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ABSTRACT An open question in human evolution is the importance of polygenic adaptation: adaptive changes in the mean of a
multifactorial trait due to shifts in allele frequencies across many loci. In recent years, several methods have been developed to detect
polygenic adaptation using loci identified in genome-wide association studies (GWAS). Though powerful, these methods suffer from
limited interpretability: they can detect which sets of populations have evidence for polygenic adaptation, but are unable to reveal
where in the history of multiple populations these processes occurred. To address this, we created a method to detect polygenic
adaptation in an admixture graph, which is a representation of the historical divergences and admixture events relating different
populations through time. We developed a Markov chain Monte Carlo (MCMC) algorithm to infer branch-specific parameters
reflecting the strength of selection in each branch of a graph. Additionally, we developed a set of summary statistics that are fast to
compute and can indicate which branches are most likely to have experienced polygenic adaptation. We show via simulations that this
method—which we call PolyGraph—has good power to detect polygenic adaptation, and applied it to human population genomic
data from around the world. We also provide evidence that variants associated with several traits, including height, educational
attainment, and self-reported unibrow, have been influenced by polygenic adaptation in different populations during human

evolution.
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HERE is much interest in identifying the individual genetic

variants that have experienced natural selection during
recent human evolution. Many popular methods tackle this
problem by identifying alleles that have changed frequency
faster than can be explained by genetic drift alone, and that
can instead be explained by selective processes. These meth-
ods exploit patterns like haplotype homozygosity (Sabeti et al.
2002, 2007; Voight et al. 2006) and extreme population dif-
ferentiation (Chen et al. 2010; Yi et al. 2010; Racimo 2016),
and have yielded several important candidates for human
adaptation: for example, LCT (Bersaglieri et al. 2004), EDAR
(Sabeti et al. 2007), EPAS1 (Yi et al. 2010), and the FADS
region (Fumagalli et al. 2015). In order for these signals to be
detectable at the level of an individual locus, the historical
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changes in allele frequency must have been large and rapid.
Therefore, they can only be produced by alleles that confer a
strong selective advantage.

With the advent of large-scale genome-wide association
studies (GWAS) for a variety of measurable traits, however,
it has now become possible to detect a more subtle mechanism
of adaptation. If a trait is polygenic, positive selection may
instead occur by concerted shifts at many loci that all contribute
to the variation in a trait. Over short time scales, these shifts are
expected to be small [but see Barton and de Vladar (2009) for
polygenic dynamics under longer time scales]. They are also
expected to occur in consistent directions, such that alleles that
increase the trait will systematically rise in frequency (if selec-
tion favors the increase of the trait) or fall in frequency (if
selection operates in the opposite direction). None of the allele
frequency changes need to be large on their own for the phe-
notypic change to be large. This process is called polygenic
adaptation, and may underlie major evolutionary processes
in recent human history (Pritchard et al. 2010; Pritchard and
Di Rienzo 2010; Mathieson et al. 2015; Field et al. 2016).

A number of methods have been developed to detect poly-
genic adaptation using loci identified from GWAS. Turchin
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et al. (2012) was the first such study. They developed a test
for polygenic adaptation between two populations, and
showed that there were systematic frequency differences at
height-associated loci between northern and southern Euro-
peans, which could not be explained by genetic drift alone.
Berg and Coop (2014), Berg et al. (2017) developed a more
general method to detect polygenic adaptation by testing for
over-dispersion of mean genetic values among several pop-
ulations, using a genome-wide population covariance matrix
to predict how alleles should behave under neutrality. Robinson
etal. (2015) used theory by Ovaskainen et al. (2011) to develop
a similar population differentiation method to detect polygenic
adaptation with GWAS. They also made use of the genome-
wide covariance matrix, but, in contrast to Berg et al. (2017),
their method is implemented in a Bayesian linear mixed model.

None of these methods require a detailed model of human
history to detect polygenic adaptation. Their use of the ge-
nome-wide covariance matrix allows them to capture patterns
of genetic drift among populations without having to infer
their history. While this makes them quite powerful, it also
means that they are not very useful at determining where and
when polygenic adaptation took place in the past.

Here, we develop a method to detect polygenic adaptation
that uses a more parameter-rich model of historical population
structure: an admixture graph, which is a simplified repre-
sentation of the history of divergences and admixture events
among populations (Patterson et al. 2012; Pickrell and Pritchard
2012). An explicit model allows us to infer where particular
bouts of polygenic adaptation took place in human history, so
as to better understand how selection on trait-associated vari-
ants has occurred over past generations.

Materials and Methods
Model

Assume we have measured genotypes at a single-nucleotide
polymorphism (SNP) that influences a trait in a set of M
populations. Let dﬂ)be the count of the derived allele in pop-
ulation m, and let d be the vector across the M populations of
each d,, observation. Let n,, be the total number of chromo-
somes observed in population m (together 7). Assume we
have an admixture graph G relating these populations, and
that this graph consists of an accurate topology, as well as
accurate branch lengths and admixture rates. Branch lengths
are in units of drift, which are approximately equal to t/2N,,
where, for each branch, t is the number of generations and N,
is the effective population size, assuming t << N, (Crow and
Kimura 1970). In practice, we can estimate such a graph
from neutral genome-wide data, and we use the program
MixMapper (Lipson et al. 2013) when applying our method
to human genomic data below.

We wish to model the changes in frequency of a trait-
associated allele over the graph G. At each node in the graph,
we introduce a parameter that corresponds to the allele
frequency of the variant at that node. Let_JfR be the derived
allele frequency at the root of the graph, f; be the vector of
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allele_f)requencies at all the other internal nodes of the graph,
and f ; be the vector of allele frequencies at the tips of the
graph.

The probability of the parameter values and the data can
then be decomposed as follows:

(i 1. 7. d[1.6) = P(@[1. 71 )P(F]F1:6)

- )
xp(f I’fR:G>P(fR)

We now take each of the terms above in turn. First, the

probability of the observed counts is simply a product of

binomial probabilities:

P(A[Fr) = [ Bintdminnde). @
m=1

where f;, is the element of ?T that corresponds to population m.
To get the probabilities of the changes in allele frequency
across different nodes, consider a single branch of G. Assum-
ing the branch is relatively short (such that the allele does not
approach fixation or extinction in this time period) and there
is no natural selection, we can use the Normal approximation
to the Wright-Fisher diffusion (Cavalli-Sforza et al. 1964;
Felsenstein 1973; Nicholson et al. 2002) to model the allele
frequency at the descendant node of the branch (fp) as a
function of the allele frequency at the ancestral node (f4):

folfa,c ~ N(fa,fa(1—fa)c), 3)

where ¢ corresponds to the amount of drift that has occurred
in the branch. In practice, we use a truncated Normal distri-
bution with point masses at 0 and 1, to account for the possi-
bility of fixation or extinction of the allele (Coop et al. 2010).

In our model there may have also been selection on the
allele on the branch, such that it was pushed to either higher or
lower frequency because of its influence on a trait. We can
model the selected allele frequency by modifying the infini-
tesimal mean of the Wright-Fisher diffusion and approximat-
ing the diffusion with a Normal distribution that now
includes some additional terms (Coop et al. 2010; Turchin
et al. 2012; Giinther and Coop 2013) (C. Bhérer, personal
communication):

fD|fA>a7é>C ~ N(fA +g(ﬁ)afA(1 _fA)afA(]' _fA)C)a (4)

where B is the effect size estimate at that site (defined with
respect to the derived allele), g(5) is some function that re-
lates the effect size estimate to the selective pressure, and « is
our positive selection parameter, which is approximately
equal to the product of the selection coefficient for the ad-
vantageous allele and the duration of the selective process
(Turchin et al. 2012; Mathieson and McVean 2013). In prac-
tice, we will set g($3) to be equal to the sign (+1 or —1) of 3,
so as to avoid giving too much weight to variants of strong
effect. We will model selection only on SNPs that are associ-
ated with a trait in a particular GWAS.
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Figure 1 Schematic of drift values (c) and allele frequencies (f) for a
three-leaf population tree with no admixture.

