How to Hide Secrets from Operating System:
Architecture Level Support for Dynamic Address
Trace Obfuscation

Abstract— The adversary model for digital rights management
is much more powerful than for the traditional security scenarios.
The adversary has complete control of the computing node —
supervisory privileges, physical as well as architectural object
observational capabilities. In essence, this makes the operating
system (or any other layer around the architecture) itself the
adversary. The repercussions of this observation are severe. It
creates a need to “keep secrets” from the operating system (OS).
It isolates the architecture from the operating system.

We argue for the need to keep secrets from the OS in hardware.
This concept is demonstrated through architectural support for
the obfuscation of dynamic address traces on the memory bus.
The objective is to leak as little information about the executed
program sequence as possible. This is done by handing over
many of the virtual memory management responsibilities from
the operating system to an architecturally isolated hardware
black-box (VM black-box). We provide a detailed design for
the VM blackbox and some microarchitecture level simulation
derived performance data. We also describe a compiler directed
prefetch scheme that uses both instruction and data prefetches to
obfuscate the address traces on the address bus between on-chip
L2 cache and memory.

I. INTRODUCTION

Digital rights management (DRM) refers to the process of
protecting the intellectual property (IP) embedded in digital
domain. This paper addresses digital rights management for
software. The DRM violations for software can result in
either financial losses for the software developers or a loss
of competitive advantage in a critical domain such as defense
(for example, when an aircraft lost in hostile territory contains
embedded systems with critical IP). Software piracy alone
accounted for $13 billion annual loss [1] to the software
industry in 2002.

Software digital rights management traditionally consists
of watermarking, obfuscation, and tamper-resistance. All of
these tasks are made difficult due to the power of adversary.
The traditional security techniques assume the threat to be
external. The system itself is not an adversary. This provides
a “safe haven” or “sanctuary” for many security solutions.
However, in DRM domain, the operating system itself is not
trustworthy. On the contrary, the operating system constitutes
the primary and formidable adversary. This is where the core
of the difficulty arises. In essence, every security technique
needs to hide some secrets from its adversary. Where can
a DRM technique hide such “secrets”? The current system
design exposes every system component to the operating
system (OS). The access rights model is hierarchical with an

entity at a higher level endowed with the access rights of all its
children and some more. In such a model, the operating system
sits at the root node. In such a scenario, there is no “sanctuary”
left for the DRM technique’s secrets that is not accessible
to the operating system. Hence, we believe that the primary
distinction between the traditional security and DRM is that
the focus shifts from the problem of “protecting the operating
system from adversary” to the problem of “protecting the
program from the operating system”. A key thesis of this
paper is: “All of the component technologies of digital rights
management: specifically watermarking, static and dynamic
behavior obfuscation, and tamper resistance can be made
significantly more robust if they have a mechanism to hide
a secret from the operating system.”.

Any software-only solution to the “secret-hiding” from
OS seems to be inadequate. It leads to the classical meta-
level inconsistencies encountered in classical software verifi-
cation derived from Go6del’s incompleteness theorem. In the
end, in most scenarios, it reduces to the problem of “last
mile” wherein only if some small kernel of values could
be isolated from the operating system (as an axiom), the
entire schema can be shown to work! At this point, it is
worth noting that even in the Microsoft’s next generation
secure computing base (NGSCB) [14], the process isolation
from operating system under a less severe adversary model
is performed with hardware help. The NGSCB’s goal is to
protect the process from the operating system corrupted by
external attacks by maintaining a parallel operating system
look-alike called “nexus”. The nexus in turn relies upon a Se-
curity Support Component (SSC), a hardware component, for
performing cryptographic operations and for securely storing
cryptographic keys! The trusted computing group consisting
of AMD, HP, IBM, and Intel among many others is expected
to release trusted platform module (TPM) [2], to provide the
SSC hardware support. Our own experience with static and
dynamic obfuscation and tamper resistance has convinced us
that without hardware support not very robust guarantees can
be made for any of these technologies.

We explore architecture level support for the one DRM
component, dynamic address obfuscation. The resulting archi-
tecture collectively is called DRMAr (DRM Architecture).

A. Dynamic Address Obfuscation

Static obfuscation is designed to make it hard to infer
anything more than what is already observable through a

program’s black-box input-output relationships through white-
box examination. Even perfect static obfuscation (the one
that leaks zero information statically), however, is not enough
to prevent dynamic observation attacks from gaining enough
information about the program to reverse engineer it. The
dynamic execution, however, still generates the correct pro-
gram sequence in the address traces at the memory bus. An
obfuscation of this address sequence refers to the process
of decreasing correlation between the true address sequence
and the obfuscated address sequence as much as possible.
Goldreich & Ostrovsky [11] were the first ones to handle
this problem in the context of an oblivious RAM model.
The model is motivated by and relies upon software-hardware
(SH-) package. Specifically, it seems to assume a lightweight,
embedded operating system which is not necessarily controlled
by the owner of the SH-package. This is a scenario applicable
to smart cards for instance. It however does not apply to
a typical Linux box. The operating system sits smack in
the middle of the two interactive Turing machines (ITMs),
memory and CPU ITMs, defined in their setup. Operating
system is the broker for virtual address translation between
the communication tape of CPU ITM and the communication
tape of the memory ITM. Unfortunately, this allows for many
opportunities for the operating system virtual memory man-
ager (in Linux for instance) to be rigged to collect significant
amount of information about the program sequencing. This
situation will arise in any interesting computing system with
virtual memory support. This is the weakness we address in
this paper.

