilizer problem, where A(G) is the Tutte set of G. Independently,
Ito et al. [13] also proved that the min-cost vertex-stabilizer problem is NP-hard.

Biró et al. [7] and Könemann et al. [17] studied a variant of the problem where the goal is

5

to compute a minimum-cardinality set of blocking pairs, that are, edges whose removal from
the graph yields the existence of a fractional vertex cover of size at most ν(G). Note that
the resulting graph might not be stable. Biró et al. showed that this problem is NP-hard,
even on unweighted graphs, and this is achieved via a reduction from the independent set
problem. Könemann et al. complemented this result by giving an approximation algorithm
on sparse graphs. A graph G = (V,E) is ω-sparse if |E(S)| ≤ ω |S| for all S ⊆ V . Given
an ω-sparse graph, their algorithm returns a set of blocking pairs of size at most 8ω + 2
times the optimum.

Mishra et al. [18] studied the problem of converting a graph into a König-Egerváry
graph, via vertex-deletion and edge-deletion operations. A König-Egerváry graph is a
graph where the size of a maximum matching equals the size of an (integral) minimum ver-
tex cover. They gave an O(log n log log n)-approximation algorithm for the vertex-removal
setting in unweighted graphs, and showed constant-factor hardness of approximation (as-
suming UGC) for both the minimum vertex-removal and edge-removal problem.

Thesis Organization. In Chapter 2 we give some preliminaries and discuss notation. In
Chapter 3, we give a polynomial-time algorithm to compute an optimal basic solution to
(P) with a minimum number of odd cycles in its support. This algorithm will be crucially
used in Chapter 4, where we give our results on vertex-stabilizers. Chapter 5 reports our
results on edge-stabilizers. Finally, Chapter 6 contains our additional results.

6

Chapter 2

Preliminaries and notation

A key concept that we will use is LP duality. The dual of (P) is given by

τf (G) := min
{
1
>y : yu + yv ≥ wuv ∀uv ∈ E, y ≥ 0

}
. (D)

As feasible solutions to (P) are called fractional matchings, we call feasible solutions to
(D) fractional w-vertex covers. In fact, (D) is the standard LP-relaxation of the problem
of finding a minimum w-vertex cover, obtained by adding integrality constraints on (D).
We also call basic feasible solutions to (P) as basic fractional matchings. An application
of duality theory yields the following relationship ν(G) ≤ νf (G) = τf (G). Recall that a
graph G is stable if ν(G) = νf (G) = τf (G).

For a vector x ∈ RE and any subset F ⊆ E, we denote x−F ∈ RE−F as the subvector
obtained by dropping the entries corresponding to F . For any multisubset F ⊆ E, we
define x(F) :=

∑
e∈F xe. Note that an element may be accounted for multiple times in

the sum if it appears more than once in F . We denote supp(x) := {e ∈ E : xe 6= 0} as the
support of x. For any positive integer k, [k] represents the set {1, 2, . . . , k}.

Given an undirected graph G, we denote by n the number of vertices and by m the
number of edges. For edge weights w ∈ Rm

+ and a matching M in G, a path is called M-
alternating if its edges alternately belong to M and E \M . We say that an M -alternating
path is valid if it starts with an M -exposed vertex or an edge in M , and ends with an
M -exposed vertex or an edge in M . A valid M -alternating path P is called M-augmenting
if w(P \M) > w(P ∩M). An M-augmenting walk and an M-augmenting cycle are defined
similarly. Recall that a walk is a path that is non-simple. Note that an M -alternating
cycle has even length.

7

Definition 2.1. An odd cycle C = (e1, e2, . . . , e2k+1) is called an M -blossom if ei ∈M for
all even i and ei /∈ M for all odd i. The vertex v := e1 ∩ e2k+1 is called the base of the
blossom. The blossom is augmenting if v is M -exposed and w(C \M) > w(C ∩M).

Definition 2.2. An M-flower C ∪P consists of an M -blossom C with base v1 and a valid
M -alternating path P = (v1, v2, . . . , vk) where v1v2 ∈ M . The vertex vk is called the root
of the flower. The flower is augmenting if

w(C \M) + 2w(P \M) > w(C ∩M) + 2w(P ∩M).

Given an M -augmenting flower C ∪ P , if we replace the vector which places 1 on the
edges of M ∩ (C ∪P), with the vector that places 1

2
on the edges of C and 1 on the edges of

P \M , then the change in weight is exactly 1
2

times LHS − RHS of the above inequality.
So the inequality means that this operation increases the weight.

Definition 2.3. An M-bi-cycle C∪P∪D consists of two M -blossoms C,D with bases v1, vk
respectively and an odd M -alternating path P = (v1, v2, . . . , vk) where v1v2, vk−1vk ∈ M .
The bi-cycle is augmenting if

w(C \M) + 2w(P \M) + w(D \M) > w(C ∩M) + 2w(P ∩M) + w(D ∩M).

Note that the structures defined in Definition 2.2 and 2.3 might not be simple. For
example, in a flower C ∪ P , the path P might intersect the blossom C more than once.
Figure 2.1 illustrates some simple examples of these structures. Notice that a blossom is
always simple.

Figure 2.1: Simple examples of a blossom, a flower and a bi-cycle.

The significance of the structures defined above is given by the following theorem:

Theorem 2.4 ([16]). If a graph is stable, then it does not have an M-augmenting flower
or bi-cycle for every maximum-weight matching M . Otherwise, it has an M-augmenting
flower or bi-cycle for every maximum-weight matching M .

8

In the original paper, Theorem 2.4 was stated without proof. For the sake of complete-
ness, we will provide a proof in Section 6.3. We will also need the following classical result
on the structure of basic fractional matchings:

Theorem 2.5 ([4]). A fractional matching x in G = (V,E) is basic if and only if xe ={
0, 1

2
, 1
}

for all e ∈ E and the edges e having xe = 1
2

induce vertex-disjoint odd cycles in
G.

Let x̂ be a basic fractional matching in G. We partition the support of x̂ into two parts.
Define

C (x̂) := {C1, . . . , Cq}
as the set of odd cycles such that x̂e = 1

2
for all e ∈ E(Ci), and

M(x̂) := {e ∈ E : x̂e = 1}

as the set of matched edges in x̂. For ease of notation, we use V (C (x̂)) = ∪C∈C (x̂)V (C)
and E(C (x̂)) = ∪C∈C (x̂)E(C) to denote the vertex set and edge set of C (x̂) respectively.
We define two operations on the entries of x̂ associated with certain edge sets of G:

Definition 2.6. By complementing on E ′ ⊆ E, we mean replacing x̂e by x̄e = 1 − x̂e for
all e ∈ E ′.
Definition 2.7. By alternate rounding on C ∈ C (x̂) at v where C = {e1, . . . , e2k+1} and
v = e1∩ e2k+1, we mean replacing x̂e by x̄e = 0 for all e ∈ {e1, e3, . . . , e2k+1} and x̄e = 1 for
all e ∈ {e2, e4, . . . , e2k}. When v is clear from the context, we just say alternate rounding
on C.

Let X be the set of basic maximum-weight fractional matchings in G. Define

γ(G) := min
x̂∈X
|C (x̂)| .

Note that G is stable if and only if γ(G) = 0.

We will use the following terminology given in [10] for the description of Edmonds’
maximum matching algorithm. Given a graph G and a matching M , let T be an M -
alternating tree rooted at a vertex r. We denote by A(T) and B(T) the sets of nodes in
T at odd and even distance respectively from r. We call T frustrated if every edge of G
having one end in B(T) has the other end in A(T).

Finally, the following theorem gives a sufficient condition for a graph to be Hamiltonian.

Theorem 2.8 (Ore’s Theorem [20]). Let G be a finite and simple graph with n ≥ 3 vertices.
If deg(u) + deg(v) ≥ n for every pair of distinct non-adjacent vertices u and v, then G is
Hamiltonian.

9

2.1 Minimum stabilizers do not preserve ν(G)

In this section, we demonstrate that the removal of a minimum edge- or vertex-stabilizer
does not preserve the value of a maximum-weight matching. We first look at edge-
stabilizers. Let G denote the graph in Figure 2.2. It is not stable because ν(G) = 8 < 9 =
νf (G), where the maximum-weight fractional matching is given by

xe =


1
2
, if e ∈ {pq, qr, pr}

1, if e = st

0, otherwise.

p

q t

r s

4 4

3 3

3

3

3

Figure 2.2: An example showing that the removal of any minimum edge-stabilizer does not
preserve ν(G). Bold edges indicate the maximum-weight matching.

The minimum edge-stabilizer is {qr}. Observe that M = {pq, st} is a maximum-weight
matching in G \ {qr} of weight 7. We can verify the stability of G \ {qr} by constructing
a fractional w-vertex cover y of the same weight:

yv =


3, if v ∈ {p, s}
1, if v = t

0, otherwise.

It is left to show that if we delete any edge other than qr, the graph is still unstable.
If edge rs, qs or pt is removed, the maximum-weight fractional matching remains the
same. If edge pr is removed, we get νf (G \ {pr}) = 8.5 by assigning xe = 1/2 for all
e ∈ {pq, qr, rs, st, pt}. If edge pq is removed, we get νf (G \ {pq}) = 8.5 by assigning
xe = 1/2 for all e ∈ {pr, rq, qs, st, pt}. If edge st is removed, we get ν(G \ {st}) = 7 and

10

νf (G\{st}) = 8 where the maximum-weight matching is {qr, pt} and the maximum-weight
fractional matching is

xe =


1
2
, if e ∈ {qr, rs, qs}

1, if e = pt

0, otherwise.

The same negative result also holds for vertex-stabilizers. Consider the graph given in
Figure 2.3. It is not stable because ν(G) = 5 < 6 = νf (G), where the maximum-weight
fractional matching is given by

yv =

{
1
2
, if e ∈ {pq, qr, pr}

0, otherwise.

The minimum vertex-stabilizers of this graph are {p} , {q} and {r}. However, ν(G \ p) =
ν(G \ q) = ν(G \ r) = 4.

p

q r

s

4

4

1

4

Figure 2.3: An example showing that the removal of any minimum vertex-stabilizer does
not preserve ν(G). Bold edges indicate the maximum-weight matching.

11

Chapter 3

Maximum fractional matching with
minimum support

In this section, we give a polynomial-time algorithm to compute a basic maximum-weight
fractional matching x̂ for a weighted graph G with minimum number of odd cycles in its
support, i.e., satisfying |C (x̂)| = γ(G). This algorithm will be used as a subroutine by our
vertex-stabilizer algorithm, which we will develop in Section 4.

Our first step is to characterize basic maximum-weight fractional matchings which have
more than γ(G) odd cycles. Balas [3] considered this problem on unweighted graphs, and
gave the following characterization:

Theorem 3.1 ([3]). Let x̂ be a basic maximum fractional matching in an unweighted
graph G. If |C (x̂)| > γ(G), then there exists an M(x̂)-alternating path which connects
two odd cycles Ci, Cj ∈ C (x̂). Furthermore, alternate rounding on the odd cycles and
complementing on the path produces a basic maximum fractional matching x̄ such that
C (x̄) ⊂ C (x̂).

We generalize this to weighted graphs. Before stating the theorem, we need to introduce
the concept of connector (see Figure 3.1 for some examples):

Definition 3.2. Let C be a cycle and S0, S1, . . . , Sk be a partition of V (C) such that k ≥ 2
and |S0| ≥ 0 is even. Note that we allow S0 to be empty. Let M be a perfect matching on
the vertex set S0. We call the graph C ∪M a connector. Each Si is called a terminal set
for i ≥ 1. An edge e ∈M is called a chord if e /∈ E(C).

Connectors are useful because of the following property:

12

Figure 3.1: Two examples of connectors. Bold edges indicate M . Vertices of the same
color belong to the same terminal set. White vertices are the ones in S0.

Lemma 3.3. Let C ∪M be a connector. For every terminal set Si, there exists an M-
augmenting path in the connector from a vertex v ∈ Si to a vertex u ∈ Sj, for some
j 6= i.

Proof. For every e ∈ M ∩ E(C), contract e and smooth away the vertex formed after the
contraction (smoothing is the reverse operation of subdivision). The only edges in M that
survive this process are the chords. Fix i and identify all the vertices in Si into a single
vertex vi. Denote the resulting (multi)graph as G = (V,E). Observe that there exists an
M -augmenting path from Si to Sj in C ∪M if and only if there exists an M -augmenting
path from vi to Sj in G where i 6= j. Hence, we will work on the reduced graph G.

Apply Edmonds’ maximum matching algorithm on G initialized with the matching
M ∩ E, and construct an M -alternating tree starting with the exposed vertex vi. There
are two possibilities: either we find an augmenting path from vi to Sj for some j 6= i or a
frustrated tree rooted at vi. For the purpose of contradiction, suppose we get a frustrated
tree T rooted at vi. Let T̃ = T ∪D, where D = {uv /∈ E(T) : u ∈ A(T), v ∈ B(T)}. Note
that we do not have edges connecting two nodes in B(T), otherwise T is not a frustrating
tree.

