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ABSTRACT We re-examine the model of Kirkpatrick and Barton for the spread of an inversion into a local population. This model
assumes that local selection maintains alleles at two or more loci, despite immigration of alternative alleles at these loci from another
population. We show that an inversion is favored because it prevents the breakdown of linkage disequilibrium generated by migration;
the selective advantage of an inversion is dependent on the amount of recombination between the loci involved, as in other cases
where inversions are selected for as a result of their effects on recombination. We derive expressions for the rate of spread of an
inversion; when the loci covered by the inversion are tightly linked, these conditions deviate substantially from those proposed
previously, and imply that an inversion can then have only a small advantage.
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KIRKPATRICK and Barton (2006) proposed an influential
model for the spread of an inversion that suppresses re-

combination between two or more loci that are under selection
in a local population, in the face of the introduction of disfavored
alleles by gene flow. Up to now, direct evidence for this model
has been lacking, but a recent paper on the highly self-fertilizing
plant Boechnera stricta claims to provide an example (Lee et al.
2017). In this case, an inversion has become common in ahybrid
zone between two ecologically distinct subspecies, over an esti-
mated time of between 1000 to 4000 generations. But it is hard
to see how recombination suppression could confer a significant
selective advantage when there is a high level of inbreeding
within a population, where the effective recombination rate be-
tween a pair of loci is greatly reduced (Nordborg 1997), because
the advantage of recombination suppression must depend on
the rate of recombination in the initial population.

Equation 3 of Kirkpatrick and Barton (2006) was intended to
describe the selective advantage to a rare inversion, in terms of
the rate of recombination r between adjacent loci, the selective
disadvantage s suffered by an immigrant allele, and the rate of

migrationm. For the case of two loci, this equation states that the
selective advantage of an inversion, sl, is approximately equal to
2rm/(2r+ms). Ifms,, r, sl�m, and is onlyweakly dependent
on r. At first sight, this suggests that the B. stricta example could
indeed be explained by their model, although Kirkpatrick and
Barton did point out that the selective advantage of an inversion
should tend to zero as the recombination rate becomes small.

Thisnote re-examines theKirkpatrick-Bartonmodel.Twomain
conclusions are reached. First, the condition for the spread of
an inversion is similar to that derived by Charlesworth and
Charlesworth (1973) for the case of a randomly mating popula-
tion at equilibrium under epistatic selection—linkage disequilib-
rium (LD) must be present among the loci subject to selection.
Second, Equation 3 of Kirkpatrick and Barton is wrong, presum-
ably because of an error in its derivation (the existence of an error
in this equationwas previously pointedout byBürger andAkerman
(2011)). The denominator is (2r + ms), which is dimensionally
inconsistent in the continuous time version of the model, in which
the coefficients r,m and s all have dimension t21. Using the correct
expression, the selective advantage of an inversion becomes very
small when the effective recombination rate is small. This casts
some doubt on the interpretation of their data by Lee et al. (2017).

Following Kirkpatrick and Barton (2006), we use a model of
a haploid species with a focal deme subject to migration from a
source deme, with migration ratem into the focal deme. Alleles
at two or more loci are assumed to be at fixation in the source
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deme, and are disfavored by selection in the focal deme. While
thismodel does not fully describewhat happenswith diploidy, it
should provide a good approximation to the dynamics of a
highly inbred population, where selection is predominantly
among homozygous genotypes. We assume that migration is
sufficiently weak in relation to selection that the disfavored
alleles in the focal population are kept rare, which greatly sim-
plifies the calculations. With this lowmigration assumption, the
model is equivalent to the case of two demes with selection in
opposite directions (Moran 1962, pp. 173–175; Charlesworth
and Charlesworth 2010, p. 146). We first consider the case of a
pair of selected loci, allowing for the possibility of epistasis in
fitness, and then analyze the multi-locus case with additive
fitness effects. A treatment that relaxes the assumption of low
migration is given in the Appendix, which is equivalent to the
analysis of the diploid model with no dominance or epistasis by
Bürger and Akerman (2011). Our main findings for the two-
locus case when epistasis is absent are equivalent to those of
Bürger and Akerman with weak migration.

Results for Two Selected Loci with Low Migration

The state of the initial population

Here,weassume two loci, 1and2,withallelesAiandaiat locus i.
The relative fitnesses of the four haplotypes A1A2, A1a2, a1A2

anda1a2 in the focaldemeare1,12 s2, 12 s1, and12 s12 s2+ e,
respectively, where si is the selection coefficient against the dis-
favored allele at locus i, and e is a measure of epistasis. Let the
frequencies of the four haplotypes in the focal deme i be x1, x2,
x3, and x4; the frequencies of alleles Ai and ai at locus i are pi and
qi, respectively. The coefficient of LD is D = x1x4 2 x2x3. Selec-
tion is assumed to be sufficiently strong compared with migra-
tion that second-order terms in the frequencies of the disfavored
haplotypes can be neglected, but sufficiently weak that second-
order terms in the selection parameters are negligible. We
write li = m/si as a measure of the relative strength of migra-
tion and selection at locus i; given our assumptions, li ,, 1.

