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ABSTRACT Dominance genetic effects are rarely included in pedigree-based genetic evaluation. With the availability of single
nucleotide polymorphism markers and the development of genomic evaluation, estimates of dominance genetic effects have
become feasible using genomic best linear unbiased prediction (GBLUP). Usually, studies involving additive and dominance genetic
effects ignore possible relationships between them. It has been often suggested that the magnitude of functional additive and
dominance effects at the quantitative trait loci are related, but there is no existing GBLUP-like approach accounting for such
correlation. Wellmann and Bennewitz (2012) showed two ways of considering directional relationships between additive and
dominance effects, which they estimated in a Bayesian framework. However, these relationships cannot be fitted at the level of
individuals instead of loci in a mixed model, and are not compatible with standard animal or plant breeding software. This comes
from a fundamental ambiguity in assigning the reference allele at a given locus. We show that, if there has been selection, assigning
the most frequent as the reference allele orients the correlation between functional additive and dominance effects. As a conse-
quence, the most frequent reference allele is expected to have a positive value. We also demonstrate that selection creates negative
covariance between genotypic additive and dominance genetic values. For parameter estimation, it is possible to use a combined
additive and dominance relationship matrix computed from marker genotypes, and to use standard restricted maximum likelihood
algorithms based on an equivalent model. Through a simulation study, we show that such correlations can easily be estimated by
mixed model software and that the accuracy of prediction for genetic values is slightly improved if such correlations are used in
GBLUP. However, a model assuming uncorrelated effects and fitting orthogonal breeding values and dominant deviations per-
formed similarly for prediction.
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FROM quantitative genetics theory, statistical additive ge-
neticvalues (also calledbreedingvalues)of individuals are

obtained from average allele substitution effects ðaÞ; which
are functions of functional additive and dominant gene/
marker effects ða and dÞ (Falconer and Mackay 1996).
Dominance deviations are differences between genotypic val-

ues and breeding values, and only include a part of the dom-
inant effects of the genes/markers (Falconer and Mackay
1996). Additive genetic variance ð2pqa2Þ includes variation
due to the functional additive and dominant effects, and
dominance genetic variance ðð2pqdÞ2Þ involves only the func-
tional dominant effects.

The inclusion of dominance in genomic evaluation models
has been proposed by several authors (Su et al. 2012; Vitezica
et al. 2013, 2016; Ertl et al. 2014; Muñoz et al. 2014; Aliloo
et al. 2016, 2017; Xiang et al. 2016). In those studies, addi-
tive and dominant marker effects ða  and  dÞ are considered
uncorrelated. However, QTL analyses show that the magni-
tudes of these effects are dependent (e.g., Bennewitz and
Meuwissen 2010).
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In the genomic era, the relationship between magnitudes
of additive and dominant gene/marker effects has scarcely
been modeled (Wellmann and Bennewitz 2011, 2012;
Bennewitz et al. 2017). Wellmann and Bennewitz (2011)
reviewed evidence for association of magnitudes of additive
and dominant effects across QTL. These magnitudes have
been shown to be related through the dominance coeffi-
cients d ¼ d=jaj: QTL with large absolute additive effect
are likely to be associated with large dominance coeffi-
cients, while small additive effects tend to be associated
with small dominance coefficients (Caballero and Keightley
1994). These results suggest that across QTL loci it is pos-
sible to construct joint distributions of additive and domi-
nant effects. Wellmann and Bennewitz (2012) suggested a
general hierarchical Bayesian model where absolute addi-
tive QTL effects and dominance coefficients were assumed
to be dependent with corðjaj; dÞ.0:

Recently, the dependencies between additive and dom-
inant gene effects were considered in a Bayesian model
for association analysis (Bennewitz et al. 2017). For geno-
mic prediction, methods commonly used are linear mixed
models and best linear unbiased prediction (BLUP), i.e.,
genomic BLUP (GBLUP) methods (Su et al. 2012; Vitezica
et al. 2013). In these models, the relationship between
additive and dominant marker effects is ignored. Examin-
ing the relationship between a  and  d and including it in
such genomic models could improve the accuracy of
predictions.

Even though Bayesian models can take into account the
dependencies between additive and dominant gene effects,
their implementation by Markov Chain Monte Carlo meth-
ods is not straightforward. These models need customary
implementations and would be computationally slow for
large data sets. In addition, if the relationship between
functional additive and dominant marker effects cannot
be described as covariance structure of additive and dom-
inance effects on individuals, then the standard mixed
model animal breeding software, e.g., DMU (Madsen and
Jensen 2013), BLUPf90 family (Misztal et al. 2002), or
ASREML (Gilmour et al. 2009), cannot be used for estimat-
ing such relationships.

In this study, we present a novel method to quantify the
importance of the relationship between additive and dom-
inant effects of QTL using a GBLUP-like method. This
method relies on the fact that allele substitution effects
contain functional additive anddominant effects that, after
phenotypic selection, tend to offset each other. Our ap-
proach is based on fixing the most frequent allele as the
reference allele. By simulation, we evaluate the benefit
of accounting for this relationship (between a  and  d) ex-
plicitly in the genomic model for genetic parameter esti-
mation and the prediction of genetic values, comparing it
with the model ignoring the relationship between a  and  d;
and with the classical orthogonal model based on breed-
ing values and dominance deviations (Vitezica et al.
2013).

Materials and Methods

Theory

Consider a quantitative trait that is determined by biallelic
quantitative trait loci. For each locus, let the midpoint of
the genotypic values of the two homozygotes be the origin
(0). Relative to this origin, the genotypic value of a ho-
mozygote is defined as either a or 2a; and the genotypic
value of the heterozygote is defined as d, which is the
amount the heterozygote deviates from the origin. Note
that the functional value a can be either positive or neg-
ative (a point that is rarely explicit in many textbooks),
and the magnitude of the difference between the two ho-
mozygotes is therefore the absolute value j2aj. For many
traits and species, an advantage of heterozygosity is ob-
served, known as heterosis or the related phenomenon
inbreeding depression (i.e., Lynch and Walsh 1998, chap-
ter 10). This phenomenon is typically modeled as a regres-
sion of the phenotype on the degree of heterozygosity, for
which several metrics exist (i.e., Silió et al. 2016; Xiang et al.
2016).

Using a genotypic model (i.e., Su et al. 2012; Vitezica
et al. 2016) for additive and dominant genotypic effects u
and v on individuals we use the notation u ¼ Za and
v ¼ Wd; respectively, where a and d are vectors of func-
tional additive and dominant QTL effects across individu-
als, respectively, and Z and W are the respective incidence
matrices. Considering one QTL, the matrixW has entries 0,
1, and 0 for genotypes BB, Bb, and bb, respectively. For the
matrix Z; there are two ways of coding genotypes depend-
ing on the selected reference allele: if allele B is the se-
lected reference allele, then matrix Z has entries 1, 0,
and 21 for BB, Bb, and bb, respectively (case 1 in Table
1); if allele b is selected to be the reference allele, matrix Z
is coded as 21, 0, and 1 for genotypes BB, Bb, and bb,
respectively (case 2 in Table 1). Thus, in case 1, additive
genotypic effects u for BB, Bb, and bb are a; 0; and 2a;
respectively, and in case 2, additive genotypic effects u for
BB, Bb, and bb are2a; 0; and a; respectively. The dominant
genotypic effects v are always 0; d; and 0 for genotypes BB,
Bb, and bb, respectively. These two cases can be found in
Table 1.