We claim that each pseudonode in T is incident to at least two unmatched edges in T̃ .
Let v be a pseudonode in T , and S(v) be the subset of vertices in G that are contained
in v (after expanding pseudonodes). Note that S(v) ⊂ V because there are at least two
exposed vertices in G. Let δG\M(·) denote the cut function on G\M . Since G\M is 2-edge-

connected, we have
∣∣δG\M(S(v))

∣∣ ≥ 2. These edges are present in T̃ because otherwise we
can extend the alternating tree T . It follows that v is incident to at least two unmatched
edges in T̃ .

Let uv be a matched edge in T where u ∈ A(T) and v ∈ B(T). We claim that
degT̃ (u) ≤ degT̃ (v). Note that degT̃ (u) is either 2 or 3. This is because u is not a
pseudonode, and degG(w) = 3 for every M -covered vertex w in G. If v is not a pseudonode,

13

then degT̃ (v) = 3 as all edges in δG(v) are accounted for in T̃ . Otherwise, if v is a
pseudonode, then by the previous claim v is incident to at least two unmatched edges in
T̃ . So degT̃ (v) ≥ 3.

Now, observe that T̃ is a bipartite graph as the node set can be partitioned into A(T)
and B(T) where |B(T)| = |A(T)| + 1. For every v ∈ A(T), let M(v) be its matched
neighbour in B(T). The extra node in B(T) is the root of T , which has degree at least one

in T̃ . Summing up the node degrees in A(T), we obtain∑
v∈A(T)

degT̃ (v) ≤
∑

v∈A(T)

degT̃ (M(v)) <
∑

v∈A(T)

degT̃ (M(v)) + 1 ≤
∑

v∈B(T)

degT̃ (v)

which is a contradiction.

Let y be a minimum fractional w-vertex cover in G. We say that an edge uv is tight if
yu + yv = wuv. Similarly, we say that a path is tight if all of its edges are tight.

Theorem 3.4. Let x̂ be a basic maximum-weight fractional matching and y be a minimum
fractional w-vertex cover in G. If |C (x̂)| > γ(G), then there exists

(i) a vertex v ∈ V (Ci) for some odd cycle Ci ∈ C (x̂) such that yv = 0; or
(ii) a tight M(x̂)-alternating path P which connects two odd cycles Ci, Cj ∈ C (x̂); or

(iii) a tight and valid M(x̂)-alternating path P which connects an odd cycle Ci ∈ C (x̂)
and a vertex v /∈ V (C (x̂)) such that yv = 0.

Furthermore, alternate rounding on the odd cycles and complementing on the path produces
a basic maximum-weight fractional matching x̄ such that C (x̄) ⊂ C (x̂).

Proof. We will start by proving the second part of the theorem. For Case (i), let x̄ be the
basic fractional matching obtained by alternate rounding on Ci at v. Since yv = 0, both x̄
and y satisfy complementary slackness. Hence, x̄ is optimal to (P) and C (x̄) = C (x̂) \Ci.
For Case (ii), denote u = V (P) ∩ V (Ci) and v = V (P) ∩ V (Cj) as the endpoints of P .
Let x̄ be the basic fractional matching obtained by alternate rounding on Ci, Cj at u, v
respectively and complementing on P . Note that u and v are exposed after the alternate
rounding, and covered after complementing. Since x̄ and y satisfy complementary slackness,
x̄ is optimal to (P) and C (x̄) = C (x̂) \ {Ci, Cj}. For Case (iii), denote u = V (P) ∩ V (Ci)
and v /∈ V (C (x̂)) as the endpoints of P . Let x̄ be the basic fractional matching obtained
by alternate rounding on Ci at u and complementing on P . Since yv = 0, both x̄ and y
satisfy complementary slackness. Thus, x̄ is optimal to (P) and C (x̄) = C (x̂) \ Ci.

14

Next, we prove the first part of the theorem. We may assume yv > 0 for every vertex
v ∈ V (C (x̂)). Let x∗ be a basic maximum-weight fractional matching in G such that
|C (x∗)| = γ(G). Define N(x̂) := M(x̂) \ E(C (x∗)) and N(x∗) := M(x∗) \ E(C (x̂)).
Consider the following subgraph

J = (V,N(x̂)4N(x∗)).

Since N(x̂) and N(x∗) are matchings in G, J is made up of vertex-disjoint paths and
cycles of G. For each such path or cycle, its edges alternately belong to N(x̂) or N(x∗).
Moreover, its intermediate vertices are disjoint from C (x̂) and C (x∗). Since x̂ and x∗ are
maximum-weight fractional matchings in G, every path in J is tight by complementary
slackness. If there exists a path in J which connects two odd cycles from C (x̂), then we
are done. If there exists a path in J which connects an odd cycle from C (x̂) and a vertex
v /∈ V (C (x̂) ∪ C (x∗)), then yv = 0 because v is either exposed by M(x̂) or M(x∗). Hence,
we are also done. So we may assume every path in J belongs to one of the following three
categories:

(a) Vertex disjoint from C (x̂) and C (x∗).
(b) Starts and ends at the same cycle.
(c) Connects an odd cycle from C (x̂) and an odd cycle from C (x∗).

Note that by the second part of the theorem, there is no path in J which connects two odd
cycles from C (x∗) or an odd cycle from C (x∗) and a vertex v /∈ V (C (x̂)∪C (x∗)). We say
that two odd cycles Ci and Cj are adjacent if V (Ci) ∩ V (Cj) 6= ∅ or if they are connected
by a path in J .

Claim 3.5. There exists an odd cycle in C (x∗) which is adjacent to at least two odd cycles
in C (x̂).

Proof. Let H be the subgraph of G induced by supp(x̂+x∗). Since |C (x̂)| > |C (x∗)|, there
exists a component K in H which has more odd cycles from C (x̂) than C (x∗). We claim
that K contains at least one odd cycle from C (x∗). Let C ∈ C (x̂) be an odd cycle in K.
For every v ∈ V (C), since we assumed yv > 0, by complementary slackness it is either
M(x∗)-covered or belongs to V (C (x∗)). If v ∈ V (C (x∗)), then we are done. So we may
assume that every vertex in C is M(x∗)-covered. Let uv ∈ M(x∗) where u ∈ V (C) and
v /∈ V (C). Observe that uv is the first edge of a path in J , so it either ends at an odd cycle
in C (x∗) or C. Since C has an odd number of vertices, by the pigeonhole principle there
exists a path in J which connects C and an odd cycle in C (x∗). Thus, we have shown that
K contains at least one odd cycle from C (x∗). This implies that K contains at least two
odd cycles from C (x̂). Let C∗1 , . . . , C

∗
k ∈ C (x∗) be the odd cycles adjacent to C. Each C∗i

15

is not adjacent to any other odd cycle in C (x∗). Note that by our assumption, C is not
adjacent to any other odd cycle in C (x̂). As K contains at least two odd cycles from C (x̂),
there exists a C∗i which is adjacent to an odd cycle in C (x̂) \ C.

In light of the previous claim, let C∗ ∈ C (x∗) be adjacent to C1, . . . , Ck ∈ C (x̂) for
some k ≥ 2. For every i ∈ [k], define

Si = {v ∈ V (C∗) : v ∈ V (Ci) or ∃ a path in J from v to Ci}

and S0 = V (C∗) \ ∪ki=1Si. Since yv > 0 for every v ∈ S0, by complementary slackness
conditions, they are M(x̂)-covered. Let v ∈ S0. It is either matched to another vertex in
S0 or is an endpoint of a path in J whose other endpoint is also a vertex in S0. Hence,
|S0| is even. Moreover, Si 6= ∅ for all i ≥ 1, and the sets S0, . . . , Sk partition V (C∗). Let
P be the set of paths in J that start and end at C∗, and consider the subgraph C∗ ∪ P .
We claim that there exists an M(x̂)-alternating path from Si to Sj in C∗ ∪ P for some
j 6= i. Since every path in P starts and ends with an edge in M(x̂), we can perform the
following reduction: contract every path in P into a single edge in M(x̂). It is easy to see
that an M(x̂)-alternating path from Si to Sj in C∗∪P corresponds to an M(x̂)-alternating
path from Si to Sj in the reduced graph. Observe that the reduced graph along with the
matching M(x̂) forms a connector. By Lemma 3.3, there exists an M(x̂)-alternating path
P from Si to Sj in C∗ ∪ P for some j 6= i.

Let vi ∈ Si and vj ∈ Sj be the endpoints of P . Let Pi and Pj be the paths in J
connecting vi to Ci and vj to Cj respectively. If vi ∈ V (Ci), set Pi = ∅. Similarly if
vj ∈ V (Cj), set Pj = ∅. Then, Pi ∪ P ∪ Pj forms a tight M(x̂)-alternating path which
connects Ci and Cj.

Corollary 3.6. Let x̂ be a basic maximum-weight fractional matching in G. Then, there
exists a basic maximum-weight fractional matching x∗ in G such that |C (x∗)| = γ(G) and
C (x∗) ⊆ C (x̂).

Given a basic maximum-weight fractional matching x̂ in G, we would like to reduce
the number of odd cycles in C (x̂) to γ(G). One way to accomplish this is to search for
the structures described in Theorem 3.4. Fix a minimum fractional w-vertex cover y in G.
Let G′ be the unweighted graph obtained by applying the following operations to G (see
Figure 3.2):

(a) Delete all non-tight edges.
(b) Add a vertex z.
(c) For every vertex v ∈ V where x̂(δ(v)) = 1 and yv = 0, add the edge vz.

16

(d) For every vertex v ∈ V where x̂(δ(v)) = 0 and yv = 0, add the vertex v′ and the
edges vv′, v′z.

(e) Shrink every odd cycle Ci ∈ C (x̂) into a pseudonode i.

Note that none of the edges in M(x̂) and C (x̂) were deleted because they are tight.
Consider the edge set M ′ := M(x̂)∪ {vv′ : v ∈ V }. It is easy to see that M ′ is a matching
in G′. The significance of the auxiliary graph G′ is given by the following lemma:

z

Figure 3.2: The auxiliary graph G′ and the matching M ′. Vertices in the ellipse are from
the original graph G. Gray vertices represent pseudonodes.

Lemma 3.7. M ′ is a maximum matching in G′ if and only if |C (x̂)| = γ(G).

Proof. (⇒) Let x̂ be a basic maximum-weight fractional matching where |C (x̂)| > γ(G)
and y be a minimum fractional w-vertex cover in G. Applying Theorem 3.4 yields three
cases. In Case (i), there exists a vertex v ∈ Ci for some odd cycle Ci ∈ C (x̂) such that
yv = 0. Then, the edge iz is an M ′-augmenting path in G′. In Case (ii), there exists a
tight M(x̂)-alternating path P in G connecting two odd cycles Ci, Cj ∈ C (x̂). In G′, P
is an M ′-augmenting path whose endpoints are pseudonodes i and j. In Case (iii), there
exists a tight and valid M(x̂)-alternating path P in G connecting an odd cycle Ci ∈ C (x̂)
and a vertex v /∈ V (C (x̂)) such that yv = 0. If v is M(x̂)-covered, then P + vz is an
M ′-augmenting path in G′. Otherwise, P + vv′ + v′z is an M ′-augmenting path in G′.
Thus, M ′ is not a maximum matching in G′.

(⇐) AssumeM ′ is not a maximum matching inG′. Then, there exists anM ′-augmenting
path P in G′. If both of its endpoints are pseudonodes i and j, then P is a tight M(x̂)-
alternating path in G which connects Ci and Cj. So we may assume the endpoints of P
are a pseudonode i and z. If iz ∈ E(P), then there exists a vertex v ∈ V (Ci) such that
yv = 0. If vz ∈ E(P) for some v ∈ V , then yv = 0 and v is M(x̂)-covered. Hence, P −vz is
a tight and valid M(x̂)-alternating path in G connecting Ci and v. Otherwise, v′z ∈ E(P)

17

for some v ∈ V , which implies that yv = 0 and v is M(x̂)-exposed. Hence, P − vv′ − v′z
is a tight and valid M(x̂)-alternating path in G connecting Ci and v. By Theorem 3.4,
|C (x̂)| > γ(G).

Thus, searching for the structures in Theorem 3.4 is equivalent to searching for an
M ′-augmenting path in G′. This immediately gives an algorithm to generate a basic
maximum-weight fractional matching with γ(G) odd cycles.

