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ABSTRACT Pigmentation has emerged as a premier model for understanding the genetic basis of phenotypic evolution, and a growing
catalog of color loci is starting to reveal biases in the mutations, genes, and genetic architectures underlying color variation in the wild.
However, existing studies have sampled a limited subset of taxa, color traits, and developmental stages. To expand the existing sample
of color loci, we performed QTL mapping analyses on two types of larval pigmentation traits that vary among populations of the
redheaded pine sawfly (Neodiprion lecontei): carotenoid-based yellow body color and melanin-based spotting pattern. For both traits,
our QTL models explained a substantial proportion of phenotypic variation and suggested a genetic architecture that is neither
monogenic nor highly polygenic. Additionally, we used our linkage map to anchor the current N. lecontei genome assembly. With
these data, we identified promising candidate genes underlying (1) a loss of yellow pigmentation in populations in the mid-Atlantic/
northeastern United States [C locus-associated membrane protein homologous to a mammalian HDL receptor-2 gene (Cameo2) and
lipid transfer particle apolipoproteins Il and | gene (apoLTP-lI/))], and (2) a pronounced reduction in black spotting in Great Lakes
populations [members of the yellow gene family, tyrosine hydroxylase gene (pale), and dopamine N-acetyltransferase gene (Dat)].
Several of these genes also contribute to color variation in other wild and domesticated taxa. Overall, our findings are consistent with

the hypothesis that predictable genes of large effect contribute to color evolution in nature.
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VER the last century, color phenotypes have played a

central role in efforts to understand how evolutionary
processes shape phenotypic variation in natural populations
(Gerould 1921; Sumner 1926; Fisher and Ford 1947; Haldane
1948; Cain and Sheppard 1954; Kettlewell 1955). More re-
cently, color variation in nature has begun to shed light on the
genetic and developmental mechanisms that give rise to phe-
notypic variation (True 2003; Protas and Patel 2008; Wittkopp
and Beldade 2009; Manceau et al. 2010; Nadeau and Jiggins
2010; Kronforst et al. 2012). A growing catalog of color loci is
starting to reveal how ecology, evolution, and development
interact to bias the genetic architectures, genes, and mutations
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underlying the remarkable diversity of color phenotypes
(Hoekstra and Coyne 2007; Stern and Orgogozo 2008,
2009; Kopp 2009; Manceau et al. 2010; Streisfeld and Rausher
2011; Martin and Orgogozo 2013; Dittmar et al. 2016; Massey
and Wittkopp 2016; Martin and Courtier-Orgogozo 2017). To
make robust inferences about color evolution, however, genetic
data from diverse traits, taxa, developmental stages, and evo-
lutionary timescales are needed.

Two long-term goals of research on the genetic underpin-
nings of pigment variation are (1) to evaluate the importance
of large-effect loci to phenotypic evolution (Orr and Coyne
1992; Mackay et al. 2009; Rockman 2012; Remington 2015;
Dittmar et al. 2016), and (2) to determine the extent to which
the independent evolution of similar phenotypes (phenotypic
convergence) is attributable to the same genes and mutations
(genetic convergence) (Arendt and Reznick 2008; Gompel
and Prud’homme 2009; Christin et al. 2010; Manceau et al.
2010; Elmer and Meyer 2011; Conte et al. 2012; Rosenblum
et al. 2014). Addressing these questions will require a large,
unbiased sample of pigmentation loci. At present, most of
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what is known about the genetic basis of color variation in
animals comes from a handful of taxa and from melanin-
based color variation in adult life stages (True 2003; Protas
and Patel 2008; Wittkopp and Beldade 2009; Nadeau and
Jiggins 2010; Kronforst et al. 2012; Sugumaran and Barek
2016). Another important source of bias stems from a ten-
dency to focus on candidate genes and discrete pigmentation
phenotypes [Kopp 2009; Manceau et al. 2010; Rockman
2012; but see Greenwood et al. (2011), O’Quin et al.
(2013), Albertson et al. (2014), Signor et al. (2016), Yassin
et al. (2016)]. Here, we describe an unbiased, genome-wide
analysis of multiple, continuously varying color traits in lar-
vae from the order Hymenoptera, a diverse group of insects
that is absent from the current catalog of color loci (Martin
and Orgogozo 2013).

More specifically, our study focuses on pine sawflies in the
genus Neodiprion. Several factors make Neodiprion an espe-
cially promising system for investigating the genetic basis of
color variation. First, there is intra- and interspecific variation
in many different types of color traits (Figure 1 and Figure 2).
Second, previous phylogenetic and demographic studies
(Linnen and Farrell 2007, 2008a,b; Bagley et al. 2017) enable
us to infer directions of trait change and identify instances of
phenotypic convergence in this genus. Third, because many
different species can be reared and crossed in the laboratory
(Knerer and Atwood 1972; 1973; Kraemer and Coppel 1983;
Bendall et al. 2017), unbiased genetic mapping approaches are
feasible in Neodiprion. Fourth, a growing list of genomic re-
sources for Neodiprion—including an annotated genome and a
methylome for Neodiprion lecontei (Vertacnik et al. 2016;
Glastad et al. 2017)—facilitate identification of causal genes
and mutations. And finally, an extensive natural history liter-
ature (Coppel and Benjamin 1965; Knerer and Atwood 1973)
provides insights into the ecological functions of color varia-
tion in pine sawflies, which we review briefly for context.

Under natural conditions, pine sawfly larvae are attacked
by a diverse assemblage of arthropod and vertebrate preda-
tors, by alarge community of parasitoid wasps and flies, and by
fungal, bacterial, and viral pathogens (Coppel and Benjamin
1965; Wilson et al. 1992; Codella and Raffa 1993). When
threatened, larvae adopt a characteristic “U-bend” posture
and regurgitate a resinous defensive fluid (Figure 1), which
is an effective repellant against many different predators and
parasitoids (Eisner et al. 1974; Codella and Raffa 1995;
Lindstedtet al. 2006, 2011). Although most Neodiprion species
are chemically defended, larvae vary from a green striped
morph that is cryptic against a background of pine foliage to
highly conspicuous aposematic morphs with dark spots or
stripes overlaid on a bright yellow or white background (Fig-
ure 1). Thus, larval color is likely to confer protection against
predators either via preventing detection (crypsis) or adver-
tising unpalatability (aposematism) (Ruxton et al. 2004;
Lindstedt et al. 2011).

