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ABSTRACT 10 
Cooling and dynamics of lava flowing in a rectangular channel driven by the gravity force is 11 
numerically modeled. The purpose is to evaluate the thermal process as a function of time involving 12 
the liquid lava in contact with the solid boundary that flanks lava. Lava rheology is dependent on 13 
temperature and strain rate according to a power law function. The model couples dynamics and 14 
thermodynamics inside the lava channel and describes the thermal evolution of the solid boundary 15 
enclosing the channel. Numerical tests indicate that the solution of the thermo-dynamical problem 16 
is independent of the mesh. The boundary condition at the ground and at the levees is treated 17 
assuming a solid boundary around the lava flow across which lava can exchange heat by 18 
conduction. A far field thermal boundary condition allows to overcome the assumption of constant 19 
temperature or constant heat flow as boundary conditions, providing more realistic results. The 20 
effect of viscous heating is evaluated and discussed. 21 
 22 

Introduction 23 
Laboratory studies have extensively demonstrated that lava rheology under certain conditions 24 
including vesicularity (Stein and Spera, 1992; Badgassarov and Pinkerton, 2004), crystalline 25 
concentration (Pinkerton and Stevenson, 1992; Smith, 2000; Sonder et al., 2006; Champallier et al., 26 
2008) and in a certain temperature range (Shaw et al., 1968) assumes non-Newtonian pseudoplastic 27 
properties. 28 
When the problem of lava flowing under the effect of gravity is resolved, the power law rheology 29 
introduces a non-linearity in the diffusion term of the momentum equation and consequently an 30 
analytical solution of the differential equations governing the motion does not exist. Furthermore, if 31 
the viscosity function also includes temperature dependence, the thermal equation is coupled to the 32 
dynamic equation. Hence the need to solve numerically the thermo-dynamic equations describing 33 
the flows of a fluid as complex as lava. 34 
In the thermal modeling of lava flows, the greatest difficulties are due to the different thermal 35 
exchanges both external (surface thermal radiation, forced convection, conduction at the base) and 36 
internal (axial advection, viscous dissipation, latent heat, internal conduction) to be taken into 37 
account. Despite the great progress made in numerical modeling, it is necessary to assume some 38 
simplifying hypotheses. 39 
The need for simplifying assumptions in numerical models of lava flows is described in review 40 
articles (Costa and Macedonio, 2005b; Cordonnier et al., 2015; Dietterich et al., 2017). The authors 41 
examine the most relevant works on the numerical modeling of lava flows and what emerges is that, 42 
due to the high complexity of transport equations, the numerical solution of the complete three-43 
dimensional problem for real lava flows is often intractable. This has led to concentrate the main 44 
efforts on the development of software able to quickly describe the evolution of a lava flow, based 45 
on simplified theoretical models, for the purpose of volcanic hazard assessment. 46 
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Parallel to the development of general numerical models closely linked to volcanic hazard, it is 47 
necessary to study the details of what happens when, during an effusive process, a fluid like lava 48 
flows in a channel. 49 
Filippucci et al. (2017) discussed the problem of viscous dissipation in channeled lava flows and 50 
found that the effect of viscous heating is irrelevant for the most of the channel domain apart from 51 
the boundaries where some temperature differences where noticed. These temperature differences 52 
brought the authors to hypothesize that the fluid motion can lose the laminarity at the boundary 53 
(since locally the Reynolds number exceeds the laminar/turbulent threshold). The same effect was 54 
found by Costa and Macedonio (2005) who found that the fluid can develop secondary flows at the 55 
boundaries as an effect of viscous heating. 56 
In dealing with problems involving the heat equation, in this case coupled to the momentum 57 
equation by the rheological function, the boundary condition for a channeled flow is classically 58 
chosen between constant temperature and constant heat flow (Patankar, 1980; Ferziger and Peric, 59 
2002). 60 
From the observation that the effect of viscous heating is observed only at the boundaries, in this 61 
paper we considered a third possibility, that is a conductive solid boundary with which the fluid can 62 
exchange heat. In particular, in this paper we focus on the thermal process involving the liquid lava 63 
in contact with the solid edges of the channel, assuming that the fluid can cool down by losing heat 64 
by conduction in the hosting rocks and by radiation in the atmosphere and can heat up by the effect 65 
of heat advection and viscous dissipation. Some authors (Costa et al., 2007; Filippucci, 2018) used 66 
far-field boundary conditions to model the thermal interaction between the hot fluid flow and the 67 
host rock with numerical methods. Similarly, in this work, the solid boundary condition is treated 68 
realistically considering that the rock that hosts the lava flow can exchange heat by conduction.  69 

