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Abstract

This thesis is about techniques for the analysis of concurrent and real-time systems.

As the first contribution, we describe a technique that incorporates automatic symmetry
detection and symmetry reduction in the analysis of systems modeled by timed automata.
First, our approach detects structural symmetries arising from process templates of real-
time systems, requiring no additional input from the user. Then, the technique involves
finding all variables of type process identifier and computing a set of generators that forms
a group of automorphisms. Our technique is fully automatic, and not restricted to fully
symmetric systems.

The second contribution of this thesis is that we combine elements of compositional proof,
abstraction and local symmetry to decide whether a safety property holds for every process
instance in a parameterized family of real-time process networks. Analysis is performed on
a small cut-o↵ network; that is, a small instance whose compositional proof generalizes to
the entire parametric family. Our results show that verification is decidable in time poly-
nomial in the state space of the “cut-o↵” instance. Then we apply these ideas to analyze
Fischer’s protocol, CSMA/CD protocol and Train-Bridge protocol.
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Chapter 1

Introduction

1.1 Background and Motivation

Today’s world runs on computers and in fact every aspect of our life involves computers in
some form or fashion. Actually computers a↵ect how we live, work and entertain ourselves.
However, there are many reasons why computers fail to work as expected, which may lead
to catastrophic consequences. If one server is suddenly down, it may cause an economical
damage. But what happens if an aircraft computer system does not function properly? It
even leads to loss of human lives. Thus, it is very important to verify such systems whether
they have fulfilled specified requirements. This is so-called System Verification.

System Verification is a set of actions used to check the correctness of any element, such
as a system, a system component, a service, a task, etc. Traditionally, System Verification
has been accomplished by methods like reviewing of design documents, source code or em-
pirical testing. However, those methods have two drawbacks: 1) it is time-consuming and
2) it only provides statistical measures of correctness. Many novel approaches have been
proposed in the literature. They are mostly common in the sense that the verification is
done by providing a formal proof on a mathematical rigorous model of a complex system.
They are so-called formal methods.

Note that in formal methods, there is a tradeo↵ between the need for rigor and the ability
to model all behaviors. Therefore, applying formal methods on real-life systems is consid-
ered too di�cult. In contrast to formal methods, model checking is fully automatic. Given
a model of a system, model checking checks whether this model meets a given specification

1



without manual interaction.

Although model checking has an obvious advantage over formal methods, it must cope
with the state space explosion - the state space can grow exponentially since the number of
components in a system increases. For example, the number of valid solutions for the 9x9
Sudoku grid is roughly 6,670,903,752,021,072,936,960. It means that a model checker must
visit at most all possible valid solutions to check for a certain property �. Many concurrent
systems, however, consist of many replicated processes and they clearly exhibit symmetry
of the underlying state space. For those cases, the exploitation of structural symmetries
can gain a considerable reduction in processing time and memory consumption, by a fac-
torial magnitude. These techniques are so-called Symmetry Reduction.

Symmetry Reduction detects structural symmetries statically and then use these knowledge
to construct a smaller quotient structure. Since a given property � is invariant under the
symmetry, checking over the quotient structure is su�cient for verifying an input system.
Therefore, the use of quotient graph can speed up the model-checking process.

However, statically extracting symmetry information from a model is challenging. In fact,
existing solutions require the user to manually specify symmetry to be exploited, either
directly or by using additional keywords. This approach has two clear drawbacks: 1) It
is error-prone and 2) a modeler must have in-depth background knowledge of symmetry
reduction. Moreover, they are also limited to fully-symmetric systems whose components
are identical up to permutation of identifiers. This situation, however, only arises in prac-
tice for very simple systems.

For systems that clearly exhibit symmetry, we can obtain significant savings in process-
ing time and memory consumption. However, verification is still non-scalable for systems
with an unbound number of processes. It also becomes important, therefore, to consider
the question of determining “once and for all” if the entire unbounded family of instances
satisfies a specification. This problem is, however, generally undecidable.

Since time plays a crucial role in the operation of nowadays computer systems, in this
thesis, first we study and develop techniques for real-time model-checking tools to cope
with the state space explosion and automatic symmetry detection. Then, we explore a new
and di↵erent form of parameterized verification. Specifically, we ask whether a parameter-
ized family has a compositional proof that the specification is met for all instances.
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1.2 Summary of Contributions

The main results of this thesis are summarized as follows:

• We propose to extend the real-time model checker PAT [50] with symmetry reduction.
Our work is based on the state swap technique [26]. We provide a method to de-
tect structural symmetries arising from parameterized process templates of real-time
systems that requires no additional input from a modeler. The method results in a
set of generators that forms a group of automorphisms. We even support detecting
partial symmetry and rotational symmetry. We have run experiments on Fischer’s
protocol [1], CSMA/CD protocol [55] and Train-Bridge protocol [54]. As a result, we
gain a considerable reduction in the cost of analysis, by a factor exponential in the
number of processes.

• State space explosion limits model checking to small protocol instances, however, it
becomes important to know whether the entire unbounded family of instances satisfies
a specification. Thus, we propose a technique to determine whether a property holds
for every instance of a parameterized family of real-time process networks. Our
technique incorporates elements of symmetry reduction, compositional reasoning and
abstraction. While symmetry reduction partitions network nodes into equivalence
classes, compositional reasoning analyzes each representative node of an equivalence
class separately, along with an abstraction of its neighboring processes. In certain
families of process networks that satisfy the conditions of local symmetry, verification
is decidable and relatively e↵ective. We show that verification is decidable in time
polynomial in the state space of the smallest verified, “cut-o↵”, instance for networks
of Fischer’s protocol, CSMA/CD protocol and Train-Bridge protocol.

1.3 Thesis Outline and Overview

In this section, we briefly present the outline of the thesis and overview of each chapter:

• Chapter 2 contains the preliminary knowledge for this thesis.

• Chapter 3 presents the theory of symmetry reduction in Timed Automata.

• Chapter 4 discusses the symmetry reduction package in PAT.
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• Chapter 5 applies the parameterized compositional model checking to Timed Au-
tomata.

• Chapter 6, 7 and 8 illustrate the method through 3 examples: Fischer’s protocol,
CSMA/CD protocol and Train-Bridge protocol.

• Chapter 9 gives conclusions and future works.

1.4 Related Work

Many model-checkers have been developed in the last few years for di↵erent application
areas, such as SPIN [32] for communication protocols, Mur [18] for concurrent and reactive
systems, HYTECH [28] for hybrid systems, and especially UPPAAL [35] for real-time
systems. These tools have been successfully applied to real cases in practice e.g. [2], [25],
[39], [49], [42]. In this section we briefly summarize the well-known techniques in these
tools to speed up the verification process.

1.4.1 Partial-order Reduction

In many systems, the ordering of events does not a↵ect the verification process. Based on
this observation, all equivalent orderings can be represented by only one single ordering.
This technique is so-called partial-order reduction [24][51][46]. Pagani first introduces an
approach to apply partial-order reduction on timed automata, which is based on global-
timed semantics [45]. However, it only limits to transitions that occur at exactly the same
time. There is another approach basing on local-time semantics [8]. In [41], Minea extends
results given in [8] for reachability analysis to LTL model-checking.

1.4.2 Symmetry Reduction

Symmetry reduction [33] is a method for exploiting structural symmetries in a model of a
system with many replicated processes. Symmetry reduction statically detects structural
symmetries and then use these knowledge to construct a smaller quotient structure. Since a
property � to be checked is invariant under the symmetry, the model-checking algorithm is
then applied to the quotient structure rather than the entire Kripke structure. Symmetry
reduction has been implemented in the real-time model checker UPPAAL [27].
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1.4.3 Symbolic Model-checking

Symbolic model-checking is based on the idea that sets of states can be represented and
manipulated in terms of logical formulae. Specifically for timed automata, sets of clock-
values are represented and manipulated in term of zones [30][3] - the solution set of clock
constraints. Symbolic model-checking will be covered later in this thesis.

1.4.4 Approximation Methods

Approximation methods are aimed at systems whose sizes are too large. In timed automata,
we are interested in over-approximations - one type of approximation methods where non-
reachable states may be considered reachable. over-approximation is applied to verification
of timed automata in [6] and in [53]. While in [6], the authors focus on the approximate
union of two time-zones, Wong-Toi presents techniques for refining the combined results
obtained from forwards and backwards analysis [53].

1.4.5 E�cient Representation of Clock Constraints

To cope with state space explosion, it is necessary to not only reduce the number of states
to visit but also minimize memory spent on storing clock constraints. There are a number
of novel techniques addressing this problem. In [16] live-range analysis is used to reduce
the number of clocks in a model. In [36], the author presents an algorithm to compute
the minimal set of constraints for a given DBM since DBM often contains redundant
information.

1.4.6 Symmetry Detection

In order to make model checking feasible for verification of real-life systems, model checkers
should be able to statically extract symmetry information from any system (fully symmet-
ric or not). UPPAAL requires a user to manually specify symmetry via scalarset [27]. This
method not only is error-prone but also requires a modeler to have in-depth background
knowledge. Moreover, it is only applicable to fully-symmetric systems.

In [19], the authors introduce a new specification language, Promela-Lite, to the model
checker SPIN [32]. Then they show how they can detect symmetry from specifications
defined in Promela-Lite. However, they still need to explicitly define a special datatype

5



named process identifier (pid) in a language to facilitate the process. Moreover, their
technique is not applicable to real-time systems.

1.5 Publication from The Thesis

The work presented in this thesis incorporates the work in University of Waterloo technical
report [CS-04-2017].
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Chapter 2

Background

In this chapter, we cover background material of timed automata, model checking and
concepts related to this thesis.

2.1 Timed Automata

Timed automata is a well-known formalism for describing the timing behavior of concurrent
systems. Through this section, we provide background on timed automata [9] with a focus
on the semantics and algorithms based on which PAT is developed.

2.1.1 A Brief Introduction to Timed Automata

A timed automaton is a finite automaton extended by a set of real valued clocks [9]. All
clocks start with the value of 0 and time progresses with the same rate. Clock constraints
(guards) labeled on the transitions (edges) restrict the behavior of the automaton in the
sense that a transition is only enabled when the clocks values satisfy the guard.

A clock constraint is a formula in the form of x ⇠ n or x�y ⇠ n where ⇠ 2 {=,, <,>,�},
n 2 R+ and x, y 2 C – a set of clocks. The automaton can reset a subset of the clocks to
0 when a transition is taken.

Figure 2.1 shows one example of a timed automaton, where x and y are two real-valued
clocks. At first, the automaton is at the start location. It leaves start when the value of
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Figure 2.1: A Timed Automaton.

y is between 10 and 20, making a transition from start to loop and reseting both clocks
to 0. At the loop location, the automaton makes the self-loop until the value of y is be-
tween 40 and 50, the automaton may go from loop to end. Staying at the end location
from 10 to 20 time units, the automaton may return back to start and restart the process.

In this example, the automaton may get stuck forever in any location since the guards
are only enabling conditions, they cannot force a transition to be taken. Alur and Dill [3]
solves this problem by introducing Timed Buchi Automata. In Timed Buchi Automata,
some of the locations are marked as accept and valid executions must pass through accept
locations infinitely often.

Back to the example above, assume that the end location is marked as accept. This implies
that all executions of the system enter end infinitely often. Consequently, the automaton
must leave start when the value of y is at most 20. Similarly, it can only stay at the
loop location at most 50 time units. However, Timed Buchi Automata is inconvenient for
system modeling and analysis [29].

In [29], the authors introduce Timed Safety Automata, which replaces accepted locations
by location invariants - clock constraints in each location. More clearly, the automaton
must leave a current location after the invariant condition is violated. Figure 2.2 shows a
timed safety automaton that corresponds to the one given in Figure 2.1.

8



Figure 2.2: A Timed Safety Automaton.

A time automaton A is a tuple of hL, l0, E, Ii where:

• L is a finite set of locations.

• l0 2 L is the initial location.

• E ✓ L x B(C) x ⌃ x 2C x L is the set of edges.

• I : L ! B(C) is the set of location invariants.

Where we use B(C) to denote a set of clock constraints.

