SANDIA REPORT

SAND2010-7055
Unlimited Release
Printed October 2010

The Theory of Diversity and
Redundancy in Information System
Security: LDRD Final Report

Benjamin A. Allan, Robert C. Armstrong, Jackson R. Mayo, Lyndon G. Pierson,
Mark D. Torgerson, Andrea Mae Walker

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2010-7055
Unlimited Release
Printed October 2010

The Theory of Diversity and Redundancy in
Information System Security: LDRD Final Report

Jackson R. Mayo
Scalable Modeling & Analysis Systems

Robert C. Armstrong Benjamin A. Allan
Scalable & Secure Systems Research

Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551-0969

Mark D. Torgerson Andrea Mae Walker
Analytics & Cryptography

Lyndon G. Pierson (retired)
Networked Systems Survivability & Assurance

Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0672

Abstract

The goal of this research was to explore first principles associated with mixing of diverse imple-
mentations in a redundant fashion to increase the security and/or reliability of information systems.
Inspired by basic results in computer science on the undecidable behavior of programs and by pre-
vious work on fault tolerance in hardware and software, we have investigated the problem and
solution space for addressing potentially unknown and unknowable vulnerabilities via ensembles
of implementations. We have obtained theoretical results on the degree of security and reliability
benefits from particular diverse system designs, and mapped promising approaches for generating
and measuring diversity. We have also empirically studied some vulnerabilities in common imple-
mentations of the Linux operating system and demonstrated the potential for diversity to mitigate
these vulnerabilities. Our results provide foundational insights for further research on diversity and
redundancy approaches for information systems.

Contents

1 Introduction
1.1 Defining Complexityttt et

1.2 Properties of Vulnerabilities. i

2 The Meaning and Promise of Diversity in Hardware and Software
2.1 Observation 1: Many Implementations for a Single Design
2.2 Observation 2: Ensembles of Undecidables Yield Meaningful Statistics
2.3 N-Version Technique Adapted to Cybersecurity
2.4 Genetic Programming Techniques for Code Transformation
2.5 Component-Based Software for Combinatorial Leverage
2.6 VOUNE . . .o

2.7 Summary and Future Research

3 Exploiting Diversity in Hardware and Software
3.1 Types of Diverse Implementations.oiutit ittt

3.2 Example: Stack Randomization. i,

4 Fault Tolerance of Diverse Implementations with Voting
4.1 Frameworko
4.2 Majority or Supermajority VOtNgttt

4.3 Plurality VOUNGo

5 Software Diversity at Scale in Commodity Operating Systems

10

13
13
15
16
17
18
19

19

21
21

23

25
25
26

28

31

5.1 Evaluating Diversity of Linux Distributions for Detecting Malicious or Buggy Code 31

5

5.1.1 Linux Variants Not Considered 33

5.1.2 Automated Intrusion Detection in a Diverse Platform Environment 34

5.2 Experimental Applicationand Results. 34

5.3 Conceptual Soundness 35

6 Conclusion 37
References 38

List of Figures

1.1

2.1

2.2

2.3

[llustration of the asymmetry in cyber-defense 10
A feature set and its implementations i 14
Identical versus diverse implementations, 15
Attacker and defender effort for a diverse voting system 16

List of Tables

5.1 Commodity Linux versions tested
5.2 Security features of Linux Versionsttt

5.3 Results of vulnerability testing on Linux versions.

Chapter 1

Introduction

All software and hardware has an intended implementation, and often works reasonably well in
its intended context. The problem is that the same hardware and software will behave in other
ways outside of this intended context. Many of these behaviors are benign, some are faults, and
some are vulnerabilities. This is a result of the inherent complexity of software and hardware in
common use today. This complexity is a necessary artifact of the complicated tasks we require
them to perform.

1.1 Defining Complexity

Too often complexity is taken to mean “profoundly complicated” or sometimes that which is sim-
ply complicated. This ephemeral definition suggests a sliding relative scale where one item can
be said to be “more complex” than another subjectively. A more satisfying and exact approach
is needed. For our purposes we will claim that a necessary condition for a system to be called
formally complex is that the computational capability of the system is at least Turing complete.
This definition coheres with a few of the properties that we look for in complex systems and that
bear directly on cybersecurity:

1. Turing complete systems cannot be decided (i.e., predicted, or said to be bounded) ahead
of running them to see what they do (Turing’s Halting Problem and Rice’s Undecidability
Theorem [14]). This irreducibility is a hallmark of emergent behavior in complex systems.
While this definition probably extends to non-cyber complex systems (as in biology and
economics), it is clearly true for computers and networks of computers'.

2. A complex system’s emergent behavior cannot be predicted, short of “running it”, from
even a perfect knowledge of the constituent parts that compose the complex system — a
ramification of undecidability.

This does not mean that there are not programs that are simple enough to be analyzed by for-
mal methods and other tools. In those cases, boundedness properties of the code can be asserted

IReal computers are not strictly Turing complete because they have finite memory, but for any execution that “fits”
in the computer’s memory the question is moot.

Bad Guy needs
to find one

You e to
find them all

Figure 1.1. Illustration of the asymmetry in cyber-defense.

and proved, making the behavior well-understood under a wide variety of circumstances. Formal
verification [4] is accomplished by automatically following all salient execution paths to under-
stand their consequences. However, probably the vast majority of codes are of the sort that are
too complex for this analysis, the number of paths growing beyond the capacity of even the largest
machines. It is this latter case on which we concentrate in this work. In this work we consider
systems that are undecidable and for which vulnerabilities can only be discovered anecdotally but
not thoroughly. Because their containing programs are unanalyzable, these vulnerabilities cannot
be guaranteed to be found by any means.

The task we undertake is to reduce the hazard of vulnerabilities while recognizing that such
vulnerabilities in most programs of interest are unknowable. Because of the enforced opacity of
specific vulnerabilities, we hypothesize that any successful method must rely on statistical proper-
ties involving a real or conceptual ensemble of programs. Any other method would, by definition,
require specific foreknowledge of the vulnerability, violating the undecidability principles. Diver-
sity in the ensemble provides the means to detect an attack, leveraging the exploit itself to reveal
the presence of a vulnerability without knowing the specifics of the vulnerability a priori.

1.2 Properties of Vulnerabilities

In general, then, it is impossible to find an arbitrary vulnerability in an arbitrary code [14]. This im-
parts a significant advantage to the attacker over the defender: The attacker needs to find only one
vulnerability to subvert code or a machine, while the defender must patch all of the vulnerabilities
to be safe (Figure 1.1). Due to the unavoidable undecidability of vulnerabilities in a general code,
the defender is always in jeopardy. Given that we would like our results to be general, and thus
apply to general hardware and software systems, some property must be found to either decrease
the uncertainty of the defender or increase the uncertainty of the attacker. This work centers on
exploiting diversity in software and hardware to accomplish this goal.