Even with an additive fitness model, the changes in allele fre-
quencies at one locus are not independent of the frequencies of
the alleles at the other locus when there is LD generated bymigra-
tion. The magnitude of this LD at equilibrium is given in Equa-
tion 1 below (a simple derivation is provided in the Appendix):

D* � m
rþ s1 þ s2 2 e

(1)

Note thatasterisksareused todenote theequilibriumvaluesof
variables.

Substituting from Equation 1 into Equations A2, we get:

q*1 � l1½12 ðs2 2 eÞ��rþ s1 þ s2 2 eÞ� (2a)

q*2 � l2½12 ðs1 2 eÞ��rþ s1 þ s2 2 eÞ� (2b)

With close linkage, such that r ,, s1 + s2 2 e, the equilibrium
frequencies of the disfavored alleles are substantially lower than

the values with D* = 0. When s1 = s2 = s and e = 0, the
symmetrical additive fitness case considered by Kirkpatrick and
Barton (2006), these frequencies approach m/(2s) as r tends to
zero. The equilibrium mean fitness of the population is greater
than the value with no LD, 1 2 2m; it approaches 1 2 m as r
tends to zero. In general, the equilibriummeanfitness is given by:

�w* ¼ 12 s1q*12 s2q*2 þ eðq*1q*2 þ D*Þ
 � 12 2mþmðs1 þ s2 2 eÞ=ðrþ s1 þ s22 eÞ (3)

Conditions for the spread of an inversion

We now consider the introduction into haplotype 1 of an
inversion that completely suppresses crossing over between
the two loci. Let the frequency of the inverted haplotype in
the focal deme be xI. Then, assuming that the system is ini-
tially at equilibrium, and, using Equations 3 and A3a to de-
termine its change in frequency, we obtain:

DxI � xI½ð12 �w*Þ2m� � xImr=ðrþ s1 þ s22 eÞ
    ¼ xIrD*

(4)

This is equivalent to Equation 5.2 of Bürger and Akerman
(2011) for the corresponding continuous timemodel without
epistasis. The multiplicand of xI provides a measure of the
selective advantage of the inversion, sI, which corresponds to
the quantity l 2 1 in Kirkpatrick and Barton (2006).

This expression shows that sI is equal to the difference be-
tween the migration load at equilibrium, ð12 �w*Þ; and the
migration load experienced by the inversion, m. This differ-
ence depends on the existence of LD in the initial population,
as can be seen from the last term in Equation 4. However, with
loose linkage, LD is inversely proportional to the recombina-
tion rate, and the rate of increase given by Equation 4 is nearly
independent of r, and equal to m, the value for loose linkage
given byEquation 1 of Kirkpatrick andBarton (2006). Positive
epistasis (e . 0) increases the selective advantage of an in-
version, whereas negative epistasis (e , 0) has the opposite
effect. As in other situations where reduced recombination is
favored by selection, a rare modifier of recombination cannot
have a selective advantage in the absence of LD in the initial
population, since recombination has no effect on changes in
haplotype frequencies in the absence of LD (Feldman 1972;
Charlesworth and Charlesworth 1973).

The selective advantage to the inversion given by the right-
hand side of Equation 4 differs substantially from that given
by the expression for l in Equation 3 of Kirkpatrick and Barton
(2006) for the case when s1 = s2 = s and e = 0. That equa-
tion is obviously incorrect, for the following reason. When all
processes are slow (m, r, and s ,, 1), so that the popula-
tion can be treated as evolving continuously with respect to
time, m, r, and s all have dimensions of the reciprocal of
time. The denominator in the equation of Kirkpatrick and
Barton (2006), 2mr/(2r + ms), thus has inconsistent di-
mensions, and the effect of recombination relative to selec-
tion is greatly overestimated, as noted in the Introduction.
For example, with r = 0.005,m = 0.01, s = 0.1, Equation 4
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gives sl = 0.00024 compared with 0.0091 from the formula of
Kirkpatrick and Barton. The Appendix gives the exact two-locus
solution in the continuous-time limit, for the case of additive
selection; essentially the same results were derived previously
by Bürger and Akerman (2011) for the diploid model without
dominance.

The multi-locus case with additive fitnesses: For simplicity,
only the case when each locus has the same selection co-
efficient, s, will be considered, as in Kirkpatrick and Barton
(2006). The same notation as above is used, except that there
are now n loci under selection; the recombination rate be-
tween loci i and j is rij, and the coefficient of LD between these
loci in the focal deme isDij. Equations 3 of Barton (1983) can
be used to be obtain an exact solution, assuming weak selec-
tion. Here, we provide a heuristic treatment of the problem,
assuming additive fitness effects.