To model concurrent systems, PAT extends the concept of timed automata with parallel
composition [40] as well as pair-wise synchronization between processes. Figure 2.3 models
a light-switch (left) and its user (right). Two processes synchronize their actions via the
press label. Figure 2.4 shows the state-space of the combined automaton.

2.1.2 Semantics of Timed Automata

Let v denote the clock assignment that maps all clocks 2 C to their values, v 2 g denote
that the clock values satisfy the guard g. The semantics of a timed automaton is defined

9



Figure 2.3: Network of Timed Automata. [7]

Figure 2.4: Combined Automaton for The Network in Figure 2.3. [7]
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Figure 2.5: Regions for a System with Two Clocks. [7]

as a transition system. A state is a pair hl, vi where l is a location and v is a vector of
clock values. A transition is either a delay transition or an action transition, which are
defined by the following rules:

Delay Transition : hl, vi d�! hl, v+di if v 2 I(l), v+d 2 I(l) and d 2 R+ is the elapsed time.

Action Transition : hl, vi a�! hl0, v0i if l g,a,r��! l0 when hl, g, a, r, l0i 2 E, v 2 g and v0 2 I(l0).

Because clocks are real-valued, the semantics has the infinite state-space and is inappro-
priate for automated verification. Many techniques have been developed by attempts to
finitely partition the state-space into symbolic states. One technique is to construct a
region graph [4]. Consider Figure 2.5, where each line segment, each intersection and each
area defines one region. The number of possible regions is 60, assuming that x  k = 3
and y  g = 2. It means that the region graph, however, may grow exponentially when
we increase either the number of clocks or upper bounds (k, g).

Another approach is based on the notion of zone and zone-graph [17]. By definition, a zone
is the solution set of clock constraints. Figure 2.6 (a) shows a timed automaton and Figure
2.6(b) shows its corresponding zone-graph, which has only eight states. The region-graph
for that example has over fifty states.

The symbolic semantics of a timed automaton is defined as a symbolic transition sys-
tem. A symbolic state is a pair hl, Di where l is a location and D is a zone. Therefore, a
symbolic state represents a set of states. Symbolic transition relations over symbolic states
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Figure 2.6: A Timed Automaton and The Corresponding Zone Graph. [9]

are defined by the following rules:

Delay Transition : hl, Di d�! hl, D" ^ I(l)i where D" = {v + d | v 2 D, d 2 R+}.

Action Transition : hl, Di a�! hl0, D0 ^ I(l0)i where D0 = reset(D).

where reset(D) is one operation on zones that resets selected clock values to zero.

However, the zone-graph may be also infinite. Consider the model in Figure 2.7, where the
values of clocks drift away unboundedly, giving an infinite graph. The solution is to trans-
form zones into their normalized representatives to guarantee termination. In the original
theory of timed automata, di↵erence constraints x � y ⇠ n are not allowed to appear in
the guards g. Such automata whose guards contains only atomic constraints in the form
of x ⇠ n are known as diagonal-free automata. For diagonal-free automata, one popular
zone-normalization procedure is so-called k-normalization [47]. Once the value of a clock
x is larger than the maximum constant k, it is no longer significant for the automaton to
know its precise value, only that x � k. Figure 2.8 depicts the k-normalized zone-graph of
the automaton given in Figure 2.7.
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Figure 2.7: A Timed Automaton with an Infinite Zone Graph. [9]

Figure 2.8: Normalized Zone Graph for The Automaton in Figure 2.7. [9]
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2.2 Zone and Di↵erence Bound Matrices

A zone is the solution set of clock constraints. Since a zone is a part of a symbolic state,
how to represent a zone e↵ectively is a major issue. In many verification tools including
PAT, such sets are represented as Di↵erence Bound Matrices (DBMs).

Recall that a clock constraint is a formula in the form of x ⇠ n or x � y ⇠ n where
⇠ 2 (=,, <,>,�), n 2 N and x, y 2 C – a set of clocks. To have a unified form for
clock constraints, we introduce a reference clock 0 with the constant value 0 such that
C0 = C[0. Therefore, any clock constraint can be written in the form of x� y ⇠ n where
⇠ 2 (=,, <,>,�), n 2 N and x, y 2 C0.

DBM representation for a zone D is the matrix, which each row stores lower bounds
on the di↵erence between one clock and all other clocks. We denote all clocks in C0 as
x0, x1, ..., xN

. We use D
i,j

to denote element (i, j) in the DBM. The matrix elements are
then computed as follows:

• D
ij

= (k,) presents the constraint x
i

� x
j

 k.

• D
ij

= 1 if x
i

� x
j

is unbounded.

• D
ij

= 0 if i = j.

• D
ij

= 0 for the di↵erence between clock 0 and other clocks.

Consider the zone D = x� 0 < 20 ^ y � 0  20 ^ y � x  10 ^ x� y  �10 ^ 0� z < 5,
where 0, x, y, z are clocks and we denote as x0, x1, x2, x3. DBM representation for D should
be:

D =

2

6664

0 0 0 5
20 0 �10 1
20 10 0 1
1 1 1 0

3

7775

2.2.1 Canonical DBMs

Although an infinite number of zones share the same solution set, among them there is a
unique zone where no atomic constraint can be strengthened without losing solutions [36].
We call it as the canonical representation of an entire family of zones, denoted as Rep(D).
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Figure 2.9: Graph Interpretation of The Zone and Its Closed Form. [7]

Rep(D) is derived from a zone D by computing the tightest constraint on each clock
di↵erence in D. We can imagine that zone is a weighted graph where clocks are nodes and
clock constraints are edges.

As an example, consider the zone D = x� 0 < 20^ y� 0  20^ y�x  10^x� y  �10.
By combining the atomic constraints y � 0  20 ^ y � x  10, we derive x � 0  10,
i.e. the bound x� 0 on can be strengthened. Figure 2.9(a) presents the graph interpreta-
tion ofD while Figure 2.9(b) presents the representative Rep(D) after x�0 is strengthened.

The problem of computing the canonical representation of a given zone is equivalent to
finding the shortest path between every pair of nodes in the graph interpretation of the
zone [9].

2.2.2 Operations on DBMs

We briefly list out all operations on DBMs, which are divided into three di↵erent classes:

• Property-Checking Operations in this class include checking if a DBM is consistent
(consistent(D), checking inclusion between zones (relation(D, D’)), and checking
whether a zone satisfies a given atomic constraint (satisfied(D, x

i

� x
i

 m)).

• Transformation Operations in this class include computing the strongest post con-
dition of a zone D with respect to delay (up(D)), computes the weakest precondi-
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Figure 2.10: All DBM operations applied to the same zone. [9]

tion of D with respect to delay (down(D)), adding a constraint to a zone (and(D,
x
i

� x
j

 b)), removes all constraints on a given clock (free(D, x)), setting a clock
to specific values (reset(D, x := m)), copying the value of one clock to another
(copy(D, x := y)), adding or subtracting a clock with an integer value (shift(D,
x := x+m)).

• Normalization Operations in this class include k-normalization.
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2.3 Basics of Model Checking in Timed Automata

Model Checking [13][11] is one of the most successful approaches for verifying specifications
of hardware and software systems. Model-checking uses reachability analysis to verify ef-
fectively systems on safety properties.

In timed automata, reachability analysis consists of two steps: 1) compute the normal-
ized zone-graph on-the-fly and 2) check if a current state contradicts or satisfies given
properties. In comparison to pre-computing, computing the zone-graph on-the-fly has an
obvious advantage. Specifically, only the part of the state-space needed to prove the prop-
erty is generated [9]. In most cases, the generated state-space is smaller than the entire
state-space. Note that, the method, however, still generates the entire state-space to prove
invariant properties.

Algorithm 1 describes the forward reachability analysis algorithm in PAT. Let hl0, D0i be

Algorithm 1 Forward Reachability Analysis Algorithm
1: Visited = ;
2: hl

f

, D
f

i = Violated States
3: Next = hl0, D0i
4: while Next 6= ; do
5: remove hl, Di from Next
6: if l = l

f

and D \D
f

6= ; then return YES

7: if D * D0 for all hl, D0i 2 Visited then
8: add hl, Di to Visited
9: for hl0, D0i such that hl, Di ! hl0, D0i do
10: add hl0, D0i to Next

11: return NO

a set of initial states and a set of bad states is given as hl
f

, D
f

i respectively. Algorithm 1
computes the normalized zone-graph of the automaton on-the-fly and checks if hl0, D0i may
evolve to any state whose location is l

f

and whose clock assignment satisfies D
f

. At each
step, the algorithm stores next symbolic states in Next and checks if the reached zones
intersect with D

f

. Normalized zone-graph is finite [47] and the algorithm is guaranteed to
terminate.

Despite model checkers have an obvious advantage over theorem proving, their applica-
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tions are limited since there are some main reasons as follows:

• Scalability. Model checkers must cope with the state space explosion. The state space
can grow exponentially when the number of components in a system increases.

• Accessibility. In fact, model checkers are mostly academic tools whose interfaces are
not user-friendly, and they also lack of detailed documentation. Moreover, a modeler
is required to have background in formal method to build models.

2.4 System Modeling

The section focuses on the modeling language used in PAT. PAT uses CSP# as its primary
modeling language to define processes and computational logic in a process. CSP# is a
timed extension of Communication Sequence Process (CSP) [31]. Its grammar is given in
Figure 2.11, where P and Q are processes, e 2 ⌃ is an observable event, b is a boolean
expression, X is a set of event names and d is an integer constant.

To be more detailed:

• Stop denotes deadlock, where the process does nothing but idling.

• Skip states termination.

• e ! P performs event e first and then behaves as P . Notice that e is either an
abstract event or a data operation, e.g.

• [b]P denotes a guard process. If b is true, then it behaves as P . Otherwise, it does
nothing but waits until b becomes true.

• if b then P else Q performs a conditional choice. Specifically, if b is true, then it
behaves as P , otherwise it behaves as Q.

• P ⇤ Q denotes an unconditional choice. Which process it should behave as depends
on upcoming events.

• P k Q denotes parallel composition. Two processes communicate via global variables
or passing messages on channels.
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Figure 2.11: CSP# Modeling Language.

• P ; Q denotes a sequential execution. The process behaves as P until P terminates
and then immediately behaves as Q.

• P \ X makes all occurrences of events in X not to be observed or controlled by the
process environment.

• P ⌘ Q defines P to be exactly the same as Q.

• Wait[d] delays the system execution d time units and then it terminates.

• P timeout[d] Q behaves as Q after d time units have elapsed unless the first observable
event of P occurs before that.

• P interrupt[d] Q only behaves as P within d time units and then behaves as Q.

• P waituntil[d] denotes that P executes for at least d time units.

• P deadline[d] states that P must terminate within d time units.
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Although Timed Automata proves its popularity for modeling real-time systems with ex-
plicit clock variables, it has certain drawbacks. Specifically, Timed Automata is not suit-
able for designing compositional models. However, in industry, high-level requirements for
real-time systems are often stated in terms of deadline, time out, and timed interrupt [34].
As a result, if users define their models in Timed Automata, they need to manually cast
those terms into a set of clock variables with carefully calculated clock constraints, which
is tedious and error-prone [48].

2.5 CSMA / CD Protocol

The Carrier Sense, Multiple Access with Collision Detection (CSMA/CD) protocol de-
scribes one solution to the problem in Ethernet network, when several agents compete for
a single bus. The research group in PAT has successfully done modeling and verification
on CSMA/CD protocol [48]. In this section, we show how CSMA/CD protocol is modeled
using the CSP# modeling language in PAT.

CSMA/CD protocol consists of two components, namely Sender and Bus. Two com-
ponents communicate by pair-wise synchronization channels. Roughly speaking, a Sender
must first listen to the Bus. If the Bus is idle, the Sender begins to transmit. Otherwise,
it must wait and retry later. However, collision may occur when more than one Sender
are sending message via the Bus. Then the Bus informs all Senders of this collision, and
abort their transmission immediately. Therefore, all transmitting messages are discarded.

Modeling Sender Behavior

The behavior of component Sender is defined in Figure 2.12. Initially, the Sender is in
WaitFor location. When there is a message to send, if the Bus is idle, the Sender goes to
Trans location. Otherwise, if the Bus is busy or a collision is detected, it moves to Retry.
If a collision occurs while no message is arrived, the Sender remains in WaitFor location.