We can calculate the probability of these parameters at a
particular site as the product of the Normal probability
densities that correspond to the evolution of allele frequen-
cies down each branch times a binomial probability density
to account for sampling error. Let us denote the Nor-
mal density that corresponds to a particular branch A as
h( fl()'U; ff({\),c(“,a(’\)), where we suppress notation of 3 for
clarity. Then, for example, the probability of a given pattern
of allele frequencies and sample counts over a rooted three-
leaf tree with four branches A, ¢, v, and ¢ (Figure 1) can be
computed as follows:

P(F0 Fr d|@ Tfw G) =h(F52, N, a)
h(f s (i £y )

h(FS:Y ¥, o) P(d 7, F )
(5)

when the « parameters and the allele frequency at the root of
the tree (fzr = ffgL) = f/§““>) are known. Note that some of the
symbols here correspond to the same allele frequencies. For
example, if the v branch is one of the immediate descendant
branches of the ¢ branch, then fl()b) = fﬁ”). Assuming SNPs are
unlinked, we can compute the probability of the allele fre-
quency configurations at all N trait-associated SNPs as a prod-
uct over the probabilities at each of the SNPs:

N
Pin=]]P (6)
i=1

where P; is the probability of the parameters of interest at
SNP i under our tree model.

More generally, we can also compute the probability of our
parameters in an admixture graph, containing nodes with
more than one parent. In that case, the probability of an allele
frequency of an admixed node is a weighted sum of the
probability paths corresponding to its two parents, where

the weights are the admixture rates for each of the two
contributions.

MCMC algorithm

In practice, for a given SNP, we know neither the a&gle
frequencies at the inner nodes ( f ), at the tip nodes ( f 1)
and at the root node (fg), nor the a parameters in each
branch (@). We want to obtain a posterior distribution of
the_s}e parameters, given the data and the known graph:
P(fr f1. fr, @|d, 1, ,G). We aim to do this for all trait-
associated SNPs. We therefore developed an MCMC sampler
to transition between the states of these variables and esti-
mate their posterior distribution (Figure 2).

We set the prior for the frequencies at the root fz to be a
uniform distribution. For a given SNP i,

fir ~ Unif[0, 1] 7

As there are many combinations of « parameters that gener-
ate almost equivalent likelihoods in a complex admixture
graph (Supplemental Material, Figure S1 in File S1), we
use a “spike-and-slab” prior for the o parameters, so as to
promote sparsity. For a given branch j,

|7,k ~ KN(Ov (7/5)2) + (1 —x)N(0,7%) 8)

This is a mixture of two Normal distributions centered at 0:
one of the distributions has a wide standard deviation (SD)
(7), while the other has a much narrower SD, which is
a fraction (1/{) of r, and approximates a point mass at
0 (Mitchell and Beauchamp 1988; George and McCulloch
1993). Here, « is the mixture probability of drawing from the
narrower Normal distribution, and we model it with a uni-
form hyperprior. The idea behind this is that our assumed
prior belief is that only a few of the branches in the admixture
graph have experienced bouts of polygenic adaptation, so we
reward a parameters that tend to stay in the neighborhood of
0 during the MCMC run.

For the MCMC transition probabilities of the e parameters, we
use a Normal distribution with constant variance. For the transi-
tion probabilities of the ancestral allele frequencies, we use a
truncated Normal distribution with point masses at 0 and 1, with
variance equal to a constant (input by the user) times fx (1 — fx),
where fy is the frequency of an allele in its current state. This
allows for the proposed transitions to be larger for SNPs at me-
dium frequencies and smaller for SNPs at high or low frequencies.
We apply a Hastings correction in the acceptance ratio to account
for this asymmetric proposal distribution.

For all applications below, we ran our MCMC sampler for
1 million steps with a burn-in period of 10,000, and obtained
posterior samples every 1000 steps. The variance of the tran-
sition probabilities of the ancestral nodes and the « parameters
were chosen so that the acceptance rate was close to 23% for
each set of parameters. For the spike-and-slab prior, we set 7 to
be equal to 0.1, and ¢ to be equal to 25. The lower and upper
boundaries of the uniform hyperprior for k were set to be 60
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Figure 2 Schematic of PolyGraph estimation procedure for a four-population graph with one admixture event. (A) The first step is the estimation of the
admixture graph topology using neutral SNP data, via an admixture-graph fitting program like MixMapper. (B) Then, we use the Qg statistic to determine
which branches to explore in the MCMC. Selection parameters whose corresponding branches have a Qg statistic that is smaller than a specific cutoff
(red line) are set to a fixed value of 0 in the MCMC. (C) Model for MCMC sampling. The SNP frequencies in the nodes of the graph are shown in green,
while the selection parameters for each candidate branch are shown in purple. For each SNP, the likelihood of each branch of the graph is a Normal
distribution. To model the sampling of derived alleles in the leaves of the graph, we use a binomial distribution.

and 80%, respectively, unless otherwise stated. We note that N
all of these parameters can be adjusted by the user as needed. Zm = 2 Zf imBi- ®
i

A statistic for prioritizing branches .
Here, f;,, is the sample frequency of SNP i in a panel of

population m, and B; is its effect size estimate. The vector
Z therefore contains the z,, values for all M populations.

Furthermore, let V, be the additive genetic variance of the
ancestral population for a given character. We compute V4 by
taking the ancestral frequency for each SNP i to be the mean
sample frequency over all populations ( fi,G)i

We observed via simulations that different combinations of «
parameters can produce very similar likelihood values. This
causes the MCMC sampler to explore different combinations
of a values in the same posterior run, when only one such
combination is actually correct (Figure S1 in File S1). The
aforementioned spike-and-slab prior serves to partially ame-
liorate this problem, but we aimed to find a way to further
encourage sparsity by reducing the possible number of can- N L
didate branches that are explored in the MCMC. Va=2 2(1 —fic)fiBi- (10)
We therefore devised a set of summary statistics that can be t
computed before starting an MCMC run and are meant to
detect branch-specific deviations from neutrality. Let F be the
empirical population covariance matrix, which—under ideal
neutral conditions—should be determined by the admixture
graph connecting all the populations. Let z’ be the mean-
centered vector of estimated mean genetic values for each of
the M populations, computed from the N SNPs that are known  then, by the definition of the multivariate normal distribution,
to be associated with a trait. For a specific population m: 2'b ~N (0,0?) for any choice of ?, and

Following Wright (1949), Berg and Coop (2014), if we are
willing to assume that

— —
Z ~ MVN(O72VAF>, (1)
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—T_ —
o> =2V4b Fb (12)

= 2Vu (13)

—T —
where we have setu = b F b for notational convenience. It
follows that

zZ'b
= ~ N(0,1 1
db \/m ( ) )7 ( 4)
and this holds for all choices of ?
Now, let:
2
(")

) = ————t—, 15
Qs(j) WAaFa, (15)

where @; is a scaled version of ?j so that is has unit length.
Qg is the square of g, and has a x? (ﬁ)stribution under the null.
Importantly, one is free to choose b such that it represents a
branch _g j) in an admixture graph. Let us then define the
vector b for a particular branch j to be equal to the contri-
bution w of that branch to each of the leaves of the graph.
For example, branch v-q in Figure 2 is a full ancestral
branch to leaf C, a partial ancestral branch to leaf B (due
to the admixture event), but not an angestral branch to
either A or D. Therefore, the vector b, is equal to
(_V)VA,WB,WC,WD) = (0, 1;y, 1,0). By the same reasoning,
bcy=1(0,0,1,0)and by = (1,1,1,0).
If we scale b; such that it has unit length:

b,
aj=-— (16)
[
then
0% = 2V, @ Fa; 17)

has an interpretation as the amount of among population
additive genetic variance that we would expect to come about
because of drift which occurs down branchj. In turn, (z* @;)?
is the actual amount of variance in genetic values observed
along the axis consistent with that branch. In other words,
the denominator of Qg gives the expectation of the numerator
under the neutral model.