Our solutions to this problem: virtual memory black-box
uses reconfigurable components. The reconfigurable compo-
nents provide the pseudorandom functions for dispersion.

B. Paper Organization

The rest of the paper is organized as follows. The re-
lated work is presented in Section II. The dynamic address
obfuscation support through a virtual memory black-box is
described in Section III. The prefetch based dynamic address
obfuscation is presented in Section IV. We conclude the paper
in Section V.

II. RELATED WORK

The most closely related research to dynamic address obfus-
cation is Goldreich & Ostrovsky’s work on oblivious RAMs
[11]. Their work however is predicated upon a lightweight
operating system embedded inside a software-hardware pack-
age. The proposed work targets the virtual memory address
system of a general purpose, multiuser operating system such
as Linux.

There have been several architecture level proposals for
secure processors. Most notable is XOM [13], execute only
memory. It provides a mechanism to isolate the processes
from each other including the operating system processes.
Inter-process communication can be supported through a null
process broker. All the memory traffic is encrypted. Data is
hashed with the corresponding address for memory integrity.

Note, however, that address sequences are plainly visible to an
observer. The primary design objective for XOM is not digital
rights management. Static obfuscation in XOM is available
only in as much as the contents of memory are encrypted.
Their sequencing however is visible.

AEGIS [17] provides architecture level support for tamper-
evident and tamper-resistant processing. Both software and
physical tampering are included in the attack space. They
too however do not consider the dynamic address obfuscation
issue deferring it to oblivious RAM solution of Goldreich
& Ostrovsky [11]. AEGIS also supports compartmentalized
execution of the processes similar to XOM. It goes a bit further
in memory integrity verification by incorporating Merkle hash
tree verification [9]. Once again, the static obfuscation is only
a byproduct of memory contents encryption. The sequencing
information is still visible.

A recently proposed architecture, reliability and security
engine (RSE) [15], provides hardware support for error detec-
tion and some of the security issues. Specifically, the security
aspects are handled through a memory layout randomization
module to subvert attacks such as buffer overflow attacks.
Other modules handle fault tolerance aspects.

III. DYNAMIC ADDRESS OBFUSCATION: VIRTUAL
MEMORY BLACK BOX

The virtual memory black-box (VM blackbox) receives
every virtual address within the processor microarchitecture
much the same way as the translation lookaside buffer (TLB).
In fact, the VM blackbox is ideally positioned in the processor
pipeline at the current position of the TLB. However, the
VM blackbox needs to do more than just virtual address
translation of the TLB. For instance, consider program loading.
Program loading is currently performed by the loader, a kernel
component. With an untrustworthy operating system, this re-
sponsibility needs to be moved to the VM blackbox. However,
there are subtleties about the granularity of load modules as we
clarify later. Table III outlines all the tasks assigned to the VM
blackbox which are traditionally performed by an operating
system.

A. Process Initialization

Many actions are taken on a process initialization. A process
descriptor (called a task descriptor in Linux) is filled in with
several values at this stage. These values have to do with the
many access attributes and group ID attributes. The process
stack, part of the initialization, also holds the environment
attributes and the initialization & termination function point-
ers. In a traditional OS, all these activities are performed by
the OS. However, in DRMAr system, some of the actions
will be performed by the VM blackbox. The most prominent
attribute selected by the VM blackbox is the function that
disperses the virtual pages. This function is implemented with
a specialized reconfigurable (lookup table/LUT based logic)
unit. The function is described by a configuration (descriptor)
for this reconfigurable architecture. This function descriptor
is kept with the task/process descriptor in an encrypted form.

Traditional OS
task

VM Blackbox
task

DRMAr OS
task

process initialization
(initial physical
page assignment)

partial process initialization
(initial physical page
assignment)

(process virtual page
dispersion function selection)

partial process initialization

process scheduling

process scheduling

dynamic linking
(load time relocation)

partial dynamic linking
(load time relocation)

partial dynamic linking

virtual address virtual address

translation translation
(page table (page table

maintenance) maintenance)
(page fault (page fault

handling) handling)

(page replacement)
(page dispersion

key assignment)

(page replacement)

function assignment)
(page block substitution

TABLE I
PROPOSED RESPONSIBILITY ASSIGNMENT FOR THE VM BLACK-BOX

The VM blackbox contains the private part of a public/private
key pair. This pair can be renewed at bootup time or even
periodically. Note that the public key is not really used by any
other system component to send secure messages to the VM
blackbox. VM blackbox uses it to encrypt any state before
storing it in memory, and to decrypt any state loaded from
memory.