In Trans location, the Sender has two transitions. If a collision is detected within 52
time units, the Sender goes to Retry. Otherwise, it terminates sending the message after
exactly 808 time units, then it goes to WaitFor.

In Retry location, if the Bus is idle, the Sender moves back to Trans within 52 time
units. Otherwise, it remains in Retry location.
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Figure 2.12: Model for a Sender i [48]

Modeling Bus Behavior

The behavior of component Bus is showed in Figure 2.13. Initially, the Bus is in Idle lo-
cation. The transition from Idle to Active is enabled when one Sender begins to transmit.

In Active location, there are three possible transitions. If the Sender completes sending,
the Bus goes back to the initial location. If another Sender starts sending messages within
26 time units, the Bus moves to Collision. Otherwise, after at least 26 time units have
elapsed, the Bus replies busy signal to any new attempt, then it moves to Active1 location.

In Active1 location, the Bus takes at most 26 time units to inform all Senders of this
collision, using BroadcastCD [48]. After that, the Bus moves to Idle.

In Collision location, the Bus replies busy signal to any Sender that attempts to send
message until the active Sender completes transmitting, then the Bus moves to Idle.

Modeling CSMA/CD Protocol

The whole protocol consists of one Bus and N Senders interleaving with each other. In
PAT, we model this as follows:

CSMA = (||| i : {0, ..., N � 1} @ Sender(i)) ||| Bus
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Figure 2.13: Model for the Bus [48].
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Chapter 3

Symmetry Reduction in Timed
Automata

State-space explosion is the main obstacle to the scalability of model checking. Indeed,
it is known that symmetry reduction techniques can be used to combat this problem for
networks of replicated components. In this chapter, first we will summarize a theory
of symmetry and then explain how to apply symmetry reduction into real-time systems
modeled by timed automata.

3.1 A Theory of Symmetry

Consider state graphs, which are tuples containing a set of states S, a set S0 ✓ S of initial
states and a transition relation � ✓ S x S.

A state s 2 S is reachable if a sequence s0, s1, ..., sn�1 exists, such that:

• s0 2 S0.

• s = s
n�1.

• s
i

2 S for all 0  i < n.

• (s
i

, s
i+1) 2 � for all 0  i < n� 1.
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Let s be a reachable state and � be a safety property to verify. We denote s |= � if
the property � is true in state s. Algorithm 2 depicts a standard forward exploration
algorithm to check if a given system satisfies �.

Algorithm 2 Standard Forward Reachability Analysis Algorithm
1: passed = ;
2: waiting = S0

3: while waiting 6= ; do
4: remove s from waiting
5: if s |= � then return YES
6: else if s 62 passed then
7: add s to passed
8: waiting = waiting [ succ(s)

9: return NO

Initially, the set waiting only contains the initial states S0. In each while-loop, the algo-
rithm pops out a state s from waiting and processes in the following way:

• The algorithm returns YES if state s satisfies the property �.

• If property � is false in state s and if state s has been visited before, then the
algorithm discards s and repeats the loop.

• Otherwise, s is added to the set passed and all of its successors are added to waiting.

If the state space is finite, this algorithm halts. Otherwise, it may not halt. In fact, verifi-
cation with this algorithm is either undecidable for infinite-state systems or expensive for
finite-state systems with a large number of components.

Symmetry reduction exploits structural properties of transition systems to speed up Al-
gorithm 2. Authors in [3][21] define symmetry within a state graph as a graph automor-
phism.

Definition 3.1 (Automorphism) An automorphism [33], which is used to character-
ize symmetry in a state graph, is a bijection h : S ! S such that:

• s 2 S0 if and only if h(s) 2 S0.

• If (s, s0) 2 � if and only if (h(s), h(s0)) 2 � for all s, s0 2 S.
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Let M be a state graph, Aut(M) be a group of graph automorphisms, and H be a set of
graph automorphisms that forms a sub-group under composition of mappings. Then any
subgroup G of Aut(M) induces an equivalence relation ⌘

G

on the states of M such that:

s ⌘
G

t i↵ s = ↵(t)

for some ↵ 2 G. We say that s and t are equivalent and they belong to the same equiva-
lence class. The equivalence class under ⌘

G

of a state s 2 S, denoted [s], can be used to
construct a quotient Kripke structure Quot(M) = (S 0, S 0

0,�
0).

Definition 3.2 (Quotient Graph) Let M = (S, S0,�) be a state graph and let Aut(M)
be a group of automorphisms. The quotient graph of M , denoted as Quot(M) and induced
by Aut(M), is the graph (S 0, S 0

0,�
0), where:

• S 0 = {[s] | s 2 S}.

• S 0
0 = {[s] | s 2 S0}.

• �0 = {([s], [k]) | (s, k) 2 �}.

Theorem 1. Let M be a state graph, G be a subgroup of Aut(M) and � be a safety
property. If � is invariant under the group G then:

M, s |= � , Quot(M), [s] |= �

Therefore, in most cases, Quot(M) is a smaller structure than M and hence, the use of the
quotient graph can speed up the verification process. If we can statically detect structural
symmetries from the system description and compute a group of automorphisms Aut(M)
in advance, then a quotient structure can be constructed. Finally, the model checking tool
checks a property � over the quotient graph. We call this process as Symmetry Reduction.

3.2 Symmetry Reduction

Symmetry reduction is a technique to tackling state space explosion. For concurrent sys-
tems with many replicated processes such as Fischer’s protocol or CSMA/CD protocol,
the exploitation of structural symmetries in a model can gain a considerable reduction in
processing time and memory usage, by a factorial magnitude.
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Symmetry reduction in model checking involves replacing a set of equivalent states in
a state graph M by a single representative, rep(s), from each equivalence class. It results
in a quotient graph Quot(M). Providing a property � is invariant under the symmetry
used:

M |= � if and only if Quot(M) |= �

The idea is to build the quotient structure on-the-fly using knowledge of a group of auto-
morphisms Aut(M). Instead of backtracking only when a current state s has been reached
previously, we now backtrack if rep(s) has been reached previously.

Consequently, we may improve Algorithm 2 to store and explore only a single represen-
tative rep(s) of each equivalence class. Algorithm 3 presents the modified reachability
analysis algorithm. Initially, the set waiting still contains the initial states S0. However,
in each while-loop, now the modified algorithm processes in the following way:

• The algorithm returns YES if state s satisfies state property �.

• If property � is false in state s and if state s has been visited before, then the
algorithm discards s and repeats the loop.

• Otherwise, s is added to the set passed and only representative states of its successors
are added to waiting.

Since many equivalent states are projected onto the same representative rep(s), the num-
ber of visited states may decrease dramatically.

Algorithm 3 Adding Symmetry To The Forward Reachability Analysis.
1: passed = ;
2: waiting = rep(S0)
3: while waiting 6= ; do
4: remove s from waiting
5: if s |= � then return YES
6: else if s 62 passed then
7: add s to passed
8: waiting = waiting [ rep(succ(s))

9: return NO
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Similarly, we extend the concept of Algorithm 3 to timed automata. Algorithm 4
below describes the modified reachability analysis algorithm for timed automata, which
improves Algorithm 1 to store and explore only a single representative rep(s) of each
equivalence class.

Algorithm 4 Modified Forward Reachability Analysis Algorithm
1: Visited = ;
2: hl

f

, D
f

i = Violated States
3: Next = rep(hl0, D0i)
4: while Next 6= ; do
5: remove hl, Di from Next
6: if l = l

f

and D \D
f

6= ; then return YES

7: if D * D0 for all hl, D0i 2 Visited then
8: add hl, Di to Visited
9: for hl0, D0i such that hl, Di ! hl0, D0i do
10: add rep(hl0, D0i) to Next

11: return NO

However, there are two challenging problems in the actual implementation of symmetry
reduction:

• How to statically detect symmetries from the system description. Then the corre-
sponding symmetry group induces the quotient graph as discussed above.

• Find out optimal solutions to compute rep(s) for any state s.

Moreover, proposed solutions should be computationally inexpensive to protect the gain of
using the quotient graph. To cope with the first problem, we propose a technique to detect
symmetries automatically from the system description in the next chapter. The second
problem is called orbit problem. Generally, it is as di�cult as testing for graph-isomorphism
[10]. Since there is no polynomial algorithms for this problem, in the section we discuss
one sub-optimal solution to the orbit-problem in timed automata.

3.3 Representative Function

Given a group of automorphisms, the solution is to convert all explored states to a so-called
normal form, which represents the equivalence class of the state. The idea is that if two
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states have the same normal form, then they belong to the same equivalence class.

Let ✓ be a proposed representative function, then:

✓(s) = ✓(s0) ! [s] = [s0] for 8s, s0 2 S.

In [26], the authors prove that the orbit problem is even more di�cult when the state
involves timing. To protect the gain with respect to both time and memory consumption,
they revert to the sub-optimal solution, which is adopted in our work.

The idea is to sort states lexicographically within an equivalence class and the repre-
sentative rep(s) of a state s is defined as the minimal element. Since a symbolic state is a
tuple of (L, V,D) - where L and V are sequences of numbers, the problem left is how we
sort lexicographically the zone attribute.

Let A be a timed automaton whose local clocks are x and y. A only performs the operation
reset on zones. Under these assumptions, there are three possible relations between x and
y as follows:

x 
D

y () v(x)  v(y)

x ⇡
D

y () v(x) = v(y)

x <
D

y () x 
D

y ^ ¬(x ⇡
D

y)

where v(x) returns a value of clock x. This is called diagonal property.

Lemma 1 (Diagonal Property). [26] Assume that a timed automaton only performs
reset on zones. For all states and for all clocks x and y, it holds that either x <

D

y, or
x ⇡

D

y or y <
D

x.

Let X be a set of clocks. Assume that the equivalence relation ⇡
D

partitions X into
N finite sets = {X1, X2, ..., Xn

}, such that:

X
i

 X
j

() x 
D

y 8x 2 X
i

, y 2 X
j

Clearly the code of X
i

, denoted by C⇤(X
i

), is the lexicographically sorted sequence of
the indices of the clocks in X

i

. The zone code of D, denoted by C(D), is the sequence
(C⇤(X1), C⇤(X2), ...., C⇤(X

n

)).

Note that, every zone has exactly one zone code. Instead of sorting zones, we can rather
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lexicographically sort zone codes since zone codes are sequences of numbers.

We define (L, V,D) and (L0, V 0, D0) as two symbolic states, we say that (L, V,D) is “smaller”
than (L0, V 0, D0) if and only if:

(L, V,D) < (L0, V 0, D0)

()
(L < L0) _ (L = L0 ^ V < V 0) _ (L = L0 ^ V = V 0 ^ C(D) < C(D0))

This principle is used to sort states lexicographically within an equivalence class e↵ectively.
The lexicographically minimum element is selected as the representative.

In the next chapter, we will discuss in detail how to actually “minimize” the state us-
ing a group of detected automorphisms.

3.4 Fischer’s Protocol

Fischer’s protocol ensures mutual exclusion of access to commonly used resources via a
shared variable id. The protocol relies on location invariants and suitable updates of the
variable id. We model Fischer’s protocol by the real-time system module in PAT. Many
examples below in this chapter refer to Fischer’s protocol.

Processes of the protocol are instances of a template depicted in Figure 3.1. The tem-
plate has one local clock c and no local variables.

Initially, a process is in location Start. The default value of id is Idle and clock c is
set to 0. The transition from Start to Req is always enabled.

In location Req, the process sets id to its process identifier and then goes to Wait be-
fore 2 time units have elapsed.

In location Wait, the process waits for at least 2 time units and then reads id again.
If id has kept the old value, the process may enter its critical section CS. Otherwise, the
attempt has failed and the process must go back to Req.

In CS location, the process is in its critical section. The transition from CS to Start
is always enabled.
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Figure 3.1: The process template for Fischer’s protocol

3.5 Extraction of Automorphisms

In this section, first we define the so-called state-swap functions, and second, we define
which state-swap functions are automorphisms.

