
UNiS: A User-space Non-intrusive
Workflow-aware Virtual Network

Function Scheduler

by

Anthony Anthony

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Anthony 2019

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Most parts of this thesis appeared in this publication:
A. Anthony, S. R. Chowdhury, T. Bai, R. Boutaba, and J. Francois, “UNiS: A User-
space Non-intrusive Workflow-aware Virtual Network Function Scheduler“, in the 14th
Conference on Network and Service Management (CNSM), 5-9 November 2018.

iii

Abstract

Network Function Virtualization (NFV) has gained a significant research interest in
both academia and industry since its inception in the late 2012. One of the key research
issues in NFV is the development of systems for building Virtual Network Functions (VNFs)
capable of meeting the performance requirements of enterprise and telecommunication
networks. New packet processing models leveraging kernel bypass I/O and poll-mode
processing have gained popularity for building high performance VNFs because of their
simple programming model and very low I/O overhead. However, a major drawback of
such poll-mode processing is the inefficient use of CPU resources. Existing CPU schedulers
are ill-suited for VNFs due to their inability to capture the actual processing cost of a poll-
mode VNF, hence, cannot rightsize the CPU allocation. This is further exacerbated by
their inability to consider VNF processing order when VNFs are chained to form Service
Function Chains (SFCs).

The state-of-the-art solutions proposed for VNF scheduling are intrusive, i.e., requiring
the VNFs to be built with scheduler specific libraries or having carefully selected scheduling
checkpoints. This highly restricts the VNFs that can properly work with such schedulers.
To address these issues, we developed UNiS: a User-space Non-intrusive work-flow aware
VNF Scheduler. Unlike existing approaches, UNiS does not require VNF modifications
and treats the poll-mode VNFs as a black box, hence, is non-intrusive. UNiS is also
workflow-aware, i.e., maintains SFC processing order while scheduling the VNFs. Testbed
experiments show that UNiS is able to achieve a throughput within 90% (for synthetic
traffic load) and 98% (for real data center traffic trace) of the achievable throughput using
an intrusive co-operative scheduler.

iv

Acknowledgements

I take this opportunity to specially thank my supervisor Professor Raouf Boutaba
for his invaluable guidance in this project, his continuous support, and the tremendous
opportunities given to me throughout my Master’s studies. It was a true privilege for me
to work with him.

I am very grateful to my family, especially my mother, for the unconditional love and
support during my stay here.

My special thanks to Shihabur Rahman Chowdhury for his constant support along the
course of this project both technical and moral, Tim Bai for his involvement in the early
stage of this project, and Haibo Bian for his contribution in the NFV platform. Thanks to
everyone in the Network Lab and everyone in DC-3552 for the friendship. It was a truly
enjoyable and enriching experience I had through the ups and downs in the last two years.

I would also like to thank my thesis committee members, Khuzaima Daudjee and Ali
Mashtizadeh, for their time and constructive feedback. Also, I would like to express my
gratitude to Jérôme François for his valuable advice in this project during my visit at
INRIA.

v

Dedication

This is dedicated to my family.

vi

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . 2

1.2 Design Goals and Challenges . 4

1.3 Contributions . 5

1.4 Thesis Organization . 5

2 Background 7

2.1 Network Function Virtualization . 7

2.2 Kernel Bypass Network I/O Technologies 8

2.3 Packet Processing with DPDK . 9

2.4 Process Scheduling in Linux . 9

2.5 Related Work on NFV Scheduling . 10

2.5.1 Analytical Models for NFV Scheduling 11

2.5.2 Systems for NFV Scheduling . 11

3 UNiS: A User-space Non-intrusive Workflow-aware Virtual Network Func-
tion Scheduler 13

3.1 Assumptions . 13

vii

3.2 System Design . 14

3.2.1 System Architecture . 14

3.2.2 Scheduling Algorithm . 16

3.3 Implementation . 18

3.3.1 The Reference NFV Platform . 19

3.3.2 UNiS Components . 20

3.3.3 Alternative Implementation on a Different Environment 22

4 Evaluation 24

4.1 Experiment Setup . 24

4.1.1 Testbed . 24

4.1.2 VNF Types . 25

4.1.3 Workloads . 25

4.1.4 Compared Approach . 26

4.1.5 Evaluation Metrics . 26

4.2 Evaluation Scenarios and Results . 27

4.2.1 SFC with fixed and uniform cost VNFs 27

4.2.2 SFC with fixed but non-uniform cost VNFs 30

4.2.3 SFC with variable cost (traffic dependent) VNFs 32

4.2.4 Multiple SFCs and Multiple CPU Cores 32

4.3 Investigation into UNiS’s Throughput Gap 33

4.4 The Impact of Interface Occupancy based Optimization 37

4.5 Discussion: Cost vs. Benefit . 41

5 Conclusion and Future Work 42

5.1 Conclusion . 42

5.2 Future Work . 43

References 44

viii

List of Tables

4.1 Results for Multiple SFCs across Multiple CPUs 33

4.2 Extra throughput from the reduced context switches (compared to kbatch-8) 37

ix

List of Figures

1.1 Packet Processing Performance of SFCs using Linux Schedulers 2

3.1 System Architecture . 14

3.2 UNiS Cycle Estimator . 20

4.1 SFC with fixed and uniform cost VNFs . 28

4.2 Latency with Medium VNFs . 29

4.3 Latency results for Light and Heavy VNFs 30

4.4 VNF density on a single core with fixed cost VNFs in an SFC 31

4.5 SFC Composed of VNFs with fixed but non-uniform processing cost 31

4.6 SFC composed of VNFs with variable processing cost (function of packet
size) under real traffic load from [1] . 32

4.7 SFC length 5 with uniform cost VNFs . 34

4.8 Context switches and CPU cycles in SFC length 5 with uniform light VNFs 36

4.9 Ratio of cache misses with light VNFs . 37

4.10 Context switches and CPU cycles for an SFC with uniform (medium) VNFs 38

4.11 Impact of occupancy based optimization in variable cost SFC 39

4.12 Impact of Interface Occupancy based Optimization 40

x

Chapter 1

Introduction

Network operators ubiquitously deploy proprietary, purpose-built and expensive hardware
middleboxes [2] (e.g., Firewalls, Intrusion Detection Systems, WAN optimizers, etc.) to re-
alize various network services [3]. These middleboxes are a significant source of capital and
operational expenditures for network operators because of their proprietary, vertically inte-
grated and inflexible nature. This motivated the Network Function Virtualization (NFV)
movement in the late 2012, which proposed to decouple Network Functions (NFs) from
purpose-built hardware and run them as Virtual Network Function (VNFs) on commodity
servers [4].

Moving NFs from specialized hardware to VNFs running on commodity servers comes
with several challenges [5]. One key challenge is to achieve the same level of packet pro-
cessing performance as that of the specialized hardware. A significant body of research
has been dedicated to designing and implementing VNFs capable of line rate processing
at tens of Gbps even for the smallest size packets [6–11]. A fundamental building block
for these research works is the recently emerged fast packet processing libraries, such as
netmap [12], Intel Data Plane Development Kit (DPDK) [13] that allow user-space pro-
grams to read/write packets directly from/to the Network Interface Card (NIC) bypassing
the OS kernel, thus incurring very low I/O overhead.

The most popular programming model for developing high performance VNFs leverag-
ing these packet processing libraries is poll-mode, i.e., VNFs continuously poll the NIC for
incoming packets. Poll-mode VNF development has gained popularity in the last few years
because it is simple to implement and incurs lower I/O overhead compared to a traditional
interrupt driven model [8–11]. However, one caveat of this model is that the VNFs always
utilize 100% CPU due to the continuous polling, even when there are no packets to process.

1

This makes it hard to relate CPU utilization of poll-mode VNFs to their packet processing
cost. This continuous polling also renders the traditional kernel schedulers less effective
since they heavily rely on CPU usages for taking scheduling decisions. Another drawback of
existing kernel schedulers is that there is no interface to specify the desired processing order
of VNFs. This is particularly important for scheduling VNFs sharing a CPU, since most
network services are realized by steering packets through an ordered sequence of chained
VNFs, known as a Service Function Chain (SFC) [14]. Due to these reasons, it is very
common to see that most research leveraging poll-mode VNFs suggest to pin the VNFs to
dedicated CPU cores [6] [7] [9]. This limits the number of VNFs that can be deployed on
a machine to the number of available CPU cores. In this thesis, we address the problem
of scheduling poll-mode VNFs on shared CPU cores in a way that maximizes the number
of VNFs on a shared CPU core while maintaining high packet processing throughput.

1.1 Motivation

 0
 5

 10
 15
 20
 25
 30

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (%

 o
f L

in
e

Ra
te

)

Packet Size (bytes)

timeslice=12ms
timeslice=6ms
timeslice=1ms

timeslice=100µs

(a) CFS

 0
 5

 10
 15
 20
 25
 30

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (%

 o
f L

in
e

Ra
te

)

Packet Size (bytes)

timeslice=25ms
timeslice=12ms
timeslice=6ms
timeslice=1ms

(b) RT Scheduler

Figure 1.1: Packet Processing Performance of SFCs using Linux Schedulers

We perform an experimental study to demonstrate that out of the box OS schedulers
fall short of efficiently scheduling VNFs in an SFC competing for the same CPU core.
Note that this experimental study complements the motivational experiment presented
in [15] by considering a VNF chain as opposed to individual VNFs sharing a core. We
developed a lightweight DPDK-based VNF for this study, which performs bare-minimal
packet processing (swaps the source and destination MAC addresses) to ensure that its
processing overhead is not a performance bottleneck. The VNFs are chained by using a

2

shared-memory based zero-copy packet exchange mechanism built using DPDK rte ring

library [16]. We deploy an SFC with three such VNFs, where the first two VNFs are pinned
to the same CPU core and the third is pinned to a different one. The third VNF sends the
packets out to the NIC, hence, was kept isolated from the other two to ensure there is no
interference.

The machine used for this experiment is equipped with a 4 cores 3.3Ghz Intel Xeon E3-
1230v3 CPU and a 10Gbps NIC, connected directly with a traffic generator. We generate
traffic with varying packet sizes using pktgen-dpdk [17]. We evaluate two Linux schedulers,
namely Completely Fair Scheduler (CFS) [18] and Real Time (RT) scheduler [19]. The
throughput of the SFC is expressed as the percentage of the throughput of the same SFC
with each VNF pinned to a different CPU (which was measured to be 10Gbps line rate for
the smallest packet size of 64 bytes).