Algorithm 1: Minimize number of odd cycles

1 Compute a basic maximum-weight fractional matching x̂ in G
2 Compute a minimum fractional w-vertex cover y in G
3 Construct G′ and M ′

4 while ∃ an M ′-exposed pseudonode r in G′ do
5 Grow an M ′-alternating tree T rooted at r using Edmonds’ algorithm
6 if an M ′-augmenting r-s path P ′ is found in G′ then
7 Let P be the corresponding tight M(x̂)-alternating path in G
8 if s is a pseudonode then
9 Alternate round on Cr, Cs and complement on P

10 else
11 Alternate round on Cr and complement on P

12 Update G′ and M ′

13 else
14 G′ ← G′ \ V (T)

15 return x̂

After an M ′-augmenting path P ′ is found, let x̄ denote the new basic maximum-weight
fractional matching in G obtained by alternate rounding and complementing x̂. We can
update G′ as follows. If s is a pseudonode, we unshrink Cr and Cs in G′ because C (x̄) =
C (x̂) \ {Cr, Cs}. Otherwise, s = z and we only unshrink Cr. Then, there are two cases.
In the first case, we have vz ∈ E(P ′) for some v ∈ V . Observe that x̂(δ(v)) = 1 but
x̄(δ(v)) = 0. Hence we replace the edge vz with edges vv′, v′z. In the second case, we have
v′z ∈ E(P ′) for some v ∈ V . This implies x̂(δ(v)) = 0 but x̄(δ(v)) = 1. So we replace
edges vv′, v′z with the edge vz.

Theorem 3.8. Algorithm 1 computes a basic maximum-weight fractional matching with
γ(G) odd cycles in polynomial time.

Proof. There are at most O(n) vertex-disjoint odd cycles in C (x̂). At every iteration, we

18

eliminate at least one odd cycle from C (x̂) or a frustrated tree from G′. Hence, there are
at most O(n) iterations, and Algorithm 1 terminates in polynomial time. Next, we prove
correctness. Suppose we obtain an M ′-frustrated tree T . Every edge in T has one endpoint
in A(T) and another endpoint in B(T). Every edge in δG′(T) has one endpoint in A(T) and
another endpoint outside T . Since the matching in T remains unchanged in every iteration,
this property continues to hold throughout the execution of the algorithm. Thus, T is a
frustrated tree in every subsequent iteration. This implies that the last matching generated
by the algorithm is maximum. By Lemma 3.7, we have |C (x̂)| = γ(G).

We remark here that in Algorithm 1, we can avoid solving linear programs to obtain x̂
and y in Steps 1 and 2. They can be computed using a simple duplication technique by
Nemhauser and Trotter [19]. Create an auxiliary bipartite graph, and run the Hungarian
algorithm to get a maximum-weight matching and a minimum w-vertex cover. Then,
they can be easily mapped back into a basic maximum-weight fractional matching and a
minimum fractional w-vertex cover of our original graph G. We refer to [19] for details.

19

Chapter 4

Computing vertex-stabilizers

The goal of this chapter is to prove the following theorem:

Theorem 4.1. There exists a polynomial-time algorithm that computes a minimum vertex-
stabilizer S for a weighted graph G. Moreover, ν(G \ S) ≥ 2

3
ν(G).

Let us start with discussing a lower bound on the size of a minimum vertex-stabilizer.

Lower bound. We will here prove that γ(G) is a lower bound on the number of vertices
to remove in order to stabilize a graph. We need a couple of lemmas.

Lemma 4.2. Let x̂ be a basic maximum-weight fractional matching and y be a minimum
fractional w-vertex cover in G. Let s ∈ V (C) for some odd cycle C ∈ C (x̂). If x̄ is
the fractional matching obtained by alternate rounding on C at s, then x̄−δ(s) is a basic
maximum-weight fractional matching and y−s is a minimum fractional w-vertex cover in
G \ s.

Proof. First, notice that x̄−δ(s) is a basic fractional matching and y−s is a fractional w-vertex
cover in G \ s. We will show that they satisfy complementary slackness. Let uv ∈ E(C)
be an edge where x̄uv > 0. Since e ∈ E(C), we have x̂uv > 0 and so yu + yv = wuv. Next,
let v 6= s be a vertex in C where yv > 0. We only need to check the vertices in C because
x̂e = 0 for every edge e ∈ δ(s) \ E(C). Since v is M(x̄)-covered, we have x̄(δ(v)) = 1.
Therefore, x̄−δ(s) and y−s form a primal-dual optimal pair.

The following operation allows us to switch between fractional matchings on a set of
edges:

20

Definition 4.3. Let x and x′ be fractional matchings in G. By switching on E ′ ⊆ E from
x to x′, we mean replacing xe by x′e for all e ∈ E ′.

Switching does not necessarily yield a feasible fractional matching. Hence, we will only
use it on the components of a specific subgraph of G:

Claim 4.4. Given two basic fractional matchings x and x′, let H be the subgraph of G
induced by supp(x + x′). For any component K in H, switching on E(K) from x to x′

yields a basic fractional matching in G.

Proof. Let x̄ denote the vector obtained by switching on E(K) from x to x′. We first show
that x̄ is a feasible fractional matching in G. For the purpose of contradiction, suppose
there exists a vertex v ∈ V (K) such that x̄(δ(v)) > 1. Since x̄e = x′e for all e ∈ E(K) and
x̄e = xe for all e /∈ E(K), we have 0 < x̄(δ(v) ∩ E(K)) ≤ 1 and 0 < x̄(δ(v) \ E(K)) ≤ 1.
So there exists an edge f ∈ δ(v) \ E(K) such that xf > 0, which is a contradiction. It is
easy to see that x̄ is basic.

Lemma 4.5. For every vertex v ∈ V , γ(G \ v) ≥ γ(G)− 1.

Proof. Let x∗ be a basic maximum-weight fractional matching in G such that |C (x∗)| =
γ(G). Let y be a minimum fractional w-vertex cover in G. For the purpose of contradiction,
suppose there exists a vertex u ∈ V such that γ(G \ u) < γ(G)− 1. There are two cases:

Case 1: u ∈ V (C) for some odd cycle C ∈ C (x∗). Let x̄ be the fractional matching
obtained from x∗ by alternate rounding on C at u. By Lemma 4.2, we know that x̄−δ(u)
is a basic maximum-weight fractional matching and y−u is a minimum fractional w-vertex
cover in G \ u. We first give a proof sketch for this case. If x̄−δ(u) is not an optimal basic
solution yielding γ(G\u) odd cycles, then one of the structures given by Theorem 3.4 must
exist. This same structure would be a structure corresponding to the basic solution x∗,
but this yields a contradiction since x∗ is an optimal basic solution with γ(G) odd cycles.

Notice that C
(
x̄−δ(u)

)
= C (x̄) and M

(
x̄−δ(u)

)
= M(x̄). Since |C (x̄)| = |C (x∗)| − 1 =

γ(G)−1 > γ(G\u), Theorem 3.4 tells us that G\u contains one of the following structures.
The first structure is a vertex v ∈ V (Ci) for some odd cycle Ci ∈ C (x̄) such that yv = 0.
However, since Ci ∈ C (x∗), by Theorem 3.4 we arrive at the contradiction |C (x∗)| > γ(G).
The second structure is a tight and valid M(x̄)-alternating path P which connects two
odd cycles Ci, Cj ∈ C (x̄), or an odd cycle Ci ∈ C (x̄) and a vertex v /∈ V (C (x̄)) such
that yv = 0. Note that Ci, Cj ∈ C (x∗). If V (P) ∩ V (C) = ∅, then P is also a tight and
valid M(x∗)-alternating path in G which connects Ci and Cj, or Ci and v. Otherwise, let

21

s = V (Ci)∩V (P) and let t denote the first vertex of C encountered while traversing along
P from s. Then, the s-t subpath of P is a tight M(x∗)-alternating path which connects
Ci, C ∈ C (x∗). We again obtain the contradiction |C (x∗)| > γ(G) by Theorem 3.4.

Case 2: u /∈ V (C (x∗)). If u is M(x∗)-exposed, then νf (G\u) = νf (G) and γ(G\u) = γ(G).
So we may assume u is M(x∗)-covered. Let x̂ be a basic maximum-weight fractional
matching in G \ u such that |C (x̂)| < γ(G) − 1. Define N(x̂) := M(x̂) \ E(C (x∗)) and
N(x∗) := M(x∗) \ E(C (x̂)). Consider the subgraph J = (V,N(x∗)4N(x̂)). Note that u
is covered by N(x∗) and exposed by N(x̂). Let P be the component in J which contains
u. We know that P is a path with u as an endpoint. Let v be the other endpoint of P .
There are 3 subcases. We first give an overview of how we arrive at a contradiction in each
subcase. We show that one can move from x∗ to a new solution x̃ such that:

(i) x̃ is a basic maximum-weight fractional matching for a subgraph G′ obtained by
deleting at most 1 vertex from a cycle of C (x∗); and

(ii) |C (x̃)| < γ(G′).

Clearly, both of the above properties cannot hold, so this yields a contradiction.

Subcase 2.1: v ∈ C for some odd cycle C ∈ C (x∗). In this subcase, the path P has
even length. Let x̄ be the fractional matching obtained from x∗ by alternate rounding on
C at v. By Lemma 4.2, x̄−δ(v) is a basic maximum-weight fractional matching in G \ v.
Let H be the subgraph of G induced by supp(x̂+ x̄) (see Figure 4.1 for an example). Note
that x̂e + x̄e = 0 for every edge e /∈ E(P) which is incident to a vertex in P . Thus, P
is a component in H. Since |C (x̄)| = γ(G) − 1 > |C (x̂)|, there exists a component K
in H which has more odd cycles from C (x̄) than C (x̂). Switching on K from x̄−δ(v) to x̂
yields a basic fractional matching in G \ v with less than γ(G) − 1 odd cycles. To yield
a contradiction to Case 1, it is left to show that it is maximum-weight. This is because
we are deleting a vertex v from an odd cycle of C (x∗), but γ(G \ v) decreases by more
than 1. Now, since x̂ and x̄−δ(v) are maximum-weight fractional matchings in G \ u and
G \ v respectively, we have

∑
e∈E(K)wex̂e =

∑
e∈E(K)wex̄e because u, v /∈ V (K). Thus, the

resulting matching is indeed maximum-weight in G \ v.

Subcase 2.2: v ∈ C for some odd cycle C ∈ C (x̂). In this subcase, the path P has odd
length. Let x̄ be the fractional matching obtained from x̂ by alternate rounding on C at v.
By Lemma 4.2, x̄−δ(v) is a basic maximum-weight fractional matching in G \ {u, v}. Let H
be the subgraph of G induced by supp(x∗ + x̄) (see Figure 4.2 for an example). Note that
x∗e + x̄e = 0 for every edge e /∈ E(P) incident to a vertex in P . Thus, P is a component in
H. Since |C (x̄)| = |C (x̂)|−1 < γ(G)−2 < |C (x∗)|, there exists a component K in H which
has more odd cycles from C (x∗) than C (x̄). Switching on K from x∗ to x̄ yields a basic

22

vu
C

K

Figure 4.1: An example of the graph induced by supp(x̂ + x̄) in Subcase 2.1. Black bold
edges are in M(x̄) while gray bold edges are in M(x̂).

fractional matching in G with less than γ(G) odd cycles. To yield a contradiction, it is left
to show that it is maximum-weight. Since x∗ and x̄−δ(v) are maximum-weight fractional
matchings in G and G\{u, v} respectively, we have

∑
e∈E(K)wex

∗
e =

∑
e∈E(K)wex̄e because

u, v /∈ V (K). Thus, the resulting basic fractional matching is maximum-weight in G.

vu
C

K

Figure 4.2: An example of the graph induced by supp(x∗ + x̄) in Subcase 2.2. Black bold
edges are in M(x∗) while gray bold edges are in M(x̄).

Subcase 2.3: v /∈ V (C (x∗)∪C (x̂)). Let H be the subgraph of G induced by supp(x∗+x̂)
(see Figure 4.3 for an example). Note that x∗e + x̂e = 0 for every edge e /∈ E(P) which
is incident to a vertex in P . Thus, the path P is a component in H. Since |C (x∗)| >
γ(G) − 1 > |C (x̂)|, there exists a component K in H which has more odd cycles from
C (x∗) than C (x̂). Switching on K from x∗ to x̂ yields a basic fractional matching in
G with less than γ(G) odd cycles. To yield a contradiction, it is left to show that it is
maximum-weight. Since x∗ and x̂ are maximum-weight fractional matchings in G and G\u
respectively, we have

∑
e∈E(K)wex

∗
e =

∑
e∈E(K)wex̂e because u /∈ V (K). This implies that

the resulting basic fractional matching is indeed maximum-weight in G.

23

vu

K

Figure 4.3: An example of the graph induced by supp(x∗ + x̂) in Subcase 2.3. Black bold
edges are in M(x∗) while gray bold edges are in M(x̂).

As a corollary to the above lemma, we obtain the claimed lower bound.

