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Abstract

Large relational datasets such as national-scale social networks and power grids present dif-
ferent computational challenges than do physical simulations. Sandia’s distributed-memory
supercomputers are well suited for solving problems concerning the latter, but not the for-
mer. The reason is that problems such as pattern recognition and knowledge discovery on
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large networks are dominated by memory latency and not by computation. Furthermore,
most memory requests in these applications are very small, and when the datasets are large,
most requests miss the cache. The result is extremely low utilization.

We are unlikely to be able to grow out of this problem with conventional architectures. As
the power density of microprocessors has approached that of a nuclear reactor in the past
two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-
based supercomputers is not a solution for informatics and network infrastructure problems
since the additional processors are utilized to only a tiny fraction of their capacity.

An alternative solution is to use the paradigm of massive multithreading with a large shared
memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal
team has unique experience with and access to this machine. The XMT, which is now being
delivered, is a Red Storm machine with up to 8192 multithreaded “Threadstorm” processors
and 128 TB of shared memory. For many years, the XMT will be the only way to address
very large graph problems efficiently, and future generations of supercomputers will include
multithreaded processors. Roughly 10 MTA processor can process a simple short paths
problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on
32,000 processors of Blue Gene/Light.

We have developed algorithms and open-source software for the XMT, and have modified
that software to run some of these algorithms on other multithreaded platforms such as the
Sun Niagara and Opteron multi-core chips.
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Preface

This LDRD followed from a WFO project in which Bruce Hendrickson, Jonathan Berry,
Keith Underwood, Curtis Janssen, and others studied and programmed the Cray MTA-2
massively multithreaded supercomputer, and simulated its successor, the Cray XMT. We
became convinced that Sandia should develop software and algorithms for these machines
and others that may adopt the massive multithreading paradigm.

These Cray multithreaded machines have processors that are quite different from tradi-
tional processors. The latter are designed under the assumption that most codes have good
locality, and much chip real estate is dedicated to processor cache. The Cray multithreaded
processors (“threadstorms”) have no processor cache because their strategy is to tolerate
latency rather than mitigating it. The chip space is instead devoted to storing 128 hardware
thread contexts (sets of registers, program counter, etc.). There is a context switch every
clock cycle, and each thread can have at most one instruction in the 21-stage instruction
pipeline at any time. The clock rate is quite slow (100’s of MHz), so serial computation of
any sort cannot be tolerated.

The network features NIC’s that support shared memory, and data structures are auto-
matically hashed throughout the entire shared memory of the machine. In this way, spatially
locality is explitly and intentionally defeated. The prerequisite for efficient computation is a
large degree of concurrency in the application. In order to show an advantage over traditional
supercomputers, the latter must typically be characterized by asynchronous computations
that make nearly random references throughout memory. Graph and pointer chasing com-
putations sometimes meet these requirements.

Recently, we have envisioned large potential advantages of the large shared memory of
these machines, even without limiting computations to pointer chasing. Specifically, the
Cray XMT may be an excellent accelerator for MapReduce computations. Sandia is now
exploring this possibility in another project.

16



Summary

The most significant technical accomplishments of this LDRD are the development of
new algorithms for community detection in networks (see Chapters 1 and 2) and of the
open-source MultiThreaded Graph Library (see Chapters 7 and 8.

Figure 1. S-T connectivity comparison

This final report unites several of our publications on these main themes and also our
thoughts on some others. Before this exposition, however, we will describe the current status
of a prediction made by Bruce Hendrickson and Jon Berry in 2005 that helped motivate this
LDRD.

Borrowing text from Chapter 4 below, s-t connectivity is computed considering the fol-
lowing simple algorithm: given two vertices s and t: find the neighbors of s, see if any of
them is t. If not, then find the neighbors of t and see if any of them is one of the vertices
in s’s expanding frontier. Repeat this process by expanding the smaller of the frontiers of
s and t until the two frontiers intersect (see Figure 4.1 on Page 56). Yoo, et al. [80] used
this algorithm on Erdös-Rényi graphs of 3.2 billion nodes, and reported results on 32,768
processors of the world’s largest distributed memory machine, BlueGene/L. See Chapter 4
for more detail. On an Erdös-Rényi graph, it is straightforward to analyze the expected
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number of vertices to be visited to find the shortest path between s and t. For the algorithm
sketched above applied to the instances studied by Yoo, et al., the number of vertices visited
should be about 177 times larger for the graph on 32,768 nodes than for the graph on 1 node.
Extrapolation out to the size of the large instance treated by Yoo, et al., we expect roughly
200,000 vertices to be visited. Given the average time per visit per MTA-2 processor, we
conjectured in 2005 that roughly 5-10 MTA-2 processors could perform S-T connectivity in
roughly the time taken by 32,000 BlueGene/L processors.

At the time of that conjecture, no massively multithreaded computer was large enough
to store such an instance. However, in 2009 Cray completed a 512 processor XMT with
a terabyte of RAM. We ran our S-T connectivity code (developed by Kamesh Madduri
while visiting Sandia as a summer graduate assistant) on this machine and produced the
results in Figure . The red symbol marks the BlueGene/L computation of Yoo, et al.,
and the rays originating from the origin mark our XMT results. Note that between 4 and
16 XMT processors are required to compute S-T connectivity in roughly the time of Yoo,
et al. Considering the many disadvantages that the Cray XMT has relative to the MTA-
2 (relatively slower network and slower memory, in particular), these results confirm the
2005 conjecture. Note that we ran larger instances of roughly 32 billion edges with 512
XMT processors and obtained running times of approximately a quarter of a second. The
“PBGL” (Parallel Boost Graph Library) results improve upon those of Yoo, et al. by using
asynchronous computations and compressed data structures, but don’t show good strong
scaling (improving run time on a given instance when the number of processors is increased).

We must be cautious with these results, because they were derived from computations on
Erdös-Rényi graphs. These are not representative of most real-world graph datasets. The
latter are often characterized by power-law degree distributions, meaning intuitively that
there are a few vertices of very high degree, but many of very low degree. The study should
be carried forward on such datasets. Unfortunately, the code of Yoo, et al. was never tested
on these. However, the PBGL code can be run on such instances.
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Nomenclature

BGL the Boost Graph Library, a generic C++ framework on which the MultiThreaded
Graph Library is based.

Closeness Centrality Cc(v) = 1∑
t∈V \v

dG(v,t)
, where dG(v, t) is the distance between vertices

v and t in G.

connected component a set of vertices C in a graph such that every pair of vertices in C
is connected by a path of vertices in C. Algorithms for finding connected components
are challenging to scale on HPC.

Cray MTA-2 a shared-memory, massively multithreaded supercomputer good for infor-
matics problems, but not scalable to large processor counts

Cray XMT the follow-on to the Cray MTA-2: good for informatics problems and scalable
to large processor counts (development name: Eldorado)

Degree the number of edges incident on a vertex of a simple graph (one with no self-loops
or multiple edges)

Erdös-Rényi graph a random graph generated by flipping a weighted coin for each possible
pair of vertices. This model is ubiquitious in graph theory, as it is often amenable to
analysis. However, it is a notoriously poor representative for many real graph datasets.

Graph G = (V, E) - a set of vertices and a set of edges linking those vertices

HPC “high-performance computing,” which typically denotes large-memory supercomput-
ers with advanced networks that tightly couple processing elements

MTGL the MultiThreaded Graph Library. Sandia is developing this open-source library
for algorithms to run on the Cray XMT and multi-core workstations.

Network Simplex methods a generic way to solve many flow and path problems by using
paths in graphs rather than solving linear programs.

PBGL the Parallel Boost Graph Library, which enables graph algorithms to run on dis-
tributed memory clusters.

Qthreads a thread virtualization software framework. Some prototype MTGL algorithms
leverage Qthreads to run on multi-core workstations.

R-MAT a synthetic class of graphs good for approximating the properties of many real
datasets
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Subgraph Isomorphism a computationally hard problem: finding instances of a small
graph in a large graph

Trac a web-based software project management and bug/issue tracking system. The MTGL
is now being managed at Trac site http://software.sandia.gov/mtgl.
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Chapter 1

Tolerating the Community Detection
Resolution Limit via Edge Weighting

The text in this chapter is the body of the paper by the same name currently un-
der consideration for publication in the journal Physical Review E. This paper is also on
www.arxiv.org [14].

Communities of vertices within a giant network such as the World-Wide Web are likely
to be vastly smaller than the network itself. However, Fortunato and Barthélemy have
proved that modularity maximization algorithms for community detection may fail to resolve

communities with fewer than
√

L/2 edges, where L is the number of edges in the entire
network. This resolution limit leads modularity maximization algorithms to have notoriously
poor accuracy on many real networks.

Fortunato and Barthélemy’s argument can be extended to networks with weighted edges
as well, and we derive this corollary argument. We conclude that weighted modularity

algorithms may fail to resolve communities with fewer than
√

Wε/2 total edge weight, where
W is the total edge weight in the network and ε is the maximum weight of an inter-community
edge. If ε is small, then small communities can be resolved.

Given a weighted or unweighted network, we describe how to derive new edge weights in
order to achieve a low ε, we modify the “CNM” community detection algorithm to maximize
weighted modularity, and show that the resulting algorithm has greatly improved accuracy.
In experiments with an emerging community standard benchmark, we find that our sim-
ple CNM variant is competitive with the most accurate community detection methods yet
proposed.

Introduction

Maximizing the modularity of a network, as defined by Girvan and Newman [66], is
perhaps the most popular and cited paradigm for detecting communities in networks. There
are many algorithms for approximately maximizing modularity and its variants, such as [21,
22, 33]. Community assignments of good modularity feature groups of nodes that are more
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tightly connected than would be expected. We give the formal definition of modularity
below. Recent literature, however, has begun to focus on paradigms other than modularity
maximization. This is in part due to Clauset, Newman, and Moore [20], who now advocate
a more general notion of “community” than that associated with modularity. The shift
away from modularity maximization is also due to Fortunato and Barthèlemy [36], who
prove that any community assignment produced by a modularity maximization algorithm
will have predictable deficiencies in certain realistic situations. Specifically, they argue that
any solution of maximum modularity will suffer from a resolution limit that prevents small
communities from being detected in large networks. Furthermore, work by Dunbar [30]
indicates that true human communities are generally smaller that 150 nodes. This size is far
below the resolution limit inherent in many large networks, such as various social networking
sites on the World Wide Web.

We agree with Clauset, Newman, and Moore’s [20] idea that it is useful to consider more
general definitions for “community”; however, we maintain that it is still important to detect
traditional, tightly-connected communities of nodes. In this paper, we revisit the negative
result of Fortunato and Barthèlemy and analyze it in a different light. We show that positive
results are possible without contradicting the resolution limit. The key is to apply carefully
computed weights to the edges of the network.

With one exception, previous methods for tolerating this resolution limit require searching
over an input parameter. For example, Li, et al. [55] address the resolution limit problem
by defining a modularity alternative called modularity density. Given a fixed number of
communities k, solving a k-means problem will maximize modularity density. Li, et al.
generalize modularity density so that tuning a parameter λ favors either small communities
(large λ) or large communities (small λ) [55]. Arenas, Fernandez, and Gomez also address
the problem of resolution limits [5]. They provide the user with a parameter r that modifies
the natural community sizes for modularity maximization algorithms. By tuning r, they
influence the natural resolution limit. At certain values of r, small communities will be
natural, and at other values of r, large communities will be natural. Our methods apply
without specifying any target scale for natural communities, and resolve small and large
communities simultaneously.

One solution that resolves communities at multiple scales with no tuning parameter is
the HQcut algorithm of Ruan and Zhang [72]. This algorithm alternates between spectral
methods and efficient local improvement. It uses a statistical test to determine whether to
split each community. Ruan and Zhang argue that a subnetwork with modularity signifi-
cantly greater than that expected of a random network with the same sequence of vertex
degrees is likely to have sub-communities, and therefore should be split. As Fortunato points
out in his recent survey [37], though, this stopping criterion is an ad-hoc construction.

Nevertheless, Ruan and Zhang present compelling evidence that the accuracy of HQcut
often exceeds that of competitors such as Newman’s spectral method followed by Kernighan-
Lin local improvement [64] and the simulated annealing method of Guimerà and Amaral [44].
The HQcut solution is not simply the solution of global maximum modularity, so it is not
bound by the resolution limit. We obtained the authors’ Matlab code for HQcut and we
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present comparisons with our approach below.

Resolution Limits

Fortunato and Barthélemy [36] define a module to be a set of vertices with positive
modularity:

ls
L
−
(

ds

2L

)2

> 0, (1.1)

where ls is the number of undirected edges (links) within the set, ds is the sum of the degrees
of the vertices within the set, and L is the number of undirected links in the entire network.
These modules contain more edges than we would expect from a set of vertices with the same
degrees, were edges to be assigned randomly (respecting the invariant vertex degrees). iLet
us define such modules to be natural communities with respect to modularity maximization.
We say that a natural community is minimal if it contains no other natural communities.
We wish to resolve the minimal natural communities.

In order to ensure that such modules are resolved in a global community assigment with
maximum modularity, Fortunato and Barthélemy [36] argue that the following must hold:

ls ≥
√

L

2
. (1.2)

They back up this mathematical argument with empirical evidence. Even in a pathologically
easy situation, in which the modules are cliques, and only one edge links any module to a
neighboring module, the individual modules will not be resolved in any solution of maximum
modularity. Instead, several cliques will be merged into one module. Experiments show that

the numbers of links in the resulting modules closely track the
√

L/2 prediction.

Work by Dunbar [30] indicates that true human communities are generally limited to
roughly 150 members, and this is corroborated by the recent work of Leskovec, Lang, Das-

gupta, and Mahoney [53]. Such communities will have dramatically fewer than
√

L/2 edges
in practice. Based on this argument, it would seem that there is little hope for the solutions of
modularity maximizing algorithms to be applied in real situations in which L� ls. Indeed,
partially due to the resolution limit result, the general direction of research in community
detection seems to have shifted away from modularity maximization in favor of machine
learning techniques.

In this paper, we revisit the resolution limit in the context of edge weighting and derive
more positive results.
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Resolution with edge weights

The definition of a module in equation [1.1] can easily be generalized when edges have
weights. Let ws be the sum of the weights of all undirected edges connecting vertices within
Set s. Let dw(v), the weighted degree of vertex v, be the sum of the weights of all edges
incident on v. We define dw

s =
∑

v∈s dw(v) to be the sum of weighted degrees of the vertices
in Set s. Then Set s is a module if and only if:

ws

W
−
(

dw
s

2W

)2

> 0. (1.3)

Following [36] step-by-step, when considering a module, we use wout
s to denote the sum

of the weights of the edges leaving Set s, and also note that wout
s = αsws, where αs is a

convenience that enables us to rewrite the definition of a module in a useful way. We now
have dw

s = 2ws + wout
s = (αs + 2)ws, and a new, equivalent, definition of a module:

ws

W
−
(

(αs + 2)ws

2W

)2

> 0. (1.4)

Manipulating the inequality, we obtain the relationship:

ws <
4W

(αs + 2)2
. (1.5)

Thus, sets representing communities must not have too much weight in order to be
modules.

The Maximum Weighted Modularity

Fortunato and Barthélemy describe the most modular network possible. This yields both
computed figures that can be corroborated by experimental evidence, and intuition that the
resolution limit in community detection has a natural scale that is related to the total number
of links in the network. We will use the same strategy for the weighted case.

First, we imagine a network in which every module is a clique. For a given number of
nodes and number of cliques, the modularity will be maximized if each clique has the same
size. Weighting does not change the argument of [36] that the modularity approaches 1.0 as
the number of cliques goes to infinity. Now, following [36], we consider a slight relaxation
of the simple case above: the most modular connected network. This will be our set of m
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cliques with at least m − 1 edges to connect them. Without loss of generality, we consider
the case of m connecting edges — a ring of cliques, as studied by [28].

Departing for a moment from [36], we now consider an edge weighting for the network.
With edge weights in the range [0, 1], the optimal weighting would assign 1 to each intra-
clique edge and 0 to each connecting edge. The weighted modularity of this weighted network
would be equivalent to the unweighted modularity of the m independent cliques described
above, and would tend to 1.

Relaxing this idealized condition, now assume that we have a weighting function that
assigns ε to each connecting edge, and 1.0 to each intra-clique edge. We now analyze the
resulting weighted modularity.

The total edge weight contained within the cliques is

m∑
s=1

ws = W − εm. (1.6)

Each clique is a module by (1.3) provided that ε is sufficiently small. Summing the
contributions of the modules, we find the weighted modularity of the network when broken
into these cliques is:

Q =
∑
s

[
ws

W
−
(

2ws + 2ε

2W

)2
]
. (1.7)

Since all modules contain the same weight, for all s:

ws =
W − εm

m
=

W

m
− ε (1.8)

The maximum modularity of any solution with m communities is:

QM(m, W ) = m

W/m− ε

W
−
(

W/m

W

)2
 = 1− εm

W
− 1

m
(1.9)

To quantify this maximum, we take the derivative with respect to m:

dQM

dm
(m, W ) =

−ε

W
+

1

m2
(1.10)
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Setting this to zero, we find the number of communities in the optimal solution:

m∗ =

√
W

ε
. (1.11)

Substituting into (1.9), we find the maximum possible weighted modularity:

QM(W ) = 1− 2√
W/ε

. (1.12)

The unweighted versions of equations [1.11] and [1.9] from [36] are, respectively, m∗ =√
L, and QM(L) = 1− 2√

L
. In this unweighted case, the natural scale is clearly related to L.

We don’t expect to be able to find many more than
√

L modules in any solution of optimal
unweighted modularity.

Our weighted case is similar, but the introduction of ε leads to some intriguing possibil-
ities. If ε can be made small enough, for example, then there is no longer any limit to the
number of modules we might expect in any solution of maximum weighted modularity.

The Weighted Resolution Limit

In [36], Fortunato and Barthélemy prove that any module in which l <
√

L/2 may
not be resolved by algorithms that maximize modularity. Their argument characterizes the
condition under which two true modules linked to each other by any positive number of
edges will contribute more to the global modularity as one unit rather than as two separate
units. This result is corroborated by experiment. In a large real-world dataset such as the
WWW, modules with l� L will almost certainly exist.

Following the arguments of [36] directly, while considering edge weights, we now argue
that any module s in which

ws <

√
Wε

2
− ε (1.13)

may not be resolved. Consider a scenario in which two small modules are either merged or
not. Suppose that the first module has intra-module edges of net weight w1, and the second
has intra-module edges of net weight w2. iWe assume that inter-module edges between these
two modules have weight ε, explicitly write the expressions for weighted modularity in both
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cases, and find their difference. The weighted modularity of the solution in which these two
modules are resolved exceeds that in which they are merged, provided:

w <
2Wε/w

( ε
w

+ ε
w

+ 2)( ε
w

+ ε
w

+ 2)
(1.14)

where w could be either w1 or w2. Manipulation of this expression gives (1.13).

Two challenges remain: finding a method to set edge weights that achieve a small ε,
and adapting modularity maximization algorithms to use weights. The second challenge is
partially addressed by [65] and [33], but we take a different approach.

Edge Weighting

There are myriad ways to identify local structure with local computations. Several ap-
proaches to community detection, such as [22, 62, 50], are based upon this idea. We use
local computations to derive new edge weights. Our approach is to reward an edge for each
short cycle connecting its endpoints. These suggest strong interconnections.

Figure 1.1. Edge neighborhood weighting

For a vertex v, let E(v) be the set of all undirected edges incident on v. We also define
the following sets to express triangle and rectangle relationships between pairs of edges.

Te = {e′ : there exists a 3-cycle containing both e and e′}

Re = {e′ : there exists a 4-cycle containing both e and e′}

Note that e can be a member of Te and Re.
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The total weight of edges incident on the endpoints of edge e = (u, v) is

We =
∑

e′∈E(u)∪E(v)

we′ .

We consider incident edges that reside on paths of at most three edges connecting the
endpoints of e to be “good” with respect to e.

Ge =
∑

e′∈E(u)∪E(v)∩(Te∪Re)

we′ .

Such edges add credence to the proposition that e is an intra-community edge. We define
neighborhood coherence of e as follows:

C(e) =
Ge

We

.

For example, in Figure 1.1, the coherence is computed by summing the weights of the
thickened edges and dividing by the total weight of edges incident on the endpoints of e:
C(e) = 4.85

5.35
. Alternate definitions are possible, of course, but this weighting is intuitive and

performs well in practice.

Arenas, Fernandes, and Gomez, by contrast, add self-loops to vertices according to their
r parameter, thereby “weighting” the nodes, and also adding more intra-community edges to
each module. Thus, they pack more edges into each module in order to satisfy Inequality [1.2].

We have considered generalizing C(e) to include cycles of length 5 and greater, but this
would be a considerable computational expense, and we expect diminishing marginal benefit.

Now we give a simple iterative algorithm for computing edge weights:

1. Set we = 1.0 for each edge e in the network (or accept we as input if the edges are
already weighted).

2. Compute C(e) for each e, set we = C(e).

3. If any we’s changed within some tolerance, go to Step 2

This process will tend to siphon weight out of the inter-module edges (those with smaller
C(e)), thus lowering ε. We find in practice that it terminates in a small number of iterations.
Computing C(e) reduces to finding the triangles and 4-cycles in the graph. This can be done
naively in O(mn log n) time on scale-free graphs. We use Cohen’s data structures [23] that

28



admit more efficient algorithms in practice. For WWW-scale graphs, it may be necessary for
efficiency reasons to ignore edges incident on high-degree vertices. This would isolate these
vertices. However, since such vertices often have special roles in real networks, they might
require individual attention anyway.

We define Algorithm W (k) to be k iterations through the loop in Steps 2–3.

Weighted Clauset-Newman-Moore

Any modularity maximization algorithm could be made to leverage edge weights such as
those computed in the previous section. Newman replaces individual weighted edges with
sets of multiple edges, each with integral weight [65]. We modify the agglomerative algorithm
of Clauset, Newman, and Moore (CNM) [21] to handle arbitrary weights directly.

The CNM algorithm efficiently computes the change in modularity (∆Q) associated with
all possible mergers of two existing communities. At the beginning, each vertex is in its own
singleton community. Unweighted modularity is defined as follows:

Q =
1

2L

∑
vw

[
Avw −

kvkw

2L

]
δ(cv, cw)

=
∑
s

(ess − a2
s).

Avw is the adjacency matrix entry for directed edge (v, w), kv is the degree of vertex v,
ers is the fraction of edges that link vertices in community r to vertices in community s,
and as =

∑
r ers is the sum of the degrees of all vertices in community s divided by the

total degree. The function δ(cv, cw) equals 1 if v and w are in the same community, and 0
otherwise.

Since vertices i and j initially reside in their own singleton communities, eij is initially

simply Aij

2L
. The first step in CNM is to initialize ∆Q for all possible mergers:

∆Q =

{
1/(L)− 2kikj/(2L)2 if i,j are connected
0 otherwise.

(1.15)

CNM also initializes ai = ki

2L
for each vertex i. Once the initializations are complete, the

algorithm repeatedly selects the best merger, then updates the ∆Q and ai values, until only
one community remains. The solution is the community assigment with the largest value of
Q encountered during this process. Clever data structures allow efficient update of the ∆Q
values.

To modify CNM to work on weighted graphs, we need only change the initialization step.
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Algorithm ε m∗ |S| QM Q
CNM N.A. 108 108 0.980 0.980
wCNM1 0.111 286 263 0.9930 0.9928
wCNM5 < 0.000001 1000 1000 0.9999 0.9986

Table 1.1. These results from the ring of 1000 5-cliques il-
lustrate gains made by considering weighting. Predicted (m∗)
and algorithmically discovered (|S|) numbers of communities
match well and indicate that careful weighting makes it pos-
sible to resolve all 1000 cliques as modules in a solution of
maximal weighted modularity. QM is defined in (1.12), m∗

is defined in (1.11), and ε is the weight of the heaviest edge
between two communities.

The update steps are identical. We simply define and compute the weighted degree of each
vertex kw

i =
∑

j wij. The initialization becomes:

∆Qw =

{
wij/(W )− 2kw

i kw
j /(2W )2 if i,j are connected

0 otherwise,
(1.16)

and aw
i =

kw
i

2W
. With these initializations, normal CNM merging greedily maximizes weighted

modularity Qw. We refer to this algorithm as wCNM. Note that our definition of Qw is
equivalent to that of [33].