We can assume that there is sufficient space within the VM
blackbox to cache the VM-attributes of a small working set
of process descriptors. Any spills into memory are stored in
encrypted form.

B. Process Scheduling

The process scheduling is performed by the OS in the
existing systems, and we have left it that way in DRMAr.
All the existing priority levels can be maintained. The only
malicious action that can be taken by the OS through schedul-
ing would be process starvation. However, in the digital rights
management context, process starvation does not benefit the
adversary at all. It does not appear to aid the information leak
for reverse engineering of the process.

C. Dynamic Linking

Dynamic linking or shared objects in Linux allows for the
executable code to be linked to a program on a demand driven
basis. A procedure (or a collection of procedures) is linked
only if it is called. The executable (in ELF, executable and
linking format) passes control to an interpreter, the dynamic
linker, which itself is a shared library in Linux. The executable
contains a procedure linkage table (PLT) and a global offset

table (GOT). PLT keeps information about the relative loca-
tions of the procedures, whereas GOT tracks data locations.
When invoked, the dynamic linker, garners information from
the linked object’s .dynsym (dynamic symbol table), .dynstr
(dynamic string name table), and .hash ((a hash table to allow
linker to quickly access symbols) sections. Another section,
.dynamic, contains information about other files the linker
needs. The dynamic linker is traditionally an OS component,
Gnu ld.so in Linux. The main (well-known) threats in dynamic
linking from a hostile dynamic linker are symbol or object
hijacking. The auxiliary vector can be tampered with a wrong
environment.

It is not apparent that any of these weaknesses provide
an advantage to the adversary in a DRM environment. The
dynamically linked objects are typically public libraries (and
do not contain any intellectual property to be protected). They
publish plenty of information about their symbols and depen-
dencies in ELF to leak significant information on program
structure. We have assumed that information leak from the
linking object (and not necessarily from the linked object) is
to be contained. In such a scenario, all the dynamic linking
control can be left with the OS. The virtual to physical
address mapping still resides with the VM blackbox preventing
information leak from dynamic address sequences. One could
even argue that the linked object dynamic address sequence
revelation is not much of a threat in this model. However,
just to be consistent, we will still leave the virtual to physical
address mapping with the VM blackbox.

If we needed to protect the information about which shared

objects are linked from the protected program, we will need to
transfer significant amount of dynamic linker responsibilities
to the VM blackbox. Moreover, the binary format such as
ELF would have to be modified not to keep such relevant
information in plaintext. This will lead into yet another prob-
lem. The dynamic linking sections of the ELF file for the
protected linking program can be securely encrypted by the
compiler used by the software producer. Which key should
be used for this encryption? This leads into the same “last
mile” issue faced by XOM and AEGIS. The initial handover
of the program is done by the software vendor encrypting
the program with respect to an advertised public key for
the processor chip. Hence, the software is specialized on a
per processor chip basis before distribution, which can be an
undesirable characteristic. For the time being, we have chosen
not to address this issue.

Similarly, if linked objects also needed to be protected, VM
blackbox will need to undertake many of the dynamic linker
activities. For the time being, DRMAr does not address the
issue of migrating dynamic linking into the VM blackbox.

D. Virtual Address Translation

This is the heart of the VM blackbox responsibilities. This
includes the virtual to physical address translation of TLB and
much more. Program loading is one of these activities. We
could let the OS interact with VM blackbox with a primitive
such as VM_1d A, size which signifies loading of virtual
addresses from the virtual address A to A+ size. If we merely
have the VM blackbox return the physical address mapping
of the virtual addresses [A : A 4 size], the OS can infer the
entire mapping. Hence the actual storing of the program/data
at these virtual addresses needs to be performed by the VM
blackbox. Hence the VM_1d file, A, size can specify
that the next size bytes from file be loaded at virtual
addresses [A : A + size]. Note that the argument file is
really a proxy for a system program with a pointer to the
current location in the file so that VM blackbox can ask it to
provide the next size bytes from this file.

If the size is a small value (say 32 B), the OS can observe
the memory bus traffic and with some effort, reconstitute the
virtual to physical address mapping. Hence, we need some
type of “shelter” or “dummy” word storage of Goldreich &
Ostrovsky [11] to build up the combinatorial choices of the
mapping. We propose to do the load on the page granularity,
i.e,VM_.1d file, virtual_page will load a virtual page
into memory. Our assumption is that a typical page is about
64KB (if necessary such a restriction can be placed on the
0OS).

Let a virtual address A correspond to the block #B(A) in the
virtual page number V (A). The VM black box will randomly
permute the block B(A) into block fg(B(A)) through the use
of block address translation reconfigurable logic.

a) Reconfigurable Block Address Translation Logic:
Note that the objective is to permute the blocks within a page.
However, we wish the permutation to be different for each
page. This is so that the adversary cannot gain information

monotonically over time by observing the memory traffic.
Reconfigurable logic provides a good platform for such “soft”
random functions. Figure 1 shows the schema for the reconfig-
urable random permutation function logic. This schema shows
a permutation of 12 bits. With 64KB page size and 16B block
size, one needs to permute the 12 address bits corresponding
to the block number within a page.