Phenotypic (directional) selection, either artificial by breed-
ing or natural, operates to change the phenotype in a desired
direction; throughout this paper we will use the shorter term
“selection” for this, and without loss of generality we will as-
sume that the direction of selection is upwards. Selection acts
mainly on the statistical additive component of genetic values.
Thus, considering a segregating QTL, then selection will act on
the allele substitution effect

a ¼ aþ ð12 2pÞd:

Therefore, one would expect that in a long-term selected
population, QTLwith large allele substitution effects arefixed
and only QTL with small allele substitution effects segregate.
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Thus, if there is selection, it is expected that no segregating
QTLwill have a very large allele substitution effect after some
generations of selection, leading to:

a ¼ aþ ð12 2pÞd ¼ e (1)

where e is small. From this we can derive a: ¼ ð2p2 1Þdþ e;
and we see that a and ð2p2 1Þd will tend to have the same
sign and magnitudes that are positively associated. At this
point, a refers to an arbitrary allele (B or b) whose fre-
quency is p; and both a and d can have positive or nega-
tive values. The allelic frequency 0, p,1 and therefore
2p2 1 can also be positive or negative, and we see from
a ¼ ð2p2 1Þdþ e that there is no association between sign
of a and signs of either ð2p2 1Þ or d: We will call this “ran-
dom allele coding” (RAC).

An alternative presentation of the same idea is consider-
ing allelic frequency at equilibrium after several rounds
of selection (Crow and Kimura 2009; Charlesworth and
Charlesworth 2010). If the fitnesses at the locus are 2a;
d, and a (the actual values are functions of a and d that
depend on the selection intensity and the part of genetic vari-
ance explained by the locus; Charlesworth and Charlesworth
2010, box 3.7), the frequency at equilibrium is p ¼ 0:5þ a=2d;
which is a rewriting of Equation (1). Thus, 2p2 1 and a=d have
the same sign.

Consider now the equilibria. If 2jaj, d, jaj; loci tend to
fixation toward the favorable homozygote. If jdj. jaj (over-
dominance or underdominance), equilibria are stable when
d. jaj (overdominance) and there is maintenance of poly-
morphisms in the population, but if d, 2 jaj (underdomi-
nance) the equilibrium is unstable and any random event
will lead loci tofixation (CrowandKimura 2009; Charlesworth

and Charlesworth 2010). Thus, selection tends to maintain
primarily overdominant alleles and therefore, after a selec-
tion process, it is expected that d. 0 (either across segre-
gating loci or across repeated evolutionary histories of the
same locus).

Now we extend the reasoning to several loci with random
effectsdrawn fromsomedistributions.Consideracollectionof
loci with elementsai; di, and pi; respectively, and ðai; di; piÞ;
i ¼ 1; . . . ;N are treated independent and identically distrib-
uted across loci. We can formalize the above finding to the co-
variance between a and ð2p2 1Þd as covðai; ð2pi 2 1ÞdiÞ. 0;
with EðaiÞ ¼ 0 and EðdiÞ. 0: For RAC we see from
ai ¼ ð2pi 2 1Þdi þ ei that there is no association between
sign of ai and signs of either ð2pi 2 1Þ or di: This we formal-
ize as:

covðai; diÞ ¼ EðaidiÞ2EðaiÞEðdiÞ
¼ E

���
2pi 21

�
di þ ei

�
di
�
2 0

� E
�
ð2pi 2 1Þd2i

�
¼ 0 (2)

The last identity holds because 2pi 21 has zero mean due to
pi having a symmetric distribution with mean 0.5 [could be a
uniform distribution between 0 and 1 or a U-shaped distribu-
tion (Hill et al. 2008)] for the RAC, and assuming that con-
ditional mean and variance of di do not depend on pi: This
means that postulating in the model a covariance between a
and d has no meaning (or interest) because this covariance is
0 under these assumptions.

However, returning to the one-locus case, we can mea-
sure its allelic frequency p; and we can arbitrarily fix
the most frequent allele as the reference allele such
that p. 0:5: We will indicate this hereinafter as “major
allele coding” (MAC). In such case, allelic frequency p is
denoted as pMAC(p ¼ pMAC .0:5). Additive effect a still
refers to the allele whose frequency is p (actually now
is pMAC) and is denoted as aMAC: Still, aMAC can have pos-
itive or negative values. The functional dominance effect
d is invariant to the reference allele. Equation (1) still
holds:

aMAC ¼ aMAC þ �122pMAC�d ¼ e:

By the restriction pMAC . 0:5; the term 2pMAC 2 1 in
aMAC � ð2pMAC 2 1Þdþ e becomes strictly positive and we
see that aMAC and d will tend to have the same sign. In addi-
tion, because EðdÞ.0 and e is small, then it turns out that
EðaMACÞ. 0:

Consider now the covariance, across several loci, between
functional additive (aMAC) and dominant (d) effects; then we
formalize the above finding to

cov
�
aMAC
i ; di

� ¼ covðð2pMAC
i 2 1Þdi þ e; diÞ

� covðð2pMAC
i 2 1Þ þ di; diÞ. 0 (3)

where the last inequality follows from

Table 1 Different ways of allele coding for incidence matrices for
additive and dominance effects

Genotypes BB Bb bb
Case 1

Matrix Z 1 0 21
u ¼ Za a 0 –a
Matrix W 0 1 0
v ¼ Wd 0 d 0
Frequencies p2 2pq q2

Case 2
Matrix Z 21 0 1
u ¼ Za –a 0 a
Matrix W 0 1 0
v ¼ Wd 0 d 0
Frequencies q2 2pq p2

For one biallelic QTL locus, there are three genotypes: BB, Bb, and bb. The
genotypic value of a homozygote is defined as a or – a and the genotypic value
of the heterozygote is defined as d: a refers to an arbitrary allele whose fre-
quency is p: In a genotypic model, genotypic additive (u) and dominance effects
(v) on individuals are Za and Wd; respectively. Incidence matrix Z can be coded
in two cases: (1) Z is coded as 1, 0, and 21 for BB, Bb, and bb, respectively, and
(2) Z is coded as 21, 0, and 1 for genotypes BB, Bb, and bb, respectively. In
both two cases, matrix W is coded as 0, 1, and 0 for genotypes BB, Bb, and bb,
respectively.
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covðð2pMAC
i 21Þdi; diÞ

¼ Eðcovðð2pMAC
i 2 1Þdi; dijpMAC

i ÞÞ
þ covðEðð2pMAC

i 2 1ÞdijpMAC
i Þ; EðdijpMAC

i ÞÞ;
where the first term equals Eðð2pMAC

i 2 1ÞvarðdijpMAC
i ÞÞ. 0;

and the second term is zero since EðdijpiÞ ¼ EðdiÞ for segre-
gating loci. If the conditional variance of di is not depending
on pMAC

i ; then ðð2pMAC
i 21Þdi; diÞ ¼ VarðdiÞEð2pMAC

i 2 1Þwhere
both terms are larger than zero.