Results

Given an undirected, weighted or unweighted network, we apply the Algorithm W (k)
to set our edge weights, then run wCNM. We use wCNMk to denote this two-step process.
Note that running wCNM0 is equivalent to running CNM.

We will consider two different datasets: the ring of cliques example discussed above, and
the benchmark of [51], which is a generalization of the 128-node benchmark of Girvan and
Newman [40].

The ring of cliques

Refer to Table 1.1 for the following discussion. Danon, Dı́az-Guilera, Duch, and Arenas
[28] considered m disconnected cliques as a pathological example of maximum modularity
(which approaches 1.0 as the number of cliques increases). Fortunato and Barthèlemy [36]
add single connections between cliques to form a ring. Our intuition is that the natural
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communities in such a graph are the cliques. However, the resolution limit argument of For-
tunato and Barthèlemy indicates that this will not be the solution of maximum modularity

if each clique has fewer than
√

L
2

edges. They confirm this via experiment, and we have
reproduced their results for an instance with 1000 cliques of size five. Table 1.1 summarizes
the performance of CNM and wCNM for this case. The m∗ column contains the number
of communities expected in a solution of maximum weighted modularity, as defined in 1.11.
The first row shows the unweighted case, in which m∗ is equivalent to that defined in [36].
CNM achieves this theoretical maximum by finding 108 communities, which is much smaller
than the number of cliques.

If we run wCNM1, which performs one iteration of neighborhood coherence, we obtain
the results in Row 2 of Table 1.1. The value of ε we observe is 0.047, leading via (1.11) to
an estimate of 286 resolved communities. The wCNM1 algorithm resolves 263. In a run with
five iterations, labeled wCNM5, we both expect and find 1000 communities, resolving all
of the natural communities and simultaneously observing our highest weighted modularity.
Iterating further reduces ε without changing the community assignment.
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Figure 1.2. Mutual information study for the LFR bench-
mark.

The LFR Benchmark

Lancichinetti, Fortunato, and Radicchi [51] (LFR) give a generalization of the popular
Girvan and Newman benchmark [40] for evaluating community detection algorithms. The
latter consists of 128-vertex random graphs, each with 4 natural communities of size 32. The
user tunes a parameter to adjust the numbers of intra-community and inter-community edges.
Many authors use this benchmark to create plots of “mutual information,” or agreement in
node classification between algorithm-discovered communities and natural communities. The
LFR benchmark is similar in spirit, but considerably more realistic. It allows the user to
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Figure 1.3. The distributions of community sizes (trans-
formed back to uniform) compared to the uniform distribu-
tion. The three (a) images depict instances in which the LFR
distribution of community sizes passes the Anderson-Darling
test. In this case, wCNM3 passes that test as well for µ = 0.1
and µ = 0.3. The three (b) images show instances in which
the LFR distribution does not pass. In these cases, no algo-
rithm solutions pass, but note that wCNM’s distribution is
relatively close to the LFR ground truth.

specify distributions both for the community sizes and the vertex degrees. Users also specify
the average ratio (per vertex) of inter-community adjacencies to total adjacencies, called
mixing parameter µ. At µ = 0.0, all edges are intra-community.

The LFR benchmark construction process begins by sampling vertex degrees and creating
a graph with the selected degree distribution. It then samples community sizes. A vertex
of degree k should have about (1 − µ)k neighbors from the same community. Therefore,
it is assigned to a community with at least (1 − µ)k + 1 vertices. LFR assigns vertices to
communities via an interated random process enforcing this constraint, then rewires until
the average µ meets the desired value. We have a special interest in the LFR benchmark
because it generates graphs with both small and large natural communities.

For several different values of µ, we used the C code from Fortunato’s web site (cited
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in [51]) to generate 30 instances each of LFR benchmark graphs, each with 5000 vertices
and average degree 8. The community sizes were selected from the power-law distribution
f(k) ∼ k−1.5, with k ∈ [10, 105]. The degree distribution was f(k) ∼ k−2, with k ∈ [2, 50].
We specified an average degree of 8, which is roughly comparable to that of the WWW.

Figure 1.2 contains the mutual information plot for our experiments with LFR. Our
metric for comparison is the Jaccard index [45]:

J(A, B) =
|A ∩B|
|A ∪B|

where A is the set of intra-community edges in the LFR ground truth, and B is the set of
intra-community edges in an algorithm solution. As predicted by the resolution limit argu-
ment, CNM, an unweighted modularity maximization algorithm, is not able to resolve most
of the natural communities. However, even with these more realistic data, wCNM achieves
greater accuracy than the sophisticated HQcut algorithm. This is notable, considering the
reputation for poor accuracy recently associated with agglomerative algorithms such as CNM
and its variants [71]. The accuracy of our CNM variant, on the other hand, is competitive.

We observe for these data that iterating the neighborhood coherence weighting provides
diminishing marginal returns. However, as we show below, such iteration does add value.

In addition to the mutual information, we wish to compare the distributions of the sizes of
communities discovered by CNM and its weighted variants to the original distributions used
in LFR generation. There is currently no accepted, canonical method for fitting empirical
data to power-law distributions. However, we define a reasonable transformation from com-
munity sizes back to uniform variates. We then rigorously compare the distributions of these
variates to the uniform distribution using a classical test. We also provide visualizations of
these distributions.

LFR uses the following precise sampling process to determine ground truth community
sizes:

1. Compute 1
k

τ
, the probability that a community will have size k.

2. For all a ≤ k ≤ b, where a and b bound the community sizes, compute the empirical
cumulative distribution function for k: pk =

∑k
k′=a(

1
k′

)τ .

3. For a uniform random variate x ∈ [0, 1], find the minimum k′ such that pk′ ≥ x.

This process continues until the sum of the community sizes exceeds the number of vertices,
and the final community is truncated.

Given an integer community size k, we invert this process to generate a value in the
interval [0, 1]. Specifically, we determine the cumulative probability bounds [pk, pk+1], then
sample uniformly from this range.
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Thus, a community assignment Γ with c communities and community sizes {s1, . . . , sc}
is transformed into a set of [0, 1] values {x1, . . . , xc}. The xi’s are a set of coin tosses that
would have generated the observed set of community sizes using LFR sampling. If these
xi’s are uniformly distributed, it is an indication that the community sizes are distributed
according to the given power law distribution. We sort the xi’s, then apply the classical and
discriminating Anderson-Darling test [3] to compare the result with the uniform distribution.
The results of these tests are shown in Table 1.2. Note that increasing the k in wCNMk

improves the Anderson-Darling pass rate. The wCNM5 algorithm can pass the Anderson-
Darling test roughly 60% of the time as the LFR mixing parameter µ is increased to 0.4.
We find that none of the alternatives can pass this test at µ ≥ 0.5.

LFR µ
Algorithm 0.1 0.2 0.3 0.4 0.5

CNM 0/30 0/30 0/30 0/30 0/30
wCNM 1 2/30 0/30 0/30 0/30 0/30
wCNM 3 8/30 18/30 14/30 0/30 0/30
wCNM 5 11/30 15/30 18/30 18/30 0/30

LFR ground truth 9/30 17/30 18/30 17/30 14/30
HQcut 0/29 0/30 0/30 0/30 0/29

Table 1.2. This table shows Anderson-Darling results for
experiments with LFR instances (#passes/#instances). The
LFR row indicates the proportion of instances in which the
ground truth community sizes produced by LFR themselves
pass the test.

Figure 1.3 shows empirical cumulative distribution functions (CDF) of the xi’s for algo-
rithm results and LFR ground truth. The three (a) images depict instances in which the
LFR distribution of community sizes passes the Anderson-Darling test. In this case, wCNM3

passes that test as well for µ = 0.1 and µ = 0.3. The three (b) images show instances in which
the LFR distribution does not pass. In these cases, no algorithm solutions pass. However,
note the wCNM is relatively close to the LFR distribution.

We have not included formal running-time comparisons since Ruan and Zhang’s publi-
cally available HQcut implementation is in Matlab and our implementation of wCNM is in
C/C++. For anecdotal purposes, the wCNM runs on our 5000-vertex LFR instances took
roughly 10s on a 3Ghz workstation, even with several iterations of weighting. The HQcut
instances took 5-10 minutes on the same machine, though there were instances that took
many hours. We killed such instances, and that is why we sometimes present fewer than 30
instances of HQcut results per µ.
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Conclusions

We agree with Arenas, Fernandez, and Gomez [5] that it may be premature to dismiss
the idea of modularity maximization as a technique for detecting small communities in
large networks. Our weighted analogue to Fortunato and Barthèlemy’s resolution argument
leaves open the possibility for much greater community resolution, given proper weighting.
Furthermore, our simple adaptation of the CNM heuristic, when combined with a careful
computation of edge weights, is able to resolve communities of varying sizes in test data.
Furthermore, we have given empirical evidence that the true ability of such techniques to
resolve small, local communities may be greater than that suggested by analysis.

Arguably, the original, unweighted CNM already provides output that could help mitigate
the resolution limit. This agglomerative heuristic constructs a dendrogram of hierarchical
communities, and therefore does recognize small communities as modules before merging
them into larger communities. In this sense, these small communities actually are “resolved”
– they are stored in the dendrogram included in the CNM output. A cut through this
dendrogram defines the community assignments. The resolution limit leads us to expect
that the communities defined by this cut will be unnaturally large. One potential research
direction would be to mine this dendrogram for the true communities. In effect, this would
mean ignoring the cut provided by CNM, and therefore abandoning the idea of maximizing
modularity.

Our wCNM heuristic likewise produces a dendrogram and a cut through that dendrogram
defining communities. However, the cut provided by wCNM is much deeper and more
uneven. It is analagous to the potential result of mining the CNM dendrogram for natural
communities, yet the tie with modularity is maintained since wCNM’s solution exhibits a
maximal weighted modularity.

The edge weighting we describe is just one of many possible alternatives, and wCNM is
just one of many potential weighted modularity algorithms. The main contribution of this
paper is to spread awareness that resolution limits may in fact be tolerated while retaining
the advantages of modularity maximization and the efficient algorithms for this computation.
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Chapter 2

Community Detection via Facility
Location

The text in this chapter is the body of the paper by the same name currently under
revision as a result from feedback to our submission to the journal Physical Review E. The
idea for this paper came when we made the connection between the concept of “closeness
centrality” (see the nomenclature beginning on Page ) and a facility location problem called
“p-median.” Several LDRD staff had significant experience solving the latter, so we applied
that experience to community detection.

Since the submission of this paper, we have significantly revised the formulations. We
are in the process of evaluting the effectiveness of the resulting algorithms. The citation for
the draft below is [13]

Abstract

In this paper we apply theoretical and practical results from facility location theory to the
problem of community detection in networks. The result is an algorithm that computes
bounds on a minimization variant of local modularity. We also define the concept of an
edge support and a new measure of the goodness of community structures with respect
to this concept. We present preliminary results and note that our methods are massively
parallelizable.
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Introduction

In this paper, we apply results from facility location theory to community detection.
Leveraging recent developments in both fields, we compute a weighting of the input graph
that represents pertinent information for community detection algorithms. We show how
to compute this weighting efficiently using techniques from facility location theory. We can
interpret the weights as probabilities and randomly sample over a space of good community
assignments. Computing the weights involves solving a linear program [48] with special
structure that admits an elegant solution strategy requiring only linear space and near-linear
time. Furthermore, this solution strategy is amenable to massive parallelism.

We also give new measures for evaluating the quality of community assignments and
show that our algorithms provide a provable lower bound on solution quality with respect
to one of these. We demonstrate empirically that another of our measures is complementary
to modularity, and that optimizing based on this new measure better resolves small commu-
nities in large graphs and better matches common sense community structures in familiar
datasets. Thus, we make four contributions in this work: we demonstrate a connection be-
tween community detection and facility location; we use that connection to compute lower
bounds on solution quality; we show how to compute new measures for the goodness of
community structure that contrast with modularity; and we apply massively parallelizable
methods to compute these bounds and measures.

Background

Newman and Girvan’s concept of modularity [66] is now ubiquitous in the community
detection literature. There are several variations on this concept, such as [17, 34, 39, 62, 82],
and many heuristics to optimize the original concept and these variations, e.g. [70][21]. In
order to compute community structures with good modularity in large network instances,
researchers commonly use one of two approaches: greedy heuristics, such as [21] and [78], and
metaheuristic approaches, such as the simulated annealing used in [70]. Unpublished work
posted in October 2007 applies mathematical programming to the problem of maximizing
modularity, resulting in an algorithm to compute upper bounds for that measure [2].

We present an alternative that employs results from the vast facility location literature
to community detection. We model a variation of modularity as an uncapacitated facility
location problem (to be defined below), and employ the simple and powerful Volume algo-
rithm [8] to solve the problem. Mulvey and Crowder [63] used similar techniques, applying
older subgradient methods, to solve p-median problems that approximately cluster points in
n-dimensional space.

We first observe that specializing a minimization version of the modularity problem
produces an uncapacitated facility location problem. We then discuss its solutions and the
interpretation and use of its results.
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Strongly-Local Modularity (SLM)

Girvan and Newman define the modularity (Q) for a graph G as follows: Q =
∑

s(ess−a2
s),

where s identifies a community in the domain {1 . . . q}, ers is the fraction of E(G) (the edge
set of the graph) that connects a node in community r to one in community s, and as is
the fraction of edges that have at least one endpoint in s (as =

∑
r ers). Squaring as gives

the probability that an edge would have both endpoints in community s in a random graph
with the same endpoint degree distribution. Modularity is a way to measure the quality of
community assignment: it rewards communities that are better connected than would be
expected in a random graph reflecting the endpoint degree distribution.

Now consider a simple variation of the modularity concept: Q− =
∑

s(1 − (ess − a2
s)).

Minimizing Q− is similar to, though not identical to, maximizing Q. Basic algebra shows
that a community assignment minimizing Q− has at most as many communities as one that
maximizes Q, and this is typically a strict inequality.

It is well-known that community assigments of maximum modularity fail to resolve small
communities in large graphs [36]. Reflecting on this work, it would seem that the Q− measure
will compound this problem by resolving even fewer communities. However, we provide a
remedy via a further modification described below, and our switching of optimization sense
will prove useful.

Muff, Rao, and Caflisch [62] define the local modularity to be the same as modularity,
except that the denominators in the fractions ers are the numbers of edges in a cluster’s
“neighborhood,” defined to be itself and all neighboring clusters. We use a metric that also
focuses on local structure, but is even more restrictive, requiring no information about the
structure of neighboring communities. We define a strongly local community to consist of a
single representative node and all of its immediate neighbors, i.e., a full community of radius
one. Let Qs = ess − a2

s. We can compute this measure for any strongly local community
without knowing any community assignments other than the vertices in s. Ignoring algo-
rithmic details, we need only know the number of triangles in the strongly local community
and the degree of each node.

Now we give the key definition that allows us to model the problem using facility location
theory. Let

Q̃s =

{
Qs if s is a strongly local community
0 otherwise

We define the Strongly-Local Modularity (SLM) as follows:

Q̃− =
∑
s

(1− Q̃s).

We use SLM in combination with a relaxed notion of community assignment in which com-
munity representatives can share common neighbors within their respective communities.
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Modeling SLM as a facility location problem

We transform instances of the community detection problem into instances of the Unca-
pacitated Facility Location Problem (UFLP)[48]. Given a set of potential facility locations
L, a set of customers C, a set of facility opening costs fi, and a set of service costs cij (the
cost to serve customer j using facility i), the objective function of UFLP is

F (x) =
∑
i∈L

fixi +
∑

i∈L,j∈C

cijyij,

where the variables xi indicate whether or not location i hosts a facility, and the variables
yij indicate whether or not location i serves customer j. Solutions to UFLP minimize F (x)
subject to the constraints that every customer must be served, and that no customer can be
served by a facility that does not exist. UFLP is a well known NP-hard problem [25, 38, 43],
yet it has special structure that enables efficient computations of fractional solutions.

We consider all vertices to be potential facility locations, with facility opening costs
fs = (1 − Q̃s). Each vertex is a customer that must be served by a facility (and may serve
itself if it hosts a facility). The service cost is zero for a node to serve a neighbor in the
graph. Nodes cannot serve non-neighbors (cost is effectively infinite). The solution to the
UFLP is a minimum-cost facility and service assignment in which every vertex is served.

UFLP is modeled and solved using integer programming (IP), but we need only solve
the linear programming relaxation of the IP[48]. This relaxation has special structure that
obviates the need for a general linear program solver. We apply Lagrangian relaxation in
conjunction with an elegant subgradient method known as the Volume algorithm (VA) [8] in
the Lagrangian relaxation framework of [9]. The memory usage of this combined procedure is
on the order of the problem input size. The runtime is not precisely understood. VA makes a
series of near-linear-time passes over the data. In practice, it is comparable to the O(n log2 n)
runtime of the most familiar fast modularity heuristic, the CNM greedy algorithm [21]. We
have observed this experimentally on graphs with up to 100 million edges.

The volume algorithm provides a fractional solution to the UFLP that in turn provides
a provable lower bound on Q̃− where all communities are strongly local.

Our community-assignment procedure selects a set of facilities to “open.” Each open
facility represents a leader of a subset of a strongly-local community. That is, every commu-
nity has at least one node that is adjacent to all other nodes in the community. The set of
leaders, therefore, forms a dominating set, that is, a set of vertices D such that each vertex
in the graph is either in D or adjacent to an element of D.

In our community-finding procedure, called SNL, we set the facility-opening costs as
described above and use VA to compute an optimal fractional placement of facilities. We
then open each facility with probability equal to its fractional assignment value. If this does
not produce a dominating set, then we repair it to make a dominating set. We then assign
all the other vertices to a community. There are a number of ways one can do this. In
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Figure 2.1. The support of Zachary’s karate club. Solid
edges have stronger support than speckled edges and larger
vertices are more likely to be leaders. Note the nearly-
invisible edges linking portions of the club destined to split.

this paper, we assign each non-selected node to the selected neighbor with highest fractional
facility placement.

The Support

We define the support of an edge (u, v) to be a number between 0 and 1 that indicates
the level of support/evidence for nodes u and v being in the same community. Given any
randomized algorithm A for community detection, such as the metaheuristic approach of [70],
we can compute a support with respect to A by sampling. We generate many community
assignments using A, then compute the fraction of times each edge has endpoints in the
same community. In this section, we show how to compute an edge support with respect to
SNL without any sampling.

Given a fractional solution x to an instance of UFLP, we define the support with respect
to SNL to be a set of values z, where zj is a probability that in a set of community leaders
sampled from x, edge j could link two vertices in the same community. Formally,

ze=(v,w) = 1− [(1− xv) ∗ (1− xw) ∗ Πu∈N(v)∩N(w)(1− xu)].

An edge e = (v, w) has strong support if it is unlikely that none of the vertices capable of
serving both v and w will become a server. This includes v, w, and their mutual neighbors.
Figure 2.1 depicts the support of Zachary’s karate club dataset [81], an abstraction of a social
network that famously split into two. The larger vertices and darker edges have higher x
and z values, respectively. Even before community assignments have been specified, the
community structure begins to emerge in fractional form. Note that some edges that are
destined to become inter-community edges have very low support and are therefore almost
invisible.

Given the support of a graph, we define a new measure to evaluate the effectiveness of
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Figure 2.2. The support of Zachary’s karate club and
its relationship to actual solutions of various algorithms.
The support variance Vars decreases as solutions agree more
closely with the support. Note that the community assign-
ments with maximum modularity split edges with strong sup-
port within both of the true communities.

community assigments. We define the support variance (Vars) as follows, assuming that
δ(v, w) is an indicator function with value 1 if v and w are in the same community and 0
otherwise.

Vars =
∑

(v,w)∈E(G)

(δ(v, w)− yvw)2.

Preliminary Computational Results

Our focus in this paper is to demonstrate a useful link between facility location theory and
community detection. We will present detailed computational studies in future papers. How-
ever, we do address several familiar datasets here. Figure 2.2 shows the support of Zachary’s
karate club The colored images in Figure 2.2 depict the solutions of four algorithms: our
facility location-based rounding heuristic (SNL); the CNM greedy algorithm; a combination
of these two (SNL-CNM), in which SNL is used to compute strongly-local communities, then
CNM is allowed to merge these; and the eigenvector-based approach of Newman, augmented
with a Kernighan-Lin-like postprocessing step (Newman-KL) [64]. Newman-KL gives one of
the best known values for modularity.
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Figure 2.3. Maximizing modularity on these instances is
known to produce non-intuitive answers. However, each in-
stance has a support that agrees with common sense and
leads to intuitive rounded solutions. The left hand instance
is from [70], and the right instance is the ring-of-cliques ex-
ample from[36]. As more cliques are added to the ring, modu-
larity optimization will merge cliques, increasing the support
variance. The facility location-based solution is not sensitive
to the number of cliques.

In this case, intuition and history favor the facility location-based community assigments
with low support variance over those with high modularity. For example, the latter split the
topmost community despite reasonably strong support for the edges holding it together.

Figure 2.3 shows two instances that have been demonstrated in recent literature to present
inherent problems for modularity algorithms. The modularity of the left hand instance,
from [70], tricks greedy algorithms into merging the endpoints of the edge that has the least
support in their first step. The right hand instance, from [36], has been used to show that
modularity optimization fails to resolve small communities in large graphs. The example
shown is a ring of ten 5-cliques, and grouping the 5-cliques individually both minimizes
support variance and maximizes modularity. However, as the number of 5 cliques increases,
the common sense solution continues to minimize support variance, but is discarded by
modularity optimization methods in favor of larger communities.

Conclusions

We have applied models and algorithms from facility location theory to the problem
of community detection, yielding an algorithm to compute a provable lower bound on a
minimization variant of local modularity, a support measure that can be computed with-
out sampling, and a randomized rounding heuristic that can be generalized into a class of
heuristics. We have also introduced a new measure for evaluating the quality of community
structures. The effectiveness of our heuristics for computing quality results on large graphs
remains open, but the solution techniques themselves are scalable and based upon simple
traversals of the network that are massively parallelizable in a more natural way than the
priority queue-based methods previously published. We will explore the scalability of our
methods on supercomputers in work to come.

43



44



Chapter 3

Maximum Flow and Maximum
Density Subgraph

We featured the “Network Simplex” algorithmic paradigm in our proposal since it has
features that are well-suited to massively multithreaded computing architectures. Origi-
nally, we envisioned spending significant effort to develop a generic Network Simplex solver
for many different problems. Brad Mancke developed a kernel solver and showed how to
parallelize the fundamental operation: finding edge-disjoint paths between pairs of vertices.
This is not quite a network simplex kernel, but we believe that it does capture the main
computational difficulty. Brad’s code has been incorporated into the MTGL, and it supports
basic maximum flow problems. Although our work in community detection came to dom-
inate the research direction of the out-years, Greg Mackey did apply this network simplex
kernel to another problem: finding the maximum density subgraph. The following writeup
by Greg Mackey, not yet a publication, describes this work.

Introduction

The density of a graph is defined as the number of edges divided by the number of vertices.
Consider the undirected graph G = (V, E) with n vertices and m edges. It has a density of
m/n. The maximum density subgraph problem is to find the subgraph of G that has the
maximum density. In [41] Goldberg describes an algorithm for finding the maximum density
subgraph by performing O(log n) minimum cut computations. The algorithm constructs a
new graph N = (VN , EN) with n+2 vertices and 2(n+m) edges and runs the minimum cut
computation on N . Let M(v, e) be the time required to find a minimum cut on a graph with
v vertices and e edges. The running time of Goldberg’s algorithm is O (M(n, n + m) log n).

Implementation on the XMT

The parallelization available in Goldberg’s algorithm mostly exists in implementing a
parallel minimum cut algorithm as the binary search around the minimum cut operation
must be performed in serial. The Multithreaded Graph Library (MTGL) has a parallel
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implementation of the maximum flow algorithm that was coded by Brad Mancke. It is es-
sentially a parallel implementation of the Edmond’s Karp algorithm. The parallelization
comes from using a parallel breadth first search and looking for multiple augmenting paths
simultaneously. The maximum flow code is located in the MTGL library at “mtgl/dis-
joint paths max flow.hpp.”