The results of this experiment are presented in Fig. 1.1. The first bar in each packet size
represents the result obtained with the default scheduler parameters. For both CFS and
RT schedulers, throughput is significantly low. For 64B packets, the throughput is ≈1% of
line rate and even with Maximum Transport Unit (MTU) sized packets of 1500 bytes, it
does not exceed ≈30% of line rate. Such poor performance can be explained as follows. In
the case of CFS, the default configuration results in a time slice of 12ms allocated to each
VNF during a scheduling period, which we found to be too long. During this allocated time,
a VNF fills up its outgoing interface very quickly. Since the outgoing interface becomes
full, all the packets processed afterwards by the VNF are dropped, wasting the work
already done by the current and previous VNFs. We also tune the time slice allocated
to VNFs by changing CFS parameters. We experimentally found that the default CFS
does not support allocating less than 100µs time slice to a process. As we can see
from Fig. 1.1(a), even though throughput increases with reduced time slice, it is still far
from reaching line rate. Similar performance is also observed for the RT scheduler. Tuning
RT scheduler parameters does not help much since we also experimentally found that the
default minimum value of the parameters is in sub-millisecond precision. Moreover, it is
important to note that neither CFS nor RT scheduler are able to enforce VNF execution
order according to the SFC. This experimental study motivates a further examination of
scheduling in NFV context.

A recent related work, NFVNice [15], addressed poll-mode VNF scheduling by propos-
ing a mechanism to assign packet processing cost proportional CPU shares to VNFs. It
also proposes to re-adjust assigned CPU shares to VNFs in an SFC when packets start
dropping along the chain. However, NFVNice requires VNFs to be built using scheduler
provided libraries to be able to monitor packet drops. Another VNF scheduling approach
is to build the VNFs that can co-operate with other VNFs sharing a CPU by voluntarily

3

yielding CPU at some carefully placed scheduling checkpoints in the code [20]. However,
these solutions are intrusive, i.e., require modifications to the VNFs to make them com-
patible with the scheduler, thus limiting the generality of the solution. To alleviate this
limitation, we address VNF scheduling using a non-intrusive black box approach and de-
sign our scheduler to be workflow-aware, i.e., preserving the VNF execution order in an
SFC.

1.2 Design Goals and Challenges

Our goals for designing the scheduler and the associated challenges in achieving them are
as follows:

• Generic. As mentioned in Section 1.1, the state-of-the-art approaches for scheduling
poll-mode VNFs are intrusive, i.e., require VNFs to be built with scheduler specific
libraries that allow the scheduler to have insight into the VNF. Clearly, this approach
benefits from more accurate VNF’s internal information (e.g., packet drop events,
processing delay, etc.) that comes with lesser monitoring overhead. However, such
requirement limits the generality of the solution and severely limits the type of VNFs
that can work properly with the scheduler. We believe that a better and more generic
approach is to be non-intrusive, i.e., does not require VNFs to be built with any
scheduler specific library or carefully placed scheduling checkpoints inside their code.
However, the major challenge in devising a non-intrusive scheduler is to work with
limited information about the events happening inside the VNFs, such as packet
transmissions, packet drops, actual processing cost, etc.

• High usability. Our goal is not only to eliminate the requirement of modifying the
VNFs to be compatible with the scheduler, but also to require minimal change to the
operating system on which these VNFs are running. One option for implementing
VNF scheduler is to make it part of the OS kernel by extending the existing OS
scheduler or make it as another stand-alone scheduler in the kernel. However, this
approach might take long time to be approved and integrated to the stable kernel
release, otherwise it requires users to change purposely their OS kernel. Therefore, we
choose to implement the scheduler in the user-space, increasing its usability. However,
the challenge is to maintain the precision of our scheduler in spite of the additional
overhead in accessing low level OS/hardware components via system-calls.

• SFC-aware, It is fundamental to ensure that VNFs are scheduled in the order they
appear in the SFC, otherwise, it increases the chances of wasting CPU cyles due to

4

not having sufficient work to perform when a VNF is scheduled. As we build our
scheduler in the user-space we are still leveraging the existing OS scheduler to some
extent. As discussed in the previous section, the underlying Linux schedulers can
not guarantee the order of execution of VNFs sharing a core. Adapting the existing
OS schedulers to enforce VNF execution order is a non-trivial task. Therefore, the
challenge here is to devise a mechanism allowing VNFs to be scheduled according to
their workflow in the SFC.

1.3 Contributions

The main contributions of this thesis are as follows:

• System Architecture. We propose UNiS a User-space Non-intrusive Workflow-
aware Virtual Network Function Scheduler for poll-mode VNFs. To the best of
our knowledge, UNiS is the first system that addresses poll-mode VNF scheduling
problem in a non-intrusive manner, i.e., without requiring the VNFs to be built with
specific scheduling checkpoints or with any scheduler specific library.

• System Implementation. Closely following our proposed system architecture, we
design and implement UNiS in C++ for scheduling DPDK-based VNF running as
user-space processes on Linux operating system. Note that this is just one possible
implementation of UNiS. The design of UNiS is generic and is not tied to any
specific implementation.

• Testbed Evaluation. We perform an extensive evaluation of UNiS using multiple
performance metrics, different types of VNFs and workloads under various deploy-
ment scenarios. Our key finding is that UNiS, in spite of its black box scheduling
approach, is able to achieve a throughput within 90% (synthetic traffic) and 98%
(real traffic) of that achieved using the intrusive cooperative scheduler.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2 provides necessary background for this thesis. This chapter provides an
overview of Network Function Virtualization, kernel bypass networking, DPDK-based
packet processing and how process scheduling normally works in Linux kernel.

5

• Chapter 3 presents the UNiS system architecture, key components, scheduling algo-
rithm, and implementation in details.

• Chapter 4 presents the results of our evaluation study of UNiS, and their analysis.

• Chapter 5 concludes this thesis with a summary of the main research contributions
of this work, and an outline of the future work.

6

Chapter 2

Background

In this chapter, we first introduce the concept of Network Function Virtualization in Sec-
tion 2.1. Then, we discuss the kernel bypass network I/O technologies in Section 2.2,
followed by a brief overview of packet processing using intel DPDK in Section 2.3. We
describe how the default Linux schedulers work in Section 2.4. Finally, related work in
NFV scheduling is discussed in Section 2.5.

2.1 Network Function Virtualization

Traditional Network Functions (NFs) are deployed as vertically integrated, proprietary
hardware network appliances or middleboxes to offer various network services. Examples
of these middleboxes include Intrusion Detection System, WAN Optimizer, Load Balancer,
etc. A recent study shows that the number of different middleboxes is comparable to the
number of routers deployed in enterprise and data center networks. Although middleboxes
have become an integral part in modern networks, they come with high Capital Expendi-
ture (CAPEX) and Operational Expenditure (OPEX) because they are usually expensive,
vendor specific, vertically integrated and require trained personnel for deployment and
maintenance.

Network Function Virtualization (NFV) proposes to decouple Network Function from
purpose-built and vertically integrated hardware middleboxes and run it as software on
high volume commodity servers, known as Virtual Network Function (VNF). These VNFs
can be located in datacenters, network nodes or in the end user premises [4]. Shifting from
hardware middleboxes to NFV enables network operators to consolidate multiple VNFs

7

onto the same commodity servers. The ability to consolidate VNFs lower the network
operators’ upfront investment required for deploying new network services and reduces
their CAPEX. Furthermore, NFV reduces operator’s OPEX by enabling on-demand service
provisioning and scaling which results in more efficient use of the infrastructures [5].

The application areas of NFV include but are not limited to mobile networks (e.g.,
Evolved Node B, Home Location Register/Home Subscriber Server, etc.), traffic analysis
(Deep Packet Inspection, QoE measurement), service assurance, SLA monitoring, appli-
cation performance enhancement (e.g., Content Delivery Networks, load balancer, WAN
optimizer, etc.), and security functions (e.g., firewalls, intrusion detection system, spam
protection, etc). Furthermore, NFV is highly complementary to Software Defined Net-
working (SDN), and they are not dependent on each other. The separation of control and
data plane provided by SDN, combined with the softwarized network functions provided
by NFV can enhance performance, simplify deployments and facilitate better operation
and maintenance procedures. [4]

2.2 Kernel Bypass Network I/O Technologies

In a general server environment, network packets arriving at the Network Interface Card
(NIC) are first stored in the circular ring buffer by Direct Memory Access (DMA), and
software interrupts notify the kernel network stack to process the packets according to the
protocol and transfer them to socket receive buffer, and finally are copied to the user-space
application. Normally, this requires at least one memory copy to move data and metadata
from kernel to user space and multiple interrupts are raised to notify CPU about the
reception or transmission of packets [12]. This traditional kernel network stack operation
incurs high overhead due to memory management, packet copying and interrupt handling,
making it impossible to provide high packet processing performance for NFV. Experimental
studies in [12] [21] show that packet forwarding with kernel network stack achieves very
poor throughput of 0.49 to 0.78 Mpps for 64B packet size.

Another option is to implement NFs in the kernel-space, eliminating the packet copy
and other overhead. However, it has several negative consequences including (1) the slow
process of making something part of the kernel; (2) the current kernel networking itself
is already complicated and bloated with features to support different protocols; (3) lastly,
users are required to change the kernel whenever a new NF is implemented. Therefore,
user-space is deemed to be the right place for implementing the NFs, but the problem is
the kernel networking being the bottleneck.

8

As a result, fast packet processing libraries such as netmap [12], OpenOnload [22], Intel
Data Path Development Kit (DPDK) [13] and FD.io [23] emerged recently as enabling
technologies for realizing NFV. These libraries facilitate a rapid development of user-space
programs that can read/write packets directly from/to the NIC bypassing the OS kernel.
Bypassing the kernel eliminates the overhead of packet copying, interrupts and system-
calls, thus resulting in a very low I/O overhead and higher performance.

2.3 Packet Processing with DPDK

Intel Data Path Development Kit (DPDK) is an open source library to facilitate fast
packet processing in user-space. DPDK contains libraries for kernel-bypass packet I/O,
lockless multi-producer multi-consumer circular queues (rte ring library), and memory
management (rte mempool library) among others. The ring library can be used to create
shared memory based abstractions for zero-copy packet exchange. DPDK also ships with a
set of NIC specific poll-mode drivers (PMDs) that enable user-space program to bypass the
OS kernel network stack and continuously poll the NIC for incoming packets. Under high
incoming packet rate, one advantage of poll-mode I/O over interrupt driven I/O is that
the former can perform packet I/O with significantly less CPU cycles per packet, while the
latter incurs more cycles due to the high frequency of expensive interrupt handling. This
causes the poll-mode I/O to have substantially higher throughput. However, the major
drawback of this model is that packet processors result in 100% CPU utilization for polling
the NIC, even if there are no incoming packets.

2.4 Process Scheduling in Linux

Completely Fair Scheduler (CFS) is the default process scheduler since the Linux ker-
nel version 2.6.23. CFS ensures fair allocation of CPU time to the processes compet-
ing for a CPU core. CFS achieves this by maintaining the notion of virtual runtime
for each competing process and schedules the process with the least used virtual time
to run next. Once a process is scheduled, it is allocated time slice amount of time
to run until it is preempted. In CFS, the time allocated to a process depends on some
configurable kernel parameters [24], namely: (i) sched min granularity ns: minimum
amount of time a process is allowed to be run on a CPU core before being preempted,
(ii) sched latency ns: minimum period after which CFS takes a scheduling decision.