With tight linkage, and assuming that migration is much
weaker than selection, the focal population will be composed
predominantly of haplotype 1, carrying the favored allele Ai

at each of the n loci in the chromosomal region under con-
sideration; the immigrant haplotypes all have allele ai at
these loci. With these assumptions, haplotype 1 will be bro-
ken down by recombination at rate Rx1x0, where R is the
probability of at least one recombination event in the region
in question, x1 is the frequency of haplotype 1, and x0 is the
frequency of the complementary, immigrant haplotype. For
the initial population, we thus have:

Dx1 � x1ð12 �w2m2Rx0Þ (5)

At equilibrium, the selective advantage of an inversion in
haplotype 1 is thus given by:

sI ¼ 12 �w*2m � Rx*0 (6a)

But, with tight linkage, the system behaves very like a single
locus with net selection coefficient S = ns, so that:

x*0 � m
S
þ OðRÞ

Substituting this into Equation 6a, we obtain:

sI � mR
S

(6b)

If the loci are equally spaced along the chromosome, with
distance r between each pair, R = (n 2 1)r (assuming that
terms in r2 can be neglected) and:

sI � mðn2 1Þr
ns

(6c)

With n .. 2, sI is largely determined by the frequency of
recombination between adjacent loci, and the strength of
selection at each locus.

For the opposite extreme of free recombination, the pro-
cedure of neglecting LD used by Kirkpatrick and Barton

(2006) can be followed. Because each locus then causes an
equilibrium reduction in fitness of m, the equilibrium mean
fitness of the focal population is �1 2 nm; substituting this
into Equation 6a gives their multi-locus expression for sIwith
loose linkage, sI � ðn2 1Þm:

Figure 1 shows how the advantage of the inversion de-
pends on the rate of recombination relative to selection,
r = r/s. An exact treatment using Equations 3 of Barton
(1983) was applied in order to generate the curves. When
r , 0.5, we have sI , m and sI approaches at most
mr/(s 2 r) as the number of loci increases. In this regime,
all the loci are in strong LD, the migration load is close to m,
and the inversion does not havemuch of an advantage.When
r . 1, the migration load, and, hence, the advantage to the
inversion, can be much larger (right-hand side of the upper
panel in Figure 1), especially when many loci are involved.
The advantage is now a substantial fraction of sI = m(n21),
the limiting value with loose linkage (lower panel of Figure 1).

Discussion

Here, we will briefly consider the implications of these results
for the interpretation of the results of Lee et al. (2017) on the

Figure 1 The selective advantage of an inversion, sI, in the limit of low
migration, for n = 2, 4, 8, . . ., 256, 512 loci, plotted against r/s. The
upper plot shows sI/m on a log-log scale, with the number of loci
increasing from bottom to top. The lower plot shows sI /m(n21), with
the number of loci increasing from top to bottom; the dashed line
indicates the selective advantage in the limit of loose linkage, m(n21).
The curves were calculated using the recursion in Equation 3 of
Barton (1983).
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inversion polymorphism of B. stricta. Equations 4, 6c, and A8
imply that, when there is a high rate of self-fertilization in the
population, this mechanism can provide only aweak selective
advantage for an inversion. This follows from the fact that,
with an inbreeding coefficient of f resulting from a departure
from random mating within a population, the effective re-
combination rate that replaces r is (1 2 f )r (Nordborg
1997; Charlesworth and Charlesworth 2010, p. 382). Song
et al. (2006) obtained an estimate of f = 0.90 for B. stricta,
using data on microsatellite genotypes. The effective recom-
bination rate for this example is thus about one-tenth of the
rate of recombination per meiosis, and the advantage of the
inversion would be �0.1 mr/s if a moderate number of loci
were covered by it.

Because extensivedifferentiationbetween the two subspecies
at loci under selection requires m , , s, the selective advan-
tage to an inversion is likely to be substantially,0.001 if the
selected loci are,10 cM apart. This implies a chance of only
�0.002 that a single new inversion would become estab-
lished in the population as a result of selection (Haldane
1927), so that many independent mutational events gener-
ating an inversion in the chromosomal region in question
would be needed before one succeeded in spreading to a high
frequency. While Lee et al. (2017) provide convincing evi-
dence that the inversion is associated with locally adaptive
alleles, their interpretation in terms of the Kirkpatrick and
Barton (2006) model thus has little or no advantage over a
scenario in which an inversion that spread to an intermediate
frequency by drift happened to pick up a selectively favorable
mutation, and was then driven to a high frequency by
hitchhiking.
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Appendix