10

An implementation in hardware and software is not unique and there exists a diverse, possibly
infinite, set of implementations from which to choose. The semantics and capability of construct-
ing hardware and software are sufficiently powerful and redundant that there are myriad ways of
accomplishing the same result. Usually vulnerabilities are an artifact of choosing one of many
ways of accomplishing the specified purpose of the program or hardware. Diversity of imple-
mentation will never completely eliminate vulnerabilities, because of the general undecidability
of untested characteristics of the implementation, but a random sample from a complete set of
implementations will make it uncertain whether the sampled implementation has a particular flaw.
Vulnerabilities unwittingly imparted to an implementation (hardware or software) are assumed to
have two properties:

1. Vulnerabilities are incidental and not necessitated by the requirements and specification of
the desired hardware or software. All vulnerabilities are, in principle, able to be eliminated
once they are found. It is the impossibility of finding them that creates the problem.

2. Vulnerabilities are not an artifact of the environment with which the hardware/software is
created or in which the hardware/software executes. There is no interaction between the
compilers or infrastructure with the implementation itself that produces a vulnerability for
all possible implementations.

If either of these conditions is not met then every implementation will have a vulnerability
of some sort because either the implementation’s specification or its environment require that the
vulnerability be present. Our assumptions set the beginning of a mathematical foundation for
understanding vulnerabilities and possible avenues toward mitigating their effects.

11

12

Chapter 2

The Meaning and Promise of Diversity in
Hardware and Software

As discussed in Section 1.2, unknown vulnerabilities, like any property of software, are unfore-
seeable until they are revealed by an exploit. Because a vulnerability is just a fault in the software
that can be exploited by an adversary, it is useful to examine the more fertile field of fault-tolerant
computing. We will first define what is meant by diversity in hardware/software systems and then
discuss ways to achieve it. In general, there is no “one size fits all” form of diversity that works
for all possible vulnerabilities. We will find that vulnerabilities are best thought of as members
of classes and that certain mechanisms for creating diverse software will be effective against all
vulnerabilities in a class but leave other classes of vulnerabilities untouched.

2.1 Observation 1: Many Implementations for a Single Design

It is useful to observe that for most feature sets there is a large number of implementation programs
— an infinite number if there is no other restriction. If as a part of the feature set we bound the
implementation program size, then we can define a finite set of all implementation programs for
that particular feature set. The total number of such programs is related only to the properties
of the designed feature set and the program size bound. If, for example, the bound is set below
the Kolmogorov complexity analogue of the feature set (i.e., the smallest program implementing
the feature set) then the set of implementations is empty. The implementation “entropy” of the
feature set F can be considered to be Sg = logn(F), where n(F) is the total number of possible
implementations of feature set ' — a measure of how diverse F is. This definition is consistent
with the definition of entropy as “the number of ways of changing the inside such that the outside
stays the same”.

Assuming that F itself does not require vulnerabilities in every implementation, we can be cer-
tain that within the complete set of implementations /r, each will have diverse vulnerabilities not
shared by all (Figure 2.1). It is important to note that if one vulnerability is shared by all possible
implementations, this is the same as the feature set requiring a vulnerability: The designed feature
set itself has a vulnerability. In this way we can unambiguously say that each vulnerability has a
probability less than unity of being found in any member of Ir. To the extent that no implemen-
tation vulnerability is “encouraged” by the feature set (i.e., made more probable than any other

13

Implementations: I Input/Output: F

Y

- - Feéature
t
" I

Figure 2.1. A feature set and its implementations. Here the “fea-
ture set” (F) is the collection of designed inputs and outputs that
a program produces. There are many possible implementations of
a given feature set, each different in their unrelated implementa-
tion particulars (/g). Assuming that the design of the feature set is
sound, security “holes” (white dots) in programs happen as a result
of the implementation only, and not the feature set.

14

Monoclonal Diverse

Attacker { .(Facker

Figure 2.2. Identical versus diverse implementations. Turing
completeness and undecidability cause security holes to be un-
knowable in the general case to programmers, users, and attack-
ers. Implementations that are identical (monoclonal) are equally
susceptible to the discovery of a security hole by an adversary.
Diverse implementations are less so, depending on the number of
variants.

vulnerability), vulnerabilities can be considered incidental and can be assumed to be uncorrelated.
Since we stipulate that this software is complex, providing the opportunity for many different types
of vulnerabilities, we can speculate that any particular vulnerability will be rare.

2.2 Observation 2: Ensembles of Undecidables Yield
Meaningful Statistics

A second observation is that although every implementation is undecidable with regard to possi-
ble vulnerabilities, an ensemble of implementations may permit meaningful quantitative statistics.
Consider an ensemble of implementations chosen from Ir. If each of these members is run with
the same input history, then nominally all of the responses will be the same. If, as part of that input
history, an exploit for a particular vulnerability is present, it will likely succeed only for a minority
of the ensemble (Figure 2.2). It is clear that statistics can be formed relating the likelihood of
compromise for a specific fraction of the ensemble.

Even though the vulnerabilities of each member implementation are unknowable, the ensemble
itself is more predictable. We can say what percentage of the ensemble is vulnerable to attack and
with what likelihood given the statistics of the implementation set. This property of ensembles of
undecidables can be used to turn complexity against the attacker and in favor of the defender. A
number of possibilities exist for exploiting this property and will be discussed.

15

Attacker

Work \

N\

Defender

N

Figure 2.3. Attacker and defender effort for a diverse voting sys-
tem. An idealized graph compares the linear scaling of defender
effort with the exponential scaling of attacker effort for a system
that votes N diverse software implementations.

2.3 N-Version Technique Adapted to Cybersecurity

An obvious application of ensembles is closely related to N-version software techniques [8] for
high-reliability, fault-tolerant systems used in aerospace and other time-critical systems and re-
cently applied to cybersecurity [10, 11]. Here we are seeking to identify wrong responses from
an otherwise correct implementation [3]. In this technique, different versions implementing the
same feature set compare responses to detect a fault and vote the collective response of the en-
semble. In the past this concept has been restricted to fault-tolerant systems. Typically, practical
application of N-version software requires that all versions be hand-coded in a Chinese-wall style
where different programmers are given the specification and have no other communication. This
extra effort is deemed worthwhile for critical control systems, as in spacecraft or aircraft, where
the control software is fairly simple. The expense presents a problem for more complex software,
where getting just one version is burdensome.