I modified Brad’s maximum flow code to also return a minimum cut, and I use it to
find the minimum cut in my implementation of Goldberg’s algorithm. There is also a lit-
tle more parallelism available in the constructing and updating N , which I take advantage
of. The maximum density subgraph code is located in the MTGL library at “mtgl/maxi-
mum density subgraph.hpp.”

Currently, the maximum density subgraph code is suffering numerically during the min-
imum cut computation when running on large rmat graphs. However, the maximum flow
code does scale well. A run of the maximum density subgraph on an undirected R-MAT
graph of size 11 will perform a couple of iterations of the minimum cut computation before
running into numerical issues. I timed the first iteration of the minimum cut computation
running with different numbers of processors to determine the speedup. The results are
shown in Figure 3.1. We have superlinear speedup up to 16 processors, and then it slows
down a bit. Notice that the speedup for 32 processors is just under 30. The speedup declines
for 64 processors.
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Figure 3.1. Speedup for maxflow on R-MAT 11 graph
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Chapter 4

Graph Analysis with
High-Performance Computing

The following is a published article by Bruce Hendrickson and Jonathan Berry that was
supported under this LDRD. It appeared in the IEEE’s Computers in Science & Engineering
journal/magazine, which has a circulation of roughly 2000 [47].

Introduction

Graphs are among the most widely used combinatorial tools in computing. In science
and engineering, they are used to describe the structure of sparse matrices, to facilitate
load balancing in parallel computations, to study the structure of molecules, and to help
with meshing of complex geometries. Graphs are also used to model distribution networks,
economies and epidemics, to study social systems, and to describe sets of protein interactions.

Graphs are applicable to such diverse settings because they are an abstract way of de-
scribing interactions between entities. A graph consists of a set of entities known as vertices,
and a set of pairwise relationships between entities known as edges. Many refinements and
augmentations of this basic model are possible in which vertices and edges have additional
properties.

There is a vast literature of graph theory, algorithms, and applications. A typical step
in a graph algorithm involves visiting a vertex v and then visiting v’s neighbors – the set of
vertices connected to v by an edge. For some graphs, e.g. one describing the nonzero structure
of a finite difference matrix, the set of neighbors of v can have a regular and predictable
structure. This structure can be exploited in the design of data structures to improve cache
performance when accessing v’s neighbors. However, in many emerging applications like
social and economic modeling, the graph has very little exploitable structure. In these
settings, the neighbors of v can be widely dispersed in global memory. This leads to data
access patterns that make very poor use of memory hierarchies, which can result in idle
processors most of the time. As the access patterns are data dependent (i.e., they are
a function of the edge structure in the graph) standard prefetching techniques are often
ineffective. In addition, graph algorithms typically have very little work to do when visiting

49



a vertex, so there is little computation for each memory access. For all these reasons,
graph computations often achieve a very low percentage of theoretical peak performance
on traditional processors. It is worth noting that similar challenges plague many other
combinatorial applications.

As the applications of graphs continue to grow in breadth and in size, there is a need
for effective parallelizations of graph algorithms. Parallelism presents yet another set of
challenges for graph algorithms. Although the literature on theoretical PRAM algorithms
is expansive, there are comparatively few success stories of practical parallel graph imple-
mentations. In this paper, we will argue that this is a reflection of the mismatch between
the demands of graph algorithms and the capabilities of mainstream parallel computer ar-
chitectures. Graphs in scientific computing often reflect the geometry of a physical object,
and so can be partitioned among the processors of a parallel machine in such a way that
few edges cross between processors. This is not true of more abstract graphs arising in some
emerging applications, and this hinders effective parallelization. In addition, parallelism in
graph algorithms tends to be fine-grained and the degree of parallelism varies during the
course of an algorithm. This style of parallelism is not well supported by traditional parallel
architectures and programming models.

To overcome these challenges, we have recently been developing graph algorithms on a
non-traditional, massively multithreaded supercomputer. For reasons discussed in §4, this ar-
chitecture has some attractive attributes for graph algorithms and other latency-dominated
computations. In this section, we also review the landscape of parallel computers and pro-
gramming models through the lens of graph algorithms. In § 4 we talk about graph software.
Then in §4 we discuss experiments involving parallelizations of several graph operations on a
massively multithreaded machine, the Cray MTA. In §4 we conclude and suggest directions
for further research.

The High Performance Computing Landscape

By far the most popular class of parallel machines are distributed memory computers.
These machines consist of a set of commodity processors connected by a network. These
machines are relatively inexpensive, and they are very effective on many scientific problems.

Distributed memory machines are generally programmed by explicit message passing via
MPI. With MPI, the user needs to divide the data among the processors and to determine
which processor performs which tasks. Data are exchanged between processors by user-
controlled messages. Although high performance is achievable for many applications, the
detailed control of data partitioning and communication can be tedious and error prone.

Typically, MPI programs are written in a Bulk-Synchronous style, in which processors
alternate between working independently on local data, and participating in collective com-
munication operations. By grouping data exchanges into large, collective operations, the
overall latency cost is substantially reduced. However, this comes at the expense of algo-

50



rithmic flexibility. Data cannot be transmitted on demand, but only at the pauses between
computational steps. This makes it difficult to exploit fine-grained parallelism in an appli-
cation, which is problematic for many graph algorithms.

Partitioned global address space computing

MPI is not the only way to program distributed memory parallel computers. An impor-
tant alternative, that is better suited to fine-grained parallelism is to use a partitioned global
address space language, epitomized by UPC [31]. In a UPC program, the programmer is
still responsible for distinguishing between local and global data. But the language supports
operations on remote memory locations with simple syntax. This support for a global ad-
dress space facilitates writing programs with complex data access patterns. UPC sits on top
of a communication layer that allows for more fine-grained communication than MPI, and
so can sometimes achieve higher performance. However, as with MPI, in a UPC program
the number of threads of control is constant, generally equal to the number of processors or
cores. As we argue below, the lack of dynamic threads is a significant impediment to the
development of high performing graph software.

Shared-memory computers

UPC provides a software illusion of globally addressable memory on distributed memory
hardware. Support for a global address space can also be provided in hardware. Such shared
memory computers can be categorized in various ways. Here we consider cache-coherent
machines and massively multithreaded machines.

Cache-coherent parallel computers

In symmetric multiprocessors (SMPs), global memory is universally accessible by each
processor. The most common ways to program these machines are OpenMP [27], or a
threading approach like POSIX threads [69]. The key feature of an SMP is that it provides
hardware support for access to addresses in global memory, so any address in the machine can
be retrieved quickly. This allows for higher performance on highly unstructured problems
than is possible on distributed memory machines. The latency challenge is addressed by
faster hardware for accessing memory. However, SMPs have some inherent performance
limitations. In a multiprocessor machine with multiple caches, the cache-coherence problem
is a significant challenge. This adds overhead which degrades performance, even for problems
in which reads are much more common than writes.

A second performance challenge in SMPs is the protocol for thread synchronization and
scheduling. If several threads try to access the same region of memory, the system must
apply some protocol to ensure correct program execution. Some threads may be blocked
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for a period of time. Current versions of OpenMP require the number of threads to equal
the number of processors, so a blocked thread corresponds to an idle processor. Although
a more dynamic threading model may appear in future versions of OpenMP, currently this
problem can cause significant performance challenges for graph algorithms.

Massively multithreaded architectures

Massively multithreaded machines, such as the Cray MTA-2 [4] and its successor the
XMT, address the latency challenge in a very different manner than other architectures.
Instead of trying to reduce the latency of single memory access, the MTA-2 tries to tolerate
latency by ensuring that a processor has other work to do while waiting for a memory request
to be satisfied. Each processor can have a large number of outstanding memory requests. The
processor has hardware support for many concurrent threads, and switches between them
in a single clock cycle. Thus, when a memory request is issued, the processor immediately
switches its attention to another thread that is ready to execute. In this way, the processor
tolerates latency and is not stalled waiting for memory.

This execution model depends upon the availability of a large number of fine grained,
hardware supported, threads to keep the processor occupied. Many graph algorithms can
be written in a thread-rich style; however, with a large number of threads, the likelihood
of access contention increases. The MTA-2 addresses this problem by supporting word-level
synchronization primitives. Each word of memory can be locked independently. Thus, locks
have a minimal impact on the execution of other threads.

Another unusual feature of the MTA-2 is its support for fast and dynamic thread creation
and destruction. The programmer needn’t limit the program to a fixed degree of parallelism,
but can instead let the data determine the number of threads. The MTA-2 supports a virtu-
alization of threads, which it then maps onto physical processors. This facilitates adaptive
parallelism and dynamic load balancing.

However, massively multithreaded machines also have significant drawbacks. Because
the processors are custom and not commodity, they are more expensive and have a much
slower clock than mainstream microprocessors. For instance, MTA-2 processors have a clock
rate of only 220 MHz, well more than an order of magnitude slower than state-of-the-art
microprocessors. Furthermore, the programming model of the MTA-2, while simple and
elegant, is not portable to other parallel architectures.

Software

The different architectures discussed above all have their own programming models. Ex-
plicit message passing with MPI is the most portable and widely used paradigm. OpenMP
is restricted to shared memory machines, but has some portability among this class. The
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MTA-2 programming model is unique to Cray’s line of massively multithreaded machines.
This raises significant impediments to cross-architectural comparisons. One mechanism to
alleviate these problems is to use generic programming libraries that hide machine-specific
details.

Generic programming underlies the C++ Standard Template Library [75], the Boost
C++ Libraries, and in particular the Boost Graph Library (BGL) [74]. This programming
paradigm features the implementation of concepts such as iterators using language features
such as templates. Generic programming libraries are not only expressive, but efficient as
well. BGL algorithms implement the visitor pattern, a software methodology that allows
programmers to provide custom routines that are executed at predetermined times during
execution. For example, graph search algorithms visit vertices via edges, and each visitation
event presents an opportunity for custom computation. With the visitor pattern, BGL
algorithms can be implemented without worrying about low-level details. For example,
graphs may be represented with adjacency matrices, adjacency lists, or some other data
structure, yet the same algorithm code will run on any of these.

The generic nature of the BGL makes it extensible into an HPC context. BGL algorithms
can run on any graph representation that exports a certain interface, and therefore they
can run on distributed data structures that exploit cluster architectures and export this
interface. The Parallel Boost Graph Library (PBGL) [42] provides a suite of such data
structures. In its purest sense, the PBGL provides a way to run serial graph algorithms
on very large problem instances that require the distributed memory of large clusters for
storage. However, inherently parallel algorithms have also been implemented in the PBGL.
For reasons explained in Sections 4 and 4, there are barriers to consistently achieving strong
scaling of running time (running faster on the same problem instance when more processors
are used) for graph algorithms on distributed memory architectures.

In order to leverage the massively multithreaded architectures described in Section 4,
we have extended a small subset of the BGL to become the MultiThreaded Graph Library
(MTGL) [11]. This library retains the look and feel of the BGL, yet encapsulates the
use of non-standard features such as compiler directives for parallelization and word-level
synchronization operators. The visitor pattern is still used to provide algorithm programmers
with entry points for custom computation. Although much of the architecture-specific detail
is encapsulated within software abstractions, the custom routines provided must still be
thread safe, and therefore demand a higher level of programmer expertise.

Algorithmic results

In this section we describe some recent work comparing graph algorithm implementations
on different platforms. More details can be found in some of the citations, e.g. [56]. We will
consider two fundamental graph algorithms: s − t connectivity and single-source shortest
paths. In s− t connectivity, the goal is to find a path from vertex s to vertex t that traverses
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the fewest possible number of edges. In single-source shortest paths, each edge has a length
and the goal is to find the shortest length path from a specific vertex to all other vertices in
the graph.

Data

As discussed in §8, graphs associated with physical simulations often have structure
induced from the physical geometry. Edges tend to connect vertices that are geometrically
near each other. However, the growing field of informatics is characterized by datasets of
relationships deduced by analyzing information rather than by modeling physical objects. A
canonical example of an informatics dataset is the network of relationships between people
in some population (a social network). The small world experiment of Stanley Milgram [60],
which led to the “six degrees of separation” principle (popularized in a Hollywood context
by actors’ distance from Kevin Bacon), found that by following a small number of edges in
a social network, one might end up anywhere. Informatics datasets with this small world
property lack spacial locality, and therefore are more challenging to map to distributed
memory parallel computers.

Another common characteristic of informatics graphs is an inverse power law degree
distribution. In other words, the vast majority of entities in these networks tend to be
connected to just a few other entities, while a few “high-degree” entities are connected to an
enormous number of other entities.

In our experiments, we will discuss two different, purely synthetic classes of graphs:
Erdös-Rényi [32] random graphs, and a class of inverse power law graphs known as RMAT [18].
Erdös-Rényi graphs are constructed by assigning a uniform edge probability to each possible
edge, then using a random number generator to determine which edges exist. RMAT graph
construction involves recursively partitioning an adjacency matrix, and assigning neighbor
relationships in an uneven manner. Unlike Erdös-Rényi graphs, RMAT graphs have an
inverse power law degree distribution.

However, among the machines we discuss below, only the MTA-2 has a programming
model and architecture sufficiently robust to easily test instances of inverse power law graphs
with close to a billion edges. The work of Yoo, et al. [80] (described below) was limited
to Erdös-Rényi graphs, and the current RMAT generator of the PBGL does not scale to
large instances. We know of no distributed memory results for giga-scale inverse power law
graphs. Given this limitation, we describe results for Erdös-Rényi graphs only and note that
the MTA-2 performance on like-sized RMAT graphs is almost identical.

High degree nodes are a challenge for distributed memory machines for several reasons.
A standard practice in scientific computing on distributed memory platforms is to store
“ghost nodes” on each processor that represent the neighbors of all graph vertices owned by
that processor. With ghost nodes, vertices can traverse all of their neighbors, know which
of them are stored remotely, and avoid some remote communication. However, this simple
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strategy does not scale to large instances of graphs with inverse power law distributions since
a single processor cannot be expected to store ghost nodes for the neighbors of high-degree
nodes. As an alternative, Yoo, et al. avoided the use ghost nodes, but with their approach
high degree vertices result in the need for very large message buffers. A fundamental tension
exists between runtime scalability, which ghost nodes help, and memory scalability, which
ghost nodes limit.

S-T Connectivity

For s-t connectivity, we consider the following simple algorithm: given two vertices s
and t: find the neighbors of s, see if any of them is t. If not, then find the neighbors of t
and see if any of them is one of the vertices in s’s expanding frontier. Repeat this process
by expanding the smaller of the frontiers of s and t until the two frontiers intersect (see
Figure 4.1). Yoo, et al. [80] used this algorithm on Erdös-Rényi graphs of 3.2 billion nodes,
and reported results on 32,768 processors of the world’s largest distributed memory machine,
BlueGene/L. Notably, this implementation was memory-efficient since it did not use ghost
nodes. However, as will be discussed below, this came at the cost of significantly reduced
performance. For a fixed sized problem, Yoo, et al. report a speedup of about 65 on 450
processors. Yoo, et al. also report runtimes, for a series of scaled problems in which the size of
the graph grows with the number of processors. Since the amount of work in s-t connectivity
grows less quickly than the size of the graph, however, the assessment of scalability requires
some care. On an Erdös-Rényi graph, it is straightforward to analyze the expected number
of vertices to be visited to find the shortest path between s and t. For the algorithm sketched
above applied to the instances studied by Yoo, et al., the number of vertices visited should
be about 177 times larger for the graph on 32,768 nodes than for the graph on 1 node. With
the runtime growing by a factor of three, this suggests an overall speedup of around 60.
Unfortunately, the code of Yoo, et al. was never tested on RMAT instances, in part due to
the concerns about message buffer sizes mentioned above.

Madduri, et al. [7] implemented the same s-t connectivity algorithm on the MTA-2 and
achieved a speedup factor of about 28 on 40 processors, for both Erdös-Rényi and RMAT
instances. A simple counting argument based on the number of vertices touched during
the s-t connectivity algorithm suggests that the computation done by 32,768 processors of
BlueGene/L could be done by 5-10 processors of an MTA-2 with sufficient memory.

The same algorithm was implemented in the PBGL [56], and achieved excellent single
processor performance. Lumsdaine, et al. used compact data structures to improve cache
utilization resulting in single processor performance comparable to that obtained by Yoo,
et al. on 30,768 processors of BlueGene/L. However, Lumsdaine, et al. were not able to
get any reduction in runtime as processors were added, even with the use of ghost nodes.
Fundamentally, there isn’t much work to do in an s-t connectivity algorithm. Even if the
graph is larger, only a small subset of vertices need to be visited for Erdös-Rényi graphs.
Thus, it is difficult to outperform a fast serial algorithm.
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Figure 4.1. A simple s-t connectivity algorithm: 1) find
the neighbors of s and see if t is one of them, 2) find the
neighbors of t and see if s or one of its neighbors is one of
them, 3) alternate back to s and expand its frontier one more
level (etc.)

Single-Source Shortest Paths

A fundamental problem in graph theory is that of finding single-source shortest paths
(sssp). Given a single starting vertex, sssp algorithms compute a shortest path to each
vertex in the graph, as illustrated in Fig. 4.2. A classical algorithm by Dijkstra solves this
problem by sequentially finding and “settling” the closest unsettled vertex to the source [29].
This elegant algorithm is inherently serial, but several variations of it attempt to find and
exploit parallelism. They do this by trying to find many vertices that may be settled at the
same time. Such algorithms are highly sensitive to the type of graph processed, and some
graph types, such as road networks, do not offer enough parallelism for these schemes to
work well. However, in the case of Erdös-Rényi random graphs and RMAT graphs, some
positive results have been obtained. Perhaps most notable of these is that of Madduri, et
al. [57], who used an implementation of Meyer and Sanders’ delta stepping algorithm [59],
to find sssp on an RMAT graph of roughly one billion edges in about 10 seconds on a 40
processor MTA-2. The single MTA-2 processor time for the same instance was 371 seconds,
yielding a parallel speedup factor of about 30.
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Figure 4.2. The result of calling an algorithm for sssp.
The vertices are labeled with their distance from the single
source, and the edges are labeled with their lengths. The red
edges form a single-source shortest paths tree.

A PBGL version of the same algorithm was developed by Lumsdaine, et al. [56]. On an
Opteron cluster, they report performance that is about an order of magnitude slower than
the MTA-2 performance. The Opterons in that experiment have 2.0 GHz clocks, while the
MTA-2 processors at clocked at 220 MHz. This suggests that the MTA-2 is about two orders
more efficient than the Opterons for this problem. It is also worth noting that the PBGL
code used ghost nodes, making it less memory-efficient than the MTA-2 software.

However, unlike in the s-t connectivity study, the PBGL implementation of delta stepping
displayed excellent scalability. This scalability speaks well for the generic programming
software model of PBGL. The implementation of delta stepping required only about a day
of programmer effort. Pre-PBGL distributed graph algorithm implementations of similar
complexity (e.g. the Yoo, et al. code discussed above) often required orders of magnitude
more development effort.
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Conclusions

As combinatorial algorithms become increasingly important in science, engineering and
other applications, their distinctive computational requirements will grow in significance. In
this paper we have focused on the challenges of graph algorithms, but we believe that many
combinatorial (and other) algorithms confront similar challenges. Unlike most scientific
computing kernels, graph algorithms exhibit complex memory access patterns and limited
amounts of actual processing. As a consequence, their performance is determined by the
ability of a computer to access memory, and not by the speed of the processor itself. Complex
data dependencies and dynamic, fine-grained parallelism result in poor parallel performance
on traditional machines.

Although graphs may be an extreme case, we believe that there is a broad trend in the
scientific computing community towards increasingly complex and memory-limited simula-
tions. Unstructured grids involve much more complex memory access patterns than struc-
tured grids. Adaptive grids are even more challenging, and lead to dynamic parallelism.
Multiphase and multiphysics simulations lead to an additional degree of dynamism in a
computation. These complex calculations generally achieve a very low percentage of peak
performance on a single processor and exhibit poor parallel scalability.

We believe that our work with massively multithreaded machines suggests an alternative
with the potential to significantly improve the performance of challenging computations.
Conveniently, thanks to the the continued march of Moore’s Law, there is silicon to spare
on current microprocessors. We believe that this space could be used to support massive
multithreading, resulting in processors and parallel machines that are applicable to a much
broader range of applications than current offerings.
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Chapter 5

Experimental Study of a Parallel
Shortest Path Algorithm for Solving
Large-Scale Graph Instances

The following was published in the “ALENEX” (Algorithm engineering and experimen-
tation), a workshop of the ACM/SIAM Symposium on Discrete Algorithms (SODA) con-
ference. ALENEX is a prestigious workshop with an acceptance rate of %30 or below. The
LDRD supported the latter stages of this work.
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An Experimental Study of a Parallel Shortest Path Algorithm

for Solving Large-Scale Graph Instances

Kamesh Madduri∗ David A. Bader∗ Jonathan W.Berry† Joseph R. Crobak‡

Abstract

We present an experimental study of the single source short-

est path problem with non-negative edge weights (NSSP) on

large-scale graphs using the ∆-stepping parallel algorithm.

We report performance results on the Cray MTA-2, a mul-

tithreaded parallel computer. The MTA-2 is a high-end

shared memory system offering two unique features that

aid the efficient parallel implementation of irregular algo-

rithms: the ability to exploit fine-grained parallelism, and

low-overhead synchronization primitives. Our implementa-

tion exhibits remarkable parallel speedup when compared

with competitive sequential algorithms, for low-diameter

sparse graphs. For instance, ∆-stepping on a directed scale-

free graph of 100 million vertices and 1 billion edges takes

less than ten seconds on 40 processors of the MTA-2, with a

relative speedup of close to 30. To our knowledge, these are

the first performance results of a shortest path problem on

realistic graph instances in the order of billions of vertices

and edges.

1 Introduction

We present an experimental study of the ∆-stepping
parallel algorithm [29] for solving the single source
shortest path problem on large-scale graph instances.
In addition to applications in combinatorial optimiza-
tion problems, shortest path algorithms are finding in-
creasing relevance in the domain of complex network
analysis. Popular graph theoretic analysis metrics such
as betweenness centrality [19, 9, 39, 41, 32] are based
on shortest path algorithms. Our parallel implemen-
tation targets graph families that are representative of
real-world, large-scale networks [6, 22, 12, 30, 50]. Real-
world graphs are typically characterized by a low di-
ameter, heavy-tailed degree distributions modeled by
power laws, and self-similarity. They are often very
large, with the number of vertices and edges ranging
from several hundreds of thousands to billions. On cur-
rent workstations, it is not possible to do exact in-core
computations on these graphs due to the limited phys-
ical memory. In such cases, parallel computing tech-

∗Georgia Institute of Technology
†Sandia National Laboratories
‡Rutgers University

niques can be applied to obtain exact solutions for mem-
ory and compute-intensive graph problems quickly. For
instance, recent experimental studies on Breadth-First
Search for large-scale graphs show that a parallel in-core
implementation is two orders of magnitude faster than
an optimized external memory implementation [4, 2].
In this paper, we present an efficient parallel implemen-
tation for the single source shortest paths problem that
can handle scale-free instances in the order of billions of
edges. In addition, we conduct an experimental study of
performance on several other graph families, also used
in the 9th DIMACS Implementation Challenge [14] on
Shortest Paths. Please refer to our technical report [25]
for additional performance details.

Sequential algorithms for the single source shortest
path problem with non-negative edge weights (NSSP)
are studied extensively, both theoretically [16, 18, 18,
24, 32, 34, 33, 21, 46] and experimentally [15, 28, 27,
13, 59, 20]. Let m and n denote the number of edges
and vertices in the graph respectively. Nearly all NSSP
algorithms are based on the classical Dijkstra’s [16] algo-
rithm. Using Fibonacci heaps [18], Dijkstra’s algorithm
can be implemented in O(m + n log n) time. Thorup
[34] presents an O(m + n) RAM algorithm for undi-
rected graphs that differs significantly different from Di-
jkstra’s approach. Instead of visiting vertices in the or-
der of increasing distance, it traverses a component tree.
Meyer [47] and Goldberg [20] propose simple algorithms
with linear average time for uniformly distributed edge
weights.

