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Abstract

Advanced computing hardware and software written to exploit massively parallel archi-
tectures greatly facilitate the computation of extremely large problems. On the other hand,
these tools, though enabling higher fidelity models, have often resulted in much longer run-
times and turn-around-times in providing answers to engineering problems. The impedi-
ments include smaller elements and consequently smaller time steps, much larger systems
of equations to solve, and the inclusion of nonlinearities that had been ignored in days when
lower fidelity models were the norm. The research effort reported focuses on the acceler-
ating the analysis process for structural dynamics though combinations of model reduction
and mitigation of some factors that lead to over-meshing.
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Chapter 1

Overview and Introduction

Advanced computing hardware and software written to exploit massively parallel archi-
tectures greatly facilitate the computation of extremely large problems. On the other hand,
these tools, though enabling higher fidelity models, have often resulted in much longer run-
times and turn-around-times in providing answers to engineering problems. The impedi-
ments include smaller elements and consequently smaller time steps, much larger systems
of equations to solve, and the inclusion of nonlinearities that had been ignored in days when
lower fidelity models were the norm.

In this section, we discuss each of these classes of difficulties and attempt to foreshadow
the research reported further below to address those difficulties.

Incommensurate Meshes One of the major impediments of creating finite element meshes
for large structures is the need to have commensurate meshes at the interfaces; nodes from
each side must coincide with nodes from the other (See Figure 1.1). This not only requires
much forethought in the meshing of each unit, but it places complex constraints on the
meshing process.

Figure 1.1. Creating conformal meshes integrating two features
is relatively easy, but connection of multiple features in three di-
mensions can be unreasonably tedious and may delay initiation of
calculations by months.
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The same problem arises in the context of component modeesiatfCMS). In this
approach, one performs a model reduction on each substructure of the system, introducing
modal degrees of freedom, retaining nodes on the boundaries, and resolving away internal
nodes. This approach has many advantages, including the common practice of having
subsystems manufactured by different contractors and having each manufacturer provide a
CMS model for his own substructure. It is the duty of the system integrator to assemble
the mathematical subsystems into a model for the full system. In order to avoid large loss
of accuracy, the nodes of the subsystem models most coincide.

Of course, one can connect dissimilar meshes using master-slave constraints, but such
an approach may result in significant loss of accuracy near interfaces - undermining the
purpose of using fine meshes for fidelity. Another, competing approach of joining dis-
similar meshes is that ahortar methods-These methods do preserve accuracy, but their
practical implementation for 3-D applications requires significant coding effort for every
element type.

An accurate and efficient method for connecting dissimilar meshes is presented in
Chapter 2. This a novel, efficient, and highly usable method of joining disparate meshes
is presented. The ramifications will be great both in terms of model reduction, but also in
terms of efficiency in effective mesh generation.

Scalable Component Mode Synthesis As we find ourselves in a situation where it is
possible to employ fine enough meshes to capture structural features with great fidelity, we
also find ourselves with numerical problems having far more degrees of freedom than are
actually necessary to capture strain fields and other features that define problem mechanics.

The resulting numerical problems are sufficiently challenging that solving them can-
not be routine. What should be routine calculations can beampability testof large
massively parallel computers.

A traditional method of model reduction that does have the capability to retain model
fidelity (at least of linear problems) is that of component mode synthesis, discussed above.
One of the limitations of current use of CMS was also discussed above. Another limitation
is that if one employs CMS to create more and more subregions of model components to
achieve better and better geometric fidelity, the problem size becomes dominated by the
nodal degrees of freedom at the interfaces of the subregions. The number of degrees of
freedom and their coupling become major impediments to computational scaling.

A novel approach to mitigating the computational limitations of Component Mode Syn-
thesis is developed and presented in Chapter 3.

Spatially Distributed Nonlinearities Very fine meshing of finite element models is gen-
erally expected to converge to an accurate result so long as the structure consists of a mono-
lithic piece of metal. Predictive modeling of the dynamics of real structures - accounting

14



for such things as bolted connections, compression fits, #met goints - must account
for the nonlinear frictional mechanics at interfaces. Those nonlinear mechanics result in
hysteresis behavior such as shown in Figure 1.2.

Figure 1.2. Frictional interfaces between components of the
structure generate hysteresis loops such as this. The sharp discon-
tinuity in tangent stiffness with load reversals causes significant
numerical difficulty.

The discontinuous changes in tangent stiffness with load reversal introduces creates a
sharp nonlinearity in the equations of motion. Numerical solution of the resulting nonlin-
ear algebraic equations requires Newton iteration using very small time steps. The large
number of equations to be solved at each iteration and the very small time steps that must
be employed make simulation of the dynamics of real structures prohibitively difficult.

A model reduction technique that not only reduces the number of degrees of freedom,
but also enables the use of much larger time steps is developed in Chapter 4. This reduced
order modeling strategy has the added advantage of yielding cleaner and more helpful
results than are obtained with when the original problem is solved directly.

Combination of Methods Each of these three approaches can be employed with the
others to make possible important calculations related to the weapons-related mission. For
instance, when externally applied loads are known in only a statistical manner, credibility
of calculations on the accelerations that will be seen by components distributed through
the structure will require many case calculations. This can take place only if the kinds
of calculations that now spend weeks in queue and days on a supercomputer can be run
orders of magnitude faster. It is the intent of the mutually complementary strategies whose
investigation is presented in this report to make such rapid simulations possible.

15



There is more discussion of the integration of these thremappes in the Conclusions
portion of this report.
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Chapter 2

Stabilized Tied Contact

Clark R. Dohrmann

2.1 Chapter Abstract

In this study we present a simple method for improving the accuracy of the classic
method of tied contact for connecting dissimilar finite element meshes. The method aug-
ments the standard constraint equations of tied contact with a set of discrete springs located
on mesh interfaces. Although the approach can be viewed as a penalty method, there is no
need to select a penalty parameter. Moreover, the method avoids the calculation of com-
plicated surface integrals typically required by mortar or Nitche type methods. Numerical
results show that the method improves both the local and global rates of convergence of
tied contact while not incurring significant computational cost.

2.2 Introduction

One of the first, and perhaps simplest, methods for connecting dissimilar finite element
meshes is to constrain each node on a designated slave side of a mesh interface directly
to the nearest point on a designated master side of the interface. This classic method of
connecting meshes is known by a variety of names including the node-to-surface approach,
multipoint constraint (MPC) approach, and permanent glued contact [32], but we will use
the designation tied contact [13] here. Because of its simplicity, tied contact is available in
a variety of commercial and research finite element codes. One of the attractive features of
tied contact is that it avoids the need to introduce Lagrange multipliers to enforce continuity
at the interface. Because of the local nature of the tied contact constraints, there is also no
significant loss of matrix sparsity when dependent (slave) degrees of freedom (dofs) are
eliminated.

Although relatively simple to understand and implement, tied contact also has its short-
comings. It is known for elasticity problems that stresses near mesh interfaces may not

17



converge to exact solutions with mesh refinement when tiethcors used. Consequently,
global rates of convergence can be smaller than those for similar meshes without inter-
faces. The purpose of this study is to investigate a simple fix to improve the accuracy of
tied contact while retaining much of its appealing simplicity.

Modeling complicated structures with a single finite element mesh can be a very diffi-
cult if not impossible task. Even when a single person develops a system model, it may be
convenient to mesh different parts independently without the restriction of having conform-
ing interfaces. By conforming we mean that the nodal locations and interpolation functions
on both sides of an interface are the same. For these reasons and others, many references on
connecting dissimilar finite element meshes can be found in the literature. A recent article
with a discussion of several different methods is given in [35].

Significant efforts have been made over the years to develop mesh connecting methods
that pass the engineering patch test. That is, when two meshes are connected by a candidate
method, the finite element solution is exact for boundary conditions corresponding to a
constant state a stress. Examples of two different methods with an emphasis on satisfying
the patch test can be found in [45] and [36], but there are others as well. We comment at the
outset that the simplicity of the present method comes with what some may perceive a cost.
Namely, it does not pass the patch test. Nevertheless, the method converges with mesh
refinement and satisfies the patch test in the asymptotic limit. A companion theoretical
study of the method is given in [14].

An earlier method which retains the standard tied contact constraints, like the present
method, while also satisfying first-order patch tests for both planar and curved interfaces is
given in [15]. The approach is somewhat complicated and requires element matrices on the
slave sides of interfaces to be modified. We consider the present method to be simpler, and
have also observed better rates of convergence for meshes of quadratic finite elements. In
the interest of brevity, we will limit the discussion of other mesh connecting approaches to
mortar [8] and Nitche [6] type methods in the next two paragraphs. A discussion of other
methods can be found in [35] and the references therein.

As with tied contact, the constraint equations for mortar methods allow one to solve
for slave dofs in terms of master dofs, and then eliminate these slave dofs; otherwise, one
needs to solve a saddle-point system of equations which is indefinite. For the Lagrange
multiplier bases of earlier mortar methods, each slave dof could depend on every dof on
the master side of the interface. Thus, elimination of the slave dofs could lead to complete
loss of sparsity in the stiffness matrix for the master dofs. More recent dual mortar meth-
ods [44, 38] lead to constraint equations more like those of tied contact, but obtaining these
constraint equations may require the calculation of complicated interface integrals, espe-
cially in three dimensions. Some care is also needed in choosing the Lagrange multiplier
basis for mortar methods to ensure that an inf-sup condition for convergence is satisfied.

In contrast to tied contact and mortar methods, Nitche type methods do no involve any
constraint equations. Rather, a discrete bilinear form is employed which is closely related
to a primal formulation of a discontinuous Galerkin method (cf. Method IP in Table 3.2 of
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[1]). Like mortar methods, however, they require the caltorfeof surface integrals for 3D
problems. The complexity of calculating surface integrals for mortar and Nitche methods
is recognized as a practical concern [29, 18, 21, 19]. We note also that Nitche methods
require a parameter that must be chosen with some care. If the parameter is too small,
then the method is unstable and will not converge. If the parameter is too large, then mesh
interfaces can be overly stiff and lead to significant loss of accuracy.

The basic idea of the present method is to augment the constraint equations of tied con-
tact with a set of discrete springs located on mesh interfaces. Thus, following elimination
of all slave dofs, the stiffness matrix equals that for classic tied contact shadbgization
matrix associated with the springs. We note that a fully symmetric method with no dis-
tinction between master and slave sides of interfaces is possible by replacing all constraint
equations with springs, but we do not investigate this variant here.