Note that fr(B(A)) needs to be a bijective function: both
injective and onto. Hence, we cannot choose an arbitrary
FPGA like structure and populate it with a randomly selected
configuration. This could result in non-bijective mappings.
Each column in the schema of Figure 1 consists of 4-LUT
(4-input lookup table). However, We wish to implement only
reversible (conservative) gates [7], [3] within these LUTs. A
conservative/reversible gate does not lose any information in
going from its inputs to outputs. We should be able to tell the
input values uniquely by observing the output bits of such a
gate. Obviously, a 2-input AND gate is not reversible (since
on output 0 we cannot tell whether it was input 00, 01 or 10).
In general, a reversible gate needs to have as many inputs as
outputs. Hence, we need 4x16 LUTs (truth tables on 4 inputs
specifying 4 output bits simultaneously). For instance a 2-input
gate with 2 inputs X and Y and 2 outputs X and X & Y
is a reversible gate. The intuition behind using reversible
gates is that since each reversible gate defines a bijection, a
composition of these reversible gates will automatically result
in larger bijections.

Both Fredkin [7] and Toffoli [18] have defined classes of
reversible gates.

Definition 1 (Toffoli, 1980): Toffoli
Toffoli(n,n)(C,T) is defined over a
{z1, T2, ..., z,} as follows. Let
set C = {my,Ti ..., 25} and the target set
T = {z;} be such that C N T = {. The mapping
is given by Toffoli(n,n)(C,T)[z1, Z2,..., Zn) =
[.’E1, T2y.ues Tj1, T D (.’L'z'l.’Ez'z .. .iL'z'k), Tjtly «- - .’L'n]

A Fredkin gate is defined similarly:

Definition 2 (Fredkin, Toffoli, 1982): Fredkin
Fredkin(n,n)(C,T) is defined over a support
set {z1, %2, ...,2,} as follows. Let the control
set C = {zy,Ti ..., %4 and the target set
T = {zj, x;} be such that C N T = {. The mapping
is given by Fredkin(n,n)(C,T)[x1, z2,..., Tn] =
[-'171;1'2;---;1"7'—1;1'!737_7'—}-1;-- ,."L'n] iff
iy N Ti, A ... ANz = 1. In other words, target bits are
switched iff the control bits are all 1.

For the time being, we use Toffoli(4,4) gates with 4-
input bits and 4-output bits in Figure 1. However, we could
easily replace them by Fredkin(4,4) gates. The domain of
configurations mappable to each of these LUTs consists of
selections of sets 7" and C' such that 7N C = (). For a support

set of 4 variables, the number of unique reversible Toffoli
4 + 2 x 4 + 4 First t
1 9 3 | irst term

captures the control sets C' of size 1, the second one of size
2 and the third one of size 3. We will ignore control sets

gate
support set
the control

gate

cy Tp—1, Tj, - .

functions is 3 %

e —) —
Toffoli(4,4)(C,T) Toffoli(4,4)(C,T) Toffoli(4,4)(C,T)
— Exchanger(3,3) =
— —
Exchanger(6,6)
Toffoli(4,4)(C,T) - Toffoli(4,4)(C,T) Toffoli(4,4)(C,T)
— F—— O — — = —
— —
Exchanger(3,3)
— —
Toffoli(4,4)(C,T) Toffoli(4,4)(C,T) Toffoli(4,4)(C,T)
— —
— —
- J
Fig. 1. Reconfigurable Block Address Translation Logic Schema
of size 1 in our discussion. Hence the number of reversible random blt

Toffoli functions derivable from size 2 & 3 control sets
is 12 + 3 = 15. Hence the number of address mapping
functions derivable just from the reversible gate configuration
population diversity is (15)° a 235. Obviously, there are
several redundant configurations in this space. The exchanger
blocks in between the columns provide bit shifting operation.
A 3-bit exchanger block exchanger (3, 3) has two sets of
3-bit groups, upper 3-bits and lower 3-bits. It either exchanges
them (lower 3-bit group goes out on the upper 3-bits and the
upper 3-bit group goes out on the lower 3-bits) or leaves them
unchanged. One bit of configuration per exchanger suffices.
The 6-bit exchanger similarly works on 6-bit groups. Since
exchange is also a bijective operation, the composition of
reversible (bijective) Toffoli gates and exchangers leads to
bijective address mappings with a large amount of population
diversity. We need to explore some other interesting routing
structures that can easily guarantee bijections (without a large
overhead in filtering out non-bijective routing configurations).
Note that a typical FPGA routing matrix configuration will
require extensive analysis to determine if a given routing
configuration is bijective. That is why we did not consider
it.