3.5.1 State Swap

Based on the concept of state swap [26], we define permutations on the state graph, in our
case, a PAT model. In a model of a concurrent system with many replicated processes,
we restrict attention to automorphisms given by permutations of process identifiers. The
state consists of local contributions of various components in the model. Therefore, we use
processes which are instantiated from the same template to permute the state.

Let P (i) and P (j) be processes of the system P that originate from the same template T .
Therefore, a state-swap swap

i,j

: (L, V,D) ! (L0, V 0, D0) is defined as follows:

• Process Swap: swaps the contributions to the state given by a pair of (P (i), P (j)).
Swapping a pair of (P (i), P (j)) operates in two steps: 1) interchange the current
locations and 2) interchange the values of the local variables and clocks.

• Data Swap: swaps array entries i and j of all dimensions that are indexed by variables
of type pid. Moreover, it swaps the value i with the value j for all variables of type
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pid.

Process Swap is trivial since the processes originate from the same template while in order
to perform Data Swap, first the tool needs to statically recognize all entities of type pid in
the model.

Let Fischer be an instance of Fischer’s protocol with N processes. Processes are in-
stantiated from the process template T given in Figure 3.1. Then Fischer is defined in
PAT as follows:

Fischer = ||| i : {0, ...., N � 1} @ T (i)

A state of Fischer is a tuple (L, V,D), where L is a N-component location vector, V is a
set of variable valuations and D is a set of clock valuations.

Example 1: Assume N = 3 and also the tool recognizes that id has type of pid, now
we consider the following state s:

• L: l0 = Start, l1 = Wait, l2 = CS.

• V: id = 2.

• D: c0 = 4, c1 = 3, c2 = 2.

When we apply swap0,2 into this state, it results a new state s0 by interchanging l0 with l2
and c0 with c2 (Process Swap), and setting id to 0 (Data Swap). s0 is given as follows:

• L: l0 = CS, l1 = Wait, l2 = Start.

• V: id = 0.

• D: c0 = 2, c1 = 3, c2 = 4.

Similarly applying swap1,2 to s0 gives the following state:

• L: l0 = CS, l1 = Start, l2 = Wait.

• V: id = 0.

• D: c0 = 2, c1 = 4, c2 = 3.
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3.5.2 Action of State Swap on Process Template

When a permutation is applied to a state, it permutes the outgoing actions of the state.
Permutation of an action a returns the new action a0 with permuted process parameters.
Therefore, we define swap functions on the syntax of our models.

A process template in PAT is given in the following syntax:

T (x0, x1, ..., xn�1) = {Body}

where T is the template name, (x0, ..., xn�1) is an optional list of template parameters and
Body determines the computational logic of the process. Body consists of local variables
v, guards g, updates u and program statements ps over variables and channels [50].

Let T be a process template and ⇡ be a state-swap. Applying ⇡ to T results in a new
template ⇡(T ), where a guard g, an update u and a program statement ps of T is replaced
by ⇡(g), ⇡(u) and ⇡(ps) respectively. Finally, ⇡(T ) is the same as T , except that:

• Any assignment statement x = val is replaced by x = ⇡(val), where type(x) = pid
and val is a value.

• Any boolean expression x ⇠ val is replaced by x ⇠ ⇡(val), where ⇠ 2 (==, 6=),
type(x) = pid and val is a value.

In other words, state-swap is also a syntactic operation on the template T . There is no
guarantee that ⇡(T ) and T are syntactically equivalent.

Example 2 : Assume that the system Fischer given in Example 1 does not allow T (2)
to enter its critical section. This is achieved by modifying the template T given in Figure
3.1. A guard g on an edge from location Wait to location CS is now given as:

id == i and i 6= 2

By applying swap0,2 into T , it results in a new guard swap0,2(g):

id == i and i 6= 0

It is clear that swap0,2(T ) is not identical to T since T (2) is now enabled to enter its critical
section in the template swap0,2(T ).
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3.5.3 Automorphisms

A state-swap ⇡ is called an automorphism of a system, P , if it satisfies the following three
properties:

• It preserves the types of the processes. On other words, it only swaps two processes
that are instantiated from the same template.

• It preserves the associations of the processes it maps. It means that given the process
associations in P , if a state-swap is applied to P , the resulting system ⇡(P ) should
be valid with respect to the given associations.

• It preserves the transition relation of the system such that if there exists a transition
between two states s and t in P , then there should be a transition between the states
⇡(s) and ⇡(t) in ⇡(P ). On other words, P and ⇡(P ) must be syntactically equivalent.

Let P be a parameterized system with N processes instantiated from the same template
T , where 0  i < N . We define Swap(P ) as a set of possible state-swaps, which consists
of all permutations of the set of process identifiers {0, 1, ...., N � 1}.

We say that ⇡ 2 Swap(P ) is valid if it satisfies three properties above. Let V alidSwap(P )
be the set of valid state-swap functions.

Theorem 2 (Soundness) [26]. Every valid state swap is an automorphism.

3.5.4 Group of Automorphisms

Let G be a group, and let ↵1,↵2, ....,↵n

2 G. The smallest subgroup of G containing the
elements ↵1,↵2, ....,↵n

is denoted h↵1,↵2, ....,↵n

i, and is called the subgroup generated by
↵1,↵2, ....,↵n

. The elements ↵
i

(1  i  n) are called generators for this subgroup. Let X
= {↵1,↵2, ....,↵n

} be a finite subset of G. Then we use hXi to denote h↵1,↵2, ....,↵n

i, the
subgroup generated by X.

Let H be a subgroup of G, and let ↵ 2 G. The set H↵ = {�↵ : � 2 H} is called a
right coset of H in G. The set of all right cosets of H in G partitions G into disjoint
equivalence classes. In particular, for ↵ 2 H, we have H↵ = H.

V alidSwap(P ) is a set of valid automorphisms, denoted as {⇡1, ⇡2, ...., ⇡n

}. Under compo-
sition of mappings and group theory above, V alidSwap(P ) forms a group of automorphims
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hV alidSwap(P )i = h⇡1, ⇡2, ...., ⇡n

i. This means that, hV alidSwap(P )i had an identity el-
ement ⇡ that maps a process p onto itself or ⇡(p) = p. Also, every other permutation ⇡

i

has an inverse element ⇡�1
i

such that ⇡�1
i

⇡
i

(p) = p.

The next chapter focuses on how we actually implement the symmetry reduction pack-
age in PAT.
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Chapter 4

Symmetry Reduction Package in PAT

We target systems that are composed of several sub-systems. In each sub-system, processes
are instances that are instantiated from the same template. Being motivated by many
examples such as Fischer’s protocol or CSMA/CD protocol that clearly exhibit structural
symmetries, we have extended the real-time model checker PAT with symmetry reduction.
It operates in two stages:

• Detect symmetries from the system description. It results in all graph automorphisms
that are sound with respect to reachability properties: an automorphism ↵ performs
certain permutations on a state s and if a state s has been visited before, then all
states ↵(s) which are obtainable by applying these permutations to s have been also
visited.

• Given a group of automorphisms, we generate the symmetry-reduced state space
on-the-fly and check for a property � using Algorithm 4.

4.1 Dining Philosopher

We illustrate the method through the Dining Philosophers example. There are several
philosophers who sit around a table with bowls of spaghetti. Forks are placed between
every pair of philosophers and a philosopher can only start eating if he acquires both his
left fork and the right fork. Figure 4.1 describes the Dining Philosophers example with 6
philosophers and 6 forks, where every edge on the model a shared fork.
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Figure 4.1: Dining Philosophers Example

The philosopher process goes through the internal states T (thinking), H-1 (hungry-1),
H-2 (hungry-2), E (eating), R-1 (release-1) and R-2 (release-2):

• A transition from T to H-1 is always enabled.

• In state H-1, the philosopher tries to acquire the left fork. If the left fork is “busy”, it
retries in 52 time units. A transition from H-1 to H-2 is enabled after the philosopher
has acquired the left fork.

• In state H-2, the philosopher tries to acquire the right fork. If the fork is “busy”, it
retries in 52 time units. A transition from H-2 to E is enabled after the philosopher
has acquired the right fork.

• A transition from E to R-1 is enabled after 52 time units.

• In state R-1, the philosopher releases the left fork. A transition from R-1 to R-2 is
always enabled.

• In state R-2, the philosopher releases the right fork. A transition from R-2 to T is
always enabled.
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The model has N philosophers instantiated from the template Phil and N forks instanti-
ated from the template Fork below respectively. We define a high-level CSP definition of
Dining Philosophers in PAT below:

Phil(i) = think.i ! get.i.(i+1)%N ! get.i.i ! eat.i ! put.i.(i+1)%N ! put.i.i ! Phil(i)

Fork(i) = get.i.i ! put.i.i ! Fork(i) ⇤ get.i.(i+ 1)%N ! put.i.(i+ 1)%N ! Fork(i)

P = ||| i : {0, ...., N � 1} @ (Phil(i) ||| Fork(i))

4.2 Symmetry Detection In The Specification

In this section, we introduce a technique to automatically detect structural symmetries
arising from input process templates. Let P be a parameterized system with N processes
instantiated from the same template T , the approach operates in three stages as follows:

• Recognize all valid variables of type pid used in T .

• Compute a set of all possible state-swaps, denoted Swap(P ).

• Then each element ⇡ 2 Swap(P ) is checked for validity and finally results in a set of
generators V alidSwap(P ) that induces a group of automorphisms.

4.2.1 Step 1: Detection of pid Variables

As mentioned in the previous chapter, a system composes of a set of process instances and
state-swap performs certain permutations on a state s, which produces a rearrangement in
the following manner: process-swap and data-swap.

While process-swap is trivial since processes originate from the same template, data-swap
involves swapping variables and array entries of type pid. Unlike UPPAAL that a user
needs to manually specify entities of type pid using the concept of scalarset, our method
requires no additional information from a modeler.
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To do so, we introduce pid rules, which allow variables of type pid to be used in certain
ways as follows:

• (1) The process identifier i has type pid by default.

• (2) Given a variable x, type(x) = pid if and only if it is assigned to or compared for
equality with another variable var, such that x ⇠ var where type(var) = pid and ⇠
2 [=, 6=,==].

• (3) It is not allowed to perform any arithmetical operations on variables of type pid.

• (4) Variable x of type pid is only allowed to used in the form of x ⇠ v where v is
either a variable or value and ⇠ 2 [=, 6=,==].

• (5) A[N ] is an array of N elements of type pid if and only if type(A[i]) = pid.

Given these restrictions, Algorithm 5 presents the pid-type inference algorithm in PAT.
Algorithm 5 runs on the template T . In PAT, T is stored as the syntax tree. Each while-
loop iteration involves one pass over the syntax tree. Let Next be a set of pid variables
to be analyzed and V isited be a set of analyzed pid variables. Initially, Next has at most
one element - the process identifier i.

Inside a loop, first the model checker extracts a variable x from Next. Then the tool
visits each guard g, each update u and each program statement ps to verify whether x is
used inappropriately (violates any pid rules). Otherwise, x is added to V alidP ids - the
set of valid variables of type pid. The algorithm also adds any new variable y, which is
related to x by the second pid rule, to Next. The algorithm only halts when Next is empty.

For any template T whose variables of type pid are used inappropriately, T is invalid.
Currently, we do not support processes instantiated from invalid process templates to run
with symmetry reduction.

Clearly, for systems that consist of N sub-systems (means that the system description
has N input process templates), Algorithm 5 will run N times.

Let P be a case of Dining Philosophers with just two philosophers (phil1, phil2) and the two
forks (fork1, fork2), which contains deadlock. First Algorithm 5 runs on the template
Phil. The template parameter i has type of pid by default and is added to Next. In the
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first loop, the tool extracts i from Next and goes through the computation logic of the
template Phil. Since i does not violate or break pid rules, i is added to V alidP ids. Since
there is no variable that is related to i in the form defined in (2), Algorithm 5 halts.
Similarly, Algorithm 5 runs on the template Fork. Since there is no invalid pid variable
used in those templates, we say that P is valid to run with symmetry reduction.