The organization of the paper is summarized as follows. First, we review the classic
method of tied contact for connecting meshes in §2.3, and then present its stabilized form
in 82.4. We then present a variety of numerical examples in §2.5 demonstrating both the
improved accuracy of stabilized tied contact and the small affect of the stabilization on
iterative solver performance. Some closing remarks are made in §2.6.

2.3 Classic Tied Contact

After imposing essential and natural boundary conditions, the finite element equations
of equilibrium for linear elastostatics can be expressed as

Kss Ksm Kor Us fs
Kms Kmm Kmr Un | = 1| fm |, (2.1)
Krs Kim Ky Ur fr

~ N — N —

K u f

whereK is the assembled stiffness matnixis the displacement vector, arids the force
vector. The subscrifis for theslavedofs to be eliminated by the tied contact constraints.
Likewise, the subscriptn is for the masterdofs involved in the tied contact constraints.
Finally, the subscript refers to theemainingdofs. After the removal of any redundant
constraints, the tied contact constraint equations can be expressed concisely as

Us = CUn, (2.2)
whereC is the constraint matrix for the slave dofs. We thus have

u= |1 O
0 I

p4

CcC o U,
[ " } 2.3)

Ui
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wherel is an identity matrix of appropriate dimension and the subsicrgders toindepen-
dentdofs. Substitution of (2/3) intd (2.1) and premultiplication®Y (the transpose oF)
gives the standard reduced equilibrium equations

Kiu; = fj, (2.4)

where
Ki=T'KT and fi=T'f.

Oncey; is obtained by solving (2.4)s can then be recovered from (2.2).

2.3.1 Tied Contact Constraints

Each row of the constraint matrfin (2.2) corresponds to a specific degree of freedom
of a specific node on the slave side of a mesh interface. If a mesh interface is curved or the
master and slave sides of an interface are not coincident for some other reason, then each
slave node may not be initially located on the master side of the interface. In such cases it
is common practice to initially move, in a stress-free state, each slave node onto the master
surface prior to applying any constraint equations or loads. Doing so ensures that there
is no strain energy when the model is deformed into the shape of a rigid body mode for
floating structures without any essential boundary conditions. We will henceforth assume
that all slave nodes are thus initially positioned on the master surface.

For purposes of discussion, we will consider a 3D elasticity problem in which each
node has 3 degrees of freedom before boundary conditions are applied. By assumption,
each slave node is coincident with a point on the face of one or more elements on the
master side of the interface. L&f;, &2) denote the element coordinates for one such face.
For isoparametric elements we have

Xj(€1,82) = > Xj(81,82), (2.5)
ke F
wherex;(é1,&2) is the j-coordinate of the point on the face with element coordinates
(é1,€2), and .7 is the set of node numbers for the face. Furthxgr,and ¢ are thej-
coordinate and shape function, respectively, of nbodéthe element face. Lettings de-
note thej-coordinate of slave nodg we can determine the element coordind®s, &»s)
associated with nodgby minimizing the squared distance function

3

d? =3 (xj—xjs)°

j=1
using Newton’s method. Indeed, this approach can also be used to identify the locations to
move slave nodes so that they are initially on a master surface. The row of the constraint
equations in[(2.2) corresponding to the displacement in diregtiohslave nodes then
reads
Us= > @(&1s,&25)Ujk;
ke 7

whereuj is the displacement in directignof nodek.
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2.3.2 Mortar Method Connection

Classic tied contact can be understood as a mortar method for a specific Lagrange mul-
tiplier basis. Specifically, this basis consists of Dirac delta functions centered at the slave
nodes. To illustrate, let,, andvs denote scalar fields on the master and slave sides of
an interfacd”. The mortar constraint equation associated with shape funatoof the
Lagrange multiplier basis is given by

r

By choosingAn, to be a Dirac delta function at slave noglewe find thatvs|es = V|,
wherexs is the position ofs. That is, the value of the fields on the slave side of the
interface is constrained to be the same as the valug oh the master side of the interface

at the location ofs. For mortar methods, the Lagrange multiple basis is chosen so that
constant functions can be approximated exactly on the interface. That is, theregxist
such thaty ,amAm =1 onT. The Lagrange multiplier basis for tied contact does not
have this property. Thus, one should not expect tied contact to have the same convergence
properties as mortar methods.

2.3.3 Potential Shortcomings

Here we use a simple 2D plane stress example to illustrate some of the potential short-
comings of tied contact. Latj andx; denote the displacement and spatial coordinate,
respectively, for direction) of an orthogonal coordinate system. The boundary conditions
and exact solution for the example are given by

ui(0,x) =0, Uu2(0,0)=0, 011(2,%)=—-Ex
and
Up(Xe, %) = —X1Xp,  Up(X1,X2) = (G + v)5)/2,
whereE is Young’s modulusy is the Poisson ratio, anm 1 is the axial stress.

In order to measure the accuracy of finite element solutions, we define displacement
and energy norms of a vector functian= (uy,...,Uq) as

§ 1/2 . 1/2
2

= u?dx and = / Ou; - Ouidx | 2.6

Jullo <j_§1/9 J ) [Jull1 <j_§1 o i By ) (2.6)

whereQ is the problem domain and is the spatial dimension. Laie = (Ugg,. - .,Ueq)
denote the exact solution to an elasticity problem. For sufficiently smooth exact solutions,
we expect from finite element theory [43] that

|w—uello <ChHL  and |Ju— uel|1 < CHY, (2.7)

whereC is a constanth is the diameter of the largest element in the mesh cggadhe poly-
nomial degree of the finite elements. We dall — ue||o and||u — u¢||1 the displacement
error and energy error, respectively.
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Figure 2.1. Classic tied contact results for 1:2 master-slave mesh
transition example in §2.3.3 (left) and 1:2 slave-master mesh tran-
sition example in[§2.3/3 (right).

1:2 master-slave mesh transition

Consider the two unit square meshes of 4-node quadrilateral (QUAD4) elements shown
in Figurel 2.1 with a 1:2 transition at the interface. The coarser side of the interface (left)
is designated as master and the more refined side (right) as slave. In this case, classic
tied contact works perfectly fine because no gaps or overlaps can develop at the interface
as the structure deforms. In other words, the displacement is continuous at the interface
and we have a conforming finite element method. The displacement and energy errors
shown in Figure 2.1-left as a function of element lerigtre consistent with the theoretical
convergence estimates in (2.7).

1:2 slave-master mesh transition

We repeat the previous example, but now the master and slave sides are reversed. That
is, the master side of the interface (right) is now twice as refined as the slave side (left).
Simply by reversing the choice of master and slave interfaces, we see in Figure 2.1-right
that the observed rates of convergence are about half of the theoretical estimates in (2.7). A
theory explaining this reduced rate of convergence is provided in [14]. Compared with the
first example in [§2.3.3, only about one half of the nodes on the right side of the interface
are connected to the left side. This comparison clearly demonstrates the benefits in the
conventional wisdom of choosing the master side of an interface coarser than the slave
side.

The normal stress», and shear stress;» are both zero for the exact solution. The
maximum absolute value of these two stresses at element integration points are shown in
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Figure 2.2. Classic tied contact stresses for a 1:2 mesh transition.
The notations 1M:2S and 1S:2M indicate that the master side of
the interface is on the left and right, respectively. The stregsges

and o1, are both zero for the exact solution, and the maximum
absolute value of the axial stress; is 1. When the right side of

the interface is chosen as master (1S:2M), the maximum stresses
appear to be converging 1@22|max ~ 0.13 and|012|max =~ 0.53
rather than O.

Figure 2.2 for the two cases of the master side of the interface on the left and on the right.
As expected, these two stresses decrease with mesh refinement when the left side of the
interface is chosen as master. In stark contrast, these stresses do not converge to zero when
the right side of the interface is chosen as master. Closer examination of the numerical
results shows that these stresses are largest in elements directly adjacent to the interface
and appear to be converging|m|max~ 0.13 and|012|max~ 0.53 rather than 0. We note
|011|max = 1 for the exact solution.

Care should be taken when choosing the master and slave sides of an interface for tied
contact. To illustrate a possible dilemma, consider a hypothetical case in which only half
of the left side of the interface is coarser than the right side. The question then becomes
which side of the interface should be chosen as master? One could break the interface into
two parts to address this problem, but that would require additional work on the part of a
structural analyst and could be prone to errors. In the next section we present a stabilized
form of tied contact which address these and other concerns surrounding the use of classic
tied contact.
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2.4 Stabilized Tied Contact

Recall for classic tied contact that continuity across a mesh interface is only enforced
at the locations of the slave nodes. Thus, except for special cases, continuity will not nec-
essarily hold at all other locations on the interface. The basic idea of stabilized tied contact
is to penalize any discontinuities that may occur at a prescribed set of other locations.

As was done in the previous section, we consider a 3D elasticity problem for purposes
of discussion. Consider a poipton a master surface, and (&, é-p) denote the element
coordinates of associated with a face on the master surface contami&gmilar to (2.5),
we have

Xip= > Xjk@(&1p&2p). (2.8)
ke#p
wherexjp is the j-coordinate o and.7 is the set of nodes for the element face associated
with p. Next, letp'be a point on the slave surface closesptand let(&yp, &2p5) denote the
element coordinates @f for a face on the slave surface containmgrhus,

Xjp = Z Xik % (&1p, E2p)- (2.9)
ke.#p
The present goal is to develop an expression for the strain energy of a spring associated
with pointsp and p. This development is straightforward wherand p are initially co-
incident, but there is a slight complication when they are not, e.g., for curved interfaces.
This complication is related to the need to have zero strain energy when a structure without

any essential boundary conditions is deformed into the shape of a rigid body mode with a
rotational component. We note that a related issue is also present for mortar methods [38].

Consistent with the isoparametric formulations in (2.8) and (2.9), we have
Up = U@k (€1p,é2p) and up= U@k (&1p, €2p),

keZp keZp

whereup = [ugp Uzp usp]T. If pandp are initially coincident or the issue regarding rigid
body modes is deemed unimportant, then we define the gap

Op1:=Up—Up= Uk (€1p, E2p) — Uk (E1p, E25) = Ch, (2.10)

ke7p keZp

whereCyy is a sparse matrix with three rows anctolumns, where is the dimension
of the displacement vectar in (2.1). For the more general case, #f denote the set
of node numbers for the elemea which includes the face containing Again, for an

isoparametric formulation, we have

Xj(nl7n27n3) = % Xjk@(nl,’727’73),
keép

where the shape functiog for nodek depends on three element coordinates rather than
just two. We next determine the element coordin@tgg, n2p, N3p) such that

Xj (N1p, N2p, N3p) = Xip-
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Again, Newton’s method can be used to determine these elamerdinates, and the initial
guess for the solution could be the element coordinates of pointroducing

Gp: Z Uk%(nlﬁ7n2ﬁ7n3f))7
keép

we define the gap

Op2:=Op—Up= 3 UcA(M1p:M2p:M3p) — 3 Ukth(&1p d2p) = Cpatt (2.11)
kedp keZp

If points p and p are initially coincident, the@y, = Cp;. We note thaug can be viewed
as the displacement of a point in the extension of elerBgrthat initially has the same
position asp.” In the sequel, we will us€, to denote eitheCp; or Cp, depending on the
choice of gap functiogp,.