Lemma 4.6. For every vertex-stabilizer S of G, |S| ≥ γ(G).

The algorithm. The algorithm we use to stabilize a graph is very simple: it computes a
basic maximum-weight fractional matching x̂ in G with γ(G) odd cycles (this can be done
using Algorithm 1) and a minimum fractional w-vertex cover y in G, and then removes
one vertex from every cycle in C (x̂), namely, the vertex with the least y-value in the cycle.
Algorithm 2 formalizes this.

Algorithm 2: Minimum vertex-stabilizer

1 Initialize S ← ∅
2 Compute a minimum fractional w-vertex cover y in G
3 Compute a basic maximum-weight fractional matching x̂ in G with γ(G) odd cycles

4 Let C (x̂) =
{
C1, C2, . . . , Cγ(G)

}
5 for i = 1 to γ(G) do
6 Let vi = arg minv∈V (Ci)

yv
7 S ← S + vi

8 return S

We are now ready to prove the main theorem stated at the beginning of the section,
Theorem 4.1.

Proof of Theorem 4.1. Let S =
{
v1, v2, . . . , vγ(G)

}
be the set of vertices returned by the

algorithm. Let x̄ be the vector obtained from x̂ by alternate rounding on Ci at vi for all
i respectively. By Lemma 4.2, x̄−∪γ(G)

i=1 δ(vi)
is a basic maximum-weight fractional matching

in G \ S. Note that it is also a maximum-weight integral matching in G \ S. Thus,

24

ν(G \ S) = νf (G \ S) and G \ S is stable. Moreover, S is minimum by Lemma 4.6. It is
left to show that ν(G \ S) ≥ 2

3
ν(G). For every odd cycle Ci ∈ C (x̂), we have

yvi ≤
y(V (Ci))

|V (Ci)|
≤ y(V (Ci))

3

because vi has the smallest fractional w-vertex cover in Ci. From Lemma 4.2, we also know
that y−S is a minimum fractional w-vertex cover in G \ S. Then,

ν(G\S) = τf (G\S) = 1
>y−

γ(G)∑
i=1

yvi ≥ 1
>y−1

3

γ(G)∑
i=1

y(Ci) ≥ 1
>y−1

3
1
>y =

2

3
τf (G) ≥ 2

3
ν(G)

Note that removing any single vertex from each cycle of C (x̂) yields a minimum-
cardinality vertex stabilizer. The reason we chose the vertex with the smallest yv is to
preserve the value of the original maximum-weight matching by a factor of 2

3
.

Tightness of the matching bound. A natural question is whether it is possible to
design an algorithm that always returns a vertex-stabilizer S satisfying ν(G \S) ≥ αν(G),
for some α > 2

3
. We report here an example showing that, in general, this is not possible

since the bound of 2
3

can be asymptotically tight. Consider the graph G in Figure 4.4
for some sufficiently small ε > 0. It is unstable because it is an augmenting flower. The
maximum-weight matching is given by the bold edges. For any vertex stabilizer S,

ν(G \ S) ≤ 2 =
2

3− ε
(3− ε) =

2

3− ε
ν(G)

2

2
1− ε

2

Figure 4.4: An example showing that the bound of 2
3

can be asymptotically tight.

Another natural question is whether one can at least distinguish if, for a specific in-
stance, there exists a vertex-stabilizer S such that ν(G \ S) = ν(G). Once again, we show

25

that the answer is negative. Specifically, let us call a vertex-stabilizer S weight-preserving
if ν(G \ S) = ν(G). We show that finding such a vertex-stabilizer is hard in general. The
proof is based on a reduction from the independent set problem, similar to the one given
by Biró et al. [6].

Theorem 4.7. Deciding whether a graph has a weight-preserving vertex-stabilizer is NP-
complete.

Proof. The problem is clearly in NP because any yes-instance can be verified using a
weight-preserving vertex-stabilizer in polynomial time. To prove NP-hardness, we give a
reduction from the independent set problem. Let G = (V,E) and k be an independent
set instance, where V = {v1, v2, . . . , vn}. The independent set problem asks to determine
whether G has an independent set of size at least k. We may assume 2 ≤ k ≤ n. We
construct the gadget graph G∗ as follows. First, set the weight on every edge in E to 1.
For each vi ∈ V , add a vertex v′i and the edge viv

′
i with weight 1. Denote this set of new

vertices as V ′ = {v′1, v′2, . . . , v′n}. Next, create k pairwise-disjoint copies of the three cycle
Ci = (Vi, Ei) where Vi = {ai, bi, ci}, Ei = {aibi, bici, aici} and the weight on every edge in
Ei is 4. Finally, add the edge bivj for every i ∈ [k] and j ∈ [n] with weight 2. (See Figure
4.5)

v1 v2
. . .

vk
. . .

. . .

vn

v′1 v′2 v′k v′n

b1 b2 bk

we = 4

we = 2

we = 1

Figure 4.5: The gadget graph G∗.

Our goal is to show that G has an independent set of size at least k if and only if G∗

has a weight-preserving vertex-stabilizer. Before proving the main result, we first derive
some properties of maximum-weight matchings in G∗.

Claim 4.8. If M is a maximum-weight matching in G∗, then M ∩ E = ∅.

26

Proof. For the purpose of contradiction, suppose there exists an edge vivj ∈M ∩E. Then,
(v′i, vi, vj, v

′
j) forms an augmenting path, which is a contradiction.

Claim 4.9. If M is a maximum-weight matching in G∗, every bi is matched to some vj in
M .

Proof. For the purpose of contradiction, suppose there exists an i ∈ [k] such that bivj /∈M
for all j ∈ [n]. Then, bi is either M -exposed or matched to ai or ci. Since k ≤ n, by
the pigeonhole principle there exists an ` ∈ [n] such that bjv` /∈ M for all j ∈ [k]. By
Claim 4.8, v`v

′
` ∈ M . If bi is M -exposed, then (bi, v`, v

′
`) forms an augmenting path.

Otherwise, we may without loss of generality assume aibi ∈ M . Then, (ci, ai, bi, v`, v
′
`)

forms an augmenting path. We have reached a contradiction.

Claim 4.10. ν(G∗) = n+ 5k

Proof. Let M be a maximum-weight matching in G∗. By Claim 4.9, there are k edges of
the form bivj in M . Hence, there are also k edges of the form aici in M . Moreover, we have
n−k edges of the form viv

′
i in M . This gives a total weight of 2k+4k+n−k = n+5k.

Claim 4.11. The set of inessential vertices in G∗ is V ′.

Proof. It is easy to see that the vertices in G and ∪ki=1Ci are essential because they are
covered by every maximum-weight matching in G∗. Let v′i ∈ V ′ and M be a maximum-
weight matching in G∗ such that viv

′
i ∈ M . Since k ≥ 1, there exist j ∈ [k] and ` ∈ [n]

such that bjv` ∈M . Define a new matching M ′ := M + bjvi− bjv` + v`v
′
`− viv′i. Note that

M ′ is a maximum-weight matching in G∗ and v′i is M ′-exposed. Thus, v′i is inessential.

For the forward direction, let S be an independent set of G where |S| = k. Without
loss of generality, assume S = {v1, v2, . . . , vk}. Let M be the matching defined by

M := {aici, bivi : 1 ≤ i ≤ k} ∪ {viv′i : k < i ≤ n} .

Since w(M) = n + 5k, by Claim 4.10 it is a maximum-weight matching in G∗. We claim
that S ′ := {v′1, v′2, . . . , v′k} is a weight-preserving vertex-stabilizer of G∗. First, note that
the matching M survives after removing S ′ from G∗. Hence, M is a maximum-weight
matching in G∗ \S ′. It is left to show that G∗ \S ′ is stable. We define a fractional w-vertex
cover y on G∗ \ S ′ as follows:

yv =


2, if v ∈ ∪ki=1 {ai, bi, ci}
1, if v ∈ ∪ni=k+1vi

0, otherwise.

27

It is easy to check that for every uv /∈ E, the condition yu + yv ≥ wuv holds. Let vivj ∈ E.
Since S is an independent set, at most one of vi and vj is in S. This implies that yvi+yvj ≥ 1.
So y is indeed a fractional w-vertex cover. Since τf (G

∗ \S ′) = n+ 5k = ν(G∗ \S ′), G∗ \S ′
is stable.

For the converse, let S ′ be a weight-preserving vertex-stabilizer of G. We know that
S ′ ⊆ V ′ by Claim 4.11 because S ′ does not contain essential vertices. Let M be a maximum-
weight matching in G∗ \ S ′. Since ν(G∗ \ S ′) = ν(G∗), M is also a maximum-weight
matching in G∗. We claim that |S ′| = k. If |S ′| < k, then there exists an i ∈ [n] such that
viv
′
i ∈ G∗ \ S ′ and bjvi ∈ M for some j ∈ [k]. Then, ajcj ∈M , so Cj ∪ (bj, vi, v

′
i) forms an

augmenting flower. This is a contradiction because G∗ \ S ′ is stable. On the other hand,
if |S ′| > k, then w(M) = 6k + n − |S ′| < n + 5k. This is also a contradiction because
ν(G∗ \ S ′) = ν(G∗). It follows that |S ′| = k.

Without loss of generality, assume S ′ = {v′1, v′2, . . . , v′k}. Let S := {v1, v2, . . . , vk}. We
claim that every vi ∈ S is matched to some bj in M . For the purpose of contradiction,
suppose there exists vi ∈ S such that vi is M -exposed. By the pigeonhole principle, there
exists j ∈ [n] such that vjv

′
j ∈ G∗ \ S ′ and b`vj ∈ M for some ` ∈ [k]. Then, (vi, b`, vj, v

′
j)

forms an augmenting path, which is a a contradiction. It is left to show that S is an
independent set. For the purpose of contradiction, suppose there exist vi, vj ∈ S such that
vivj ∈ E. Let bpvi, bqvj ∈ M for some p, q ∈ [k]. Then, Cp ∪ (bp, vi, vj, bq) ∪ Cq forms an
augmenting bi-cycle. This implies that G∗ \S ′ is unstable, which is a contradiction. Thus,
S is an independent set and |S| ≥ k.

28

Chapter 5

Computing edge-stabilizers

In contrast to the vertex-stabilizer problem, finding a minimum edge-stabilizer is compu-
tationally difficult. Biró et al. [6] proved that the problem is NP-hard on weighted graphs.
We strengthen this result by showing the following hardness of approximation:

Theorem 5.1. There is no constant factor approximation for the minimum edge-stabilizer
problem unless P = NP .

Proof. We give a gap-producing reduction from the independent set problem. Let G =
(V,E) and k be an independent set instance where V = {v1, v2, . . . , vn}. The independent
set problem asks to determine whether G has an independent set of size at least k. We may
assume 2 ≤ k ≤ n. Let ρ ≥ 1 be an integer. We construct the gadget graph G∗ = (V ∗, E∗)
as follows. For every edge vivj ∈ E, replace it with ρk paths of length 3, i.e. (vi, u

`
ij, u

`
ji, vj)

for ` ∈ [ρk]. Assign weight 1 to every edge in the paths. For each vi ∈ V , add a vertex
v′i and the edge viv

′
i with weight 1. Next, create k pairwise-disjoint copies of the complete

graph on 2ρk + 1 vertices. Denote each of them as Hi and assign weight 4 to every edge
in Hi. In addition, for every Hi, label one of the vertices as bi. Finally, add the edge bivj
for every i ∈ [k] and j ∈ [n] with weight 2. (See Figure 5.1)

Claim 5.2. If G has an independent set of size at least k, then G∗ has an edge-stabilizer
of size at most k.

Proof. Let S be an independent set in G where |S| = k. Without loss of generality, we may
assume S = {v1, v2, . . . , vk}. Let F = ∪ki=1viv

′
i. We claim that F is an edge-stabilizer of G∗.

29

v1 v2
. . .

vk
. . .

. . .

vn

v′1 v′2 v′k v′n

b1 b2 bk

H1 H2 Hk

u1kn

uρkkn

u1nk

uρknk

...
we = 4

we = 2

we = 1

Figure 5.1: The gadget graph G∗.

Let Mi be a perfect matching in Hi \ bi for all i ∈ [k]. Let M̂ := ∪ρk`=1

{
u`iju

`
ji : vivj ∈ E

}
.

Define the matching M in G∗ \ F as

M := M̂ ∪M1 ∪ · · · ∪Mk ∪ {bivi : 1 ≤ i ≤ k} ∪ {viv′i : k < i ≤ n}

Note that w(M) = (m+ 4k)ρk+n+k. In order to show that G∗ \F is stable, it suffices to

exhibit a fractional w-vertex cover of the same weight. Let y ∈ R|V
∗|

+ be a vector defined
by

yv =


2, if v ∈ ∪ki=1V (Hi)

1, if v ∈ ∪ni=k+1vi or v = u`ij where i ≤ k
1
2
, if v = u`ij where i, j > k

0, otherwise.