However, the benefits of using many diverse implementations can be very substantial (Fig-
ure 2.3), based on the theoretical scaling of the work required for a defender to produce such vari-
ants (linear) in comparison to the work required for an attacker to defeat a robust voting system by
finding a shared vulnerability among most of the variants (exponential). Although in practice the
variants will not be fully randomized as assumed in this comparison, the voting mechanism can
still provide an increase in robustness as long as some diversity is available.

There are other differences in generalizing these ideas into the cybersecurity arena. Faults in
the N-version technique are not considered hazardous to the overall system and faulting versions
are considered benign as long as they are in the minority and lose the vote. In the case of a cyber
attack, however, the fault becomes an exploited vulnerability and the compromised implementation
must be removed from the ensemble or it will pose a danger to the entire system. Because of this
necessity, it would be advantageous to generate new implementations automatically that will not

16

repeat the same vulnerability. An automatic means for generating new implementation versions
from one or a few existing implementations is needed. In the following section, we sketch a system
for accomplishing these goals using a simple genetic algorithm for finding new implementations
and a voting scheme for eliminating outliers.

2.4 Genetic Programming Techniques for Code
Transformation

Generation of software variants by hand is time-consuming and expensive. Furthermore, people
tend to approach tasks in similar ways and make similar mistakes, limiting the software diver-
sity that can be achieved through human coding, even by separated developers [3]. On the other
hand, the field of genetic programming has the ambitious goal of enabling software to be created
automatically based on a specified feature set (objective function), by imitating the biological pro-
cesses of mutation and natural selection; but such an approach has not been successful in creating
realistically complex software from scratch.

We propose that an effective method for generating diverse software implementations is to start
with an initial human-written implementation that passes the test suite for its feature set, and to use
the mutation techniques of genetic programming for the sole purpose of introducing variations
in implementation details, while preserving (but not improving) functionality as measured by the
test suite. This application of genetic programming should be more tractable because, rather than
exploring an astronomically large space in search of an optimum in the fitness “landscape”, we
are starting at an optimum (a functional program) and merely diffusing along the manifold of such
optima. Natural selection among the mutated codes need only keep them as functional as the initial
one. Each mutation may contribute only a small amount of diversity, but over many generations,
substantial randomization may be achievable.

Possible mutations include various “semantically invariant” code transformations, some of
which are implemented in current compilers. In general, any change in machine code has the
potential to alter software behavior in some observable way, if only in execution timing. But under
certain programming-model assumptions, there are transformations that can be proved not to affect
the behavior of interest (the semantics). In the standard C programming model, for example, the
order in which data values are stored on the stack does not affect behavior, and so stack random-
ization is considered semantically invariant. A more detailed description of stack randomization is
provided in Section 3.2.

When the assumptions of a given programming model are violated (e.g., by a buffer overflow
bug), two consequences occur: A potential vulnerability is introduced (e.g., stack smashing), and
the corresponding “semantically invariant” transformations acquire nontrivial effects on software
behavior (e.g., versions compiled with different stack randomization will not respond identically to
attack). Thus, by constructing mutations from code transformations with various types of semantic
invariance, and voting the resulting ensemble, robustness to various vulnerabilities can be achieved.
Furthermore, the correlation between the responses of variants to a given malicious input, and their

17

implementation differences, can help diagnose the type of vulnerability being exposed.

2.5 Component-Based Software for Combinatorial Leverage

Whether by hand or by an automated genetic approach, practical difficulties may limit the number
of diverse implementations that can be generated. An effective way to exploit the availability of
even a relatively small number of variants is by breaking software into “components”, each of
which has defined functionality, with its own feature set and test suite. This component-based
architecture is supported by several currently used programming models. Variant implementations
of a given component, like variant alleles of a biological gene, are in principle interchangeable
without impairing overall functionality. The creation of variants for each component, and the
arbitrary reshuffling of these variants into complete programs, can generate a much larger number
of diverse implementations of the entire program.

A potential disadvantage of the component approach is that the interfaces between components
can themselves be a source of vulnerabilities that are not diversified away. Because the compo-
nents’ interaction pattern is fixed in this example, a portion of the initial implementation has been
encoded and frozen into a more complex (and likely less analyzable) feature-set specification. We
expect that the most efficient generation of diversity will involve a preferred level of decompo-
sition for a given system, a tradeoff between the combinatorial advantage of many fine-grained
components and the greater flexibility and analyzability of fewer coarse-grained components.

It is useful to consider a program that appears monolithic but actually has a component archi-
tecture that is not visible to the diversity generator; arguably most non-obfuscated human-written
programs embody such an architecture in some way. A single localized mutation to the program
will typically affect only one underlying component, but verifying post-mutation functionality at
the monolithic level will be time-consuming because it will effectively be integration testing as op-
posed to unit testing. Furthermore, without recognizing the components, there is no general way to
leverage existing successful variants to generate new ones. Eventually, after many nonviable tries,
some (probably most) of the successful variants of the monolithic program will have the property
of changing the test-induced input-output behavior of one underlying component in a way that is
compensated by a change in another component — i.e., effectively changing the interface between
the components. These variants, obtained at great expense, which alter the component interfaces
in different ways (invisible to the diversity generator), cannot have their mutations mixed and
matched with any expectation of functionality.

On the other hand, a combination of the two approaches — monolithic and component-based
— may have benefits. If the monolithic approach leads to even a single integration-test-passing
variant that does not pass all component-level tests, this variant can be considered the progenitor
of a new program “species”. The correct answers for the component-level tests can be adjusted
to reflect the new behavior, thus implicitly capturing the interface redefinition. Then a whole new
set of component versions can be created to populate the new species. Programs from different
species can fully participate in a system because they have the same overall functionality. The

18

internal interface differences might turn out to be as simple as renumbering of return status codes,
or as complicated as various types of code refactoring. This technique may recapture some of the
diversity lost by freezing the interfaces.

Realistic software has a hierarchical structure of components, subcomponents, etc. The ques-
tion may not be the single best level of component coarseness for “annealing” software, but the
best way of cycling among the various levels — reminiscent of multigrid methods.

2.6 Voting

To realize the power of multiple diverse implementations there must be a method of comparing
outputs of the implementations. That voting mechanism must be powerful enough to account for
timing differences that might occur in the execution of a task across the members of the ensemble.
Depending on the complexity of the functionality implemented and the amount of diversity, these
delays may be significant and may pose a number of engineering challenges for system designers.

The voting mechanism must make a decision about how to proceed when a fault is detected. It
is more than just getting the “right” answer and continuing. One has to decide what to do with a
process that has been deemed faulty. One can assume that if a complicated process gets out of line
with the others, it may be out of line for quite a while, if not indefinitely. There are a plethora of
options as to how to proceed, which may be controlled to some extent by policy and design.