Thus, we have shown that, by a careful coding of the
model, it is possible to express an after selection dependency
between functional additive and dominance effects at bial-
lelic QTL as a covariance.

So far, we did not consider the dominant coefficient d: If,
across loci, there is a biological relationship between the
magnitudes of a and d (e.g., Bennewitz and Meuwissen
2010), this mechanism will reinforce the previously men-
tioned dependency between functional additive and domi-
nance effects. In Appendix A, we consider di ¼ dijaij; and
we argue that it often holds that covðai; diÞ. 0 when
covðdi; jaijÞ. 0 [BayesD3model in Wellmann and Bennewitz
(2012)] and covðai; diÞ ¼ 0 when covðdi; jaijÞ ¼ 0 [BayesD2
model in Wellmann and Bennewitz (2012)].

Covariance between genotypic additive and
dominant effects

In Hardy–Weinberg equilibrium (see Table 1), the covariance
between genotypic additive effects uj and dominance effects
vj (for a random individual j drawn from a population) for
one QTL can be derived as:

covðuj; vjÞ ¼ EðujvjÞ2 EðujÞEðvjÞ;

where the expectations can be computed from expectations of
conditional expectations Eðujvjja; d; pÞ ¼ 0 (because the cross
product is always zero across the three possible genotypes),
Eðujja; d; pÞ ¼ ð2p2 1Þa; andEðvjja; d; pÞ ¼ 2pqd; respectively.
Therefore,

covðuj; vjÞ ¼ 2 Eðð2p2 1ÞaÞEð2pqdÞ:

As we have already noted, EðdÞ. 0 (there will be ten-
dency that only overdominant mutations eventually re-
main in heterozygous state) and therefore the term
Eð2pqdÞ is always positive, irrelevant of the coding. When
coding genotypes as in the RAC, EðpÞ ¼ 0:5 and thus
EðujÞ ¼ Eðð2p2 1ÞaÞ ¼ 0. Therefore, covðuj; vjÞ ¼ 0 holds
for RAC. When coding genotypes as in the MAC,
Eð2pMAC 21Þ. 0; and there will be a tendency that aMAC

and d have the same sign [see Equation (2)], so that
EðaMACÞ. 0: In other words, after long-term selection there
will be a tendency that the allele with the positive effect will
be most frequent, and hence aMAC is positive. To conclude,
there will be tendency that both aMAC and d are positive.

Therefore, Eðð2pMAC 2 1ÞaMACÞ and Eð2pqdÞ are both posi-
tive, and hence for the MAC coding

covðuj; vjÞ¼2E
��
2pMAC 2 1

�
aMAC�E�2pMACqMACd

�
, 0 (4)

The intuition behind this is that after long-term selection,
individual genotypic additive and dominance effects tend to
offset each other in polymorphic loci (otherwise there would
be fixation).

The expression in Equation (4) extends, assuming linkage equi-
librium,tocovðuj; vjÞ ¼ 2

P
Eðð2pMAC

i 2 1ÞaMAC
i ÞEð2piqidiÞ, 0

for the case of multiple QTL.
For a statistical analysis based on mixed models and

genomic data, the assumption is Var
�
a
d

�
¼
�

s2
a sad

sad s2
d

�
;

and matrices Z andW are known. From the a being small prop-
erty, we have that signs of a and d are uncorrelated for RAC but
positively correlated for MAC. Therefore, we obtain sad ¼ 0 for
RAC [Equation (2)] and sad . 0 for MAC [Equation (3)].

Variance component estimation

According to the theory sketched before, the variance–
covariance structure between genotypic additive and domi-
nant effects is:

var
�
u

v

�
¼ var

�
Za

Wd

�
¼ var

��
Z 0

0 W

��
a

d

�	

¼
�
Z 0

0 W

�
var
�
a

d

��
Z 0

0 W

�9

¼
�
Z 0

0 W

� 
Is2

a Isad

Isad Is2
d

!�
Z9 0

0 W9

�

¼
 

ZZ9s2
a ZW9sad

WZ9sad WW9s2
d

!
;

(5)

where Z and W contain genotypic codings, a and d are addi-
tive and dominant SNP effects, s2

a is the additive variance for
SNP effects, s2

d is the dominance variance for SNP effects, and
sad is covariance between additive and dominance SNP ef-
fects. For different analyses, elements in matrix Z will be
coded using RAC (the reference allele is chosen at random
for each locus) or using MAC (the reference allele is the most
frequent for each locus).

This (co)variance structure in Equation (5) cannot be fit in
usual BLUP or restricted maximum likelihood (REML) soft-
waredirectly, because thecovariancematrix isnot factorizable
as a Kronecker product of a relationship structure times a
covariance matrix. A solution for this issue is to use an
equivalent model with two additional unknown random ef-
fects u* and v* (Fernández et al. 2017). Let u* ¼ Wa and
v* ¼ Zd; these effects have no biological meaning per se. The
variance structures for u* and v* are varðu*Þ ¼ WW9s2

a and
varðv*Þ ¼ ZZ9s2

d; respectively. Then, the (co)variance struc-
ture for all the four random effects is:
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where K is an additive-dominance unscaled relationship

matrix
�

ZZ9 ZW9
WZ9 WW9

�
; K0 is a covariance matrix�

s2
a sad

sad s2
d

�
that associates to SNP effects. Equation (6)

is a typical correlated random effects structure, and such
structures can be fit using mixed model software.

Nevertheless, variance components in K0 are associated to
the scale of SNP effects. To adjust variance components in the
K0 matrix to be associated to the scale of individuals, similar
to Vitezica et al. (2016) and Xiang et al. (2016), a genomic
relationship matrix G ¼ K=ftrðKÞg=2n is introduced, where
trðKÞ is the trace of the relationship matrix K and 2n is twice
the number of individuals involved in the matrix K: The
ftrðKÞg=2n is the average of the diagonal elements in the
relationship matrix K: Let a constant k ¼ ftrðKÞg=2n; then
matrix G ¼ K=k ¼

�
ZZ9=k ZW9=k
WZ9=k WW9=k

�
. Then, the Equation

(6) will change to:

var

0
BBB@

u

u*

v*

v

1
CCCA¼ K05K ¼ K05ðG3 kÞ

¼
 

ks2
a ksad

ksad ks2
d

!
5G

¼
 

s*2
A s*

AD

s*
AD s*2

D

!
5

�
ZZ9=k ZW9=k
WZ9=k WW9=k

�
;

(7)

where s*2
A ; s*2

D and s*
AD are estimated genotypic additive

variance, genotypic dominance variance, and covariance
between genotypic additive and dominance effects at the
level of individuals, and these can be estimated using REML
implemented in standard animal breeding software.