Parallel algorithms for solving NSSP are reviewed
in detail by Meyer and Sanders [46, 29]. There are no
known PRAM algorithms that run in sub-linear time
and O(m + n log n) work. Parallel priority queues [17,
10] for implementing Dijkstra’s algorithm have been de-
veloped, but these linear work algorithms have a worst-
case time bound of Ω(n), as they only perform edge
relaxations in parallel. Several matrix-multiplication
based algorithms [22, 26], proposed for the parallel All-
Pairs Shortest Paths (APSP), involve running time and
efficiency trade-offs. Parallel approximate NSSP algo-
rithms [23, 16, 33] based on the randomized Breadth-
First search algorithm of Ullman and Yannakakis [36]
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run in sub-linear time. However, it is not known how
to use the Ullman-Yannakakis randomized approach for
exact NSSP computations in sub-linear time.

Meyer and Sanders give the ∆-stepping [29] NSSP
algorithm that divides Dijkstra’s algorithm into a num-
ber of phases, each of which can be executed in par-
allel. For random graphs with uniformly distributed
edge weights, this algorithm runs in sub-linear time with
linear average case work. Several theoretical improve-
ments [28, 26, 27] are given for ∆-stepping (for instance,
finding shortcut edges, adaptive bucket-splitting), but
it is unlikely that they would be faster than the simple
∆-stepping algorithm in practice, as the improvements
involve sophisticated data structures that are hard to
implement efficiently. On a random d-regular graph in-
stance (219 vertices and d = 3), Meyer and Sanders
report a speedup of 9.2 on 16 processors of an Intel
Paragon machine, for a distributed memory implemen-
tation of the simple ∆-stepping algorithm. For the same
graph family, we are able to solve problems three or-
ders of magnitude larger with near-linear speedup on
the Cray MTA-2. For instance, we achieve a speedup of
14.82 on 16 processors and 29.75 on 40 processors for a
random d-regular graph of size 229 vertices and d set to
3.

The literature contains few experimental studies on
parallel NSSP algorithms [35, 31, 37, 35]. Prior im-
plementation results on distributed memory machines
resorted to graph partitioning [12, 1, 31], and running a
sequential NSSP algorithm on the sub-graph. Heuristics
are used for load balancing and termination detection
[36, 38]. The implementations perform well for certain
graph families and problem sizes, but in the worst case,
there is no speedup.

Implementations of PRAM graph algorithms for ar-
bitrary sparse graphs are typically memory intensive,
and the memory accesses are fine-grained and highly ir-
regular. This often leads to poor performance on cache-
based systems. On distributed memory clusters, few
parallel graph algorithms outperform the best sequen-
tial implementations due to long memory latencies and
high synchronization costs [4, 3]. Parallel shared mem-
ory systems are a more supportive platform. They offer
higher memory bandwidth and lower latency than clus-
ters, and the global shared memory greatly improves
developer productivity. However, parallelism is depen-
dent on the cache performance of the algorithm [53] and
scalability is limited in most cases.

We present our shortest path implementation re-
sults on the Cray MTA-2, a massively multithreaded
parallel machine. The MTA-2 is a high-end shared
memory system offering two unique features that aid
considerably in the design of irregular algorithms: fine-

grained parallelism and low-overhead word-level syn-
chronization. The MTA-2 has no data cache; rather
than using a memory hierarchy to reduce latency, the
MTA-2 processors use hardware multithreading to tol-
erate the latency. The word-level synchronization sup-
port complements multithreading and makes perfor-
mance primarily a function of parallelism. Since graph
algorithms have an abundance of parallelism, yet often
are not amenable to partitioning, the MTA-2 architec-
tural features lead to superior performance and scalabil-
ity. Our recent results highlight the exceptional perfor-
mance of the MTA-2 for implementations of key com-
binatorial optimization and graph theoretic problems
such as list ranking [3], connected components [3, 7],
subgraph isomorphism [7], Breadth-First Search and st -
connectivity [4].

The main contributions of this paper are as follows:

• An experimental study of solving the single-source

shortest paths problem in parallel using the ∆-

stepping algorithm. Prior studies have predomi-
nantly focused on running sequential NSSP algo-
rithms on graph families that can be easily parti-
tioned, whereas we also consider several arbitrary,
sparse graph instances. We also analyze perfor-
mance using machine-independent algorithmic op-
eration counts.

• Demonstration of the power of massive multithread-

ing for graph algorithms on highly unstructured in-

stances. We achieve impressive performance on
low-diameter random and scale-free graphs.

• Solving NSSP for large-scale realistic graph in-

stances in the order of billions of edges. ∆-stepping
on a synthetic directed scale-free graph of 100 mil-
lion vertices and 1 billion edges takes 9.73 seconds
on 40 processors of the MTA-2, with a relative
speedup of approximately 31. These are the first
results that we are aware of, for solving instances
of this scale and also achieving near-linear speedup.
Also, the sequential performance of our implemen-
tation is comparable to competitive NSSP imple-
mentations.

2 Review of the ∆-stepping Algorithm

Let G = (V, E) be a graph with n vertices and m
edges. Let s ∈ V denote the source vertex. Each
edge e ∈ E is assigned a non-negative real weight
by the length function l : E → R. Define the
weight of a path as the sum of the weights of its edges.
The single source shortest paths problem with non-
negative edge weights (NSSP) computes δ(v), the weight
of the shortest (minimum-weighted) path from s to v.
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δ(v) =∞ if v is unreachable from s. We set δ(s) = 0.
Most shortest path algorithms maintain a tentative

distance value for each vertex, which are updated by
edge relaxations. Let d(v) denote the tentative distance
of a vertex v. d(v) is initially set to ∞, and is an upper
bound on δ(v). Relaxing an edge 〈v, w〉 ∈ E sets d(w)
to the minimum of d(w) and d(v) + l(v, w). Based on
the manner in which the tentative distance values are
updated, most shortest path algorithms can be classified
into two types: label-setting or label-correcting. Label-
setting algorithms (for instance, Dijkstra’s algorithm)
perform relaxations only from settled (d(v) = δ(v))
vertices, and compute the shortest path from s to all
vertices in exactly m edge relaxations. Based on the
values of d(v) and δ(v), at each iteration of a shortest
path algorithm, vertices can be classified into unreached

(d(v) =∞), queued (d(v) is finite, but v is not settled)
or settled. Label-correcting algorithms (e.g., Bellman-
Ford) relax edges from unsettled vertices also, and may
perform more than m relaxations. Also, all vertices
remain in a queued state until the final step of the
algorithm. ∆-stepping belongs to the label-correcting
type of shortest path algorithms.

The ∆-stepping algorithm (see Alg. 1) is an “ap-
proximate bucket implementation of Dijkstra’s algo-
rithm” [29]. It maintains an array of buckets B such
that B[i] stores the set of vertices {v ∈ V : v is queued
and d(v) ∈ [i∆, (i + 1)∆)}. ∆ is a positive real number
that denotes the “bucket width”.

In each phase of the algorithm (the inner while loop
in Alg. 1, lines 9–14, when bucket B[i] is not empty), all
vertices are removed from the current bucket, added to
the set S, and light edges (l(e) ≤ ∆, e ∈ E) adjacent to
these vertices are relaxed (see Alg. 2). This may result
in new vertices being added to the current bucket, which
are deleted in the next phase. It is also possible that
vertices previously deleted from the current bucket may
be reinserted, if their tentative distance is improved.
Heavy edges (l(e) > ∆, e ∈ E) are not relaxed in
a phase, as they result in tentative values outside the
current bucket. Once the current bucket remains empty
after relaxations, all heavy edges out of the vertices
in S are relaxed at once (lines 15–17 in Alg. 1). The
algorithm continues until all the buckets are empty.

Observe that edge relaxations in each phase can
be done in parallel, as long as individual tentative
distance values are updated atomically. The number
of phases bounds the parallel running time, and the
number of reinsertions (insertions of vertices previously
deleted) and rerelaxations (relaxation of their out-going
edges) costs an overhead over Dijkstra’s algorithm. The
performance of the algorithm also depends on the value
of the bucket-width ∆. For ∆ = ∞, the algorithm is

Algorithm 1: ∆-stepping algorithm

Input: G(V, E), source vertex s, length func-
tion l : E → R

Output: δ(v), v ∈ V , the weight of the shortest
path from s to v

1 foreach v ∈ V do

2 heavy(v) ←− {〈v, w〉 ∈ E : l(v, w) > ∆};
3 light(v) ←− {〈v, w〉 ∈ E : l(v, w) ≤ ∆};
4 d(v)←−∞;

5 relax(s, 0);
6 i←− 0;
7 while B is not empty do

8 S ←− φ;
9 while B[i] 6= φ do

10 Req ←− {(w, d(v) + l(v, w)) : v ∈ B[i] ∧
〈v, w〉 ∈ light(v)};

11 S ←− S ∪B[i];
12 B[i]←− φ;
13 foreach (v, x) ∈ Req do

14 relax(v, x);

15 Req ←− {(w, d(v) + l(v, w)) : v ∈ S ∧
〈v, w〉 ∈ heavy(v)};

16 foreach (v, x) ∈ Req do

17 relax(v, x);

18 i←− i + 1;

19 foreach v ∈ V do

20 δ(v)←− d(v);

Algorithm 2: The relax routine in the ∆-stepping
algorithm

Input: v, weight request x

Output: Assignment of v to appropriate
bucket

1 if x < d(v) then

2 B [⌊d(v)/∆⌋]← B [⌊d(v)/∆⌋] \{v};
3 B [⌊x/∆⌋]← B [⌊x/∆⌋] ∪ {v};
4 d(v)← x;
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similar to the Bellman-Ford algorithm. It has a high
degree of parallelism, but is inefficient compared to
Dijkstra’s algorithm. ∆-stepping tries to find a good
compromise between the number of parallel phases and
the number of re-insertions. Theoretical bounds on the
number of phases and re-insertions, and the average case
analysis of the parallel algorithm are presented in [29].
We summarize the salient results.

Let dc denote the maximum shortest path weight,
and P∆ denote the set of paths with weight at most
∆. Define a parameter lmax, an upper bound on the
maximum number of edges in any path in P∆. The
following results hold true for any graph family.

• The number of buckets in B is ⌈dc/∆⌉.

• The total number of reinsertions is bounded by
|P∆|, and the total number of rerelaxations is
bounded by |P2∆|.

• The number of phases is bounded by dc

∆
lmax, i.e.,

no bucket is expanded more than lmax times.

For graph families with random edge weights and
a maximum degree of d, Meyer and Sanders [29] theo-
retically prove that ∆ = θ(1/d) is a good compromise
between work efficiency and parallelism. The sequen-
tial algorithm performs O(dn) expected work divided
between O(dc

∆
· log n

log log n
) phases with high probability .

In practice, in case of graph families for which dc is
O(log n) or O(1), the parallel implementation of ∆-
stepping yields sufficient parallelism for our parallel sys-
tem.

3 Parallel Implementation of ∆-stepping

The bucket array B is the primary data structure used
by the parallel ∆-stepping algorithm. We implement
individual buckets as dynamic arrays that can be re-
sized when needed and iterated over easily. To support
constant time insertions and deletions, we maintain two
auxiliary arrays of size n: a mapping of the vertex ID
to its current bucket, and a mapping from the vertex ID
to the position of the vertex in the current bucket (see
Fig. 1 for an illustration). All new vertices are added to
the end of the array, and deletions of vertices are done
by setting the corresponding locations in the bucket and
the mapping arrays to −1. Note that once bucket i is
finally empty after a light edge relaxation phase, there
will be no more insertions into the bucket in subsequent
phases. Thus, the memory can be reused once we are
done relaxing the light edges in the current bucket. Also
observe that all the insertions are done in the relax rou-
tine, which is called once in each phase, and once for
relaxing the heavy edges.

We implement a timed pre-processing step to semi-

sort the edges based on the value of ∆. All the light
edges adjacent to a vertex are identified in parallel
and stored in contiguous virtual locations, and so we
visit only light edges in a phase. The O(n) work pre-
processing step scales well in parallel on the MTA-2.

We also support fast parallel insertions into the
request set R. R stores 〈v, x〉 pairs, where v ∈ V and x is
the requested tentative distance for v. We add a vertex v
to R only if it satisfies the condition x < d(v). We do not
store duplicates in R. We use a sparse set representation
similar to one used by Briggs and Torczon [9] for storing
vertices in R. This sparse data structure uses two arrays
of size n: a dense array that contiguously stores the
elements of the set, and a sparse array that indicates
whether the vertex is a member of the set. Thus, it
is easy to iterate over the request set, and membership
queries and insertions are constant time. Unlike other
Dijkstra-based algorithms, we do not relax edges in one
step. Instead, we inspect adjacencies (light edges) in
each phase, construct a request set of vertices, and then
relax vertices in the relax step.

All vertices in the request set R are relaxed in
parallel in the relax routine. In this step, we first delete
a vertex from the old bucket, and then insert it into the
new bucket. Instead of performing individual insertions,
we first determine the expansion factor of each bucket,
expand the buckets, and add then all vertices into their
new buckets in one step. Since there are no duplicates
in the request set, no synchronization is involved for
updating the tentative distance values.

To saturate the MTA-2 processors with work and to
obtain high system utilization, we need to minimize the
number of phases and non-empty buckets, and maximize
the request set sizes. Entering and exiting a parallel
phase involves a negligible running time overhead in
practice. However, if the number of phases is O(n),
this overhead dominates the actual running time of
the implementation. Also, we enter the relax routine
once every phase. The number of implicit barrier
synchronizations in the algorithm is proportional to the
number of phases. Our implementation reduces the
number of barriers. Our source code for the ∆-stepping
implementation, along with the MTA-2 graph generator
ports, is freely available online [24].

4 Experimental Setup

4.1 Platforms We report parallel performance re-
sults on a 40-processor Cray MTA-2 system with 160
GB uniform shared memory. Each processor has a clock
speed of 220 MHz and support for 128 hardware threads.
The ∆-stepping code is written in C with MTA-2 spe-
cific pragmas and directives for parallelization. We com-
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Figure 1: Bucket array and auxiliary data structures

pile it using the MTA-2 C compiler (Cray Programming
Environment (PE) 2.0.3) with -O3 and -par flags.

The MTA-2 code also compiles and runs on sequen-
tial processors without any modifications. Our test plat-
form for the sequential performance results is one pro-
cessor of a dual-core 3.2 GHz 64-bit Intel Xeon machine
with 6GB memory, 1MB cache and running RedHat En-
terprise Linux 4 (linux kernel 2.6.9). We compare the
sequential performance of our implementation with the
DIMACS reference solver [14]. Both the codes are com-
piled with the Intel C compiler (icc) Version 9.0, with
the flags -O3.

4.2 Problem Instances We evaluate sequential and
parallel performance on several graph families. Some of
the generators and graph instances are part of the DI-
MACS Shortest Path Implementation Challenge bench-
mark package [14]:

• Random graphs: Random graphs are generated by
first constructing a Hamiltonian cycle, and then
adding m − n edges to the graph at random. The
generator may produce parallel edges as well as
self-loops. We define the random graph family
Random4-n such that n is varied, m

n
= 4, and the

edge weights are chosen from a uniform random
distribution.

• Grid graphs: This synthetic generator produces
two-dimensional meshes with grid dimensions x
and y. Long-n (x = n

16
, y = 16) and Square-n

grid (x = y =
√

n) families are defined, similar to
random graphs.

• Road graphs : Road graph families with transit time
(USA-road-t) and distance (USA-road-d) as the
length function.

In addition, we also study the following families:

• Scale-free graphs: We use the R-MAT graph model
[11] for real-world networks to generate scale-free
graphs. We define the family ScaleFree4-n similar
to random graphs.

• Log-uniform weight distribution: The above graph
generators assume randomly distributed edge
weights. We report results for an additional log-

uniform distribution also. The generated integer
edge weights are of the form 2i, where i is chosen
from the uniform random distribution [1, log C] (C
denotes the maximum integer edge weight). We
define Random4logUnif-n and ScaleFree4logUnif-n

families for this weight distribution.

4.3 Methodology For sequential runs, we report the
execution time of the reference DIMACS NSSP solver
(an efficient implementation of Goldberg’s algorithm
[21], which has expected-case linear time for some in-
puts) and the baseline Breadth-First Search (BFS) on
every graph family. The BFS running time is a natural
lower bound for NSSP codes and is a good indicator of
how optimized the shortest path implementations are.
It is reasonable to directly compare the execution times
of the reference code and our implementation: both use
a similar adjacency array representation for the graph,
are written in C, and compiled and run in identical ex-
perimental settings. Note that our implementation is
optimized for the MTA-2 and we make no modifications
to the code before running on a sequential machine. The
time taken for semi-sorting and mechanisms to reduce
memory contention on the MTA-2 both constitute over-
head on a sequential processor. Also, our implementa-
tion assumes real-weighted edges, and we cannot use
fast bitwise operations. By default, we set the value of
∆ to n

m
for all graph instances. We will show that this

choice of ∆ may not be optimal for all graph classes and
weight distributions.

On a sequential processor, we execute the BFS and
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shortest path codes on all the core graph families, for
the recommended problem sizes. However, for parallel
runs, we only report results for sufficiently large graph
instances in case of the synthetic graph families. We
parallelize the synthetic core graph generators and port
them to run on the MTA-2.

Our implementations accept both directed and
undirected graphs. For all the synthetic graph in-
stances, we report execution times on directed graphs in
this paper. The road networks are undirected graphs.
We also assume the edge weights to be distributed in
[0, 1] in the ∆-stepping implementation. So we have a
pre-processing step to scale the integer edge weights in
the core problem families to the interval [0, 1], dividing
the integer weights by the maximum edge weight.

On the MTA-2, we compare our implementation
running time with the execution time of a multithreaded
level-synchronized breadth-first search [5], optimized for
low-diameter graphs. The multithreaded BFS scales as
well as ∆-stepping for all the graph instances consid-
ered, and the execution time serves as a lower bound
for the shortest path running time.

The first run on the MTA-2 is usually slower than
subsequent ones (by about 10% for a typical ∆-stepping
run). So we report the average running time for 10
successive runs. We run the code from three randomly
chosen source vertices and average the running time.
We found that using three sources consistently gave
us execution time results with little variation on both
the MTA-2 and the reference sequential platform. We
tabulate the sequential and parallel performance metrics
in [25], and report execution time in seconds.

5 Results and Analysis

5.1 Sequential Performance First we present the
performance results of our implementation on the ref-
erence sequential platform, experimenting with various
graph families. Fig. 2 compares the execution time
across graph instances of the same size, but from dif-
ferent families. The DIMACS reference code is about
1.5 to 2 times faster than our implementation for large
problem instances in each family. The running time
on the Random4-n is slightly higher than the rest of
the families. For additional details such as performance
as we vary the problem size for BFS, ∆-stepping, and
the DIMACS implementation execution times, please
refer to Section B.1 of [25]. Our key observation is that
the ratio of the ∆-stepping execution time to the BFS
time varies between 3 and 10 across different problem
instances.

5.2 ∆-stepping analysis To better understand the
algorithm performance across graph families, we use
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Figure 2: Sequential performance of our ∆-stepping
implementation on the core graph families. All the
synthetic graphs are directed, with 220 vertices and m

n
≈

4. FLA(d) and FLA(t) are road networks corresponding
to Florida, with 1070376 vertices and 2712768 edges

machine-independent algorithm operation counts. The
parallel performance is dependent on the value of ∆,
the number of phases, the size of the request set in each
phase. Fig. 3 plots the size of the light request set in
each phase, for different graph families. By default, ∆
is set to 0.25 for all runs. If the request set size is
less than 10, it is not plotted. Consider the random
graph family (Fig. 3(a)). It executes in 84 phases, and
the request set sizes vary from 0 to 27,000. Observe
the recurring pattern of three bars stacked together in
the plot. This indicates that all the light edges in a
bucket are relaxed in roughly three phases, and the
bucket then becomes empty. The size of the relax set is
relatively high for several phases, which provides scope
for exploiting multithreaded parallelism. The relax set
sizes of a similar problem instance from the Long grid
family (Fig. 3(b)) stands in stark contrast to that of
the random graph. It takes about 200,000 phases to
execute, and the maximum request size is only 15. Both
of these values indicate that our implementation would
fare poorly on long grid graphs (e.g. meshes with a
very high aspect ratio). On square grids (Fig. 3(c)), ∆-
stepping takes fewer phases, and the request set sizes
go up to 500. For a road network instance (NE USA-
road-d, Fig. 3(d)), the algorithm takes 23,000 phases to
execute, and only a few phases (about 30) have request
sets greater than 1000 in size.

Fig. 4 plots several key ∆-stepping operation counts
for various graph classes. All synthetic graphs are
roughly of the same size. Fig. 4(a) plots the average
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(a) Random4-n family, n = 220. (b) Long-n family, n = 220.

(c) Square-n family, n = 220. (d) USA-road-d family, Northeast USA (NE). n = 1524452, m =
3897634.

Figure 3: ∆-stepping algorithm: Size of the light request set at the end of each phase, for the core graph families.
Request set sizes less than 10 are not plotted.
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shortest path weight for various graph classes. Scale-
free and Long grid graphs are on the two extremes.
A log-uniform edge weight distribution also results in
low average edge weight. The number of phases (see
Fig. 4(b)) is highest for Long grid graphs. The number
of buckets shows a similar trend as the average shortest
path weight. Fig. 4(d) plots the total number of
insertions for each graph family. The number of vertices
is 220 for all graph families (slightly higher for the road
network), and so ∆-stepping results in roughly 20%
overhead in insertions for all the graph families with
random edge weights. Note the number of insertions
for graphs with log-uniform weight distributions. ∆-
stepping performs a significant amount of excess work
for these families, because the value of ∆ is quite high
for this particular distribution.

We next evaluate the performance of the algorithm
as ∆ is varied (tables in Section B.2). Fig. 5 plots
the execution time of various graph instances on a
sequential machine, and one processor of the MTA-
2. ∆ is varied from 0.1 to 10 in each case. We find
that the absolute running times on a 3.2 GHz Xeon
processor and the MTA-2 are comparable for random,
square grid and road network instances. However, on
long grid graphs (Fig. 5(b)), the MTA-2 execution time
is two orders of magnitude greater than the sequential
time. The number of phases and the total number of
relaxations vary as ∆ is varied (See Section B.2 in [25]).
On the MTA-2, the running time is not only dependent
on the work done, but also on the number of phases and
the average number of relax requests in a phase. For
instance, in the case of long grids (see Fig. 5(b), with
execution time plotted on a log scale), the running time
decreases significantly as the value of ∆ is decreased, as
the number of phases reduce. On a sequential processor,
however, the running time is only dependent on the
work done (number of insertions). If the value of ∆
is greater than the average shortest path weight, we
perform excess work and the running time noticeably
increases (observe the execution time for ∆ = 5, 10 on
the random graph and the road network). The optimal
value of ∆ (and the execution time on the MTA-2) is
also dependent on the number of processors. For a
particular ∆, it may be possible to saturate a single
processor of the MTA-2 with the right balance of work
and phases. The execution time on a 40-processor run
may not be minimal with this value of ∆.

5.3 Parallel Performance We present the parallel
scaling of the ∆-stepping algorithm in detail. We
ran ∆-stepping and the level-synchronous parallel BFS
on all graph instances described in Section 4.2 (see
[25] for complete tabular results from all experiments).

We define the speedup on p processors of the MTA-
2 as the ratio of the execution time on 1 processor
to the execution time on p processors. In all graph
classes except long grids, there is sufficient parallelism to
saturate a single processor of the MTA-2 for reasonably
large problem instances.

As expected, ∆-stepping performs best for low-
diameter random and scale-free graphs with randomly
distributed edge weights (see Fig. 6(a) and 6(b)). We
achieve a speedup of approximately 31 on 40 processors
for a directed random graph of nearly a billion edges,
and the ratio of the BFS and ∆-stepping execution time
is a constant factor (about 3-5) throughout. The imple-
mentation performs equally well for scale-free graphs,
that are more difficult for partitioning-based parallel
computing models to handle due to the irregular degree
distribution. The execution time on 40 processors of the
MTA-2 for the scale-free graph instance is within 9% (a
difference of less than one second) of the running time
for a random graph and the speedup is approximately
30 on 40 processors. We have already shown that the
execution time for smaller graph instances on a sequen-
tial machine is comparable to the DIMACS reference
implementation, a competitive NSSP algorithm. Thus,
achieving a speedup of 30 for a realistic scale-free graph
instance of one billion edges (Fig. 6(b)) is a substan-
tial result. To our knowledge, these are the first results
to demonstrate near-linear speedup for such large-scale
unstructured graph instances.