From a security standpoint the voting mechanism opens holes in the system that may not oth-
erwise be there. It has its own feature set that needs to be verified. Depending on the situation,
it may be that the voter is nearly as complex as the functions that it is judging. Vulnerabilities in
the voter most likely translate directly into vulnerabilities in the over all system. Further, current
architectures and thinking are not set up to easily support the notion of voting, so they would have
to be modified to allow a voter to operate. The effect of such modifications to existing architectures
would have to be evaluated.

Devising effective voting methods, sorting through the systems engineering questions, and
developing policies and procedures for such areas was not part of the scope of this work. However,
it is recognized that working through these issues is a significant research effort in its own right.

2.7 Summary and Future Research

We provide an analysis of software as an implementation of a feature set and argue that vulner-
abilities not coerced by the feature-set design are random across the possible implementations.
Nonetheless, a vulnerability, indeed any property of the software not already tested out, is unde-
cidable and undetectable except anecdotally (via code analyzers, etc.). We show, however, that
one can reason statistically about a diverse ensemble of such implementations. Although the scope

19

of the work is to understand vulnerable software theoretically, we also speculate on how such an
ensemble could be created in practice and the open questions related to its efficacy.

All of these potential applications of implementation ensembles rely on achieving sufficient
diversity, and here there is no helpful theory. It is unlikely that the complete implementation set
Ir is needed for any feature set F'; any of these potential applications can function with a small
number of sufficiently diverse members. This brings up several research questions:

1. What is a valid metric for software diversity in this case? Here we seek a sort of “Hamming
distance” for differing implementations of the same feature set.

2. What is sufficient diversity to foil an attack with some probability? This is likely dependent
on the class of vulnerability as well as the inherent entropy Sr of the feature set.

3. What automated means can be found to create new diverse implementations? Genetic pro-
gramming holds out little hope for finding implementations of complex software ab initio,
but there may be schemes to create diversity using one or a few hand-coded implementations
as a starting point.

4. Under what circumstances is it possible to design and implement an effective voting mecha-
nism?

The simple genetic algorithm example we present answers each of these questions in one way
or another, with varying degrees of adequacy, and serves as a focus of discussion.

The same undecidability constraints that govern the ability to find vulnerabilities in a given
implementation also govern the ability to fully measure how different two implementations of
the same feature set are. So it is clear that having a perfect measure of diversity is not realistic.
However, given details on the method that provides the diversity, one certainly should be able to
measure what is done to the implementations. This may provide insight into the larger question of
“distance”. It may also be able to provide bounds for the value of the diversity as applied to the
system.

A reasonable question, outside the scope of this work, is whether there is another construct be-
yond ensembles that might also circumvent the undecidability of complex software. It is a curiosity
that ensembles in statistical physics are a theoretical artifice to reduce an overabundance of infor-
mation into global averaged properties such as temperature and pressure. Conversely, here each
member of the ensemble is unknowable but some relative information is gained by looking at them
collectively. An interesting future investigation might leverage this observation to seek constructs
other than ensembles that might have similar properties and arrive at them more straightforwardly.

20

Chapter 3

Exploiting Diversity in Hardware and
Software

3.1 Types of Diverse Implementations

Because realistic software and hardware cannot be fully analyzed, vulnerabilities will inevitably
exist. We seek to make them difficult to find and exploit, by making system behavior maximally
unpredictable in aspects orthogonal to intended functionality. Then attacks to induce specific de-
viations from intended functionality will be unlikely to succeed. This ideal can be approached in
stages involving different levels of functionality (i.e., semantics). Randomized implementations
can be further leveraged by composing several into a “voting” system that compares outputs for a
given input to detect and recover from attacks. The power of leveraging complexity against attack-
ers lies in its effectiveness against not only vulnerabilities that are known, but those yet unknown.

Computer systems can be decomposed into the intended functionality and the orthogonal im-
plementation incidentals:

e The design is the expected behavior and useful work that the application is designed to
do. As one would expect, designed-in vulnerabilities are rare but do happen: The DNS
specification was found to, in effect, require a vulnerability in 2008 [6]. Every faithful
implementation of DNS had it. An automated system cannot protect against a system that is
performing as designed, however ill-conceived.

e The implementation incidentals are most often the target of successful cyber attacks. The
implementation complexity is larger, often much larger, than the designed user interface, of-
fering many targets of opportunity. In hardware, a vulnerability is manifested as a transition
that is enabled by an untested state (e.g., the famous Intel fOOf bug [13]); in software, it may
occur as an unguarded buffer overrun (e.g., the Sun RPC bug [5]), or a flaw in a network
protocol implementation (again the Sun RPC bug [5]). In each case there was nothing intrin-
sically wrong with the design of the system; only the implementation provided the attacker
the opportunity.

Presenting attackers with a “moving target” of time-varying implementation incidentals re-
duces their ability to count on these details for exploitation. A key question is where in software,

21

hardware, and networking this implementation diversity is to be found.

e Software: Programming languages use semantics to specify behavior but leave machine-
level implementation details to compilers. Vulnerabilities that depend on these details are
“extra-semantic” and can be mitigated by randomization. For example, in C, stack random-
ization is a known defense against buffer overflow exploits. But typical SQL injection vul-
nerabilities are not extra-semantic in C — any compilation is equally vulnerable. SQL injec-
tion could become extra-semantic if SQL statements and user-supplied strings had unrelated
character encodings. More generally, it will be useful to investigate program-obfuscation
transformations that alter semantics within a language but preserve a higher level of seman-
tics.

e Hardware: Many concepts for achieving a “moving target” in software implementation also
apply to hardware, which is frequently designed in VHDL before “compilation” to blueprints
(e.g., masks). Diversity could be applied at the time of fabrication (wafer-by-wafer or die-
by-die); and increasing use of reconfigurable chips will support more convenient switch-
ing of designs during hardware lifetime. Randomized chip layouts would frustrate attacks
on physical circuit locations. Processor support for instruction set randomization preserves
assembly-language semantics but varies the encoding, making the results of a binary code
injection attack unpredictable (extra-semantic).

e Networks: Techniques for implementation diversity and robustness in communications in-
clude frequent dynamic network reconfiguration, multipath routing, and use of multiple dif-
ferently implemented protocols in each layer. Dynamic permutation of addresses and proto-
cols would frustrate attacks that depend on consistent internal responses, while maintaining
functionality needed by legitimate users. Sandia’s Emulytics capability will allow testing
these concepts on highly realistic virtualized networks of 10° or more virtual machines.