Still, these estimated variance components cannot be inter-
pretedas thegenetic variances in thepopulation(Legarra2016).
The estimated variance components in Equation (7) should be
scaled to the expected variance components of a population as
in Legarra (2016) (see Appendix B), as follows:

s2
u ¼ DZZ9=ks

*2
A ; s2

v ¼ DWW 9=ks
*2
D ; su;v ¼ DZW 9=ks

*
AD;

(8)

where s2
u is the expected genotypic additive variance, s2

v is
the expected genotypic dominance variance, su;v is the covari-
ance between expected genotypic additive and dominance
effects, and statistics DM ¼ meanðdiagðMÞÞ2meanðMÞ for
M ¼ ZZ9=k;ZW9=k;WW9=k; respectively. Thus, the total
genetic variance is s2

ðuþvÞ ¼ s2
u þ s2

v þ 2su;v ¼ DZZ 9=ks
*2
A þ

DWW 9=ks
*2
D þ 2DZW 9=ks

*
AD; and the expected correlation be-

tween genotypic additive effects u and genotypic dominance
effects v is:

ru;v ¼ su;v

susv
¼ DZW 9=ks

*
ADffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DZZ 9=ks
*2
A DWW 9=ks

*2
D

q ; (9)

Replacing DZW9=k in the formula above by its expectation
2
P

ið2pi 2 1Þð2piqiÞ=k (see Appendix B), which is negative,
and using Equations (3) and (7) to see that s*

AD . 0; we
obtain that ru;v is negative, as also shown in Equation (4).

We derived formulae that can be used to estimate the co-
variancebetweengenotypicadditiveanddominanteffects.Based
on this, fourhypothesis canbeproposed: (1)associationbetween
additive and dominant effects is captured in genomicmodel by a
covariance if theMACisused,but cannotbecaptured if theRACis
used; (2) based on Equation (9), the covariance su;v is negative
when the absolute additive effects and dominance coefficients of
QTL are positively correlated [e.g., BayesD3 inWellmann and Ben-
newitz (2012)]; (3) a long-term directional selection is a possible
cause for su;v different from 0; and (4) the predictive ability of a

var

0
BB@

u
u*
v*
v

1
CCA ¼ var

0
BB@

Za
Wa
Zd
Wd

1
CCA ¼ var

2
664
0
BB@

Z 0 0 0
0 W 0 0
0 0 Z 0
0 0 0 W

1
CCA
0
BB@

a
a
d
d

1
CCA
3
775

¼

0
BB@

Z 0 0 0
0 W 0 0
0 0 Z 0
0 0 0 W

1
CCA
0
BB@

Is2
a Is2

a Isad Isad
Is2

a Is2
a Isad Isad

Isad Isad Is2
d Is2

d
Isad Isad Is2

d Is2
d

1
CCA
0
BB@

Z9 0 0 0
0 W9 0 0
0 0 Z9 0
0 0 0 W9

1
CCA

¼

0
BB@

ZZ9s2
a ZW9s2

a ZZ9sad ZW9sad
WZ9s2

a WW9s2
a WZ9sad WW9sad

ZZ9sad ZW9sad ZZ9s2
d ZW9s2

d
WZ9sad WW9sad WZ9s2

d WW9s2
d

1
CCA ¼

�
s2
a sad

sad s2
d

�
5

�
ZZ9 ZW9
WZ9 WW9

�
¼ K05K;

(6)

Correlated Additive and Dominant Effects 715



genomic model could be improved if the su;v is included. A simu-
lation study was used to test these hypotheses.

Genomic models

To obtain mixed models with centered a and d (equivalently,
centered u and v) two regressions are needed: in MAC and
RAC, a regression on the proportion of heterozygotes [or its
counterpart the genomic inbreeding, see Xiang et al. (2016)]
and in MAC, a regression on the proportion of major alleles.

In this study, the full genomicmodel (M1) can bewritten as

M1 : y ¼ 1mþmAþ fbþ ðI 0Þ
�

u
u*

�
þ ð0 I Þ

�
v*
v

�
þ e;

where y is a vector of user defined phenotypic values, m is the
overall mean, and mA (only included in MAC, not for RAC)
models the regression of phenotype on proportion of most
frequent alleles, e.g., EðuÞ. 0; m is a vector with elements
mj ¼

PN
i¼1Zji=N, matrix Zji is the element in the incidence

matrix for the additive effects for random individual j with
MAC, N is the number of SNP markers used, and A is the re-
gression coefficient, which needs to be estimated; fb models
the inbreeding depression (Vitezica et al. 2016; Xiang et al.
2016) (e.g., EðvÞ.0), where f is inbreeding coefficient and
b is the inbreeding depression parameter per unit of inbreed-
ing, which needs to be estimated. Vectors u; u*; v*, and v are
genotypic additive and dominance individual effects as in Equa-
tion (7), matrix I is an identity matrix to assign genotypic effects
u and v to the corresponding phenotypic records, and e is the
overall residual. The expectation of both u and v are zero af-
ter inclusion of mA and fb in the model. The covariance struc-
ture of randomeffectsu; u*; v*, and v are as in the Equation (7).
If u has n levels, then an additional n levels for u* (from
nþ 1  to  2n) need to be declared to achieve the factorizable
structure of the covariancematrix. Similarly, declare v* variables
with levels 1 to n; and then levels of v are from nþ 1 to 2n:

The M1 model was compared to a submodel with covari-
ance between u and v equal to zero ðsu;v ¼ 0Þ (Vitezica et al.
2016; Xiang et al. 2016), as

M2 : y ¼ 1mþmAþ fbþ uþ vþ e;

where mA was only included for MAC, but not for RAC;
varðuÞ ¼ ZZ9s2

a and varðvÞ ¼ WW9s2
d: For both M1 and M2,

variance components and associated SE were estimated by
GREMLusing AIREMLf90 (Misztal et al. 2002) in different scenar-
ios. Estimated genetic parameters were scaled as in Equation (8).

In addition, amodel (M3)with orthogonal breeding values
ðuoÞ and dominance deviations ðvoÞ (Vitezica et al. 2013)
including genomic inbreeding depression was used. For M3,
only RAC was investigated.

M3 : y ¼ 1mþ fbþ uo þ vo þ e;

where uo ¼ Zoa and vo ¼ Wod: Orthogonal incidence matri-
ces Zo and Wo were coded as follows:

Zo ¼
8<
:

22 2p
12 2p
02 2p

for genotypes

8<
:

BB
Bb
bb

; Wo ¼
8<
:

22q2

2pq
22p2

for

genotypes

8<
:

BB
Bb
bb

and p is the allele frequency of the second

allele for each locus. Note that M3-RAC is strictly equivalent
to M3-MAC as the cross products ZoZo9 and WoWo9 are in-
variant to MAC or RAC coding, and therefore only M3-RAC is
investigated.

The variance proportions of genotypic additive variance
(h2u) was calculated as h2u ¼ s2

u=s
2
p; where s2

u was the vari-
ance of genotypic additive effects; s2

p was the phenotypic var-
iance, equal to the sum of variance of total genotypic effects
(s2

ðuþvÞ) and residual variance (s2
e ). The dominant variance

proportion (h2v) was calculated as h2v ¼ s2
v=s

2
p ; where s2

v
was variance of genotypic dominance effects. The broad sense
heritability was calculated as H2 ¼ s2

ðuþvÞ=s
2
p : Note that vari-

ance proportions of total genotypic variance (H2) is not the
sum of h2u and h2v because the covariance between the geno-
typic additive and dominant effects is not equal to zero.