Beyond selection for crypsis or aposematism, there are
many abiotic and biotic selection pressures that could act on
Neodiprion larval color. For example, insect color can contribute
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to thermoregulation, protection against UV damage, desic-
cation tolerance, and resistance to abrasion (True 2003;
Lindstedt et al. 2009; Wittkopp and Beldade 2009). Color al-
leles may also have pleiotropic effects on other traits, such as
behavior, immune function, diapause/photoperiodism, fertil-
ity, and developmental timing (True 2003; Wittkopp and
Beldade 2009; Heath et al. 2013; Lindstedt et al. 2016).
Temporal and spatial variation in these diverse selection
pressures likely contribute to the abundant color variation
in the genus Neodiprion.

As a first step to understanding the proximate mechanisms
that generate color variation in pine sawflies, we conducted a
QTL mapping study of larval body color and larval spotting
pattern in the redheaded pine sawfly, N. lecontei. This species
is widespread across eastern North America, where it feeds
on multiple pine species. Throughout most of this range,
larvae have several rows of dark black spots overlaid on a
bright, yellow body (e.g., center image in Figure 1). However,
previous field surveys and demographic analyses indicate
that there has been a loss of yellow pigmentation in some
populations in the mid-Atlantic/northeastern United States
and a pronounced reduction in spotting in populations living
in the Great Lakes region of the United States and Canada
(Bagley et al. 2017; Figure 2). To describe genetic architec-
tures and identify candidate genes underlying these two
reduced-pigmentation phenotypes, we crossed white-bodied,
dark-spotted individuals from a Virginia population to yellow-
bodied, light-spotted individuals from a Michigan population
(Figure 2). After mapping larval body-color and spotting-
pattern traits in recombinant F, haploid males, we used our
linkage map to anchor the current N. lecontei genome assem-
bly and identified candidate color genes within our QTL inter-
vals. We conclude by comparing these initial findings on color
genetics in pine sawflies with published studies from other
insect taxa.

Materials and Methods
Cross design

To investigate the genetic basis of sawfly color traits, we
crossed N. lecontei females from a white-bodied, dark-spotted
population (collected from Valley View, VA; 37°54’47”N, 79°
53’46"W) to N. lecontei males from a yellow-bodied, light-
spotted population (collected from Bitely, MI; 43°47°46"N,
85°44'24”W). Both populations were collected from the field
in 2012 and reared on Pinus banksiana (jack pine) for at least
two generations in the laboratory via standard rearing pro-
tocols [described in more detail in Harper et al. (2016) and
Bendall et al. (2017)]. Our mapping families were derived
from four grandparental pairs, which produced 10 F; fe-
males. Like most hymenopterans, N. lecontei adults repro-
duce via arrhenotokous haplodiploidy, in which unfertilized
eggs develop into haploid males and fertilized eggs develop
into diploid females (Heimpel and de Boer 2008; Harper et al.
2016). Therefore, to produce an F, haploid generation, we



Figure 1 Interspecific variation in Neodiprion larval color. Top row (left to right): Neodiprion nigroscutum, N. rugifrons, N. virginianus. Middle row (left
to right): N. pinetum, N. lecontei, N. merkeli. Bottom row (left to right): N. pratti, N. compar, N. swainei. Larvae in the first and last columns are
exhibiting a defensive U-bend posture (a resinous regurgitant is visible in N. virginianus, top right). N. pratti photo is by K. Vertacnik, all others are by

R. Bagley.

allowed virgin F, females to lay eggs and reared their haploid
male progeny on P. banksiana foliage until they reached a
suitable size for phenotyping.

Color phenotyping

N. lecontei larvae pass through five (males) or six (females)
feeding instars and a single nonfeeding instar (Benjamin
1955; Coppel and Benjamin 1965; Wilson et al. 1992). For
phenotyping, we chose only mature feeding larvae. For both
sexes, mature larvae have an orange-red head capsule with a
black ring around each eye and up to four pairs of rows of
black spots (Wilson et al. 1992). After phenotyping, we pre-
served each larva in 100% ethanol for molecular work. In
total, we generated color-phenotype data for 30 individuals
from the VA population (mixed sex), 30 individuals from the
MI population (mixed sex), 47 F; females, and 429 F, males
(progeny of 10 virgin F; females).

Larval body color: We quantified larval body color in two
ways: spectrometry and digital photography. First, we immobi-
lized larvae with CO, and recorded 15 reflectance spectra—five
measurements from each of three body regions: the dorsum,
lateral side, and ventrum—using a USB2000 spectrophotometer
with a PX-2 Pulsed Xenon light source and SpectraSuite software
(Ocean Optics, Largo, FL). We then used the program CLR: Color
Analysis Programs v1.05 (Montgomerie 2008) to trim the raw
reflectance data to 300-700 nm, compute 1-nm bins, and to
compute the following summary statistics [described in more

detail in the CLR documentation, Montgomerie (2008)]: B1,
B2, B3, S1R, S1G, S1B, S1U, S1Y, S1V, S3, S5a, S5b, S5¢, S6,
S7, S8, S9, H1, H3, H4a, H4b, and H4c. This procedure produced
15 estimates for each summary statistic for each larva, which we
then averaged to obtain a single value per statistic per larva. To
reduce the 22 color summary statistics to a smaller number of
independent variables, we performed a principal component
analysis (PCA). To ensure that each variable was normally dis-
tributed, we performed a normal-quantile transformation prior to
performing the PCA. Based on examination of the resulting scree
plot, we retained the first two principal components (PC1 and
PC2), which together accounted for 73.7% of the variance in the
spectral data. Based on factor loadings, PC1 (percent variance
explained: 48.2%) corresponds to saturation (S1G, S1Y, S8) and
brightness (B1, B2), whereas PC2 (percent variance explained:
25.5%) corresponds to saturation (S5A, S5B, S5C, S6) and hue
(H4c) (Supplemental Material, Table S1 in File S1). Unless other-
wise noted, the PCA and all other statistical analyses were per-
formed in R [version 3.1.3 or 3.2.3, R Core Team (2013)].
Because it provides objective and information-rich data,
spectrometry is generally considered to be the gold standard
for color quantification (Endler 1990; Andersson and Prager
2006). However, despite efforts to keep background lighting
and reflectance probe positioning as consistent as possible
across samples, measurement of small patches of yellow on
rounded larval bodies proved challenging. Given the poten-
tial for variation in reflectance probe position to introduce
substantial noise into our data (Montgomerie 2006), we used
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Figure 2 Intraspecific variation in Neodiprion lecontei larval color and
cross design. We crossed yellow, light-spotted haploid males from Ml
to white, dark-spotted diploid females from VA. This produced haploid
males with the VA genotype and phenotype (data not shown) and diploid
females (F;) with intermediate spotting and color. Virgin F; females pro-
duced recombinant haploid males (F,) with a wide range of body color
and spotting pattern (a representative sample is shown).