9

The scheduling period (sched period), i.e., the period after which CFS takes schedul-
ing decisions is set to sched latency ns if the number of competing processes for a
CPU (n tasks) is less than (sched latency ns/sched min granularity ns), otherwise,
to (n tasks*sched min granularity ns). Each competing process then gets (sched peri-

od / n tasks) amount of CPU time within a scheduling period.

CFS performs context switches to ensure fairness among competing processes. An alter-
native scheduler in Linux kernel that is work conserving and causes lesser context switches
is the Real Time (RT) scheduler. RT scheduler prioritizes the completion of individual
processes, rather than ensuring fairness among competing processes. RT scheduler has
two scheduling policies resulting in a process being preempted only after it has finished
(first-in-first-out (FIFO) policy) or after its allocated time slice has expired (round-robin
policy). Note that in the case of VNFs, processes running the VNFs are not expected to
terminate by their own, but rather terminate based on external triggers (e.g., end of service
period). Therefore, the out of the box FIFO policy as currently implemented in the kernel
is not suitable for VNF workload. RT scheduler with a round-robin policy has a number of
tunable kernel parameters [24]. One relevant parameter is sched rr timeslice ms, which
determines the length of time slice a process is allowed to run before the next one is
scheduled in a round-robin fashion. However, we experimentally found that the minimum
values for the time slice value in both CFS and RT schedulers, i.e., 100 µs and 1ms
respectively, are still too large for VNF workload.

2.5 Related Work on NFV Scheduling

Scheduling has been extensively studied in various areas of systems and networking such
as cluster scheduling [25–27], packet scheduling [28, 29], flow scheduling [30, 31] among
others. What makes NFV scheduling different from other areas is that VNF processing
cost depends on a multitude of factors including packet size, packet arrival rate, VNF
configuration, and packet contents to name a few. In contrast, in other areas that are
close to NFV scheduling (e.g., packet/flow scheduling, joint compute-network scheduling)
processing costs are much more predictable and are usually dependent on lesser number
of variables (e.g., flow completion time depends on the amount of data to transfer and
available bandwidth). In this section, we discuss recent developments in scheduling with a
particular focus on NFV and contrast UNiS with the state-of-the-art.

10

2.5.1 Analytical Models for NFV Scheduling

There has been substantial developments in addressing VNF scheduling from a theoretical
point of view using different methodologies [32–37]. Riera et al., presents one of the early
integer program formulation for scheduling VNFs on a set of servers [32], which is limited
in scalability. Mijumbi et al., presents an optimization model to jointly map and schedule
VNFs on physical machines [33]. They also propose to use a tabu search meta-heuristic
to address the limited scalability of the optimization model. An extension to the previous
problem that also jointly considers routing between VNFs was studied in [35] and [36].
Both proposals use a mixed integer linear program to optimally solve the problem and
then use a tabu search meta-heuristic [35] and column generation [36] to improve the
scalability of their solutions. Other variants of the VNF scheduling problem have been
studied with different objectives (e.g., minimizing service latency [34]) and have been solved
using methods such as game theory [37]. The optimization models for different variations
of VNF scheduling is focused on scheduling SFCs across multiple machines, considering the
network topology, available compute and network resources etc. In contrast, UNiS’s focus
is to serve as a viable alternative to local OS schedulers for VNF scheduling. Moreover,
the methods used in this line of research are more suitable for devising an offline execution
plan rather than for online scheduling decision making at micro-second time, which is a key
requirement for UNiS. An analytical model focusing on processor sharing among VNFs
in a single server is presented in [38]. The objective of this work is to reduce the time an
outgoing NIC remains idle. In contrast, our objective is to pack as many VNFs as possible
on the CPUs and achieve comparable throughput to an intrusive scheduling mechanism.

2.5.2 Systems for NFV Scheduling

Flurries [39] and NFVNice [15] are two notable systems proposed for NFV scheduling.
Flurries proposes a system for hybrid poll-mode and interrupt driven execution of DPDK
based VNFs and combines that with using RT kernel scheduler. With this combination
Flurries is able to significantly increase VNF density on a physical machine. In contrast,
NFVNice [15] proposes a back-pressure based mechanism to slow down an SFC by setting
Explicit Congestion Notification (ECN) bit inside packets when VNFs experience packet
drops. However, both of these approaches are intrusive, i.e., they require the VNFs to be
built with scheduler provided library to get a better insight into the VNFs or assume usage
of certain mechanisms by the VNFs (e.g., set ECN bit in packet). Another approach is
to write VNFs from scratch to co-operate with other VNFs for better scheduling (similar
to [20]). This usually results in fewer context switches, however, requires carefully placed

11

scheduling checkpoints inside the VNF code. These intrusive approaches limit the VNFs
that can be used with a scheduler. In contrast, we adopt a black box approach in UNiS
to work with a wider range of VNFs.

12

Chapter 3

UNiS: A User-space Non-intrusive
Workflow-aware Virtual Network
Function Scheduler

3.1 Assumptions

UNiS is designed for VNFs operating in a poll-mode, i.e., continuously polling for incoming
packets, rather than operating in an interrupt-driven manner. We assume UNiS to operate
alongside a DPDK based NFV platform such as the one shown in Fig. 3.1. In this reference
platform, the VNFs are chained using an abstract entity called interface. An interface is an
abstraction over a finite storage with methods for pushing packets to and pulling packets
from it in batches. A specific implementation of the interface can be based on virtual
Ethernet (veth) pairs, shared-memory, etc. Our only assumption about the interface is
that it can export the number of outstanding packets/bytes and the actual capacity of
the underlying storage. This is a reasonable assumption since many existing system tools
export similar information (e.g., veth interfaces shaped by tc subsystem export queue
occupancy information). Another abstract component, flow classifier, redirects incoming
packets to the appropriate SFC. Flow classifier can be implemented in many ways such as
in software or using specific NIC features [40]. The NFV platform considered here does
not assume any specific implementation for the abstract components, hence, does not tie
UNiS to any specific implementation.

As a first step to achieve non-intrusive workflow-aware VNF scheduling, we consider
linear SFCs only and leave the case for general forwarding graphs for future extension.

13

Also, we assume VNF to CPU mapping for an SFC to be externally computed using one
of many available algorithms [41].

UNiS is intended to be used as a local scheduler for VNFs deployed on a machine and
does not consider a cluster-wide scenario. Indeed, a cluster-wide view will result in better
scheduling decisions. However, being first to address VNF scheduling in a non-intrusive
way, UNiS currently focuses on local scheduling (i.e., an alternative to existing OS kernel
and Intrusive schedulers) and leaves the cluster-wide case for future extensions.

3.2 System Design

3.2.1 System Architecture

syscall

Figure 3.1: System Architecture

We design UNiS as a user-space VNF scheduler. This design choice has several benefits
such as a faster development cycle and a high portability across different OSs. UNiS can
also co-exist with existing OS schedulers, allowing them to schedule non-VNF processes.
UNiS is expected to be part of every machine of an NFV infrastructure (NFVI). This way
UNiS complements existing NFVI software [42] responsible for deploying and monitoring
VNFs, and for creating VNF chains.

The system architecture of UNiS is presented in Fig. 3.1. UNiS exposes a north-
bound interface for the NFV Management and Orchestration (MANO) system (e.g., sim-

14

ilar to [43]) so that UNiS can be fed with SFC deployment information such as VNF to
CPU core assignment, configuration of interfaces that connect the VNFs, etc. These infor-
mation are typical to most NFV MANO systems, hence, do not restrict UNiS’s generality.
UNiS leverages the monitoring APIs exposed by existing NFVI software to monitor the
interfaces connecting VNFs. This follows the ETSI NFV reference architecture [4]. Finally,
UNiS uses OS provided system call APIs to interact with scheduling and process control
subsystem in the kernel to control VNF execution states (i.e., changing from running to
waiting state). Apart from the different APIs for interaction, UNiS has the following key
components:

Cycle Estimator

The cycle estimator component is responsible for profiling VNFs and estimate their pro-
cessing cost in terms of the number of CPU cycles required to process each packet, which
can also be translated to time dimension, i.e., per packet processign latency. The process-
ing cost of a VNF depends on a number of factors such as packet size, VNF configuration,
packet content etc. [44–46]. An ideal cycle estimator should be able to take all such factors
into account and provide an accurate estimate. The estimated cost of a VNF is used as an
input to the scheduling algorithm for determining the time slice allocated to that VNF.

Interface Monitor

To achieve the design goal of being generic, UNiS considers the VNFs as black boxes and
relies on externally monitoring the interfaces that connect the VNFs. The interface monitor
assumes that the underlying NFVI provides APIs to obtain the following statistics: (i) the
number of outstanding packets in an interface connecting two VNFs; (ii) the maximum
number of outstanding packets an interface can hold. These information are generic and
are commonly exported by existing system tools. Note that with the availability of more
types of statistics that the Interface Monitor could gather, e.g., packet drop rate, incoming
packet rate, etc., UNiS can potentially improve its scheduling decisions.

Timer Subsystem

The timer subsystem provides time accounting mechanism to UNiS to decide if a VNF
has exhausted its allocated time slice. The timer subsystem maintains a high precision
timer in the user-space and is used for triggering events such as interface monitoring, VNF
preemption, etc.. This subsystem is a key component in UNiS scheduling algorithm.

15

Process Controller

The process controller subsystem interacts with the underlying operating system to control
the execution state of VNFs (e.g., to start a waiting process or to preempt a running
process). It should provide an efficient and reliable user-space mechanism that has low
overhead and works under high frequency invocations. Since there are multiple ways to
implement the process controller, even on the same OS, this subsystem should be able
to support multiple implementations. As a result, it hides the underlying OS specific
details from UNiS and porting UNiS to a different OS only requires adding another
implementation with the corresponding system calls for the target OS to the existing
process controller.

3.2.2 Scheduling Algorithm

At the core of UNiS, a scheduling algorithm makes scheduling decision for each CPU
core. The scheduling algorithm leverages the components of UNiS to monitor the system,
determines which VNF to run next and the time slice allocation, and acts upon the VNFs
to start/stop them. Some research has been dedicated to address VNF scheduling from
a theoretical perspective [32–37]. However, these proposals are more suitable for devising
an offline execution schedule and not for taking online scheduling decisions at the micro-
second scale, which is a key requirement in UNiS. Therefore, we develop a lightweight yet
effective scheduling algorithm for UNiS based on estimated time slice allocation and
interface occupancy between the VNFs in an SFC.

UNiS maintains a per CPU core wait queue of VNFs. When an external orchestrator
invokes UNiS’s northbound API with VNF to CPU mapping for a new SFC request, UNiS
takes the VNFs in the order they appear in the SFC and places them in their corresponding
CPU’s wait queues.