We could have chosen to implement the entire
Toffoli(12,12) as a single reversible gate. However, it
is impractical for the same reason 12-LUTs are impractical
in reconfigurable computing world (requiring 22 sized
memories).

b) Configuration Selection for the Reconfigurable
Block Address Mapping: How is the configuration of each
4-LUT selected randomly within the schema presented in
Figure 1? Note that this mechanism needs to be efficient
since it needs to be changed for each virtual page. A simple
mechanism will be to store all the fifteen possible functions at

tlalela] el

Fig. 3.

Ring Oscillator Based Raw Random Bit Generator

each of the LUTs (similar to DPGA of DeHon [5]). In addition
to the 4-bits coming in from the block address, each LUT will
also see 4 more bits to select one of the random, reversible
function (Figure 2). The bits fs3, fs2, fs1, fsO select one
of the 15 reversible functions f15, ..., f4, 3, f2, f1, f0.
The selected truth table is used with the 4 input address bits
A3, A2, A1, AQ giving as output the permuted address bits
PA3,PA2,PA1, PAO.

¢) Random Selection of LUT Reversible Gate Configu-
rations per Page: Note that each of the 9 LUTs in Figure 1
requires selection of 4 bits to specify one of the reversible
functions. We also need 1 bit each for the exchanger blocks.
These bits constitute the configuration for the virtual address
translation block. For each new allocated, physical page these
bits need to be selected randomly. What would be a reasonable
mechanism to select these bits which is not architecturally

P |

£1 |
2 ‘
5 |

f4 ‘

f15

fs3 fs2 fs1 f;

Fig. 2.

observable by the OS? Due to architectural hiding requirement,
the entire apparatus for the random bit generation needs to
be completely internal to the VM blackbox. This rules out
software based solutions unless we wish to incorporate a pri-
vate computing engine within the VM blackbox or to support
compartmentalized execution model of XOM or AEGIS. Many
physical processes do show random behavior. These can be
thermally induced, charge decay induced, among many other
existing proposals in the literature. We develop a random bit
generation block based on the uncertainty of the timing in
a ring-oscillator. Ring oscillators have been used in various
ways to provide raw random bits [8], [19]. Our approach is
slightly different than the existing ones, better suited for the
VM blackbox.

Figure 3 shows the block diagram for a raw random bit
generator. A three-stage ring oscillator is the basic building
block for this scheme. We wish to exploit randomization in
the asynchrony of the oscillator timing with the processor
clock used to sample these random bits. An additional level of
randomness is introduced by multiplexing two bits from two
distinct ring oscillators by the output of another ring oscillator.
Note that these three ring oscillators need not be physically
adjacent. In fact, better randomization will be achieved due to
the silicon fabrication process parameter variation by dispers-
ing these ring oscillators in different parts of the chip. The
chip temperature induced variations also will be more widely
distributed through wider geographical distribution of these
oscillators. Finally, the entropy of the raw bit stream could be
increased further by choosing a larger number of seed ring
oscillators and multiplexors.

Note that ideally we will like a provable randomness
property from these bit strings as in case of pseudorandom
functions [10]. Although these schemes are cryptologically
secure, they are extremely expensive to implement (in addition

AN

A3A2A1AQ

7

IPA3PA2PA PPAO

Configuration Selection for each LUT

to requiring a 1l-way function implementation, significant
amount of state storage, and a complex algorithm is also
needed). Hence, we ruled these schemes out for a hardware
implementation. Denker [6] provides a provably high entropy
bit generator that works on a raw stream of random bits
(potentially with low entropy density) to transform it into
a high entropy density bit stream. The software driver for
the entropy density enhancement is still fairly expensive, but
can be considered on top of the ring oscillator generated bit
streams if need be.

d) Configuration Size and Performance of Reconfig-
urable Logic: The total configuration size per virtual page
then is 4-bits for each of the 9 LUTs and 3 bits for all the
exchangers, which equals 39 bits. This indeed is a very rea-
sonable and manageable configuration size. The performance
of the reconfigurable address mapping logic consists of three
cascaded 256 x 4 SRAM lookups and three multiplexors.
Equating the access time of a dual-ported 32 x 32 SRAM array
(register file) to half a clock cycle (in a typical processor),
this delay is reasonably bounded by 2 cycles. The address
translation logic could easily be pipelined for an initiation
interval of possibly half a cycle and latency close to two
cycles. Multiple address translation pipelines could be utilized
to support multiple load/stores in an instruction-level-parallel
(ILP) processor.

We measured the performance impact of multiple cycle
latency TLBs (both ITLB and DTLB) on the execution time of
SPEC2000 int benchmarks [16] though SimpleScalar simula-
tions [4]. Since, the VM blackbox is placed in the current
location of TLBs in the superscalar pipeline; the variable
TLB latencies actually model the variable latencies of the
VM blackbox. We simulated each benchmark with access
latencies of 2, 3, and 4 cycles. The performance impact is
shown in Figure 4. The average performance penalty with

%Inc in Cycle Time

Olat2
HLat3
Olat4

Y%lInc

S A S I A& @
S EFE e § § &g
¢ MRS

Benchmarks

R
&

%Decrease in IPC

& @ § P

& 8
¢ &

Benchmarks

Fig. 4. Performance Penalty of Several TLB Access Times on SPEC2000 int Benchmarks