In case of all the graph families, the relative speedup
increases as the problem size is increased (for e.g., on 40
processors, the speedup for a Random4-n instance with
n = 221 is just 3.96, whereas it is 31.04 for 228 vertices).
This is because there is insufficient parallelism in a
problem instance of size 221 to saturate 40 processors
of the MTA-2. As the problem size increases, the ratio
of ∆-stepping execution time to multithreaded BFS
running time decreases. On an average, ∆-stepping is 5
times slower than BFS for this graph family.

For random graphs with a log-uniform weight dis-
tribution, ∆ set to n

m
results in a significant amount of

additional work. The ∆-stepping to BFS ratio is typi-
cally 40 in this case, about 8 times higher than the cor-
responding ratio for random graphs with random edge
weights. However, the execution time scales well with
the number of processors for large problem sizes.

In case of Long-n graphs and ∆ set to n

m
, there is

insufficient parallelism to fully utilize even a single pro-
cessor of the MTA-2. The execution time of the level-
synchronous BFS also does not scale with the number
of processors. In fact, the running time goes up in case
of multiprocessor runs, as the parallelization overhead
becomes significant. Note that the execution time on a
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(a) Average shortest path weight ( 1

n
∗

P

v∈V
δ(v)) (b) No. of phases

(c) Last non-empty bucket (d) Number of relax requests

Figure 4: ∆-stepping algorithm performance statistics for various graph classes. All synthetic graph instances
have n set to 220 and m ≈ 4n. Rand-rnd: Random graph with random edge weights, Rand-logU: Random graphs
with log-uniform edge weights, Scale-free: Scale-free graph with random edge weights, Lgrid: Long grid, SqGrid:
Square grid, USA NE: 1524452 vertices, 3897634 edges. Plots (a), (b), (c) are on a log scale, while (d) uses a
linear scale.
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(a) Random4-n family. 220 vertices (b) Long-n family. 220 vertices

(c) Square-n family. 220 vertices (d) USA-road-d family, Florida (FLA). 1070376 vertices, 2712798
edges

Figure 5: A comparison of the execution time on the reference sequential platform and a single MTA-2 processor,
as the bucket-width ∆ is varied.
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(a) (b)

Figure 6: ∆-stepping execution time and relative speedup on the MTA-2 for Random4-n (left) and ScaleFree4-n
(right) graph instances (directed graph, n=228 vertices and m = 4n edges, random edge weights).

single processor of the MTA-2 is two orders of magni-
tude slower than the reference sequential processor. In
case of square grid graphs, there is sufficient parallelism
to utilize up to 4 processors for a graph instance of 224

vertices. For all smaller instances, the running time
does not scale for multiprocessor runs. The ratio of the
running time to BFS is about 5 in this case, and the
∆-stepping MTA-2 single processor time is comparable
to the sequential reference platform running time for
smaller instances. For the road networks, we note that
the execution time does not scale well with the number
of processors, as the problem instances are quite small.
We observe better performance (lower execution time,
better speedup) on USA-road-d graphs than on USA-
road-t graphs.

6 Conclusions and Future Work

In this paper, we present an efficient implementation
of the parallel ∆-stepping NSSP algorithm along with
an experimental evaluation. We study the perfor-
mance for several graph families on the Cray MTA-2,
and observe that our implementation execution time
scales very well with number of processors for low-
diameter sparse graphs. Few prior implementations
achieve parallel speedup for NSSP, whereas we attain
near-linear speedup for several large-scale low-diameter
graph families. We also analyze the performance using
platform-independent ∆-stepping algorithm operation
counts such as the number of phases and the request set

sizes to explain performance across graph instances.
We intend to further study the dependence of the

bucket-width ∆ on the parallel performance of the

algorithm. For high diameter graphs, there is a trade-off
between the number of phases and the amount of work
done (proportional to the number of bucket insertions).
The execution time is dependent on the value of ∆ as
well as the number of processors. We need to reduce
the number of phases for parallel runs and increase
the system utilization by choosing an appropriate value
of ∆. Our parallel performance studies have been
restricted to the Cray MTA-2 in this paper. We
have designed and have a preliminary implementation
of ∆-stepping for multi-core processors and symmetric
multiprocessors (SMPs), and for future work we will
analyze its performance.
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[57] J. L. Träff. An experimental comparison of two dis-
tributed single-source shortest path algorithms. Paral-
lel Computing, 21(9):1505–1532, 1995.

[58] J. Ullman and M. Yannakakis. High-probability par-
allel transitive closure algorithms. In Proc. 2nd Ann.
Symp. Parallel Algorithms and Architectures (SPAA-
90), pages 200–209, Crete, Greece, July 1990. ACM.

[59] F.B. Zhan and C.E. Noon. Shortest path algorithms:
an evaluation using real road networks. Transp. Sci.,
32:65–73, 1998.

References

[1] P. Adamson and E. Tick. Greedy partitioned algo-
rithms for the shortest path problem. Internat. J. Par-
allel Program, 20(4):271–278, 1991.

[2] D. Ajwani, R. Dementiev, and U. Meyer. A computa-
tional study of external-memory BFS algorithms. In

72



Chapter 6

A multithreaded algorithm for finding
triangles

The following is unpublished work describing a multithreaded algorithm for finding tri-
angles (3-cycles) in graphs. It has been superceded in terms of Cray XMT performance by
an algorithm of Jonathan Cohen [23]. However, our ideas below are novel and might have
application in some context.

Background

A simple algorithm for finding triangles (3-cycles) in an undirected graph is to compute
the intersection of the neighborhoods of the endpoints of each edge. Implementations of
this approach involve defining and searching data structures for each vertex. When input
instances are social networks with inverse power law degree distributions, for example, we
might wish to store the adjacencies of high-degree nodes in hash tables or treaps to cut down
on search time, or to leverage efficient set intersection operations.

The strategy above is conceptually simple, but incurs large overheads in actual imple-
mentation. We propose to replace this conceptually simple strategy with a more subtle one
that obviates the need for extra memory and search logic. Our algorithm repeatedly finds
maximal independent sets, and performs a three-phase process on each set in order to to
identify all of the triangles.

We give the algorithm below, without any correctness proof yet.

The Algorithm

The basic idea of our algorithm is to find triangles using a mark and sweep process rather
than computing set intersections. Let G = (V, E) be an undirected graph and S ⊂ V be
an initially empty set of settled vertices. A vertex is consided to be settled if all triangles
containing that vertex have been identified.
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Define a function f : V → R. For example, we might define f(v) = δ(v) (the degree of
v). This will be used to arbitrate between processing elements in the algorithm below. Also,
define m(v) ∈ V to be the mark of v. Vertices will mark each other in the algorithm. Define
Cv to be an initially empty set of confounded vertices. The meaning of “confounded” will be
given below.

Let N(v) be the set of vertices adjacent to v, and let E(v) be the set of edges incident
on v. Let Ef be an initially empty set of edges.

Processing a Maximal Independent Set

Find a maximal independent set S ′ ∈ (V − S, E − Ef ) using, for example, Luby’s algo-
rithm. Set Cv = ∅, and set m(v) = v for all v ∈ V − S. Process S ′ using the three phases
described below.

Mark Phase

For each v ∈ S ′, do the following. For every w ∈ N(v), attempt to set m(w) = v in a
thread safe manner. If it is determined that m(w) was set previously in this phase, then let
Cv = Cv ∪ {w}.

if f(v) > f(w), then set m(w) = f(v). In other words, if several vertices in S ′ are
adjacent to w, then w is confounded, and the dominant S ′ vertex in N(w) with respect to f
will mark w.

Sweep Phase

Iterate through all edges E − Ef . Each such edge with identically marked endpoints
identifies a single triangle. Each v ∈ S ′ that successfully marked all of its neighbors is now
settled; let S = S ∪ v and Ef = Ef ∪ E(v) for all such vertices.

Conflict Resolution Phase

Some vertices of S ′ may not be settled after the mark and sweep phases. This is exactly
the set of vertices

U = {w ∈ S ′ : ∃u∈N(w)m(u) 6= w}.

It is convenient to classify the neighbors of w ∈ S ′:

Nc(w) = {u ∈ N(w) : m(u) 6= w}, and Ng(w) = {u ∈ N(w) : m(u) = w}.
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We will not be able to settle w ∈ U in this phase. However, we can find all triangles involving
the non-confounding edges (w, u) : u ∈ Ng(w).

Conceptually, this is done by identifying all confounding edges (w, u) : u ∈ Nc(w). Note
that a settled vertex is not incident to any confounding edges. Given a confounding edge
(w, u), we could search N(u). Each vertex v ∈ N(u) such that m(v) = w identifies a
triangle. Once all confounding edges have been processed, all non-confounding edges incident
on vertices of S ′ can be added to Ef , since all triangles involving those edges have been
identified.

However, this conceptual strategy is best implemented without processing the confound-
ing edges explicitly. The adjacencies of confounding vertices of high degree will become hot
spots, as many incident confounding edges may trigger adjacency list traversals.

Instead of processing the confounding edges, we process the confounding vertices. For
each cv ∈ Cv, the conflict resolution phase traverses N(cv) exactly once. Define the set of
mark value classes of vertices adjacent to a confounded vertex cv as follows:

Mcv = {mi : ∃u∈N(cv)mi = m(u)}.

We will consider each class of mark value mi independently. Let

Ni(cv) = N(cv) ∩ {u : m(u) = mi}.

If Ni(cv) ∩ S ′ 6= ∅, then we have identified the |Ni(cv)| − 1 triangles that include both cv

and a single independent set vertex in Ni(cv) ∩ S ′. On the other hand, if this intersection is
empty, then the mark class Ni(cv) contains no vertex in U and hence, no triangles incident
on any vertex of U touch Ni(cv).

When all mi ∈ Mcv have been processed for all cv ∈ Cv, then we have identified all
triangles including non-confounding edges incident on vertices of S ′. These edges can safely
be added to Ef .

Termination

The algorithm repeatedly finds maximal independent sets in (V−S, E−Ef ), then executes
the mark, sweep, and conflict resolution phases until all vertices in V have been settled. In
practice, a cleanup phase follows the conflict resolution phase. This settles degree one vertices
and their indicent edges.
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Chapter 7

Software and algorithms for graph
queries on massively multithreaded
architectures

The following was published as part of the 1st IEEE workshop on MultiThreaded Ar-
chitectures & Applications (MTAAP). This LDRD supported the writing and publication of
this paper, though much of the work was accomplished prior to the beginning of the LDRD.
It is the inital MTGL paper. Note that significant LDRD effort went into further developing
the MTGL after this publication. The proper citation is [12].

Abstract

Search-based graph queries, such as finding short paths and isomorphic subgraphs, are dom-
inated by memory latency. If input graphs can be partitioned appropriately, large cluster-
based computing platforms can run these queries. However, the lack of compute-bound
processing at each vertex of the input graph and the constant need to retrieve neighbors im-
plies low processor utilization. Furthermore, graph classes such as scale-free social networks
lack the locality to make partitioning clearly effective.

Massive multithreading is an alternative architectural paradigm, in which a large shared
memory is combined with processors that have extra hardware to support many thread
contexts. The processor speed is typically slower than normal, and there is no data cache.
Rather than mitigating memory latency, multithreaded machines tolerate it. This paradigm
is well aligned with the problem of graph search, as the high ratio of memory requests to
computation can be tolerated via multithreading.

In this paper, we introduce the MultiThreaded Graph Library (MTGL), generic graph query
software for processing semantic graphs on multithreaded computers. This library currently
runs on serial machines and the Cray MTA-2, but Sandia is developing a run-time system
that will make it possible to run MTGL-based code on Symmetric MultiProcessors. We
also introduce a multithreaded algorithm for connected components and a new heuristic for
inexact subgraph isomophism. We explore the performance of these and other basic graph
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algorithms on large scale-free graphs. We conclude with a performance comparison between
the Cray MTA-2 and Blue Gene/Light for s-t connectivity.

Introduction

Typical microprocessors combine several layers of cache into a memory hierarchy, then
rely on the spacial and temporal locality inherent in many applications. Graph algorithms,
however, might have neither. This is especially true when they are applied to unstructured
graphs such as social networks.

A semantic graph (or attributed relational graph) is a graph with types on the vertices
and/or edges. Vertices are typically “nouns” and edges are typically “verbs.” Social net-
works, for example, are semantic graphs. The world focus on counter-terrorism as a primary
challenge has made the processing of large, unstructured semantic graphs an important re-
search area.

The shared-memory programming model of the massively multithreaded Cray MTA and
Eldorado machines offer the mixed blessing of a higher level of abstraction than message
passing/MPI models, but relatively more subtle concurrency and performance issues. The
MTGL is designed to encapsulate many of these subtleties for standard graph kernel algo-
rithms.

We present the MTGL in stages. In Section 7, we describe the design goals and primary
design pattern of the MTGL. Then, in Section 8, we give high-level pseudocode descriptions
of the MTGL implementations of three kernel algorithms: connected components, subgraph
isomorphism, and s-t connectivity. These descriptions will highlight the generic nature of
the graph search primitives within the MTGL, as they are reused several times.

Note in advance that there is no graph or matrix partitioning in the MTGL kernel
algorithms we describe. The MTA programmer does not explicitly make assignments of
tasks or data to specific processors. This is handled by the runtime system of the MTA. In
fact, the memory of the MTA-2 is hashed at the word level in order to intentionally destroy
locality.

Synchronization in the MTA-2 is handled with a full/empty bit associated with every
word. The architecture does support concurrent reads and writes, but the programmer must
be wary of hot spots.
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MTGL Design Methodology

The MTGL is a small prototype C++ library that is inspired by the Boost Graph Library
(BoostGL) of Siek, Lee, and Lumsdaine [74]. However, our library is not an extension of
BoostGL. The MTA and Eldorado compilers are not fully compliant with the C++ standard,
and BoostGL makes aggressive use of the language in order to maximize its flexibility. The
MTGL is not designed to be as generic as BoostGL. Rather, our primary design goals are to
maximally expose the performance of multithreaded machines and to maximally encapsu-
late the threats to successful development of applications: race conditions and hotspotting.
Whereas the BoostGL has numerous graph representations, data structures, and algorithms,
our prototype MTGL has but a few.

The primary design pattern of the MTGL is the visitor pattern. Algorithms are defined
by library programmers as objects, and are customized by user-defined “visitor” classes. We
show several examples of the use of visitors below. Performance results are then presented
in Section 7. We omit actual code samples in this paper. At the time of this writing, we are
in the process of obtaining an open-source license for the MTGL.

Notation

In order to describe multithreaded graph algorithms and their implementations in the
MTGL, it is convenient to define some notation. We begin with the familiar definition of
a graph: G = (V, E), were V is the vertex set of G (also denoted V (G)), E is the edge set
of G (E(G)), and E(v) is the set of edges incident on vertex v. we define a type function
t such that t(v) is the type of v ∈ V , and t(v, w) is the type of edge (v, w). In this paper
and in the prototype MTGL, all graphs are assumed to be directed. Undirected graphs are
constructed by enforcing the property that whenever (v, w) exists, (w, v) will exist as well.
In social networks, reciprocal relationships almost always exist. For example, if v is the
father of w, then w is the son of v. In the rare cases in which there is a relationship between
v and w, but no relationship between w and v, we define the edge type t(w, v) to be null.
Furthermore, we allow multiple edges between two vertices v and v′, and so the notation for
an edge varible (v, v′) allows for multiple instances of edges between v and v′. It will not be
important to name these instances in this paper.

We often refer to the quadruple of types associated with an undirected edge between two
vertices v and w. We use the shorthand notation t[v, w] to denote the quadruple (t(v), t(v, w),
t(w, v), t(w)). Since the semantic graphs that motivated the MTGL may be multigraphs,
and hence any pair of vertices v and v′ may have many edges of different types between
them, it is convenient for us to speak of walks in terms of edges rather than vertices. We
define a walk of length l to be a sequence of l edges: W = ((w0, w1), (w1, w2), . . . , (wl−1, wl)).
We say that two walks W and W ′ are type-isomorphic if

t[wi, wi+1] = t[w′
i, w

′
i+1]

79



MTA primitive meaning notation MTGL

b = int fetch add(a,i) atomic read, then increment of a b
ifa← a, i mt incr

b = readfe(a) wait for a to be “full,” read a leave it “empty” b
fe← a mt readfe

b = readff(a) wait for a to be “full,” read a, leave it “full” b
ff← a mt readfe

writeef(a,v) wait for a to be “empty,” write a, leave it “full” a
ef← v mt writeef

Table 7.1. Some MTA primitives and their pseudocode and
MTGL designations. The int fetch add intrinsic is an atomic
read and increment instruction. In this example, b gets the
old value of a, then a is incremented by i.

for all 0 ≤ i ≤ l − 1.

When multiple threads access a piece of shared memory, the MTA’s word-level concur-
rency mechanisms, listed in Table 7, are used by the MTGL infrastructure, and sometimes
by user programs. When we need to specify a concurrent access in our pseudocode, we use
the associated notation shown in Table 7.

In addition to the notation defined in Table 7, when we wish to specify that some high
level series of operations, such as an insertion of element e into a hash table T , is done in a

thread safe manner, we use the notation T
ts← T ∪ e.

Visitor objects in MTGL algorithms have fields (member data in C++ lingo), and we use
the standard C/C++ notation I.f to denote field f of object instance I. Visitor objects will
also have associated methods, and these are defined using a generic pseudocode format.

We encapsulate MTGL logic that determines whether or not to parallelize a loop. The
pseudocode

for (v,v’) in E(v):

indicates that the MTGL will instruct the underlying machine to parallelize the loop if
parallelization is supported and E(v) is large enough. Otherwise, the loop will run in serial.
One hundred iterations is the default threshold in the MTGL. This explanation holds unless
there is a comment in the pseudocode indicating otherwise.

In the pseudocode below, we assume that all vertices and edges have id’s. However, in
our notation a vertex’s name as its id (v, as opposed to v.id), while an edge’s id is called out
explicitly ((v, v′).id or e.id).
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Algorithmic Kernels of the

MTGL

Using pseudocode and the notation defined above, we will now give descriptions of three
algorithmic kernels of many graph queries that might be submitted to a semantic graph
algorithm server. These kernels are connected components, subgraph isomorphism, and s-t
connectivity. A connected component C is defined as a maximal subset of the vertex set
V such that any v and w in C are connected by a path. Finding connected components
is an elementary problem in graph theory, and linear-time solutions exist. Efficient parallel
algorithms exist as well [73].

PSearch<AND,Vis>(v)
{

Vis.d(v)
for (v,v’) in E(v):

if Vis.vt(v,v’):
if (v,v’) unvisited:

Vis.te(v,v’)
PSearch<Vis>(v’)

else:
Vis.oe(v,v’)

}

Figure 7.1. Pseudocode for the PSearch routine, templated
to treat the user’s visit test as a logical “and.”

PSearch<OR,Vis>(v)
{

Vis.d(v)
for (v,v’) in E(v):

if (v,v’) unvisited OR Vis.vt(v,v’):
Vis.te(v,v’)
PSearch<Vis>(v’)

else:
Vis.oe(v,v’)

}

Figure 7.2. Pseudocode for the PSearch routine, templated
to treat the user’s visit test as a logical “or.”

Subgraph isomorphism, however, is an NP-complete problem, and hence computationally
intractable barring an epochal theoretical development. Given a graph G and a smaller graph
H, is there a subgraph of G isomorphic to H? A classical algorithm by Ullman [76] solves
the subgraph isomorphism problem, but its computational complexity makes this algorithm
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PSearch<REPLACE,Vis>(v)
{

Vis.d(v)
for (v,v’) in E(v):

if Vis.vt(v,v’):
Vis.te(v,v’)
PSearch<Vis>(v’)

else:
Vis.oe(v,v’)

}

Figure 7.3. Pseudocode for the PSearch routine, templated
to treat the user’s visit test as the only criterion for proceed-
ing.

unusable for large inputs. We will give a new heuristic for the subgraph isomorphism problem
on semantic graphs that demonstrates the flexibility of the MTGL and scales almost perfectly
on the MTA-2.

Preliminaries

In Figures 7.1,7.2, and 7.3, we give pseudocode for a basic MTGL primitive: parallel
graph search PSearch. We do not specify “depth-first” or “breadth-first” search since the
primitive has elements of both. A single instance of PSearch(v) will initiate a single search
from vertex v, and each time the neighbors of a vertex are explored, a decision is made
whether to parallelize the loop of recursive PSearch’es from the neighbors of v. As no queue
is used to enforce breadth-first visitation of vertices, PSearch reduces to depth-first search
when MTGL code is run on a serial machine.

Following the visitor pattern, PSearch is an object, and it is customized by two template
parameters. One of these is a a visitor object that will provide PSearch with five things:

1. User-defined fields, such a data structures to hold results,

2. A sr(v) method, to be called upon the initial discovery of vertex v as a search tree
root (called once per psearch),

3. A d(v) method, to be called upon the discovery of vertex v during search,

4. A vt(v, v′) (visit-test) method, to be called before traversing edge (v, v′).

5. A te(v, v′) (tree-edge) method, to be called upon visiting edge (v, v′) to first discover
v′.

6. An oe(v, v′) (other-edge) method, to be called upon visiting edge (v, v′) to revisit v′.
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7. An optional copy(vis) method, to be called in order to copy visitor objects. This is
used to create linked lists of visitors corresponding to nodes in the search tree. Such
lists are constructed and used in the subgraph isomorphism heuristic introduced in
Section7.

In particular, the visit-test (vt) method gives psearch significant flexibility. The MTGL
programmer can use this method, for example, to specify forward, backward, or undirected
searches, or to continue or halt searches based on customized criteria.

The other template parameter is an operation type that will tell the search primitive how
to interpret the visitor’s vt (visit-test) method. Acceptable operation types are:

• logical OR, which indicates that the search should proceed via edge (v, v′) if v′ is un-
visited, or if the user’s visit-test returns true;

• logical AND, which indicates that the search should terminate if the user’s visit-test
returns false, regardless of whether v′ has been visited;

• the symbol REPLACE, which indicates that whether or not v′ has been visited is irrele-
vant. The user’s visit-test alone will determine whether to continue the search.

SearchHighLow<OP, Vis>(G)
{

# high-degree vertices
H ← {v h1, v h2, . . . , v hk}
# low-degree vertices
L ← {v l1, v l2, . . . , v h(n− k)}
for v in H: # in serial

PSearch<OP,Vis>(v)
for v in L:

PSearch<OP,Vis>(v)
}

Figure 7.4. Pseudocode for the SearchHighLow routine .
H and L are found in parallel on a multithreaded platform.
Although the loop over H is in serial, each iteration launches
a parallel PSearch.

For example, if the user wishes to search the subgraph induced by type “green” edges only,
the AND operation would be used. Another example of an AND visitor is given in Section 7
below. If, on the other hand, the user wishes to take a random walk through the graph
while disregarding repeat visits, the REPLACE operation would be used. An example of a
meaningful use of the OR operation is given in Section 7.

The nested parallelism in the psearch pseudocode can be handled well by the MTA-2 if
the proper compiler directives are used. The MTGL encapsulates the choice of these compiler
directives, as well as several concurrency issues.
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A common operation in multithreaded graph algorithms is to run a large number of
PSearch instances concurrently in the same graph. In order to avoid repetition of this opera-
tion, we define and reuse a function that implements a heuristic variety of this operation due
to Jace Mogill. Assuming that there are k vertices of “high degree,” where the latter can be
defined by the MTGL programmer, initiate PSearches from those, using a serial loop. At-
tempting to initiate these searches in parallel overwhelms even the MTA with threads. After
searching from the high-degree vertices, we initiate searches from all remaining vertices in
parallel. Note that many of these searches will terminate immediately, as they encounter pre-
viously visited vertices. Mogill’s heuristic, and Kahan’s C implementation of it, recursively
segregates high-degree neighbors from low-degree neighbors during the search. However, our
MTGL implementation uses the simpler logic given in Figure 7.4.

Kahan’s Algorithm for Connected Components

Kahan’s algorithm labels the connected components of G in a three-phase process:

1. SearchHighLow is called to cover the graph with concurrent searches. The result is a
partial labelling of connected components and a hash table containing pairs of compo-
nents that must be merged into one.

2. A standard concurrent-read, concurrent-write parallel algorithm (Shiloach-Vishkin) [73],
is used to find the connected components of the graph induced by the component pairs
in the hash table.

3. A set of PSearches is initiated from each component leader identified by phase 2. Each
PSearch labels all vertices in a single component.