We next introduce the stabilization term

Us= Y gpKpgp=u'Su
pe.A

where.# is the set of all points on master surfaces used in the stabilizatioiK gl a
symmetric matrix. Recipes for boti# andK, will be given shortly. With reference to
(2.10) and((2.11), we see that the stabilization madi given by

S= 5 CiKpCp. (2.12)
pe#

ReplacingK with K + Sin the reduced equilibrium equations (2.4), we obtain
Kisui = fi, (2.13)

where
Kis=TT(K+9S)T.

Thus, stabilized tied contact simplifies to the classic former0.

2.4.1 Selection of Point Set#

A suitable choice for the point se# in the case of lowest-order (linear) finite elements
is simply all nodes on master surfaces with nonempty projections onto adjacent slave sur-
faces; we will denote this point set agp. For quadratic elements, it may happen that use
of . results in no stabilization at all, i.eKjs = K;. For example, consider the mesh in
Figure 2.3 where both the master (left) and slave (right) sides of the mesh are discretized
using 8-node quadrilateral elements. For the 2:3 transition at the interface shown, it turns
out thatg, = O for all 9 nodes on the master surface.
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Figure 2.3. 8-node quad element meshes with master and slave
nodes appearing as circles and dots, respectively.

Let n1 denote the parent element coordinate for a one-dimensional element (edge).
Similarly, let (n1,n2) denote the parent element coordinates for a two-dimensional ele-
ment (face). We assume the standard practice for edgegit@af—1,1|. Similarly, for
quadrilateral faces we assume € [—1,1] andn, € [—1,1]. Finally, for triangular faces
we assume); € [0,1] andn; € [0,1], whereni + n2 < 1. We say that an edge or face on
the master side of an interface is active if all its nodes are includedgn

For quadratic elements in 2D, we augme#g with points atn; = —1/2 andn; = 1/2
for each active edge on the master side of an interface. Thus, two extra points are added
to ./, for each active edge. For quadratic elements in 3D, the element coordinates of
the additional points for each active face on the master side of an interface are shown in
Table 2.1.

2.4.2 Selection oK,

With reference to Figure 2.4, consider a one-dimensional model of a bar with elastic
modulusE, cross sectional are® and lengthL. The bar is discretized into finite elements
of lengthh, and its left end is fixed while its right end is subjected to an axial Pad/e
split the bar in half as shown in the bottom half of the figure, and reconnect the coincident
nodes in the middle with a spring of stiffnef&, wheref is a dimensionless parameter
andk = EA/his the stiffness of the node on the left (master) side.
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Table 2.1. Extra points for faces of 3D quadratic elements. The
extra point af; = 0 andn, = 0 only applies to 8-node quadrilat-
eral faces.

quad face tria face
Mn N2 Mm n2
-1/2 | -1/2 | 1/3| 1/3
12| -1/2| 1/6 | 1/6
12| 1/2| 2/3| 1/6
-1/2 ) 1/2| 2/3| 1/6
0| -1/2 | 5/12| 1/6
1/2 0| 5/12| 5/12
0| 1/2| 1/6 | 5/12
-1/2 0
0 0

r
JLQ

Bk

Figure 2.4. One-dimensional bar example to motivate recipe for
Kop.
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From basic strength of materials, we know that the exact tifeck®on of the original
bar is given byd = PL/(AE), whereas the tip deflection of the bar with a spring in the
middle isd(B) = [1+(1/B)(h/L)]d. We see thad () = & asf3 — «, but we do not want
to pick B too large for 2D and 3D applications. Otherwise, mesh interfaces would be too
stiff. Rather, the goal is to choogkjust large enough so that the convergence rates of the
finite elements are retained. Lgdenote the degree of the finite element, eqgs 1 for
linear andq = 2 for quadratic elements. Requiring the relative errodffto be of order
(h/L)%*1 gives

(1/B)(h/L) = (/LT = B=(L/h)".

Motivated by this developmerK, is given in general by

whereH, is the diameter of the master surface contairpnl, is a length associated with

p, andkp, is a stiffness matrix associated wigh We note that it is not important to use an
exact value foHp. For exampleHy could be chosen as two times the largest distance from
the centroid of all nodes on a master surface to any node on this surface.

It now only remains to specifi, andkp. Let hy denote the average diameter of all
element faces on a master surface that contain kouéth reference td (2.8}, is given

by
hp = Z h@(&1p, &2p)-

ke.7p

Similarly, the stiffness matriky is given by

Kp = Z kqu('flpy EZp)7

ke.7p

whereky is the stiffness matrix for node One could argue that the method is parameter
free since all its terms are clearly defined. Alternatively, one has the option tokscale

(2.14) by a fixed amount so that the method can also be viewed as having an adjustable
parameter. No such scaling is used in the numerical examples.

One practical concern with any stabilized method is the effect of the stabilization on
the condition number of the resulting linear system of equations.|Kgff denote the 2-
norm of Kp. Although the ratioo = ||Kp||/|kp|| increases with mesh refinement, it is not
likely to be too large in practice. For example, consider a uniform refinement in which all
element diameters are reduced by a factor of 2. If such a refinement is done three times,
thena would only increase by a factor of 8Thus, even for quadratic elemendswould
only increase by a factor of 64. Numerical results are provided in §2.5.3 which compare
the performance of an iterative solver for both classic and stabilized tied contact. As will
be seen, the stabilization does not cause any significant reduction in solver performance.
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Figure 2.5. Stabilized tied contact results for 1:2 mesh transition
example in [§2.3.3.

2.5 Numerical Examples

2.5.1 Convergence Tests
2D linear elements: plane stress bending

We return to the example in §2.3.3 where the global convergence rates for classic tied
contact were observed to be about half of those for the finite elements used in the mesh.
Recall also that stresses near the interface did not converge to the exact values even for
very refined meshes. The counterparts of Figure 2.1-right and Figure 2.2 for stabilized tied
contact are shown in Figure 2.5. Notice that the global convergence rates are the same as
those for the finite elements of the mesh, and the stresses converge to their exact values
with mesh refinement. Interestingly, the convergence of stresses shown in[Figure 2.5-right
are nearly identical to those of the conforming method in which the left side if the mesh
interface is chosen as master.

3D linear elements: bending

Results for the 3D counterpart of the examplelin §2.3.3 are shown in Figure 2.6 for
meshes of 8-node hexahedral (HEX8) elements and a variety of mesh transitions. Here the
essential boundary conditions are chosen as

ul(O, X2,X3) = O, Uz(o, O, O) = O, U3(O, 0, O) =0 Uz(o, 0, l) = 0,
and we replace the natural boundary condition witki2,x>,x3) = —2x3. Notice in all
cases that the convergence rates are consistent with those of finite element meshes without
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Figure 2.6. Stabilized tied contact results for 1:2 and 2:3 mesh
transitions for linear HEX8 elements.

interfaces. Moreover, there is only a slight dependence of the global errors measures on the
choice of master and slave sides of the interface.

3D quadratic elements

The final convergence test is for meshes of 20-node hexahedral (HEX20) elements. As
in the previous example, the domains for the left and right meshes are unit cubes. The exact
solution for the problem is given by

Up(Xg,%X2,X3) = (1—cosmxp)(1l—cos21x2)(1— cos21x3),
Up(X1,X2,X3) = 0, Us(Xq,%2,X3) =0,
and the essential boundary conditions are
u1(0,%2,X3) = U2(0,%2,X3) = U3(0,X2,%3) = 0.

Body forces corresponding to the exact solution are also applied. Notice in Figure 2.7 that
the convergence rates are no less than those for quadratic elements, and the global error
measures depend only slightly on the choice of master and slave surfaces.

2.5.2 Nonstructured Interface

Here we repeat the bending example/of §2.5.1, but for the meshes shown in Figure 2.8.
Again, all stress components are zero for the exact solution excepyfarhich has a
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Figure 2.7. Stabilized tied contact results for 1:2 and 2:3 mesh
transitions for quadratic HEX20 elements.

maximum absolute value of approximately 1. Results are shown in Table 2.2 for both
stabilized and classic tied contact for meshes of HEX8 and HEX20 elements. We see again
that the stress results for classic tied contact are very sensitive to the choice of master and
slave surfaces, whereas those for stabilized tied contact are not. The results for stabilized
tied contact using HEX20 elements are noticeably better than those for HEX8 elements,
but the same is not true for classic tied contact. In all cases the error in the transverse
tip displacement is less than one percent. We note that the magnitude of stress errors for
classic tied contact in the S:M case become larger as the mesh on the right (master) side is
refined while keeping the mesh on the left the same.

2.5.3 Iterative Solver Performance

We next investigate the effects of stabilization on the performance of an iterative solver
for 3D elasticity problems. The three different meshes of linear HEX8 elements used in this
example are shown in Figure 2.9. The meshes (not shown) of quadratic HEX20 elements
have half the number of elements in each coordinate direction. The specific problem solved
is the one in[82.5.1. For the iterative solver, the problem domain is decomposed into 16
subdomains, and a domain decomposition preconditioner [16] is used together with the
conjéugate gradient algorithm to solve the linear systems to a relative residual tolerance of
10°°.

Tablel 2.3 reports on iterative solver performance for both classic and stabilized tied
contact. The column headings ndof, #iter, and cond refer to the number of unknowns, the
number of iterations, and condition number estimates from conjugate gradient iterations
of the preconditioned equations, respectively. Solution times are also reported for a direct
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Figure 2.8. Meshes for the example ih §2.5.2.

Table 2.2. Tied contact results for example in §2.5.2. The des-

ignations M:S and S:M are for the master side of the interface on
the left and right, respectively. The relative error in the transverse
displacement of a point on the top surface at the end of the beam
is denote byaip.