A diverse set of implementations or configurations can be used against the attacker by changing
out the particular instance drawn from that set (inducing time-varying uncertainty for the attacker)
or running many instances in parallel (inducing space-varying uncertainty for the attacker). For
example, a software program may be created with a vulnerability planted in the supply chain. If
the programming model admits a changing implementation over time, this vulnerability can be
“annealed” away regardless of whether the vulnerability was detectable in the first place. Alter-
natively, by comparing outputs of parallel instances, not all sharing the same vulnerabilities, an
attack can be detected and a vote can allow execution to continue unaffected. Inspired by redun-
dant hardware designs, these voting systems show promise for exponential reduction in likelihood
of compromise [2]. The exponential increase in difficulty for the attacker compares favorably to
the linear increase in difficulty of creating and running the diverse implementations, as shown in
Figure 2.3. Such approaches have the potential not merely for making unknown vulnerabilities dif-
ficult to find but for engineering them out of existence. An evolutionary approach could eliminate
individual compromised implementations and thus select for robustness over time.

22

3.2 Example: Stack Randomization

Buffer overflow exploits take advantage of specific programming errors that are possible in lan-
guages such as C, where some (typically larger than anticipated) inputs cause a program to attempt
to write outside the memory allocated for an object (e.g., by using an out-of-bounds array index).
For this to occur means that the program is not standard-conforming and, strictly, its behavior is
undefined. What typically happens is either (1) the improper write is detected by the runtime en-
vironment and triggers a segmentation fault, or (2) the write is successful and changes the values
stored in locations adjacent to the object, which may have been allocated to other objects. The
second case can lead to the further result that (2a) the write is harmless because the locations are
either never used or subsequently initialized such that the values written have no effect, or (2b) the
values written alter the subsequent operation of the program in a way that the programmer did not
intend.

For software vulnerable to scenario (2b), an attacker can potentially use a buffer overflow
exploit to perform memory writes that lead to dangerous program behavior, including execution
of malicious code. Such an exploit is facilitated by targeting the “stack” memory used for storage
of local variables in functions, which is traditionally laid out in a fixed order by a given compiler.
Thus an attacker may be able to consistently overwrite a specific variable of interest by providing
a suitable malicious input that the program stores in another variable.

Stack randomization is a technique for thwarting buffer overflow exploits by laying out stack
memory in an unpredictable order so that an attacker cannot rely on fixed relative locations of
variables. It may be possible to craft a successful exploit for any given stack layout, but no single
malicious input will be successful against all layouts. The layout could be chosen randomly once
for a given software installation, or it could be varied over time by recompiling. It has been noted
that an attacker successively trying buffer overflow exploit variations, attempting to find the one
that works with the current stack layout, will on average require only twice as many attempts if
the layout is varying over time as if it is random but static [12]. This assumes that a successful
attack on a given system can be carried out all at once. More sophisticated and targeted attacks
may involve separate exploration, testing, and deployment stages, and may want to return to the
same system repeatedly over time to gain further benefits from the exploit. These scenarios could
be hampered much more substantially by re-randomization.

Stack randomization is one mechanism, already supported by compilers, for generating soft-
ware diversity. This dimension of diversity is called semantically invariant because all versions
have the same C semantics. They differ only in an aspect that the C standard leaves to the discretion
of compilers and that does not affect the observable behavior of standard-conforming programs.
Correspondingly, the buffer overflow vulnerability is called extra-semantic because it relies on the
undefined behavior of non-standard-conforming programs. Semantically invariant diversity can
be effective only against extra-semantic vulnerabilities. The immediate value of a redundant sys-
tem of stack-randomized versions is for detection of buffer-overflow exploits, since even if one or
more versions are successfully compromised by an attack, other versions are very likely to exhibit
observably different responses to the same input — such as segmentation faults.

23

24

Chapter 4

Fault Tolerance of Diverse Implementations
with Voting

4.1 Framework

We assume that a system (software or hardware) is designed to transform inputs into outputs.
The inputs are drawn from a finite set X, where input x; is chosen with probability p;. The input
distribution may reflect naturally occurring conditions in the case of a control system, or malicious
hacking attempts in the case of a network-connected device. Each input is associated with a unique
correct output (where “output” means all information that the system provides, either to a user
or to other systems with which it interacts). Because a realistic implementation of the system is
imperfect, we define an indicator function A(x;) that equals 1 if the given implementation produces
an incorrect output (a “fault” or potential “vulnerability”) for input x;, and O otherwise. Clearly the
probability of encountering a fault in the implementation on any one input is

F:Zp,-A(x,-). (4.1.1)

If the implementation is drawn from an ensemble of implementations (e.g., reflecting the distribu-
tion of outcomes of a particular development methodology), and if brackets () denote averaging
over this ensemble, then the overall probability of a fault is

F) =) pi(A(xi)). (4.12)

Now we consider a collection of several implementations drawn independently from the en-
semble. This form of “independence” does not imply that faults occur independently with respect
to the distribution of inputs. If two particular implementations are given the same input, then the
probability that both generate a fault is

F2 = Zp,‘Al (X,‘)Az (xi), (413)

and the average of this probability over implementation pairs from the ensemble is

Zp,fn (xi)A2(x;)) Zp,A1 xi)) (A2 (x)) Zp, : (4.1.4)

25

Despite the independence between Aj(x;) and A;(x;) with respect to the ensemble of implemen-
tations, we have in general (F>) # (F)?. In fact, (F>) — (F)? can be identified as the variance of
(A(x;)) over the distribution of inputs x;, so that

(R) > (F)2. (4.1.5)

That is, the overall probability of a joint fault is typically greater than the product of the prob-
abilities of a fault in each implementation. The strict inequality holds as long as some inputs
are “harder” for the ensemble to handle correctly than others, i.e., (A(x;)) is not the same for all
possible inputs x;. These conclusions were obtained previously [8].

We would like to determine if, nevertheless, the use of a large number n of implementations
can substantially reduce the probability of faults that lead to incorrect behavior of the collection as
a whole. A straightforward design for integrating the n implementations into a single system is to
send each input to all of them and use the mode (most prevalent value) of their outputs to generate
the final output. This process is naturally described as “voting” and is motivated by the expectation
that faults are rare. We assume that the voting process itself is always reliable.

In principle, one must specify what to do when the mode is undefined (i.e., in case of a tie).

4.2 Majority or Supermajority Voting

Here we adopt the conservative requirement that the winning output be given by at least k of the n
implementations, where k > |n/2] + 1. Depending on the choice of k, this is either a majority or a
supermajority rule; at most one output can win by this criterion. A fault in the complete system is
deemed to occur when an incorrect output wins or no output wins. (The resulting fault probabilities
will be pessimistic in comparison to the case where a plurality can win.) A convenience of these
rules is that no distinction need be made among different incorrect outputs for a given input; the
only question is whether at least k of the outputs are correct.