The goodness of fit of the models was measured by the
22logðlikelihoodÞ: The superiority of M1 over M2 was tested
by a likelihood ratio test (LRT), which was calculated as
22logðlikelihood for M1Þ2ð2 2logðlikelihood for M2Þ: The
differenceswere assumed to follow a x2 distributionwith 1 d.f.

Simulation

Phenotypic and genotypic data sets were simulated by the
software QMSim, version 1.10 (Sargolzaei and Schenkel
2009). The trait was designed to be controlled by both additive
and dominant gene actions, and the population mimicked a
pig population. Heritability in the narrow sense was 0.38 and
the additive genotypic variance s2

u was 0.66. The phenotypic
variance s2

p was 1.74 and the dominance genotypic variance
s2
v was set to 0.174. No polygenic effect was simulated.
The simulation steps are presented in Figure 1. In the first

simulation step for creating the historical population (HP),
2500 discrete generations with a constant population size of
500 were simulated. To mimic the bottleneck of a pig pop-
ulation, from generation 2501 onwards, the population size
was gradually reduced to 65 at generation 2530. Then, from
the generation 2531 to 2535, the population size gradually
increased from 65 to 220. At the last generation of the HP
(generation 2535), the number of males was 20 and the
number of females was 200. The LD decay of chromosome
1 was checked and it was in line with that in a real Danish
Landrace/Yorkshire pig population (Wang et al. 2013). In the
second simulation step, a recent population 1 (RP1) was
generated by randomly mating the 20males and 200 females
from the last generation in the HP. Each female had 10 off-
spring and the sex proportions for progeny were fixed to 0.5.
The goal of the RP1 was to expand the population size. The
RP1 only had one generation (generation 2536), and there
were 1000 males and 1000 females existing in RP1. In the
next simulation step, 100 males and 500 females were
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randomly selected from the RP1 as the founders of recent
population 2 (RP2). The RP2 had 13 generations (generation
2537–2550). For each of these generations, 100 males and
500 females who either had the highest phenotypic values
(for a scenario with phenotypic selection) or were randomly
selected (for a scenario with no selection) from the former
generation were kept as parents for the next generation. Each
female had �15 progeny (from 7 to 22) to mimic a real pig
population. The sex ratio for the progenywas fixed as 0.5. For
the last generation in RP2, there were �7500 individuals in
total. All the simulation steps were repeated 10 times to cre-
ate 10 independent data sets for the further analysis.

Thegenomeconsistedof18autosomesof120cMeach.For the
first generation in theHP, each chromosomehad200 segregating
biallelicQTLlociand18,200biallelicmarkerlocirandomlylocated
(thus, in total, 3600QTL loci and327,600marker loci). In thefirst
generation, allele frequencies for QTL andmarkers loci were 0.5,
and the recurrent mutation rate was 2:53 1024:

Since softwareQMSim cannot simulate dominance effects,
in the RP2 (from generation 2537 onwards), the option of
“ebv_est = external_bv” in QMSim was used to base selec-
tion decisions on a user provided file. In this study, selection

decisionsweremade according to phenotypic values (phenotypic
selection) and thus, the provided file contained user-defined
phenotypes for each individual.

These phenotypic values were simulated as follows. For
each QTL, additive effects a and dominance effects d were
constant across generations. The additive effects a of 3600QTL
loci were drawn from a Student’s t-test distribution with 2.5 d.f.
[a ¼ rtð3600; 2:5Þ in R] (Wellmann and Bennewitz 2012).
Then, dominance functional effects dwere drawn in two differ-
ent ways: BayesD2 and BayesD3, as is proposed in Wellmann
and Bennewitz (2012). For BayesD2, themagnitudes of a and d
were related as d ¼ djaj and corðdi; jaijÞ ¼ 0: Bennewitz and
Meuwissen (2010) showed that dominance coefficients d fol-
low a normal distribution with mean 0.193 and SD 0.312.
Therefore, the dominance coefficients were simulated as
d ¼ rnormð3600;mean ¼ 0:193; sd ¼ 0:312Þ and d ¼ djaj
(element-wise multiplication) in R. For the BayesD3, the
magnitudes of a and d were related as d ¼ djaj and
corðdi; jaijÞ. 0: Wellmann and Bennewitz (2012) assumed
dominance coefficients d follow a conditional normal dis-
tribution as djjaj � NðmDðjaj=sÞ;s2

DÞ; where s is a scaling
parameter and mDðxÞ ¼ x=ðsD þ xÞwith sD . 0. To generate

Figure 1 Simulation steps for creating a pig popu-
lations. HP, historical population; RP, recent population.
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the dominance coefficients d following a distribution
similar to that in BayesD2, sD ¼ 4 was chosen and
d ¼ jaj=ð4þ jajÞ þ 0:3*rnormð3600Þ was used in R for
BayesD3. The bivariate plots between a and d in the 10 sim-
ulated data sets are shown in the supplemental files (Supple-
mental Material, Figure S1 for BayesD2 and Figure S2 for
BayesD3). The mean empirical correlation (s.e.) between
jaj and d over 10 repetitions was, 20:000013  ð0:0015Þ for
BayesD2 and ¼ 0:355  ð0:039Þ for BayesD3.

Then, for each individual, based on the genotypes of
3600 QTL loci and the corresponding QTL effects, “true” geno-
typic additive effects u and dominance effects v of each indi-
vidual were calculated. Residual effects were sampled from a
normal distribution. Afterward, the phenotype for each indivi-
dualwas calculated as the sumof an overallmean, true additive
effects, dominance effects, and residual effects. Internally,
QMSim used these phenotypes as the selection criteria for the
next generation in scenarioswith selection. In scenarioswith no
selection, replacement at each generation was done at random.

At the last generation of RP2, on average�650QTL loci were
segregating. Once the simulationwas finished, each SNPmarker
simulated byQMSimwas retained for the subsequent analyses if
the minor allele frequency was larger than 0.05. In total, there
were �50K segregating markers retaining. The parameter file
for QMSim can be found in the supplemental material.

Four scenarios were studied (Table 2). Two scenarios had
phenotypic selection: SelYBD3 (“Selection Yes BayesD3”),
where a and d were related as in BayesD3; and SelYBD2
(“Selection Yes BayesD2”), where a and d were related as
in BayesD2. Two scenarios had no selection: SelNBD3
(“Selection No BayesD3”) and SelNBD2 (“Selection No
BayesD2”), with a and d related as in BayesD3 and BayesD2,
respectively.Within each scenario, MAC (most frequent allele
as reference) in combination with M1 and M2 (M1-MAC and
M2-MAC) and RAC (random allele as reference) in combina-
tion with M1, M2, and M3 (M1-RAC, M2-RAC, and M3-RAC)
were applied. For each scenario, 10 replicates were run.