HEX8 results HEX20 results
classic stabilized classic stabilized
M:S S:M M:S S:M M:S S:M M:S S:M
|022|lmax | 0.015 | 0.075| 0.017 | 0.021 | 0.012 | 0.063 | 0.0011| 0.0013
|033|max | 0.014 | 0.059 | 0.019 | 0.028 | 0.012 | 0.10 | 0.0009| 0.0010
|O12|max | 0.025| 0.15 | 0.007 | 0.009 | 0.012 | 0.18 | 0.0017| 0.0009
|023lmax | 0.004 | 0.023 | 0.009 | 0.011| 0.006 | 0.055 | 0.0007| 0.0009
|031|lmax | 0.018 | 0.21 | 0.011 | 0.013 | 0.024 | 0.17 | 0.0010| 0.0012
&ip -0.007| -0.007 | -0.007 | -0.007 | 0.0002| 0.0002| 0.0002| 0.0002
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Figure 2.9. Meshes for problems in §2.5.3.

sparse Cholesky solver [33]. It is clear from Table 2.3 that the stabilization does not have
a significant effect on the performance of either the direct or iterative solvers. In addition,
the iterative solver is faster than the direct one for all problems except the smallest.

2.6 Conclusions

A stabilized form of the classic tied contact method for connecting finite element meshes
was presented and observed to have the following features:

1. Improved accuracy and less sensitivity to master-slave designations
2. Optimal convergence rates of underlying finite elements retained
3. Parameter-free

4. Simple physical interpretation based on springs at mesh interfaces
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Table 2.3. Solver results for example in §2.5.1 and the meshes

shown in Figure 2/9. Solution times for direct and iterative solvers
are in seconds.

20x20x20 HEX8 elements on left
classic tied contact stabilized tied contact
ndof direct | iterative | #iter | cond | direct | iterative | #iter | cond
2M:2S | 53,358 | 43 18 19 6.7
2M:3S | 112,868| 232 56 23 8.8 228 57 24 8.9
2M:1S | 30,848 13 8 18 5.6 13 8 19 6.2
10x10x10 HEX20 elements on left
2M:2S | 28,058 17 13 17 5.3
2M:3S | 58,443 91 41 19 6.5 90 40 22 6.8
2M:1S | 16,423 6 7 19 6.7 6 8 20 6.7

5. Computation of potentially complicated surface integealoided

6. Iterative solver performance not affected significantly for example 3D problems

7. Can reuse existing computational geometry algorithms for classic tied contact
The stabilization has the effect of adding a positive semidefinite matrix to the stiffness
matrix for classic tied contact. Thus, the finite element model for stabilized tied contact is
no less stiff than its classic counterpart. We note in closing that the results presented thus

far are very encouraging, but a more complete assessment of the method will require further
numerical studies for nonplanar interfaces and nonlinear geometric and material behavior.
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Chapter 3

Scalable Component Mode Synthesis

U. L. Hetmaniuk
Department of Applied Maths, University of Washington,
Box 352420, Seattle, WA 98195-2420,
(het mani u@. washi ngt on. edu)
and
R. B. Lehoucq
Organization 1414, Sandia National Laboratories

3.1 Chapter Abstract

The goal of the work presented here is to introduce basis functions for the finite element
discretization of a second order linear elliptic operator with rough or highly oscillating co-
efficients. The proposed basis functions are inspired by the classic idea of component mode
synthesis and exploit an orthogonal decomposition of the trial subspace to minimize the en-
ergy. Numerical experiments illustrate the effectiveness of the proposed basis functions.

3.2 Introduction

The finite element solution of the partial differential equation

—0-(c(x)0u(x)) = f(x) inQ,
{ u = 0 o0noQ, (3.1)

has been the subject of much research. Difficulties arise when the coefti@ssbciated

with the second order linear elliptic operator is rough or highly oscillating so that a standard
application of the finite element method necessitates a highly refined mesh. An important
task is to define an appropriate approximation space that has knowledge of the coefficient
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¢, followed by an adroit choice of basis functions, for example functions of local support.
These functions give rise to an effective finite element method when a reasonably imple-
mented algorithm with acceptable performance and sufficient accuracy results. Babuska,
Caloz, and Osborn [3] denote such finite element metkspdsial

The goal of our paper is to determine a conforming approximation space of functions
for the finite element solution of (3.1). In contrast to other approaches, we exploit the fact
that the solutioru of (3.1) solves the minimization problem

arg min (%/Qc(x)|Dv(x)\2dx—/Qf(x)v(x)dx) (3.2)

veH3(Q)

and therefore is the minimum energy solution. This energy principle represents an intrinsic
metric for comparing the quality of approximations to the solution of (3.1). Our procedure
is based upon the classic idea of component mode synthesis (CMS), introduced in [24, 12]
Starting from a partition of the domaf@, component mode synthesis methods exploit an
orthogonal decomposition ¥1}(Q) to solve the optimality system associated with (3.2).
Motivated by this orthogonal decomposition, we develop a conforming finite dimensional
approximation space. We contrast our CMS-based approach with the multiscale finite el-
ement method (MsFEM) [17] and draw a relationship with the generalized finite element
method (GFEM) [5]. We argue that our approach does not fit exactly into the framework of
generalized finite element methods (in contrast to MSFEM). We demonstrate the efficacy
of our CMS-based approach through a suite of careful numerical experiments.

3.2.1 Notation and assumptions

We quickly review our use of standard notation. Kebe a two- or three-dimensional
domain with Lipschitz boundargQ and so letH!(Q) denote a Sobolev space of order
1; letH3(Q) denote a subspace Biff(Q) consisting of functions that vanish @Q. Let
the norm and inner product da'(Q) andL?(Q) be given by|| - ||1, (-,-)1, and]| - ||, (-,-),
respectively. Let

a(u,v) = / c(x)du(x) - Ov(x)dx, (3.3)
0
denote the bilinear form induced by (8.1). We supposedhat) is coercive,
Ja >0, 0<alv?<alvv), VveHQ), (3.4)
and continuous,
Jy>0, avw) < yv1 w1 VvweHHQ). (3.5)
We rewrite [(3.2) as
arg min (Ea(v,v) - (f,v)) , (3.6)
veHi(Q) \ 2
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and the associated optimality system is the variational @itation of (3.1), e.g. given
f € L2(Q), find u € H}(Q) such that
a(u,v) = (f,v) WeH3(Q). (3.7)

We refer to the solutions of (3.1), (3.2), and (3.7) as equivalent in a formal sense. Our
approach is not restricted to (3.1). Other coercive and continuous bilinear focars be
considered, such as elastostatics.

3.3 Component mode synthesis

We review the classical technique of component mode synthesis [24, 12] from an ab-
stract perspective. Partition the doma@mninto J non intersecting subdomaingg;, j =
1,---,J, that share the common interfalcesee figure 3.1 for the case of 4 subdomains.

Figure 3.1. The domaimQ partitioned four subdomains.

Let Vo, be the subspace of local functions that are nonzer@jirand are trivially
extended throughow?,

Vo, = {ve H3(Q): Vig\q, = O} (3.8)

We remark that any member function\d; has a zero trace on the bounda@§ and on
the interfacd . LetV be the subspace of harmonic extensions of trace functions on

Vr = {EqT € HA(Q): T € HILZ (M)}, (3.9)
WhereHgéz(F) denotes the trace spacetdd(Q) on T and the harmonic extensidi, of

TE H(%Z(F) solves the minimization problem

inf a(v,v) subjectto v|r=T.
veH}(Q)
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We remark that the harmonic extensibn satisfies also

—0- (c(x)OEqT(x)) = 0 inQ;j, forall j,
Eor = 1 onl, (3.10)
Eqr = 0 onoQ.

This property indicates that functions W are governed by the underlying partial differ-
ential equation. Note that any non-zero member functionrohas a non-zero trace on
. The space¥r andVq, contain the components of the solution among, and within the
subdomains, respectively, associated with a rough or highly oscillating coefficient

A key result is the orthogonal decomposition
J
HY(Q) = (@VQJ) DVr. (3.11)
j=1

Although not often stated in this form, this is a well-known result, at the heart of the anal-
ysis and development of domain decomposition methods for elliptic partial differential
equations [39], and modern component mode synthesis methods [9, 7].

The decomposition (3.11) is orthogonal with respect to the inner preduet because

a(vi,vj) =0,V Vvi € Vg, VVj € Vg, (i # ), (3.12a)
a(vi,vr) =0,Vvi e Vg, Y Vvr €Vr. (3.12b)

The former equality follows because the supports of the two functicarsdv; are disjoint.
The latter equality follows by definition of the harmonic extension (3.10).

The decomposition (3.11) also implies that

min | <%a(v,v) — (f,v)) = J min (%a(v,v) — (f,v)) + min <%a(v,v) - (f,v)) .

veHg (Q {51 VeV, veVr
(3.13)
The solution of[(3.7) is the sum dflocal functions, respectively ¥q,, ---, Vq,, and a
function ofV, i.e.
U=u+---+us+ur, (3.14)

whereu; andur minimizes the energy iN/Qj and\V, respectively. The local function
uj € Vg, satisfies
a(uj,v) = (f,v), W e Vg, (3.15)

and is also the orthogonal projectionwbntoVg, . The functionur € Vr- satisfies
a(ur,v) = (f,v), YWeVr, (3.16)
and is also the orthogonal projectionwbntoVr.

The orthogonal decomposition of the solution given [by (3.14) explains that the pur-
pose ofur € Vr is to couple thel subdomain solutions;. Component mode synthesis is
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thus defined where components from fhe 1 subspaces are synthesized to approximate a
function overQ.

An approximating subspace consistent with the decomposition/(3.11) arises from se-
lecting a subset of eigenmoddsr a(-,-) in the subspaceéq; andVr. To build this ap-
proximating subspace, we introduce two different sets of eigenvalue problems. First, we
defineJ fixed-interfaceeigenvalue problems: Fin@. j,A. j) € Vo, x R such that

a(z.j,V) = Ay j(Z.),V) YWEVq,, (3.17)
and, then, theouplingeigenvalue problem: Finz. r, A, r) € Vr x R such that
a(z.r,v) =Ar(zor,v) YWeVr. (3.18)

Note that the only differences between these two eigenvalue problems are the approxi-
mating space¥q, andVr. Because a member & is determined by its trace oh,
the coupling eigenvalue problem (3.18) can be equivalently expressed as follows: Find

(Te,Asr) € Hy /( M) x R such that

a(EqT.,Eqn) = Aur(EoT.,Eqn) VN € Hgh(T). (3.19)

We assume that the eigenvalugk j}i° ; and {Ajr}”, are ordered into nondecreasing
sequences and that the eigenmarigsandz, r are normalized for the? inner product.