For a given input x;, the output of each implementation drawn from the ensemble is indepen-
dently incorrect with probability
a; = (A(x;)). 4.2.1)

Thus the number of incorrect outputs among the n» implementations is a random variable M; ~

Binomial(n, a;). The probability of a fault for the k-out-of-n system on input x; is

B(aj,n—k+1,k)
B(n—k+1,k) ’

fi=PrM;>n—k+1)= i <”) al(1—a;)" = (4.2.2)

j=n—k+1 \J

where B is the complete or incomplete beta function. The lowest-order term in a@; gives a simple
asymptotic approximation for very rare faults,

fir~ <n _Z+ 1) a Mt (@ —0). (4.2.3)

26

More useful would be an asymptotic approximation to f; for n,k — oo with arbitrary a;. This
would give the scaling behavior of the fault probability for a large collection of implementations.
We assume that

k=|an|+1 (4.2.4)

for a fixed parameter o € [%, 1). Note first that if @; > 1 — & (i.e., the probability of a fault in each
implementation is greater than the allowed fraction of incorrect outputs), then it is clear by the law
of large numbers that f; — 1 as n — oo. Thus, e.g., if a particular input is such that implementations
drawn from the ensemble produce incorrect output more than half the time, then majority voting
of a collection of implementations is of no benefit in reducing faults for this input.

On the other hand, if a; < 1 — o, we have f; — 0, and the following asymptotic approximation
provides an upper bound as n — oo [7]:

5 Bl] o] 7 1) (1 —an—[om] 1% 174
_ n n— LOCI’ZJ —1 a}?*L(X}’lJ —a lan|+1 " oo
(n— LanJ) (1—aj)n—|an]—1"" (1—a) (n— o0). (4.2.5)

Expansion of the binomial coefficient gives a more explicit asymptotic approximation (no longer
an upper bound):

) n—|an| N\ lon]+1 —
ﬁw<al) <1%) 1 a(l —a) (n—s o). 426)

11—« o l—ag—« 27n

The result is then that f; = O(c), where

a \'"*[(1—a* a; 1—a;
Q:(lja) ((xj <(L401:a+a al:L (4.2.7)
by the weighted arithmetic-geometric mean inequality, which is strict because
Gyl (4.2.8)
|-«

Since ¢; < 1, it follows that f; decreases at least exponentially as n — o (for ¢; < 1 —).

Combining f; for all inputs gives an asymptotic approximation to the fault probability for the k-
out-of-n system averaged over both the distribution of inputs and the ensemble of implementations,

(Fux) = Zpifi

n—|on] lon]+1
ai 1 —aq; 1 a(l —a)
ai>zlt—a ai<;—a -« a l—ai—o 27n
4.2.9)

27

(We neglect the vanishingly unlikely case a; = 1 — ¢¢.) This result implies that the fault probability
is asymptotically dominated by those inputs for which a fraction greater than 1 — o of implemen-
tations drawn from the ensemble produce incorrect output. If there are no such inputs, then the
fault probability decreases at least exponentially as n — oo.

As a trivial example, if the “ensemble” consists of a single implementation, then each a; is
either O (correct output) or 1 (incorrect output). In accordance with common sense, there is no
benefit from voting a collection of identical copies of this implementation, since the inputs with
a; = 1 will produce faults just as surely. If the ensemble is broadened using a technique that can
generate slightly different implementations, then it is hoped that for such inputs some implementa-
tions will produce correct output, so that the a; values decrease from 1. (New incorrect outputs will
generally also be introduced, causing other a; values to increase from 0.) The nontrivial question
is whether implementations can be effectively generated from an ensemble with ¢; < 1 — « (e.g.,
a; < % for a majority vote) holding simultaneously for all or almost all inputs. In this case, the
desired exponential decrease in fault probability (and corresponding exponential increase in the
difficulty of triggering a fault) could be achieved, at least as an intermediate asymptote until any
residual “hard” inputs put a stop to the scaling.

4.3 Plurality Voting

In the previous section, we made no distinction among different incorrect outputs for a given input.
As aresult, to avoid an overall fault, the correct output was required to win by either a majority or
a supermajority. This was a pessimistic assumption because in a realistic n-version system, even if
the correct output has less than a majority, the incorrect outputs are typically not all identical and it
is possible that no single incorrect output has more votes than the correct output. This is analogous
to the “vote splitting” effect seen in political elections using a plurality system.

As before, we assume a given ensemble of implementations and denote by a; the probability
that an implementation drawn from the ensemble gives an incorrect output for input x;. We now
represent the various possible incorrect outputs by an index r, so that a;, is the probability of
incorrect output number 7 for input x;, and a; = Y, a; ,.

The simplest case in which there exists a plurality that is not a majority is a system with n = 4
implementations. Here two implementations with correct outputs can win if the other two have
different incorrect outputs. Previously we considered a k-out-of-n system requiring at least k = 3
implementations with correct outputs. The previously derived fault probability for input x; reduces
to

4

4 . .

fi=Y () al(1—a))" 7 =6a(1—a;)* +4a; (1 —a;) +af. (4.3.1)
j=2 \J

In the plurality voting case, three or four incorrect outputs still lead to a fault, but two incorrect

28

outputs lead to a fault only if they are identical. Thus the fault probability becomes
fl=6(1—a)*Y a;, +4a; (1 —a;) +dj. (4.3.2)

Because each a; , is nonnegative, we have), al%, < al~2, and so the new fault probability is less than

or equal to the old one. If we suppose that there are H equally probable incorrect outputs, then

a;r = a;/H and

1= 6a?(1 —a;)?
! H

The ai2 term, which is the dominant one for small fault probabilities, is reduced by a factor of

H. More generally, this factor can be viewed as a measure of the entropy of the distribution of

incorrect outputs.

+4a3 (1 —a;) +df. (4.3.3)

29

30

Chapter 5

Software Diversity at Scale in Commodity
Operating Systems

In an operating system and application configuration monoculture, as is typical of corporate desk-
top operations, all machines subjected to the same attack would be expected to have the same
symptoms. An intentionally stealthy attacker could easily go unnoticed if successful everywhere.
A wide variety of general purpose and special purpose GNU/Linux desktop software environments
is available. We conducted a small experiment to assess the feasibility of detecting software flaws
or malicious software by running one application across a spectrum of Linux desktop configura-
tions and watching for differences among the behaviors of the systems.