digital photography as a complementary method for quanti-
fying larval body color (Stevens et al. 2007). For this analysis,
we photographed CO,-immobilized larvae (dorsal and lateral
surfaces) with a Canon EOS Rebel t3i camera equipped with
an Achromat S 1.0X FWD 63 mm lens and mounted on a copy
stand. All photographs were taken in a dark, windowless
room, and larvae were illuminated by two SLS CL-150 copy
lamp lights, each with a 23-W (100 W equivalent) soft white
compact fluorescent light bulb. We then used Adobe Photo-
shop CC 2014 or 2015 (Adobe Systems Incorporated, San
Jose, CA) to ascertain the amount of yellow present, follow-
ing O’Quin et al. (2013). First, we converted each digital
image (lateral surface) to CMYK color mode. Next, we se-
lected the eye-dropper tool (set to a size of 5 X 5 pixels) as
the color sampler tool, which we used to sample three differ-
ent body locations: the body just behind the head and parallel
to the eye, the first proleg, and the anal proleg. For each of
the three regions, this procedure yielded an estimate of the
proportion of the selected area that was yellow. We then
averaged the three measurements to produce a single final
measurement of yellow pigmentation (hereafter referred to
as “yellow”).

Larval spotting pattern: On each side, N. lecontei larvae have

up to four rows of up to 11 spots extending from the meso-
thorax to the ninth abdominal segment (Wilson et al. 1992).
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We quantified the extent of this black spotting in two ways:
the number of spots present (spot number) and the propor-
tion of body area covered by spots (spot area). To quantify
spot number, we counted the number of spots in digital im-
ages of the dorsal and lateral surfaces (one side only). To
quantify larval spotting area, we used Adobe Photoshop’s
quick selection tool to measure the area of the larval body
(minus the head capsule) and the area of each row of lateral
black spots. To control for differences in larval size, we di-
vided the summed area of all lateral black spots by the area of
the larval body. We also used Adobe Photoshop to calculate
the area of the head capsule, which we used as a covariate in
some analyses to control for larval size (see below). We used
a custom Perl script to process measurement output files in
bulk (written by John Terbot II; available in File S3).

Statistical analysis of phenotypic data: In total, we pro-
duced three measures of body color (PC1, PC2, and yellow)
and two measures of spotting pattern (spot number and spot
area). To determine whether mean phenotypic values for the
five color traits differed between the two populations and
among the three generations of our cross, we performed
Welch’s two-tailed t-tests, followed by Bonferroni correction
for multiple comparisons. To determine the extent to which
these five traits covaried in the F, males, we calculated
Pearson’s correlation coefficients (r) and associated P-
values, followed by Bonferroni correction for multiple com-
parisons. To determine which covariates to include in our
QTL models, we performed ANOVAs to evaluate the rela-
tionship between each phenotype in the F, males (429 total)
and their F; mothers (10 total) and head capsule sizes (a
proxy for larval size/developmental stage).

Genotyping

We extracted DNA from ethanol-preserved larvae using a
modified CTAB method (Chen et al. 2010) and prepared bar-
coded and indexed double-digest RAD libraries using meth-
ods described elsewhere (Peterson et al. 2012; Bagley et al.
2017). We prepared a total of 10 indexed libraries: one con-
sisting of the eight grandparents and 10 F; females (18 adults
total), and the remaining nine consisting of F, haploid male
larvae (~48 barcoded males per library). After verifying li-
brary quality using a Bioanalyzer 2100 (Agilent, Santa Clara,
CA), we sent all 10 libraries to the University of Illinois
Urbana-Champaign Roy J. Carver Biotechnology Center
(Urbana, IL), where the libraries were pooled and sequenced
using 100-bp single-end reads on two Illumina HiSeq2500
lanes. In total, we generated 400,621,900 reads.

We demultiplexed and quality-filtered raw reads using the
protocol described in Bagley et al. (2017). We then used
Samtools v0.1.19 (Li et al. 2009) to map our reads to our
N. lecontei reference genome (Vertacnik et al. 2016) and
STACKS v1.37 (Catchen et al. 2013) to extract loci from
our reference alignment and to call SNPs. We called SNPs
in two different ways. First, for QTL mapping analyses,
our goal was to recover fixed differences between the
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grandparental lines. To do so, we first called SNPs in our
eight grandparents and 10 F; mothers. For these 18 individ-
uals, we required that SNPs had a minimum of 7X coverage
and no more than 12% missing data. We then compiled a list
of SNPs that represented fixed differences and, as an addi-
tional quality check, confirmed that all F; females were het-
erozygous at these loci. We then used STACKS to call SNPs in
the F, haploid males, requiring that each SNP had a mini-
mum of 5X coverage, no more than 10% missing data, and
was present in the curated list produced from the grandpar-
ents. Filtering in STACKs produced 559 SNPs genotyped in
429 F, males.

Second, to maximize the number of SNPs available for
genome scaffolding, we performed an additional STACKS run
using only the F, haploid males, requiring that each SNP had
a minimum of 4X coverage. By removing the requirement
that SNPs were called in all grandparents, we could recover
many more SNPs. We then filtered the data in VCFtools
v0.1.14 (Danecek et al. 2011) to remove individuals with a
mean depth of coverage <1, retaining 408 F, males. After
removing low-coverage individuals, we used VCFtools to
remove sites with a minor allele frequency <0.05, sites
with >5 heterozygotes (in a sample of haploid males, high
heterozygosity is a clear indication of pervasive genotyping
error), and sites with >50% missing data.