The Qg statistic reflects how much of the deviations from
neutrality among the population mean genetic values for a
trait is due to branch j. Excessively large values of Qg (j) rep-
resent evidence suggesting non-neutral evolution down
branch j. Note that, by design, branches with the exact same
child nodes have equal Qg statistics, as do branches at the
root of the graph.

We used this summary statistic (computed for each branch)
to prioritize which branches to explore in our MCMC. We
applied a prior point mass of zero to all branches whose
corresponding Qjp statistic were smaller than a particular cut-

off. The choice of cutoff was based on simulations (see below).
The MCMC only produces posterior samples for branches that
pass this cutoff, and are therefore highly deviated from their
expectation under neutrality. We also update the « parameters
of these latter branches in our MCMC with a frequency pro-
portional to their Qp values, in a similar fashion to Zhou and
Stephens (2012).

Choosing a cutoff for Qg

We aimed to find a cutoff for Qg that would serve to minimize
the number of candidate branches to be explored in the
MCMC while at the same time trying to ensure that the true
selected branches would be included among these candi-
dates. One choice would be to select the cutoff of a x? distri-
bution that would correspond to a P-value of 0.05/k, where
k is the number of branches tested. We find, however, that a
constant value for this cutoff is not the most desirable
choice as a way to prioritize branches for exploring the
strength of selection in each of the branches in the MCMC,
as graphs of different sizes (i.e., amounts of drift) result in
quite different sensitivity values, as well as number of can-
didate branches included, when « = 0.1 (Figure S2 and
Figure S3 in File S1 for two cases where each branch has
driftlength = 0.02 and Figures S4 and S5 in File S1 for two
cases where each branch has drift length = 0.05). We observe
the same issues when simulating under « = 0.2 (Figures S6—
S9 in File S1).

A more stable strategy across graphs of different sizes that
also works better at minimizing the number of candidates is to
choose the cutoff to be a fraction of the largest Qg statistic
among all branches in the graph (Figure S2 and Figure S5 in
File S1). For all analyses below, we chose this to be 1/3 of the
maximum Qjp statistic. We note that this is a less conservative
strategy than the fixed x? cutoff. However, it is important to
remember that we do not aim to formally test for selection
here, but merely obtain a set of likely candidate branches for
the MCMC to explore downstream, some of which may end
up producing a posterior mean estimate of « that is consistent
with neutrality (i.e., a = 0).

Simulations

To assess the performance of our method, we simulated
different demographic scenarios. For each simulated SNP,
we sampled the root allele frequency (fz) from a Beta(2,2)
distribution, to emulate the fact that, in the real data, variants
in the leaf populations tend to be further away from the
boundaries of fixation and extinction than under a uniform
distribution. We evolved the SNPs throughout an admixture
graph forward in time using Wright-Fisher binomial sam-
pling, and used binomial distributions to sample panel allele
frequencies from the leaf populations.

We first simulated a simple three-leaf tree with four
branches, in which the sampled panels in the leaves were
each composed of 100 diploid individuals (Figure 3, A and B).
We tested scenarios of different branch lengths: each of
the branches was simulated to be either of length 0.02 or of
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(in this case, 0.2). The lower, middle, and upper
hinges denote the 25th, 50th, and 75th percen-
tiles, respectively. The upper whisker extends to
the highest value that is within 1.5 * IQR of the
upper hinge, where IQR is the inter-quartile
range. The lower whisker extends to the lowest
value within 1.5 * IQR of the lower hinge. Data
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with selection in a terminal branch (B-q). (B) Three-
leaf tree with selection in an internal branch (g-1).
(C) Four-population admixture graph with selec-
tion in an internal branch (v-g). (D) Four-population
admixture graph with selection in a terminal
branch (C-v).
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length 0.05. We also tested different types of branch under
selection (either a terminal branch or an internal branch). We
additionally tested a four-leaf admixture graph with one
admixture event (Figure 3, C and D) in these same scenar-
ios. For comparison, the amount of genetic drift between
Spanish and French human populations is 0.016, and the
amount of drift between French and Han Chinese human
populations is 0.22 (Haak et al. 2015). The latter is approx-
imately equal to the drift separating populations A and C in
our four-population graph, when each branch has length
equal to 0.05.

In all cases, we set a constant effective population size N,
of 10,000 and adjusted the number of generations in each
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Au

branch, depending on how much drift we specified in each
scenario. We used Equation 2 from the Supplemental Note
of Turchin et al. (2012) to simulate selection. We set a con-
stant time during which selection operates (Ts.;) to be equal
to 100 generations, and adjusted the selection coefficient (s)
to obtain the selection parameter specified in each scenario
(a = s*Ty). If a branch had a larger number of generations
than Ty, the selective phase was simulated to occur during
the ancestral-most generations, followed by a neutrality pe-
riod until reaching the end of the branch. The effect sizes of
the SNPs were drawn from a Normal distribution with mean
0, and we simulated polygenic adaptation in a particular
branch using only the sign of the effect size of each SNP.



We also simulated an additional 10,000 SNPs that evolved
neutrally under the same demography, so as to estimate the
neutral population covariance matrix.

For all simulation scenarios, we tested five 400-SNP rep-
licates. We ran the MCMC four times on each simulation to
check that it was behaving consistently. We observed that the
runs for each simulation were very similar to each other, so we
only show one run for each simulation.

Building admixture graphs

We fitted admixture graphs using genome-wide data from
Phase 3 of the 1000 Genomes Project (Auton et al. 2015), and
a more broadly sampled SNP chip dataset of present-day
humans from 203 populations genotyped with the Human
Origins array (Patterson et al. 2012; Lazaridis et al. 2014).
The latter dataset was imputed using SHAPEIT (Delaneau
et al. 2013) on the Michigan Imputation Server (Das et al.
2016) with the 1000 Genomes data as the reference panel
(C. Bhérer, personal communication).

We excluded SNPs that were deemed to be associated with
the trait of interest when fitting population graphs. We used
MixMapper (v1.02) (Lipson et al. 2013) to build best-fitting
scaffold trees, and placed putatively admixed populations as
mixtures originating from different branches in these trees.
We pruned both datasets by sampling one out of every
100 SNPs before feeding them as input into MixMapper. To
account for any residual linkage disequilibrium (LD), we also
performed 100 bootstrap replicates of the computed statis-
tics, computed over 500 blocks along the genome. Because
MixMapper cannot distinguish between the two drift values
corresponding to two admixing branches with a common
child node and the drift value specific to the immediate de-
scendant branch of the child node (Figure 2 in Lipson et al.
2013), we forced the drift in the two admixing branches to be
equal to 0.001 and assigned the drift estimated by MixMapper
to the branch immediately descending from the child node.
We also verified that the topologies we found in MixMapper
were the same topologies as the ones inferred by TreeMix
(Pickrell and Pritchard 2012) (Figure S10 in File S1).

Implementation

We implemented both the MCMC and the Qg statistic com-
putation in a program that we call PolyGraph. We use the R
packages admixturegraph (Leppélé et al. 2017) and igraph
(Csardi and Nepusz 2006) to visualize and manipulate
various aspects of a graph. The R scripts to run PolyGraph
can be downloaded from https://github.com/FerRacimo/
PolyGraph.

Visualizing poly-graphs

To facilitate the visualization of posterior distributions for
a parameters, we developed a new way to plot polygenic
adaptation in a graph: a “poly-graph,” which simultaneously
depicts the structure of the studied graph and the marginal
posterior mean of each « parameter, in the form of different
colorings for each branch.