5.1 Evaluating Diversity of Linux Distributions for Detecting
Malicious or Buggy Code

There are many ways in which Linux and application distributions vary. Packager and distributor
choices include, among others:

1. What gcc compiler and linker options affecting security to use

N

What kernel security features to enable

What default resource access policies and policy options to give the user

> w

What components (programs or drivers) to include in the distribution

bt

What form to distribute code in primarily (source or binary)

6. What hardware to support

Our selection of Linux variants is based primarily on convenience and on popularity of dis-
tributions. With the small sample of commodity Linux versions listed in Table 5.1, sufficient
variation is obtained to conclude that the many more expensive ways of obtaining diversity present
a diminishing return on investment within the scope of this effort.

31

Table 5.1. Commodity Linux versions tested.

Vendor Release Build
Redhat 54 64 bit desktop
Redhat 5.3 64 bit desktop
Fedora 12 64 bit desktop
Fedora 12 32 bit desktop
Ubuntu 9.10 | 32 bit desktop
Ubuntu 9.10 | 64 bit desktop
Ubuntu 9.10 64 bit server
OpenSUSE 10.2 | 64 bit desktop
OpenSUSE | 11.2 | 64 bit desktop

Table 5.2. Security features of Linux versions.

Distribution RELRO Stack canary NX PIE ASLR Selinux map0
Redhat 5.x (2) None Some Y Little Some Mostly 4k
Fedora 12 (2) None Most Y Little All Weak 4k
Suse 10.2 Some Little Y Some Some Weak No
Suse 11.2 Some Some Y Little Some Some 4k
Ubuntu 9.10 (3) Some All Y Little All None 64k

Firefox, Java Runtime, and other user-level tools are expected to be functionally identical (and
be identically vulnerable) across OS variants for a given release, but vendor-specific builds of
them skip many and various security features. Table 5.2 summarizes a survey of the prepackaged
security features with each distribution. Distributors and packagers vary surprisingly in defense
feature use, dependent in part on the distributor target market and in part on distribution history.
Each column is explained in the following.

Several of these features are applicable on a per-file basis. In these cases, we looked at a
sampling of widely used applications or libraries and rated the consistency of application as one of

None, Little, Some, Most, All.

e RELRO Relocatable table (ELF sections) Read-Only: At linking time, some ELF sections
can be marked as writable pages only during application loading and read-only to the appli-
cation thereafter. Control of this property is by 1d option -z relro” to gnu 1d. Partial RELRO
means BIND_NOW is not used, which keeps open the window of vulnerability during the
lazy symbol resolution process. Controlled by gcc/ld options on a per-executable basis.

e Stack canary Gcece stack smashing protection. Buggy in gcc3 c++, but adds a random canary
for each process. Reimplemented more reliably in gcc4.

e NX/PaX Non-executable page bit for data on 64-bit capable architectures with hardware
support. Slows down many buffer overflow attacks by keeping data pages separate from

32

code pages and code pages marked unwritable. Defeatable for bugs which simply inject bad
data into code which interprets the data and does bad things through normal mechanisms.
Controlled (normally) in hardware, though possibly shut off in kernel.

PIE Position independent executables loaded at random addresses. In-process attacker no
longer knows ahead of time where function entry points will be. Other sources of address
info (e.g., /proc) must also be hidden for this to be effective. Controlled by gcc/ld options.

ASLR Address space layout randomization changes address and order in which libraries get
loaded so function entries are not as easily known to attackers. A weak version is still used
in older Linux kernels; some tuning of this feature is possible from the Linux sysctl facility.
Address randomization is done in more recent Linux versions with PaX, a software-based
implementation of NX and ASLR ideas.

Selinux A broken (complex and easily misconfigured) policy-based attempt at managing
process privileges on a per-resource basis. Most desktop users (if given a choice) simply turn
off or put selinux in advisory-only mode because many application writers are not adequately
selinux aware and many vendor-supplied policy files are inadequately aware of application
requirements. More recent distributions typically have more aggressive enforcement defaults
while older ones have weak defaults.

Map0 Protection prevents attacks based on kernel bugs that incorrectly pass control to invalid
pointers at low addresses. The attacker typically mmaps their payload to a low address and
provokes the kernel bug to get the attack code executed. Recent kernels have modified mmap
to disallow mmap below a minimum threshold (defined by parameter mmap_min_addr). The
map0 table entries are the default value of this parameter. This parameter is controlled by
kernel configuration and adjustable by the root user.

5.1.1 Linux Variants Not Considered

Briefly we can characterize all the generally available omitted Linux variants as follows:

Older and newer versions of the distributions tested
Other mass-market oriented binary-packaged distributions
Niche market distributions such as for scientific or embedded computing

Source-based distributions such as Gentoo Linux which may be targeted to mass or niche
markets

Of these, the source-based distributions could be most easily modified by some automated
system-wide refactoring of data structures or call sequences to defeat or make more easily visible
attacks based on injection of precompiled code. Furthermore, all these distributions, in their source
code form, could be altered by changing the security related options passed to compilers and

33

linkers in building the binaries. Both approaches to obtaining diversity are much too expensive to
apply to a typical desktop environment in this project: The former approach requires nonexistent
automated software refactoring tools that scale to tens and hundreds of millions of line of code
in five or more implementation languages, and the latter approach requires automated refactoring
to modify build options in hundreds or thousands of packages. Today’s desktops are massive,
entangled software collections where most automatically generated build variations either (a) fail
to build or (b) expose code bugs because most of the build scripts are very brittle (very likely to
fail after any unanticipated change at all).

5.1.2 Automated Intrusion Detection in a Diverse Platform Environment

In this experiment we set aside the construction of an advanced intrusion detection system capable
of running a single interactive desktop job on multiple diverse systems (where each system osten-
sibly supports the same functionality) and watching for variance in program behaviors. We instead
apply a manual approach to job launch and data collection to first determine if sufficient diversity
exists to justify a greater data collection effort.

To implement diversity-based intrusion detection, a substantial effort is needed to develop and
deploy customized device drivers, event loggers, and web proxies across a suite of disparate Linux
platforms. Loggers are needed that, without interfering substantially with application performance,
monitor and detect significant differences in access patterns to all system resources (files, network,
memory). Due to the functionality of desktop and web-based applications, “significant differences”
may be difficult to define algorithmically. Device drivers are needed that allow a single set of 1/0
(mouse, keyboard, video) to be multiplexed to many operating systems. Applications interacting
with web services, particularly secured services, require a proxy server capable of intercepting and
scheduling once the many identical queries that will come from each of the monitored systems.