Linkage map construction and genome scaffolding

To construct a linkage map for interval mapping, we started
with 559 SNPs scored in 429 F, males. After an additional
round of filtering in R/qtl (Broman and Sen 2009), we re-
moved 11 haploid males that had >50% missing data, for a
total of 418 F, males. Additionally, after removing SNPs that
were genotyped in <70% of individuals, had identical geno-
types to other SNPs, and had distorted segregation ratios (at
a < 0.05, after Bonferroni correction for multiple testing), we
retained 503 SNPs. To assign these markers to linkage
groups, we used the “formLinkageGroups” function, requir-
ing a minimum logarithm of odds (LOD) score of 6.0 and a
maximum recombination frequency of 0.35. To order
markers on linkage groups, we used the “orderMarkers” func-
tion, with the Kosambi mapping function to allow for cross-
overs, followed by rippling on each linkage group.

Our initial map included 503 SNPs spread across 358 scaf-
folds (out of 4523 scaffolds; Vertacnik et al. 2016). To in-
crease the number of scaffolds that we could place on our
linkage groups, we performed linkage mapping analyses with
a larger SNP dataset that was generated as described above.
For each of our four grandparental families (N = 54, 73, 120,
and 161), we first performed additional data filtering in R/qtl
to remove duplicate SNPs and SNPs with distorted segrega-
tion ratios, retaining between 2049 and 3155 SNPs per fam-
ily. We then used the “formLinkageGroups” command with
variable LOD thresholds (range: 5-15) and a maximum re-
combination frequency of 0.35. Because SNPs were not coded
according to grandparent of origin, many alleles were
switched. We therefore performed an iterative process of

linkage group formation, visualization of pairwise recombi-
nation fractions and LOD scores (“plotRF” command), and
allele switching (“switchAlleles” command) until we ob-
tained seven linkage groups (the number of N. lecontei chro-
mosomes; Smith 1941; Maxwell 1958; Sohi and Ennis 1981)
and a recombination/LOD plot indicative of linkage within,
but not between linkage groups. Because marker ordering for
these larger panels of SNPs was prohibitively slow in R/qtl,
we used the more efficient MSTmap algorithm, implemented
in R/ASMap v0.4-7 (Taylor and Butler 2017), to order our
markers along their assigned linkage groups.

Finally, to order and orient our genome scaffolds along
linkage groups (chromosomes), we used ALLMAPS (Tang
et al. 2015) to combine information from our five maps (ini-
tial map with all individuals, but limited markers; plus four
additional maps, each with more markers, but fewer individ-
uals). Because maps constructed from large families are likely
to be more accurate than those constructed from small fam-
ilies, we weighted the maps according to their sample sizes.

Interval mapping analysis

To map QTL for our five color traits, we used R/qtl and the
linkage map estimated from 503 SNPs and 418 F, males. We
included F; mothers and head-capsule size as covariates in
our analyses of PC1, spot number, and spot area; F; mothers
as covariates in our analysis of PC2; and no covariates in in
our analysis of yellow (Table S2 in File S1). For each trait, we
performed interval mapping using multiple imputation map-
ping. We first used the “sim.geno” function with a step size of
0 and 64 replicates. We then used the “stepwiseqtl” com-
mand to detect QTL and select the multiple QTL model that
optimized the penalized LOD score (Broman and Sen 2009;
Manichaikul et al. 2009). To obtain penalties for the penal-
ized LOD scores, we used the “scantwo” function to perform
1000 permutations under a two-dimensional, two-QTL
model that allows for interactions between QTL and the
“calc.penalties” function to calculate penalties from these
permutation results, using a significance threshold of a =
0.05. Finally, for each QTL retained in the final model, we
calculated a 1.5 LOD support interval.

Candidate gene analysis

As a first step to moving from QTL intervals to causal loci, we
compiled a list of candidate color genes and determined their
location in the N. lecontei genome. For larval spotting, we
included genes in the melanin synthesis pathway and genes
that have been implicated in pigmentation patterning
(Wittkopp et al. 2003; Protas and Patel 2008; Wittkopp and
Beldade 2009; Sugumaran and Barek 2016). For larval body
color, we included genes implicated in the transport, deposi-
tion, and processing of carotenoid pigments derived from the
diet (Palm et al. 2012; Yokoyama et al. 2013; Tsuchida
and Sakudoh 2015; Toews et al. 2017). Although several
pigments can produce yellow coloration in insects (e.g.,
melanins, pterins, ommochromes, and carotenoids), we fo-
cused on carotenoids because a heated pyridine test (McGraw
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et al. 2005) was consistent with carotenoid-based coloration
in N. lecontei larvae (Figure S1 in File S1).

We searched for candidate genes by name in the N. lecontei
v1.0 genome assembly and NCBI annotation release 100
(Vertacnik et al. 2016). To find missing genes and as an ad-
ditional quality measure, we obtained FASTA files corre-
sponding to each candidate protein and/or gene from NCBI
(using Apis, Drosophila melanogaster, or Bombyx mori se-
quences, depending on availability). We then used the i5k
Workspace@NAL (Poelchau et al. 2014) BLAST (Altschul
et al. 1990) web application to conduct tblastn (for protein
sequences) or tblastx (for gene sequences) searches against
the N. lecontei v1.0 genome assembly, using default search
settings. After identifying the top hit for each candidate gene/
protein, we used the WebApollo (Lee et al. 2013) JBrowse
(Skinner et al. 2009) N. lecontei genome browser to identify
the corresponding predicted protein coding genes (from
NCBI annotation release 100) in the N. lecontei genome.

We took additional steps to identify genes in the yellow
gene family, all of which contain a major royal jelly protein
(MRJP) domain (Ferguson et al. 2011). First, we used the
search string “major royal jelly protein Neodiprion” to search
the NCBI database for all predicted yellow-like and yellow-
MRJP-like N. lecontei genes. We then downloaded FASTA
files for the putative yellow gene sequences (26 total). Next,
we used the Hymenoptera Genome Database (Elsik et al.
2016) to conduct a blastx search of our N. lecontei gene se-
quence queries against the Apis mellifera v4.5 genome NCBI
RefSeq annotation release 103. Finally, we recorded the top
A. mellifera hit for each putative N. lecontei yellow gene.