Predictive abilities

The effect on predictive abilities of including the covariance
between the genotypic additive and dominance effects in the
genomic model was investigated. Prediction was performed

by using M1, M2, and M3 in the scenarios with selection. In
each replicate, 20%of individuals in the last generationofRP2
were randomlymasked and put into the validation population;
the remaining 80% of individuals were used as the training
population. The predictive ability was measured as the corre-
lation, in the validation population, between true total genetic
values g that were known from the simulation and the esti-
mated total genetic values ĝ ¼ mÂþ f b̂þ ûþ v̂ for MAC and
ĝ ¼ f b̂þ ûþ v̂ for RAC. Bias was measured as the regression
coefficient of total g onestimated genetic values ĝ. TheHotelling–
Williams t-test at a 95% confidence level was applied to evaluate
the significance for the differences of predictive abilities between
M1, M2, and M3 within different scenarios. Table 2 summarizes
the analyses for the different scenarios.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in themanuscript are represented fully
within the manuscript. Supplemental material available at
Figshare: https://doi.org/10.25386/genetics.6111068.

Results and Discussion

Regressions on proportion of most frequent alleles and
on genomic inbreeding in M1

Average regression coefficients (s.e.) of phenotypes on the
proportion of the most frequent alleles (A) in the model were
12.61 (1.32) for SelYBD3, 12.10 (1.97) for SelYBD2, 0.02
(2.32) for SelNBD3, and 0.02 (2.51) for SelNBD2. The posi-
tive A for scenarios with selection is in agreement with the
tendency that after long-term selection, additive effects for
most frequent alleles are positive. The average (s.e.) inbreed-
ing depression parameters per unit of inbreeding (b) were
26.36 (1.73) for SelYBD3,26.20 (1.45) for SelYBD2,26.63
(1.34) for SelNBD3, and 26.18 (1.52) for SelNBD2. These
negative inbreeding depression parameters confirm the phe-
nomenon of inbreeding depression.

Variance components

Variance components were calculated using QTL (to obtain
the true values) and also, usingmarkers, for the four scenarios
combining models M1 (with correlated additive and

Table 2 Summary for different scenarios

Scenario SelYBD3 SelYBD2 SelNBD3 SelNBD2

Model
y ¼ 1mþ ðmAÞ þ fbþ ð I 0 Þ

�
u
u*

�
þ ð 0 I Þ

�
v*

v

�
þ e; var

�
u
v

�
¼
�

ZZ9s2
a ZW9sad

WZ9sad WW9s2
d

�
Model 2 y ¼ 1mþ ðmAÞ þ fbþ uþ v þ e; varðuÞ ¼ ZZ9s2

a ; varðvÞ ¼ WW9s2
d

Selection Phenotypic selection Phenotypic selection Random selection Random selection
a; d relation d ¼ djaj; corðd; jajÞ.0 d ¼ djaj; corðd; jajÞ ¼ 0 d ¼ djaj; corðd; jajÞ.0 d ¼ djaj; corðd; jajÞ ¼ 0
Allele coding MAC RAC MAC RAC MAC RAC MAC RAC

Four scenarios—SelYBD3, SelYBD2, SelNBD3, and SelNBD2—were outcomes of cross combinations: phenotypic selection (selection Yes) or random selection (selection No) in
combination with two ways of relating functional additive effects a and dominance effects d ¼ djaj : BayesD3 with corðd; jajÞ. 0; BayesD2 with corðd; jajÞ ¼ 0: Two
genotypic models were investigated: model 1 considers the covariance between genotypic additive and dominance effects, and model 2 considers independent additive and
dominance effects. Genotypes were coded in both MAC and RAC ways. MAC, major allele coding; RAC, random allele coding; SelNB, Selection No Bayes; SelYB, Selection
Yes Bayes.
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dominant genotypic effects) orM2(withuncorrelatedeffects)
withMAC (most frequent allele as reference) orRAC (random
allele as reference). This gives four combinations (M1-MAC,
M2-MAC, M1-RAC, and M2-RAC). Results were the mean of
10 replicates. Varianceproportions of genotypic additive (h2u),
genotypic dominance (h2v), and total genotypic ðH2Þ variance

over phenotypic variance are presented in Figure 2. All the
other variance components are in Table S1 in the supplemen-
tal material.

For scenarios with phenotypic selection (SelYBD2 and
SelYBD3), estimated variance components in M1-MAC were
not statistically significantly different from the true ones,

Figure 2 Variance proportions of genotypic additive variance (a)
genotypic dominance variance (b) and total genotypic variance (c)
over total phenotypic variance. “True” represents the results that
were calculated based on the QTL loci in the last generation (gen-
eration 2550); “M1-MAC” indicates MAC in combination with M1
was applied; “M2-MAC” indicates MAC in combination with M2
was applied; “M1-RAC; M2-RAC” represents one of the following
combinations: RAC in combination with M1 and RAC in combina-
tion with M2 was applied in the respective scenario; SelYBD2,
SelYBD3, SelYBD2, and SelYBD3 were the four studied scenarios.
M1, model 1; M2, model 2; MAC, major allele coding; RAC, ran-
dom allele coding; SelYB, Selection Yes Bayes.
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while results in the other cases (M1-RAC, M2-MAC, and M2-
RAC) were slightly but statistically different from the true
ones. Similarly, all the calculated genetic parameters (h2u;
h2v and H2) in M1-MAC were not significantly different from
the true values, while values in the other cases (M1-RAC,M2-
MAC, andM2-RAC)were slightly different from the true ones
in these two scenarios.

For scenarios with random selection (SelNBD2 and
SelNBD3), estimated genetic parameters in different cases
did not dramatically deviate from the true ones. In all cases,
s2
u; h

2
u and H2 values were slightly overestimated. Estimates

from M1-MAC did not show advantages over those from
other combinations.

Overall, the variance components estimated with model M1
were close to the true values indifferent scenarios. In animal and
plantbreeding,most traitshaveexperiencedlong-termselection.
Thus, to estimate the genetic parameters more precisely, a
genomic model considering covariances between genotypic ad-
ditive and dominance effects (like M1) seems appropriate.

Genetic correlations

True and estimated genetic correlations between genotypic
additive effects and genotypic dominance effects (ru;v) for
combinations M1-MAC and M1-RAC in different scenarios
are shown in Figure 3. When RAC was used, the ru;v was
almost 0 in any scenario. However, when the most frequent
allele was the reference (MAC), scenarios with phenotypic
selection (SelYBD3 and SelYBD2) yielded negative estimates

of ru;v: In such two scenarios, the absolute values of estimated
ru;v were slightly lower than the absolute values of true ru;v:
For scenarios with random selection (SelNBD3 and SelNBD2),
both true and estimated ru;v were around zero.

Results showed that when a and d are related (Bennewitz
and Meuwissen 2010; Wellmann and Bennewitz 2012), a
negative correlation may be generated between the geno-
typic additive and dominance effects after long-term selec-
tion. The long-term directional selection seems to be a
precondition for producing such correlation.M1-MAC can cap-
ture part of such correlation.