The pseudo-code of UNiS’s main scheduling loop is presented in Alg. 1. Before entering
the main loop (line 3), it deploys the first VNF in each CPU’s wait queue and creates
the corresponding per core timer by leveraging UNiS’s timer subsystem. time slice

allocated to a VNF v is computed as: complexity(v) ∗ γ ∗ interface capacity(v.egress),
where complexity(.) gives us the estimated per packet processing time (profiled by UNiS’s
cycle estimator) required by v, and interface capacity(.) gives us an interface’s capacity
to hold outstanding packets. This equation ensures that a VNF is given sufficient time
to fill up its egress interface as close as possible to its full capacity, thereby maximizing
throughput. 0 ≤ γ ≤ 1 is a parameter used for leaving some head-room in the interface to

16

Algorithm 1: UNiS Scheduling Loop

Input: cores = Set of CPU cores; T = monitoring interval; timer subsystem,
process controller, monitor = Handler to UNiS system components

1 function ScheduleVNFs()
2 timer subsystem.monitoring timer.start(T)

/* The system is initialized by running the first VNF in every
core’s wait queue and creating corresponding per core timers.
*/

3 while true do
/* Take scheduling decision after every T µs */

4 if timer subsystem.monitoring timer.is expired() == false then continue
/* Iterate over each core and check if a new VNF can be

scheduled */
5 foreach core ∈ cores do
6 C ← core.cur vnf
7 if core.timer.is expired() or monitor.num pkts(C.ingress) ≤ θmin or

monitor.num pkts(C.egress) ≥ θmax then
/* Iterate over the wait queue (WQ) and find a VNF that

has sufficient work to do */
8 core.WQ.push(C)
9 N ← core.WQ.pop()

10 while (C 6= N) and (monitor.num pkts(N .ingress) ≤ θmin or
monitor.num pkts(N .egress) ≥ θmax) do

11 core.WQ.push(N)
12 N ← core.WQ.pop()
13 end
14 end

/* If a candidate VNF is found, allocate a time slice to it
*/

15 if C 6= N then
16 core.timer.stop()
17 time slice ← cost estimator.get cost(N) * γ *

monitor.pkt cap(N .egress)
18 process controller.deactivate(C)
19 process controller.activate(N)
20 core.cur vnf ← N
21 core.timer.reset(time slice)
22 end
23 end
24 end
25 timer subsystem.monitoring timer.reset(T)
26 end

17

account for deviation of actual packet processing cost from the estimation. Then, UNiS
monitors the system and takes a scheduling decision every T µs.

During each scheduling interval, UNiS first checks if any of the CPUs has an expired
timer, i.e., the scheduled VNF needs to be preempted (line 7). Note that the incoming
traffic rate is not considered during time slice computation because the incoming rate
of the SFC might be different from the incoming rate at each ingress interface of a VNF.
Therefore, there can be situations where a VNF does not have sufficient packets to process
(i.e., its ingress interface has less than θmin packets), or the outgoing interface is close to
becoming full (i.e., its egress interface has more than θmax packets outstanding), even if
the time slice allocated to that VNF has not expired. We account for these conditions
when determining if a VNF should be preempted or not (line 7). When such a VNF is
found, we iterate over the CPU’s wait queue and find a candidate VNF for scheduling that
has more than θmin packets in its ingress and less than θmax packets in its egress interfaces
(lines 8 – 14). Such selection criterias avoid wasted CPU cycles and unnecessary context
switches by ensuring that the selected VNF has meaningful work to do when scheduled.
We refer to this added optimization as the Interface Occupancy based Optimization. Once
a proper candidate VNF is found, Alg. 1 interacts with the process controller to preempt
the currently running VNF and schedule the next one.

3.3 Implementation

We have implemented a prototype of UNiS in C++ to work alongside a DPDK-based
implementation of the reference NFV platform from Fig. 3.1. The reference NFV platform
uses DPDK PMDs for packet I/O, rte ring and hugetlbfs [47] to create shared memory
between VNFs facilitating zero-copy packet exchange. This shared memory based interface
has the capacity to hold 2048 packet references at a time and facilitates I/O in batches
of up to 64 packets (i.e., batch size = 64). In the implementation of UNiS scheduling
algorithm, we set γ to 0.75 so that a newly scheduled VNF gets sufficient time to fill its
egress buffer with a substantial number of packets and avoid overflow or packet drop due to
any inaccuracy in packet processing cost estimation. We set θmin parameter to (batch size
- 8), and θmax parameter to interface capacity(v.egress)∗γ for a VNF v. In the following,
we first describe the implementation of the NFV platform that UNiS is built on, followed
by the implementation of UNiS system components to address the goals and challenges
discussed in Section 1.2.

18

3.3.1 The Reference NFV Platform

UNiS is built on an NFV platform that we implemented in house from scratch. Our
NFV platform is a generic high performance DPDK-based system providing interfaces to
instantiate chains of VNFs. DPDK allows packets received by the NIC to be brought
directly into the user-space, specifically, to the hugepages in the hugetlbfs [47] that is made
accessible to the VNFs.

Our NFV platform reads the configuration files of an SFC containing multiple VNFs,
allocates the necessary memory, creates shared-memory based abstraction for packet ex-
change and instantiates the VNFs. Each deployed VNF is a user-space process running in a
poll-mode model. As described in Section 2.3, these VNFs exchange packets between them
via a lockless multi-producer multi-consumer circular queue provided by DPDK rte ring

library. Note that this rte ring data structure does not contain the entire packet data,
instead, it stores only pointers to the beginning of the data structure containing the actual
packet. Therefore, packet movement between VNFs does not require copying whole packet
content rather is performed through copying only the pointers. The circular queue data
structure in our implementation can hold up to 2048 packet pointers.

A VNF starts polling its ingress interface and reads a batch of maximum 64 packets at a
time. Inside the VNF we add an optimization to pipeline packet processing by prefetching
a cacheline worth of packet data into L1 cache, i.e., when packet i from a batch is being
processed, a non-blocking cache prefetch instruction is issued to prefetch a cacheline worth
of data from packet i + m from the batch and warm up the L1 cache. After processing a
batch, the VNF pushes these packets to its egress interface. However, if the egress interface
is full, packets are dropped. Then the VNF loops back to the beginning and pulls the next
batch of packets from its ingress interface.

In our NFV platform, we also have the provision to include scheduling checkpoints
in the VNFs as an optional feature. Without the scheduling checkpoint, the VNF will
continuously execute the poll-mode loop of pulling, processing and pushing packets. With
the scheduling checkpoint, the running VNF will yield its CPU after processing and pushing
a certain number of batches of packets. As soon as a VNF yields its CPU, one of the other
VNFs pinned to the same core will be scheduled.

19

NF i

Cycles
Estimator

DPDK PMD NF i-1 NF i+1

Figure 3.2: UNiS Cycle Estimator

3.3.2 UNiS Components

Cycle Estimator

We have implemented the Cycle Estimator to statically profile a VNF by pushing a batch
of 64B packets into its ingress interface and then polling the egress interface to capture
the batch of packets back and measures the time elapsed in between, as shown in Fig. 3.2.
During the estimation process, the VNF is given a dedicated CPU core without other VNFs
sharing that core. We are aware that this estimated cost is not the ideal representation
of actual processing cost since I/O from and to the interfaces is included in the estimated
cost. Furthermore, the actual cost depends on many factors such as packet size, VNF
configuration, content of the packets, etc. To overcome this inaccuracy issue, we introduce
the interface occupancy based optimization mentioned in Alg. 1 to fine tune the CPU time
allocated to a VNF and leave dynamic adaptation of processing cost as a future work.

Interface Monitor

As mentioned earlier, the underlying NFV platform uses a shared memory based zero-
copy abstraction to implement the interfaces facilitating VNF chaining. The NFV MANO
system provides UNiS with SFC information that contains the configuration of the inter-
faces (e.g., name of the shared memory region created by the external orchestrator and
the interface memory capacities). After the initialization phase, the Interface Monitor
uses rte ring library to periodically read the ring occupancy and updates UNiS internal
data structure that keeps track of this occupancy information. The aforementioned mech-
anism does not limit the generality of our solution. Similar APIs also exist for other Linux

20

subsystems, e.g., interfaces controlled by Linux tc also export similar information.

Timer Subsystem

We leverage DPDK’s rte timer library for a high precision time keeping in the user-space.
The library is able to maintain its high precision by using the High Precision Event Timer
(HPET), a hardware timer developed by Intel and Microsoft that has been integrated to
their chipsets since 2005. In the absence of HPET, the library will use the CPUs Time
Stamp Counter (TSC) registers to provide a reliable time reference [48].

Timers created by the rte timer library use an asynchronous callback mechanism that
we use to set a variable indicating timer expiration for a particular CPU core. We peri-
odically poll this variable to check for timer expiry and trigger the necessary scheduling
events. Once a timer is found to be expired, the VNF process running on that core will
be preempted, the next VNF process will be run, and the timer is reset accordingly to the
time slice of the newly scheduled VNF. Currently, we poll the timer every 1µs, hence,
can trigger scheduling events at 1µs granularity.

Before settling on using rte timer, we explored the possibility of integrating libevent
which is another library for implementing the timer subsystem. However, our early exper-
iments demonstrated that libevent is unable to provide the micro-second level precision
that we need.

Process Controller

A key challenge in implementing process controller in the user-space is to ensure a low over-
head in switching processes. We tried several mechanisms for implementing this subsystem
including Linux control groups (cgroups), POSIX signals, and using scheduler priority pa-
rameter (sched priority) in RT scheduling with round-robin policy. This led us to develop a
process controller library to allow multiple process controller mechanisms to co-exist under
a common API. This approach enables programmers to easily select different mechanisms
and add new process controller implementations in the future.

Linux cgroup is a Linux kernel feature that can be used to limit and isolate resource
(e.g., CPU, memory, disk I/O, and network) usage of a collection of processes. The common
way of using cgroup is to create and interact with its virtual file system directly. However,
we found that the cgroup file system hierarchy does not fit our need since under each
group, we are restricted to tune the default OS scheduler parameters that do not have
small enough minimum values. The relative shares between process groups in cgroup are

21

not suitable for our proposed algorithm that tries to allocate time slice proportional to
the VNF processing cost.

POSIX signal allows a user-space process to send notifications to another process or
a thread. In our case, we found SIGSTOP and SIGCONT signals to be potential candi-
dates. SIGSTOP instructs the operating system to stop a process for later resumption, and
SIGCONT instructs the operating system to continue the execution of a process. Our early
experiments with the POSIX signal were successful when scheduling two processes with
a relatively large time slice. However, this approach does not work properly with more
than two processes and with smaller time slice allocation. Our conjecture is that the
POSIX signal can not handle the high frequency (a few microseconds interval) invocations
of these signals.

The final mechanism we implemented and also our mechanism of choice for UNiS is
the following. We set the kernel to use the Linux RT scheduler with round robin policy
(i.e., SCHED RR). With this setup, RT scheduler schedules the process with the highest
priority at any moment and puts the other lower priority competing processes in the waiting
state. When a different process is given the highest priority, RT scheduler swaps out the
current process with the new highest priority process. In this way, we are able to control
the execution state of VNFs by changing the sched priority parameter. Note that VNFs
are switched after every time slice or less, which is computed by UNiS and is much
smaller than the one assigned by RT scheduler. Therefore, there is no side-effect in using
RT scheduler.