Algorithm 5 pid-type Inference Algorithm
1: ValidPids = ;
2: Visited = ;
3: Next = {i}
4: isInvalidTemplate = false
5: while Next 6= ; do
6: remove x from Next
7: for each guard g / statement ps / update u in T do
8: if g / ps / u contains x then
9: if g / ps / u is in the form defined in (4) then
10: if g / ps / u contains a variable y then
11: if (y not 2 Visited) and (y not 2 Next) then
12: add y to Next

13: else
14: isInvalidTemplate = true
15: break
16: if isInvalidTemplate == false then
17: add x to ValidPids
18: add x to Visited
19: return FINISHED

4.2.2 Step 2: Compute a Set of Possible Permutations

Once all valid variables of type pid have been recognized, the next step is to compute a set
of all possible state-swap from the system description.

In the Dining Philosophers problem considered, assuming phil1, phil2 are assigned indices
of 1, 2 and fork1, fork2 are assigned indices 3, 4 respectively. We define Swap(P ) as a set,
which consists of all permutations of the set of process identifiers {1, 2, 3, 4}. It results in
a set of 24 elements to check for validity since only certain permutations are sound with
respect to reachability properties.
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4.2.3 Step 3: Compute a Set of Generators

A state-swap ⇡ is called an automorphism of a system, if it satisfies the following three
properties:

• It preserves the types of the processes.

• It preserves the associations of the processes it maps.

• It preserves the transition relation of the system.

For a given system P , the set of all possible state-swap, Swap(P ), is computed from the
previous step. For each element in this set, the algorithm checks if it is a valid permutation
which means that it satisfies three properties above.

Back to the Dining Philosophers problem considered. The first property means that two
processes must be instantiated from the same template. After checking for the first prop-
erty and eliminating all permutations that map a philosopher to a fork and vice versa, we
are left with 4 permutations namely:

{1, 2, 3, 4}, {2, 1, 3, 4}, {1, 2, 4, 3}, {2, 1, 4, 3}

The second property says that if a state-swap, ⇡, maps phil
i

to phil
j

then the permutations
of all forks associated with phil

i

are now the forks associated with phil
j

in the new system.
These associations must be consistent with the original system description otherwise ⇡ is
not an automorphism. In our example, the second property is violated by

{2, 1, 3, 4}, {1, 2, 4, 3}

Specifically, in {2, 1, 3, 4}, phil2 will have fork2 on the right and fork1 on the left which vi-
olates the original system description. Algorithm 6 describes how a state-swap is checked
for the second property.

Algorithm 6 Implement CheckAssociation
1: if processes associated with p

i

= {p1, p2, ....} then
2: processes associated with p

j

= {⇡(p1), ⇡(p2), ....}
3: if {⇡(p1), ⇡(p2), ....} consistent with equations of p

j

then
4: return true;
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Although processes are obtained as instances of a same parameterized process template,
they are not necessarily identical up to renaming. The third property indicates that after
the permutation, the new system must be equivalent to the original system. On other
words, P and ⇡(P ) must be syntactically equivalent. This happens in Algorithm 7. In
PAT, process templates are stored as syntax trees. Algorithm 7 performs a depth-first-
search on both trees and checks for their equivalence.

Algorithm 7 Implement CheckEquivalence
1: TreeNode A = P
2: TreeNode B = ⇡(P )
3: public boolean isEquivalent(TreeNode A, TreeNode B):
4: if isEquivalent(A.left, B.left) then
5: if isEquivalent(A.right, B.right) then
6: if A is equal to B then
7: return true;

8: return false;

Finally, given a set of all permutations Swap(P ), Algorithm 8 shows how to compute a
set of generators V alidSwap(P ) that forms a group of automorphisms.

Algorithm 8 Compute V alidSwap(P )

1: Compute Swap(P )
2: V alidSwap(P ) = ;
3: for each ⇡ 2 Swap(P ) do
4: if Type(p

i

) == Type(p
j

) then
5: if CheckAssociation(p

i

, p
j

) then
6: if CheckEquivalence(p

i

, p
j

) then
7: add ⇡ to V alidSwap(P ).

8: return V alidSwap(P )

V alidSwap(P ) forms a group of automorphims Aut(P ) under functional composition. This
means that, Aut(P ) had an identity element ⇡ that maps a process p onto itself or ⇡(p) = p.
Also, every other permutation ⇡

i

has an inverse element ⇡�1
i

such that ⇡�1
i

⇡
i

(p) = p. In
our example, ⇡1 = {1, 2, 3, 4} has an inverse element as ⇡2 = {2, 1, 4, 3}.
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Figure 4.2: The state space of the dining philosopher.

4.3 Generate The Symmetry-reduced State Space

Once symmetry detection has been performed, Symmetry Reduction is performed to
generate the symmetry-reduced state space on-the-fly using Algorithm 4.

Figure 4.2 depicts the state space of our Dining Philosopher example, where lock represents
a busy fork and free means that a fork is free to use. The state-space is partitioned into
6 equivalence classes namely:

{0}, {1, 3}, {2}, {4, 5}, {6, 7}, {8, 9}

Algorithm 4 presents the modified reachability analysis algorithm, where ✓ as a represen-
tative function that converts a state s to its representative rep(s). Since many equivalent
states are projected onto the same representative rep(s), the number of visited states may
decrease dramatically.

Assume that a timed automaton only performs reset on zones, we minimize a state s
using the Algorithm 9 below, which results in the representative rep(s). It is clear that
rep(s) satisfies the soundness, since states are transformed using automorphisms.
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Algorithm 9 Compute The Representative State Rep(s)

1: s = (L, V,D)
2: V alidSwap(P ) 6= ;
3: N = size(P)
4: for i = 1 to N � 1 do
5: for j = i+ 1 to N do
6: if swap

i,j

(s) < s and swap
i,j

2 V alidSwap(P ) then
7: s = swap

i,j

(s)
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Chapter 5

Parameterized Compositional Model
Checking in Timed Automata

Although symmetry reduction can result in an exponential savings in processing time and
memory consumption for highly symmetric networks, state-space explosion generally limits
model checking to protocol instances that are much smaller than those that arise in prac-
tice. What if an input model has a very large number of components? This is referred to as
the parameterized model checking problem (PMCP). The problem is, however, generally
undecidable [5].

In [44], we introduce a new and di↵erent formulation, which is referred to as the param-
eterized compositional model checking problem (PCMCP), asks whether a parameterized
family has a compositional proof that the specification is met for all instances.

Specifically, verification is reduced to one on a fixed set of representative nodes, making
the time complexity for computing the compositional invariant independent of N. More-
over, it is sometimes possible to pick the same set of representatives for all networks in a
family. In such case, the compositional invariant computed for a small instance forms a
parameterized invariant which holds for all members of the family.

The positive results are based on symmetry arguments that establish the existence of
compositional cuto↵s: small instances whose compositional verification induces invariants
that hold for the entire family. We show that for regular network families, such as the ring,
torus, and cube-connected cycles, for the synchronous control-user networks of German
and Sistla [23], for asynchronous shared-memory networks from [22], and for distributed
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memory control-user networks with an index-oblivious control process [44], the verification
is decidable in polynomial time.

In this chapter, we extend our previous work in [44] to parametrized timed systems. Our
results show that for networks of mutual exclusion protocols, the verification is decidable
in polynomial time in the size of the processes. Generally for a control-user system with a
non-oblivious controller, both the PCMCP is undecidable since the local state space of a
control process is unbounded. However, for Train-Gate protocol and CSMA/CD protocol,
we define an abstract control process and show that its compositional invariant is precise
to solve the PCMCP.

As this is a new formulation of parameterized verification, we still need to do more work
and discuss the implications in more depth. However, our positive results show that many
real-time protocols can be verified in polynomial time in the size of the processes since the
topology of neighborhoods is usually less complicated than that of the entire graph, which
simplifies verification.

5.1 Preliminaries

5.1.1 Process

A real-time process is defined by a tuple (S, I, T, V ), where S is a symbolic state space; I
is a subset of S, the initial set of states; T is a transition relation, a subset of S x S and V
is a set of variables. The transition relation and initial condition induce a set of reachable
symbolic states (i.e., states which are obtained from an initial symbolic state through a
sequence of transitions).

5.1.2 Internal State

An internal state of a real-time process is its symbolic state, which is defined as a pair
(l, D) where l is a location and D is a zone. By definition, a zone is the solution set of
clock constraints.
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5.1.3 Neighborhood

The neighborhood of a real-time process is the set of variables which are shared between
that process and other processes. For example, the neighborhood of a node i in a Fischer’s
protocol of size N is the global variable id.

5.1.4 Local State

Each local state of a node P
i

in a real-time system P of size N can be written in the form
(l

i

, D
i

, y), where l
i

is a current location of P
i

, D
i

is a current zone of P
i

and y is a vector
of states or values of the neighborhoods of P

i

.

5.1.5 Inductive Invariant

A real-time process P is defined as a tuple (S, I, T, V ). An invariant is a predicate which
holds of all reachable symbolic states.

An inductive invariant is a predicate that includes all initial states and is closed under
the transition relation. That is, ✓ is an inductive invariant of P = (S, I, T, V ) if:

• ✓ includes all initial states.

• ✓ is closed under transitions.

5.1.6 Interleaved Composition of Processes

An asynchronous, interleaved composition of real-time processes P1 = (S1, I1, T1, V1) and
P2 = (S2, I2, T2, V2), written P = P1 ||| P2, is defined as the process P = (S, I, T, V ) where:

• The set of variables, V , is V1 [ V2. The set of shared variables is V1 \ V2.

• The set of initial states, I, such that its projection on P1 is in I1 and the projection
on P2 is in I2.

• The transition relation T interleaves transitions of P1 and P2, where transitions of
one process leave the internal variables of the other process unchanged.
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5.1.7 Compositional Invariants

There is a predicate, ✓
i

for each process P
i

; this is a set of local states of P
i

. The constraints
which the {✓

i

} predicates must satisfy to be called a compositional invariant are as follows:

• (init) ✓
i

includes the initial states of P
i

.

• (step) ✓
i

is inductive for P
i

.

• (non-interference) the actions of a neighboring process, P
j

, do not falsify ✓
i

.

5.1.8 Parameterized Compositional Invariants

A compositional invariant for a parameterized family is defined using an unbounded set
of compositional constraints. There is a ✓-component for each node i in each network N
of the family; this is denoted as ✓(i,N). The components must meet the previously defined
constraints for compositional invariance:

• (init) ✓(i,N) includes the initial states of P(i,N).

• (step) ✓(i,N) is inductive for P(i,N), and

• (non-interference) the actions of a neighboring process, P(j,N) in network N, do not
falsify ✓(i,N).

5.1.9 Compositional Cuto↵

Although the vector ✓ is unbounded, there is still a strongest fix-point solution. As pro-
cesses from di↵erent instances do not in influence one another, this fix-point is the collection
of strongest fix-points for each instance. The decidability results in this paper are obtained
by collapsing the unbounded collection of constraints to a bounded set through the iden-
tification of local (i.e., neighborhood) symmetries.

Network families examined in this paper (Fischer’s protocol, CSMA/CD protocol and
Train-Gate protocol) have the following property: there is a limit, say K, such that the
strongest compositional invariants in networks of size greater than K are identical (up to
neighborhood isomorphism) to the strongest compositional invariants in net- works of size
at most K. We then refer to K as a compositional cuto↵.
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5.2 Local Symmetry

Two nodes m and n are locally similar, written m ' n, if there is a bijective function �
that the neighborhood of m is isomorphic to the neighborhood of n through �. Tuples of
the form (m, �, n) where � is a witnessing bijection for m ' n, are called local symmetries.

For a local symmetry (m, �, n), the isomorphism � maps the neighborhood of m onto
the neighborhood of n. We now lift this definition on structure to include the processes
running at m and n. Thus � maps a local state (x, y) of m to a local state (x, �(y)) of n
(recall that x = (l, D) is the internal state and y is the neighborhood state), and similarly
maps a local transition ((x, y), (x0, y0)) of m to a local transition ((x, �(y)), (x0, �(y0))) of
n. This is lifted to sets of states and transitions in the standard way, that is for every
(m, �, n) that respects the local symmetries, it should hole that:

[T
n

⌘ �(T
m

) and [I
n

⌘ �(I
m

)]

Fix a network G and a process assignment. The local symmetries of the network are
defined as a relation B with entries of the form (m, �, n), where is itself a relation between
the local state spaces of processes m and n. A relation B forms a local symmetry if, for
every (m, �, n) 2 B, any step or interference transition of m can be simulated by a step
or interference transition of n. More precisely, the following forward-simulation properties
hold.