LRT

The goodness of fit of M1 and M2 in different scenarios is
shown as22logðlikelihoodÞ in the third and fourth columns in
Table 3 for both MAC and RAC, respectively. For each allele
coding way, M1 always had smaller numeric values of
22logðlikelihoodÞ than M2 within different scenarios, which
indicated that the M1 fitted the data set better than the M2.

For all the four scenarios, LRT showed no significant dif-
ferences in fitting the data set betweenM1 andM2 (p. 0:05)
when RAC was applied. However, when MAC was used, M1
fitted the data set significantly better than M2 in scenarios
with phenotypic selection (SelYBD3 and SelYBD2). For sce-
narios with random selection (SelNBD3 and SelNBD2), there
were no significant differences of goodness of fit between M1
andM2, nomatter which allele codingwas applied. However,
it can be seen that within each scenario, there was a tendency
that M1 fitted the data set better than M2, which suggested
that a genomic model including the relationships between
genotypic additive and dominance effects fits the simu-
lated data better than a model without considering such
relationships.

Predictive abilities

Based on the results of LRT, M1 only provided a better fit for
the data set than M2 in scenarios with phenotypic selection
(SelYBD3 and SelYBD2) when MAC was used for coding SNP
markers. Besides, in animal breeding, most traits have expe-
rienced long-term selection. Therefore, predictive abilities

Figure 3 Genetic correlations between genotypic additive and domi-
nance effects based on model 1 in different scenarios across 10 repeti-
tions. QTL indicate the true correlations that were calculated based on QTL;
either MAC and RAC was applied to code genotypes. SelNBD2, SelNBD3,
SelYBD2, and SelYBD3 were the four studied scenarios. MAC, major allele
coding; RAC, random allele coding; SelNB, Selection No Bayes; SelYB, Se-
lection Yes Bayes.

Table 3 Average goodness of fit and22logðlikelihoodÞ of M 1 and
M2 across 10 repetitions, and likelihood ratio test betweenM1 and
M2 in different scenarios

Scenario Matrix Z coding M1 M2 x2   value P-value

SelYBD3 MAC 25463.49 25437.12 26.37 1.41e27
RAC 25385.44 25384.91 0.88 0.1741

SelYBD2 MAC 25412.52 25398.66 13.90 9.64e25
RAC 25305.91 25303.72 2.19 0.0695

SelNBD3 MAC 24643.10 24640.99 2.10 0.0736
RAC 24637.95 24636.43 1.52 0.1095

SelNBD2 MAC 24524.30 24523.15 1.16 0.1407
RAC 24520.11 24518.41 1.70 0.0961

MAC and RAC represent allele coding applied to code genotypes; SelNBD2,
SelNBD3, SelYBD2, and SelYBD3 were the four studied scenarios. M1, model 1;
M2, model 2; MAC, major allele coding; RAC, random allele coding; SelNB, Selec-
tion No Bayes; SelYB, Selection Yes Bayes.
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obtained from usingM1 andM2were only compared in these
two scenarios (M1-MAC and M2-MAC). Predictive abilities
were also computed for M2-RAC, because this model is com-
monly used in other dominance studies (Su et al. 2012;
Vitezica et al. 2016; Xiang et al. 2016). Furthermore, M3-
RAC was also applied so that the predictive abilities from
coding genotypes in a classical (orthogonal) manner
(Falconer and Mackay 1996; Vitezica et al. 2013) can be
compared to that from coding genotypes in a genotypic man-
ner directly.

Predictive abilities and unbiasedness in different scenarios
are compared in Table 4. Overall, the Hotelling–Williams
t-test indicated that predictive abilities from M1 were signif-
icantly higher than those from M2 (p,0:05), but similar to
those from M3 (p.0:05). When MAC was applied, predic-
tive abilities fromM1 (M1-MAC) were�1% and 0.4% higher
than those from M2 (M2-MAC) for SelYBD3 and SelYBD2,
respectively. This result is in agreement with LRT showing
that goodness of fit of M1 was significantly superior to that
of M2. In addition, it also implies that the relationships
between additive and dominant effects were appropriately
captured. The differences of predictive abilities between
M1-MAC and M2-RAC increased to 1.6% and 0.7% for
SelYBD3 and SelYBD2, respectively. These differences indi-
cated that consideration of the covariance between genotypic
additive and dominance effects via using MAC would possi-
bly generate a small extra genetic gain. For M2, when MAC
was applied (M2-MAC), the predictive abilities were �0.7%
and 0.3% higher than using RAC (M2-RAC). This result in-
dicated that predictive abilities benefited from the inclusion
of regression of phenotype on the proportion of the most
frequent alleles in the model, even if the covariance between
additive and dominance effects were not considered in the
M2. This result again recommends the use of MAC in other
genomic evaluation models to enhance their predictive abil-
ities, which is in line with the smaller numeric values of
22logðlikelihoodÞ for M1 than for M2. In terms of unbiased-
ness, the regression coefficients observed from M1 were
slightly closer to 1 than those from M2 in scenario SelYBD2,
but there was no clear trend in scenario SelYBD3.

However, when comparing the predictive abilities from
M3-RAC with other combinations, except for M1-MAC, M3-
RAC performed slightly better than M2-MAC and M2-RAC.
This phenomenon indicates that when the covariance

between additive and dominant effects is ignored, genomic
evaluation via coding genotypes in the genotypic manner may
work worse than coding genotypes in the classical, orthogonal
manner (in terms of breeding values and dominance devia-
tions). However, when considering the covariance between
additive and dominance effects, coding genotypes in the
MAC (M1-MAC) increased predictive abilities �0.7% and
0.3% compared to M3-RAC, which suggested the use of MAC
in combination with models considering the covariance be-
tween additive and dominant effects. In terms of unbiased-
ness, the regression coefficients observed from M3 were
slightly further from 1 than those from M1 and M2.

Overall, the comparisons of the different models and allele
codings confirmed that the predictive ability of a genomic
model could slightly improve if the su;v is included (M1-
MAC). The inclusion of such covariance does not need extra
computing time. The computing time for estimating variance
components is similar for M1-MAC and M2-MAC, which is
slightly shorter than that for M3-RAC/M3-MAC.

Wellmann and Bennewitz (2012) also derived an reproduc-
ing kernel Hilbert space (RKHS) model for estimating total
genetic values that assumed a correlation between additive
and dominance effects, which was also a genomic BLUP
model. This model was derived on the basis of BayesD2. A
property in the RKHS model is that the covariance among
two genotypic values depends on the assumed a priori joint
distribution of a and d, i.e., varðaÞ; varðdÞ, and covða; dÞ;which
were obtained from theoretical arguments and used for com-
puting the Kernel matrix. We prefer instead to estimate these
parameters explicitly from the data sets. Even though standard
software can be used for prediction in the RKHS model, it
cannot be used for the estimation of genetic parameters.