Mathematical problem 70 
The constitutive equation for a power law fluid is 71 
 𝜎௜௝ ൌ 2𝑘𝑒ሶ ௡ିଵ𝑒ሶ௜௝ (1) 
where 𝜎௜௝ is the stress tensor, 𝑒ሶ௜௝ is the strain rate tensor, 𝑘 is the fluid consistency, n is the power 72 
law exponent which is a measure of nonlinearity, and  73 
 𝑒ሶ ൌ 2ඥ|𝐼ଶ| (2) 
where I2 is the second invariant of the strain rate tensor. The apparent viscosity 𝜂௔ of the fluid is 74 

 𝜂௔ ൌ 𝑘𝑒ሶ ௡ିଵ (3) 
If n is lower than 1, the fluid is pseudoplastic and it thins with an increase in stress. If n is equal to 75 
1, the fluid is Newtonian. If n is greater than 1, the fluid is dilatant and it thickens with an increase 76 
in stress (White, 2005). 77 
We assume a viscous fluid flowing in the x direction in a rectangular conduit inclined at an angle D, 78 
perpendicularly to the section of the conduit in the yz plane. The channel is surrounded by edges of 79 
solid material of thickness as with which it can exchange heat by conduction. 80 
The channel width is 2al, thickness hl and length L. The sketch of the model with the coordinate 81 
system is shown in Figure 1 and the values of the parameters are listed in Table 1. 82 
The flow is laminar and subjected to the gravity force. Pressure changes are negligible with respect 83 
to body forces. The velocity is approximately axial and varies with the lateral coordinates vx(y,z), vy 84 
=0, vz=0. The fluid is isotropic and incompressible with constant density U, thermal conductivity K, 85 
specific heat capacity cp. 86 
 The equation of motion in the transient state for a gravity driven flow down an inclined rectangular 87 
channel is (Filippucci et al., 2013a): 88 

 𝜌 𝜕𝑣௫
𝜕𝑡 ൌ 𝜌𝑔 sin 𝛼 ൅ 𝜕

𝜕𝑦 ൬𝜂௔
𝜕𝑣௫
𝜕𝑦 ൰ ൅ 𝜕

𝜕𝑧 ൬𝜂௔
𝜕𝑣௫
𝜕𝑧 ൰ (4) 

where vx is the x component of velocity, 𝑔 is the gravity acceleration and 𝛼 is the slope angle. The 89 
apparent viscosity is (Filippucci et al., 2005): 90 

 
𝜂௔ ൌ 𝑘 ቈ൬𝜕𝑣௫
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 91 
where vx is the x component of velocity and both the fluid consistency k and the power law 92 
exponent n depend on temperature. The temperature dependence of k and n is given by Hobiger et 93 
al. (2011): 94 
 kሺTሻ ൌ K଴e୮భା౦మ

౐  (6)95 
  96 
 nሺTሻ ൌ 1 ൅ pଷ ൅ pସT (7) 97 
where k0, p1, p2, p3 and p4 are constant parameters listed in Table 1. 98 
The numerical problem of the dynamics of lava flows was already detailed, by studying the 99 
sensitivity of the solution to the variation of the power law exponent n and to the fluid consistency k 100 
(Filippucci et al, 2010; 2011; 2013b), by using a temperature-dependent power-law rheology and 101 
analyzing the thermal effects due to heat advection (Filippucci et al. 2013a) and to viscous 102 
dissipation (Filippucci et al., 2017). The problem of the solid boundaries has been considered by 103 
Filippucci (2018).  104 
We assume that the fluid flow is transient, laminar and subjected to the gravity force. Downflow 105 
pressure changes are negligible with respect to the body force. Since the channel cross section is 106 
rectangular and the Reynolds number is low almost everywhere in the domain (Filippucci et al., 107 
2017), the assumption of laminar flow implies that the velocity is approximately axial, but it may 108 
depend on all the coordinates: vx   vx(x,y,z). 109 
Differently to the approach of Filippucci (2018), we include the effect of viscous dissipation as an 110 
internal heat source. We neglect the effect of the latent heat of crystallization/fusion.  111 
The boundary conditions are the no-slip at the walls and the zero-stress at the top of the flow. Since 112 
the solution is computed in a half domain of width a/2, thickness h and length L, we consider as 113 
boundary condition the symmetry of the problem with respect to the xz plane. So, the boundary 114 
conditions are the following: 115 