Data availability

Short-read DNA sequences ae available in the NCBI Sequence
Read Archive (Bioproject PRINA434591). The linkage-group
anchored assembly (N. lecontei genome assembly version 1.1)
is available via NCBI (Bioproject PRJNA280451) and i5k
Workspace@NAL (https://i5k.nal.usda.gov/neodiprion-lecontei).
File S3 contains the custom script used to process the raw
spot-area data. File S4 contains phenotypic data from all gen-
erations. File S5 contains the input file for R/qtl. File S6 and
File S7 contain the genotype data and linkage maps used in
the scaffolding analysis.

Results and Discussion
Variation in larval color traits

Laboratory-reared larvae derived from the two founding
populations differed significantly from one another for all
color phenotypes (Figure 2, Figure 3, and Table S3 in File
S1). Because larvae were reared on the same host under the
same laboratory conditions, these results suggest that genetic
variance contributes to variance in these larval color traits.
Crosses between the VA and MI lines produced diploid F;
female larvae that were intermediate in both body color
and spotting pattern (Figure 2 and Figure 3). F; larvae
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differed significantly from both grandparents for all color
traits except PC2 (Table S3 in File S1), indicating a lack of
complete dominance for most traits. We can make additional
inferences about trait dominance by comparing the pheno-
types of diploid F; female larvae (dominance effects present)
to those of the haploid F, male larvae (dominance effects
absent). For all three body-color measures (yellow, PCI,
and PC2), average F; larval colors were more MI-like (yel-
low) than those of F, larvae. In contrast, compared to the Fy
larvae, F; spotting phenotypes (number and area) were more
similar to the VA population (dark-spotted). Overall, these
data suggest that the more heavily pigmented body-color and
spotting-pattern phenotypes (i.e., large values for yellow,
spot number, and spot area; small values for PC1 and PC2)
are partially dominant to the less pigmented phenotypes.

Larval color variation in the F, males spanned—and even
exceeded—the range of variation in the grandparental pop-
ulations and F; females (Figure 3). Recapitulation of the
grandparental body-color and spotting-pattern phenotypes
in the F, males suggests that both types of traits are con-
trolled by a relatively small number of loci. There are multi-
ple, nonmutually exclusive explanations for the transgressive
color phenotypes in our haploid F larvae, including variation
in the grandparental lines, reduced developmental stability
in hybrids, epistasis, unmasking of recessive alleles in haploid
males, and the complementary action of additive alleles from
the two grandparental lines (Rieseberg et al. 1999).

We also observed significant correlations between many of
the color traits (Figure S2 in File S1). Encouragingly, esti-
mates of body color derived from digital images (yellow)
correlated significantly with both estimates derived from
spectrometry (PC1 and PC2), suggesting that these indepen-
dent data sources describe the same underlying larval color
phenotype (i.e., amount of yellow pigment). Similarly, we
observed strong correlations between the number and area
of larval spots, indicating that both measures reliably charac-
terize the extent of melanic spotting on the larval body. We
also found that larvae with yellower bodies (small values for
PC2) tended to be less heavily spotted (Figure S2 in File S1).
However, the correlation between these traits was weak and
we observed many different combinations of spotting and
pigmentation in the recombinant F, males (Figure 2).

Linkage mapping and genome scaffolding

Our 503 SNP markers were spread across seven linkage
groups, which matches the number of N. lecontei chromo-
somes (Smith 1941; Maxwell 1958; Sohi and Ennis 1981).
The total map length was 1169 cM, with an average marker
spacing of 2.4 cM and maximum marker spacing of 24.3 cM
(Figure 4 and Table S4 in File S1). Together, these results
indicate that this linkage map is of sufficient quality and
coverage for interval mapping. With a genome size of
340 Mb (estimated via flow cytometry; C. Linnen, unpub-
lished data), these mapping results yielded a recombination
density estimate of 3.43 cM/Mb. This recombination rate is
lower than estimates from social hymenopterans, which have
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Figure 3 Larval color variation among N. lecontei populations and across generations. For larval body color (A-C), higher scores for yellow (A) and lower
scores for PC1 (B) and PC2 (C) indicate higher levels of yellow pigment. For larval spotting pattern (D-E), higher spot numbers (D) and spot area scores (E)
indicate more melanic spotting. For all traits, boxes represent interquartile ranges (median = 2 SD), with outliers indicated as points. For each trait (A-E),
lowercase letters indicate which comparisons differ significantly after correction for multiple comparisons (see Table S3 in File S1 for full statistical

results).

among the highest recombination rates in eukaryotes (Wilfert
et al. 2007). Nevertheless, our rate estimate is on par with
other (noneusocial) hymenopterans, which lends support to
the hypothesis that elevated recombination rates in eusocial
hymenopteran species is a derived trait and possibly an adap-
tation to a social lifestyle (Gadau et al. 2000; Schmid-Hempel
2000; Crozier and Fjerdingstad 2001).

Linkage maps estimated for the four grandparental fami-
lies, each of which contained >2000 markers, ranged in
length from 1072 to 3064 cM (Table S4 in File S1). Variation
in map length is likely attributable to both decreased map-
ping accuracy in smaller families and decreased genotyping
accuracy in these less-stringently filtered SNP datasets. Nev-
ertheless, marker ordering was highly consistent across link-
age maps (Figures S3-S9 in File S1). Additionally, via
including more SNPs, we more than tripled the number of
mapped scaffolds (from 358 to 1005) and increased the per-
centage of mapped bases from 41.2 to 78.9% (Tables S5-S6
in File S1). Using this information, we updated the current
N. lecontei genome assembly in NCBI and i5k Workspace @NAL
(see Data availability). Anchored genome scaffolds, coupled

with existing N. lecontei gene annotations, are a valuable re-
source for identification of candidate genes within QTL.