[Parameter | Value |
Processor Alpha out of order 4 way issue
ITLB 256KB, 4 way, 4096B line
DTLB 512KB, 4 way, 4096B line
L1-DCache 16KB, 4 way, 32B line
L1-ICache 16KB, 1 way, 32B line
L2-Unified 256KB, 4 way, 64B line

TABLE 1I
SIMPLESCALAR SIMULATION PARAMETERS

the estimated 2 cycle latency is approximately 5%. All the
SimpleScalar simulations (including the cache miss rate data in
the following) were generated with the processor configuration
shown in Table II.

e¢) Cache Miss Penalty Impact of Block Address
Translation: One potential pitfall of block address translation
within the VM blackbox is that it may interfere with the
working sets’ placement within caches and result in increased
miss rates. We simulated these address translation based
obfuscation methods in SimpleScalar [4] (version 3, Alpha
Instruction Set) with SPEC2000 Integer benchmarks. Table III
lists the miss rate of of Level-1 instruction cache. Table IV
lists the miss rates of instruction TLB, which are reflective
of miss rates of page table entries within the VM blackbox.
Finally, Table V reports the simulated instructions per cycle
(IPC). Each column in these tables corresponds to the number
of address bits participating in the permutation (or the extent
of dispersion). The larger the dispersion more adversely the
miss rates can be impacted. For all these tables, the (leftmost)
column with number of obfuscated bits equal to 0 corresponds
to the situation where VM blackbox is not dispersing the
page blocks at all. Note that none of the miss rate changes
from block dispersion are noticeable. The only observable
effect is in the IPC for vpr that goes down from 1.179 to
1.178 (negligible) with 13-bit dispersion. The ITLB miss rates
reported by SimpleScalar [4] are not an accurate reflection of
reality since it does not model the virtual memory as well.

L1 instruction cache Miss Rate

Obf. Bits | 0 11 13 15 17 19 20

bzip 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
crafty 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043 | 0.043
eon 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022
gcc 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026 | 0.026
gzip 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009
mcf 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009
parser 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
perlbmk 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012
twolf 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.016
vpr 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004

TABLE III

L1 I-CACHE MISS RATES AS FUNCTION OF NUMBER OF PERMUTED
ADDRESS BITS

ITLB Miss Rate

Obf. Bits | 0 11 13 15 17 19 20

bzip 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
crafty 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
eon 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
gcc 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001
gzip 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
mcf 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
parser 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
perlbmk 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
twolf 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
vpr 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

TABLE IV

ITLB MisS RATES AS FUNCTION OF NUMBER OF PERMUTED ADDRESS
BITS

Note however that the ITLB miss rates are indicative of miss
rates in the cached page tables within the VM blackbox. What
the data in Table IV does indicate is that the miss rates of the
cached page tables within VM blackbox are not likely to go
up with block dispersion.

f) Overall Schema for VM Blackbox: Figure 5 shows
the overall schema for the VM blackbox. The TLB (if split
then ITLB and DTLB) are part of the VM blackbox. The

TLB
Physical page

config for addr,|

translation

-

Reconfig

A

virtual addr

address

translation to memory address bus

—

Process context switch engine

(RSA encryption/decryption)

Fig. 5.

Simulated IPC
Obf. Bits | 0 11 13 15 17 19 20
bzip 1.842 | 1.842 | 1.842 | 1.842 | 1.842 | 1.842 | 1.842
crafty 1.242 | 1.242 | 1.242 | 1.242 | 1.242 | 1.242 | 1.242
eon 1423 | 1.423 | 1423 | 1.423 | 1.423 | 1423 | 1.423
gcc 1.254 | 1.256 | 1.252 | 1.252 | 1.252 | 1.252 | 1.252
gzip 1.746 | 1.746 | 1.746 | 1.746 | 1.746 | 1.746 | 1.746
mcf 1.025 | 1.025 | 1.025 | 1.025 | 1.025 | 1.025 | 1.025
parser 1.508 | 1.508 | 1.508 | 1.508 | 1.508 | 1.508 | 1.508
perlbmk 1442 | 1.442 | 1.442 | 1.442 | 1.442 | 1.442 | 1.442
twolf 1.123 | 1.123 | 1.123 | 1.124 | 1.124 | 1.124 | 1.124
vpr 1.179 | 1.179 | 1.178 | 1.178 | 1.178 | 1.178 | 1.178

TABLE V

IPC As A FUNCTION OF NUMBER OF PERMUTED ADDRESS BITS

processor is forced to broker all the virtual addresses through
the VM blackbox. All the page tables are now VM blackbox’s
responsibility. It performs the TLB management (caching and
restoring). All the page table information going into memory
is encrypted and is correspondingly decrypted on the way in
to VM blackbox. The swap space is also maintained by the
VM blackbox. The contents of swap space are encrypted.
There are two degrees of capability the VM blackbox can
be implemented with. The physical pages can be allocated
to a process at the process creation/activation by the kernel.
This option simplifies the VM blackbox, and does not seem to
take much away in terms of its capabilities. The other option
would be to perform entire physical page management within
the VM blackbox. However, that would require moving the
entire process state into the VM blackbox along with process
scheduling. At this point, we have decided to let the OS keep
the physical page allocation responsibility. The VM blackbox
needs to trust the OS about the process ID (since the OS
tells the VM blackbox which process is scheduled leading the
VM blackbox to load the corresponding tables). This does not

S

Data XOR unit

XOR in/out data with a page
specific key stored in page
table

Overall Schema for the VM Blackbox

appear to pose any problem in terms of the OS gaining any
new information about the intra-page block ordering for the
spoofed process ID.