The fixed-interface and coupling eigenmodes can then be employed to expand the
source ternf and the solutiom of (3.2)

22 2 (1.3
-5 z iz e 5 B (3.20)
j=1i=1 i=1 i,r
We define the finite-dimensional subspace
J
Vems= (@spar{ziyj;lg i < |j}> @spafzr;1<i<Ir}, (3.21)
j=1

wherel;j andlr are non-negative integers. The approximate solulis satisfies

a(ucms V) = (f,v), Ve Vems, (3.22)

and is given by the truncated series

o (), & (fan)
) 7] ) ,r
= 7+ Zr. (3.23)
j;i; Ay ST A

Thenatural choice of eigenmodes is frequent in structural analysis and optimal, among subspaces with
the same dimension, in termsmwfvidths (se€ [2, Theorem 5.1]).
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The following energy estimate easily follows

J o 0

1 1
a(U_UCMSU_UCMS) < Z : Z (f7z|71)2+)\ Z (f,ZLr)Z- (324)
=1 ML=l Ir+17 i—frr1

This energy estimate indicates that an accurate approximatwisafbtained when fixed-
interface eigenmodes and coupling modes are combined in the approximation subspace.

When the approximation subspagg,sdoes not contain any fixed-interface mode.(
Vems C Vr), the energy norm of the error becomes

- (f7zi,r)2

J
a(u—Ucms, U—Ucms) = a(Uj,Uj)-i- (3.25)
jzl i_;rl Air

Unless all the local solutiong € Vg, are zero, the errar— ucus cannot converge to zero
aslr — o. The components; satisfy also

a(uj,uj) = [ fup <[[flliza))llujllizo;) < Cdiam(Q))[| [ 2o IDujllizq;),  (3-26)
Q: J J J J
J

where we used the Cauchy-Schwarz and the Poincaré inequalities in succession. Coercivity
(3.4) of the bilinear forma(-, -) then results in

C .
a(uj,uj) < Edlan?(Qj)HfHEz(Qj). (3.27)

When the components are non-zero on a partitiofr, the functionsij; may not be negli-
gible. But, when the partition is refined, the subdoma&ipsind their diameters, diai€;),
both decrease. So the erw+ ucyscan converge to zero wittews C Vi as the partition
is refined.

On the other hand, when the approximation subspagg does not contain any cou-
pling modesite. \emsNVr = {0}), the energy norm of the error becomes

L2 (f,7)?

) _ -l-a(Ur,Ur). (3.28)
j=Li=T+1 Mit+l]

a(u—Ucms U—Ucms) =

Unless the coupling functionr- is zero (or the trace af onT is zero), the errou— ucps
cannot converge to zero when all the indi¢ggo to infinity. Contrary to the previous
case, refining the partition would make the interficerger and so would not decrease

a(ur,ur).

Consequently, combining (or synthesizing) functions from Béth andVr into the
approximation subspa&gsis a strategy that can lead to an accurate approximation of
on a coarse partitioly .
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3.4 New special finite element method

Motivated by the orthogonal decomposition (3.11), our goal is to determine a finite-
dimensional subspat&cmsof H&(Q) spanned by basis functions of local support and that
approximate¥cms (3.21). The eigenmodes iy, have, by construction, local support but
the coupling modes ¥ have typically global support if2. So we propose to select basis
functions of local support from the subspats andVr.

To simplify the presentation, we assume tQat (0, 1) x (0,1) and that7 is a partition
of Q into rectangle€;. The interfacd™ is the union of all the interior edges between two
rectangles. We remind the reader that the subsgacelefined by!(3.8), contain functions
of zero trace ori” and can only hold information on the subdom&in Functions ofVr
(3.9) are governed by the underlying partial differential equation because they are harmonic
extensions irQ of trace functions of. They satisfy the boundary value problem (3.10).

The conforming discretization space we propose is consistent with the decomposition
(3.11) and the basis functions have local support. With the partiigrwe define the
subspace

J
Vacus:= (@ spaf{z,j }> b

j=1

. (3.29)

(@ spar{cl)p}) ® (@ spar{we}>

PeQ ecQ

wherez, j is the firstfixed-interfacenode (3.17) i2j and the letteA in ACMSstands for
approximate. Note that the verticBsand the edges are taken in the interior aR. The
Dirichlet boundary condition is built intdacms

For any interior poinP of the partition7, ¢p belongs td/- and is a harmonic extension

satisfying
—0-(c(x)0¢p(x)) = O in Qj,
pp = O onodQ,
¢z 2 0 onr. (3.30)
¢p(P) = p,

for any element)j, wheredpp is the Kronecker delta function. An we select a trace
for ¢p that has local support along the boundaries of elements sharing the Reride
resulting functiongp will also have as support the elements sharing the pg@inOn a
horizontal edgeéx,, xp] x {yp}, the trace fowpp is defined by

(X, yp) = </XT%) / (/XLXP%) VX € [, xe]. (3.31)

Along a vertical edge, a similar definition is use&igure 3.2 plots an example of trace for
®p. Note that the trace is piecewise monotonic along the edges.

2Hou and Wu [23, Section 2.2] proposed the two-dimensional tfacel(3.31) in their MSFEM-O approach.
This trace is motivated by one-dimensional problems for which Babuska and Osborn [4] recommended the

local approximation, Spa{ﬂ, fx):J %} instead of spafil, x}.
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Figure 3.2. Trace of¢p alongrl” for a domain partitioned into 16
subdomains

The functionys, wheree is an interior edge, belongs also\p and is the harmonic
extension offe € Hééz(r), whose support is the edge,between two elements. The trace

function e is the first eigenmode for theouplingmode problem:
a(EqTe,Eqn) = A(EqTe,Eqn), Vn e Hgéz(r) such that sup@) C e. (3.32)

An example forte = (Ye)|r is given in figure 3.8. The functiog satisfies also

® ¢ $

I i F o

Figure 3.3. Example of a local coupling mode along an interior
edgee.

—0-(c(x)Oge(X)) = A inQ;j,
Yo = O onodQ, (3.33)
Ll’e - Te Onr7
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for any elemenf;.

In summary, the conforming finite-dimensional subspégg,s C H&(Q) exploits the
orthogonal decomposition (3.11) for incorporating information on the variational form
a(-,-). The subspacéacmscontains information within subdomaif via the first fixed-
interface mode. The functionie and e carry information among four and two subdo-
mains, respectively. These three special basis functions have local support. The general-
ization ofVacmsto triangular cells is straightforward.

The special basis functiors j, ¢p, and e are obtained numerically. They are com-
puted via a finite element discretization within each elengnt_ocal problems are solved
to obtain the functiong, j, ¢p, andye (which can be done in parallel). In a second step,
a global problem is solved to compute the approximate solutigfysin Vacus Further
details are given in section 3.6. Before presenting the numerical experiments, we discuss
other choices of finite-dimensional approximation subspaces.

Remark 1. By introducing subdomains, the cost of computing eigenmodes is ¥actable.
However, computing the coupling eigenmodes (3.19) associatedayjgis/nontrivial be-

cause a generalized eigenvalue problem composed of Schur and mass complement opera-
tors represents a significant computation; see the survey paper [22] for details.

3.5 Relationship to other approximating methods

Numerous choices of basis functions are possible for defining a finite dimensional sub-
space oH(}(Q). Babuska, Caloz, and Osborn [3] use the phemzial finite element®
denote finite element methods (FEM) that employ basis functions that, for instance, incor-
porate specialized knowledge of the partial differential operator. Many methods have been
proposed to incorporate relevant information into the special basis functions; for instance
the generalized FEM (GFEM) [5] and the multiscale FEM (MsSFEM) [17]. The purpose of
this section is to compare the special finite element introduced in section 3.4 for the solution
of (3.1) with the classical FEM, MsFEM, and GFEM. We only consider comparisons with
conforming finite element methods and with methods that do not lead to modifications of
the variational formulation, e.g. the bilinear and linear forms of((3.7) are not modified. For
instance, MsFEM with oversampling is a nonconforming finite element method [17, p.23]
and the recent multiscale framework presented by Nolen, Papanicolaou and Pironneau [34]
modifies the variational formulation.

3.5.1 Classical FEM

The standard nodal linear finite element method (Q1) defines an approximation sub-
spacé«/Ql
Vo1 :=span{Np; P€ 7}, (3.34)
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whereNp is the bilinear nodal shape function for an interior pétn¥Whenc is a constant,
for any interior pointP, the associated nodal shape functidmbelongs tov/r becauséNp
satisfies

—ANp = 0 inQj, forall j,
Ne #£ O onl, (3.35)
Np = 0 ondQ.

ThereforeVg, is a finite-dimensional subspace\¢f that is orthogonal the subspadés .

However, wher is not equal to a constant, the approximation subsgggces no longer
a subspace of-. For any interior poinP, the nodal shape functidwe is not a member of
Vr becauséNp is no longer an harmonic extensiore,

O-(c(x)ONp(x)) #0  inQj, (3.36)

when Qj intersects the support dp. The nodal shape functioNp is not a member of
Qj either because its trace énis non zero. Therefore the nodal shape functignhas
nonzero components M- and somé/q, in stark contrast tgpp defined by (3.30).

3.5.2 MsFEM

The MsFEM of Hou and Wu [23] selects basis functions exclusively fitpmA Ms-
FEM basis functionpp is defined by/(3.30) and its trace along the interfac@his choice
leads to the approximating subspace

Vimsrem := €D spar{¢p} C Vi C Hg(Q), (3.37)
PeQ

Whenc is constant, the MSFEM is equivalent to the linear finite element method, e.g.,
Vwvsrem = V1. Whenc is not equal to a constantyiseem is no longer equal t&q; but
remains a subspace \gf. The orthogonal decompositian (3.11) indicates that MSFEM is
a generalization of the linear finite element method for a nonconstant coeftidentiuse
VWwvsrem C V. When the partition7 is coarse, components Vbj of the solutionu are

not computed bWusrem and this error may limit the accuracy of the computed solution
in Vmsrem. This limitation is also explained by the error analysis (3.25)—(3.27) that results
from the absence of componentsAg, . To remove this limitation and decrease the error, a
partition finer than7 needs to be used.