Genetic architectures of larval body color and larval
spotting pattern

Combining the results from our three measures of larval body-
color (yellow, PC1, and PC2), our interval mapping analyses
detected a total of six distinct QTL regions and one QTL X QTL
interaction (Figure 4, Figure 5A, and Table 1). Of these, the
largest-effect QTL were on linkage groups 3 and 5. We also
recovered a significant interaction between these QTL for
yellow (Figure 5B). Compared to analyses of larval body
color, analyses of larval spotting pattern yielded fewer dis-
tinct QTL (four), but more QTL X QTL interactions (three)
(Figure 4, Figure 5, C and D, and Table 1). Both spotting
measures (spot number and spot area) recovered two
large-effect QTL on LG 2. These spotting QTL also overlapped
with QTL with small-to-modest effects on body color (Figure
4 and Table 1). Colocalization of spotting pattern and body
color QTL suggests that the phenotypic correlations we ob-
served between body color and spotting pattern in F, males
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(Figure S2 in File S1) are caused by underlying genetic cor-
relations via either pleiotropy or physical linkage.

These genetic mapping results provide us with our first
glimpse of the genetic architecture of naturally occurring color
variation in pine sawflies. For both larval body color and larval
spotting pattern, we recovered a relatively small number of
loci, some of which had a substantial effect on the color
phenotype (Table 1). Additionally, our multiple-QTL models
explained a considerable percentage of the observed varia-
tion in larval color: up to 86% for larval body color (yellow)
and up to 73% for larval spotting pattern (spot number)
(Table 2). Although limited statistical power precluded us
from quantifying the number of QTL of very small effect,
our results suggest that the proportion of variation explained
by small, isolated QTL is small. It is possible, however, that
our large-effect QTL comprise many linked QTL of individu-
ally small effect (e.g., Stam and Laurie 1996; McGregor et al.
2007; Bickel et al. 2011; Linnen et al. 2013). Distinguishing
between oligogenic architectures (a small number of moder-
ate to large-effect loci) and polygenic architectures (a large
number of small-effect loci) will require fine-mapping and
functionally validating genes and mutations for both color
traits. Nevertheless, for both types of color traits, our results
clearly rule out both a monogenic architecture and an archi-
tecture in which there are many unlinked, small-effect muta-
tions. The latter architecture is also highly unlikely if gene
flow accompanied local color adaptation in pine sawflies
(Griswold 2006; Yeaman and Whitlock 2011), as previous
demographic analyses seem to indicate is the case (Bagley
et al. 2017).

To date, QTL-mapping and candidate-gene studies of color
traits have yielded many examples of simple genetic archi-
tectures in which one or a small number of mutations have
very large phenotypic effects (Rockman 2012; Martin and
Orgogozo 2013). However, the relevance of these studies to
broader patterns in phenotypic evolution remains unclear
due to biases that stem from a tendency to work on discrete
phenotypes and specific candidate genes. These biases can
be minimized by focusing on continuously varying color traits
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T

and employing an unbiased mapping approach as we have
done here [see also Greenwood et al. (2011), O’Quin et al.
(2013), Albertson et al. (2014), Signor et al. (2016), Yassin
et al. (2016)]. Experimental biases aside, some have also
argued that color itself—but not color pattern—is atypically
genetically simple (Charlesworth et al. 1982; Rockman
2012). In our own data, we see no obvious differences be-
tween the architectures of body color and spotting pattern. If
anything, the architecture of spotting appears slightly simpler
(fewer QTL with larger individual effects) than that of body
color (Table 1). That said, more spotting variation remains
unexplained (Table 2), which could be attributable to a
plethora of undetected small-effect loci, and thus a more
complex underlying architecture. A more definitive test of
the color/pattern hypothesis will require fine-mapping our
QTL, with the prediction that the spotting QTL will fraction-
ate to a greater extent (i.e., break into more QTL of individ-
ually smaller effect) than the body color QTL. A rigorous
evaluation of the color/pattern hypothesis will also require
data on the genetic architectures of color and pattern traits
that have evolved independently in other taxa. To this end,
ample variation in both body color and color pattern traits
make Neodiprion sawflies an ideal system for determining
whether there are predictable differences in the genetic ar-
chitectures of different types of color traits.

Candidate genes for larval color traits

In total, we identified 61 candidate genes with known or
suspected roles in melanin-based or carotenoid-based pig-
mentation and for which we were able to identify putative
homologs in the N. lecontei genome (Table S7 in File S2). Of
these, 26 appeared to belong to the yellow gene family. No-
tably, this number is equivalent to the number of yellow-like/
yellow-MRJP-like genes found in the genome of the jewel
wasp, Nasonia vitripennis, which boasts the highest reported
number of yellow-like genes of any insect to date (Werren
et al. 2010). Additionally, 13 of these genes (yellow-e,
yellow-e3, four yellow-g, yellow-h, yellow-x, and five MJRPs)
were found in tandem array along three adjacent scaffolds
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(548, 170, and 36; ~1 Mb total) on linkage group 2. This
genomic organization is consistent with a conserved cluster-
ing of yellow-h, -e3, -e, -g2, and —g found in Apis, Tribolium,
Bombyx, Drosophila, and Nasonia (Drapeau et al. 2006;
Werren et al. 2010; Ferguson et al. 2011). Like Nasonia and
Apis, this cluster also contains MJRPs; like Heliconius, this
cluster contains a yellow-x gene. Overall, we placed 57 of
our 61 color genes on our linkage-group anchored assembly.
With these data, we identified candidate genes for all but two
QTL (Yellow-1 on linkage group 1 and SpotNum-3 on linkage
group 6) (Table S7 in File S2).

Candidate genes for larval body color: Both of our largest-
effect body color QTL regions contained promising candidate
genes with known or suspected roles in carotenoid-based
pigmentation (Table S7 in File S2). First, in the linkage group
3 QTLregion (Yellow-4, PC1-1, PC2-3; Figure 4 and Table 1),

we found a predicted protein-coding region with a high de-
gree of similarity to the B. mori Cameo2 scavenger receptor
protein (e-value: 1 X 10718; bitscore: 92.8). Cameo2 encodes
a transmembrane protein that has been implicated in the
selective transport of the carotenoid lutein from the hemo-
lymph to specific tissues (Sakudoh et al. 2010; Tsuchida and
Sakudoh 2015). In the silkworm B. mori, CameoZ2 is respon-
sible for the C mutant phenotype, which is characterized by a
combination of yellow hemolymph and white cocoons that
arises as a consequence of disrupted transport of lutein from
the hemolymph to the middle silk gland (Sakudoh et al.
2010; Tsuchida and Sakudoh 2015).