It is easy to check that yu + yv ≥ wuv for all uv ∈ E∗. Hence, y is a fractional w-vertex
cover in G∗. Since S is an independent set, there are no edges of the form u`iju

`
ji where

i, j ≤ k. Then,

1
>y = 2(2ρk + 1)k + n− k +mρk = 4ρk2 + n+ k +mρk = (m+ 4k)ρk + n+ k = w(M)

which implies that G∗ \ F is stable.

Claim 5.3. If G does not have an independent set of size at least k, then every edge-
stabilizer of G∗ has size at least (ρ+ 1)k.

30

Proof. We prove the contrapositive. Assume G∗ has an edge-stabilizer F such that |F | <
(ρ + 1)k. Let M be a maximum-weight matching in G∗ \ F . Let c denote the number of
edges removed from the complete graphs, i.e. c :=

∣∣F ∩ ∪ki=1E(Hi)
∣∣. We first show that

c < 2ρk − 1. According to Ore’s Theorem, we need to remove at least 2ρk − 1 edges from
Hi in order to make it non-Hamiltonian. Let H := {i : Hi \ F is Hamiltonian}. Then,
|H| ≥ k− c

2ρk−1 . For every i ∈ H, bivj ∈M for some j ∈ [n], otherwise Hi \ F contains an
augmenting blossom because it has an odd number of vertices. Thus, vjv

′
j ⊆ F , otherwise

Hi \ F ∪ (bi, vj, v
′
j) contains an augmenting flower. We have

c+ |H| < (ρ+ 1)k

c+

(
k − c

2ρk − 1

)
< (ρ+ 1)k

c

(
1− 1

2ρk − 1

)
< ρk

c

(
2ρk − 2

2ρk − 1

)
< ρk

c < (2ρk − 1)

(
ρk

2ρk − 2

)
c < 2ρk − 1

Since c < 2ρk − 1, |H| = k. Without loss of generality, we may assume bivi ∈ M for
every i ∈ [k]. Then, ∪ki=1viv

′
i ⊆ F . We claim that S = {v1, v2, . . . , vk} is an independent

set in G. For the purpose of contradiction, suppose there exists an edge vivj ∈ E for

some i, j ∈ [k]. Let Pij = ∪ρk`=1(vi, u
`
ij, u

`
ji, vj) denote the set of paths between vi and vj.

Since |F ∩ Pij| < (ρ + 1)k − k = ρk, at least one path (vi, u
t
ij, u

t
ji, vj) ∈ Pij is present in

G∗ \ F . Observe that utiju
t
ji ∈ M , and (Hi \ F) ∪ (bi, vi, u

t
ij, u

t
ji, vj, bj) ∪ (Hj \ F) contains

an augmenting bi-cycle. Thus, G∗ \ F is unstable, which is a contradiction.

Now, suppose we have an α-approximation to the minimum edge-stabilizer problem for
some constant α ≥ 1. Set ρ = dαe and construct the gadget graph G∗ as shown above.
Run this algorithm on G∗ and let F be the returned edge-stabilizer. Let OPT be size of
a minimum edge-stabilizer in G∗. If G has an independent set of size at least k, then by
Claim 5.2 we have OPT ≤ k and |F | ≤ α · OPT ≤ ρk. On the other hand, if G does not
have an independent set of size at least k, then by Claim 5.3 we have OPT ≥ (ρ+1)k > ρk.
This implies that |F | > ρk. Therefore, we can use this algorithm to decide the independent
set problem in polynomial time.

31

In this section, we prove that Algorithm 2 is a O(∆)-approximation algorithm for the
minimum edge-stabilizer problem. We first need to establish a lower bound on the optimal
solution. Next example shows that, differently from the unweighted case, γ(G) is not a
lower bound on the size of a minimum edge-stabilizer for weighted graphs. Let G be the
graph depicted in Figure 5.2, whose maximum-weight matching is given by the bold edges.
It is unstable because it is an augmenting bi-cycle. Even though γ(G) = 2, the edge with
weight 0.5 is a minimum edge-stabilizer.

2

2

2

1 0.5 1

2

2

2 2

2

2

1 0.5 1

2

2

2

Figure 5.2: An example showing that γ(G) is not a lower bound. The unique maximum-
weight matching is shown in the left, while the unique maximum-weight fractional matching
is shown in the right. Gray edges have value 1

2
.

However, we can prove the following.

Lemma 5.4. For every edge e ∈ E, γ(G \ e) ≥ γ(G)− 2.

Proof. Let x∗ be a basic maximum-weight fractional matching in G such that |C (x∗)| =
γ(G). Let y be a minimum fractional w-vertex cover in G. Pick an edge ab ∈ E. If x∗ab = 0,
then νf (G \ ab) = νf (G) and γ(G \ ab) = γ(G). So we may assume x∗ab ∈

{
1
2
, 1
}

. Let G′ be
the graph obtained by replacing the edge ab with edges ab′, b′a′, a′b where wab′ = wb′a′ =
wa′b = wab and a′, b′ /∈ V . Define the vectors x̂ and ŷ as

x̂e =


1− x∗ab, if e = b′a′,

x∗ab, if e ∈ {ab′, a′b} ,
x∗e, otherwise.

ŷv =


ya, if v = a′,

yb, if v = b′,

yv, otherwise.

Note that x̂ is a basic fractional matching while ŷ is a fractional w-vertex cover in G′.
Furthermore, they satisfy complementary slackness conditions as ŷu + ŷv = wuv for all
uv ∈ {ab′, b′a′, a′b} and x̂(δ(v)) = 1 for all v ∈ {a, a′, b, b′}. Hence, they form a primal-dual
optimal pair. Since |C (x̂)| = γ(G), we have γ(G′) ≤ γ(G). We claim that γ(G′) = γ(G).
For the purpose of contradiction, suppose γ(G′) < γ(G). By Theorem 3.4, G′ contains one
of the following:

32

Structure (i): a vertex v ∈ V (Ci) for some odd cycle Ci ∈ C (x̂) such that ŷv = 0. If v ∈
V , then v ∈ V (C (x∗)) and yv = 0. Otherwise, v ∈ {a′, b′} which implies a, b ∈ V (C (x∗))
and ya = 0 or yb = 0. By Theorem 3.4, we arrive at the contradiction γ(G) < |C (x∗)|.

Structure (ii): a tight M(x̂)-alternating path P connecting two odd cycles Ci, Cj ∈
C (x̂). If P does not have any intermediate vertices from {a, a′, b, b′}, then it is also a
tight M(x∗)-alternating path in G connecting two odd cycles from C (x∗). Otherwise,
ab′, b′a′, a′b ∈ E(P) and Ci, Cj ∈ C (x∗). Then, (P ∪ ab) \ {ab′, b′a′, a′b} is a tight M(x∗)-
alternating path in G connecting Ci and Cj. By Theorem 3.4, we arrive at the contradiction
γ(G) < |C (x∗)|.

Structure (iii): a tight and valid M(x̂)-alternating path P connecting an odd cycle
Ci ∈ C (x̂) and a vertex v /∈ V (C (x̂)) such that ŷv = 0. If P does not have any intermediate
vertices from {a, a′, b, b′}, then v /∈ {a, a′, b, b′}. Hence, P is also a tight and valid M(x∗)-
alternating path in G connecting an odd cycle from C (x∗) and v. If ab′, b′a′, a′b ∈ E(P),
then v /∈ {a′, b′} and Ci ∈ C (x∗). Thus, (P ∪ab)\{ab′, b′a′, a′b} is a tight and valid M(x∗)-
alternating path in G connecting Ci and v. If a′b ∈ E(P) but ab′, b′a′ /∈ E(P), then v = a′

and ya = 0. So P + ab − a′b is a tight and valid M(x∗)-alternating path in G connecting
Ci and a. If ab′ ∈ E(P) but b′a′, a′b /∈ E(P), then v = b′ and yb = 0. So P + ab − ab′ is
a tight and valid M(x∗)-alternating path in G connecting Ci and b. By Theoreom 3.4, we
arrive at the contradiction γ(G) < |C (x∗)|.

Thus, we have shown that γ(G′) = γ(G). Since G′ \ {a′, b′} = G \ ab, applying Lemma
4.5 yields

γ(G \ ab) = γ (G′ \ {a′, b′}) ≥ γ(G′)− 2 = γ(G)− 2.

As a corollary to the above lemma, we obtain the following lower bound.

Lemma 5.5. For every edge-stabilizer F of G, |F | ≥
⌈
γ(G)
2

⌉
.

Since Algorithm 2 deletes γ(G) vertices, at most γ(G)∆ edges are deleted, proving the
following.

Theorem 5.6. There exists an efficient O(∆)-approximation algorithm for the minimum
edge-stabilizer problem.

33

Chapter 6

Forcing an outcome

Given a set of deals M , we here look at the problem of removing as few players as possible
in order to make M realizable as a stable outcome. This corresponds to finding a minimum
vertex-stabilizer S with the additional constraint that M is a maximum-weight matching
in G \ S. Note that this implicitly implies S ∩ V (M) = ∅. A solution to this problem is
called an M-vertex-stabilizer. We would like to point out that the following variants of the
problem, which are along the lines of Chandrasekaran et al. [9] are polytime solvable: find
a weight vector w′ such that M is a stable outcome for (G,w′) so as to minimize ‖w−w′‖1
or ‖w−w′‖∞ (or even the `p norm ‖w−w′‖p). This is an inverse-optimization problem that
can be cast as an LP (or convex program for the `p norm) by exploiting complementary
slackness.

Ahmadian et al. [1] previously showed that theM -vertex-stabilizer problem is polynomial-
time solvable on unweighted graphs when M is a maximum matching in G. We prove that
when M is any arbitrary matching in G, the problem becomes hard:

Theorem 6.1. The M-vertex-stabilizer problem is NP-hard on unweighted graphs. Fur-
thermore, no efficient (2−ε)-approximation algorithm exists for any ε > 0 assuming UGC.

Proof. We give an approximation-preserving reduction from the vertex cover problem. Let
G = (V,E) be a vertex cover instance. For every edge uv ∈ E, replace it with an aug-
menting path of length three, i.e. (u, u′, v′, v) where u′v′ ∈ M . Denote the resulting
(unweighted) graph as G′ = (V ′, E ′). We will show that every vertex cover in G corre-
sponds to an M -vertex-stabilizer in G′ and vice versa. This implies that the reduction is
approximation-preserving and the inapproximability results for the vertex cover problem
[12, 15] carry over to the problem of finding a minimum M -vertex-stabilizer.

34

Observe that G′ does not contain any alternating cycle or blossom. This implies that
there is no augmenting cycle, flower or bi-cycle in G′. Let S be a vertex cover of G. Then,
G′\S has no augmenting path because every augmenting path in G′ corresponds to an edge
in G. Thus, M is a maximum matching in G′\S and hence S is an M -vertex stabilizer. For
the converse, suppose S is an M -vertex stabilizer of G′. Note that S ⊆ V as every vertex
in V ′ \ V is M -covered. Then, G \ S has no edges because every edge in G corresponds to
an augmenting path in G′. It follows that S is a vertex cover for G. This concludes the
proof of inapproximability.

On unweighted graphs, every instance of this problem admits a solution. However, this
is not the case for weighted graphs. Consider an M -augmenting bi-cycle. It is unstable by
Theorem 2.4, but does not have an M -vertex-stabilizer because every vertex is M -covered.
In general, if the graph contains an M -augmenting path whose endpoints are M -covered,
or an M -augmenting cycle, or an M -augmenting flower whose root is M -covered, or an
M -augmenting bi-cycle, then it does not have an M -vertex-stabilizer. We would like to
point out that recognizing an infeasible instance of the M -vertex-stabilizer problem can be
done in polynomial time. In particular, we prove that:

Theorem 6.2. The M-vertex-stabilizer problem admits an efficient 2-approximation al-
gorithm. Furthermore, if M is a maximum-weight matching, then it can be solved in
polynomial time.

We first sketch the main ideas. Given a weighted graph G and a matching M , the
algorithm searches for the structures which prevent G from being stable or M from being
a maximum-weight matching. Among all such structures, the ones that can be tampered
with are augmenting paths with at least one M -exposed endpoint and augmenting flowers
with an M -exposed root. The algorithm then proceeds to delete these M -exposed vertices.
If there exist augmenting paths whose endpoints are both M -exposed, the problem becomes
hard because we do not know which endpoint is optimal to remove. In this case, the
algorithm removes both endpoints, thus yielding a 2-approximation. Note that this last
case cannot happen if M is maximum-weight, and this explains why the problem becomes
polynomial-time solvable. Kleinberg and Tardos [16] were the first to give a method of
locating these structures. It involves solving a certain linear program using the dynamic
programming algorithm of Aspvall and Shiloach [2]. We use a slightly different algorithm
for finding these structures, which in fact, will allow us to prove a strengthened version of
Theorem 6.2 (Theorem 6.7). Our algorithm relies on searching for augmenting walks of
a certain length, via a slight modification of the dynamic programming algorithm given
by Aspvall and Shiloach [2]. Using this as a subroutine, we design an algorithm for the
M -vertex-stabilizer problem.