3.3.3 Alternative Implementation on a Different Environment

Although the implementation details elaborated so far are meant for Linux, it does not
imply that the design and implementation of UNiS is specific to the Linux environment. In
designing UNiS to achieve high usability, we do not leverage any specific implementation
that only exist in Linux operating system. Therefore, we believe that the same concepts of
building a user-space non-intrusive workflow-aware VNF scheduler can also be implemented
for different environments. We implemented a prototype of UNiS in Linux because it is
widely used in server deployments, and open-sourced with a rich ecosystem of development
resources.

We conducted a study showing the feasibility of implementing UNiS for Windows server
since it is also a commonly used OS for commercial servers. We found that official support
for DPDK on Windows has already been initiated through windpdk, an experimental
branch of DPDK. As demonstrated in DPDK Summit 2017 [49], windpdk already has the

22

essential libraries, i.e., rte eal, rte mempool, rte ring, etc., compiled and working
on Windows Server 2016. Once the DPDK libraries required by UNiS are available in
windpdk, the Cycle Estimator, Interface Monitor, Timer Subsystem components in UNiS
can be directly used without any modification. For the Process Controller component,
Windows has three options (i.e., system scheduler, user-mode scheduling (UMS), and fibers)
to allow user-space scheduling. The most relevant one is system scheduler, a priority
based scheduling mechanism that decides which of the competing threads receives the next
processor time slice. The system assigns time slices in a round-robin fashion to all threads
with the highest priority [50]. Additionally, the APIs for adjusting the priority for the
specified process are also available [51]. Based on this study, we are confident that UNiS
can be ported to Windows without requiring any changes in the design.

23

Chapter 4

Evaluation

We evaluate the performance of UNiS through testbed experiments. In the following,
we first describe our experiment setup in Section 4.1. Then, we present our evaluation
results on the effectiveness of UNiS’s scheduling based on the following scenarios: (i)
SFC with fixed and uniform cost VNFs (Section 4.2.1), (ii) SFC with fixed but non-
uniform cost VNFs (Section 4.2.2), and (iii) SFC with variable cost (traffic dependent)
VNFs (Section 4.2.3), and (iv) one or more SFCs deployed across multiple CPU cores
(Section 4.2.4). Furthermore, we investigate factors that affect the throughput of UNiS in
Section 4.3, and the impact of our interface occupancy based optimization in Section 4.4.
We conclude this section with a discussion on cost vs. benefit of using intrusive and
non-intrusive approaches in Section 4.5.

4.1 Experiment Setup

4.1.1 Testbed

Our testbed consists of two physical machines with identical configuration connected back
to back without any interfering switch. One machine acting as the device under test hosts
the VNFs and UNiS, while the other one is used for traffic generation. Each machine
is equipped with a DPDK compatible Intel X710-DA 10Gbps NIC, 16GB of memory,
and 3.3Ghz 4-core Intel Xeon E3-1230v3 CPU with L1 data and instruction caches each
4x32KB 8-way set associative, 4x256KB 8-way set associative L2 cache, and 8MB 16-way
set associative L3 cache. When running UNiS, we isolate all the CPU cores except core

24

0 from the kernel scheduler and use them for VNF deployment, this way eliminating any
conflict between the kernel scheduler and UNiS.

4.1.2 VNF Types

We use two types of VNFs in our experiments: (i) a fixed cost VNF whose packet processing
cost is fixed and does not depend on packet size, (e.g., similar to a layer 2-4 firewall), and
(ii) a variable cost VNF whose packet processing cost is a function of packet size (e.g., a
WAN optimizer performing payload compression). For fixed cost VNFs, we use the same
lightweight VNF used in Section 1.1 which reads and writes the ethernet addresses of a
packet and add some imitated CPU intensive workload to emulate three different levels of
packet processing cost, namely, light (50 cycles/packet), medium (150 cycles/packet), and
heavy (250 cycles/packet). We profile the fixed cost VNFs by pushing smallest size packets
and measuring the packet processing latency, and use this as their cost during scheduling.
For the variable cost VNF, we implement a VNF whose packet processing cost is a step
function of the packet size with the minimum cost similar to the cost in light VNF and
the maximum cost equals to the cost in a heavy VNF. We profile the variable cost VNF
using varying packet sizes ranging from 64 bytes to MTU size (1500 bytes) and consider
the average packet processing latency over all sizes as their cost.

4.1.3 Workloads

We use pktgen-dpdk [17] and Moongen [52] for throughput and latency measurements,
respectively. For throughput measurement, we generate traffic with different packet sizes,
i.e., ranging from smallest size (64 bytes) to MTU sized (1500 bytes) packets with pktgen-
dpdk. We also use a real data center traffic trace (UNI1 trace [53] from [1]) to evaluate the
effectiveness of UNiS under realistic traffic load. UNI1 trace is captured from a data center
consisting of 500 servers and 22 switches, and exhibits a bi-modal packet size distribution
centering around 200 bytes and 1400 bytes. During latency measurement with synthetic
workload, we set the packet size to 128 bytes to provide some room for Moongen to embed
a timestamp in some of the generated packets. We also set packet transmission rate to
80% of the maximum sustainable throughput in that deployment scenario to avoid the
timestamped packets sent being dropped by the VNFs.

25

4.1.4 Compared Approach

First of all, we do not compare UNiS to the default OS scheduler because the performance
of the default OS schedulers is too low as discussed in Section 1.1. We wanted to com-
pare UNiS with NFVNice, however, the complete source code of NFVNice is not publicly
available. Additionally, the performance results reported by NFVNice are very limited in
terms of the system evaluation scenarios. They only provide an overall throughput report
comparing NFVNice to OS schedulers with SFCs consisting of 3 VNFs with different pro-
cessing costs. The fact that the heaviest VNF in their chain costs 550 cycles per packet
limits their throughput to less than 2.5 Mpps, which is only 17% of their input traffic of
14.88 Mpps (10 Gbps line rate). We believe that the ideal VNF throughput should be close
to line rate and able to allow more than 3 VNFs sharing one CPU core. Therefore, we
compare UNiS with an intrusive co-operative scheduling approach similar to [20]. In this
intrusive approach, the VNF is designed to voluntarily yield the CPU for other competing
VNFs after processing k batches of packets. To decide the value for this parameter k,
we run some experiments tuning the value and found that k = 8 is a good choice. With
the voluntary yield after processing only 8 batches, the time slice allocated to VNFs by
OS scheduler does not have any impact on the VNF performance. Note that cooperative
scheduling does not always guarantee VNF execution order according to an SFC. There-
fore, we repeat each experiment with the intrusive approach for 5 times and report average
result across all runs. The simplicity of intrusive co-operative scheduling offers very low
overhead and provides a very efficient scheduling that has been used in embedded systems.

4.1.5 Evaluation Metrics

Throughput and Latency We measure the throughput and packet processing latency
for both UNiS and the intrusive approach. We represent throughput as packets per second
(pps) when using fixed packet size, or bits per second (bps) when using a mix of different
packet sizes. For latency, we report the per packet average with 5th and 95th percentile
latency values in µs. In addition to providing the result of these metrics, we also conduct
an in-depth study investigating several operating system events, such as the number of
context switches, cache misses ratio and CPU cycles consumed by a VNF to explain the
observations from our experiments.

VNF density VNF density of a scheduling approach is measured by fixing a target
throughput and determining the maximum length of an SFC chain (i.e., number of VNFs)

26

that can be deployed on a single CPU to sustain that throughput. This metric demonstrates
a scheduling approaches ability to pack as many VNFs to a CPU core without degrading
performance.

4.2 Evaluation Scenarios and Results

4.2.1 SFC with fixed and uniform cost VNFs

Our first set of experiments measure how much does the non-intrusive scheduling approach
deviates from the intrusive approach in terms of throughput. We deploy SFCs of different
lengths composed of identical VNFs with fixed packet processing cost (all light VNFs) on
a single CPU core and present throughput results for the smallest (i.e., 64 bytes) packet
size in Fig. 4.1(a). Up to an SFC of length 4, both the intrusive approach and UNiS are
able to sustain line rate. From length 5 and beyond, packet processing throughput drops
below line rate and UNiS is not able to match that of the Intrusive approach. However,
the deviation from the Intrusive approach was no more than 10% over all chain lengths.
Note that the lighter the VNF the more the impact of accurate time slice allocation.
Therefore, this scenario with light VNFs measures the worst case performance deviation.
In reality, with increasing VNF processing cost we expect the gap to be smaller. We confirm
this hypothesis through another set of experimental results presented in Fig. 4.1(b) where
we have the identical setup as before but use medium VNFs instead of the light ones. Since
the VNFs are heavier, they cannot reach line rate processing in any case. However, the
key observation here is that with increased packet processing cost UNiS’s performance
deviation from the intrusive approach is almost negligible (<2.5%).

We designed UNiS prioritizing high throughput over low latency. However, we still
perform a set of experiments to measure the extent of latency incurred by the packets.
For SFC consisting of 3 medium VNFs (Fig. 4.2), the latency of UNiS is very close to
the intrusive approach. However, for longer chain lengths, packets experience between
14% to 58% more latency on average in UNiS compared to the intrusive approach. The
lower latency in the intrusive approach is because the CPU is voluntarily released after
processing only 8 batches of packets, which avoids queue buildups. Note that the large
error bar in the intrusive approach with longer SFCs is attributed to the inability to set
the desired execution order of the VNFs sharing a CPU core.

The latency results for the light and heavy VNFs (Fig. 4.3) show different trends com-
pared to the latency result of the medium VNFs. In the case of light VNFs scheduled by

27

UNiS, packets experience an average of 14 µs additional latency compared to the intrusive
approach as shown in Fig. 4.3(a). We attribute this increase in latency to the following
factors: (1) the impact of out of order execution of VNFs is not evident in SFC with light
VNFs. (2) the difference between the estimated packet processing cost with the actual
processing cost that causes time slice allocation is not as intended; (3) since the light
VNFs process packets faster, queue buildups in the interface connecting VNFs are growing
faster and can cause packet drop. This could happen when the allocated time slice is
too long and the Interface Monitor has not updated its statistics.