Two-Locus Results: Approximation for Weak Migration Relative to Selection

The difference in the frequency of allele A2 at locus 2 between carriers of alleles A1 and a1 is equal toD/p1q1 (Charlesworth and
Charlesworth 2010, p. 410), so that the effect on fitness of substituting A1 for a1 at locus 1 through its associated effect on
locus 2 is equal to (s2 2 e)D/p1q1; this term can be added to the direct fitness effect of the substitution s1. If q1 ,, 1, the net
selective advantage of A1 over a1 is given by:

dw1 � ½s1 þ ðs2 2 eÞD=q1� (A1a)

Similarly, the selective advantage of A2 over a2 is:

dw2 � ½s2 þ ðs1 2 eÞD=q2� (A1b)

The change in qi due to selection is approximately equal to qi dwi; the change due to migration is approximately equal to m
whenm ,, si, as is assumed here. At equilibrium (denoted by asterisks), the equilibrium frequencies of the disfavored alleles
are given by:

q*1 � l1 2 ½ðs2 2 eÞD*�s1� (A2a)

q*2 � l2 2 ½ðs1 2 eÞD*�s2� (A2b)

The recursion relations for each haplotype can be used to determine D*. If the source deme is fixed for haplotype 4, the
haplotype recursion relations with weak selection are as follows:

Dx1 � x1ð12 �wÞ2 rD2mx1 (A3a)

Dx2 � x2ð12 s2 2 �wÞ þ rD2mx2 (A3b)

Dx3 � x3ð12 s1 2 �wÞ þ rD2mx3 (A3c)

Dx4 � x4ð12 s1 2 s2 þ e2 �wÞ2 rDþmð12 x4Þ (A3d)

where �wis the population mean fitness.
We have:

DD � x4Dx1 þ x1Dx42 x3Dx2 2 x2Dx3 (A4)

Writing the haplotype frequencies as x1 = p1p2 + D, x2 = p1q2 2 D, x3 = q1p2 2 D, x4 = q1q2 + D, using Equations A1, and
assuming that the population is close to equilibrium, the selection terms in Equation A4 give:

DDs � Dð22 2�w2 s1 2 s2Þ þ ex4 � 2Dðs1 þ s22 eÞ (A5a)

Provided that the fitness of A1A2 is greater than that of a1a2 (so that selection is purely directional), the multiplicand of D is
negative.

The recombination term is DDr = 2rD. This leaves the migration term to be evaluated, which is given by:

DDm � mðx1 2 2DÞ � m (A5b)
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The net change in D near equilibrium is thus approximately:

DD � 2Dðrþ s1 þ s2 2 eÞ þm (A6)

Equating this to zero gives Equation 1 of the main text.

Two-Locus Results: Exact Solution with Additive Selection

Here, we present the exact solution for the case when all processes are slow, with m, rD, s ,, 1, treating the population as
evolving in continuous time, as in Bürger and Akerman (2011), whose treatment of the diploid model with semi-dominance is
equivalent to this: their Eqs. 2.5 are equivalent to our A7 below. This analysis shows how the advantage of an inversion
changes as migration increases, toward a critical value at which it overwhelms selection. In this case, the rates of change of
allele frequencies and LD, and the selective advantage of the inversion, are given by:

_p1¼2mp1 þ s1p1q1 þ s2D

_p2¼2mp2 þ s2p2q2þ s1D

_D¼2 ½rþmþ s1ðp1 2 q1Þ þ s1ðp2 2 q2Þ�Dþmp1p2

sl ¼ s1q1 þ s2q22m ¼ m2D
�s2
p1

þ s1
p2

� (A7)

Provided that migration is not too high, both locally favored alleles can be maintained in the focal deme, giving the following
equilibrium results:

q*1 ¼ ½ðrþ s1Þ2 2 s22 þ 4mr2 ðrþ s1 2 s2ÞA�
��

8rs1
�

q*2 ¼ ½ðrþ s2Þ2 2 s21 þ 4mr2 ðrþ s2 2 s1ÞA�
��

8rs2
�

D* ¼ mp*1p
*
2

rþmþ s1ð12 2q*1Þ þ s1ð122q*2Þ
sl ¼ ðrþ s1 þ s22AÞ=4

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ s1 þ s2Þ2 28mr

q

(A8)

The critical migration rate, above which one or both alleles are swamped, is:

mc ¼ ðrþ s1 þ s2Þ2
��

8r
�

(A9)

The maximum advantage to the inversion is when migration is just below this critical value:

slm ¼ 1
4
ðrþ s1 þ s2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rmc=2

p
(A10)

With loose linkage, such that m, s ,, r, the advantage to the inversion can be written as:

sl �
mr

rþ ðs1 þ s2 2 2mÞ (A11)
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