35

6.1 Finding augmenting walks

The first ingredient is an algorithm to find augmenting walks of a certain length. We
say that a valid M -alternating uv-walk P of length at most k is optimal if for any other
valid M -alternating uv-walk P ′ of length at most k, we have w(P \M) − w(P ∩M) ≥
w(P ′ \M) − w(P ′ ∩M). Given a source vertex s and an integer k ∈ Z+, the algorithm
searches for optimal valid alternating sv-walks of length at most k for all v ∈ V . The
significance of optimality is as follows. Let P be an optimal valid alternating sv-walk
returned by the algorithm. If P is augmenting, then we have found an augmenting sv-walk
of length at most k. Otherwise, we can conclude that there are no augmenting sv-walks of
length at most k by the optimality of P .

The inner workings of our algorithm is similar to the Grapevine algorithm given by
Aspvall and Shiloach [2]. In their paper, the Grapevine algorithm is used as a subroutine
to solve linear systems of the form Ax ≤ b, where each constraint contains at most 2
variables. They first constructed an auxiliary graph to model the relationship between
variables and constraints. The Grapevine algorithm is then run on this auxiliary graph to
compute lower and upper bounds of each variable.

We now give an overview of our algorithm. For every vertex v ∈ V , we define two
variables y1(v) and y2(v). In iteration i, if v is M -exposed, we would like y1(v) to represent
the quantity w(P \M) − w(P ∩M), where P is an optimal valid alternating sv-walk of
length at most i. On the other hand, if v is M -covered, we would like y2(v) to represent
the quantity w(P \M) − w(P ∩M), where P is an optimal valid alternating sv-walk of
length at most i. We first initialize y1(s) = 0 and y2(s) = −∞ if s is M -covered, and
y1(s) = y2(s) = 0 if s is M -exposed. For every other vertex v 6= s, we set y1(v) = y2(v) =
−∞. At every iteration, each vertex v determines whether it could increase its y1(v) value
by replacing it with y2(u) + wuv for some uv ∈ E \M , and similarly, whether it could
increase its y2(v) value by replacing it with y1(u) − wuv for some uv ∈ M . In a way,
this is analogous to the Bellman-Ford algorithm for computing shortest paths. The main
difference is that we are maintaining two variables for each vertex, instead of one. This
ensures the walk we obtain is M -alternating and valid. Also, notice that we are adding
the weights of unmatched edges and subtracting the weights of matched edges. This will

36

give us our desired quantity w(P \M)− w(P ∩M).

Algorithm 3: Optimal valid M -alternating sv-walks of length at most k

1 Initialize vectors y1, y2, z1, z2 ∈ Rn

2 if s is M -covered then
3 y1(s)← 0
4 y2(s)← −∞
5 else
6 y1(s)← 0
7 y2(s)← 0

8 foreach vertex v 6= s do
9 y1(v)← −∞

10 y2(v)← −∞
11 for i = 1 to k do
12 foreach vertex v do
13 z1(v)← max

u:uv∈E\M
{y2(u) + wuv}

14 z2(v)← max
u:uv∈M

{y1(u)− wuv}

15 foreach vertex v do
16 y1(v)← max(y1(v), z1(v))
17 y2(v)← max(y2(v), z2(v))

18 return y1, y2

In the algorithm, we take the maximum of the empty set to be −∞. For the analysis,
we will use yi1(v) and yi2(v) to denote the value of y1(v) and y2(v) respectively at iteration
i for all i < k. Note that y01(v) and y02(v) refer to the initial value received by y1(v) and
y2(v) before the main “for” loop. The following lemmas verify our intuition.

Lemma 6.3. Let v be an M-covered vertex. If there is no valid M-alternating sv-walk of
length at most k, then y2(v) = −∞. Otherwise, there exists an optimal valid M-alternating
sv-walk P of length at most k, and y2(v) = w(P \M)− w(P ∩M).

Proof. We start by proving the contrapositive of the first statement. Let v be an M -
covered vertex where y2(v) is finite. We proceed by induction on k. We look at two base
cases. When k = 1, y2(v) = y01(s) − wsv where sv ∈ M . So (s, v) is our desired walk.
When k = 2, if y2(v) was updated in iteration 1, then this reduces to the previous case.
Otherwise, y2(v) = y02(s)+wsu−wuv for some uv ∈M . Since y02(s) is finite, s is M -exposed

37

and (s, u, v) is our desired walk. For the inductive hypothesis, assume the statement holds
for some k ≥ 2. Consider the case k + 1. Let j be the last iteration in which y2(v) was
updated, i.e. y2(v) = yj−11 (u) − wuv for some uv ∈ M . We may assume j > 2, otherwise
we are back at the base cases. Since the update of y2(v) was triggered by the update of
y1(u), we know that y1(u) was updated at iteration j − 1, i.e. yj−11 (u) = yj−22 (t) + wtu
for some tu ∈ E \M . Similarly, since the update of y1(u) was triggered by the update
of y2(t), we know that y2(t) was updated at iteration j − 2 > 0. This implies that t is
M -covered. As yj−22 (t) is finite and j − 2 < k, by the inductive hypothesis there exists a
valid M -alternating st-walk of length at most j− 2. Appending (t, u, v) to this walk yields
a valid M -alternating sv-walk of length at most j ≤ k + 1.

Next, we prove the second statement. Let v be an M -covered vertex where a valid
M -alternating sv-walk of length at most k exists. Since the number of such walks is finite,
there exists an optimal one. Among all such optimal walks, let P be the shortest one in
terms of number of edges. We proceed by induction on k. We look at two base cases.
When k = 1, P = (s, v) and y2(v) = −wsv = w(P \ M) − w(P ∩ M). When k = 2,
if |E(P)| = 1 then this reduces to the previous case. Otherwise, P = (s, u, v) for some
uv ∈ M and y2(v) = wsu − wuv = w(P \M) − w(P ∩M). For the inductive hypothesis,
assume the statement holds for some k ≥ 2. Consider the case k + 1. We may assume
P has length exactly k + 1, otherwise by the inductive hypothesis we are done. Denote
P = (v0, v1, . . . , vk+1) where v0 = s and vk+1 = v. Then, P ′ = (v0, v1, . . . , vk−1) is an
optimal valid M -alternating svk−1-walk of length at most k − 1. Since vk−1 is M -covered,
by the inductive hypothesis we have yk−12 (vk−1) = w(P ′ \M)− w(P ′ ∩M). We also know
that yk−12 (vk−1) + wvk−1vk ≥ yk−12 (u) + wuvk for all uvk ∈ E \ M because P is optimal.

We claim that yk−12 (vk−1) + wvk−1vk > yk−11 (vk). For the purpose of contradiction, suppose
otherwise. Then,

yk2(v) ≥ yk−11 (vk)− wvkv
≥ yk−12 (vk−1) + wvk−1vk − wvkv
= w(P ′ \M)− w(P ′ ∩M) + wvk−1vk − wvkv
= w(P \M)− w(P ∩M).

Since yk2(v) is finite, by the first part of the lemma there exists a valid M -alternating sv-
walk of length at most k. So by the inductive hypothesis, yk2(v) = w(Q \M)− w(Q ∩M)
where Q is an optimal valid M -alternating sv-walk of length at most k. Note that w(Q \
M) − w(Q ∩M) = w(P \M) − w(P ∩M) because P is optimal. However, Q is shorter
than P , which is a contradiction. Thus, we obtain yk1(vk) = yk−12 (vk−1) + wvk−1vk and

y2(v) = yk1(vk)− wvkv = yk−12 (vk−1) + wvk−1vk − wvkv = w(P \M)− w(P ∩M).

38

Lemma 6.4. Let v be an M-exposed vertex. If there is no valid M-alternating sv-walk of
length at most k, then y1(v) = −∞. Otherwise, there exists an optimal valid M-alternating
sv-walk P of length at most k, and y1(v) = w(P \M)− w(P ∩M).

Proof. We start by proving the contrapositive of the first statement. Let v be an M -
exposed vertex where y1(v) is finite. We proceed by induction on k. We look at two base
cases. When k = 0, we have v = s and the empty path (s) is our desired walk. When k = 1,
if y1(v) was never updated, then v = s and so this reduces to the previous case. Otherwise,
y1(v) = y02(s)+wsv. Since y02(s) is finite, s is M -exposed and (s, v) is our desired walk. For
the inductive hypothesis, assume the statement holds for some k ≥ 1. Consider the case
k + 1. Let j be the last iteration in which y1(v) was updated, i.e. y1(v) = yj−12 (u) + wuv
for some uv ∈ E \M . We may assume j > 1, otherwise we are back at the base cases.
Since the update of y1(v) was triggered by the update of y2(u), we know that y2(u) was
updated at iteration j − 1 > 0. This implies that u is M -covered. As yj−12 (u) is finite and
j − 1 ≤ k, by Lemma 6.3 there exists a valid M -alternating su-walk of length at most
j−1. Appending (u, v) to this walk yields a valid M -alternating sv-walk of length at most
j ≤ k + 1.

Next, we prove the second statement. Let v be an M -exposed vertex where a valid
M -alternating sv-walk of length at most k exists. Since the number of such walks is finite,
there exists an optimal one. Among all such optimal walks, let P be the shortest one in
terms of number of edges. We proceed by induction on k. We look at two base cases. When
k = 0, P = (s) and y1(v) = 0 = w(P \M)−w(P ∩M). When k = 1, if |E(P)| = 0 then this
reduces to the previous case. Otherwise, P = (s, v) and y1(v) = wsv = w(P\M)−w(P∩M).
For the inductive hypothesis, assume the statement holds for some k ≥ 1. Consider the
case k + 1. We may assume P has length exactly k + 1, otherwise by the inductive
hypothesis we are done. Denote P = (v0, v1, . . . , vk+1) where v0 = s and vk+1 = v. Then,
P ′ = (v0, v1, . . . , vk) is an optimal valid M -alternating svk-walk of length at most k. Since
vk is M -covered, by Lemma 6.3 we have yk2(vk) = w(P ′ \M) + w(P ′ ∩M). We also know
yk2(vk) + wvkv ≥ yk2(u) + wuv for all uv ∈ E \M because P is optimal. We claim that
yk2(vk) + wvkv > yk1(v). For the purpose of contradiction, suppose otherwise. Then

yk1(v) ≥ yk2(vk) + wvkv = w(P ′ \M)− w(P ′ ∩M) + wvkv = w(P \M)− w(P ∩M).

Since yk1(v) is finite, by the first part of the lemma there exists a validM -alternating sv-walk
of length at most k. So by the inductive hypothesis, yk1(v) = w(Q\M)−w(Q∩M) where Q
is an optimal valid M -alternating sv-walk of length at most k. Note that w(Q\M)−w(Q∩
M) = w(P \M)− w(P ∩M) because P is optimal. However, Q is shorter than P , which
is a contradiction. Thus, we obtain y1(v) = yk2(vk) + wvkv = w(P \M)− w(P ∩M).

39

6.2 The algorithm

The reason we look for augmenting walks is because of the following:

Lemma 6.5. An augmenting uv-walk contains an augmenting uv-path, an augmenting
cycle, an augmenting flower rooted at u or v, or an augmenting bi-cycle.

Proof. We first prove the following claim:

Claim 6.6. If P is an alternating walk, then it can be decomposed into P = P1P2 . . . P`
such that:

(i) Every Pi is an alternating path, an alternating cycle or a blossom.
(ii) There is no i such that Pi and Pi+1 are both alternating paths or blossoms.

Proof. Let P = (v1, v2, . . . , vt) be an M -alternating walk. We proceed by induction on
t. For the base case t = 2, P is an alternating path of length 1 as there are no loops in
G. Suppose the lemma is true for t ≤ k for some k ≥ 2. Consider the case t = k + 1.
We may assume P is not simple. Let j be the smallest index such that vj = vi for
some i < j. Decompose P into P1 = (v1, v2, . . . , vi), P2 = (vi, vi+1, . . . , vj) and P3 =
(vj, vj+1, . . . , vt). P1 is a (possibly empty) alternating path while P2 is an alternating
cycle or a blossom. Since P3 is an M -alternating walk with fewer edges, by the inductive
hypothesis it can be decomposed into P3 = P ′1P

′
2 . . . , P

′
` where every P ′i is an alternating

path, an alternating cycle or a blossom. Moreover, there are no consecutive paths or
blossoms in this decomposition. Note that P ′1 is not a blossom because P3 starts with an
edge in M . Thus, P = P1P2P

′
1P
′
2 . . . P

′
` is our desired decomposition.