 
 𝑣௫ሺ𝑥 ൌ 0ሻ ൌ 𝑣௫ሺ𝑇௘ሻ (8) 

   116 
 𝑣௫ሺേ𝑎௟, 𝑧ሻ ൌ 0; 𝑣௫ሺ𝑦, െℎ௟ሻ ൌ 0 (9) 

 117 
 𝜕𝑣௫

𝜕𝑦 ሺ0, 𝑧ሻ ൌ 0; 𝜕𝑣௫
𝜕𝑧 ሺ𝑦, 0ሻ ൌ 0 (10)

The initial condition for velocity is the steady state numerical solution at the initial effusion 118 
temperature 𝑣௫ሺ𝑥, 𝑦, 𝑧, 𝑡 ൌ 0ሻ ൌ 𝑣௫ሺ𝑇௘ሻ . 119 
The time dependent heat equation inside the channel takes into account the effect of thermal 120 
exchange by heat advection, conduction and viscous dissipation: 121 
 122 

 𝜌𝑐௣
డ்
డ௧ ൅ 𝜌𝑐௣𝑣௫

డ்
డ௫ ൌ 𝐾 ቀడమ்

డ௬మ ൅ డమ்
డ௭మቁ ൅ 𝜂௔ ൤ቀడ௩ೣ

డ௬ ቁ
ଶ

൅ ቀడ௩ೣ
డ௭ ቁ

ଶ
൨ (11) 123 

 124 
We can neglect the effect of thermal conduction in the flow direction as it is of secondary 125 
importance with respect to thermal advection in the flow direction (Filippucci et al., 2013a). 126 
The time dependent heat equation outside the channel, in the solid boundary, is purely conductive: 127 
 𝜌𝑐௣

డ்
డ௧ ൌ 𝐾 ቀడమ்

డ௬మ ൅ డమ்
డ௭మቁ (12) 128 

 129 
The thermal boundary conditions are the assumptions of a radiative heat flux qr at the upper flow 130 
surface, a constant temperature Tw at the outer solid walls (such a far field condition is imposed at a 131 
distance equal to three times the half-width of the channel), a constant effusion temperature Te at 132 
the vent and the symmetry of the problem with respect to the xz plane: 133 
 134 
 135 
 𝑇ሺ𝑥 ൌ 0ሻ ൌ 𝑇௘ (13) 136 
 137 
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 𝑇ሺ𝑥 ൌ 0, 𝑦 ൌ േ𝑎, 𝑧 ൌ െℎሻ ൌ 𝑇௪ (14) 138 
 139 
 డ்