• (initial match) For every initial state x of the process at m, there is an initial state
y of the process at n such that (x, y) 2 �.

• (local simulation) If (x, y) 2 � and there is a transition (x, x0) 2 T
m

, then there is y0

such that (y, y0) 2 T
n

and (x0, y0) 2 �.

• (interference simulation) If (x, y) 2 �, and i is a neighbor of m, and there is a joint
(i,m) transition ([a, x], [a0, x0]) due to T

i

, then either there is a neighbor j of n for
which (i, �, j) is in B and for every b such that (a, b) 2 �, there is a joint (j, n)
transition ([b, y], [b0, y0]) due to T

j

, such that (x0, y0) 2 �, or there is a transition
(y, y0) in T

n

such that (x0, y0) 2 �.

Corollary 1: Let B be a local symmetry on G. Let ✓ be the strongest compositional
invariant on G. Let P be a property of local states. If (m, �, n) is in symmetry B, and P
is invariant under �, then [✓

m

=) P ] if and only if [✓
n

=) P ].

48



Theorem 3: For a network with global symmetry group G,

Local(G) = {(m, �, n) | � 2 G ^ �(m) = n}

is a balance relation.

That is, balanced nodes have isomorphic strongest compositional invariants. A network
with a transitive group of automorphisms (i.e., one where any pair of nodes is connected
by an automorphism) is called vertex-transitive. We have the following corollary.

Corollary 2: A real-time network with a transitive group of automorphisms (i.e., one
where any pair of nodes is connected by an automorphism) is called vertex-transitive. In a
vertex-transitive network, any pair of nodes is balanced and there is a single equivalence
class.

Proof: Consider any pair of nodes m,n. As the network has a transitive symmetry group
G, there is an automorphism � in G such that �(m) = n. In that case, the triple (m, �, n
is in Local(G) by definition. As Local(G) is a balance relation, m and n are balanced and
the orbit relation is an equivalence, so that m and n are in the same equivalence class of
Local(G). Hence, there is a single equivalence class.

5.3 Parameterized Network Families

For a parameterized network, local symmetries that span members of a network family can
be used to reduce the problem of checking a property for all instances to checking it for a
small, fixed-size set of representative instances.

We apply the local symmetry definitions to a family of networks by redefining the symme-
try relation to relate two nodes in (possibly) di↵erent networks. I.e., the relation consists
of triples ((G,m), �, (H,n)). We immediately obtain the analogues of Corollary 1 for a
parametric network family.

Corollary 2: Let P be a property of local states. If ((G,m), �, (H,n)) is in symme-
try B, and P is invariant under �, then [✓(G,m) =) P ] if and only if [✓(H,n) =) P ].

Below we show how we generally analyze a real-time system based on the theory in the
previous sections:
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• Detect a set of automorphisms from the system description. Define a symmetry B
(from global symmetry) for the entire network family, with finitely many equivalence
classes.

• Find a representative network instance R, whose nodes cover all of the equivalence
class. This is achieved by neighborhood abstraction. This technique obtains a uni-
form invariant which applies to all nodes by abstracting from di↵erences between
node neighborhoods (such as the number of neighbors).

• Compute the strongest compositional invariant for R.

• Let property P be invariant under the symmetries in B. By Corollary 2, if P holds
for all nodes k in R, it holds of all nodes in the entire family.

We target systems that are composed of several sub-systems. In each sub-system, processes
are instances that are instantiated from the same template. They likely exhibit clearly
global symmetries and hence induce local symmetries. For those systems that are vertex-
transitive, in order to extend the global symmetry reduction to a whole family of networks,
say that a family of process networks, N , is uniform, we must prove:

• (1) each network in the family is vertex-transitive.

• (2) for every pair (M,N) of networks, there is a pair of nodes, m 2 M and n 2 N ,
that are locally symmetric.

• (3) nodes that are locally symmetric are assigned isomorphic processes, whose state
space is independent of network size.
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Chapter 6

Verification for Fischer’s Protocol

Fischer’s protocol ensures mutual exclusion of access to commonly used resources via a
shared variable id. In fact, the protocol relies on location invariants and suitable updates
of id. In this chapter, we model Fischer’s protocol by the real-time system module in PAT
and run the verification with symmetry reduction. The experimental results show that we
gain a considerable reduction in the cost of analysis, by a factor exponential in the number
of processes. Then we apply our compositional verification technique to determine whether
the mutual exclusion property holds for every instance for networks of Fischer’s protocol.
We prove that verification is decidable in time polynomial in the state space of the smallest
verified, “cut-o↵”, instance.

6.1 Modeling Process Behavior

Processes of the protocol are instances of a template depicted in Figure 6.1. The template
has one local clock c and no local variables.

Initially, a process is in location Start. The default value of id is Idle and clock c is
set to 0. The transition from Start to Req is always enabled.

In location Req, the process sets id to its process identifier and then goes to Wait be-
fore 2 time units have elapsed.

In location Wait, the process waits for at least 2 time units and then reads id again.
If id has kept the old value, the process may enter its critical section CS. Otherwise, the
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Figure 6.1: The process template for Fischer’s protocol

attempt has failed and the process must go back to Req.

In CS location, the process is in its critical section. The transition from CS to Start
is always enabled.

6.2 Modeling Fischer’s Protocol

The protocol consists of N processes interleaving with each other. In PAT, we model this
as follows:

Fischer = ||| i : {0, ...., N � 1} @ Process(i)

6.3 Verification Properties

MutualExclusionFail is a boolean condition true of global states, where more than one
process are in the local state CS at the same time.
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In PAT, MutualExclusionFail is defined as follows:

define MutualExclusionFail count > 1;

In order to formally verify our model of Fischer’s protocol is correct, we check whether the
model reaches to MutualExclusionFail :

assert F ischer reaches MutualExclusionFail

6.4 Symmetry Detection

In order to explain how symmetry detection is performed in PAT, a simple model Fischer
of Fischer’s protocol has been considered. It consists of 3 processes, T1, T2 and T3, which
are instantiated from the same template T given in Figure 6.1.

Symmetry detection consists of 3 following steps:

• Stage 1: Detect all variables of type pid used in T .

• Stage 2: Compute Swap(Fischer).

• Stage 3: Compute V alidSwap(Fischer).

Stage 1. Algorithm 5 shows how the pid-type inference technique is performed on T .

The template parameter i has type of pid by default. In the first while-loop, the tool
extracts i from Next. Then the program goes through the computation logic of the pro-
cess template T (including guards g, updates u, and program statements ps over variables
and channels) to make sure that i does not violate or break pid rules. Finally, i is added
to V alidP ids. The algorithm also adds the global variable id, which is related to i by the
guard g as follows:

id == i

to Next. In the second loop, id is extracted from Next and its validity is verified. The
algorithm halts since Next is empty now. We conclude that processes instantiated from T
are valid to run with symmetry reduction and id is also the variable of type pid.

Stage 2. Assuming that T1, T2, T3 are assigned indices of 1, 2, and 3 respectively, all
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possible permutations of the set of indices {1, 2, 3}, denoted Swap(Fischer) are obtained.
This results in 6 permutations as follows:

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}

Stage 3. A permutation ⇡, of process indices is called an automorphism of a system, if it
satisfies the following three properties:

• It preserves the types of the processes.

• It preserves the associations of the processes it maps.

• It preserves the transition relation of the system.

All possible permutations Swap(Fischer) ensure the first property since they all originate
from the same template T .

For networks of Fischer’s protocol, there is no association between processes. Therefore,
all possible permutations also satisfies the second property.

We apply each element ⇡ 2 Swap(Fischer) into Fischer and hence, form a new system
⇡(Fischer). In other words, ⇡(Fischer) is a syntactic operation on the system Fischer.
We show that all ⇡ 2 Swap(Fischer) satisfy the third property.

So we conclude that Fischer is fully symmetric since all processes are identical up to
renaming. Therefore, we have:

V alidSwap(Fischer) = Swap(Fischer)

From Theorem 3, Fischer consists of N balanced processes.

6.5 Symmetry Reduction and Experimental Results

We have run experiments on PAT for di↵erent numbers of processes and Table 6.1 sum-
marizes the verification results. The environment is an i5-dual-core machine with 4 GB
memory.

To demonstrate the e↵ectiveness of symmetry reduction, we ran each experiment twice,
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Processes 8 10 15 20 30
Mode Sym No Sym No Sym No Sym No Sym No
Time (s) 0.04 3.3 0.13 122 0.85 N/A 4.35 N/A 53 N/A
Visited State 190 85495 360 1827331 1379 N/A 3880 N/A 17717 N/A
Memory (Mb) 9.3 57.7 11 1347.5 11.8 N/A 22 N/A 109 N/A

Table 6.1: Experimental Results for Fischer’s Protocol

with and without symmetry reduction. Experiments were run with a 300 second timeout.
We focus on three criteria: processing time (s), the number of visited states and memory
usage (MB). The data shows that the regular PAT’s limit for Fischer’s protocol is less than
15 processes while the verification for 30 processes can be done within 53 seconds using
109MB of memory with symmetry reduction.

Using symmetry reduction, the verification tool gains a considerable reduction in pro-
cessing time and memory usage, by a factorial magnitude, however verification is still not
feasible for an instance of Fischer’s protocol with a very large number of processes (> 100).
Here is the moment when our compositional verification method will prove its advantage.

6.6 Compositional Verification

Consider a family of instances of Fischer’s protocol {R
i

}, where each instance consists of
i identical processes. We combine elements of compositional proofs, abstraction and local
symmetry to verify whether mutual exclusion holds for every instance of Fischer’s protocol.

Since Fischer’s protocol is fully symmetric, every instance R
i

is vertex-transitive. In a
instance R

x

, we define Rep as a single representative process and ✓
x

as a compositional
invariant for Rep. A state in ✓

x

is a tuple (l, D, id), where (l, D) is an internal state of
Rep and id is a neighborhood ranging from {0, ..., x� 1}. Since x could have any possible

positive value, ✓
x

may unbounded. We define an abstraction of Rep, denoted dRep and
show that its compositional invariant is su�ciently precise to solve the PCMCP.

In the abstract representative process dRep, the transitions are the same as in Rep, ex-
cept that id has a value in the set of {k, k̂,�1}, where k is the process identifier of Rep
and k̂ is the abstract process identifier of any process in R

x

that its process identifier is
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not equal to k. The abstraction is a Galois connection (↵, �) where ↵(s, id) = (s, a) where
a is the set of three possible values {k, k̂,�1} and �(s, a) = {(s, id) | ↵(s, id) = (a, s)}.

We define �
x

is the strongest compositional invariant on the abstract process dRep, the first
lemma says that the compositional invariant of the abstract process over-approximates the
concrete one.

Lemma 1 For each state in ✓
x

, there is an ↵-related state in �
x

.

Proof : We define D
i

as a finite set of zones at the location i. In location Start, �Start

x

is just the state (Start,D
Start

,�1) with the location = Start, and id = �1. So �Start

x

=
✓Start
x

. Hence, the hypothesis holds for �Start

x

.

In Req, ✓Req

x

= {(Req,D
Req

, i) | i 2 {�1, .., x � 1}/k}, where x is the size of the instance
R

x

. �Req

x

has one of two possible values including (Req,D
Req

,�1), (Req,D
Req

, k̂). It is
clear that each state of Req in the set of {(Req,D

Req

, i) | i 2 {0, ...., x � 1}/k} is related
to Req,D

Req

, k̂) by ↵. So it satisfies the condition required.

In location Wait, there are two possible cases. If id = k, (Wait,D
Wait

, k) 2 ✓Wait

x

and
also (Wait,D

Wait

, k) 2 �Wait

x

. Otherwise, {(Rep,D
Wait

, i) | i 2 {�1, ..., x� 1}/k} 2 ✓CS

x

,
which are related to (Rep,D

Wait

, k̂) 2 �Wait

x

by ↵. Hence, the hypothesis holds for �Wait

x

.