The MsFEM-O? arises whempp is the same harmonic extension useWjgus defined
by (3.30) and the trace (3.31). On the other hand, the MsFEM-L results when the trace of
¢p on T is set equal to the trace &fp. In an attempt to mitigate the resonance effect
that arises when using MsFEM-L and MsFEM-O, MsFEM-os-L introduces oversampling;
see Efendiev and Hou [23, Section 2.3] for a discussion. However, oversampling leads

3Hou and Wu points that O indicates the oscillatory boundary condition defiinglowever,gp is not
oscillatory because its trace is monotonic on each edge. This monotonicity arises because the coexcivity of
implies that the coefficientis positive.
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to discontinuous basis functions and, hence, a nonconfgrfmite element method. In
contrast, the method proposed in section 3.4 is conforming.

3.5.3 GFEM

The GFEM space is formally defined by
N N _
Vorem:=1 Y ¢ § €S, Y @=1onQ Q=Jw, ¢=00nQ\wj,j=1... N,
=1 =1 j

where the patcheey, ---, wy are open sets. The finite dimensional sp&ceontains
functionsé; defined onwj,

Sj =span{& j € HY(wj); & =0onw;NaQ}, (3.38)

such that the functiong; approximate well, omv;, the solutioru with respect to the energy
norm. The functiong ¢, } form apartition of unityon Q. Their role is to paste together

the local approximation functiong; < S;, to form global approximation functions that are
conforming,i.e. ¢;¢; will belong to H&(Q). If, in addition, the functiongg; and their gra-
dientsOg; are uniformly bounded, Babuska, Banerjee, and Osborn[5] prove convergence
estimates for GFEM. Note that their proof can give suboptimal convergence rates (see [5,
p. 88-89]). In order to show that a special finite element method is a GFEM, we need to
exhibit patcheq wj }, the partition of unity{¢; }, and subspaces, - - -, Sy.

We now establish a relationship betwedirms andVgrem in two steps. We first
demonstrate that MSFEM is a generalized finite element méth®dcond, we show that
Vacwmsis a proper subspace of a GFEM subspace.

Consider the functiongp defined by((3.30). The definition extends easily to the case
where the verte® belongs tadQ. Based on the choice of trace function (3.31), the func-

tions{¢p} satisfy

z d)p(X):l, VxeQ

PcQ
(see also Hou and Wu [23, p. 173]). Therefore, the shape funcfipssform a partition
of unity onQ. We can select the familyg; } to be the family{¢p} and the patchefw; }
to be the support of the shape functighs Introduce the finite dimensional subsp&;e

_ [ {0} whenw;noQ#0,
5= { spaf{1} otherwise (3.39)
The spac&vsrewm,

Susrem = span{ ¢;&;; whereg; € Sj defined by((3.39)j =1, - ,N},

4To the best of our knowledge, this relation between MSFEM and GFEM is new.
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is a generalized finite element approximation space. By oactgin, this space is equal to
Vvsrem, defined by((3.37). So MSFEM is a generalized finite element method where the
local approximation function&; are constant and where the partition of unity functigns

are harmonic extensions. This particular choice of partition of unity is unusual because the
partition of unity involves the partial differential equation.

Next, for the spac¥acms the partition of unity{ ¢p} and the patchefw; } are retained.
Introduce the local approximating subsp&e

| {0} @spar{ye; eCc wjNQ} @spaqzik; Q C wj} whenw;NIQ # 0,
17| spar{1} & spade; e C @} @spaqziy; Qx C wj} otherwise
(3.40)
The spacé&acms
Sacms= span{ ¢;&j; whereéj € Sj defined by((3.40)j =1,--- ,N},
is a generalized finite element approximation space where the local approximation func-

tions are the constant, the edge-based functifiysand the fixed-interface modes ..
Vacwmsis a subspace @acvsbecause the partition of unity property implies

zk= Y ¢pzix and Y= > dp e (3.41)
PeQy PeQy; e N Q#0

However,Vacus is different from Sacms because the dimension 8icus is larger than
the dimension o¥acms For example, iSacus the functions{dezlvl}F,eﬁl are linearly
independent while the definition foacmscontains only one instance nf;. Our proposed
special finite element method is a proper subspacggfis and does not appear to be
equivalent to a generalized finite element method. Consequently, the GFEM theory does
not apply directly toVacus (in contrast to MSFEM). Note that because the functigis
andzy , belong toH&(Q) by constructionVacus does not require any pasting for these
functions.

3.6 Numerical Experiments

We present a series of numerical experiments using our CMS-inspired special finite
element method introduced in section (3.4). We first discuss aspects associated with the
computations. The first set of experiments is on the Laplace equation. The second and third
sets of experiments are on (3.1) with a nontrivial coefficemtll three cases compare the
proposed special FEM with MsFEM and with CMS. The second set of experiments also
illustrates the effect of the fixed interface modes and of the trace functions depining

3.6.1 Practical remarks

In this section, we discuss practical aspects for the numerical experiments. First we give
details on obtaining the basis functions., ¢p, and e and on assembling the resulting
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stiffness matrix. We describe the sparsity of the stiffneasrix Finally, we describe how
the approximate solutions are compared.

Computation of basis functions

Let .7, be a partition ofQ = (0,1) x (0,1) with n square elements per direction and a
uniform mesh sizér = 1/n. To compute the special shape functiaps, ¢p, andye, each
element is divided intan x m square elements withy = h/m. The local submeshes are
conforming among elements.

We use piecewise bilinear elements to compute the special shape functions by solving
local problems. For the functionf, we solve approximately the problem (3.30). This
solution is local to an elemeflt; and the corresponding linear system is of dimengna
1). For the fixed-interface modes j, we solve approximately (3.17). The corresponding
discrete eigenproblem is local @; and of dimensior{m— 1)2. The first eigenmode is
computed with adirect solver. For an edge-based functigg, we solve approximately
(3.32). Recall that, for any functiam supported on an edgebetween the elemeng; and
Q,, its harmonic extensioBqn has support i2; UQ,, and has the discrete representation

—KiKe
En=| —KyKze [N,
|

wheren is the discrete representationmpf K 11 andK 2, are the local stiffness matrices in,
respectivelyQ; andQ,. Then we compute the first eigenmode for the pencil

_ T _
—K1iK1e Kiz 0 Kge —K1iK1e
—K 3K 2 OT K%z K2e —K7Kze |
I Kie Ko Kee I
_ T _
—K1iKe M1z 0 Mie | [ —KiiKae
—K521K2e 0 Mz My —K521K2e

I M -{e M -2re M ee I
or, equivalently, the pencil of the Schur and mass complements (of dimansid).

The assembly of the global stiffness matrix and the right-hand side vector requires the
computation of the volume integrals, for example,

[ c0000e() - Dipelx)ax, (3.42)
1
on . We exploit the expression @i and e on the submesh containedn
¢P - Z XPf NPf and Llje - Z €Pf NPf (343)
PreQq PreQ
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whereNp, is the piecewise bilinear shape function for the péinbn the submesh con-
tained inQ1. Using the stiffness matrik  computed on the submesh, we write
T
[ 0000000 Duetx)dx = (e ca,] Kt [Epen,] (344
1

The other volume integrals are computed similarly.

Sparsity of stiffness matrix

The approximate solution to (3.7) in a finite-dimensional subspace will be obtained by
solving a linear system with a direct solver. Tablel 3.1 lists information about the linear
system for the different approximation subspaces. With bilinear finite elements, the sub-

Subspace| Matrix Dimension| Matrix Non-Zeros
Vo1 (n—1)? ~9(n—1)?

VMsFEM-0 (n—1)2 ~9(n—1)2
VacMs (2n—1)? ~ 12(2n—1)?
Vems (2n—1)? =(2n-1)

Table 3.1.Matrix dimensions and non-zeros for different special
finite element methods

spaceVg has(n— 1)? degrees of freedom and, asymptotically, 9 non-zero entries per row.
The subspacdysrem_o generates a matrix with the same dimension and the same sparsity
pattern. For our proposed special finite element method, the subggage(3.29) hag?
fixed interface modegn — 1)? functions¢p, and 2(n— 1) edge functions. The dimension
of VACMSiS

P+ (n—12+2n(n—1) = (n+n—1)2= (2n—1)2

With Vacus the stiffness matrix contains a diagonal block fortRdixed interface modes.

A row associated witlpp (respectivelye) has at most 21 (resp. 13) non-zero entries. So
an estimate for the number of non-zeros is

1 21 26

1xn?+21x (n—1)2+13x2n(n—1) = <Z+Z+Z) x (2n—1)>=12x (2n—1)2.

For the sake of comparison, we use also the sub3gage(3.21) with 1 fixed-interface
mode per element ar{@n — 1)2 — n? coupling modes. The dimension\¢fysis also(2n—
1)2. The resulting linear system will be diagonal. We emphasize\ihyas is not practical
because it demands a large number of global coupling eigenmodes whose computations are
daunting. However, for the numerical experiments, we will compute these global coupling
eigenmodes accurately as a basis for comparison.
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Metric for comparing approximate solutions

Recall that the solutiom solves the minimization problem (3.2) and therefore is the
minimum energy solution. The energy,

£(V) = %/Qc(x)mv(x)\zdx—/gf(x)v(x)dx: %a(v,v)—(f,v),

represents an intrinsic metric for comparing the quality of approximations to the salution
Between two approximate solutions, the one with lowest energy is the most accurate one.

Computing the difference between the energy of the computed solution and the energy
of the exact solution is equivalent to computing the norm of the error for the inner product
a(-,-). Indeed, we have

(:—ZLa(UQLUQl) - (faUQl>) - (%a(u, u) — (fau)) = :_ZLa(Ule Uq1) — (f,Uq1) +%a(u,u)

_ %(a(qu,qu) —2(f, ugn) +a(u,u))

a(u —UgQ1,U— UQl)
2

whenug is the approximate solution computed\dsy and where we used
a(u,ug1) = (f,ug1) and a(u,u)=(f,u)

(from (3.7)). This difference of energies is an intrinsic metric for comparing the quality
of approximations. When the exact solutioms not explicitly known, approximating the
minimal energy,

a(u,u) (f,u)

@@*:%a(u,u)—(f,u):— 5 =T (3.45)

is simpler than extrapolating the exact solution. In the numerical experiments, we compute
the energy differences.

3.6.2 Experiments with the Laplace equation

Consider the problem

(3.46)

—Au = f onQ
u = 0 indQ

We choosé (x,y) = 2x(1—X) +2y(1—y) such that the exact solutienis x(1 —X)y(1—Yy).