In a poly-graph, the vertical component of a nonadmixing
branch is proportional to the amount of genetic drift that it
experienced (calculated via MixMapper). The position of
admixed nodes is determined based on the drift value of
one randomly chosen parent branch. The colors indicate
the marginal posterior mean estimate of the selection param-
eter for variants associated with the corresponding trait (with
red indicating an increase in trait-increasing variant fre-
quency, and blue indicating a decrease in trait-increasing var-
iant frequency). When plotting poly-graphs in this study, we
impose a minimum branch height (= 0.075) for clarity, as
otherwise the selection parameters of some branches with
very short drift lengths are impossible to visualize.

Results
Performance on simulations

When the o parameter is large (o« = 0.2), the MCMC per-
formed very well (Figure 3). For a tree (Figures S11 and
S12 in File S1) or a graph (Figures S13 and S14 in File S1)
with small branch lengths (0.02), the branch simulated to be
under selection was included as a potential candidate branch
in the MCMC in all simulations, indicating that the Qg cutoff
was not overly stringent. PolyGraph then consistently con-
verged on the appropriate joint distribution of selection pa-
rameters. When the branches were simulated to be longer
(0.05), the MCMC performed well, but, in a few simulations,
it produced positive estimates for o parameters in neutral
branches, or failed to find evidence for selection in any
branch (Figures S15-S18 in File S1). This occurred more
often when the « parameter was simulated to be smaller
(e = 0.1), but, again, this was less of a problem with short-
branch graphs (Figures S19-S22 in File S1) than with long-
branch graphs (Figures S23-S26 in File S1). In general, we
conclude that the method performs best when selective pres-
sures are strong and/or exerted over long time periods (i.e.,
large o), and when drift parameters are small. We also ob-
serve that using a nonsparse prior (i.e., setting « to 0) leads to
strong misestimation of parameters when selection is concen-
trated on a single branch (Figure S27 in File S1). To verify
that the MCMC chain was mixing well, we also built autocor-
relation plots of the o parameters (Figure S28 in File S1 for the
chain corresponding to simulation 1 of Figure S14 in File S1).

We were concerned about false positive estimates of se-
lection when the graph is misspecified. To assess this, we
simulated a graph like the one shown in Figure 3C but with no
selection. We first run PolyGraph while correctly specifying
the topology and the branch lengths (of length equal to 0.02)
as input (Figure S29 in File S1), and observed that all poste-
rior « estimates are tightly centered at 0, as expected. Then,
we simulated a graph with the same topology but with each
branch having length equal to 0.03, while incorrectly under-
estimating the length of each branch to still be equal to 0.02
(Figure S30 in File S1). Finally, we simulated the same graph
but with each branch having length equal to 0.04 while
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Table 1 Trait-associated variants with Bonferroni-corrected
significant evidence of being under polygenic adaptation in the
1000 Genomes data, using the Qx statistic: P<0.05/n, where n is
the number of GWAS tested, assuming a x? distribution

Graph Trait P Prand Pemp
Seven-leaf Height** 3.516%107"3 <0.001 <0.001
tree Educational attainment** 3.404*107® <0.001 <0.001
Unibrow* 9.115%*107'*  0.012 <0.001
Male-pattern baldness 0.000679 0.177  0.007
Five-leaf ~ Height** 2.355%107"" < 0.001 <0.001
graph  Educational attainment** 1.379%*10~7 < 0.001 < 0.001
Schizophrenia* 0.000608 0.01 0.007
Unibrow 2.846%107""  0.056 <0.001
Male-pattern baldness 0.000562 0.213 0.003

We also computed P-values from 1000 samples in which we randomly switched the
sign of effect size estimates, to simulate neutrality while preserving the genetic
architecture of the traits (P.ng). Additionally, we computed P-values from an em-
pirical null distribution produced using 1000 samples, each containing SNPs that
were frequency-matched to the trait-associated SNPs, using their allele frequency in
CEU, to account for each GWAS’s ascertainment scheme (Pemp).

* Trait-associated variants for which P,y <0.05

** Trait-associated variants for which P,y <0.05/n.

incorrectly underestimating the branch lengths to all be equal
to 0.02 (Figure S31 in File S1). With increasingly stronger
misspecification of the branch lengths, we observe that the
behavior of some of the posterior estimates becomes more
erratic. Visual inspection of the MCMC trace indicates that
underestimation of the branch lengths makes the chain to
become more “sticky,” causing some parameters to get stuck
at incorrect areas of parameter space for long periods of time.

We also simulated a neutral graph as in Figure 3C but
pretended that population A had not been sampled, and that
the graph was (incorrectly) estimated to be a three-popula-
tion tree like the one in Figure 3A. This topological misspe-
cification slightly affected the inference of neutrality in one of
the five simulations (Figure S32 in File S1), and we do not
discard the possibility of other incorrect types of topologies
that could also generate wrong inferences. We therefore
stress that the admixture graph—especially the branch
lengths—relating the populations under study should be cor-
rectly estimated before running PolyGraph. We also advise to
run the MCMC only when there is significant evidence for
selection based on the Qy statistic (Berg and Coop 2014),
which does not need an admixture graph as input, as it uses
the full genome-wide covariance matrix to model the
expected amount of drift separating each of the populations.

Application to 1000 Genomes data

We tested our method on sets of associated variants from
43 GWAS on 42 different traits (Table S1 in File S1; two of the
GWAS are for age at menarche) that were previously assem-
bled as part of a meta-analysis studying the genetic correlations
between such traits (Pickrell et al. 2016). The meta-analysis
split the genome into approximately independent linkage
disequilibrium blocks (Berisa and Pickrell 2016). The blocks
were computed using the European populations in Phase 1
of the 1000 Genomes Project, but we observe virtually no
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differences in genetic scores when using the East Asian
blocks instead. For each block with a posterior probability
>90% of containing an association [obtained from fgwas
(Pickrell 2014)], the SNP with the maximum posterior prob-
ability of being the causative variant was extracted. These
SNPs can be found on github (https://github.com/PickrellLab/
gwas-pw-paper/tree/master/all_single), and we downloaded
them to build our candidate trait-associated SNPs. To fit admix-
ture graphs and test for polygenic adaptation, we used the allele
frequency data found in the VCFs from Phase 3 of the 1000 Ge-
nomes Project (Auton et al. 2015). We excluded SNPs for which
the ancestral allele in the 1000 Genomes data were unknown or
unsure (lower case in VCF file).

We started by finding the most additive fitted tree that
included diverse populations sampled across the world
(Figure S33A in File S1): Nigerian Esan (ESN), Sierra Leone
Mende (MSL), individuals of Northern European ancestry
from Utah (CEU), Southern Europeans from Tuscany (TSI),
Dai Chinese (CDX), Japanese (JPT), and Peruvians (PEL). For
our first analysis, we did not attempt to model any admixture
events.

We took trait-associated variants to be under polygenic
adaptation if the P-value for the corresponding Qx (Berg and
Coop 2014) statistic (testing for overall selection among the
populations) was < 0.05/n, where n is the number of assessed
GWAS:s. Traits with associated variants that passed this crite-
rion are shown in Table 1. These were: height (Wood et al.
2014), educational attainment (Okbay et al. 2016), self-reported
unibrow, self-reported male-pattern baldness (Pickrell et al.
2016), and schizophrenia (SWGPGC 2014). To account for pos-
sible artifacts arising from the ascertainment scheme for each
GWAS, we also generated 1000 samples in which we randomly
switched the sign of the estimated effect size for all trait-associated
SNPs. This serves to preserve the genetic architecture of each
trait, while removing the effect of selection. We computed a
second P-value of the observed Qx (Prqng) by comparing it to
these samples (Table 1).