డ௬ ሺ𝑦 ൌ 0ሻ ൌ 0 (15) 140 
 141 
 డ்

డ௭ ሺെ𝑎௟ ൏ 𝑦 ൏ 𝑎௟, 𝑧 ൌ 0ሻ ൌ െ ௤ೝ
௄  (16) 142 

 143 
 144 
where qr   VH𝑇௨ସ and V is the Stefan-Boltzmann constant, H is the surface emissivity of lava and Tu 145 
is the temperature of the upper surface at z   0 (the atmospheric temperature is assumed negligible 146 
with respect to Tu).  147 
At time t   0, the liquid lava has a uniform temperature Te, the velocity is the stationary solution of 148 
the dynamic equation with T = Te and the outer solid boundary has uniform temperature Tw. The 149 
choice of the initial condition was made in order to compare this solution with that of Filippucci et 150 
al. (2017). Moreover, the assumption of the extrusion temperature of the fluid as starting condition 151 
in numerical studies is widely used and accepted in finite element/volume modeling (Costa and 152 
Macedonio, 2003; Patrick, 2004; Bernabeu et al, 2016; among others). 153 
At time t > 0, the radiative heat flux qr, the far field constant temperature Tw and the constant 154 
effusive temperature Te are imposed. Since x   L is the outflow boundary and both temperature and 155 
velocity need to be computed there, no boundary condition at x   L is necessary. 156 
The dynamic and the thermal equation are coupled by the temperature dependence of viscosity in 157 
the dynamic equation and by the viscous dissipation term in the heat equation. The algorithm is 158 
written by the authors in Fortran language. The space discretization is obtained by the control 159 
volume integration method (Patankar, 1980) using a static mesh approach and power law 160 
interpolation functions between the nearest grid points. The radiative condition at the boundary z = 161 
0 depends on the fourth power of temperature and needs to be linearized in order to be treated as a 162 
source term of the heat equation. For the discretization of the transient term, the integration over the 163 
time interval t is made by using a fully implicit scheme. The iterative solutor of the discretized 164 
equation is the Gauss-Seidel one (Filippucci et al., 2013a, for details of the flow chart procedure).  165 
The solution is tested to verify the independence of the mesh and the test is shown in Figure 2. The 166 
computational problem was solved by considering three grids of different sizes (52×52, 102×102, 167 
202×202) to discretize the (y, z) section, transversal to the fluid direction. The space discretization 168 
along the x direction was fixed to 101 control volumes. The time solution is stopped at t   106 s 169 
since for long times the temperature approaches the steady-state solution. The channel geometry for 170 
the numerical test is described by the parameters in Table 1. The temperature profile along the z 171 
coordinate at the outflow boundary slightly varies with varying the mesh size, indicating that the 172 
problem is independent of the control volume size.  173 
As expected, the finest mesh (201×201) needs a very large computational cost to achieve the 174 
convergence, which means a long time for calculation. In the following, for the problem with 175 
geometrical parameters listed in Table 1, the mesh y × z × x = 102 × 102 × 101 was used as the best 176 
compromise between accuracy and computation time. In particular, in this case, the computational 177 
time is approximately 2 days of computation for the problem with the viscous dissipation term, and 178 
approximately 1 day for the solution without the viscous dissipation term. 179 