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (M

pp
s)

Len. of SFC Sharing a CPU

Intrusive
UNiS

(a) Throughput with Light VNFs

 2

 4

 6

 8

 10

2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (M

pp
s)

Len. of SFC Sharing a CPU

Intrusive
UNiS

(b) Throughput with Medium VNFs

Figure 4.1: SFC with fixed and uniform cost VNFs

28

 0

 50

 100

 150

 200

 1 2 3 4 5 6

La
te

nc
y

(µ
s)

Len. of SFC sharing a CPU

Intrusive UNiS

Figure 4.2: Latency with Medium VNFs

For SFC composed of heavy VNFs, we observe an opposite pattern, i.e., average packet
processing latency is lower when VNFs are scheduled by UNiS compared to using intrusive
approach. This is due to the fact that the cooperative intrusive approach is unable to always
guarantee VNF processing order according to the SFC. Because of out of order execution,
packets have to stay longer in the interfaces until the appropriate VNF is scheduled and
processes them. Unlike light and medium VNFs, heavy VNFs have higher packet processing
cost leading to larger CPU time allocation during each scheduling round, which amplifies
the penalty of such out of order execution. For instance, consider 5 VNFs chained together
forming a SFC of VNF1→ VNF2→ VNF3→ VNF4→ VNF5, the worst execution order in
this case is when VNFs are scheduled in the reverse order from VNF5 down to VNF1. The
reason is that packets will come first to the VNF1, and then will be processed and placed
to the interface connecting VNF1 and VNF2. However, the next scheduled VNF is VNF5
instead of VNF2, thus, VNF2 has to wait until VNF5, VNF4, VNF3 are scheduled and
yielded the CPU. This also shows that UNiS being workflow-aware, provides additional
advantage in terms of latency in scheduling more computational heavy VNFs.

We also present VNF density by varying the target throughput in Fig. 4.4. We conduct
the experiment by using all three flavors of VNFs, i.e., light, medium, and heavy. UNiS
has identical VNF density in most cases compared to the intrusive approach. Even when
UNiS packed less number of VNFs than the intrusive approach, the difference is less than
10%.

29

 0

 20

 40

 60

 80

 1 2 3 4 5 6

La
te

nc
y

(µ
s)

Len. of SFC sharing a CPU

Intrusive UNiS

(a) Latency with Light VNFs

 0

 150

 300

 450

 600

 1 2 3 4 5 6

La
te

nc
y

(µ
s)

Len. of SFC sharing a CPU

Intrusive UNiS

(b) Latency with Heavy VNFs

Figure 4.3: Latency results for Light and Heavy VNFs

4.2.2 SFC with fixed but non-uniform cost VNFs

In our next scenario, we deploy SFCs of different lengths with an alternating sequence
of medium and heavy VNFs, i.e., the VNFs at odd positions are the medium ones and

30

 0
 5

 10
 15
 20
 25
 30

100 80 60 40 20

N
o.

 o
f V

N
Fs

/C
PU

Target Throughput (% of line rate)

Intrusive-Light
UNiS-Light

Intrusive-Med
UNiS-Med

Intrusive-Heavy
UNiS-Heavy

Figure 4.4: VNF density on a single core with fixed cost VNFs in an SFC

at even positions are the heavy ones. The goal of this experiment is to demonstrate the
effectiveness of UNiS in handling heterogeneity in an SFC. The results of this experiment
are presented in Fig. 4.5. As a result, UNiS is able to sustain a throughput that only
deviates less than 2% from that of the intrusive approach for all chain lengths.

 2

 4

 6

 8

2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (M

pp
s)

Len. of SFC Sharing a CPU

Intrusive
UNiS

Figure 4.5: SFC Composed of VNFs with fixed but non-uniform processing cost

31

 2

 4

 6

 8

 10

2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (G

bp
s)

Len. of SFC Sharing a CPU

Intrusive
UNiS

Figure 4.6: SFC composed of VNFs with variable processing cost (function of packet size)
under real traffic load from [1]

4.2.3 SFC with variable cost (traffic dependent) VNFs

Previous experiments have not considered variable processing cost of a VNF based on
traffic. However, many VNFs that operate on payloads can exhibit different processing
costs depending on the packet size. To demonstrate the effectiveness of UNiS for such
cases, we deploy SFCs composed of chains of variable cost VNFs described in Section 4.1.3.
We play a real traffic trace containing packets of different sizes [1] and report the throughput
in Fig. 4.6. UNiS performs very close to the intrusive approach with less than 2% deviation.
The interface occupancy based optimization in Alg. 1 helps UNiS in this scenario to fine
tune the time slice allocated to the VNFs, which was computed using UNiS Cycle
Estimator in the first place. We will further discuss the effectiveness of our interface
occupancy based optimization in Section 4.4.

4.2.4 Multiple SFCs and Multiple CPU Cores

This evaluation scenario is intended to validate if UNiS causes any starvation while
scheduling one or more SFCs spanning multiple CPUs. We deploy two SFCs (indicated
by S1 and S2) consisting of all medium VNFs (i.e., CPU limited) using the configurations
described in Table 4.1. In Scenario (a), there are multiple SFCs deployed on a single core.
With the intrusive approach, both SFCs achieve equal throughput of 5.31Mpps for 64B
packets. We also observe a near equal throughput distribution across S1 and S2 for UNiS,

32

indicating no SFC is starving for CPU. Scenario (b) has two SFCs deployed across two
cores and each core hosts VNFs from two SFCs. Similar to (a), the intrusive approach
shows equal throughput for both SFCs. We also observe similar behavior in this case for
UNiS, validating the fact that no starvation is occurring when CPU cores are hosting
VNFs from multiple SFCs and SFCs are deployed across multiple cores. Finally, scenario
(c) deploys one SFC across multiple cores and here we see UNiS achieving a throughput
within 1.3% of the intrusive approach.

VNFs # VNFs # VNFs Int. Thput. UNiS Thput.
in SFC on Core-1 on Core-2 (Mpps) (Mpps)

(a) S1 = 3 S1 = 3 – S1 = 5.31 S1 = 5.30
S2 = 1 S2 = 1 S2 = 5.31 S1 = 5.21

(b) S1 = 4 S1 = 3 S1 = 1 S1 = 5.24 S1 = 5.10
S2 = 4 S2 = 1 S2 = 3 S2 = 5.24 S2 = 5.14

(c) S1 = 8 S1 = 4 S1 = 4 S1 =5.41 S1 = 5.34

Table 4.1: Results for Multiple SFCs across Multiple CPUs

4.3 Investigation into UNiS’s Throughput Gap

We observed a throughput gap of up to 10% between UNiS and the intrusive approach for
an SFC composed of light VNFs sharing a CPU core (Section 4.2.1). To better understand
the reason behind this gap, we measure several system-level metrics including the number
of context switches, cache miss ratio and CPU cycles used by VNFs, which are known
to have a major impact on system performance. We conducted experiments with varying
SFC lengths up to 5 and observed similar trends for all lengths. Therefore, we only report
our findings for SFCs of length 5.

In our compared intrusive approach from (Section 4.1.4), the VNF voluntarily yields
CPU after processing every k batches of packets, which was set to 8 across all the previous
experiments. However, the value of k heavily influences the number of times a VNF
process switches context and also the cache access pattern. To better compare UNiS with
the intrusive approach we also vary the value of k and show the performance difference
with UNiS as well. In the following, we use the term kbatch-n to refer to an intrusive
scheduling scenario with the value of k set to n. Note that kbatch-24 has the closest
behavior to UNiS since both of these approaches try to fill up 75% capacity of the interface
connecting adjacent VNFs.

33

 12

 13

 14

 15

5

Th
ro

ug
hp

ut
 (M

pp
s)

kbatch-8
kbatch-16
kbatch-24

UNiS

(a) Light VNFs

 4

 4.5

 5

 5.5

5

Th
ro

ug
hp

ut
 (M

pp
s)

Len of SFC sharing a CPU

kbatch-8
kbatch-16
kbatch-24

UNiS

(b) Medium VNFs

Figure 4.7: SFC length 5 with uniform cost VNFs

In Fig. 4.7, we present throughput measurements for different kbatch-n scenarios and
UNiS, and notice different trends for SFCs composed from light and medium VNFs
when scheduled with different kbatch-n scenarios. In Fig. 4.7(a), we see that kbatch-16
and kbatch-24 scenarios have lower throughput than kbatch-8, i.e., our default intrusive

34

scheduling scenario. Whereas in Fig. 4.7(b), increasing the value of k results in a higher
throughput. This suggests that there are different key factors affecting the performance in
the light and medium flavor VNFs. Note that in both cases UNiS has lower throughput
than kbatch-8 scenario and throughput drop is more evident in the case of SFC composed
of light VNFs compared to the one with the medium VNFs.

Our first step in investigating this throughput gap is to look at the number of context
switches experienced by each VNF along the chain. As shown in Fig. 4.8(a), UNiS has
less than half context switches than the default intrusive approach. This finding is rather
counter-intuitive since we expect better throughput with lesser number of context switches.
Therefore, this result alone does not explain the throughput gap and we continue looking
for other factors in the OS.

We then measure the actual CPU cycles consumed by each of the VNFs within a
1-second time window using perf tool [54]. Here, we focus on the slowest VNF in the
chain since the throughput of the SFC is limited by the slowest VNF. The results are
presented in Fig. 4.8(b). Despite the lesser number of context switches, the slowest VNF
in UNiS, kbatch-16, and kbatch-24 get marginally more CPU cycles than the default
intrusive scheduling scenario within the same 1-second time window. This suggests that
the savings from the reduced number of context switches is not significant enough to
substantially improve packet processing throughput.

Finally, we analyze the cache access pattern of the light VNFs in the SFC and present
the results in Fig. 4.9 in terms of the percentage of cache misses over total cache references
for each of the VNFs along the chain. Note that the synthetic workload with 64B packet
generated at 10Gbps line-rate is used here, and for each packet, the VNF only accesses
the packet header occupying 2 cache lines (128 B). We observe a trend where UNiS and
intrusive approach with larger k exhibit more cache misses across the VNFs along the
chain. The first three VNFs in the chain have higher cache-miss percentage because they
are still warming up the cache. A closer look to the last VNF in the chain reveals that
UNiS’s cache-miss percentage (9.8%) is almost double that of kbatch-8 (4.9%), i.e., the
default intrusive scheduling scenario. This behavior is attributed to UNiS processing more
batches of packets compared to the default intrusive case. Processing more batches also
increases the chances of evicting previously cached packets from the CPU cache hierarchy.
This increased percentage of cache misses combined with not so significant savings in CPU
cycles from context switches contribute to reducing packet processing throughput of UNiS.

Although the throughput gap in the SFC with medium VNFs is almost negligible, we
still conduct a study on context switches and CPU cycles to find a proper explanation and
better understand the behavior of our system. The context switches behavior observed in

35

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000

1 2 3 4 5

C
on

te
xt

 s
w

itc
he

s

k-th NF in the chain

kbatch-8
kbatch-16
kbatch-24

UNiS

(a) Context switches in 1 second

 400

 500

 600

 700

 800

C
yc

le
s

(1
06)

The slowest NF in chain len-5

kbatch-8
kbatch-16
kbatch-24

UNiS

(b) CPU cycles consumed in 1 second

Figure 4.8: Context switches and CPU cycles in SFC length 5 with uniform light VNFs

SFC with medium VNFs (Fig. 4.10(a)) is similar to the light VNF case discussed above.
Fig. 4.10(b) shows that the CPU cycles consumed by the slowest VNF in a 1-second time
window in UNiS is marginally more than that of the kbatch-8 scenario. This implies again
that the CPU cycles saved by the reduced number of context switches are not significant

36

 0
 10
 20
 30
 40
 50
 60
 70

1 2 3 4 5

C
ac

he
-m

is
se

s
(%

)

k-th NF in the chain

kbatch-8
kbatch-16
kbatch-24

UNiS

Figure 4.9: Ratio of cache misses with light VNFs

compared to the CPU cycles required to process a batch of packets. We calculate the
expected increase in throughput from these extra cycles and present them in Table 4.2. In
the case of UNiS the extra cycles translate to just 0.067 Mpps throughput increase, which
is insignificant.