We then ran our MCMC on these trait-associated variants,
using the genome-wide-fitted graph, and obtained posterior
distributions for the « parameters with the strongest evi-
dence for selection, prioritizing branches as explained above
(Figure S34 in File S1). The P-values of the Qg statistic (obtained
from a X% distribution) for each branch are shown in Table S2
in File S1. We find strong evidence for selection on variants
associated with height, educational attainment, and self-re-
ported unibrow, but little or no evidence for variants associ-
ated with male-pattern baldness or schizophrenia: even
though these trait-associated variants are significant under
the Qx and Qg frameworks; all their @ parameters are approx-
imately centered at 0. For height, we observe both selection for
variants increasing height in the ancestral European branch,
and for variants decreasing height in the ancestral East
Asian/Native American branch. However, this is only a con-
sequence of the MCMC showing alternate strong support
for selection in either one or the other branch at different
points in the run, but only weak support for selection in both
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Figure 4 Poly-graphs for trait-associated variants that show significant evidence for polygenic adaptation in the seven-leaf tree built using 1000 Ge-
nomes allele frequency data. ESN, Nigerian Esan; MSL, Sierra Leone Mende; CEU, Northern Europeans from Utah; TSI, Southern Europeans from

Tuscany; CDX, Dai Chinese; JPT, Japanese; PEL, Peruvians.

branches simultaneously (Figure S35 in File S1), suggesting
we are unable to discern which among these is the correct
configuration. We plotted poly-graphs for all traits that passed
the significance criterion in the seven-leaf tree (Figure 4).

Given that PEL has European admixture (which can be
observed when adding one migration event to the seven-leaf
tree in TreeMix, Figure S10 in File S1), we also replaced PEL
with an East Asian population (CHB) to verify that selection
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signals observed in the Eurasian branches were not depen-  but replaced the two European populations—CEU and
dent on poor modeling of PEL as a simple sister group to East ~ TSI—by Finnish (FIN) and Iberians (IBS), and the two East
Asians (Figure S36 in File S1). Additionally, we tested an  Asian populations—JPT and CDX—by Han Chinese (CHB)
alternative set of panels, in which we kept PEL in the tree, and Southern Han (CHS) (Figure S37 in File S1). The results
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Figure 6 \We generated an empirical null distribution by sampling SNPs from the genome that matched the CEU allele frequency of the SNPs associated
with educational attainment, self-reported unibrow, and height. We generated 1000 samples this way, and computed the Qx statistic for each sample,
using the population panels from Figure 4. The Qx value observed in the real data are depicted with a red line. We also plot the density of the

corresponding x? distribution (blue line) for comparison.

from both alternative sets of panels are very similar to our
original tree. We also find very similar results when using a
Beta(2,2) prior for the root allele frequency in our MCMC
(Figure S38 in File S1), instead of the default Uniform[0,1]
prior.

We then proceeded to explore a graph with an admixture
event (Figure S33B in File S1). This graph contained Yoruba
(YRI), Colombians (CLM), CEU, CHB, and PEL. To build this
five-leaf graph, we first fit the most additive tree containing
CEU, CHB, YRI, and PEL, and then attempted to fit CLM as a
putative mixture of branches in the tree (MixMapper residual

norm = 1.91e—07). The best-fitting combination was a mix-
ture of the terminal branch leading to CEU (76.55%) and the
terminal branch leading to PEL (23.45%), the latter of which
is the panel with the highest amount of Native American
ancestry in the 1000 Genomes Project (Auton et al. 2015).
Here, we recapitulated many of our previous findings from
the seven-leaf tree (Figure S39 in File S1 and Table 1), like
selection on variants associated with height and educational
attainment. We list the P-values of the Qg statistic for each
branch in Table S3 in File S1. Poly-graphs of the five-leaf
admixture graph are shown in Figure 5.
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Figure 7 We plotted the absolute value of the effect sizes of trait-associated SNPs for height, educational attainment, and self-reported unibrow, as a
function of the difference in frequency observed between CHB and CEU. The panel frequencies are polarized with respect to the trait-increasing allele.

We then overlaid a contour plot over each scatter-plot.

To make sure there were no artifacts due to GWAS ascer-
tainment (Berg and Coop 2014), we also generated an em-
pirical null distribution produced using 1000 samples, each
containing SNPs that were frequency-matched to the trait-
associated SNPs, using their allele frequency in CEU. We
computed the Qy statistic for each of these samples, to obtain
an empirical P-value (P.m, in Table 1). We do not observe a
value of Qx as high as the one observed in the real data, for
either height, educational attainment, or self-reported uni-
brow (Figure 6).

To test how robust our results were to our modeling
assumptions, we also performed a simpler two-tailed binomial
sign test between every pair of 1000 Genomes panels. The
assumption here is that—for every panel X and Y—we should
observe roughly equal number of trait-increasing alleles at
higher frequency in X than in Y as trait-decreasing alleles at
higher frequency in X than in Y, under a model of neutrality
with respect to the effect size sign (Orr 1998). This test only
uses information about the sign of the effect estimates of each
SNP, not their magnitudes, and does not use information
about genome-wide drift parameters between each popula-
tion. Thus, it is bound to have less power than the Qg, Qx, or
MCMC tests. The P-values for these pairwise binomial tests
are shown in Tables S4-S8 in File S2 for all traits that were
found to have significant evidence of selection using the Qx
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statistic. The top 10 most significant pairwise comparisons
are shown in Tables S9-S13 in File S1. For ease of visualiza-
tion, we also plotted, for each panel, the number of pairwise
tests involving that panel that resulted in a P-value < 0.05
(Figures S40-S44 in File S1).

We were interested in verifying how sensitive different
proportions of missing data (i.e., removal of SNPs) or erro-
neous effect size estimates would be to our three strongest
signals of polygenic adaptation, on variants associated with
height, educational attainment and self-reported unibrow.
For this purpose, we focused on the comparison between
CEU and CHB. First, we simulated different proportions of
missing trait-associated SNPs, ranging from 5 to 95%, with
step sizes of 5%. For each of 10,000 simulations under each
missing data scenario, we assessed how often the polygenic
score for unibrow and educational attainment in CHB was
higher than the polygenic score for CEU, like we observe in
the 1000 Genomes data. Height follows the opposite pattern
(with CEU having a higher polygenic score than CHB), so in
that case we assessed how often its polygenic score in CEU
was higher than in CHB, across the 10,000 simulations for
each scenario. Note that we built these scores using only the
SNPs used in our selection tests. The results are in Figure S45
in File S1. For example, we see that—even with 20% missing
data—the polygenic scores for either of the three traits
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Table 2 Trait-associated variants with Bonferroni-corrected significant evidence of being under polygenic adaptation in the Lazaridis
et al. (2014) dataset, using the Qx statistic: P<0.05/n, where n is the number of GWAS tested, assuming a x? distribution

Graph Trait P Prand Pemp
Seven-leaf graph (w/EuropeA) Height** 1.506%1078 <0.001 <0.001
Photic sneeze reflex** 0.00087 < 0.001 0.006
Educational attainment** 6.11%1076 0.001 0.001
Unibrow 4.763%1077 0.173 <0.001
Seven-leaf graph (w/EuropeB) Height** 2.448%1078 <0.001 <0.001
Educational attainment** 6.838%10°° < 0.001 0.001
Age at voice drop** 0.000953 < 0.001 0.001
Photic sneeze reflex** 0.00086 < 0.001 0.001
Unibrow 2.784%107° 0.166 < 0.001
Seven-leaf graph (w/EuropeC) Educational attainment** 4.032%10°° < 0.001 < 0.001
Photic sneeze reflex 0.000653 0.004 0.004
Unibrow 2.957%1078 0.199 <0.001

We tested three different graphs with different sets of European panels, containing either low (EuropeA), medium (EuropeB), or high (EuropeC) EEF ancestry. We also
computed P-values from 1000 samples in which we randomly switched the sign of effect size estimates, to simulate neutrality while preserving the genetic architecture of the
traits (Pang). Additionally, we computed P-values from an empirical null distribution produced using 1000 samples, each containing SNPs that were frequency-matched to the

trait-associated SNPs, using their allele frequency in Europeans, to account for each GWAS's ascertainment scheme (Pemp).