The MTGL implementation of Kahan’s algorithm illustrates the flexibility of the visitor
pattern. In order to implement phase 1, we define a visitor object that will customize the
SearchHighLow operation. The pseudocode is shown in Figure 7.5.

Phase 2 of Kahan’s algorithm is a call to the Shiloach-Vishkin algorithm to find the
connected components of the graph induced when we treat each pair in T as an edge. We
omit the MTGL pseudocode for this phase, and simply describe phase 2 with the following
code:

L← ShiloachVishkin(V1.T ),

where L is the set of component leaders determined by the algorithm.

To implement phase 3, we define another visitor class to customize another call to a
search primitive. This simpler visitor is shown in Figure 7.6.

Kahan’s algorithm in its entirety is given in Figure 7.7.
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V 1 ← {
C ← array of |V(G)| ints
T ← hash table of (int, int) pairs

sr(v) { C[v] ← v }
vt(v,v’) { }
te(v,v’) { C[v′] ← C[v] }
oe(v,v’) { T

ts← T ∪ { (C[v], C[v′]) } }
}

Figure 7.5. The visitor object for Kahan’s algorithm,
phase 1 . The hash table insertion is made only if C[v] is
not equal to C[v′].

V 2 ← {
C ← V 1.C

d(v) { }
vt(v,v’) { }
te(v,v’) ← V 1.te(v,v’)
oe(v) { }

}

Figure 7.6. The visitor object for Kahan’s algorithm,
phase 3

The bully algorithm for connected components

The running time of Kahan’s algorithm is dominated by the construction of the hash table
T in phase 1. If we exploit multithreading and the MTGL, we can remove the hash table
entirely. Rather than remembering which two concurrent searches encounter one another,
we arbitrate between them. Only one of the searches is allowed to continue, and it overwrites
the component numbers written by the other search. In this way, the algorithm completes
in one phase without building a data structure. The continuing search is the “bully.”

The bully algorithm requires only one visitor class. This is defined in Figure 7.8. The non-
empty visit-test method enables the bully searches to continue even though their destination
vertices were previously discovered. When a “bullying” operation is occurring, we use full-
empty synchronization logic to ensure that the marking of vertices is correct.

The bully algorithm is less general than Kahan’s three-phase algorithm since we expect
no speedup in the pathological cases in which the entire graph a single chain or ladder.
However, for the power-law semantic graphs that we explore in Section 7, the performance
of the bully algorithm is good.
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Kahan(G) {
define V 1
SearchHighLow<OR,V 1>(G)
L ← ShiloachVishkin(V 1.T ),
define V 2
for v in L:
PSearch<OR,V 2>(v)

return V 2.C
}

Figure 7.7. Kahan’s algorithm for connected components

Compound type filtering

The MTGL is designed to process semantic graphs, and our next example illustrates what
we anticipate to become a common operation: filtering the edges of G by the quadruples
of types associated with a small set of edges TE. We call this operation compound type
filterning. Recall that for any (v, v′) ∈ TE, we have defined

t[v, v′] = (t(v), t(v, v′), t(v′, v), t(v′)).

Suppose that we wish to find in G an isomorphic or nearly-isomorphic instance of a smaller
graph. Some authors call the small graph a pattern graph and the large graph a target graph.
However, we adopt the convention that both of these terms apply only to the small graph
(and the large graph is simply “the graph”).

Letting TE denote the set of edges in a target graph, we start by finding the size of the
edge-induced subgraph S of G such that for every undirected edge (v, w) ∈ S, there exists
an undirected edge (v′, w′) ∈ TE with t[v, w] = t[v′, w′]. If subgraph S is found to have
sufficiently few edges, we may extract S and apply a subgraph isomorphism heuristic to it.

The MTGL pseudocode to identify the edges of S is shown in Figure 7.9. This is our
fourth example of a visitor class customizing the search primitives.

Note that the intuitive way of accomplishing this compound filtering operation would
be simply to loop through an array of all of the edges in the large graph, checking the
types of each one against each edge in the target graph. This is logically correct, but a
very poor alternative in a multithreaded environment since, for example, all edges of a given
vertex would be trying to retrieve its type at the same time. We use the search primitives
to accomplish the logical operation of examining each edge and to mitigate the hot spots
inherent in the naive approach.

Note also that the for loop in the te(v,v’) method is written so that different threads
will examine the edge set TE in different orders. This would become unnecessary if the
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V 3 ← {
C ← array of |V(G)| ints

sr(v) { C[v] ts← v}
vt(v,v’) {

if (C[v] < C[v′]):
return true

else:
return false

}
te(v,v’) {

c
fe← C[v′]

if ((v’ unvisited) or (c > C[v])):

C[v′] ef← C[v]
else:

C[v′] ef← c
}
oe(v) { }

}

Bully(G) {
define V 3
SearchHighLow<OR,V 3>(G)
return V 3.C

}

Figure 7.8. The bully algorithm

programmer had the ability to allocate local memory. In the latter case, s/he would allocate
one copy of the target graph for each processor.

As we will show in Section 7, the routine CorrectlyTypedEdges has memory reference
properties that make it the best candidate of our graph kernels for near-perfect scaling as
multithreaded machines increase in size.

Subgraph isomorphism for semantic graphs

A fundamental problem in graph algorithms is topological pattern matching. The fa-
mous graph isomorphism problem still defies classification, though some heuristic solutions
work very well in practice [58]. Furthermore, the problem of testing isomorphisms between
a relatively small “target” graph and all equivalently-sized subgraphs of a larger graph, i.e.,
subgraph isomorphism, is known to be NP-complete. Early attempts at subgraph isomor-
phism heuristics included branch and bound processes that exploit matrix operations [76]
and are not practical for large instances. There is more recent literature on heuristics, such
as [67], [54], and others, but we haven’t yet compared our heuristic with this work.
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V 4 ← {
T E ← the k edges of a target graph
s ← 0 # s used to store a vertex type
M ← an empty bitmap of size |E(G)|

#upon discovery, access t(v) only once
d(v) { s ← t(v) }

#called for each v′ ∈ E(v); avoid t(v)
te(v,v’) {

i ← (v, v′).id
for e in (i%k, (i+1)%k, . . . , (i+k−1)%k):

(w,w′) ← T E[e]
if ((s, t(v, v′), t(v′, v), t(v′))=t[w,w’]):

M[eid] = 1
}
oe(v,v’) ← te(v, v′)

}

CorrectlyTypedEdges(G, T E) {
define V 4
SearchHighLow<OR,V 4>(G)
return V 4.M

}

Figure 7.9. Compound type filtering. The % symbol de-
notes modular arithmetic.

We assume for this discussion that whenever edge (v, w) exists, (w, v) will exist as well.
If v is adjacent to w via some type of relationship, then w is adjacent to v via the inverse of
that relationship. In semantic graphs, vertex and edge types make the otherwise intractable
subgraph isomorphism problem more approachable. A simple heuristic would start many
concurrent searches at appropriately typed nodes, then employ branch & bound to explore
the space of matching choices between the neighbors of a vertex in the large graph and those
of its analogue in the small graph. We considered such an approach, but abandoned it in
favor of the method we describe next.

In undirected semantic graphs, we are assured that there will be an Euler tour through
the target graph. Such a tour traverses each edge exactly once, and ends up at its starting
point. Euler tours exist in undirected semantic graphs as we have described them since each
undirected edge is really a pair of directed edges, and a basic theorem states that Euler tours
must exist if, for each vertex, the in-degree equals the out-degree.

Let us name our small, target graph TG. Our subgraph isomorphism heuristic begins
by finding an Euler tour through TG, and constructing a sequence of edges W (for “walk”).
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V 5 ← {
B ← sparse collection of triples
W ← a walk through the target graph
i ← the current stage

d(v) {}

te(v,v’) {
if (i = 0 or ∃ v̄ B[i− 1, v̄, v] = 1) and

(t[v, v′] = t[w i,w (i + 1)])
B[i,v,v’] = 1

}
oe(v,v’) ← te(v,v’)

}

AdvanceOneStage<V_5>(i) {
SearchHighLow<OR,V 5>(G)
return V 5.B

}

FindBipartiteEdges(G, T_E, W) {
B ← null
define V_5
for i = 0 to l(W ):

V 5.B ← AdvanceOneStage<V_5>(i)
return V_5.B

}

Figure 7.10. A visitor class to help find the edges of GB

Supposing that the walk traverses l edges,

W = ((w0, w1), (w1, w2) . . . , (wl−1, wl)).

We also denote the edge set E(TG) by TE. Our heuristic will perform l SearchHighLow oper-
ations on the large graph G in order to construct a data structure encapsulating all possible
subgraphs of G that have a walk type-isomorphic to W . If there is an exact topological
match, it will be among these possibilities. Furthermore, any metric for comparing closeness
of matches could be used to inform a branch & bound search through all possibilities.

The data structure we construct is a bipartite graph GB. The vertices of GB are arranged
into rows r0, r1, . . . , rl, and all vertices in ri correspond to vertices in G that are active after
traversing the first i− 1 edges of W . A vertex v ∈ G is defined to be active at stage i if the
first i− 1 edges of W are type-isomorphic to at least one walk in G that ends with v.

The edges of GB connect active vertices at stage i with active vertices at stage i + 1,
thus documenting all ways that a given vertex can become active. Figure 7.10 shows MTGL
pseudocode that finds the edges of GB.
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V 6 ← {
lv ← levels of V (G B)
M ← map: V (G B) → V (G)
S ← an empty subgraph
found ← 0, next ← null

# visitor objects are copied during the
# search; keep linked list of ancestors
copy(V_6 parent) {

next ← parent
}

d(v) {}

vt(v,v’) {
if lv(v′) = lv(v) + 1:

return true
else:

return false
}
te(v,v’) {

if lv(v′) == l:

f
ifa← found, 1

if f == 0
# return the first match
for (v̄, v̂) in (v, v′), ancestors:

S ← S ∪ (M(v̄),M(v̂))
}

}

Figure 7.11. Subgraph extraction visitor pseudocode.
This code returns only the first match, but a full branch and
bound search could be made, given a suitable metric.

S-T Connectivity

Given a graph and two of its vertices, s and t, a simple problem is to find a path of
minimum length connecting s to t. With unit-length edges, this path can be found via
breadth-first search. This could be done by searching from s until t is encountered, but a
more efficient approach is to search from both ends in phases. In one phase, we determine
which of the two searches has discovered fewer vertices, then expand one level of that search.

When one search encounters a vertex discovered by the other search, a shortest s-t path
has been found. This approach was used in the Gordon Bell-finalist paper [80] to explore s-t
connectivity on BlueGene/Light. A distributed-memory code applicable only to Erdös-Renýı
random graphs was run on an instance of order 4 billion vertices and 20 billion edges. The
s-t search completed in about 1.5 seconds. In Section 7, we will discuss the performance
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SubgraphIsomorphism(G, T E, W) {
B ← FindBipartiteEdges(G, T E,W )
V B ← {(i, j) : ∃ k B[i, j, k] = 1}
E B ← {[(i, j), (i + 1, k)] :

(i, j), (i +
1, k) ∈ V B ∧

B[i, j, k] = 1}

lv((i, j) ∈ V B) = i
s ← (0, j) ∈ V B : ∃ k B[0, j, k] = 1
define V_6
PSearch<AND,V_6>(s)
return V_6.S

}

Figure 7.12. Subgraph isomorphism pseudocode

comparisons we were able to make.

Experiments with MTGL Kernels

In order to evalute the performance of our MTGL graph kernels, we compiled an MTGL
application with a power-law, semantic graph generator. The latter was written and tuned
by Cray for benchmarking purposes.

In order to generate a graph, the programmer specifies k levels, each of which determines
the number of vertices that will have a certain degree. That is, level i specifies that ni

vertices will share the tails of mi directed edges, where assignments are made randomly.
The heads of the mi edges are selected at random from V (G). Our MTGL wrapper for this
graph generator has a parameter to generate the reciprocal edges in order to make the graph
undirected.

Data

For our experiments, the types of vertices and edges are selected randomly from {0, 1, . . . , 99},
with the constraint that if an edge (v, w) has type k, then its reciprocal (w, v) will have type
99 − k. The Cray graph generator allows multiple edges and self-loops, but these occur
sparingly.

We experimented with graphs of sizes ranging from 3 million edges to 500 million edges.
Our set of types, and the uniformly random distribution of these types may not reflect the
reality of current social networks. However, it is plausible that some type ontologies would
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V 7 ← {
C ← array of |V(G)| ints

( initially empty)
done ← reference to int

d(v) { }
vt(v,v’) { }
te(v,v’) { C[v′] ← C[v] }
oe(v,v’) {

c
ff← C[v′]

if C[v] != c:
done = 1

}
}

Figure 7.13. The visitor object shared by two breadth-first
searches in the S-T connectivity algorithm

have sufficient robustness that no large majority of vertices or edges would have the same
type.

For this paper, we report results on one graph only. Therefore, we do not claim this to be
a thorough experimental study. Rather, this paper serves as a case study for the applicability
of massive multithreading to unstructured graph problems, and as an introduction to the
MTGL.

Our instance of concern is a power-law graph with 32 million vertices and 234 million
edges. The degree distribution is approximately:

• 25 vertices of degree 220

• 215 vertices of degree 210

• 225 vertices of degree 5

Experimental Setup

We explored the performance of connected components and subgraph isomorphism MTGL
kernels. The reason we limited ourselves to few graph instances is that our analyses of the
results involved time-consuming efforts to profile and simulate each run in order to predict
its performance on Eldorado. We will report in detail on this process in another paper. Here,
we will present only MTA-2 performance results and abstract Eldorado predictions.

MTGL implementations of Kahan’s and the bully algorithm for connected components
were compared to Kahan’s original C implementation of his algorithm on the MTA-2. The
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BFS<OR,Vis>(v) # examine v’s out-edges
# queue v’s neighbors

{
Vis.d(v)
for (v,v’) in E(v):

if v’ unvisited OR Vis.vt(v,v’):
Vis.te(v,v’)
Q.push(v’)

else:
Vis.oe(v,v’)

}

Figure 7.14. Pseudocode for the BFS routine, which is a
breadth-first analogue to PSearch. However, a call to BFS
expands one level, as opposed to doing a complete search.

canonical representation for an adjacency list in the MTGL is a dynamic array. Kahan’s
C code, on the other hand, uses k-ary trees to represent these lists. That choice of data
structure was imposed by other benchmarking pressures, and Kahan conjectures that his C
version can be made to run roughly three times faster, given a dynamic array representation.

The prototype MTGL has no Euler tour routine at the moment. In order to implement
our subgraph isomorphism heuristic in the face of this deficiency, we generated random walks
through the target graph via another customizing visitor to the PSearch MTGL primitive.
In general, the heuristic described in Section 7 can be given any walk. For example, many
different Euler tours may be concatenated in order to increase the likelihood of an exact
topological match. We approximated this input by taking long random walks. We report
results for walks of length 120.

In order to generate our target graphs, we defined another visitor to customize PSearch.
This one starts a single search and cuts it off when enough edges have been gathered. The
power law nature of our large graph implies that the resulting target graphs were usually
star graphs (see Figure 7.17). For our experiments, we generated target graphs of size 20.

To ground the absolute performance in terms of modern workstations, we also ran our
experiments on a 3Ghz, 68GB linux workstation.

Graph kernel performance

All of our experiments with the connected components and subgraph isomorphism heuris-
tic demonstrate near-perfect scaling on the MTA-2. The single processor performance was
in the same order of magnitude as that obtained on the 3Ghz workstation.
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STConnectivity(G,s,t)
{

define V 7
bfs1 ← BFS<OR,V 7>(s)
bfs2 ← BFS<OR,V 7>(t)
while not V 7.done:

if bfs1.nvisited < bfs2.nvisited:
for v’ in bfs1.topshell:

bfs1(v’)
else

for v’ in bfs2.topshell:
bfs2(v’)

}

Figure 7.15. Pseudocode for the S-T connectivity. Two
concurrent breadth-first searches converge, and each seach
level of each search is explored in parallel. The nvisited vari-
ables store the number of nodes visited by each search, and
the “topshell” notation indicates all vertices discovered by
the previous call to the search.

MTA-2 performance

Figure 7.16 shows the results of our MTA-2 performace test on the connected components
algorithms. Without considering the issue of differing edge set representations, our MTGL
implementation of Kahan’s connected components algorithm is competitive with the original
C implementation, scales almost perfectly, and achieves 70+% utilization of the MTA-2. The
bully algorithm, with its lack of a requirement to build a type-safe hash table, is roughly
twice as fast as the MTGL Kahan implementation, and achieves 95+% utilization of the
MTA-2.

Perhaps most interesting are the performance results for the s-t connectivity kernel. The
pseudocode in Figure 7.15 is imperfect since each breadth-first search relies on a global queue.
The tail of this queue becomes a hot spot when the number of MTA-2 processors exceeds 10.
This problem can be addressed via a distributed queue, but we have not yet implemented
this fix. However, 10 MTA-2 processors is enough to bring the average running time for s-t
connectivity on a 32 million vertex Erdös-Renýı graph with average degree 8 down to 0.09s.
In this computation, roughly 23,000 vertices (combined) were visited by the s and t searches.

The 4 billion vertex Erdös-Renýı graph that was processed in 1.5 seconds using 32,000
processors of BlueGene/L in [80] had average degree 10. The expected shortest path length
for this graph is between 9 and 10, so each breadth-first search will expand roughly 5 levels
on average before the searches meet. After expanding shell k, each of the two searches will
have discovered roughly 10k vertices. Thus, about 200,000 vertices must be discovered in this
large instance. This is fewer than ten times as many vertices as our 32 million vertex instance
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Figure 7.16. Connected components kernel performance

had to process. Thus, 10 MTA processors should be able to proceess 200,000 vertices in well
under a second. So for this problem, a single digit number of MTA-2 processors is faster
than a 32,000 BlueGene/L machine.

Exploring further, in Figure 7.19, we note the performance trends of 10 processor MTA
runs of MTGL and C versions of the s-t connectivity algorithm corroborate our counting
argument. The two lines in the figure show the scaling trajectories of the respective codes
as graph size increases, holding average degree constant. The MTGL trajectory is slightly
worse than the C implementation, but we have not yet explored the reason why.

An MTA-2 with enough memory to verify this performance prediction will never exist.
However, Eldorado machines of sufficient size will. Eldorados will not scale as well as MTA-
2’s would have scaled, but as discussed below, we expect them to perform very well.

Eldorado performance

The Cray Eldorado system is being developed as a follow-on to the MTA-2. It can be
thought of as a larger MTA with faster processors and a slower network. In this paper, we
intend only to give an idea of the expected performance of our codes on a 512 processor
Eldorado. For a detailed architectural description of Eldorado, see [35], and for details of
our performance predictions, see [77]. Working with Keith Underwood of Sandia National
Laboratories, Megan Vance of Notre Dame, and Wayne Wong of Cray, Inc. we went through
the following process for each graph kernel:
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Figure 7.17. Subgraph isomorphism kernel performance

1. We used MTA hardware counters to find the memory reference rate of each kernel.

2. We used Cray’s zebra MTA simulator to generate the actual memory address trace.
This information was used to distinguish stack references from non-stack references.
The former will be local references on Eldorado.

3. We simulated the memory system of Eldorado and predicted the hit rate in the DRAM
buffer accounting for network traffic.

4. Using these numbers, we predicted the expected slow down in the graph kernels on a
512 processor Eldorado system.

The high-level results were that the expected slow down when scaling the connected
components kernels to 512 processors is 2-3. Since Eldorado processors are more than twice
as fast as MTA-2 processors, we thus expect our connected components kernels to run on
a 512 processor Eldorado as if it were a 512 processor MTA-2. The results for subgraph
isomorphism were even more optimistic since the memory reference pattern of the Com-
poundTypeFilter routine, which dominates the running time, is much less demanding of the
network than that of the connected components kernels.

We also simulated the network to explore the implications of hot spots. We found these
to be of much greater consequence on Eldorado than they are on the MTA-2. However, with
the exception of the end-of-queue hotspot in our current breadth-first search implementation,
our kernels do not exhibit hot spotting on the MTA-2.
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Figure 7.18. Subgraph isomorphism results. The target
graph is on the left, and the subgraph found by the heuristic
is on the right. Some vertex and edge types are shown for
context. The large vertices represent places where the type-
isomorphic walks did not produce topological isomorphism.

Conclusions

Growing awareness of the applicability of massive multithreading to unstructured graph
problems has encouraged a number of researchers to take an interest in the multithreaded
machines. Our main contribution is a demonstration that this excellent performance can
be preserved when programs are written using a generic software framework that abstracts
away potentially troublesome details. A common criticism of shared memory programming,
as opposed to message passing, is that correctness is more problematic. The shared-memory
programmer has less explicit control and must better appreciate concurrency subtleties.
Further, MTA programming is delicate since hot spots must be avoided. The prototype
MTGL that we have introduced via pseudocode handles many of these correctness and
concurrency issues for the application programmer.

We have also introduced two new multithreaded algorithms that leverage the flexibility of
the MTGL: the bully algorithm for connected components and a heuristic for subgraph iso-
morphism on semantic graphs. We anticipate that as multithreaded programming matures,
more algorithms will be developed that use similar techniques.

Our prototype MTGL is under active development, and we plan to release the software
in an open-source form in the coming year. Current repository versions of the software are
available by contacting jberry@sandia.gov.
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Figure 7.19. S-T connectivity comparison with Blue-
Gene/L
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Chapter 8

Implementing a Portable
Multi-threaded Graph Library: the
MTGL on Qthreads

The following describes our adaptation of the MTGL to work with Sandia’s “qthreads”
thread virtualization library. The result is a software framework that supports graph al-
gorithms on multithreading machines ranging from the Cray XMT to the Sun Niagara to
multi-core Opteron chips. The proper citation is [10].

Introduction

Graph-based Informatics applications challenge traditional high-performance computing
(HPC) environments due to their unstructured communications and poor load-balancing. As
a result, such applications have typically been relegated to either poor efficiency or specialized
platforms, such as the Cray MTA/XMT series. The multi-threaded nature of the Cray
MTA architecture1 presents an ideal platform for graph-based informatics applications. As
commodity processors adopt features to enable greater levels of multi-threaded programming
and higher memory densities, the ability to run these multi-threaded algorithms on less
expensive, more available hardware becomes attractive.

The Cray MTA architecture provides both an auto-threading compiler and a number of
architectural features to assist the programmer in developing multi-threaded applications.
Unfortunately, commodity processors have increased the amount of concurrency available by
adding an ever-growing number of processor cores on a single socket, but have not added the
fine-grained synchronization available on the Cray MTA architecture. Further, while auto-
threading compilers are being discussed, none provide the feature set of the Cray offerings.

Although massively multi-threaded architectures have shown tremendous potential for
graph algorithms, development poses unique challenges. Algorithms typically use light-
weight synchronization primitives (Full/Empty bits, discussed in Section 8) for synchroniza-

1Throughout this paper, we will use the phrase MTA architecture to refer to Cray’s multi-threaded
architecture, including both the Cray MTA-2 and Cray XMT platforms.
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tion. Parallelism is not expressed explicitly, but instead compiler hints and careful code
construction allow the compiler to parallelize a given code. Unlike the Parallel Boost Graph
Library (PBGL) [42], which runs on the developers laptop as well as the largest supercom-
puters, applications developed for the MTA architecture only run on the MTA architecture.
Experiments with the programming paradigm require access to the platform, which is obvi-
ously a constrained resource.

In this paper, we explore the possibility of using the Qthreads user-level threading library
to increase the portability of scalable multi-threaded algorithms. The Multi-Threaded Graph
Library (MTGL) [15], which provides generic programming access to the XMT, is our testbed
for this work. We show the use of important algorithms from the MTGL on on emerging
commodity multi-core and multi-threaded platforms, with only minor changes to the code
base. Although performance is not at the same level as the same algorithm on a Cray
XMT, the performance motivates our technique as a workable solution for developing multi-
threaded codes for a variety of architectures.

Background

Recent work [46, 53] has described the challenges in HPC graph processing. These
challenges are fundamentally related to locality (both spatial and temporal), and the lack
thereof when graph algorithms are applied to highly unstructured datasets. The PBGL [42]
attempts to meet these challenges through storage techniques that reduce communication.
These techniques have been shown to work well in certain contexts, though they introduce
other challenges such as memory scalability. Even when they achieve run-time scalability,
the processor utilization on commodity CPUs is considerably lower than that found in the
MTA architecture.