The third data encryption block shown in Figure 5 can be
used to obfuscate data (and/or instruction) based on XOR. A
per page 32-bit random key can be chosen (which can be saved
in the TLB entry). All the writes will XOR the data with this
key before sending it to memory. All the reads will apply the
XOR before forwarding the data to the CPU.

Note that we have not explicitly addresses interrupt handling
in this paper. A mechanism similar to the one employed in
XOM and AEGIS will work in this context as well. All the
VM blackbox state (the cached page tables which include
configuration bits for the reconfigurable address translation
engine) needs to be saved by the VM blackbox controller in an
encrypted form. The state restoration is also the VM blackbox
controller responsibility. Any tampering of the saved state only
leads to disabling of a program, which is not the goal in a
DRM attack.

g) Additional Address Trace Obfuscation: Note that
since the proposed address trace obfuscation scheme dis-
perses/scatters the blocks within a page, its obfuscation is
limited to log(page size) address bits. If additional obfuscation
is desired, we will have either have to move up the address
bits (into the virtual page bits). That, however, requires taking
over more process management details from the OS than we
care for. Hence, the other option is moving down address bits
(towards cache block numbers). This will require some of the
cache controller functions to be moved into the VM blackbox
inaccessible from the OS. The simplest form will involve an
cache block number translation (as long as we assume that
the cache address bus is not architecturally visible to the OS,
which it typically isn’t). Although, we have not explored this
option, it appears to be a straightforward extension of the

presented scheme. The performance overhead will be incurred
in the cache block number translation which already is in the
critical path of cache timing.

IV. PREFETCH BASED ADDRESS TRACE OBFUSCATION

In this section, we present another compiler directed, dy-
namic address obfuscation scheme that is orthogonal to the
address dispersion of the VM blackbox. In a modern pro-
cessor, L1 and L2 caches are getting very large, for instance
Intel’s latest processor family, Centrino [12] has a 1IMB on-
chip L2 cache. Our assumption is that the adversary can
only observe the address bus from the processor chip to the
memory subsystem. This provides yet another mechanism to
obfuscate the dynamic address traces. The L2 cache already
filters out a very large percentage (98%-+) of the addresses
generated between the CPU core and L1 caches, which itself
has some obfuscation effect. However, if we could prefetch
most (some) of the cache blocks needed in the near future in
an obfuscated order, any information leaks between L2 cache
and memory can be sealed even further. Most contemporary
processors support compiler directed prefetching. We insert
prefetch instructions at compile time with the explicit objective
of obfuscating the L2 cache to memory address traces. The
following is an outline of this prefetch algorithm. It operates
on the profiled control flow graph of the program. Note
that a node in the following description can be any desired
granularity: basic block or hyperblock or function. Our current
implementation uses function level granularity.

h) Prefetch Allocation Algorithm:
i) Assumptions:

o The graph is directed with each edge e; ; between nodes
¢ and j having an instantiation probability p; ;. The edge
is directed from the parent node ¢ to the child node j.

o There is a limit on the maximum number of cache blocks
that could be prefetched at any point in time - Pj,4;-
This is derived from practical considerations. Higher this
limit, potentially better obfuscation would be, however
at the cost of resulting cache pollution leading to worse
performance.

e Each node ¢ has an attribute associated with it - the
number of cache blocks it spans (accesses) n;.

o There is a constant kj, such that, each prefetch instruction
requires k, bytes.

e One prefetch instruction is required to prefetch a cache
block.

o Each cache block is of size Cpbytes.

j) Objectives:

« Annotate each node with the prefetch instructions.

e The prefetch instructions should be such that, every par-
ent node should at least prefetch the prefetch instructions
of all its child nodes.

e Then the remaining space (P4, - the bytes required
to fill the prefetch instructions) should be filled with
prefetch instructions to prefetch instructions from most
probable path.

k) Algorithm:

1) For every node, construct the following list: the list
contains the child nodes in the decreasing order of
their cumulative probabilities (p;), i.e, the probability
to reach the node ¢ from the starting node. If a node
is listed more than once, merge all the entries and add
the cumulative probabilities.

2) Find the list of root nodes (nodes which do not have any
parent)

3) For every root node, makePrefetch(rootNode;).