** Trait-associated variants for which P,y <0.05/n.
* Trait-associated variants for which P4,y < 0.05.

preserve the observed relationship of inequality between
CEU and CHB almost 100% of the time. Finally, we simulated
a situation in which some proportion of the signs of the effect
size estimates were misassigned. We then assessed how often
we could replicate the signal we see between CEU and CHB,
but this time under different proportions of sign misassign-
ment (Figure S46 in File S1).

To understand how the signal of selection was distributed
among our SNPs, we plotted the absolute value of the effect
sizes of trait-associated SNPs for height, educational attain-
ment, and self-reported unibrow, as a function of the differ-
ence in frequency observed between CHB and CEU, polarized
with respect to the trait-increasing allele in each SNP (Figure 7).
We find that, in the case of self-reported unibrow, there are
three variants of large effect with large frequency differences
contributing to a higher polygenic score in CHB: rs3827760,
rs16891982, and rs12916300. These SNPs are located in the
genes EDAR, SLC45A2, and OCA2/HERC2. These are genes
involved in pigmentation and skin development, and all three
have documented signatures of selective sweeps causing
strong allele frequency differences between Europeans and
East Asians (Bersaglieri et al. 2004; Voight et al. 2006; Sabeti
et al. 2007; Williamson et al. 2007; Mathieson et al. 2015).
After removing SNPs with large absolute effect size values
(=0.05), the P-value of the Qy statistic for these variants
remains significant (P = 7.04*10°). When looking at the
other two sets (variants associated with height and educa-
tional attainment), the signal of selection is more uniformly dis-
tributed among the SNPs, with no strong outliers of large effect
with large frequency differences (Figure 7).

Application to Human Origins SNP chip data

We also applied our method to the imputed Human Origins
SNP chip dataset (Patterson et al. 2012; Lazaridis et al. 2014).
We tested for polygenic adaptation in a seven-leaf admixture
graph. This graph contains the panels Yoruba, Mandenka,

and Sardinian, along with the following four combinations
of panels, which we built so as to have a large number of
individuals per panel. The panel “Oceanian” contains the
panels Papuan and Australian. The panel “EastAsian” con-
tains the panels Cambodian, Mongola, Xibo, Daur, Hezhen,
Orogen, Naxi, Yi, Japanese, Han NChina, Lahu, Miao, She,
Han, Tujia, and Dai. The panel “NativeAmerican” contains
the panels Maya, Pima, Surui, Karitiana, and Colombian. Fi-
nally, we modeled Europeans as a two-way mixture of an
ancestral component related to “NativeAmerican,” and an-
other component that split basally from the Eurasian tree
and is a sister to Sardinians. This was the mixture fitted to
Europeans by Lipson et al. (2013), and provides a better fit to
the data than modeling Europeans merely as a sister group
to East Asians and Native Americans. Though we recognize
that Europeans are better modeled as a three- or four-way
mixture of ancestral components (Lazaridis et al. 2014, 2016;
Haak et al. 2015), it is hard to produce such a mixture with-
out resorting to ancient DNA data (see Discussion). We tested
three different versions of this graph, each containing three
different sets of European populations (Figure S33C in File
S1) distinguished by how much “early European farmer”
(EEF) ancestry they had [based on Figure 4 of Lazaridis
et al. (2014)]. “EuropeA” (low EEF) contains the following
panels: Estonian, Lithuanian, Scottish, Icelandic, Norwegian,
Orcadian, Czech, and English. “EuropeB” (medium EEF) con-
tains Hungarian, Croatian, French, Basque, Spanish North,
and French_South. Finally, “EuropeC” (high EEF) contains
Bulgarian, Bergamo, Tuscan, Albanian, Greek, and Spanish. The
MixMapper residual norm was equal to 6.5e—07, 1.08e—06
and 1.97e—06, when fitting EuropeA, EuropeB, and EuropeC,
respectively.

Trait-associated variants with significant evidence for poly-
genic adaptation are listed in Table 2 and the P-values of
the Qg statistic for each branch are shown in Tables S14-S16
in File S1. With these data, we are able to recapitulate the
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Figure 8 Poly-graphs for trait-associated variants that show significant evidence for polygenic adaptation in the seven-leaf admixture graph built using
the Lazaridis et al. (2014) dataset and including the set of European populations with low EEF ancestry (“EuropeA”).

adaptive increase in height-increasing variants in Europeans  made using ancient DNA in Europeans (Mathieson et al. 2015).
we had seen before, but only observe it in populations with ~ We also recapitulate selection patterns on variants associated
medium or low EEF ancestry (Figure 8 and Figures S47-S51  with other traits, like self-reported unibrow, educational attain-
in File S1). This pattern is consistent with previous observations  ment, and self-reported male-pattern baldness, and observe
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evidence for polygenic adaptation in some additional trait-
associated variants, like self-reported photic sneeze reflex
(Table 2).

To check if there were systematic biases in ancestral/de-
rived allele polarity relative to the direction of the effect size,
we performed a two-tailed binomial test on each trait for
which we found significant evidence of polygenic adaptation
in the Lazaridis et al. (2014) or the 1000 Genomes dataset
(Table S17 in File S1). We find that only schizophrenia has a
significant bias, showing an excess of derived alleles with
negative effect sizes (P = 0.03511), though this is not sig-
nificant after Bonferroni correction. We therefore caution
that the evolution of schizophrenia-associated variants may
not be well-modeled by the multivariate Normal assumptions
that we make to calculate the Qg statistic or when running the
MCMC.

As before, to check the robustness of our results to our
modeling assumptions, we show P-values for pairwise bino-
mial sign tests involving each of the panels in the Lazaridis
et al. (2014) dataset in Tables S18-S22 in File S2. The top
10 most significant pairwise comparisons are in Tables S23—
S26 in File S1, with the exception of self-reported age at voice
drop, in which all comparisons had P-values = 0.25, due to
the small number of associated SNPs. Figures S52-S55 in File
S1 show, for each panel, the number of pairwise tests involv-
ing that panel that resulted in a P-value < 0.05.

Replication using summary statistics from the
UK Biobank

Given the potential contentiousness of our educational attain-
ment signal, we aimed to determine whether the same global
patterns were observed using summary statistics from a GWAS
performed on an independent cohort. For this, we resorted to
the GWAS set released by the Neale laboratory (http://www.
nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-
phenotypes-for-337000-samples-in-the-uk-biobank) and per-
formed on the UK Biobank cohort (Bycroft et al. 2017). Though
we could not find “number of years of education” in the Neale
laboratory GWAS, we found “college/university degree” and
used this as a measure of educational attainment. We LD-
partitioned the summary statistics in the same way as be-
fore, and then selected the SNP with the lowest P-value
from each block. At P<10~?, we obtain a similar number
of SNPs (96) as we had for the association study from
Okbay et al. (2016) (86), and we find a 94% correlation
between the population genetic scores made using the data
from Okbay et al. (2016) and the scores made using the UK
Biobank (Figure S56 in File S1), each standardized by their
respective between-population SD. AtP <10 8 and P < 1077,
the correlation is reduced to 56 and 86%, respectively. Using
the 107 cutoff, we find a marginally significant overall Qx
statistic when looking at the seven populations from Figure
4 (P =0.0398, Prgng = 0.098, and P, = 0.076) and a signifi-
cant Qjp statistic in the ancestral East Asian branch (P = 0.013)
and the terminal JPT branch (P = 0.002), but not in any of the
other branches (P> 0.05). The o parameters of these two

branches estimated from the PolyGraph MCMC are also posi-
tive (Figure S57 in File S1), though their magnitude is not as
large as the ones obtained from the summary statistics of
Okbay et al. (2016).