Conclusions

We first presented a novel and simpleway of incorporating, in
populations under selection, the correlation between geno-
typic additive and dominance effects in a genomic model that
can be implemented using standard mixed model software.
Our study showed that: if the population is in HWequilibrium
and the absolute additive effects and dominance coefficients
of QTL are positively correlated [e.g., BayesD3 in Wellmann
and Bennewitz (2012)], after directional selection, a nega-
tive correlation between genotypic additive and dominance
effects is expected. A genomic model based on a reference

Table 4 Average predictive abilities and regression coefficients of total genetic values on predicted total genetic values with the
respective SE in scenarios SelYBD3 and SelYBD2

Scenario SelYBD3 SelYBD2

Coding MAC MAC RAC RAC MAC MAC RAC RAC
Model M1 M2 M2 M3 M1 M2 M2 M3
corðĝ;gÞ 0.746a (0.031) 0.739b (0.031) 0.734b (0.034) 0.741a (0.033) 0.732a (0.027) 0.729b (0.028) 0.727b (0.028) 0.730a (0.027)
Regression

coefficients
1.014 (0.046) 1.013 (0.050) 1.013 (0.051) 1.017 (0.046) 1.014 (0.046) 1.018 (0.045) 1.024 (0.039) 1.025 (0.039)

SelYBD2 and SelYBD3 were the two scenarios with phenotypic selection; M1, M2, and M3 indicate models 1, 2, and 3, respectively. Numbers in the parenthesis are the SE.
MAC, major allele coding; RAC, random allele coding; SelYB, Selection Yes Bayes.
a,b Significant differences (P , 0.05) by Hotelling–Williams t-test.
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allele that is the most frequent one at each locus can capture
part of the negative genetic correlation between genotypic
additive and dominant effects, but this cannot be captured if
the RAC is used. This new approach is applied to a directional
selected trait controlled by both additive and dominant gene
actions. When such correlation is taken into account in the
model, accuracies of estimated total genetic values can be
improved by up to 1.5% in genomic evaluation while bias is
slightly reduced.
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Appendix A

Here, we consider di ¼ dijaij and argue that it often holds that covðai; diÞ. 0 when covðdi; jaijÞ. 0 [BayesD3 model in
Wellmann and Bennewitz (2012)] and covðai; diÞ ¼ 0 when covðdi; jaijÞ ¼ 0 [BayesD2 model in Wellmann and Bennewitz
(2012)].

In the main part of the paper, we have derived that the covariance between additive and dominance effects is determined
by VarðdiÞ; and since Eðd2i Þ ¼ Eðd2i a2i Þ ¼ Eðd2i ÞEða2i Þ þ covðd2i ; a2i Þ; and EðdiÞ ¼ EðdijaijÞ ¼ EðjaijÞEðdiÞ þ covðdi; jaijÞ; we see
that the result holds when covðd2i ; a2i Þ2 covðdi; jaijÞ2 2 2EðjaijÞEðdiÞcovðdi; jaijÞ.0 when covðdi; jaijÞ. 0; and covðd2i ; a2i Þ ¼ 0
when covðdi; jaijÞ ¼ 0: This latter property often holds; for example it holds when covðd2i ; a2i Þ ¼ 2covðdi; jaijÞ2 þ
4EðjaijÞEðdiÞcovðdi; jaijÞ; which we show below to hold for the bivariate normal case.

Here, we derive an expression for covða2; d2Þ when assuming a bivariate normal distribution on ðd; jajÞ: For simplicity of
notation assume that m1 ¼ EðjajÞ; m2 ¼ EðdÞ;s2

1 ¼ varðjajÞ; s2
2 ¼ varðdÞ and s12 ¼ covðd; jajÞ; and define the centered ran-

dom variables X1 ¼ jaj2m1 and X2 ¼ d2m2: First, we write covða2; d2Þ ¼ covðX2
1 ;X

2
2 Þ þ 2m1covðX1;X2

2 Þ þ 2m2covðX2
1 ;X2Þ;

which reduces to covða2; d2Þ ¼ EðX2
1 ;X

2
2 Þ2s2

1s
2
2 þ 2m1EðX1X2

2 Þ þ 2m2EðX2
1X2Þ þ 4m1m2EðX1X2Þ: For the bivariate normal dis-

tribution the central moments are EðX2
1X

2
2 Þ ¼ s2

1s
2
2 þ 2s2

12; EðX1X2
2 Þ ¼ EðX2

1X2Þ ¼ 0 and EðX1X2Þ ¼ s12; and from this we
obtain that covða2; d2Þ ¼ 2s2

12 þ 4m1m2s12:

Finally, we note that, strictly speaking, jaj cannot follow a normal distribution, so the above expression is only an
approximation.

Appendix B

Consider a set of individuals with genetic values (in a broad sense, these can be understood as genotypic values) g; and these
genetic values are assumed drawn from a certain distribution, i.e., EðgÞ ¼ 0 and VarðgÞ ¼ Gs2

g : Since the genetic values are
unknown and drawn from a sampling distribution, the variances of these genetic values will also have a certain distribution
(Sorensen et al. 2001; Legarra 2016). Legarra (2016) showed that, on average, the expectation of the variance for these
genetic values is VG ¼ ðdiagðGÞ2 �GÞs2

g ¼ Dgs
2
g ; where diagðGÞ is the average of the diagonal of G and �G is the average of

matrix G; and Dg is the difference between the two. Thus, the expected variance VG is associated with relationship matrix G:
Only if Dg is equal to 1, the expectation of variance for genetic values VG can be identical to the estimated variance component
s2
g (Speed and Balding 2015). In this study, the submatrices ZZ9=k; ZW9=k;andWW9=k do not yield respective DZZ 9=k; DZW 9=k; and

DWW 9=k equal to 1. Thus, the estimated variance components were scaled to the expected variance components of a population
using, for instance, DZW 9=k ¼ diagðZW9=kÞ2 ðZW9=kÞ and Covuv ¼ DZW 9=ks

*
ad:

The values of the statistics can be derived analytically. For one SNP locus, if the population is in Hardy–Weinberg equilibrium
and p is the frequency of the allele whose homozygote has the genotypic value a; the frequencies of different genotypes in the Z
and W matrices for one locus are:

p2 2pq q2

Z 1 0 21
W 0 1 0

Therefore, the elements in the matrix ZW9=k with corresponding frequencies are:

p2 2pq q2

p2 0 1=k 0
2pq 0 0 0
q2 0 21=k 0

For instance, in a one-locus model, value 1=k appears with frequency 2pq (the number of animals heterozygote) times p2 (the
number of homozygotes) in matrix ZW9=k: Extending the reasoning to all loci, from the above table, diagðZW9=kÞ ¼ 0 (because
an individual cannot be homozygote and heterozygote at the same time); ðZW9=kÞ ¼ 1

k

P​ 2piqiðp2i 2 q2i Þ ¼ 1
k

P​ 2piqið2pi 2 1Þ;where
k ¼ ftrðKÞg=2n ¼ ðp4 þ q4 þ 4p2q2Þ=2.0: Thus, DZW 9=k ¼ diagðZW9=kÞ2 ðZW9=kÞ ¼ 2 1

k

P​ 2piqið2pi 2 1Þ: If p. 0:5 (MAC),
DZW 9=k is negative because

P
​ ð2pi 2 1Þ. 0; but if RAC is used then DZW 9=k ¼ 0 because

P​ð2pi 2 1Þ ¼ 0:
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