Cray XMT

The Cray XMT is the successor to the Cray MTA-2 highly multi-threaded architecture.
Unlike the MTA-2, in which all memory was equidistant from any processor on the network,
the XMT uses a more traditional model in which memory is closer to a single processor than
all others. The Cray XMT utilizes similar processors to the MTA-2, including the ability
to sustain 128 simultaneous hardware threads, but with an improved 500 MHz clock rate.
Rather than the custom network found on the MTA-2, the XMT utilizes the SeaStar based
network found on the Cray XT massively parallel processor distributed memory platform.
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Multi-core Architectures

As processor vendors have begun offering quad-core processors, as well as more commod-
ity multi-threaded processors such as the Sun Niagara processors, it has become possible to
write multi-threaded applications on more traditional platforms. Given the high cost of even
a small XMT platform, the ability of modern workstations to support a growing number of
threads makes them attractive for algorithm development and experimentation.

The Sun Niagara platform opens even greater multi-threaded opportunities, supporting
8 threads per core and 8 cores per socket, for a total of 64 threads per socket. Current
generation Niagara processors support single, dual, and quad socket installations. Unlike
the Cray XMT, the Sun Niagara uses a more traditional memory system, including L1 and
shared L2 cache structures, and an unhashed memory system. The machines are also capable
of running unmodified UltraSPARC executables.

Multi-threaded Programming

Our approach is to take algorithm codes that have already been carefully designed to per-
form on the MTA architecture, and run them without altering the core algorithm on commod-
ity multi-core machines by simulating the threading hardware. In contrast, codes written us-
ing frameworks specifically designed for multi-core commodity machines (e.g. SWARM [61])
won’t run on the MTA architecture.

Standard multi-core software designs, such as Intel’s Thread Building Blocks [49], OpenMP [27],
and Cilk [16], target current multicore systems, and their architecture reflects this. For ex-
ample, they lack a means of associating threads with a locale. This becomes a significant
issue as machines get larger and memory access becomes more non-uniform.

Another important consideration is the granularity and overhead of synchronization.
Existing large scale multithreaded hardware, such as the XMT, implement full/empty bits.
This provides for blocking synchronization in a locality-efficient way. Existing multi-threaded
software systems tend to use lock-based techniques, such as mutexes and spinlocks, or require
tight control over memory layout. These methods are logically equivalent, but are not as
efficient to implement. FEB’s are memory efficient when implemented in hardware, and thus
allow tight memory structures that can be safely operated upon without requiring locking
structures to be inserted into them.

Qthreads

The Qthread API [79] is a library-based API for accessing lightweight threading and
synchronization primitives similar to those provided on the MTA architecture. The API was
designed to support large-scale lightweight threading and synchronization in a cross-platform
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library that can be readily implemented on both conventional and massively parallel archi-
tectures. On architectures where there is no hardware support for the features it provides,
or where native threads are heavyweight, these features are emulated. There are several ex-
isting threading models that support lightweight threading and lightweight synchronization,
but none that sufficiently closely emulate the MTA architecture semantics.

Equivalents for basic thread control, FEB-based read and write functions, as well as
basic threaded loops (analogs for many of the pragma-defined compiler loop optimizations
available on the MTA architecture) are all provided by the API. Even though the operations
that do not have hardware support, such as FEB-based operations, are emulated, they retain
usefulness as a means of intra-thread communication.

The API establishes convenient management of the basic memory requirements of threads
as they are created. When insufficient resources are available, either thread creation fails or
it waits for the resources to become available, depending on how the API is used.

Relatively speaking, locality of reference is not an important consideration to the MTA
architecture, as the address space is hashed and divided among all processors at word bound-
aries. This is an unusual environment, and locality is an important consideration in most
other large parallel machines. To address this, the Qthread API provides a generalized no-
tion of locality, called a “shepherd”, which identifies the location of a thread. A machine
may be described to the library as a set of shepherds, which can refer to memory boundaries,
CPUs, nodes, or whatever is a useful division. Threads are assigned to specific shepherds
when they are created.

Implementation of MTA Intrinsics

The MTA architecture has several features that are intrinsic to the architecture, which
the Qthread library emulates. These features include full/empty bits (FEBs), fast atomic
increments, and conditionally created threads.

On the MTA architecture, a full/empty bit (FEB) is an extra hardware flag associated
with every word in memory, marking that word either full or empty. Qthreads uses a
centralized collection data structure to achieve the same effect: if an address is present in
the collection, it is considered “empty”, and if not, it is considered “full”. Thus, all memory
addresses are considered full until they are operated upon by one of the commands that will
alter the memory word’s contents and full/empty status. The synchronization protecting
each word is pushed into the centralized data structure. Not all of the semantics of the MTA
architecture can be fully emulated, however. For example, on the MTA architecture, all
writes to memory implicitly mark the corresponding memory words as full. However, when
pieces of memory are being used for synchronization purposes, even implicit operations are
done purposefully by the programmer, and replacing implicit writes with explicit calls is
trivial.

The MTA architecture also provides a hardware atomic increment intrinsic. Atomic
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increment functions have often been considered useful, even on commodity architectures,
and so hardware-based techniques for doing atomic increments are common. The Qthread
API provides an atomic increment function that uses a hardware-based implementation
on supported architectures, but which falls back to using emulated locks to achieve the
same behavior on architectures without explicit hardware support in the library. This is
an example of opportunistically using hardware features while providing a standardized
interface; a key feature of the Qthread API.

Qthreads implementation of thread virtualization

Conditionally created threads are called “futures” in MTA architecture terminology, and
are used to indicate that threads need not be created now, but merely whenever there are
resources available for them. This can be crucial on the MTA, as each processor can handle
at most 128 threads, and extremely parallel algorithms may generate significantly more.
The Qthread API provides an analogous feature by providing alternate thread creation
semantics that allow the programmer to specify the permissible number of threads that may
exist concurrently, and which will stall thread creation until the number of threads is less
than the number of permissible threads.

A key application of this is in loops. While a given loop may have a large number of
entirely independent iterations, it is typically unwise to spawn all of the iterations as threads,
because each thread has a context and eventually the machine will run out of memory to
hold all the thread contexts. Limiting the number of concurrently extant threads limits the
amount of overhead that will be used by the threads. In a loop, the option to stall the thread
creation while the maximum number of threads still exist provides the ability to specify a
threaded loop without the risk of using an excessive amount memory for thread contexts.
The limit on the number of threads is a per-shepherd limit, which helps with load balancing.

The Multi-Threaded Graph Library

The Multi-Threaded Graph Library is a graph library designed in the spirit of the Boost
Graph Library (BGL) and Parallel Boost Graph Library. The library utilizes the generic
component features of the C++ language to allow flexibility in graph structures, without
changes to a given algorithm. Unlike the distributed memory, message passing based PBGL,
the MTGL was designed specifically for the shared-memory multi-threaded MTA architec-
ture. The MTGL includes a number of common graph algorithms, including the breadth-first
search, connected components, and PageRank algorithms discussed in this paper.

To facilitate writing new algorithms, the MTGL provides a small number of basic in-
trinsics upon which graph algorithms can be implemented. The intrinsics hide much of the
complexity of multi-threaded race conditions and load-balancing from algorithm developers
and users. Parallel Search (PSearch), a recursive parallel variant of depth-first search (which
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is not truly depth-first in order to achieve parallelism), combined with an extensive vertex
and edge visitor interface, provides powerful parallelism for a number of algorithms.

MTA architecture-specific features used by the MTGL are either compiler hints specified
via the #pragma mechanism or are encapsulated into a limited number of templated functions,
which are easily re-implementable for a new architecture. An example is the mt_readfe

call, which translates to readfe on the MTA architecture, a simple read for serial builds
on commodity architectures, and qthread_readfe on commodity architectures using the
Qthreads library.

The combination of an internal interface for explicit parallelism and the set of core in-
trinsics upon which much of the MTGL is based provides an ideal platform for extension to
new platforms. While auto-threading compilers like those found on the MTA architecture
are not available for other platforms, the small number of intrinsics can be hand-parallelized
with a reasonable amount of effort.

Qthreads and the MTGL

Making the MTGL into a cross-platform library required overcoming significant develop-
ment challenges. The MTA architecture programming environment has a large number of
intrinsic semantics, and its cacheless hashed memory architecture has unusual performance
characteristics. The MTA compiler also recognizes common programming patterns, such
as reductions, and optimizes them transparently. For these reasons, the MTA developer is
encouraged to develop “close to the compiler”.

The size of stack necessary, for example, presents a challenge. Some MTGL routines are
highly recursive, and the MTA transparently handles expanding the stack for each thread as-
needed. The Qthread library, however, has a fixed stack size. Iterative solutions, combined
with using larger stacks was required to address the issue.

Both the MTA architecture and commodity processors are susceptible to the problem of
hot spotting, performance degradation due to repeated access to the same memory location.
The MTA architecture suffers from both read and write hot spotting, due to constraints in
traffic across the platform’s network. Commodity processors, however, provide cache struc-
tures to improve performance and benefit from read hot spotting. Commodity architectures
also have a larger granularity of memory sharing: a cache line, which can be as large as
64 bytes. Concurrent writes within a cache line create a hot spot, even if the writes affect
independent addresses. The cache was a consideration for atomic operations as well, as they
typically cause a cache flush to memory. Avoiding atomic operations where possible, such
as in reductions, is important for performance.
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Multi-platform Graph Algorithms

We consider three graph kernel algorithms: a search, a component finding algorithm, and
an algebraic algorithm. There are myriad other graph algorithms, but we use these three as
primitive representatives on which other algorithms can be built.

BFS

Breadth-first search (BFS) is, perhaps, the most fundamental of graph algorithms. Given
a vertex v, find the neighbors of v, then the neighbors of those neighbors, etc. Furthermore
BFS is well-suited for parallelization. Pseudocode for BFS from [24] is included in Figure 8.1.

BFS(G,s)
1 for each vertex u ∈ V [G] − {s}
2 do color[u] ← WHITE
3 d[u] ← inf
4 color[s] ← GRAY
5 d[s] ← 0
6 Q ← ∅
7 while Q 6= 0
8 do u ← DEQUEUE(Q)
9 for each vertex v ∈ Adj[u]
10 do if color[v] ← WHITE
11 then color[v] ← GRAY
12 d[v] ← d[u] + 1
13 ENQUEUE(Q, v)
14 color[v] ← BLACK

Figure 8.1. The basic BFS algorithm

There are two inherent problems with using this basic algorithm in a multithreaded
environment. The first is that a parallel version of the for loop beginning on Line 9 will
make many synchronized writes to the color array. This is a problem on machines like the
Niagara regardless of the data characteristics. It is also a problem on the XMT if there is a
vertex v of high in-degree (since many vertices u would test v’s color simultaneously, making
it a hot spot).

The second problem is even more basic: the ENQUEUE operation of Line 13 typically
involves incrementing a tail pointer. As all threads will increment this same location, it is
an obvious hot spot.
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We avoid these problems by chunking and sorting: suppose that the next BFS level
contains k vertices, whose adjacency lists have combined length l. We divide the work of
processing these adjacencies into dl/Ce chunks, each of size C (except for the last one).
Then dl/Ce threads process the chunks individually, saving newly discovered vertices to
local stores. Each thread can then increment the Q tail pointer only once, mitigating that
hot spot. However, in order to handle the color hot spot, we do not write the local stores
directly into the Q. Rather, we concatenate them into a buffer, sort that buffer with a
thread-safe sorting routine (qsort in Qthreads, or a counting sort on the XMT), then have a
single thread put the unique elements of this array into the Q. This thread does linear work
in serial, but the “hot spot” is now used to advantage in cache-based multicore architectures.

A better BFS algorithm is known for the XMT. Although we currently do not have an
implementation of this algorithm, it would be a straightforward exercise to incorporate it
into the MTGL so that the same program could run efficiently on either type of platform.

Connected Components

A connected component of a graph G is a set S of vertices with the property that any
pair of vertices u, v ∈ S are connected by a path. Finding connected components is a
prerequisite for dividing many graph problems into smaller parts. The canonical algorithm
for finding connected components in parallel is the Shiloach-Vishkin algorithm (SV) [73],
and the MTGL has an implementation of this algorithm that roughly follows [6].

Unfortunately, a key property of many real-world datasets will limit the performance of
SV in practice. Specifically, it is known both theoretically [32] (for random graphs), and in
practice (for interaction networks such, the World-Wide Web, and many social networks)
that the majority of the vertices tend to be grouped into one “giant component” (GCC).
Algorithms like SV work by assigning a representative to each vertex. Toward the end of
these algorithms, all vertices in the GCC are pointing at the same representative, making it
a severe hot spot.

We adopt a simple alternative to SV, which we call GCC-SV. It is overwhelmingly likely
(though we do not not provide any formal analysis here) that the vertex of highest degree is
in the GCC. Given this assumption, we BFS from that vertex using the method of Section 8
(or psearch on the XMT), then collect all orphaned edges that do not link vertices discovered
during this search. Running SV on the subgraph induced by the orphaned edges we find
the remaining components. This subproblem is likely to be small enough so that even if
the largest component of the induced subgraph is a GCC of that graph (which is likely),
the running time is dwarfed by that of the original BFS. If there is no GCC in the original
graph, then the original SV would perform well.
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#pragma mta assert nodep
for (int i=0; i<n; i++) {

double total=0.0;
int begin = g[i];
int end = g[i+1];
for (int j=begin; j<end; j++) {

int src = rev end points[j];
double r = rinfo[src].rank;
double incr = (r/rinfo[src].degree);
total += incr;

}
rinfo[i].acc = total;

}

Figure 8.2. The MTGL code for PageRank’s inner loop on
the XMT

PageRank

PageRank, the algorithm made famous by Google for ranking web pages [68], is a linear
algebraic technique for modeling the propagation of votes through a directed graph, where
each page contributes a fraction of its vote to each of its out-neighbors. Ranks continue
propagating until convergence. A thorough mathematical explanation of PageRank is beyond
the scope of this paper. However, at an abstract level PageRank is a sequence of matrix-
vector multiplications, each followed by a normalization step. In graph terms, the most
computationally expensive portion of the algorithm is simply traversing all of the adjacencies
in the graph in order to accumulate votes.

Figure 8.2 shows the vote accumulation loops of PageRank used by the MTGL on the
XMT. The structure of these loops enables the XMT compiler to merge them into one, and
to remove the reduction of votes into the variable total from the final line of the inner loop.
The result is excellent performance. We simulate this in a Qthread-enabled version of this
code in the MTGL in order to achieve good scaling on multi-core machines.

R-MAT graphs

R-MAT [19] is a parameterized generator of graphs that can mimic real-world datasets.
The term stands for “Recursive-MATrix,” derived from the generation procedure, which is a
simulation of repeated Kronecker products [52] of the adjacency matrix by itself. Intuitively,
the R-MAT procedure can be thought of as repeatedly dropping marbles through a series
of plastic trays. The topmost one typically is divided into 4 quadrants, the second one into
16, etc. The bottom tray is the adjacency matrix. At each level, a marble will pass through
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one of 4 holes with probability given by 4 input parameters; a, b, c, d. Multiple edges are
not allowed, so if a marble ends up on top of another marble in the adjacency matrix, it is
discarded and we try again.

Varying the parameters a, b, c, d determines much about the structure of the resulting
graph. For example, using a = 0.25, b = 0.25, c = 0.25, d = 0.25 would generate an Erdös-
Rényi random graph. Putting more weight on one of the quadrants tends to generate an
inverse power-law degree distribution, which is found in many real datasets.

In our experiments we generate two different classes of R-MAT graphs:

• nice graphs have a = 0.45, b = 0.15, c = 0.15, d = 0.25. These graphs feature two
natural communities at each of many levels of recursion (quadrants a and d). However,
even in graphs a quarter of a billion edges, the maximum vertex degree is only roughly
a thousand.

• nasty graphs have a = 0.57, b = 0.19, c = 0.19, d = 0.05. These feature a much steeper
degree distribution, with a maxmimum degree of roughly 200,000 in our quarter-billion
edge example. Load balancing would naturally be more challenging in this case.

Furthermore, we label our graphs with the exponent of the number of vertices and hold
the average degree at a constant 16, since this is relatively close to (though an over-estimate
of) the average degree of a page in the WWW. For example, graph “R-MAT 21 Nasty” has
221 vertices, 224 undirected edges, and R-MAT parameters as given above.

Multiplatform Experiments

We compare performance of the three graph kernel algorithms described in Section 8—
breadth-first search, connected components, and PageRank—on three platforms capable of
executing multiple threads simultaneously: the Cray XMT, the Sun Niagara T2, and a
traditional multi-socket, multi-core platform.

The Cray XMT used in testing contains 64 500 MHz ThreadStorm processors, each
capable of sustaining 128 simultaneous hardware threads and 500 GB of shared memory.
The SeaStar based network is a 3-d torus in a 8x4x2 configuration. The system was running
version 6.2.1 of the XMT operating system.

A Sun SPARC Enterprise T5240 server, with two 1.2 GHz UltraSPARC T2 processors,
each capable of sustaining 64 simultaneous hardware threads, was also used in testing. The
system contains 128 GB of memory and was running Sun Solaris 10, 5/08 Release. The Sun
CoolThreads version of GCC was used to compile all tests.

Finally, a quad-socket, quad-core Opteron system, clocked at 2.2 GHz, provides a tradi-
tional multi-core environment. The system provides 32 GB of memory and is running Red
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Figure 8.3. Opteron Breadth-First Search
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Figure 8.4. Niagara T2 Breadth-First Search

Hat EL 5.1. GCC 4.1.2 was used to compile all tests.

Breadth-First Search

We find that our method of avoiding hot spots in BFS enables scaling beyond what
would be achievable by a naive algorithm. At the time of this writing, our implementation
runs on the XMT, but does not perform as well as native XMT BFS implementations have
done in the past. However, our method does leverage the multi-core and Niagara platforms
effectively. As implied before, MTGL programmers will run BFS by associating a visitor
object with the kernel algorithm, then running the latter. Underlying differences in the
kernel implementation, such as that likely in the XMT implementation of BFS, will be
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Figure 8.5. Opteron Connected Components GCC-SV
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Figure 8.6. Niagara T2 Connected Components GCC-SV

hidden from the programmer.

Connected Components

Our connected components codes demonstrate strong scaling on multi-core and Niagara,
as the GCC-SV algorithm is dominated by a single run of BFS on the realistic datasets we
address. Furthermore, we are able to demonstrate strong scaling on the XMT as well by
replacing the BFS by the recursive psearch. Note the effect of data on algorithm performance
in Figure 8.7. Ironically, the “nasty” datasets are most friendly to the algorithm, as the vast
majority of all vertices fall into the GCC in this case. As we consider the “nice” datasets, this
GCC membership becomes less pathological (and less realistic). Therefore, the inherently
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Figure 8.8. Opteron PageRank

hot spotting SV algorithm has more work to do once the GCC has been processed.

PageRank

As we saw in Figure 8.2, PageRank can be written to leverage the auto-parallelizing
compiler of the XMT quite effectively. We cannot match the XMT’s performance in emu-
lation without work to reconstruct the compiler’s optimization. However, a straightforward
parallelization of the outer loop using qthreads still provides significant benefit, as we see in
Figures 8.8 and 8.9.
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Figure 8.9. Niagara T2 PageRank
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Figure 8.10. Cray XMT PageRank

Conclusions and future work

Developing multi-threaded graph algorithms, even when using the MTGL infrastructure,
provides a number of challenges, including discovering appropriate levels of parallelism, pre-
venting memory hot spotting, and eliminating accidental synchronization. In this paper,
we have demonstrated that using the combination of Qthreads and MTGL with commodity
processors enables the development and testing of algorithms without the expense and com-
plexity of a Cray XMT. While achievable performance is lower for both the Opteron and
Niagara platform, performance issues are similar.

While we believe it is possible to port Qthreads to the Cray XMT, this work is still
on-going. Therefore, porting work still must be done to move algorithm implementations
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between commodity processors and the XMT. Although it is likely that the Qthreads-version
of an algorithm will not be as optimized as a natively implemented version of the algorithm,
such a performance impact may be an acceptable trade-off for ease of implementation.
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Chapter 9

Advanced Shortest Paths Algorithms
on a Massively-Multithreaded
Architecture

In the following paper we demonstrate the Cray XMT’s ability to allow many queries to
share a pre-computed data structure to accelerate the associated computations. We describe
Thorup’s algorithm for single-source shortest paths, a complicated procedure with a good
worst-case running time for integer-weighted problems. Much of the work of the paper pre-
dated this LDRD, but LDRD resources were used in the writing and experimental tuning.
The proper citation is [26].
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Abstract

We present a study of multithreaded implementations of
Thorup’s algorithm for solving the Single Source Shortest
Path (SSSP) problem for undirected graphs. Our implemen-
tations leverage the fledgling MultiThreaded Graph Library
(MTGL) to perform operations such as finding connected
components and extracting induced subgraphs. To achieve
good parallel performance from this algorithm, we devi-
ate from several theoretically optimal algorithmic steps. In
this paper, we present simplifications that perform better in
practice, and we describe details of the multithreaded im-
plementation that were necessary for scalability.

We study synthetic graphs that model unstructured net-
works, such as social networks and economic transaction
networks. Most of the recent progress in shortest path algo-
rithms relies on structure that these networks do not have.
In this work, we take a step back and explore the synergy be-
tween an elegant theoretical algorithm and an elegant com-
puter architecture. Finally, we conclude with a prediction
that this work will become relevant to shortest path compu-
tation on structured networks.

1. Introduction

Thorup’s algorithm [15] solves the SSSP problem for
undirected graphs with positive integer weights in linear
time. To accomplish this, Thorup’s algorithm encapsulates

1-4244-0910-1/07/$20.00 c©2007 IEEE.

information about the input graph in a data structure called
the Component Hierarchy (CH). Based upon information
in the CH, Thorup’s algorithm identifies vertices that can
be settled in arbitrary order. This strategy is well suited to
a shared-memory environment since the component hierar-
chy can be constructed only once, then shared by multiple
concurrent SSSP computations.

Thorup’s SSSP algorithm and the data structures that
it uses are complex. The algorithm has been generalized
to run on directed graphs in O(n + m log w) time [8]
(where w is word-length in bits) and in the pointer-addition
model of computation in O(mα(m,n) + n log log r) time
[13] (where α(m,n) is Tarjan’s inverse-Ackermann func-
tion and r is the ratio of the maximum-to-minimum edge
length).

In this paper, we perform an experimental study of Tho-
rup’s original algorithm. In order to achieve good perfor-
mance, our implementation uses simple data structures and
deviates from some theoretically optimal algorithmic strate-
gies. Thorup’s SSSP algorithm is complex, and we direct
the reader to his original paper for a complete explanation.

In the following section, we summarize related work and
describe in detail the Component Hierarchy and Thorup’s
algorithm. Next, we discuss the details of our multithreaded
implementation of Thorup’s algorithm and detail the exper-
imental setup. Finally, we present experimental results and
plans for future work.

2. Background and Related Work

The Cray MTA-2 and its successor, the XMT [4], are
massively multithreaded machines that provide elaborate

1
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hardware support for latency tolerance, as opposed to la-
tency mitigation. Specifically, a large amount of chip space
is devoted to supporting many thread contexts in hardware
rather than providing cache memory and its associated com-
plexity. This architecture is ideal for graph algorithms, as
they tend to be dominated by latency and to benefit little
from cache.

We are interested in leveraging such architectures to
solve large shortest paths problems of various types. Mad-
duri, et al. [11] demonstrate that for certain inputs, delta-
stepping [12], a parallel Dijkstra variant, can achieve rel-
ative speedups of roughly 30 in 40- processor runs on the
MTA- 2. This performance is achieved while finding single-
source shortest paths on an unstructured graph of roughly
one billion edges in roughly 10 seconds. However, their
study showed that there is not enough parallelism in smaller
unstructured instances to keep the MTA- 2 busy. In particu-
lar, similar instances of roughly one million edges yielded
relative speedups of only about 3 on 40 processors of the
MTA- 2. Furthermore, structured instances with large diam-
eter, such as road networks, prove to be very difficult for
parallel delta stepping regardless of instance size.