Introduce a mest¥, composed of squares with uniform mesh sizel/n. .7, contains
n? elements(n— 1) interior points, and &n— 1) interior edges. We compare the accuracy
of computed solutions when using different finite-dimensional subspaces.
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Figurel 3.4 plots convergence curves for the difference ofgge® which is propor-
tional to theH! semi-norm of the error, in terms of the number of degrees of freedom. The
number of degrees of freedom is, indeed, more relevant than the mestosittee number
of elements per direction. As highlighted in Table 3.1, the considered approximation
subspaces have different dimensions on the same feshs expected, the bilinear finite

Figure 3.4. Comparison of special finite element methods for
problem(3.46).

element has a convergence rate proportionaldoinversely proportional to the square root

of the total number of degrees of freedom. The curves/qis andVacus are indistin-
guishable, indicating that the basis function¥igmsN Vi with local support approximate

well the subspace spanned by the global eigenmodes for the Schur and mass complements.

For a fixed number of degrees of freedom, the approximate solutions computed in the
subspace¥cms andVacus are more accurate than in the subspdge To reach a fixed
level of accuracy for this problegcms andVacmsrequire 5 times less degrees of freedom
thanVQl.

For the curves in Figure 3.4, the special basis functmns¢p, and e, were approx-
imated with 16x 16 bilinear finite elements in a square element%f i.e. h; = h/16.
Figure 3.5 illustrates the convergence of the enéfdgr the subspacescyswith a fixed
mesh sizéh asm= h/hs increases. A ratio ain= 16 is sufficient to compute numerically
the special basis functions.
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Figure 3.5. Effect of subcell mesh size to compute basis func-
tions ofVacmsfor problem ((3.46).

3.6.3 Experiments with a varying coefficient

Consider the problem

{ - (1.2+ cos(32nx%l—x)y(1—y)) D”(X’y)) = fon@ (3.47)
u = 0 indQ
We choosef (x,y) = 64m[x(1—X) + 2y(1—y)] such that the exact solutianis
u(x,y) = (1.2 x 32mx(1 —x)y(1 —y) +sin(32mx(1 — x)y(1—vy)).
Note that the coefficient oscillates while the source terindoes not.

Introduce a mesl¥, composed of squares with uniform mesh $izel/n. .7, contains
n? elements(n— 1)? interior points, and &n — 1) interior edges.

Convergence plots

We compare the accuracy of computed solutions using the finite-dimensional sub-
spaced/o1, VMsrem—0, Vacms andVews. Since the coefficient is varying, the subspace
Vmsrem—o is different from the subspadé) .
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Figure 3.6 plots convergence curves for the difference afgges which is proportional
to the energy norm of the error, in terms of the number of degrees of freedom. For this

Figure 3.6. Comparison of special finite element methods for
problem |(3.47).

problem, the value fo£* is

&* = ~13267094817007 (3.48)

As expected, the bilinear finite element has a convergence rate proportidrtabto
inversely proportional to the total number of degrees of freedom. The curveEgyerand
Vacms are aligned, indicating again that the local basis functiongathiys approximate
well the subspace spanned by the global eigenmodes for the Schur and mass complements.
For a fixed number of degrees of freedom, the approximate solutions compufegidn
and inVacmsare the most accurate followed by the subspaggem-_o. The approximate
solution inVg; is the least accurate. The solution fraficms is more accurate than the
solution fromVusrem_o, highlighting the importance of the edge functiofis and the
fixed-interface modeg, j. To reach a fixed level of accuracy for this problem,

e Viusrem—o requires 15 times less degrees of freedom Wan

e Vacmsrequires almost 55 times less degrees of freedomVaan

Table/3.2 compares the approximations obtained with the subspggcegusrem-o.
andVacms For this example, the subspad&srenm_o andVacusgenerate good approxi-
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h Matrix Dimension Matrix Non-Zeros E—E&*
Vo1 Vwvsrem-o Vacms| Vor  Vwsrem—o Vacms | Vor VWwisrem—o  Vacwms

1/2 | 1 1 9 1 1 25 | 751 41.0 2.02
1/4 | 9 9 49 49 49 361 | 69.3 7.64 0.60
1/8 | 49 49 225 | 361 361 2,185| 29.9 2.02 0.11
1/16| 225 225 961 | 1,849 1,849 10,441 6.42 0.53 0.03

1/32| 961 961 3,969 8,289 8,289 45,385 1.63 0.13 0.007

Table 3.2.Matrix dimension, matrix non-zeros, and energy error
for different special finite element methods

mations ofu on meshes that are too coarseVgj or the piecewise linear interpolation. The
subspace¥qg; andViusrem—o generate matrices with the same dimensions, the same spar-
sity patterns, and an average of 9 non-zero entries per row. The subspaggenerates

a matrix with an average of 12 non-zero entries per row.hH=erl/2, the subspacéxcms
reaches a level of accuracy that the subspagereaches wheh is close to ¥30. This

ratio of 15 between the mesh sizes corresponds to a factor 55 for the degrees of freedom.
BetweenVysrem_o andVacus the subspaceéacususes 4 times less degrees of freedom
thanVyseem_o that would correspond to a ratio of 4 between the mesh sizes.

For the curves in Figure 3.6, the special basis functions were approximated with, at
least, 32x 32 bilinear finite elements in any square elementpfi.e. hy <h/32. Figure
3.7 illustrates the convergence of the energy for the subdpaggswith a fixed mesh size
hasm= h/hs increases. For this problem, a ratiorof= 32 appears sufficient to compute
numerically the special basis functions. Further analysis is required to define a priori rules
for choosingm; see, for instance Brezzi and Marini [10] for a study on two-level methods.

Impact of basis functions (e and z; .,

The error bound (3.24) and the discussion at the end of section 3.3 highlight the im-
portance of approximating the componentsidh Vo, and inVr. Failure to do so might
require a finer partitior” and a larger number of degrees of freedom in order to reach a
prescribed level of accuracy, as implied by the results of Table 3.2. In the next experiment,
we emphasize the importance of the functigps (e, andz; .. We compute approximate
solutions with the following finite-dimensional subspaces:

e V\srEm—0 = Spari¢p; vertexP € Q);
® VMsFEM—0-INT = VsFEm—o @ sparizy j; 1 < j < J);
¢ VMsFEM-0—-EDGE = VMsFEM-0 @ Sparfe; edgee C Q);
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Figure 3.7. Effect of subcell mesh size to compute basis func-
tions ofVacmsfor problem((3.47).

e Vacms= Vmsrem-o0 @ spartie; edgee C Q) @sparfzyj; 1< j <J).

Note thalVusrem—_o andVvsrem—o_EDGe are proper subspaces\gfwhile Viusrem_o-INT
andVacmshave components M)j andVr.

Figure 3.8 plots convergence curves for the energy difference in terms of the number of
degrees of freedom. The curves ¥@fsrem_o, for Vusrem—o—INT, fOr VMsFEM-O_EDGE,
and forVacuswere computed on the same set of partitions. Recall that, on a given partition
7 , all these subspaces have different dimension. For a fixed level of accuracy, the approx-
imate solution inVg; requires the largest number of degrees of freedom, followed by the
approximation iltMysrFem-o-eDGE, IN VMsFEM-0, IN VMsFEM-0-INT, @nd inVacus The
subspace¥ysrem-_o andViusrem—o-_epce approximate only the component of the solu-
tionuin V. Their respective convergence curves indicate that adding more basis functions
in Vr does not improve the accuracy per degree of freedom because these subspaces do
not approximate the componentsvg,. On the other hand, adding the first fixed-interface
eigenmodes t¥usrem_o improves the accuracy per degree of freedom. Indeed, the sub-
spaceVvsrem_o_INT approximates now all the componentswof Incorporating all the
functionsgp, e, andzy j in Vacusgives the best accuracy per degree of freedom among
all the subspaces.

We emphasize that, on a given partitién the subspacéscmsis larger thatysrem-_o
and computes a more accurate approximation. té¢However, the gain in accuracy is so
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Figure 3.8. Comparison of subspaces motivated by the decom-
position (3.11) for problem (3.47).

large that the accuracy wiysrem—o on .7 is reached with a subspa¥gcusbuilt on a
partition coarser thar. For this example, the subspaégvsreaches the same level of
accuracy than the subspaégsrem_o With 4 times less degrees of freedom. This ratio of

4 in the number of degrees of freedom translates into a coarser partition with a mesh size
smaller by a factor 4.

Impact of choice for the trace of ¢p

When building the approximating subspaée s the definition of functiongpp re-
quires a choice of traces dn Even though the functiongp still reside inV, different
traces o result in different approximating subspaces. For example, we could use the
functions¢§ satisfying the boundary value problem (3.30) and having the same trace on
I" as the bilinear shape functidip (the piecewise linear variation dnis indicated by the
superscript). Figure 3.9 plots such a trace fb.

Figure 3.10 plots convergence curves for the energy difference in terms of the number
of degrees of freedom for solutions computed with the subspagggsandVacus L. The
subspacé/acus L differs only fromVacms by the replacement of the functioge with
¢'F;. Note that whert is constant, the subspacéscms L andVacus are equal. The ap-
proximation withVacms_ 1 appears to require a finer mesh to reach the asymptotic regime.
Before reaching its asymptotic regime, the curveMggms L exhibits a bump. The curves
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Figure 3.9. Trace of¢f alongl for a domain partitioned into
16 subdomains

Figure 3.10. Comparison of two choices for the functiogs
when solving problem (3.47).
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for Vacms_ L andVacusare different. But the curve fofacms. L appears to reach asymp-
totically the curve foMacms Which would be consistent with the case whers constant.

This experiment highlights the importance of choosing an appropriate trdcéoothe
function ¢p in order to preserve the property that the subspaggs approximates well
the subspace-vs

3.6.4 Experiments with another varying coefficient

Finally, consider the problem

—0-(c(x)0u(x)) = f(x) onQ,
{ u =20 in2Q. (3.49)
We choosef = —1 and the scalar coefficient
_ 2+41.8sin(25mx) 2+ sin(25my) (3.50)

CY) = 5T cos25my) T 2+ L8sin25m)"
This example was studied in the paper [23].

On a meshZ, made of squares with uniform mesh sfze- 1/n, we compare the accu-
racy of computed solutions when using the finite-dimensional subspage¥vsrem—o,
Vacms andVems Figurel 3.11 plots convergence curves for half the energy norm of the
error in terms of the number of degrees of freedom. The reference efiergy

&* =—0.004717883361515083 (3.51)

is computed by Richardson extrapolation based on energies computed with bi-quadratic
finite elements and with quintic finite elements using COMSOL Multiphysics

All the methods have a convergence rate inversely proportional to the total number of
degrees of freedom. For a fixed number of degrees of freedom, the approximate solution
computed ineus is the most accurate followed by the subspaégsis andViysrem_o.