Discussion

We have developed a method to infer polygenic adaptation on
trait-associated variants in an admixture graph, so as to be able
to pinpoint where in the history of a set of populations this type
of selective processes took place. Our method requires GWAS
data for a particular trait, allele frequency data for a set of
populations, and a precomputed admixture graph that relates
these populations with each other. Importantly, the method
relies on the admixture graph as an accurate description of the
ancestral genome-wide relationships among the populations
under study. Potential users should be careful about correctly
estimating branch lengths and ghost populations that are not
included in the graph but may have substantial unaccounted
ancestry contributions to the populations that are included.
We used MixMapper (Lipson et al. 2013) to infer the graph
topology and branch lengths. Alternatively, one can also use
other programs, like gpGraph (Patterson et al. 2012) or Tree-
Mix (Pickrell and Pritchard 2012) to build graphs, though we
caution that the estimated drift values of the branches in the
output of these programs are scaled (in different ways) by
the heterozygosity of ancestral nodes [see Supplemental
Material of Lipson et al. (2013) for a way to properly obtain
drift values from differences in allele frequencies between
populations].

Running PolyGraph involves a two-step process, each of
which is complementary to the other. The first step—the cal-
culation of the Qjp statistic—is fast and provides a preliminary
way to assess which branch in a graph has significant evi-
dence for polygenic adaptation. However, this statistic does
not model the ancestral allele frequencies at each node of the
graph. The second step—the MCMC—is slower, but provides
posterior distributions for selection parameters under a more
parameter-rich model of population history. In our pipeline,
we use the first method as a filtering step, to avoid exploring
selection parameters in the MCMC for those branches that
have little evidence for selection, and encourage the MCMC
to be sparse in its assignments of selection in the graph. We
illustrate this point in Figure S58 in File S1, where we show a
side-by-side comparison of a poly-graph built using the pos-
terior a estimates and a poly-graph built using g : the signed
version of the Qg statistic.

In application to human populations, we detected signals of
polygenic adaptation on sets of variants that have been iden-
tified to influence height, educational attainment, and self-
reported unibrow. Selection on variants associated with
height in Europeans has been previously reported elsewhere
(Turchin et al. 2012; Berg and Coop 2014; Mathieson et al.
2015; Robinson et al. 2015) and our results are consistent
with previous findings showing that height-increasing vari-
ants are at significantly and systematically higher frequencies
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in northern than in southern European populations. The sig-
nal for selection affecting variants associated with self-reported
unibrow is also strong, but partly driven by a few variants of
large effect with large frequency differences between popu-
lations, which have documented evidence for selective sweeps
in genes involved in hair, skin and eye pigmentation, and skin
development (Bersaglieri et al. 2004; Voight et al. 2006; Sabeti
et al. 2007; Williamson et al. 2007; Mathieson et al. 2015).
Additional trait-associated variants had inconsistent evidence
across datasets and graph frameworks (like schizophrenia or
male-pattern baldness) and/or are driven by differences in
only a few SNPs of small effect (like age at voice drop), and so
we do not discuss them.

We find preliminary evidence for polygenic adaptation in
East Asian populations at variants that have been associated
with educational attainment in European GWAS. This result is
robust to the choice of population allele frequency data we
used [1000 Genomes or Lazaridis et al. (2014) panels], to the
choice of GWAS summary statistics (Figure S56 in File S1), to
GWAS ascertainment (Figure 6), and to our modeling as-
sumptions, as we found a significant difference between East
Asian and non-East-Asian populations even when performing
a simple binomial sign test (Tables S4 and S19 in File S2 and
Tables S9 and S23 in File S1). However, we caution that this
pends further verification via more GWAS on the same trait.
Our modeling framework suggests that, if selection truly op-
erated on these variants, it must have done so before or early
in the process of divergence among East Asian populations—
at least as far back as 5 KYA (Stoneking and Delfin 2010;
Fu et al. 2013; Lu et al. 2016; Wong et al. 2017)—because
the signal is common to different East Asian populations
(Han Chinese, Dai Chinese, Japanese, Koreans, etc.). The signal
seems only very weakly present in some Siberian populations
(e.g., the Even and Nganasan, and some Native American
populations (e.g., the Mixe and Pima), and not present at all
in other Native American populations (e.g., the Surui, Quechua,
and Karitiana). This is perhaps explained by the complex
demographic make-up of Siberian and Native American
populations, and their divergent history from East Asians
(Raghavan et al. 2015; Skoglund et al. 2015; Pugach et al.
2016).

Interpreting the educational attainment signal, and the
other signals we found, requires awareness of a number of
technical caveats, as well as several fundamental conceptual
difficulties with the study of polygenic adaptation, some of
which may ultimately prove intractable.

What is the signal of polygenic adaptation?

Before discussing these difficulties, it is worth articulating
exactly what a signal of polygenic adaptation consists of.
Taking the height example as a case in point, the signal is
that a set of genetic variants that have been identified as
associated with increased height in a European GWAS are (as
aclass) at higher frequency in northern Europeans today than
would be expected by genetic drift alone. Though this obser-
vation is consistent with the hypothesis that natural selection
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has operated on these variants, it does not necessarily imply
that natural selection has operated directly on “height,” nor
that observed height differences between northern Euro-
peans and other populations are necessarily genetic and
due to selection.

Pleiotropy and phenotype definition

When looking at all our variant classes, we are necessarily
limited by the traits that have been defined and studied by
others, as we have grouped variants together based on these
phenotypes. The use of previously established definitions
makes it difficult to understand exactly why these variants
may have been under selection in the past. This is perhaps best
exemplified by the signal of polygenic adaptation for genetic
variants associated with educational attainment.

Standardized schooling, and, consequently, the concept of
“educational attainment,” was only invented and imple-
mented widely in the last few generations. It is obviously non-
sensical to discuss its evolution over the past tens of thousands
of years. Instead, it is likely that the set of variants for which
we find evidence of selection was associated with some (un-
known) phenotype(s) in the past. However, given that selec-
tion on these variants likely took place >5 KYA, it may be
difficult or impossible to identify what these were. A similar
problem arises when thinking about the signal of polygenic
adaptation on “unibrow.” This is a self-reported phenotype,
and the genetic variants that have been identified may simply
be associated with pigmentation (assuming people with cer-
tain hair and/or skin pigmentation phenotypes are more likely
to notice they have hair between their eyes), or alternatively
with some other (unmeasured) hair-related phenotype. It is
also possible that direct sexual selection for absence or pres-
ence of unibrow as an attractive facial feature in certain cul-
tures (Vashi and Quay 2015) may be the cause of this signal.
Indeed, if a selective agent is cultural, but the culture has since
changed, it may be impossible to determine what actually
occurred. All these variants are also likely pleiotropic (Simons
et al. 2017), which makes it even harder to determine which
phenotypes were truly targeted by selection.

Perhaps, one could try to find the phenotypic gradients
along which selection most likely operated (Lande and Arnold
1983) by modeling the evolution of trait-associated SNPs for
multiple phenotypes together. However, it is also possible
that genetic correlations among traits in the present are not
good proxies for genetic correlations in the past.