Results and discussion 180 
The problem is illustrated in Figure 1 with the physical and geometrical parameters given in Table 181 
1. We have evaluated the temperature distribution in an inclined lava channel flanked by solid 182 
levees, with which the flowing lava interacts thermally: while lava cools down, the levees are 183 
heated in turn. Results are obtained considering that the lava cools by thermal radiation at the free 184 
surface and by thermal conduction at the solid boundaries. Moreover, the lava can be heated by the 185 
effect of viscous dissipation. The solid surrounding rocks, in turn, heat up by thermal conduction. 186 
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The problem is transient, and the first 106 s (approximately 1 day) are modeled, assuming that at t   187 
0 the whole channel has a temperature T equal to the effusion temperature Te and the levees have 188 
uniform wall temperature Tw. 189 
The choice of the distance of the constant temperature boundary condition is arbitrary. Costa et al. 190 
(2007) used a far-field temperature at an arbitrary distance of 10 times the radius of the magma 191 
conduit. Our choice is dictated as a compromise between far-field and computational time costs. 192 
This choice can be considered adequate since, after t   106 s of cooling, the boundary is still not 193 
heated, as it can be seen in Figure 3a.  194 
In a previous paper, Filippucci (2018) has numerically solved the same problem, but neglecting the 195 
viscous dissipation term in the heat equation. In Figure 3b, we plotted the difference with the 196 
solution of Filippucci (2018) in terms of temperature T (y, z) map in the vertical cross section at the 197 
outflow boundary (x   L) at t   106 s. It can be observed that the viscous dissipation term has an 198 
effect in the parts of the lava channel in contact with the boundaries and the ground. If we consider 199 
the whole lava channel, the effect of viscous heating can be considered of secondary importance 200 
with respect to the advective term. If we consider the behavior of the fluid in contact with the solid 201 
edges, the heat addition due to viscous dissipation can bring the fluid flow to change the motion 202 
from laminar to locally turbulent (Filippucci et al., 2017) and to develop secondary flows (Costa 203 
and Macedonio, 2003, 2005a) 204 
In Figure 4, we plotted the temperature variation with time at 8 monitoring points (P1, ..., P8) 205 
selected inside the lava channel and corresponding to the black points in Figure 4A. If we observe 206 
the temperature evolution with time at some points of the channel section in the flow outlet area 207 
(Figure 4), we realize that there are fluid regions that are almost at constant temperatures equal to 208 
those of Te and areas with temperature that oscillates without differences between dissipative and 209 
non-dissipative case with the exception of point P5 in contact with the ground at the center of the 210 
channel. At points P1, P6 and P8, temperature remains constant and equal to that of effusion T(t)   211 
Te during the prescribed time. At these points, the temperature difference between the dissipative 212 
and non-dissipative case are in the order of tenths of a centigrade degree. At point P2, temperature 213 
decreases monotonically during the first 103 s approximately and then remains constant for the 214 
following time. The effect of viscous dissipation is to dampen the cooling process and to allow the 215 
fluid to be at a constant higher temperature in less time. At points P3, P4 and P7, the temperature 216 
has an oscillating behavior in time: at first it decreases and then returns to increase without 217 
significant differences between the dissipative and non-dissipative case and with a greater 218 
oscillation amplitude at point P4 than in the other points. At point P5, the temperature behavior with 219 
time is similar to the one just described, but in this case the difference between dissipative and non-220 
dissipative case is sharper. 221 
The main difference with the work of Filippucci et al. (2017) and then between boundary conditions 222 
with constant temperature gradient and far field boundary conditions, where temperature gradient is 223 
free to vary as a function of the thermal conduction rate, is just shown in Figure 4 (points P3, P4, P5 224 
and P7). 225 
In fact, at the same points, in the case of boundary condition with constant heat flux, temperature 226 
increases monotonically in the presence of viscous dissipation, while it decreases monotonically in 227 
the absence of dissipation (Fig. 7 in Filippucci et al., 2017). Considering far field boundary 228 
conditions, the temperature initially decreases and after a certain time internal it starts to increase 229 
and this oscillation is independent from the viscous dissipation term in the heat equation. 230 
This oscillation can be interpreted considering that, as the lava flow is emplaced, the difference in 231 
temperature between the host rocks and the hosted lava is so high that it causes a very intense 232 
conductive heat flow. This flow cools the lava in contact with rocks, as shown by the descending 233 
part of the curves in Figure 4 (points P3, P4, P5 and P7). Over time, the host rocks heat up as a 234 
result of heat conduction and the heat flow begins to decrease and so does the cooling rate of the 235 
lava in contact with rocks, leading to the minimum of the curves in Figure 4 (points P3, P4, P5 and 236 
P7). Continuing with time, the conductive heat flow becomes no longer the dominant mechanism, 237 
since advective heating begins to prevail due to the isothermal core at the center of the channel, that 238 
flows with temperature equal to that of effusion. This change in heat transfer mechanism leads the 239 
hosted lava in contact with the host rocks to heat up, as shown by the ascending part of the curves in 240 
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Figure 4 (points P3, P4, P5 and P7). The effect of viscous dissipation during the described thermal 241 
process is that of reducing the oscillation amplitude Figure 4 (points P5). 242 
 243 