5.2 Experimental Application and Results

We aim to demonstrate that a threatening or subtly defective program is detectable using a diversity
approach. Noticeable differences in response to the same program and same input should indicate
the program is worthy of deeper inspection. Our chosen test program is a publicly available appli-
cation encapsulating a small suite of attacks aimed at obtaining local elevation of privilege from
user level to root level or at extracting normally private information from a running kernel useful
in subsequent attacks [1]. We reviewed the entire application code to verify the absence of un-
documented side effects or persistent side effects before running all the tests in a private network.
The documented intent of the application is to shame Linux developers and Linux vendors into
becoming more secure; thus, the variance in its output is a printed message rather than execution
of a malicious payload.

The results are shown in Table 5.3. A note of caution: Do not conclude that newer is always

34

Table 5.3. Results of vulnerability testing on Linux versions.

Distribution Application Output
RH 5.4 Got root!

RH 5.3 Got root!

Suse 10.2 Got root!

Suse 11.2 No suid root.
Fedora 12 (all) No suid root.
Ubuntu 9.10 (all) | No suid root.

better. For example, the Ubuntu distributions happened to be invulnerable to this particular appli-
cation, but all shipped with another extremely easy-to-exploit vulnerability [9].

5.3 Conceptual Soundness

From this demonstration we can conclude that desktop malware detection based on subsequent
behavior differences (file, network, or other device accesses) is possible. A great deal more work
is necessary than was possible in this limited LDRD effort to realize such detection. In particular,
future work is needed to address:

1. Application behavior capture mechanisms that go beyond conventional intrusion detection
2. Timing-aware and process-boundary-aware difference detection algorithms
3. Reducing the scope from an entire desktop environment to perhaps a critical application

4. Developing benefit metrics beyond bugs detected and attacks discovered

35

36

Chapter 6

Conclusion

The notions of diversity and redundancy are found throughout the literature and in practice. They
are known to provide benefits in real-world systems. Individually and to some extent in combina-
tion, these notions have been applied in the fault-tolerance community as a method providing for
correct execution of certain functional implementations in either hardware or software.

This project has examined various aspects of redundant, diverse implementations from a se-
curity perspective. Our measures of the benefit of such a combination show that with reasonable
assumptions on how vulnerabilities overlap, there is an exponential benefit in the application of
these ideas at a linear cost to implement. Depending on how the diversity is achieved, there is
potential to provide a method of using the basic undecidability constraints to the advantage of the
defender over the attacker. In all other known paradigms, undecidability works for the attacker
against the defender.

Our simple experiments with the diversity found in commodity implementations of a particular
feature set (the Linux operating system) show that even basic levels of diversity are enough to
detect some adversarial manipulations. On the other hand, this research has experienced firsthand
the difficulty of implementing these ideas. Obtaining real diversity in an actual implementation of
specific functionality is hard to do. Automated tools to generate diversity are some time away.

We believe that, given a specific ensemble, it may not always be possible to measure the di-
versity found within the collection and thus it may not be possible to measure the actual benefit
provided, even though the benefit may be substantial. There is also a great deal of work needed
in the area of secure voting. With given bounds on vulnerability distribution, we show that it is
possible to define a voting scheme and predict the probability that a faulty output may pass the
vote. However, this is much different from producing an actual secure voter in an actual system.

Our results indicate that combining diversity and redundancy has great potential as a paradigm
for future security efforts. There is much research needed to sort through basic details of metrics
and development, and even more effort needed to bring theory and practice in line.

37

38

References

[1] http://grsecurity.org/~spender/enlightenment.tgz.

[2] R. C. Armstrong and J. R. Mayo. Leveraging complexity in software for cybersecurity. In
Proc. 5th Cyber Security and Information Intelligence Research Workshop, Oak Ridge, TN,
April 2009.

[3] S.S. Brilliant, J. C. Knight, and N. G. Leveson. Analysis of faults in an N-version software
experiment. /[EEE Transactions on Software Engineering, 16:238-247, 1990.

[4] E. M. Clark, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[5] Computer Emergency Readiness Team. CERT®) advisory CA-2002-25: Integer overflow in
XDR library. http://www.cert.org/advisories/CA-2002-25.html.

[6] Computer Emergency Readiness Team. Multiple DNS implementations vulnerable to cache
poisoning. http://www.kb.cert.org/vuls/id/800113.

[7] J. Dutka. The incomplete beta function — a historical profile. Archive for History of Exact
Sciences, 24:11-29, 1981.

[8] B. Littlewood, P. Popo, and L. Strigini. Modeling software design diversity. ACM Computing
Surveys, 33:177-208, 2001.

[9] National Institute of Standards and Technology. Vulnerability summary for CVE-2009-4131.
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4131.

[10] J. Oberheide, E. Cooke, and F. Janhanian. CloudAV: N-version antivirus in the network
cloud. In Proc. 17th USENIX Security Symposium, San Jose, CA, July 2008.

[11] B. Salamat, T. Jackson, A. Gal, and M. Franz. Intrusion detection using parallel execution
and monitoring of program variants in user-space. In Proc. EuroSys’09, Niirnberg, Germany,
April 2009.

[12] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effectiveness
of address-space randomization. In Proc. 11th ACM Conference on Computer and Commu-
nications Security, Washington, DC, October 2004.

[13] Wikipedia. fOOf. http://en.wikipedia.org/wiki/FOOf.

[14] Wikipedia. Rice’s theorem. http://en.wikipedia.org/wiki/Rice’s_theorem.

39

http://grsecurity.org/~spender/enlightenment.tgz
http://www.cert.org/advisories/CA-2002-25.html
http://www.kb.cert.org/vuls/id/800113
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4131
http://en.wikipedia.org/wiki/F00f
http://en.wikipedia.org/wiki/Rice's_theorem

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)
1 MS 0359 D. Chavez, LDRD Office, 1911

40

v1.33

@ Sandia National Laboratories

	Introduction
	Defining Complexity

	The Meaning and Promise of Diversity in Hardware and Software
	Observation 1: Many Implementations for a Single Design
	Observation 2: Ensembles of Undecidables Yield Meaningful Statistics
	Genetic Programming Techniques for Code Transformation
	Component-Based Software for Combinatorial Leverage
	Voting
	Summary and Future Research

	Exploiting Diversity in Hardware and Software
	Types of Diverse Implementations
	Example: Stack Randomization

	Fault Tolerance of Diverse Implementations with Voting
	Framework
	Majority or Supermajority Voting
	Plurality Voting

	Software Diversity at Scale in Commodity Operating Systems
	Evaluating Diversity of Linux Distributions for Detecting Malicious or Buggy Code
	Linux Variants Not Considered
	Automated Intrusion Detection in a Diverse Platform Environment

	Experimental Application and Results
	Conceptual Soundness

	Conclusion
	References