Finding shortest paths in these structured road network
instances has become an active research area recently [1, 9].
When geographical information is available, precomputa-
tions to identify “transit nodes” [1] make subsequent s- t
shortest path queries extremely fast. However, depending
on the parameters of the algorithms, serial precomputation
times range from 1 to 11 hours on modern 3Ghz worksta-
tions. We know of no work to parallelize these precompu-
tations.

Although we do not explicitly address that challenge in
this paper, we do note that the precomputations tend to
consist of Dijkstra- like searches through hierarchical data.
These serial searches could be batched trivially into paral-
lel runs, but we conjecture that this process could be accel-
erated even further by the basic idea of allowing multiple
searches to share a common component hierarchy. In this
paper, we explore the utility of this basic idea.

2.1. The Component Hierarchy

The Component Hierarchy (CH) is a tree structure that
encapsulates information about a graph G. The CH of
an undirected graph with positive edge weights can be
computed directly, but preprocessing is needed if G con-
tains zero- weight edges. Each CH- node represents a sub-
graph of G called a component, which is identified by a
vertex v and a level i. Component(v,i) is the subgraph
of G composed of vertex v, the set S of vertices reach-
able from v when traversing edges with weight < 2i,
and all edges adjacent to {v} ∪ S of weight less than 2i.
Note that if w ∈Component(v,i), then Component(v,i) =

v w

5
5

5

5

5
5

10 Comp(v,3) Comp(w,3)

Comp(v,4)

Figure 1. An example component hierarchy.
Component(v,4), the root of this hierarchy, rep-
resents the entire graph.

Component(w,i).
The root CH- node of the CH is a component containing

the entire graph, and each leaf represents a singleton ver-
tices. The children of Component(v,i) in the CH are com-
ponents representing the connected components formed
when removing all the edges with weight > 2i−1 from
Component(v,i). See Figure 1 for an example CH.

2.2. Thorup’s SSSP Algorithm

Given an undirected graph G = (V,E), a source vertex
s ∈ V , and a length function ` : E → Z+, the Single
Source Shortest Path (SSSP) problem is to find δ(v) for v ∈
V \s. The value δ(v) is the length of the shortest path from
s to v in G. By convention, δ(v) = ∞ if v is unreachable
from s.

Most shortest path problems maintain a tentative dis-
tance value, d(v), for each v ∈ V . This value is updated by
relaxing the edges out of a vertex v while visiting v. Relax-
ing an edge e = (u, v) sets d(v) = min(d(v), d(u) + `(e)).
Dijkstra [6] noted in his famous paper that the problem can
be solved by visiting vertices in nondecreasing order of their
d- values. Dijkstra’s algorithm maintains three sets of ver-
tices: unreached, queued, and settled. A vertex v is settled
when d(v) = δ(v) (initially only s is settled), is queued
when d(v) < ∞, and is unreached when a path to v has
not yet been found (d(v) = ∞). Dijkstra’s algorithm re-
peatedly selects vertex v such that d(v) is minimum for all
queued vertices and visits v.

Thorup’s algorithm uses the CH to identify vertices that
can be visited in arbitrary order (d(v) = δ(v)). His major
insight is presented in the following Lemma.

Lemma 1 (From Thorup [15]). Suppose the vertex set V
divides into disjoint subsets V1, . . . , Vk and that all edges
between subsets have weight at least ∆. Let S be the set of
settled vertices. Suppose for some i such that v ∈ Vi\S, that
d(v) = min{d(x)|x ∈ Vi\S} ≤ min{d(x)|x ∈ V \S}+δ.
Then d(v) = δ(v) (see Figure 2).
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Vk

Figure 2. The vertex set V divided into k sub-
sets.

Based upon this Lemma, Thorup’s algorithm identi-
fies vertices that can be visited in arbitrary order. Let
α = log2 ∆. Component V buckets each of it’s children
V1 . . . Vk according to min{d(x)|x ∈ Vi\S} � α. Note
that (min{d(x)|x ∈ Vi\S} � α) ≤ (min{d(x)|x ∈
V \S} � α) implies that (min{d(x)|x ∈ Vi\S}) ≤
(min{d(x)|x ∈ V \S} + ∆). Consider bucket B[j] such
that j is the smallest index of a non- empty bucket. If Vi ∈
B[j] then min{d(x)|x ∈ Vi\S} � α = min{d(x)|x ∈
V \S} � α. This implies that min{d(x)|x ∈ Vi\S} ≤
min{d(x)|x ∈ V \S} + ∆. Thus, each v ∈ Vi\S minimiz-
ing D(v) can be visited by Lemma 2.2.

This idea can be applied recursively for each component
in the CH. Each component(v,i) buckets each child Vj based
upon min{d(x)|x ∈ Vj\S}. Beginning at the root, Tho-
rup’s algorithm visits its children recursively, starting with
those children in the bucket with the smallest index. When
a leaf component l is reached, the vertex v represented by
l is visited (all of its outgoing edges are relaxed). Once a
bucket is empty, the components in the next highest bucket
are visited and so on. We direct the reader to Thorup [15]
for details about correctness and analysis.

3. Implementation Details

Before computing the shortest path, Thorup’s algorithm
first constructs the Component Hierarchy. We developed a
parallel algorithm to accomplish this. For each component
c in the Component Hierarchy, Thorup’s algorithm main-
tains minD(c) = min(d(x)|x ∈ c\S). Additionally, c must
bucket each child ci according to the value of the minD(ci).
When visiting c, children in the bucket with smallest index
are visited recursively and in parallel.

Our algorithm to generate the Component Hierarchy is
described in Section 3.1. The implementation strategies
for maintaining minD- values and proper bucketing are de-
scribed in section 3.2. Finally, our strategies for visiting
components in parallel are described in Section 3.3.

Input: G(V,E), length function ` : E → Z+

Output: CH(G), the Component Hierarchy of G

foreach v ∈ V do
Create leaf CH- node n and set component(v) to n

G′ ← G
for i = 1 to dlog Ce do

Remove edges of weight ≥ 2i from G′

Find the connected components of G′

Create a new graph G∗

foreach connected component c of G′ do
Create a vertex x in G∗

Create new CH- node n for x
component(x)← n
foreach v ∈ c do

rep(v)← x
parent(component(v))← n

foreach edge (u, v) ∈ G do
Create an edge (rep(u),rep(v)) in G∗

G′ ← G∗

Algorithm 1: Generate Component Hierarchy

3.1. Generating the Component Hierarchy

Thorup [15] presents a linear- time algorithm for con-
structing the component hierarchy from the minimum span-
ning tree. Rather than using this approach, we build the
CH naively in dlog Ce phases, where C is the length of the
largest edge. Our algorithm is presented in Algorithm 1.

Constructing the minimum spanning tree is pivotal in
Thorup’s analysis. However, we build the CH from the
original graph because this is faster in practice than first
constructing the MST and then constructing the CH from
it. This decision creates extra work, but it does not greatly
affect parallel performance because of the data structures
we use, which are described in Section 3.2.

Our implementation relies on repeated calls of a con-
nected components algorithm, and we use the “bully algo-
rithm” for connected components available in the Multi-
Threaded Graph Library (MTGL) [2]. This algorithm
avoids hot spots inherent in the Shiloach- Vishkin algo-
rithm [14] and demonstrates near- perfect scaling through 40
MTA- 2 processors on the unstructured instances we study.

3.2. Run-time Data Structures

We define minD(c) for component c as min(d(x)|x ∈
c\S). The value of minD(c) can change when the d(v) de-
creases for vertex v ∈ c, or it can change when a vertex
v ∈ c is visited (added to S). Changes in a component’s
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minD-value might also affect ancestor component’s in the
CH. Our implementation updates minD values by propagat-
ing values from leaves towards the root. Our implementa-
tion must lock the value of minD during an update since
multiple vertices are visited in parallel. Locking on minD
does not create contention between threads because minD
values are not propagated very far up the CH in practice.

Conceptually, each component c at level i has an array
of buckets. Each child ck of c is in the bucket indexed
minD(ck) � i. Buckets are bad data structures for a par-
allel machine because they do not support simultaneous in-
sertions. Rather that explicitly storing an array of buckets,
each component c stores index(c), which is c’s index into
its parents buckets. Child ck of component c is in bucket j
if index(ck) = j. Thus, inserting a component into a bucket
is accomplished by modifying index(c). Inserting multiple
components into buckets and finding the children in a given
bucket can be done in parallel.

3.3. Traversing the Component Hierarchy
in parallel

The Component Hierarchy is an irregular tree, in which
some nodes have several thousand children and others only
two. Additionally, it is impossible to know how much work
must be done in a subtree because as few as one vertex
might be visited during the traversal of a subtree. These two
facts make it difficult to efficiently traverse the CH in paral-
lel. To make traversal of the tree efficient, we have split the
process of recursively visiting the children of a component
into a two step process. First, we build up a list of compo-
nents to visit. Second, we recursively visit these nodes.

Throughout execution, Thorup’s algorithm maintains a
current bucket for each component (in accordance with
Lemma 2.2). All of those children (virtually) in the cur-
rent bucket compose the list of children to be visited, called
the toVisit set. To build this list, we look at all of node n’s
children and add each child that is (virtually) in the cur-
rent bucket to an array. The MTA supports automatic paral-
lelization of such a loop with the reduction mechanism. On
the MTA, code to accomplish this is shown in Figure 3.

Executing a parallel loop has two major expenses. First,
the runtime system must setup for the loop. In the case of a
reduction, the runtime system must fork threads and divides
the work across processors. Second, the body of the loop
is executed and the threads are abandoned. If the number
of iterations is large enough, then the second expense far
outweighs the first. Yet, in the case of the CH, each node can
have between two and several hundred thousand children.
In the former case, the time spent setting up for the loop far
outweighs the time spent executing the loop body. Since the
toVisit set must be built several times for each node in the
CH (and there are O(n) nodes in the CH), we designed a

int index=0;
#pragma mta assert nodep
for (int i=0; i<numChildren; i++) {

CHNode *c = children_store[i];
if (bucketOf[c->id] == thisBucket) {

toVisit[index++] = child->id;
}

}

Figure 3. Parallel code to populate the toVisit
set with children in the current bucket.

more efficient strategy for building the toVisit set.
Based upon the number of iterations, we either perform

this loop on all processors, a single processor, or in serial.
That is, if numChildren > multi par threshold then we per-
form the loop in parallel on all processors. Otherwise, if
numChildren > single par threshold then we perform the
loop in parallel on a single processor. Otherwise, the loop
is performed in serial. We determined the thresholds exper-
imentally by simulating the toVisit computation. In Section
5.4, we present a comparison of the naive approach and our
approach.

4. Experimental Setup

4.1. Platform

The Cray MTA-2 is a massively multithreaded super-
computer with slow, 220Mhz processors and a fast, 220Mhz
network. Each processor has 128 hardware threads, and the
network is capable of processing a memory reference from
every processor at every cycle. The run-time system au-
tomatically saturates the processors with as many threads
are as available. We ran our experiments on a 40 processor
MTA-2, the largest one ever built. This machine has 160Gb
of RAM, of which 145Gb are usable. The MTA-2 has sup-
port for primitive locking operations, as well as many other
interesting features. An overview of the features is beyond
the scope of this discussion, but is available as Appendix A
of [10].

In addition to the MTA-2, our implementation compiles
on sequential processors without modification. We used a
Linux workstation to evaluate the sequential performance of
our Thorup implementation. Our results were generated on
a 3.4GHz Pentium 4 with 1MB of cache and 1GB of RAM.
We used the Gnu Compiler Collection, version 3.4.4.

4.2. Problem Instances

We evaluate the parallel performance on two graph fam-
ilies that represent unstructured data. The two families are
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among those defined in the 9th DIMACS Implementation
Challenge [5]:

• Random graphs: These are generated by first construct-
ing a cycle, and then adding m − n edges to the graph
at random. The generator may produce parallel edges as
well as self-loops.

• Scale-free graphs (RMAT): We use the R-MAT graph
mode [3] to generate Scalefree instances. This algorithm
recursively fills in an adjacency matrix in such a way
that the distribution of vertex degrees obeys an inverse
power law.

For each of these graph classes, we fix the number of undi-
rected edges, m by m = 4n. In our experimental design,
we vary two factors: C, the maximum edge weight, and the
weight distribution. The latter is either uniform in [1, ..., C]
(UWD) or poly-logarithmic (PWD). The poly-logarithmic
distribution generates integer weights of the form 2i, where
i is chosen uniformly over the distribution [1, log C].

In the following figures and tables, we name data sets
with the convention: <class>-<dist>-<n>-<C>.

4.3. Methodology

We first explore the sequential performance of the Tho-
rup code on a Linux workstation. We compare this to the se-
rial performance of the “DIMACS reference solver,” an im-
plementation of Goldberg’s multilevel bucket shortest path
algorithm, which has an expected running time of O(n) on
random graphs with uniform weight distributions [7]. We
compare these two implementations to establish that our im-
plementation is portable and that it does not perform much
extra work. It is reasonable to compare these implemen-
tations because they operate in the same environment, use
the same compiler, and use the similar graph representa-
tion. Because these implementations are part of different
packages, the only graph class we are able to compare is
Random-UWD.

We collected data about many different aspects of the
Component Hierarchy generation. Specifically, we mea-
sured number of components, average number of children,
memory usage, and instance size. These numbers give a
platform independent view of the structure of the graph as
represented by the Component Hierarchy.

On the MTA-2, we first explore the relative speedup of
our multithreaded implementation of Component Hierarchy
construction and Thorup’s algorithm by varying the number
of processors and holding the other factors constant. We
also show the effectiveness of our strategy for building the
toVisit set. Specifically, we compare the theoretically opti-
mal approach to our approach of selecting from three loops
with different levels of parallelism. Our time measurements
for Thorup’s algorithm are an average of 10 SSSP runs.

Family Thorup DIMACS
Rand-UWD-220-220 4.31s 1.66s
Rand-UWD-220-22 2.66s 1.24s

Table 1. Thorup sequential performance ver-
sus the DIMACS reference solver.

Family Comp. Children Instance
Rand-UWD-224-224 20.79 5.18 4.01GB
Rand-UWD-224-22 17.24 37.02 3.49GB
Rand-PWD-224-224 17.25 36.63 3.20GB
RMAT-UWD-224-224 19.98 6.23 3.83GB
RMAT-UWD-224-22 17.58 21.88 3.54GB
RMAT-PWD-224-224 17.66 19.92 3.29GB

Table 2. Statistics about the CH. “Comp” is
total components in the CH (millions). “Chil-
dren” is average number of children per com-
ponent. “Instance” is memory required for a
single instance.

Conversely, we only measure a single run of the Compo-
nent Hierarchy construction.

After verifying that our implementation scales well, we
compare it to the multithreaded delta stepping implementa-
tion of [11]. Finding our implementation to lag behind, we
explore the idea of allowing many SSSP computations to
share a common component hierarchy and its performance
compared to a sequence of parallel (but single-source) runs
of delta stepping.

5. Results and Analysis

5.1. Sequential Results

We present the performance results of our implementa-
tion of Thorup’s algorithm on two graph families: Random-
UWD-220-220 and Random-UWD-220-22. Our results are
presented in Table 1. In addition to the reported time, Tho-
rup requires a preprocessing step that takes 7.00s for both
graph families. The results show that there is a large per-
formance hit for generating the Component Hierarchy, but
once generated the execution time of Thorup’s algorithm is
within 2-4x of the DIMACS reference solver. Our code is
not optimized for serial computation, especially the code to
generate the Component Hierarchy. Regardless, our Thorup
computation is reasonably close to the time of the DIMACS
reference solver.
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Figure 4. Scaling of Thorup’s algorithm on
the MTA-2.

5.2. Component Hierarchy Analysis

Several statistics of the CH across different graph fami-
lies are shown in Table 2. All graphs have about the same
number of vertices and edges and thus require about the
same amount of memory– namely 5.76GB. It is more mem-
ory efficient to allocate a new instance of the CH than it is
to create a copy of the entire graph. Thus, multiple Tho-
rup queries using a shared CH is more efficient than several
∆-Stepping queries each with a separate copy of the graph.

The most interesting categories in Table 2 are the number
of components and the average number of children. Graphs
favoring small edge weights (C = 22 and PWD) have more
children on average and a fewer number of components. In
Section 5.3, we find that graphs favoring small edge weights
have faster running times.

5.3. Parallel Performance

We present the parallel performance of constructing the
Component Hierarchy and computing SSSP queries in de-

Graph Family CH CH Speedup
Rand-UWD-225-225 23.85s 15.89
Rand-PWD-225-225 23.41s 18.27
Rand-UWD-224-22 13.87s 16.04
RMAT-UWD-226-226 44.33s 17.19
RMAT-PWD-225-225 23.58s 15.83
RMAT-UWD-226-22 18.67s 18.45

Table 3. Running time and speedup for gen-
erating the CH on 40 processors.

Graph Family Thorup Thorup Speedup
Rand-UWD-225-225 7.53s 60.51
Rand-PWD-225-225 7.54s 63.09
Rand-UWD-224-22 5.67s 48.45
RMAT-UWD-226-226 15.86s 85.55
RMAT-PWD-225-225 8.16s 65.42
RMAT-UWD-226-22 7.39s 64.36

Table 4. Running time and speedup for Tho-
rup’s algorithm on 40 processors.

tail. We ran Thorup’s algorithm on graph instances from the
Random and RMAT graph families, with uniform and poly-
log weight distributions, and with small and large maximum
edge weights. We define the speedup on p processors of the
MTA-2 as the ratio of the execution time on one proces-
sor to the execution time on p processors. Note that since
the MTA-2 is thread-centric, single processor runs are also
parallel. In each instance, we computed the speedup based
upon the largest graph that fits into the RAM of the MTA-2.

Both the Component Hierarchy construction and SSSP
computations scale well on the instances studied (see Fig-
ure 4). Running times and speedups on 40 processors are
detailed in Tables 3 and 4. For a RMAT graph with 226 ver-
tices, 228 undirected edges, and edge weights in the range
[1, 4], Thorup takes 7.39 seconds after 18.67 seconds of pre-
processing on 40 processors. With the same number of ver-
tices and edges, but edge weights in the range [1, 226], Tho-
rup takes 15.86 seconds. On random graphs, we find that
graphs with PWD and UWD distributions have nearly iden-
tical running times on 40 processors (7.53s for UWD and
7.54s for PWD).

For all graph families, we attain a relative speedup from
one to forty processors that is greater than linear. We at-
tribute this contradiction to an anomaly present when run-
ning Thorup’s algorithm on a single processor. Namely, we
see speedup of between three and seven times when going
from one to two processors. This is unexpected, since the
optimal speedup should be twice that of one processor. On a
single processor, loops with a large amount of work only re-
ceive a single thread of execution in some cases because the
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Family ∆-Stepping Thorup CH
Rand-UWD-225-225 4.95s 7.53s 23.85s
Rand-PWD-225-225 4.95s 7.54s 23.41s
Rand-UWD-224-22 2.34s 5.67s 13.87s
RMAT-UWD-226-226 5.74s 15.86s 44.33s
RMAT-PWD-225-225 5.37s 8.16s 23.58s
RMAT-UWD-226-22 4.66s 7.39s 18.67s

Table 5. Comparison of Delta-Stepping and
Thorup’s algorithm on 40 processors. “CH”
is the time taken to construct the CH.

Family Thorup A Thorup B
RMAT-UWD-226-226 28.43s 15.86s
RMAT-PWD-225-225 14.92s 8.16s
RMAT-UWD-225-22 9.87s 7.57s
Rand-UWD-225-225 13.29s 7.53s
Rand-PWD-225-225 13.31s 7.54s
Rand-UWD-224-22 4.33s 5.67s

Table 6. Comparison of naive strategy (Tho-
rup A) to our strategy (Thorup B) for building
toVisit set on 40 processors.

remainder of the threads are occupied visiting other com-
ponents. This situation does not arise for more than two
processors on the inputs we tested.

Madduri et al. [11] present findings for shortest path
computations using Delta-Stepping on directed graphs. We
have used this graph kernel to conduct Delta-Stepping tests
for undirected graphs so that we can directly compare Delta-
Stepping and Thorup. The results are summarized in Table
5. Delta-Stepping performs better in all of the single source
runs presented. Yet, in Section 5.5, we show that Thorup’s
algorithm can processor simultaneous queries more quickly
than Delta-Stepping.

5.4. Selective parallelization

In Section 3.3, we showed our strategy for building the
toVisit set. This task is executed repeatedly for each compo-
nent in the hierarchy. As a result, the small amount of time
that is saved by selectively parallelizing this loop translates
to an impressive performance gain. As seen in Table 6, the
improvement is nearly two-fold for most graph instances.

In the current programming environment, the program-
mer can only control if a loop executes on all processors,
on a single processor, or in serial. We conjecture that better
control of the number of processors for a loop would lead
to a further speedup in our implementation.

5.5. Simultaneous SSSP runs

Figure 5 presents results of simultaneous Thorup SSSP
computations that share a single Component Hierarchy. We
ran simultaneous queries on random graphs with a uniform
weight distribution. When computing for a modest num-
ber of sources simultaneously, our Thorup implementation
outpaces the baseline delta-stepping computation.

We note that Delta-Stepping stops scaling with more
than four processors for small graphs. Thus, Delta-Stepping
could run ten simultaneous four processor runs to process
the graph in parallel. Preliminary tests suggest that this ap-
proach might beat Thorup, but this is yet to be proven.

6. Conclusion

We have presented a multithreaded implementation of
Thorup’s algorithm for undirected graphs. Thorup’s algo-
rithm is naturally suited for multithreaded machines since
many computations can share a data structure within the
same process. Our implementation uses functionality from
the MTGL [2] and scales well from 2 to 40 processors on
the MTA-2. Although our implementation does not beat
the existing Delta-Stepping [11] implementation for a single
source, it does beat Delta-Stepping for simultaneous runs on
40 processors. These runs must be computed in sequence
with Delta-Stepping.

During our implementation, we created strategies for
traversing the Component Hierarchy, an irregular tree struc-
ture. These strategies include selectively parallelizing a
loop with an irregular number of iterations. Performing this
optimization translated to a large speedup in practice. Yet,
the granularity of this optimization was severely limited by
the programming constructs of the MTA-2. We were only
able to specify if the code operated on a single processor or
on all processors. In the future, we would like to see the
compiler or the runtime system automatically choose the
number of processors for loops like these. In the new Cray
XMT [4], we foresee this will be an important optimization
since the number of processors is potentially much larger.

We would like to expand our implementation of Tho-
rup’s algorithm to compute shortest paths on road networks.
We hope to overcome the limitation of our current imple-
mentation, which exhibits trapping behavior that severely
limits performance on road networks. After this, the
Component Hierarchy approach might potential contributed
speedup of the precomputations associated with cutting-
edge road network shortest path computations based-upon
transit nodes [1, 9]. Massively multithreaded architectures
should be contributing to this research, and this is the most
promising avenue we see for that.
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Appendix A

External Impact

A.1 Invited Presentations

1. (to occur) Invited Plenary on HPC Graph Computations: SIAM Parallel Processing
for Scientific Computing, Seattle, WA, February 24–26, 2010 – Jonathan Berry

2. Keynote at 2008 IPDPS “MultiThreaded Architectures and APplications” Workshop
(MTAAP) – Jonathan Berry

3. Computing Maximum Flow on Massively-Multithreaded Supercomputers: 20th Inter-
national Symposium on Mathematical Programming (ISMP), Chicago, August 23-28,
2009 – Cynthia Phillips

4. The MultiThreaded Graph Library (MTGL): SIAM Parallel Processing for Scientific
Computing, Atlanta, GA, March 12–14, 2008 – Jonathan Berry

A.2 Service to Professional Societies

1. Jonathan Berry – program committee member, 2008 IEEE MultiThreaded Architec-
tures & Applications

2. Jonathan Berry – program committee member, 2009 IEEE MultiThreaded Architec-
tures & Applications

A.3 New Ideas for R&D

We submitted a proposal to the DOE ASCR program “Mathematics for the Analysis of
Petascale Data” with academic collaborators Joel Bader (Johns Hopkins University), Aaron
Clauset (Santa Fe Institute), Nathan Eagle (Santa Fe Institute). We propose to prepare for
emerging petascale datasets in biology and social networks by improving current network
analysis methods and developing new ones. The proposal was not funded by ASCR, and we
are looking for other sources for this work.
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