Second, in the linkage group 5 QTL region (Yellow-5,
Yellow-6, PC1-2, PC2-4; Figure 4 and Table 1), we recovered
a predicted protein coding gene with a high degree of simi-
larity to the ApoLTP-1 and ApoLTP-2 protein subunits
(encoded by the gene apoLTP-II/T) of the B. mori lipid
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Table 1 QTL locations and effect sizes for larval body color (yellow, PC1, and PC2) and larval spotting pattern (spot number and spot area)

Linkage Position % variance Effect %
Trait type Trait QTL name  group? (interval)® Marker¢ LOD explained size (SE)? Difference®
Body color Yellow Yellow-1 1 105.9 (84.4-112.5) 5,744  8.29 1.32 —0.025 (0.0043) 8.06
Body color Yellow Yellow-2 2 28.2 (16.2-55.1) 19,162  2.92 0.45 —0.014 (0.0043) 4.63
Body color Yellow Yellow-3 2 179.9 (140.8-194.0) 15,279  3.51 0.54 —0.016 (0.0043) 5.13
Body color Yellow Yellow-4 3 181.9 (179.8-181.9) 1,882 71.23 16.27 —0.084 (0.0043) 27.19
Body color Yellow Yellow-5 5 140.6 (139.9-149.6) 3,222 71.17 16.25 —0.16 (0.0081) 51.64
Body color Yellow Yellow-6 5 149.6 (140.6-154.8) 19,661 4.37 0.68 —0.035 (0.0082) 11.43
Body color Yellow Interaction Yellow-3 X Yellow-5 12.45 2.03 0.061 (0.0086) 19.58
Body color PC1 PC1-1 3 181.9 (160.4-181.9) 1,882 4.31 3.56 1.15 (0.26) 15.51
Body color PC1 PC1-2 5 140.6 (137.4-149.6) 3,222 1475 12.92 2.17 (0.26) 29.30
Body color PC2 PC2-1 2 55.1 (46.8-63.9) 21 1137 6.42 1.18 (0.16) 23.46
Body color PC2 pPC2-2 2 179.8 (165.2-189.9) 2,143  7.24 3.99 0.91 (0.16) 17.99
Body color PC2 PC2-3 3 181.9 (179.8-181.9) 1,882 14.60 8.39 1.33(0.16) 26.39
Body color PC2 pPC2-4 5 140.6 (139.9-149.6) 3,222 33.13 21.13 2.09 (0.16) 41.45
Spotting pattern Spot number SpotNum-1 2 55.1 (48.0-57.6) 9,282 158.46 23.52 6.31 (0.36) 33.06
Spotting pattern Spot number SpotNum-2 2 179.9 (179.8-187.5) 15,279 78.19 35.45 7.81(0.35) 40.96
Spotting pattern Spot number SpotNum-3 6 55.7 (51.1-64.9) 9,040 4.84 1.43 —0.58 (0.59) 3.05
Spotting pattern Spot number SpotNum-4 6 64.9 (55.7-82.2) 7,485 6.75 2.02 —1.00 (0.59) 5.26
Spotting pattern Spot number Interaction SpotNum-1 X SpotNum-4 6.15 1.84 3.45(0.71) 18.09
Spotting pattern Spot number Interaction SpotNum-2 X SpotNum-3 4.64 1.38 —3.13(0.71) 16.39
Spotting pattern Spot area SpotArea-1 2 55.1 (48.0-57.6) 9,282 28.62 12.99 0.029 (0.0025) 34.86
Spotting pattern Spot area SpotArea-2 2 179.9 (169.1-187.5) 15,279 63.73 35.47 0.048 (0.0024) 57.04
Spotting pattern Spot area Interaction Spot-1 X Spot-2 1.76 0.69 0.014 (0.0049) 16.49

? Linkage group number.
b position in centimorgan (1.5 LOD support intervals)
¢ Marker closest to QTL peak.

9 Effect sizes calculated as the difference in the phenotypic averages of among F, males carrying a VA allele and F, males carrying an Ml allele (= SE).
€ Effect sizes calculated as a percentage of the difference between average trait values for the two grandparental lines (VA and Ml).

transfer particle (LTP) lipoprotein (e-value: O; bitscore: 391).
LTP is one of two major lipoproteins present in insect hemo-
lymph and appears to be involved in the transport of hydro-
phobic lipids (including carotenoids) from the gut to the
other major lipoprotein, lipophorin, which then transports
lipids to target tissues (Tsuchida et al. 1998; Palm et al
2012; Yokoyama et al. 2013). Based on these observations,
we hypothesize that loss-of-function mutations in both
Cameo2 and apoLTP-II/I contribute to the loss of yellow pig-
mentation in white-bodied N. lecontei larvae.

Candidate genes for larval spotting pattern: Our two larg-
est-effect spotting pattern QTL also yielded promising candi-
date genes—this time in the well-characterized melanin
biosynthesis pathway (Table S7 in File S2). In both linkage
group 2 QTL regions, we found protein-coding genes that
belong to the yellow gene family. The first linkage group
2 QTL region (SpotNum-1 and SpotArea-1; Figure 4 and Ta-
ble 1) contained two yellow-like genes that were most similar
to Apis yellow-x1 (e-value: 1.2 X 10~169; bitscore: 471.47 and
e-value: 3.9 X 107 131; bitscore: 448.36). At present, there is
little known about the function of yellow-x genes, which ap-
pear to be highly divergent from other yellow gene families
(Fergusonet al. 2011). The second linkage group 2 QTL region
(SpotNum-2 and SpotArea-2; Figure 4 and Table 1) contained
a cluster of 13 yellow genes, including yellow-e. In two different
mutant strains of B. mori, mutations in yellow-e produced a
truncated gene product that results in increased pigmentation
in the head cuticle and anal plate compared to wild-type

300 C. R. Linnen et al.

strains (Ito et al. 2010). Thus, one possible mechanism for
the reduced spotting observed in the light-spotted MI popula-
tion is an increase in yellow-e expression.