Let P be anM -augmenting uv-walk. Using Claim 6.6, decompose P into P = P1P2 . . . Pk.
If Pi is an augmenting cycle for some i ∈ [k], then we are done. So we may assume that
every alternating cycle in the decomposition is not augmenting. Note that Pk is not an
alternating cycle, otherwise P is not valid because it ends with an unmatched edge whose
endpoints are M -covered. Let P ′ be the alternating uv-walk obtained by dropping all
the alternating cycles in the decomposition. It is easy to see that P ′ is still augmenting.
Repeat this process until we are left with an augmenting uv-walk P ∗ = P ∗1P

∗
2 . . . P

∗
` such

that every Pi is an alternating path or a blossom.

If P ∗1 is a blossom, then u is M -exposed because the first edge of P ∗ is not in M .
Similarly, if P ∗` is a blossom, then v is M -exposed because the last edge of P ∗ is not in M .
In both cases, since P ∗ does not have any M -exposed intermediate vertices, we get u = v
and ` = 1. This implies that P ∗ is an augmenting blossom with base u, which is trivially

40

an augmenting flower with root u. Thus, we may assume P1 and P` are alternating paths.
If ` = 1, then P ∗ is an augmenting uv-path. Otherwise, from Claim 6.6 we know that
Pi is an alternating path for all odd i while Pi is a blossom for all even i. Observe that
P ∗1 ∪ P ∗2 and P ∗`−1 ∪ P ∗` form flowers rooted at u and v respectively, where the former is
simple while the latter might not be simple. Moreover, P ∗2i ∪ P ∗2i+1 ∪ P ∗2i+2 form bi-cycles
for all i ∈

[
`−3
2

]
. Since 2w(P ∗ \M) > 2w(P ∗ ∩M) and

2w(P ∗) = 2w(P ∗1) + w(P ∗2) +

(`−3)/2∑
i=1

(
w(P ∗2i) + 2w(P ∗2i+1) + w(P ∗2i+2)

)
+ w(P ∗`−1) + 2w(P ∗`),

at least one of them is augmenting.

We are now ready to present the algorithm for the M -vertex-stabilizer problem:

Algorithm 4: M -vertex-stabilizer

1 Initialize S ← ∅
2 foreach M -exposed vertex u do
3 Search for M -augmenting uv-walks of length at most 3n using Algorithm 3
4 if ∃ an M -augmenting uu-walk or uv-walk for some M -covered vertex v then
5 S ← S ∪ {u}
6 G← G \ u
7 foreach M -exposed vertex u do
8 Search for M -augmenting uv-walks of length at most n using Algorithm 3
9 if ∃ an M -augmenting uv-walk for some M -exposed vertex v then

10 S ← S ∪ {u, v}
11 G← G \ {u, v}
12 if w(M) < νf (G) then
13 return “INFEASIBLE”
14 else
15 return S

Let S1 denote the set of M -exposed vertices in G which are roots of augmenting flowers
or endpoints of augmenting paths whose other endpoint is M -covered. Note that given
a feasible instance, every M -vertex-stabilizer contains S1. We prove a stronger statement
than Theorem 6.2:

Theorem 6.7. The M-vertex-stabilizer problem admits an efficient 2-approximation algo-
rithm. Furthermore, if M is a maximum-weight matching in G \S1, then it is polynomial-
time solvable.

41

Proof. Let G be the input graph and M be a matching in G. Let R be the set of M -exposed
vertices in G, and let R′ be any subset of R. If G contains an augmenting path whose
endpoints are M -covered or an augmenting cycle, then it is also present in G\R′. Since M
is not a maximum-weight matching in G \ R′, R′ is not an M -vertex-stabilizer. Similarly,
if G contains an augmenting flower whose root is M -covered or an augmenting bi-cycle,
then it is also present in G \R′. By Theorem 2.4, G \R′ is not stable. In these two cases,
there is no M -vertex-stabilizer. Since S ⊆ R and w(M) < vf (G \ S), the algorithm will
return “INFEASIBLE”.

Thus, we may assume G does not contain any of the aforementioned structures. The
only structure which can make G unstable is an augmenting flower whose root is M -
exposed. In addition, the only structure which can prevent M from being a maximum-
weight matching in G is an augmenting path with at least one M -exposed endpoint.

Claim 6.8. Let u be an M-exposed vertex. Then, u is the root of an augmenting flower if
and only if there exists an augmenting uu-walk of length at most 3n.

Proof. Let C ∪ P be a augmenting flower rooted at u where C = (v1, v2, . . . , vj, v1) is the
blossom and P = (u1, u2, . . . , uk) is the valid alternating path. Assume u1 = v1 and uk = u.
Let P−1 = (uk, uk−1, . . . , u1) denote the reverse of path P . Then, Q = P−1CP is a valid
alternating uu-walk, and its length is at most 3n. Moreover, since

w(Q \M) = w(C \M) + 2w(P \M) > w(C ∩M) + 2w(P ∩M) = w(Q ∩M),

it is augmenting. For the converse, let P be an augmenting uu-walk of length at most 3n.
By Lemma 6.5, P contains an augmenting flower rooted at u.

Claim 6.9. Let u be an M-exposed vertex and v be an M-covered vertex. If there is no
augmenting flower rooted at u, then there exists an augmenting uv-path if and only if there
exists an augmenting uv-walk of length at most 3n.

Proof. A uv-path is trivially a uv-walk. For the converse, let P be an augmenting uv-walk
of length at most 3n. By Lemma 6.5, P contains an augmenting uv-path.

By the two claims above, the set of vertices collected in the first “for” loop of the
algorithm is exactly S1. Let S∗ be a minimum M -vertex-stabilizer. Then, S1 ⊆ S∗. Now,
the only structure which can prevent M from being a maximum-weight matching in G\S1

is an augmenting path whose endpoints are both M -exposed.

Claim 6.10. Let u and v be M-exposed vertices. There exists an augmenting uv-path in
G \ S1 if and only if there exists an augmenting uv-walk of length at most n in G \ S1.

42

Proof. A uv-path is trivially a uv-walk. For the converse, let P be an augmenting uv-walk
of length at most n. By Lemma 6.5, P contains an augmenting uv-path.

Let S2 be the set of vertices collected in the second “for” loop of the algorithm. At
every iteration, a pair of vertices were added to S2 because they are the endpoints of an
augmenting path. Note that at least one of them is in S∗, otherwise this augmenting
path is present in G \ S∗. Thus, we have |S∗| ≥ |S1| + 1

2
|S2| ≥ 1

2
|S|. The matching

M is maximum-weight in G \ (S1 ∪ S2) because there are no augmenting paths or cycles.
Moreover, G \ (S1 ∪ S2) is stable because it does not contain any augmenting flowers or
bi-cycles. Thus, S = S1 ∪S2 is an M -vertex-stabilizer. Finally, if M is a maximum-weight
matching in G \ S1, then S2 = ∅. We get |S| = |S1| ≤ |S∗| implying that S is optimal.

6.3 Proof of Theorem 2.4

The goal of this section is to provide a proof for Theorem 2.4. Given a matching M , the
stability requirement can be encoded as the following linear system:

yu ≥ 0 ∀u ∈ V (M)
yu = 0 ∀u /∈ V (M)

yu + yv = wuv ∀uv ∈M
yu + yv ≥ wuv ∀uv ∈ E \M

(6.1)

Converting equalities to inequalities, we obtain a system of the form Ax ≤ c where
each inequality has at most two variables:

−yu ≤ 0 ∀u ∈ V (M)
−yu ≤ 0 ∀u /∈ V (M)
yu ≤ 0 ∀u /∈ V (M)

−yu − yv ≤ −wuv ∀uv ∈M
yu + yv ≤ wuv ∀uv ∈M
−yu − yv ≤ −wuv ∀uv ∈ E \M

(6.2)

Let S denote System 6.2. Then, determining whether a graph is stable is equivalent
to deciding whether S is feasible for a maximum-weight matching M . We use a graph
construction method introduced by Shostak [22]. Let yz be an auxiliary variable that
always occurs with zero coefficient. Then, without loss of generality we can assume every

43

inequality in S contains exactly two variables. Construct an undirected multigraph G(S)
as follows (see Figure 6.1):

(a) For each variable yv in S, add a vertex v to G(S).
(b) For each inequality ayu + byv ≤ c in S, add an undirected edge between u and v in

G(S), and label the edge with this inequality.

u

v w

2 2

3

z

u

v w

−yu − yv ≤ −2 −yu − yw ≤ −2

yv + yw ≤ 3

−yv − yw ≤ −3

yu ≤ 0 −yu ≤ 0

−yv ≤ 0 −yw ≤ 0

Figure 6.1: An example of G(S) for a given graph and matching.

Let P be a walk in G(S) determined by vertices v1, v2, . . . , v`+1 and edges e1, e2, . . . , e`.
The triple sequence for P is given by

〈a1, b1, c1〉 , 〈a2, b2, c2〉 , . . . , 〈a`, b`, c`〉

where aiyvi + biyvi+1
≤ ci is the inequality associated with ei for 1 ≤ i ≤ `. P is called

admissible if ai+1 and bi have opposite signs for 1 ≤ i < `. Intuitively, an admissible walk
is a chain of inequalities that exhibit the transitivity property. Define the residue of P as

〈aP , bP , cP 〉 = 〈a1, b1, c1〉 � 〈a2, b2, c2〉 � · · · � 〈a`, b`, c`〉

where � is the associative binary operator defined on triples by

〈a, b, c〉 � 〈a′, b′, c′〉 = 〈kaa′,−kbb′, k(ca′ − c′b)〉 and k = a′/ |a′|

44

Intuitively, the operator � takes two inequalities and derive a new inequality by eliminating
their common variable. For example, ayu + byv ≤ c and a′yv + b′yw ≤ c′ imply −aa′yu +
bb′yw ≤ −(ca′ − c′b) if a′ < 0 (and b > 0). The resulting inequality aPv1 + bPv` ≤ cP is
known as the hidden inequality of P . In our setting, since coeffients can only be 0, 1 or -1,
ka′ = (a′)2 = 1 and kb = −ka′ = −1. Thus, the operator � can be simplied to

〈a, b, c〉 � 〈a′, b′, c′〉 = 〈a, b′, c+ c′〉

and the residue of P becomes

〈aP , bP , cP 〉 =

〈
a1, b`,

∑̀
i=1

ci

〉

Lemma 6.11 ([22]). If P is an admissible walk with initial vertex u, final vertex v and
residue 〈aP , bP , cP 〉, then any vector y which satisfies the inequalities that label the edges
of P satisfies aPyu + bPyv ≤ cP .

A walk is called a loop if its initial and final vertices are the same. A walk is simple
if its intermediate vertices are distinct. An admissible loop P is said to be infeasible if
aP + bP = 0 and cP < 0.

Definition 6.12. Let S be a system of linear inequalities. For every vertex v in G(S), and
for every admissible simple loop P in G(S) with aP + bp 6= 0 and initial vertex v, add the
new inequality (aP + bP)yv ≤ cP to S. We call the new system S ′ the Shostak extension of
S.

Note that there could be exponentially many admissible simple loops in G(S). Notice
also that G(S) is a spanning subgraph of G(S ′). The significance of the Shostak extension
is given by the following theorem:

Theorem 6.13 ([22]). Let S ′ be the Shostak extension of S. The system of inequalities S
is feasible if and only if G(S ′) has no infeasible simple loop.

This theorem will be used to prove Theorem 2.4. We first establish the relationship
between admissible simple loops in G(S) and M -alternating structures in G.

Claim 6.14. Let P be a simple loop in G(S) which does not contain z and has length at
least 3. Then, P is admissible if and only if P is an alternating cycle or a blossom in G.

45

Proof. (⇒) Let P = (v1, v2, . . . , vk, v1) be an admissible simple loop in G(S) where z /∈
V (P) and k ≥ 3. For the purpose of contradiction, assume ei = vivi+1, ei+1 = vi+1vi+2 /∈M
for some i ∈ [k − 1]. Then there is only one edge connecting vi to vi+1 and vi+1 to vi+2

in G(S). Moreover, their labels are −yvi − yvi+1
≤ −wei and −yvi+1

− yvi+2
≤ −wei+1

respectively. Since the signs of bi and ai+1 are the same, P is not admissible. This is a
contradiction. Thus, P is either an M -alternating cycle or an M -blossom with base v1.

(⇐) Let P = (v1, v2, . . . , vk, v1) be an M -alternating cycle or an M -blossom with base
v1 in G. Then, z /∈ V (P) and k ≥ 3. For every edge ei = vivi+1 in P , if it is matched,
take the edge in G(S) with label yvi + yvi+1

≤ wei . Otherwise, take the edge with label
−yvi−yvi+1

≤ −wei . Since ai+1 and bi have opposite signs for 1 ≤ i < k, P is an admissible
simple loop in G(S).