In location CS, ✓CS

x

= �CS

x

= (CS,D
CS

, k). End Proof

Theorem 4 The PCMCP is decidable in polynomial time for Fischer’s protocol.

Proof Consider an instance R
x

as the smallest verified instance (x = 2) and a random
instance R

y

. From Lemma 1, all states in �
x

also satisfy the mutual exclusion property.
�

x

and �
y

are isomorphic since they have the same local states. We can say �
x

and �
y

are locally symmetric and hence, from Corollary 1, all states in �
y

also ensure mutual
exclusion. Since for each state in ✓

y

, there is an ↵-related state in �
y

. It is clear that ✓
y

satisfies mutual exclusion as expected. So the PCMCP is decidable in polynomial time.
End Proof.
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Chapter 7

Verification for CSMA / CD Protocol

The Carrier Sense, Multiple Access with Collision Detection (CSMA/CD) protocol de-
scribes one solution to the problem in Ethernet network, when several agents compete
for a single bus. The simplified algorithm of CSMA/CD is shown in Figure 7.1. The
research group in PAT has successfully done modeling and verification on CSMA/CD pro-
tocol [48]. In this chapter, we extend the previous work [48] to verify CSMA/CD protocol
with symmetry reduction. Our results show that we gain a considerable reduction in the
cost of analysis, by a factor exponential in the number of processes. We also prove that for
networks of CSMA/CD protocol, verification is decidable in time polynomial in the state
space of the smallest verified, “cut-o↵”, instance.

7.1 Model For CSMA/CD Protocol

CSMA/CD protocol consists of two components, namely Sender and Bus. Two compo-
nents communicate by pair-wise synchronization channels. Roughly speaking, a Sender
must first listen to the Bus. If the Bus is idle, the Sender begins to transmit. Otherwise,
it must wait and retry later. However, collision may occur when more than one Sender are
sending message via the Bus. Then the Bus informs all Senders of this collision, and abort
their transmission immediately. Therefore, all transmitting messages are discarded. Also,
we make assumptions that no messages are lost during transmitting. We list all variables
and processes of this model with a simplified description, as illustrated in Figure 7.2.

57



Figure 7.1: An Overview of CSMA/CD Protocol
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Figure 7.2: Components of CSMA/CD Protocol
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Figure 7.3: Model for a Sender i [48]

7.1.1 Modeling Sender Behavior

The behavior of component Sender is defined in Figure 7.3. Initially, the Sender is in
location WaitFor. When there is a message to send, if the Bus is idle, the Sender goes
to location Trans. Otherwise, if the Bus is busy or a collision is detected, it moves to
location Retry. If a collision occurs while no message is arrived, the Sender remains in
location WaitFor.

In location Trans, the Sender has two transitions. If a collision is detected within 52
time units, the Sender goes to location Retry. Otherwise, it terminates sending the mes-
sage after exactly 808 time units, then it goes to location WaitFor.

In location Retry, if the Bus is idle, the Sender moves back to location Trans within
52 time units. Otherwise, it remains in location Retry.

7.1.2 Modeling Bus Behavior

The behavior of component Bus is showed in Figure 7.4. Initially, the Bus is in location
Idle. The transition from Idle to Active is enabled when one Sender begins to transmit.

In location Active, there are three possible transitions. If the Sender completes send-
ing, the Bus goes back to the initial location. If another Sender starts sending messages
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Figure 7.4: Model for the Bus [48].

Figure 7.5: Model for the BroadcastCD [48].

within 26 time units, the Bus moves to location Collision. Otherwise, after at least 26
time units have elapsed, the Bus replies busy signal to any new attempt, then it moves to
location Active1.

In location Active1, the Bus takes at most 26 time units to inform all Senders of this
collision, using BroadcastCD given in Figure 7.5. After that, the Bus moves to location
Idle.

In location Collision, the Bus replies busy signal to any Sender that attempts to send
message until the active Sender completes transmitting, then the Bus moves to location
Idle.
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7.1.3 Modeling CSMA/CD Protocol

The whole protocol consists of one Bus and N Senders interleaving with each other. In
PAT, we model this as follows:

CSMA = (||| i : {0, ..., N � 1} @ Sender(i)) ||| Bus

7.2 Verification

In order to formally verify our model for CSMA/CD protocol is correct, we define deadlock-
free safety property. Informally, safety property states “bad things” never happen during
the execution. deadlockfree is a safety property so that it is always possible to move from
one state to another. deadlockfree property in PAT is defined as follows:

assert CSMACD deadlockfree;

7.3 Symmetry Detection

A simple case CSMA of CSMA/CD protocol has been considered. It consists of 1 Bus
and 3 Senders that are instantiated from the templates given in Figure 7.1 and Figure 7.2
respectively.

Symmetry detection consists of 3 following steps:

• Stage 1: Detect all variables of type pid used in process templates Bus and Sender.

• Stage 2: Compute Swap(CSMA).

• Stage 3: Compute V alidSwap(CSMA).

Stage 1. First Algorithm 5 runs on the template Sender. The template parameter i
has type of pid by default and is added to Next. Algorithm 5 halts after Next is empty.
Since no invalid pid variable is used in Sender, we say that all Sender processes are valid
to run with symmetry reduction.
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Similarly, Algorithm 5 runs on the template Bus. The algorithm is able to detect a
local variable x as the valid pid variable, which is related to is by the guard g as follows:

i == x

And the Bus process is also valid to run with symmetry reduction.

Stage 2. In the CSMA/CD protocol problem considered, there are 3 Senders, namely
Sender1, Sender2 and Sender3 and 1 Bus. Assuming that Sender1, Sender2, Sender3 are
assigned indices of 1, 2, and 3 respectively, and Bus is assigned an index of 4. All possible
permutations of the set of indices {1, 2, 3, 4}, denoted Swap(CSMA) are obtained. This
results in 24 permutations which need to be checked for validity.

Stage 3. A state-swap ⇡ is called an automorphism of the model CSMA if it satisfies
the following three properties. The first property says that the permutation preserves the
types of the processes being mapped onto each other. After eliminating all permutations
that map Sender to Bus and vice versa, we are left with 6 permutations namely:

{1, 2, 3, 4}, {1, 3, 2, 4}, {2, 1, 3, 4}, {2, 3, 1, 4}, {3, 1, 2, 4}, {3, 2, 1, 4}

The second property checks if associations between the processes are not violated in the sys-
tem obtained after applying the permutations. Since in this particular example, Sender1,
Sender2 and Sender3 are all associated with Bus, and these associations are consistent
after applying the permutations to the Sender processes. Therefore, all remaining permu-
tations ensures the second property.

The third property indicates that after the permutation, the new system must be equiv-
alent to the original system. The third property is checked by using Algorithm 7. We
show no remaining permutation violates the third property. Finally we have:

V alidSwap(P ) = {1, 2, 3, 4}, {1, 3, 2, 4}, {2, 1, 3, 4}, {2, 3, 1, 4}, {3, 1, 2, 4}, {3, 2, 1, 4}

From Theorem 3, CSMA consists of N balanced Senders.

7.4 Experimental Results

We have run experiments on PAT for di↵erent numbers of processes. Table 7.1 summarizes
the verification results for CSMA/CD protocol.
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To demonstrate the e↵ectiveness of symmetry reduction, we ran each experiment twice,
with and without symmetry reduction. Experiments were run with a 300 second timeout.
We focus on three criteria: processing time (s), the number of visited states and memory
usage (MB). The data shows that the regular PAT’s limit for CSMA/CD protocol is around
10 processes, while verification for 30 processes can be done in 3 seconds using less than
23MB with symmetry reduction.

We keep increasing the number of Senders until the verification takes over 300 seconds.
Although the verification tool gains a considerable reduction in processing time and mem-
ory usage, by a factorial magnitude, however verification is still not feasible for an instance
of CSMA/CD protocol with a very large number of processes (> 100). Similarly to the case
of Fischer’s protocol, we are interested in applying our compositional verification method
to CSMA/CD protocol when model checking is no longer feasible.

Processes 8 10 15 25 30
Mode Sym No Sym No Sym No Sym No Sym No
Time (s) 0.037 5.6 0.07 99.8 0.26 N/A 1.45 N/A 2.76 N/A
Visited State 99 30953 149 291869 299 N/A 775 N/A 1067 N/A
Memory (Mb) 10.1 29.8 10.6 256 10.5 N/A 16.5 N/A 23.3 N/A

Table 7.1: Experimental Results for CSMA/CD Protocol

7.5 Compositional Verification

Consider a family of instances of CSMA/CD protocol {R
i

}, where each instance consists
of one Bus and i identical Senders. We verify whether deadlockfree holds for every in-
stance of CSMA/CD protocol. In the simplest compositional formulation, we define two
invariants: ✓

B

i

, which represents local states of the Bus in R
i

and ✓
S

i

, which represents
local states of the single representative Sender in R

i

(since all Senders are identical up to
renaming).

Theorem 5 The PCMCP is decidable in polynomial time for CSMA/CD protocol.

Proof : A state in ✓
S

is a tuple (l
S

, D
S

, cd, begin, end, busy), where (l
S

, D
S

) is an inter-
nal state of the Sender and a vector of values for its neighborhoods is (cd, begin, end, busy).
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A state in ✓
B

is a tuple (l
B

, D
B

, cd, begin, end, busy), where (l
B

, D
B

) is an internal state of
the Bus, and a vector of values for its neighborhoods is also (cd, begin, end, busy).

Clearly, the neighborhoods of the Bus and the Sender are a group of synchronization
channels and they are valueless. Therefore, the Bus and the Sender have finite local
states. Consider an instance R

x

and an instance R
y

. Assume R
x

is the smallest verified
instance (x = 2). Then we have that ✓

B

x

is isomorphic to ✓
B

y

and ✓
S

x

is isomorphic to
✓
S

y

. The smallest instance consists of 1 Bus and 2 Senders. Its strongest compositional
invariant can be calculated automatically. So the PCMCP is decidable in polynomial time.
End Proof.
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Chapter 8

Verification for Train-Bridge Protocol

A problem arises that how to design a railway control system which only assigns the usage
of the bridge to only one of many trains competing for. Train-Bridge protocol describes
one solution to this problem. Roughly speaking, whenever a train approaches the bridge, it
must first listen to the bridge and wait for absence signal before going. When the absence
signal comes which means the bridge is idle, the train begins to go through the bridge.
If the bridge is busy, the train waits until the bridge assigns it as the next train to go.
The protocol uses channels to communicate and synchronize actions between trains and
the bridge, together with time constraints on each location to guarantee that the bridge
is a critical shared resource that is accessed only by one train at a time. In this chapter,
we run the verification on Train-Bridge protocol with symmetry reduction. Our results
show that we gain a considerable reduction in the cost of analysis, by a factor exponential
in the number of processes. We also prove that for networks of Train-Bridge protocol,
verification is decidable in time polynomial in the state space of the smallest verified,
“cut-o↵”, instance.

8.1 Model For Train-Bridge Protocol

We make the following assumptions that no messages are lost during transmission by
channels. Based on the above assumptions, we then model the Train-Gate protocol in the
real-time system module in our PAT tool. The model for this protocol consists of two
components, namely Train (request for access) and Bridge (control access). Train and
Bridge communicate by synchronous events, so we define this communication by pair-wise
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synchronization channels. We list all variables and processes of this model with a simplified
description, as illustrated below.

Category Name Description

Global
Definition

N Constant: number of trains.
channel appr 0 Train requests to go through.
channel stop 0 Train senses a busy bridge.
channel go 0 Train is assigned to go through.
channel leave 0 Train completes its request.

Train
Behavior

Safe(i) The start location.
Appr(i) Train i is approaching the bridge.
Stop(i) Train i is waiting for the approval

after detecting the busy bridge.
Start(i) Train i is allowed to go through.
Cross(i) Train i is acrossing the bridge.

Bridge
Behavior

Free Bridge is free.
Active No train is waiting and one train

is approaching.
Active1 At least one train is waiting.
Control Control access through the bridge

to avoid collision.