Function: makePre fetch(curr,ode)

1) Let bytesmaz = Pmaz * kb

2) While(1) till step 9

3) Let availpyies = bytesmas

4) While availpytes > 0 do steps 7,8

5) Create the prefetch block for the curry,q. by browsing
its cumulative probability list of nodes. A node i can be
included only if all its cache blocks can fit in i.e., n;
<=bytesmaz-

6) For every node included, decrease the available
availyytes = availpytes — N

7) If all the immediate child nodes (child nodes which have
an edge with the currypoqe) of curryoqe are covered, this
is the prefetch block for the curry,,4e, mark all the nodes
which are prefetched by this node with this node’s ID.
Exit the function.

8) Else, find the prefetch block for the least probable child
node j , i.e, call makePrefetch(j).

9) Add instructions to prefetch the prefetch blocks of j in
CUTTnode 1.6, bYteSmar = bytesmaes — prefetch;

/) Experimental Setup: This scheme has been imple-
mented with gcc. We use gprof to collect the profiling
information. However, at this point, we do not have any
performance overhead data to report. The experimental setup
to select a statistically valid set of inputs for profiling is
being established. We should have the results on the cache
pollution overhead, prefetch accuracy, overall IPC degradation,
and address trace variance with respect to the original address
trace in the near future.

V. CONCLUSIONS

Protection of intellectual property on a hostile computing
node is emerging as one of the most difficult problems in
system design. The adversary is much more powerful than
the traditional security models. This brings about the need
to hide “secrets” from the operating system. We have pre-
sented an architecture for providing support for one of the
vital components of obfuscation, dynamic address obfuscation.
We argue that a large part of virtual memory management
responsibilities must be moved from the OS to a new, pri-
vate & self-contained unit, virtual memory blackbox (VM
blackbox). VM blackbox disperses the physical addresses to
create obfuscation. We developed an interface for the OS, VM
blackbox interaction which allows for the VM blackbox to
maintain and hide its private state from the OS. We describe

all the internal components of the proposed VM blackbox.

We

also quantify the performance overhead of such address

dispersions. Another compiler directed scheme for dynamic
address obfuscation that utilizes large L2 cache sizes to hide
the address order further was also presented. The instructions
and data needed in the near future are prefetched into L2 cache
in an obfuscated order compared to the actual program order.
This scheme has been implemented within gcc.

Note that this architecture does not address the threats posed
by physical tampering & observation such as power profiling.

[1]

[6]
[7]
[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]

(18]

[19]

REFERENCES

Business Software Alliance. 8th annual business software alliance
global software piracy study: Trends in software piracy 1994-2002, 2003.
http://global.bsa.org/globalstudy/2003_GSPS.pdf.

Trusted Computing Platform Alliance. Trusted platform module, 2003.
http://www.trustedcomputing.org/.

R. Bennett and R. Landauer. Fundamental Physical Limits of Compu-
tation. Scientific American, pages 48-58, July 1985.

D. Burger, T. M. Austin, and S. Bennett. Evaluating Future Micropro-
cessors: The SimpleScalar Tool Set. Technical Report CS-TR-96-1308,
University of Wisconsin, Madison, 1996.

André DeHon, “DPGA-coupled microprocessor: Commodity ICs for the
early 21st century”, In D. A. Buell and K. L. Pocek, editors, Proc. of
IEEE workshop on FPGAs for Custom Computing Machines, pp. 31-39,
Apr. 1994.

J. S. Denker. High-entropy symbol generator, 2003.
http://www.av8n.com/turbid/.

E. Fredkin and T. Toffoli. Conservative Logic. International Journal of
Theoretical Physics, 21(3/4), April 1982.

B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon physical
random functions. In Proceedings of the 9 ACM Conference on
Computer and Communications Security, 2002.

B. Gassend, G. Suh, D. Clarke, M. van Dijk, and S. Devadas. Caches and
merkle trees for efficient memory integrity verification. In Proceedings
of Ninth International Symposium on High Performance Computer
Architecture, 2003.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM, 33(4):792-807, 1986.

Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious RAMS. Journal of the ACM, 43(3):431-473, 1996.
URL: http://www.intel.com

David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John C. Mitchell, and Mark Horowitz. Architectural support
for copy and tamper resistant software. In Architectural Support for
Programming Languages and Operating Systems, pages 168—177, 2000.
Microsoft. Next-generation secure computing base, 2003.
http://www.microsoft.com/ngscb.

Nithin M. Nakka, Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. An architectural framework for providing reliability and security
support. In Proceedings of the International Conference on Dependable
Systems and Networks, DSN 2004, June 2004. to appear.

SPEC Benchmarks URL: http://www.specbench.org/osg/cpu2000/

G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. aegis:
Architecture for tamper-evident and tamper-resistant processing. In
Proceedings of the 17 Int’l Conference on Supercomputing, pages 160—
171, 2003.

T. Toffoli. Reversible Computing. Technical ~Report
MIT/LCS/TM151/1980, MIT Laboratory for Computer Science,
1980.

VIA Technology. Evaluation summary: Via
c3n nehemiah random number generator, 2003.
http://www.via.com.tw/en/viac3/via_c3_padlock_evaluation_summary.pdf.