Relationship between polygenic scores and population
mean phenotypes

Another fundamental limitation in interpreting all studies of
polygenic adaptation (including this one) is that the connec-
tion between the distribution of allele frequencies today and
any historical or geographic trends in phenotypes remains
questionable. Indeed, though we have motivated this method
as a way to identify adaptive shifts in the mean of a polygenic
trait, itis a simple fact that massive changes in the mean values
of many of the traits we consider have occurred by purely


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300489/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300489/-/DC1/FileS2.zip
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300489/-/DC1/FileS1.pdf

nongenetic environmental processes. For example, the mean
height of men in the Netherlands increased from ~166 cm in
the mid-1800s to currently over 180 cm (Hatton and Bray
2010), bringing the population from around the middle of
the pack among European countries to the tallest one in the
world. This likely occurred for environmental reasons, such
as improvements in diet and health care (Stulp et al. 2015;
Tarka et al. 2015). Likewise, the average educational attain-
ment in Iceland and North America has increased dramati-
cally over the past century, despite a slight estimated
decrease in the frequencies of genetic variants associated
with an increased value of the phenotype (Beauchamp
2016; Courtiol et al. 2016; Kong et al. 2017). The somewhat
paradoxical conclusion is that actual phenotypes can and do
change across populations in directions that are uncorrelated
to natural selection (which may in fact be a minor contributor
to any such differences). It would be an understatement to
say this poses challenges for the interpretation of the current
study and others like it.

In fact, the trait-associated variants that we have used only
explain a fraction of the narrow-sense heritability of their
respective traits, even in the populations in which the asso-
ciation studies were performed. As we have only looked at
variants that have high probability of association with a trait,
this fraction is small in most cases. For example, the herita-
bility for “educational attainment” is estimated to be ~40%,
and educational attainment itself is strongly determined by
environmental factors (Rietveld et al. 2013). The SNPs we
used in this study [themselves a subset of all SNPs tested in
the original GWAS (Okbay et al. 2016)] explain only 1.05%
of the total variance for this particular trait. All of the afore-
mentioned traits are likely affected by a myriad of environ-
mental and social variables, which might contribute to
determine their ultimate expression in each human individual.

Additional caveats

Beyond the above conceptual difficulties, there are a number
of additional caveats with our approach to keep in mind. First,
the effect sizes we have used derive from GWAS performed
primarily on individuals of European ancestry. Thus, our tests
can only detect if variants that have been found to be asso-
ciated with a trait in European GWAS are significantly higher
or lower in a particular (European or non-European) popu-
lation, relative to what they should be under a pure drift
model. This does not necessarily imply that populations for
which we find evidence for selection have higher or lower
average genetic values of such a trait than other populations.
In fact, there is evidence to suggest that loci ascertained in
European GWAS do not serve to make good predictors for
traits in populations that are distantly related to Europeans
(Martin et al. 2016). One reason for this is that many or all of
the traits we are studying are likely to be influenced in non-
European populations by different variants from the ones
that have been discovered in European GWAS. SNPs that
may be strongly associated with a trait in a particular non-
European population (like an African or East Asian panel)

may not have reached genome-wide significance in a Euro-
pean GWAS, where those SNPs may not strongly affect the
trait or may be at low frequencies. It is thus possible that
there are variants associated with traits like educational at-
tainment that occur at high frequencies in East Asians, but
that are missing from our analysis, or that the effect sizes in
trait-associated SNPs are different in non-European popula-
tions, in such a way that the average genetic values between
these populations and Europeans are not significantly differ-
ent. We also do not model dominance, epistasis or gene-
by-environment interactions between our trait-associated
variants and the diverse environments that human popula-
tions occupy, and any of these factors may further obscure
the relationship between the patterns we observe and the ac-
tual underlying genetic contribution to phenotypes in these
populations.

Second, we have assumed that all of the GWAS that we
have used have properly accounted for population structure. If
some of the trait-associated SNPs are, in fact, false positives
caused by uncorrected structure, this could generate a false
signal of polygenic adaptation. A future direction could be the
incorporation of effect sizes that have been corrected for
ancestry or population stratification (Robinson et al. 2015,
2017), and also effect sizes from GWAS performed on other
populations (Moltke et al. 2014; Ng et al. 2014; Wen et al.
2016), in order to assess the robustness of our empirical
results across variants discovered in studies involving partic-
ipants of different ancestries.

Third, we made the assumption that the admixture graph
for the populations that we use as input is correct. If there are
additional unmodeled aspects of the history of the popula-
tions, this could induce incorrect inference about the branch
on which natural selection has occurred. We also recommend
that the individuals in the population panels used as leaves in
the graphs have roughly similar amounts of admixture. In
other words, the method works best when admixture in the
population was ancient enough for the admixed ancestry to
have spread uniformly among members of the admixed panel.
Otherwise, an admixture graph may not be the most appro-
priate way to model their evolution.

Finally, we have made an explicit assumption that our
model should be sparse; i.e., that polygenic adaptation is
rare. If in reality adaptation is common, the PolyGraph ap-
proach will necessarily only identify selection on a small
number of branches.

Future directions

A natural extension to the analyses we performed here would
be to look at admixture graphs that include extinct popula-
tions or species, using ancient DNA (Slatkin and Racimo
2016). For example, present-day Europeans are known to
have resulted from admixture processes involving at least
four ancestral populations (Lazaridis et al. 2014, 2016),
and so modeling them as a sister group to East Asians, or as
a two-way mixture between a Native American-related com-
ponent and a basal Eurasian component, may be overly
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simplistic. Incorporating ancient DNA would not require any
additional theoretical work, as ancient populations can be nat-
urally included as leaves in an admixture graph (Lazaridis et al.
2014; Mathieson et al. 2015). Care should be taken, however,
in making sure that the quality of the ancient DNA data at trait-
associated SNPs is accounted for while inferring the number of
ancestral and derived alleles, and that there is a sufficient
number of ancient individuals per population to detect poly-
genic adaptation. One could envision either performing pseu-
dohaploid sampling (Patterson et al. 2012; Haak et al. 2015;
Mathieson et al. 2015) or using allele frequency estimators
obtained from genotype likelihoods (Nielsen et al. 2012;
Korneliussen et al. 2014), while accounting for errors charac-
teristic of ancient DNA (Jonsson et al. 2013; Soraggi et al.
2017). When working with SNP capture data (Patterson
et al. 2012; Haak et al. 2015), it may be necessary to perform
imputation at the GWAS SNPs, if these were not originally
covered in the SNP capture array. We aim to tackle these issues
in a future study.

One concern when analyzing admixture graphs is identifi-
ability. As we mentioned before, there are multiple configu-
rations of the a parameters that may lead to almost identical
likelihoods. The use of the spike-and-slab prior and the Qg
filtering step serve to ameliorate this problem, assuming se-
lection was sparse and only affected a few branches. An av-
enue of research could involve testing other types of models
or constraints that may serve to better compare among dif-
ferent selection configurations, perhaps without having to
reduce the space of possible candidate branches a priori,
for example using reversible-jump MCMC for model selection
(Green 1995).

In the future, it may be worth incorporating stabilizing
selection into this method (Simons et al. 2017), or exploring
tests of polygenic adaptation in the context of other types of
demographic frameworks, like isolation-by-distance (Wright
1943) or population structure (Pritchard et al. 2000) models.
For example, one could envision settings in which trait-associated
variants would be best modeled as expanding or contracting
over a geographically extended area over time, in a way that is
not explainable by genetic drift alone.

Lastly, we note that, despite some clear methodological and
conceptual differences, our method bears a close relationship
to a number of methods for inferring changes in the rate of
phenotypic evolution on species phylogenies over macroevo-
lutionary timescales. Our use of the Normal model of drift as
an approximation to the Wright-Fisher diffusion is closely
analogous to the use of Brownian motion models in some
phylogenetic methods (Eastman et al. 2011; Venditti et al.
2011; Revell et al. 2012; Rabosky et al. 2013; Jhwueng and
O’Meara 2015). It may also be worth exploring the relation-
ship between Ornstein-Uhlenbeck models for phenotypic
evolution on phylogenies (Uyeda and Harmon 2014;
Khabbazian et al. 2016) and the aforementioned hypothetical
extension of our method to include stabilizing selection, as
the two processes are closely related (Lande 1976; Simons
et al. 2017).
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