Extra cycles per sec Increase in TP (mpps)
UNiS 10,080,998 0.067
kbatch-16 27,235,101 0.181
kbatch-24 30,343,564 0.202

Table 4.2: Extra throughput from the reduced context switches (compared to kbatch-8)

4.4 The Impact of Interface Occupancy based Opti-

mization

As mentioned in Section 3.3 and Section 3.2.2, the allocated time slice to a VNF should
be large enough to fill the VNF’s egress buffer close to its full capacity, yet not too much to
cause packet drops. The γ parameter used in time slice calculation allows us to adjust
the time slice allocation, which is intended to compensate the inaccuracy introduced

37

 0
 2500
 5000
 7500

 10000
 12500

1 2 3 4 5

C
on

te
xt

 s
w

itc
he

s

k-th NF in the chain

kbatch-8
kbatch-16
kbatch-24

UNiS

(a) Context switches in 1 second

 600

 700

 800

 900

C
yc

le
s

(1
06)

 in

 1
s

The slowest NF in chain len-5

kbatch-8
kbatch-16
kbatch-24

UNiS

(b) CPU cycles consumed in 1 second

Figure 4.10: Context switches and CPU cycles for an SFC with uniform (medium) VNFs

because of the static profiling approach taken by UNiS’s cycle estimator. In this section,
we investigate the impact to the overall system throughput when the allocated time slice

is too small or too large and how the interface occupancy based optimization helps in
alleviating the impact of inaccurate time slice allocation.

38

 2

 4

 6

 8

 10

2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (G

bp
s)

Len. of SFC Sharing a CPU

UNiS
UNiS-No-Opt

Figure 4.11: Impact of occupancy based optimization in variable cost SFC

We perform experiments with and without the interface occupancy based optimization
and show its impact using an SFC consisting of variable cost VNFs with real traffic trace
in Fig. 4.11. In this case, the allocated time slice can sometimes overflow the interface
when the processing cost is low (small packet size), or produce less batches of packets when
the processing cost is high (large packet size). The added optimization results in as much
as ≈10% performance improvement, which is relatively significant in absolute terms when
packets are being processed at a rate of tens or hundreds Gbps.

We perform another experiment where we deploy an SFC composed of 5 VNFs pinned
on a single CPU core and vary the allocated time slice from the smallest value that
is enough to fill only 25% of the interface to the largest value that can fill 125% the
interface, i.e., will cause packet drop. We evaluate UNiS with and without the interface
occupancy based optimization for both light and medium VNFs. The experiment result
with UNiS without occupancy based optimization in Fig. 4.12(a) shows that smaller value
or time slice does not have any significant impact on the throughput. However, when
the allocated time slice is larger than the time it takes to fill the whole interface (125%
interface capacity), the throughput of both the SFC consisting light VNFs and the SFC
consisting medium VNFs experiences a sharp drop of 12% and 22%, respectively. In the
case of UNiS with the interface occupancy based optimization (Fig. 4.12(b)), there is no
sharp performance drop when the allocated time slice is either too small or too large for
both light and medium VNFs. Therefore, the interface occupancy based optimization is
effective in offsetting the impact of incorrect time slice allocation.

39

 2
 3
 4
 5
 6
 7
 8
 9

 10

25 50 75 100 125

Th
ro

ug
hp

ut
 (M

pp
s)

Timeslice (% of buffer size)

Light VNF Medium VNF

(a) UNiS without occupancy based optimization

 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

25 50 75 100 125

Th
ro

ug
hp

ut
 (M

pp
s)

Timeslice (% of buffer size)

Light VNF Medium VNF

(b) UNiS with occupancy based optimization

Figure 4.12: Impact of Interface Occupancy based Optimization

40

4.5 Discussion: Cost vs. Benefit

Our experimental results suggest that even with a non-intrusive approach, UNiS is able
to schedule VNFs in an SFC to achieve a comparable performance to that of an intrusive
approach. Intrusive approaches such as co-operative scheduling and the one described
in [15] have the benefit of lower monitoring overhead. For instance, a co-operative VNF
will have carefully designed scheduling points where it yields the CPU to other VNFs,
thus alleviating the need for continuously monitoring it. Another example is, for a method
similar to [15], the VNF can notify the scheduler about packet drop events, therefore,
event based monitoring can be performed instead of continuous monitoring. However, the
price to pay here is the lack of generality of the approach. In contrast, for an effective
non-intrusive approach, the system needs to be monitored at a finer time-scale, resulting
in additional resource consumption. For instance, we needed to dedicate a CPU core in
UNiS for high-precision time keeping and monitoring. This is the cost paid for achieving
a generic scheduler capable of working with a wider range of poll-mode VNFs.

41

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Network Function Virtualization (NFV) with its potential in reducing CAPEX/OPEX
has attracted researchers and industries to tackle challenges in realizing NFV platforms
capable of provisioning and managing high performance VNFs. Scheduling VNFs sharing
a CPU core efficiently has become an important research problem. The state-of-the-art
VNF scheduling systems can not support generic poll-mode VNFs and require VNFs to
be built with schedulers’ specific libraries. In this thesis, we presented UNiS, a user-
space non-intrusive workflow-aware VNF scheduler. UNiS does not require any kernel
modification, treats poll-mode VNFs as a black box, and considers VNF execution order
in an SFC for scheduling. The proposed system architecture and components of UNiS are
designed to be generic and not tied to a specific implementation. As a proof of concept,
we implemented UNiS in C++ on Linux operating system with a DPDK-based NFV
platform. In the evaluation, we compared our implementation of UNiS with an intrusive
co-operative scheduler on a testbed.

Testbed experiments show that UNiS is able to achieve a throughput within 90% to
98% of achievable throughput using an intrusive co-operative scheduler, depending on the
types of VNFs and the workload. In terms of latency, UNiS incurs up to 58% additional
latency for SFC consisting of medium VNFs. However, for SFC consisting of heavy VNFs,
packets scheduled by UNiS experience 12% lower latency on average than using the in-
trusive approach. Moreover, our extensive study of the relation between cache misses,
context switches and the consumed CPU cycles shows that a cache intensive (light) VNF
with longer time slice is more sensitive to throughput degradation due to the impact

42

of more cache misses. Additionally, we found that without the interface occupancy based
optimization, UNiS experience a throughput degradation between 12% to 22% when the
allocated time slice is too large. While with the optimization, the throughput degrada-
tion is reduced to only 0.8% to 3%. This shows the effectiveness of our interface occupancy
based optimization in UNiS. In summary, the promising experimental results demonstrate
that even with a black box approach, UNiS is able to perform very close to the intrusive
scheduling method.

5.2 Future Work

Building on these promising results, several possible extensions of this work are as follows:

Multi-node deployment. Currently, UNiS is a local scheduler that is only responsible
for scheduling VNFs that are provisioned on a single node. In the case of SFCs that are
deployed across multiple nodes, potential research avenues are on how to place these VNFs
among the multiple nodes with possibly heterogenous hardware cofigurations and how to
schedule these VNFs in this scenario considering factors that did not exist in a single node
deployment, e.g., inter-node latency.

Consideration for arbitrary SFC structure. In the design and evaluation of UNiS,
we only considered linear SFCs. A more complex graph structure interconnecting the VNFs
consisting of multiple branches could be considered in the future extension of UNiS.

Dynamic adjustment. Although our interface occupancy based optimization can work-
around the problem of inaccurate packet processing cost estimation, an interesting future
extension will be to consider factors such as packet size, packet content, and packet inter-
arrival time for adjusting the time slice or other scheduling decisions dynamically.

Achieving specified SLO. There are VNFs or SFCs, such as load balancer and web
accelerator in Content Delivery Networks that have different levels of utilization during
different times of the day. In this situation, there might be higher Service Level Objective
(SLO) during the day, compared to the SLO during the night where the entire network
traffic is lower. Therefore, as opposed to maximizing the throughput of the CPU sharing
VNFs, an extension of UNiS could be to devise a mechanism for meeting certain SLOs
while minimizing resource usage.

43

References

[1] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers
in the wild,” in Proceedings of ACM IMC. ACM, 2010, pp. 267–280.

[2] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” Internet
Requests for Comments, RFC Editor, RFC 3234, February 2002. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3234.txt

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Making
middleboxes someone else’s problem: network processing as a cloud service,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 13–24, 2012.

[4] “Network Functions Virtualisation – Introductory White Paper,” White paper, Oct
2012. [Online]. Available: https://portal.etsi.org/nfv/nfv white paper.pdf

[5] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[6] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici,
“ClickOS and the art of network function virtualization,” in Proceedings of USENIX
NSDI. USENIX Association, 2014, pp. 459–473.

[7] J. Hwang, K. Ramakrishnan, and T. Wood, “NetVM: high performance and flexible
networking using virtualization on commodity platforms,” in Proceedings of USENIX
NSDI. USENIX Association, 2014, pp. 445–458.

[8] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy, “SoftNIC: A software
nic to augment hardware,” Dept. EECS, Univ. California, Berkeley, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2015-155, 2015.

44

http://www.rfc-editor.org/rfc/rfc3234.txt
https://portal.etsi.org/nfv/nfv_white_paper.pdf

[9] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker, “Netbricks:
Taking the v out of nfv.” in Proceedings of USENIX OSDI. USENIX Association,
2016, pp. 203–216.

[10] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. Ramakrishnan,
and T. Wood, “OpenNetVM: A platform for high performance network service chains,”
in Proceedings of ACM HotMiddlebox. ACM, 2016, pp. 26–31.

[11] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker, “A high
performance packet core for next generation cellular networks,” in Proceedings of ACM
SIGCOMM. ACM, 2017, pp. 348–361.

[12] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in Proceedings of USENIX
ATC, 2012, pp. 101–112.

[13] “Intel data path development kit,” https://www.dpdk.org/. [Online]. Available:
https://www.dpdk.org/

[14] J. Halpern and C. Pignataro, “Service function chaining (sfc) architecture,” Internet
Requests for Comments, RFC Editor, RFC 7665, October 2015.

[15] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, T. Wood,
M. Arumaithurai, and X. Fu, “NFVnice: Dynamic backpressure and scheduling for
nfv service chains,” in Proceedings of ACM SIGCOMM. ACM, 2017, pp. 71–84.