The second linkage group 2 spotting QTL region also
contained a predicted protein that was highly similar to
tyrosine hydroxylase (TH) (e-score: 6 X 107123, bitscore:
406). TH (encoded by the gene pale) catalyzes the hydroxyl-
ation of tyrosine to 3,4-dihydroxyphenylalanine, a precursor
to melanin-based pigments (Wright 1987). Work in the swal-
lowtail butterfly Papilio xuthus and the armyworm Pseudale-
tia separata demonstrates that TH and another enzyme, dopa
decarboxylase, are expressed in larval epithelial cells contain-
ing black pigment (Futahashi and Fujiwara 2005; Ninomiya
and Hayakawa 2007). Furthermore, inhibition of either en-
zyme prevented the formation of melanin-based larval pig-
mentation patterns (Futahashi and Fujiwara 2005). Thus, a
reduction in the regional expression of pale is another plau-
sible mechanism underlying reduced spotting in the light-
spotted MI population.

We also found candidate genes in some of our QTL of more
modest effect. As noted above, the Yellow-2 and Yellow-3 QTL
overlap with the two large-effect spotting QTL (Figure 4,
Figure 5, and Table 1). One possible explanation for this
observation is that genes in the melanin biosynthesis path-
way impact overall levels of melanin throughout the integu-
ment and therefore overall body color. Finally, the SpotNum-4
QTL contained a gene encoding dopamine N-acetyltransferase
(Dat). Dopamine N-acetyltransferase, which catalyzes the
reaction between dopamine and N-acetyl dopamine and
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Table 2 Summary of full multiple-QTL models for five larval color traits

Trait type Trait Covariates No. of QTL No. of interactions LOD % variance explained
Body color Yellow None 6 1 182.03 85.83
Body color PC1 Size, mother 2 0 27.14 25.48
Body color PC2 Mother 4 0 65.84 50.92
Spotting pattern Spot number Size, mother 4 2 122.18 73.23
Spotting pattern Spot area Size, mother 2 1 94.77 63.93

ultimately leads to the production of a colorless pigment, is
responsible for a difference in pupal case color between two
Drosophila species (Ahmed-Braimah and Sweigart 2015).

Comparison with color loci in other taxa: Identification of
candidate genes in our QTL peaks provides an opportunity to
compare our results with those from other insect taxa. For
melanin-based traits, the bulk of existing genetic studies in-
volve Drosophila fruit flies (Massey and Wittkopp 2016), with
a handful of additional studies in wild and domesticated lep-
idopterans (e.g., Ito et al. 2010; Van’t Hof et al. 2016; Nadeau
et al. 2016). A recent synthesis of Drosophila studies suggests
that cis-regulatory changes in a handful of genes controlling
melanin biosynthesis (yellow, ebony, tan, Dat) and patterning
(bab1, bab2, omb, Dll, and wg) explain much of the intra- and
interspecific variation in pigmentation (Massey and Wittkopp
2016). Although our data cannot speak to the contribution
of cis-regulatory vs. protein-coding changes, we do recover
some of the same melanin biosynthesis genes (yellow and
Dat). By contrast, all of the Drosophila melanin patterning
genes fell outside of our spotting pattern QTL intervals (Table
S7 in File S2). Although we cannot rule these genes out
completely, our results suggest that none of them plays a
major role in this intraspecific comparison. Whether the same
is true of patterning differences within and between other
Neodiprion species remains to be seen.

Compared to melanin-based pigmentation, little is known
about the genetic underpinnings of carotenoid-based pigmen-
tation, which is widespread in nature (Heath et al. 2013;
Toews et al. 2017). Nevertheless, studies in the domesticated
silkworm (Sakudoh et al. 2010; Tsuchida and Sakudoh
2015), salmonid fish (Sundvold et al. 2011), and scallops
(Liu et al. 2015) collectively suggest that scavenger receptor
genes such as our candidate Cameo2 may be a common and
taxonomically widespread source carotenoid-based color
variation (Toews et al. 2017). Beyond evaluating patterns
of gene reuse, extensive intra- and interspecific variation in
larval body color across the genus Neodiprion (Figure 1) has
the potential to provide novel insights into the molecular
mechanisms underlying carotenoid-based pigmentation.

Summary and conclusions

Our study, which focuses on naturally occurring color varia-
tion in an undersampled life stage (larva), taxon (Hymenop-
tera), and pigment type (carotenoids), represents a valuable
addition to the invertebrate pigmentation literature. Our
results also have several implications for both hymenopteran

evolution and color evolution. First, we provide the first re-
combination-rate estimate for the Eusymphyta, the sister
group to all remaining Hymenoptera (e.g., bees, wasps, and
ants) (Peters et al. 2017). Our estimate suggests that the
exceptionally high recombination rates observed in some so-
cial hymenopterans represents a derived state, supporting
the hypothesis that increased recombination is an adaptation
for increasing genetic diversity in a colony setting (Gadau
et al. 2000; Schmid-Hempel 2000; Crozier and Fjerdingstad
2001; Wilfert et al. 2007). Second, for both larval body color
and spotting pattern, we can conclude that intraspecific var-
iation is due neither to a single Mendelian locus nor to a large
number of unlinked, small-effect loci. However, it remains
to be seen whether color, color pattern, and other types of
phenotypes differ predictably in their genetic architectures
(Dittmar et al. 2016; Rockman 2012). Third, our QTL intervals
contain several key players in melanin-based and carotenoid-
based pigmentation in other taxa, including yellow, Dat, and
Cameo2 (Massey and Wittkopp 2016; Toews et al. 2017). Al-
though functional testing is needed to establish causal links,
we can rule out a major role for several core melanin-patterning
genes in this intraspecific comparison. Finally, although much
work remains—including fine-mapping QTL, functional anal-
ysis of candidate genes, and genetic dissection of diverse
color traits in additional Neodiprion populations and spe-
cies—our rapid progression from phenotypic variation to
strong candidate genes demonstrates the tremendous po-
tential of this system for addressing fundamental ques-
tions about the genetic basis of color variation in natural
populations.
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