Next, we need to understand the inequalities that were added during the construction
of the Shostak extension.

Lemma 6.15. Let S ′ be the Shostak extension of S. The inequalities in S ′ \ S are

yv ≥
w(P \M)− w(P ∩M)

2

for every vertex v ∈ V and for every blossom P with base v.

Proof. Let P = (v1, v2, . . . , vk, v1) be an admissible simple loop in G(S). If v1 = z, then
aP = a1 = 0 and bP = bk = 0. Since aP + bP = 0, no inequality is added for P . So we
may assume that v1 6= z. Note that z /∈ V (P) as otherwise P would not be admissible.
Moreover, k ≥ 3 as otherwise aP + bP = a1 − a1 = 0. By Claim 6.14, P is an alternating
cycle or a blossom in G. If P is an alternating cycle, then it has even length. So the triple
sequence associated with P is either

〈−1,−1,−wv1v2〉 , 〈1, 1, wv2v3〉 , . . . ,
〈
−1,−1,−wvk−1vk

〉
, 〈1, 1, wvkv1〉

or
〈1, 1, wv1v2〉 , 〈−1,−1,−wv2v3〉 , . . . ,

〈
1, 1, wvk−1vk

〉
, 〈−1,−1,−wvkv1〉

depending on whether v1v2 ∈ M . In both cases, aP + bP = 0 so no inequality is added. If
P is a blossom, then v1v2 /∈M and its triple sequence is given by

〈−1,−1,−wv1v2〉 , 〈1, 1, wv2v3〉 , . . . ,
〈
1, 1, wvk−1vk

〉
, 〈−1,−1,−wvkv1〉

The residue of P is
〈−1,−1, w(P ∩M)− w(P \M)〉

46

Since aC + bC = −2, the following inequality would be added to S

−2yv1 ≤ w(P ∩M)− w(P \M)

These are the only inequalities added when constructing S ′. The term in the numerator
can be interpreted as the difference between the total weight of unmatched edges and
matched edges in P . Note that if the total weight of matched edges is higher, then this
inequality is redundant because we already have yv ≥ 0 in S. Lastly, we look at admissible
simple loops in G(S ′). Observe that if an admissible simple loop in G(S ′) does not contain
z, then it is also an admissible simple loop inG(S). By Claim 6.14, it is either an alternating
cycle or a blossom in G. Hence, it suffices to look at admissible simple loops in G(S ′) which
start at z.

Claim 6.16. Let P be a simple loop in G(S ′) with initial vertex z. Then, P is admissible
if and only if P \ z is a valid alternating path in G.

Proof. (⇒) Let P = (v1, v2, . . . , vk, v1) be an admissible simple loop in G(S ′) where v1 = z.
Then, P ′ = P \ z is an admissible path. We claim that P ′ is M -alternating in G. For the
purpose of contradiction, assume ei = vivi+1, ei+1 = vi+1vi+2 /∈ M for some i. Then there
is only one edge connecting vi to vi+1 and vi+1 to vi+2 in G(S ′). Moreover, their labels are
−yvi−yvi+1

≤ −wei and −yvi+1
−yvi+2

≤ −wei+1
respectively. Since the signs of bi and ai+1

are the same, P ′ is not admissible. This is a contradiction.

It is left to prove that P ′ is valid. If P is a loop of length two, then v2 is M -exposed
because the inequality yv2 ≤ 0 is present in G(S ′). So we may assume that k ≥ 3. Without
loss of generality, we will just focus on one end of the path P ′. The same argument holds
for the other end of the path. Let 〈a1, b1, c1〉 be the triple associated with edge v1v2. If
b1 > 0, then the inequality represented by this edge is yv2 ≤ 0. This implies that v2 is
M -exposed. On the other hand, if b1 < 0, then a2 > 0. Hence, the inequality represented
by the edge v2v3 is yv2 + yv3 ≤ wv2v3 , implying that v2v3 ∈M .

(⇐) Let P ′ = (v1, v2, . . . , vk) be a valid M -alternating path in G. For every edge
ei = vivi+1 in P , if it is matched, take the edge in G(S) with label yvi + yvi+1

≤ wei .
Otherwise, take the edge with label −yvi − yvi+1

≤ −wei . Since ai+1 and bi have opposite
signs for 1 ≤ i < k, P ′ is an admissible path in G(S). Now, if v1 is M -exposed, append
the edge with label yv1 ≤ 0 to P . Otherwise, we have v1v2 ∈ M , so append the edge with
label −yv1 ≤ 0 to P . Use a similar strategy for vk. The resulting loop P = (z, v1, . . . , v`, z)
is simple and admissible.

47

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. We start by proving the contrapositive of the first statement. Let
G be a graph and M be a maximum-weight matching in G. Assume G contains an M -
augmenting flower or bi-cycle. We analyze them separately:

Case (i): G contains an augmenting flower. Let C ∪ P ′ be an M -augmenting flower,
where P ′ = (v1, v2, . . . , vk) is the valid alternating path and C is the blossom with base v1.
By Lemma 6.15, the inequality associated with C is added during the construction of S ′.
Define the simple loop P = (z, v1, v2, . . . , vk, z) such that the edge (z, v1) is labelled with
−2yv1 ≤ w(C ∩M) − w(C \M). If vk is M -covered, we take the edge (vk, z) with label
−yk ≤ 0. Otherwise, we take the edge (vk, z) with label yk ≤ 0. Then, P is admissible.
Moreover, it is infeasible because aP + bP = 0 and 2cP = w(C ∩M)−w(C \M) + 2w(P ′ ∩
M)− 2w(P ′ \M) < 0.

Case (ii): G contains an augmenting bi-cycle. Let C ∪ P ′ ∪M be an M -augmenting
bi-cycle, where P ′ = (v1, v2, . . . , vk) is the alternating path and C,D are the blossoms with
bases v1, vk respectively. By Lemma 6.15, the inequalities associated with C and D are
added during the construction of S ′. Define the simple loop P = (z, v1, v2, . . . , vk, z) such
that the edge (z, v1) has label −2yv1 ≤ w(C∩M)−w(C \M) and the edge (vk, z) has label
−2yvk ≤ w(D∩M)−w(D\M). Then, P is admissible. It is also infeasible because aP+bP =
0 and 2cP = w(C∩M)−w(C \M)+2w(P ′∩M)−2w(P ′\M)+w(D∩M)−w(D\M) < 0.

In the two cases above, G(S ′) has an infeasible simple loop. Hence, the linear system S
is infeasible by Theorem 6.13. Thus, G is unstable. Next, we prove the second statement.
Let G be an unstable graph and M be a maximum-weight matching in G. Then, the
linear system S is infeasible. Let S ′ be the Shostak extension of S. By Theorem 6.13,
G(S ′) contains an infeasible simple loop P . We claim that P starts at vertex z. For the
purpose of contradiction, suppose P does not contain z. Then, it has length at least 3
because it is infeasible. Moreover, it has even length because aP + bP = 0. By Claim
6.14, P is an M -alternating cycle in G. Since 0 > cP = w(P ∩M) − w(P \M), it is an
M -augmenting cycle, which is a contradiction. Next, we claim that P contains at least
one inequality from S ′ \ S. For the purpose of contradiction, suppose P only contains
inequalities from S. By Claim 6.16, P ′ = P \ z is a valid M -alternating path in G.
As 0 > cP = cP ′ = w(P ′ ∩ M) − w(P ′ \ M), it is an M -augmenting path, which is a
contradiction. Denote P = (z, v1, v2, . . . , vk, z), and consider the following two cases:

Case (i): P contains one inequality from S ′ \ S. Without loss of generality, we may
assume the edge (z, v1) in P is labelled with −2yv1 ≤ w(C∩M)−w(C\M) for some blossom
C with base v1. If k = 1, then the edge (v1, z) in P is labelled with yv1 ≤ 0, which implies

48

that v1 is M -exposed. Otherwise, the edge (v1, v2) in P is labelled with yv1 + yv2 ≤ wv1v2 ,
which implies that v1v2 ∈ M . From Claim 6.16, we know that P ′ = P \ z is a valid
M -alternating path. Since 0 > 2cP = w(C ∩M)−w(C \M) + 2w(P ′ ∩M)− 2w(P ′ \M),
C ∪ P ′ is an augmenting flower in G.

Case (ii): P contains two inequalities from S ′ \S. Let the edge (z, v1) in P be labelled
with−2yv1 ≤ w(C∩M)−w(C\M) and the edge (vk, z) in P be labelled with−2yvk ≤ w(D∩
M)−w(D \M), where C and D are blossoms with bases v1 and vk respectively. Note that
k is odd because P is admissible. In particular, we have v1v2, vk−1vk ∈M . Let P ′ = P \ z.
Since 0 > 2cP = w(C∩M)−w(C \M)+2w(P ′∩M)−2w(P ′\M)+w(D∩M)−w(D\M),
C ∪ P ′ ∪D is an augmenting bi-cycle in G.

49

References

[1] Sara Ahmadian, Hamideh Hosseinzadeh, and Laura Sanità. Stabilizing network bar-
gaining games by blocking players. In Proceedings of the 18th IPCO, pages 164–177,
2016.

[2] Bengt Aspvall and Yossi Shiloach. A polynomial time algorithm for solving systems of
linear inequalities with two variables per inequality. SIAM J. Comput., 9(4):827–845,
1980.

[3] Egon Balas. Integer and fractional matchings. North-Holland Mathematics Studies,
59:1–13, 1981.

[4] Michel Balinski. On maximum matching, minimum covering and their connections. In
Proceedings of the Princeton Symposium on Mathematical Programming, pages 303–
312, 1970.

[5] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vi-
jayaraghavan. Detecting high log-densities: an O(n1/4) approximation for densest
k -subgraph. In Proceedings of the 42nd STOC, pages 201–210, 2010.

[6] Péter Biró, Matthijs Bomhoff, Petr A. Golovach, Walter Kern, and Daniël Paulusma.
Solutions for the stable roommates problem with payments. Theor. Comput. Sci.,
540:53–61, 2014.

[7] Péter Biró, Walter Kern, and Daniël Paulusma. Computing solutions for matching
games. Int. J. Game Theory, 41(1):75–90, 2012.

[8] Adrian Bock, Karthekeyan Chandrasekaran, Jochen Könemann, Britta Peis, and
Laura Sanità. Finding small stabilizers for unstable graphs. Math. Program., 154(1-
2):173–196, 2015.

50

[9] Karthekeyan Chandrasekaran, Corinna Gottschalk, Jochen Könemann, Britta Peis,
Daniel Schmand, and Andreas Wierz. Additive stabilizers for unstable graphs. ArXiv
e-prints, Aug 2016.

[10] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander
Schrijver. Combinatorial Optimization. John Wiley & Sons, Inc., New York, NY,
USA, 1998.

[11] Xiaotie Deng, Toshihide Ibaraki, and Hiroshi Nagamochi. Algorithmic aspects of the
core of combinatorial optimization games. Math. Oper. Res., 24(3):751–766, 1999.

[12] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex-
cover. Ann. Math., 162:439–485, 2005.

[13] Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio
Okamoto. Efficient stabilization of cooperative matching games. Theor. Comput. Sci.,
677:69–82, 2017.

[14] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
34th STOC, pages 767–775, 2002.

[15] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within
2− ε. J. Comput. Syst. Sci., 74(3):335–349, 2008.

[16] Jon M. Kleinberg and Éva Tardos. Balanced outcomes in social exchange networks.
In Proceedings of the 40th STOC, pages 295–304, 2008.

[17] Jochen Könemann, Kate Larson, and David Steiner. Network bargaining: Using
approximate blocking sets to stabilize unstable instances. Theory Comput. Syst.,
57(3):655–672, 2015.

[18] Sounaka Mishra, Venkatesh Raman, Saket Saurabh, Somnath Sikdar, and C. R. Sub-
ramanian. The complexity of könig subgraph problems and above-guarantee vertex
cover. Algorithmica, 61(4):857–881, 2011.

[19] George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties
and algorithms. Math. Program., 8(1):232–248, 1975.

[20] Oystein Ore. Note on hamilton circuits. Amer. Math. Monthly, 67:55, 1960.

[21] Lloyd S. Shapley and Martin Shubik. The assignment game I: The core”. International
Journal of Game Theory, 1(1):111–130, 1971.

51

[22] Robert E. Shostak. Deciding linear inequalities by computing loop residues. J. ACM,
28(4):769–779, 1981.

52

	List of Figures
	Introduction
	Our results and techniques
	Related work

	Preliminaries and notation
	Minimum stabilizers do not preserve (G)

	Maximum fractional matching with minimum support
	Computing vertex-stabilizers
	Computing edge-stabilizers
	Forcing an outcome
	Finding augmenting walks
	The algorithm
	Proof of Theorem 2.4

	References