8.1.1 Modeling Train Behavior

The behavior of component Train is showed in Figure 8.1. Initially, the Train is in loca-
tion Safe. When the Train is approaching the Bridge, the transition from Safe to Appr
is enabled.

In location Appr, the Train has two transitions, which is modeled as two external choices
in PAT. If a stop signal is not received after 10 time units have elapsed, the Train goes to
Cross. Otherwise, it then goes to Stop.

In location Stop, the Train just waits until the Bridge assigns it as the next train to
go through by sending a go! signal. Then it moves to Start.

In location Start, the transition to Cross is enabled. The Train is allowed to take maxi-
mum 15 time units to go across the Bridge.
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Figure 8.1: Model for the Train

In location Cross, the Train goes through the bridge within 5 unit times and notices
the Bridge when it has passed.

8.1.2 Modeling Bridge Behavior

The behavior of component Bridge is showed in Figure 8.2. The Bridge governs the access
to the critical shared resource (Bridge). It guarantees that only one train is given access
at a time. Whenever a particular train is approaching, the Bridge enqueues its process
identifier, checks for the availability and replies an appropriate response signal. The Bridge
serves the next element in a queue when the critical shared resource is available again.

8.1.3 Modeling Train-Bridge Protocol

The whole protocol consists of one Bridge and N Trains interleaving with each other. In
PAT, we model this as follows:

TrainBridge = (||| i : {0, ..., N � 1} @ Train(i)) ||| Bridge
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Figure 8.2: The template for the Bridge

8.2 Verification Properties

In order to formally verify our model for Train-Bridge protocol is correct, we define a
deadlockfree safety property. Informally, safety property states “bad things” never happen
during the execution. deadlockfree is the safety property so that it is always possible to
move from one state to another. deadlockfree in PAT is defined as follows:

assert TrainGate deadlockfree;

We also define overflow as “bad states” that there is more than N elements in the queue
(N is the number of Trains). We check whether there is any reachable state that satisfies
overflow. overflow in PAT is defined as follows:

define overflow (queue.count() > N);

assert TrainGate reaches overflow;
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8.3 Symmetry Detection

A simple case of Train-Bridge protocol has been considered. It consists of 3 Trains and
1 Bridge that are instantiated from the templates given in Figure 8.1 and Figure 8.2 re-
spectively.

System detection consists of 3 following steps:

• Stage 1: Detect all variables of type pid from process templates Bridge and Trains.

• Stage 2: Compute Swap(TrainBridge).

• Stage 3: Compute V alidSwap(TrainBridge).

Stage 1. First Algorithm 5 runs on the template Train. The template parameter i has
type of pid by default and is added to Next. Algorithm 5 halts after Next is empty.
Since no invalid pid variable is used in Train, we say that all Train processes are valid to
run with symmetry reduction.

Similarly, Algorithm 5 runs on the template Bridge. It detects e as a variable of type
pid, queue as an array of type pid and also shows that they are used appropriately.

Stage 2. In the Train-Bridge protocol problem considered, there are 3 Trains, namely
Train1, Train2 and Train3 and 1 Bridge. Assuming that Train1, Train2, Train3 are as-
signed indices of 1, 2, and 3 respectively, and Bridge is assigned an index of 4. All possible
permutations of the set of indices {1, 2, 3, 4}, denoted Swap(TrainBridge) are obtained.
This results in 24 permutations which need to be checked for validity.

Stage 3. A state-swap ⇡ is called an automorphism of the model TrainBridge if it
satisfies the following three properties. The first property says that the permutation pre-
serves the types of the processes being mapped onto each other. After eliminating all
permutations that map Train to Bridge and vice versa, we are left with 6 permutations
namely:

{1, 2, 3, 4}, {1, 3, 2, 4}, {2, 1, 3, 4}, {2, 3, 1, 4}, {3, 1, 2, 4}, {3, 2, 1, 4}

The second property checks if associations between the processes are not violated in the
system obtained after applying the permutations. Since in this particular example, Train1,
Train2 and Train3 are all associated with Bridge, and these associations are consistent
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after applying the permutations to the Sender processes. Therefore, all remaining permu-
tations ensures the second property.

The third property indicates that after the permutation, the new system must be equiv-
alent to the original system. The third property is checked by using Algorithm 7. We
show no remaining permutation violates the third property. Finally we have:

V alidSwap() = {1, 2, 3, 4}, {1, 3, 2, 4}, {2, 1, 3, 4}, {2, 3, 1, 4}, {3, 1, 2, 4}, {3, 2, 1, 4}

From Theorem 3, TrainBridge consists of N balanced Trains.

8.4 Experimental Results

We have run experiments on PAT for di↵erent numbers of processes. Table 8.1 summarizes
the verification results for Train-Bridge protocol.

To demonstrate the e↵ectiveness of symmetry reduction, we ran each experiment twice,
with and without symmetry reduction. Experiments were run with a 300 second timeout.
We focus on three criteria: processing time (s), the number of visited states and memory
usage (MB). The data shows that the regular PAT’s limit for Train-Bridge protocol is
around 10 processes.

We keep increasing the number of Trains until the verification takes over 300 seconds.
Although the verification tool gains a considerable reduction in processing time and mem-
ory usage, by a factorial magnitude, however verification is still not feasible for an instance
of Train-Bridge protocol even with 25 Train processes. Similarly to Fischer’s protocol and
CSMA/CD protocol, we are interested in applying our compositional verification method
to Train-Bridge protocol when model checking is no longer feasible.

Processes 8 10 15 20 25
Mode Sym No Sym No Sym No Sym No Sym No
Time (s) 0.18 44.3 0.84 295.6 9.7 N/A 140 N/A N/A N/A
Visited State 450 796138 1094 6867701 5494 N/A 44006 N/A N/A N/A
Memory (Mb) 12.1 641 59.4 8096 125.7 N/A 865.5 N/A N/A N/A

Table 8.1: Experimental Results for Train-Bridge Protocol
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8.5 Compositional Verification

Consider a family of instances of Train-Bridge protocol {R
i

}, where each instance consists
of one Bridge and i identical Trains. We verify whether deadlockfree holds for every
instance of Train-Bridge protocol.

From the previous section, we prove that any pair of Trains in {R
i

} is balanced since
they are connected by appropriate automorphisms. In the simplest compositional formu-
lation, we define two invariants: ✓

B

i

, which represents local states of the Bridge in R
i

and
✓
T

i

, which represents local states of the single representative Train in R
i

.

Theorem 6 The PCMCP is decidable in polynomial time for Train-Bridge protocol.

To prove the local states of the Bridge 2 R
i

and Bridge 2 R
j

, that are locally sym-
metric or ✓

B

i

is isomorphic to ✓
B

j

, we need to prove:

• The isomorphism � maps the neighborhoods of the Bridge 2 R
i

and Bridge 2 R
j

.

• Internal states of the Bridge 2 R
i

and initial states of the Bridge 2 R
j

are related
by �.

Proof : For the Train-Bridge protocol, the Bridge has a finite state-space. the Bridge
shares and updates the list of following global variables with Trains: channel appr, chan-
nel go, channel stop, and channel leave. It is interesting that the global variable queue is
only used in the Bridge, which does not a↵ect local states of the Bridge. Therefore, we
do not abstract the original Bridge like we have done with Fischer’s protocol. Therefore,
a state in ✓

B

i

is a tuple (l
B

i

, D
B

i

, appr, go, stop, leave), where (l
B

i

, D
B

i

) is an internal state
of the Bridge and a vector of values for its neighborhoods is (appr, go, stop, leave). Since
its neighborhoods (appr, go, stop, leave) are all stateless and the Bridge has finite internal
states, we can conclude that local states of the Bridge 2 R

i

and Bridge 2 R
j

, that are
locally symmetric.

Similarly a state in ✓
T

i

is a tuple (l
T

i

, D
T

i

, appr, go, stop, leave), where (l
T

i

, D
T

i

) is an inter-
nal state of the Train and a vector of values for its neighborhoods is (appr, go, stop, leave).
So local states of the Train 2 R

i

and Train 2 R
j

, that are also locally symmetric.

Consider an instance R
x

and an instance R
y

. Assume R
x

is the smallest verified instance
(x = 2). Then we have that ✓

B

x

is isomorphic to ✓
B

y

and ✓
T

x

is isomorphic to ✓
T

y

. The
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smallest instance consists of 1 Bridge and 2 Trains. Its strongest compositional invariant
can be calculated automatically. The strongest (✓

B

, ✓
T

) pair can be calculated by turning
the compositional rules into a simultaneous least fix-point formulation, and iterating until
convergence. The computation time is polynomial in the number of states of Trains and
of Bridge. End Proof.
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Conclusion

In this thesis, we focused on the verification of concurrent and real-time systems using
model checking approach. Although model checking has an obvious advantage over formal
methods, it must cope with the state space explosion - the state space can grow exponen-
tially since the number of components in a system increases.

State-space explosion is the main obstacle to the scalability of model checking. Indeed,
it is known that symmetry reduction techniques can be used to combat this problem for
networks of replicated components. Therefore, we extended the real-time model checker
PAT with symmetry reduction. We then proposed a mechanism that allows structural
symmetry detection arising from process templates that requires no additional input from
a user (no special data type is needed). By analyzing a template syntax, we even support
detecting partial symmetry and rotational symmetry. Our method operates in two stages:

• Detect symmetries from process templates. It results in all graph automorphisms
that are sound with respect to reachability properties: an automorphism ↵ performs
certain permutations on a state s and if a state s has been visited before, then all
states ↵(s) which are obtainable by applying these permutations to s have been also
visited.

• Given a group of valid automorphisms, we generate the symmetry-reduced state space
on-the-fly and check for a property �.

We run experiments on Fischer’s protocol, CSMA/CD protocol and Train-Bridge protocol.
Our results shows that we are able to obtain significant savings by only performing over
a quotient state-space. However, the verification is still non-scalable for instances with an
arbitrarily large number of parallel processes.

Being directly motivated by attempts to verify Fischer’s protocol, CSMA/CD protocol
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and Train-Bridge protocol with a large number of components, we extended our previous
work [43] [44] to timed automata. The method combines elements of automatic symme-
try detection, symmetry reduction, compositional reasoning and abstraction. Automatic
symmetry detection infers symmetries of the state-space underlying a model without ex-
plicitly constructing the state-space. Symmetry reduction partitions network nodes into
equivalence classes. Compositional reasoning analyzes each process of an equivalence class
separately along with an abstraction of its neighboring processes. The benefit is that the
computation can be reduced to one on a fixed set of representative nodes and works in
time polynomial in the number of processes.

In a nutshell, our compositional verification method works as follows: First, the verification
tool detects structural symmetries directly from input templates, requiring no additional
input from a user. It results in a set of possible permutations and each of them is checked
individually against the model to see if it induces a valid automorphism. Second, valid
automorphisms enable the tool to finitely partition input processes into equivalence classes
such that any pair of nodes in an equivalence class are balanced and equivalent. For net-
works that have significant global symmetry, we are able to obtain a uniform invariant
which applies to all nodes by making use of the local symmetries. As a results, the veri-
fication is only performed on a fixed set of representative nodes R and local symmetries
su�ce to ensure that for a property � that is preserved by the symmetries, it follows that
� holds for all instances if it holds for R. The method is only partly automated for systems
consisting of a large number of processes.

Our results show that verification is decidable in time polynomial in the state space of
the smallest verified, “cut-o↵”, instance for networks of Fischer’s protocol, CSMA/CD
protocol and Train-Bridge protocol.

In our previous work [43] [44], the technique requires local symmetries of a parametric
system to be manually given as input by a system designer. Now local symmetries are
derived automatically from the global symmetry detection method that is applied to in-
stances of the parametric protocol. Moreover, the symmetry detection is both automatic
and relatively inexpensive to run.

Since parametric system analysis is in general an undecidable problem, we do not ex-
pect that a single analysis technique applies to all cases. Currently, we target systems that
are composed of several sub-systems. In each sub-system, processes are instances that are
instantiated from the same template. The future work includes exploring other real-life
protocols. Moreover, we are interested in the verification of liveness properties and allow
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the use of process identifiers in arithmetic operations.
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