[16] “Dpdk rte ring,” https://dpdk.readthedocs.io/en/v16.04/prog guide/ring lib.html.
[Online]. Available: https://dpdk.readthedocs.io/en/v16.04/prog guide/ring lib.html

[17] “pktgen-dpdk,” http://git.dpdk.org/apps/pktgen-dpdk/. [Online]. Available: http:
//git.dpdk.org/apps/pktgen-dpdk/

[18] “Linux cfs,” https://www.kernel.org/doc/Documentation/scheduler/sched-design-
CFS.txt. [Online]. Available: https://www.kernel.org/doc/Documentation/
scheduler/sched-design-CFS.txt

[19] “linux-rt,” https://www.kernel.org/doc/Documentation/scheduler/sched-rt-
group.txt. [Online]. Available: https://www.kernel.org/doc/Documentation/
scheduler/sched-rt-group.txt

45

https://www.dpdk.org/
https://dpdk.readthedocs.io/en/v16.04/prog_guide/ring_lib.html
http://git.dpdk.org/apps/pktgen-dpdk/
http://git.dpdk.org/apps/pktgen-dpdk/
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

[20] “DPDK L-thread Subsystem Example,” http://doc.dpdk.org/guides-
18.05/sample app ug/performance thread.html#lthread-subsystem. [Online]. Avail-
able: http://doc.dpdk.org/guides-18.05/sample app ug/performance thread.html#
lthread-subsystem

[21] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,” in Ar-
chitectures for Networking and Communications Systems (ANCS), 2015 ACM/IEEE
Symposium on. IEEE, 2015, pp. 5–16.

[22] “openonload,” https://www.openonload.org/. [Online]. Available: https://www.
openonload.org/

[23] “Fd.io: The universal data plane,” https://fd.io/. [Online]. Available: https://fd.io/

[24] “Tuning the task scheduler,” https://doc.opensuse.org/documentation/leap/tuning/h
tml/book.sle.tuning/cha.tuning.taskscheduler.html. [Online]. Available:
https://doc.opensuse.org/documentation/leap/tuning/html\/book.sle.tuning/cha.
tuning.taskscheduler.html

[25] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica,
“Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling,” in Proceedings of the 5th European conference on Computer systems.
ACM, 2010, pp. 265–278.

[26] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós, “On scheduling in map-reduce
and flow-shops,” in Proceedings of ACM SPAA, 2011, pp. 289–298.

[27] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes, “Large-
scale cluster management at google with borg,” in Proceedings of ACM EuroSys.
ACM, 2015.

[28] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal,
H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown, “Programmable packet
scheduling at line rate,” in Proceedings of ACM SIGCOMM. ACM, 2016, pp. 44–57.

[29] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet scheduling,”
in Proceedings of USENIX NSDI. USENIX Association, 2016, pp. 501–521.

[30] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic flow scheduling for data center networks.” in Proceedings of USENIX NSDI.
USENIX Association, 2010.

46

http://doc.dpdk.org/guides-18.05/sample_app_ug/performance_thread.html#lthread-subsystem
http://doc.dpdk.org/guides-18.05/sample_app_ug/performance_thread.html#lthread-subsystem
https://www.openonload.org/
https://www.openonload.org/
https://fd.io/
https://doc.opensuse.org/documentation/leap/tuning/html\/book.sle.tuning/cha.tuning.taskscheduler.html
https://doc.opensuse.org/documentation/leap/tuning/html\/book.sle.tuning/cha.tuning.taskscheduler.html

[31] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with varys,” in
ACM SIGCOMM Computer Communication Review, vol. 44, no. 4. ACM, 2014, pp.
443–454.

[32] J. F. Riera, X. Hesselbach, E. Escalona, J. A. Garcia-Espin, and E. Grasa, “On the
complex scheduling formulation of virtual network functions over optical networks,”
in Proceedings of ICTON. IEEE, 2014, pp. 1–5.

[33] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and S. Davy, “Design
and evaluation of algorithms for mapping and scheduling of virtual network functions,”
in Proceedings of IEEE NetSoft, April 2015, pp. 1–9.

[34] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource optimiza-
tion with network function virtualization,” IEEE Transactions on Communications,
vol. 64, no. 9, pp. 3746–3758, 2016.

[35] H. A. Alameddine, L. Qu, and C. Assi, “Scheduling service function chains for ultra-
low latency network services,” in Proceedings of IEEE/ACM/IFIP CNSM. IEEE,
2017, pp. 1–9.

[36] H. A. Alameddine, S. Sebbah, and C. Assi, “On the interplay between network function
mapping and scheduling in vnf-based networks: A column generation approach,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp. 860–874, Dec
2017.

[37] C. Pham, N. H. Tran, and C. S. Hong, “Virtual network function scheduling: A
matching game approach,” IEEE Communications Letters, vol. 22, no. 1, pp. 69–72,
Jan 2018.

[38] G. Faraci, A. Lombardo, and G. Schembra, “An analytical model to design processor
sharing for sdn/nfv nodes,” in Proceedings of ITC, vol. 02, Sept 2016, pp. 28–34.

[39] W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood, “Flurries:
Countless fine-grained nfs for flexible per-flow customization,” in Proceedings of ACM
CoNeXT. ACM, 2016, pp. 3–17.

[40] “Intel ethernet flow director,” https://software.intel.com/en-us/articles/setting-up-
intel-ethernet-flow-director. [Online]. Available: https://software.intel.com/en-us/
articles/setting-up-intel-ethernet-flow-director

47

https://software.intel.com/en-us/articles/setting-up-intel-ethernet-flow-director
https://software.intel.com/en-us/articles/setting-up-intel-ethernet-flow-director

[41] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive survey,”
IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 518–532,
2016.

[42] “Network Functions Virtualisation (NFV); Infrastructure Overview,” White paper,
Jan 2015. [Online]. Available: https://www.etsi.org/deliver/etsi gs/NFV-INF/
001 099/001/01.01.01 60/gs NFV-INF001v010101p.pdf

[43] “Network Functions Virtualisation (NFV); Management and Orchestration,”
White paper, Dec 2014. [Online]. Available: https://www.etsi.org/deliver/etsi gs/
NFV-MAN/001 099/001/01.01.01 60/gs NFV-MAN001v010101p.pdf

[44] S. Lange, A. Nguyen-Ngoc, S. Gebert, T. Zinner, M. Jarschel, A. Köpsel, M. Sune,
D. Raumer, S. Gallenmüller, G. Carle et al., “Performance benchmarking of a software-
based lte sgw,” in Proceedings of IEEE/ACM/IFIP CNSM. IEEE, 2015, pp. 378–383.

[45] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “Nfv-vital: A framework for characteriz-
ing the performance of virtual network functions,” in Proceedings of IEEE NFV-SDN
Conference. IEEE, 2015, pp. 93–99.

[46] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy, and
S. Shenker, “Resq: Enabling slos in network function virtualization,” in Proceedings
of USENIX NSDI. Renton, WA: USENIX Association, 2018, pp. 283–297.

[47] “hugetlbfs kernel documentation.” [Online]. Available: https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt

[48] “Dpdk rte timer,” https://doc.dpdk.org/guides/prog guide/timer lib.html. [Online].
Available: https://doc.dpdk.org/guides/prog guide/timer lib.html

[49] “Dpdk summit 2017,” https://www.dpdk.org/wp-
content/uploads/sites/35/2018/06/Making-networking-apps-scream-on-Windows-
with-DPDK.pdf. [Online]. Available: https://www.dpdk.org/wp-content/uploads/
sites/35/2018/06/Making-networking-apps-scream-on-Windows-with-DPDK.pdf

[50] “Windows system scheduler,” https://docs.microsoft.com/en-
us/windows/desktop/procthread/scheduling. [Online]. Available: https:
//docs.microsoft.com/en-us/windows/desktop/procthread/scheduling

[51] “Windows process thread api,” https://docs.microsoft.com/en-
ca/windows/desktop/api/processthreadsapi/. [Online]. Available: https://docs.
microsoft.com/en-ca/windows/desktop/api/processthreadsapi/

48

https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://doc.dpdk.org/guides/prog_guide/timer_lib.html
https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/Making-networking-apps-scream-on-Windows-with-DPDK.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2018/06/Making-networking-apps-scream-on-Windows-with-DPDK.pdf
https://docs.microsoft.com/en-us/windows/desktop/procthread/scheduling
https://docs.microsoft.com/en-us/windows/desktop/procthread/scheduling
https://docs.microsoft.com/en-ca/windows/desktop/api/processthreadsapi/
https://docs.microsoft.com/en-ca/windows/desktop/api/processthreadsapi/

[52] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, “Moongen: A
scriptable high-speed packet generator,” in Proceedings of ACM IMC. ACM, 2015,
pp. 275–287.

[53] “Data set for imc 2010 data center measurement,”
http://pages.cs.wisc.edu/˜tbenson/IMC10 Data.html. [Online]. Available: http:
//pages.cs.wisc.edu/∼{}tbenson/IMC10 Data.html

[54] “Linux perf tool.” [Online]. Available: https://perf.wiki.kernel.org/index.php/
Tutorial

[55] G. Faraci, A. Lombardo, and G. Schembra, “A processor-sharing scheduling strategy
for nfv nodes,” Journal of Electrical and Computer Engineering, vol. 2016, pp. 1:1–1:1,
Jan. 2016.

[56] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku, “Morsa: A multi-
objective resource scheduling algorithm for nfv infrastructure,” in Proceedings of AP-
NOMS, Sept 2014, pp. 1–6.

[57] L. Qu, C. Assi, and K. Shaban, “Network function virtualization scheduling with
transmission delay optimization,” in Proceedings of IEEE/IFIP NOMS, April 2016,
pp. 638–644.

[58] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the performance inter-
ference of co-located virtual network functions,” in Proceedings of IEEE INFOCOM,
2018.

[59] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-net: Effective
gpu sharing in nfv systems,” in Proceedings of USENIX NSDI. USENIX Association,
2018.

49

http://pages.cs.wisc.edu/~{}tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~{}tbenson/IMC10_Data.html
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial

	List of Tables
	List of Figures
	Introduction
	Motivation
	Design Goals and Challenges
	Contributions
	Thesis Organization

	Background
	Network Function Virtualization
	Kernel Bypass Network I/O Technologies
	Packet Processing with DPDK
	Process Scheduling in Linux
	Related Work on NFV Scheduling
	Analytical Models for NFV Scheduling
	Systems for NFV Scheduling

	UNiS: A User-space Non-intrusive Workflow-aware Virtual Network Function Scheduler
	Assumptions
	System Design
	System Architecture
	Scheduling Algorithm

	Implementation
	The Reference NFV Platform
	UNiS Components
	Alternative Implementation on a Different Environment

	Evaluation
	Experiment Setup
	Testbed
	VNF Types
	Workloads
	Compared Approach
	Evaluation Metrics

	Evaluation Scenarios and Results
	SFC with fixed and uniform cost VNFs
	SFC with fixed but non-uniform cost VNFs
	SFC with variable cost (traffic dependent) VNFs
	Multiple SFCs and Multiple CPU Cores

	Investigation into UNiS's Throughput Gap
	The Impact of Interface Occupancy based Optimization
	Discussion: Cost vs. Benefit

	Conclusion and Future Work
	Conclusion
	Future Work

	References