Conclusions 244 
The purpose of this work is to investigate how the choice of boundary conditions may affect the 245 
results of a model of a channeled lava flow, in particular by evaluating the importance of the 246 
viscous dissipation term. To do this, we developed a flow model with far-field constant temperature 247 
boundary conditions, allowing the liquid lava to exchange heat with the host solid rock. The results 248 
were compared with those obtained in a previous work (Filippucci et al., 2018) in which the cooling 249 
at the levees and at the ground was modeled by imposing a constant conductive heat flow. With the 250 
model presented in this paper, we go beyond the classical boundary conditions at the channel walls, 251 
which assume constant temperature or constant heat flow, usually adopted in works dealing with 252 
lava flow simulation, as reviewed by Costa and Macedonio (2005b). Far field boundary conditions 253 
are more realistic since it is not necessary to impose a constant temperature nor an arbitrary 254 
constant temperature gradient at the channel levees and at the ground. 255 
We solved numerically the dynamic and heat equations of a lava flowing by gravity inside a 256 
channel with rectangular cross section, flanked by a thick solid levee, by using the finite volume 257 
method (Patankar, 1980). 258 
The dynamic equation is solved only in the liquid domain, while the heat equation is solved both in 259 
the liquid and in the solid domain. The viscous dissipation term is considered in the heat equation. 260 
The solution was tested in order to verify that the convergence of the numerical problem is 261 
independent of the mesh size. The results indicate that the solid edge interacts with the liquid lava, 262 
both at the levees and the ground, causing an initial cooling due to heat conduction and a 263 
subsequent heating due to heat advection. This thermal process is not affected by viscous 264 
dissipation, which only acts by decreasing the temperature variation interval between the cooling 265 
and the heating process. On the contrary, when the boundary condition at the levees and at the 266 
ground is a constant temperature gradient (Filippucci et al., 2017) or a constant temperature (Costa 267 
et al., 2007), the effect of viscous dissipation at the boundaries appears to be of great importance, 268 
causing an increase of the Reynolds number from laminar to turbulent values (Filippucci et al., 269 
2017) and triggering secondary flows (Costa et al., 2007).  270 
Filippucci (2018), using the same far field boundary conditions but neglecting viscous heating, 271 
found that the channel levees can melt, since they can heat over the solidus temperature. In this 272 
work, including viscous dissipation, we observe the same thermal behavior of the edge (Figure 3a), 273 
but the effect of thermal erosion cannot be evaluated quantitatively. In order to analyze melting of 274 
the solid edges and changes in the channel morphology, we should adopt a moving boundary, so as 275 
to account that portions of the host rocks may pass from solid to liquid behavior and, vice versa, 276 
portions of lava in the channel may pass from liquid to solid behavior. As reviewed by Costa and 277 
Macedonio (2005b), works dealing with lava flows impose that the channel boundaries are taken at 278 
constant temperature or at constant temperature gradient. Differently, far field thermal boundary 279 
condition allows to overcome this simplification and makes the physical treatment of the problem 280 
more realistic. 281 
 282 
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Tables 361 
Parameter Description Value 
al half channel width  1.5 m
a total width 12 m
hl channel thickness 1.5 m
h  total thickness 6 m
L channel length 100 m
g acceleration of gravity 9.8 m s−2

cp  specific heat capacity 837 J kg−1K−1

K  thermal conductivity 3 W K−1m−1

Te  effusion temperature 1100 °C
Ts  solidus temperature 900 °C
Tw  wall temperature 30 °C
k0  rheological parameter 1 Pa sn

p1  rheological parameter 18.71
p2  rheological parameter 33.4 103 K
p3  rheological parameter 1.35
p4  rheological parameter 0.85 10−3K−1

D  channel slope 20° 
Hc  thermal emissivity 1 
U  density 2800 kg m−3 
V  Stefan constant  5.668108 W m−2K4 
F  thermal diffusivity  1.28 10−6m2s−1 
Table 1. Values of the fixed model parameters  362 
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Figures. 363 

 
 
Figure 1. Coordinate system and geometrical parameters. Boundary conditions are also indicated. 
 
 

 

 
 
 
Figure 2. Temperature profile along z coordinate at x=L, y=0, t=105s, for different mesh sizes, as indicated in the figure legend.  
 

 

 
 

 

Figure 3. Section map at x=L and t=106s: a) isolines of temperature T considering the viscous dissipation 
term; b) isolines of the temperature difference between the solutions of the heat equation considering the 
viscous dissipation term and neglecting it. The dashed rectangle indicates the channel section perimeter. 
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 364 
 365 
Figure 4. Temperature vs time at different monitoring points (P1,..,P8) of the lava channel, as indicated in (A). The label on 366 
each plot corresponds to the point in (A). Solid line: solution of the heat equation considering the viscous dissipation term; 367 
dashed line: solution of the heat equation neglecting the viscous dissipation term (from Filippucci, 2018). 368 