The approximate solution gy is the least accurate. Here the curvesMens andVacwms

are different. The approximation wihcyvsappears to require a finer mesh to reach the
asymptotic regime. Before reaching its asymptotic regime, the curvéatgyis exhibits

a bump. This bump seems similar to the oneMggpms_ L, described in section 3.6.3. It
was removed when the functio¢$ were replaced by the functiogs. This experiment
suggests that, for this example, the current choice of traéefongp might not be optimal.
Further analysis is required to find a different choice of trace functions that would allow
Vacmsto attain its asymptotic regime with fewer degrees of freedom.

SVersion 3.5a, see www.comsol.com
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Figure 3.11. Comparison of special finite element methods for
problem [(3.49).

3.7 Conclusions

We have presented a new conforming special finite element method. The approach is
based on the classical idea of component mode synthesis and exleﬂ(Qa orthog-
onal decomposition. Fixed-interface eigenmodes, vertex-based harmonic extensions, and
edge-based modes define the approximating subdpaegs We illustrated theoretically
and numerically the importance of the three types of functions to obtain an accurate ap-
proximate solution. On academic examples, the new approximation subspace is, for the
same number of degrees of freedom, more accurate than the bilinear finite element and the
multiscale finite element method.
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Chapter 4

M ethod of Discontinuous Basis
Functions

Daniel J. Segalman, Organization 1525
and Ulrich . L. Hetmaniuk, University of Washington

4.1 Introduction

Though various Sandia programs have access to massively parallel computers and fi-
nite element code that can employ many processors simultaneously, the resulting numerical
predictions often are difficult to interpret physically. This difficulty is particularly frustrat-
ing in the area of structural dynamics where modal analysis has historically been a major
tool both for calculation and for interpretation. Once the nonlinearity of the structure has
been acknowledged, modal analysis no longer applies and the remaining tools are awkward
to apply and without intuitively obvious physical meaning. The need to address this issue
motivated the LDRD funding that made the work discussed in the following possible.

The method presented here provides a partial resurrection of modal analysis in the
context of nonlinear structures whose nonlinearity is local in nature. Though for problems
of large size or complexity it is still be necessary to employ large computing resources in
order to exploit the method presented here, two major advantages are gained:

1. The results are presented in terms of modal coordinates so that often the predictions
lend themselves to direct physical interpretation.

2. Thereduced order system runs so quickly that many calculations over long periods of
time can be run casually. Force boundary conditions can be changed and the system
can be recalculated with minimal difficulty or additional computer resources.

The most straight-forward approach to model reduction for nonlinear systems is that
of employing assumed modes in a Galerkin formulation. (A good discussion on Galerkin
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methods can be found in [27].) This is the approach most oféed in problems of modest

and diffuse nonlinearity and it is often very successful. As one would expect, the success of
a Galerkin approach depends largely on whether the set of basis functions employed span
the space of the full solution. We shall see that in cases of localized nonlinearities, it is
necessary to include within the basis functions ones that can accommodate the locality of
the nonlinearity. Examples are provided.

The initial portion of this report employs mathematical quantities specific to interfaces.
How one evaluates those quantities is discussed in a following section.The presentation
that follows focuses specifically on problems of structural dynamics, but one anticipates
that these techniques could be applied to model reduction of other classes of problem char-
acterized by local nonlinearity.

4.2 Formulation

4.2.1 Galerkin formulation for a System of Localized Nonlinearity

Here we assume a discretization has already been performed - probably by a fine level
Galerkin finite element process. The governing equation now has the following nonlinear
differential-algebraic form:

MUi+Ca+Ku+ 5 fi(sj, {{})F) = fu(t) (4.1)
J

Above M is the mass matrix an@ is the damping matrix, thé; are (nonlinear) forces
acting between node pajrof the system andy is the vector of external loads. The non-
linear interface forcd; is a function of the distancg; between node paif and of state
variables{{j} that evolve along witlsj. The matrixK captures the linear elasticity of the
rest of the structure; it is the stiffness matrix of a conventional finite element code, where
the nonlinear interfaces are ignored.

The vector=! captures the direction of forces between the node jpiystem degrees
of freedomj, and j») and is related to nodal kinematics by

F) = dsj/duq 4.2)
whereuy is thekth degree of freedom of the finite element discretization.

The Galerkin procedure begins with some assumed deformation ripdeso that the
kinematics of the problem can be approximated by

u(t) = ax(t) yi (4.3)

The coefficientd ak(t)} are referred to as generalized coordinates. Here and in the follow-
ing, summation on repeated indices is assumed.
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The next step is to assert that the residual is orthogonalgeé#ch of the assumed
deformation modes:

Vi My i+ Vi Cyicaw + yi Kykaw + Ti(sj, {Zi ) ya F = yi (1) (4.4)
for eachy,. This is simplified as
Ma+Ca+Ka+ fi(s, {{HF! = fx(t) (4.5)

Ideally, one can obtain adequate solutions to the nonlinear system with far fewer basis func-
tionsyy, than the degrees of freedom of the original finite element formulation. The success
of a Galerkin approach generally hinges on the appropriate choice of basis functions.

4.2.2 Reference Linear System
The first basis functions that come to mind are the eigen modes of a reference linear
system.

Say that at small loads, our interface forces can be approximated as

dfi(s;, {g}) = Ails {;S‘ =0 ds = kjds= kiFidu (4.6)

In that range of small loads, the governing equation (Eg. 4.1) becomes
MU+ Cu+ Kou = fx(t) 4.7)

where A .
Ko:K—l—ijFJFJ (4.8)
]

The use of a subset of the eigen modes of the reference linear system (RLS) in the linear
system itself is the familiar modal truncation. Modal truncation of a RLS is illustrated on
the structure depicted in Figure 4.1. The eleven unit masses of this system are connected
by springs of unit stiffness. An external triangularly shaped impulse of duration equal to
one quarter of the longest period is applied to the mass at the free end. It is primarily the
first mode that is excited, so one expects modal truncation to serve as a good approximation
to the full system. Indeed Figure 4.2 shows modal truncation to be quite adequate for this
problem. In this figure and in other kinetic energy plots, the legend refers to the envelopes
of the kinetic energies.
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Figure 4.1. For purposes of illustration, we consider this sim-
ple system of eleven unit masses connected in a series manner to
ground by a system of unit springs.

Kinetic Energy, F0 =01

i

Figure 4.2. The response of the system shown in Figure 4.1 is
calculated by the numerical solution for full spacial system (eleven
degrees of freedom) and by several levels of modal truncation. In
this and in similar plots, the legend refers to envelopes of the ki-
netic energy curves.
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4.2.3 Galerkin Solution, Modal Truncation, and Slightly Nonlinear
Systems

Let's now consider a system that is just slightly nonlinear. We supplement the unit
spring between théand 6" masses of the structure in Figlire 4.1 with a slightly nonlinear
spring so that the net force between the masses is

f(s) = Kys+ Kps® (4.9)

whereK; = 1 andK, = 50. This structure is shown symbolically in Figlre|4.3. Here we
consider a very low amplitude (peak forEg = 0.05) externally applied impulse so that
only a little of the nonlinearity is manifest (see Figure 4.4 for the force displacement plot.).
Here the full solution of the nonlinear system of eleven differential algebraic equations is
our truth model.

V7

Z/

N

7.
7
7

Figure 4.3. We consider this simple eleven unit masses con-
nected in a series manner to ground by a system of unit spring. Ad-
ditionally we place a cubic spring between tH& &1d 6" masses

of the system.

We use eigen modes of the reference linear system as basis functions in the Galerkin
formulation. Examination of the kinetic energies predicted by our truth model and the
reduced models are shown in Figure 4.5. The good agreement between the predicted kinetic
energies argues that for this case, a Galerkin procedure using eigen modes of a RLS can
yield good approximation.

Another indication of the adequacy of the RLS modes to capture the response of the
slightly nonlinear system is a comparison of the singular value decomposition (SVD)
modes of the solution of the full nonlinear system with the RLS eigen modes. (The SVD
method identifies correlations among degrees of freedom. A good discussion on using SVD
to explore the properties of nonlinear systems can be found in [28].) Figure 4.6 shows the
first SVD mode and the first RLS eigen mode to be nearly identical. Rigure 4.7 shows that it
is only the first SVD mode that plays a significant role in the response to the low amplitude
triangular impulse.
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Monotonic Force/Displacement of Joint
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Figure 4.4. The response of a system with a small cubic non-
linearity appears almost linear so long as the excitations are also
small.
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Figure 4.5. The kinetic energy of the system with a small cu-
bic nonlinearity resulting from a triangularly shaped impulse. The
Galerkin solution employing various numbers of eigen modes of
the reference linear system provides a reasonably good approxi-
mation to this slightly nonlinear system.
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First Eigen Mode and First SVD Mode, FO =0.05
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Figure 4.6. The response of a system with a small cubic non-

linearity is explored the the singular value decomposition (SVD)

modes of the history of the full nonlinear system. Shown here are
the first SVD mode of the fully history and the first eigen mode of

the RLS. For this small nonlinearity, both modes are almost iden-
tical.

4.2.4 Problems of Larger Nonlinearity

Problems of even large nonlinearity are often quite amendable to Galerkin approxima-
tion employing modes of neighboring linear systems. Generally those successes are ones
where the nonlinearity is diffused smoothly through a significant part of the structure. We
show in this section examples of problems where the nonlinearity is very local in nature
and the eigen modes of a reference linear system are a less adequate basis.

Consider an eleven-element nonlinear structure identical to that discussed above (Figure
4.3), but subject to a higher amplitude triangular impulse. The force-displacement curve of
the parallel linear and cubic springs is shown in Figure 4.8 where significant nonlinearity
is observed.

This problem is much less amenable to Galerkin solution using the RLS eigen modes.
Figure 4.9 shows the kinetic energy of the system over time predicted by the full nonlinear
solution and by various levels of Galerkin approximation. Not only is approximation by five
modes inadequate, but approximation by even ten modes results in significant error. Only
when the number of modes is equal to the total number of physical degrees of freedom of
the system does the kinetic energy predicted by a modal approximation match that of the
full nonlinear solution.
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SVD diagonal, F0 =0.05
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Figure 4.7. The response of a system with a small cubic non-
linearity is explored the the singular value decomposition (SVD)
modes of the history of the full nonlinear system. The relative role
of each SVD mode in the history is shown here. Only the first such
mode is significant.
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Figure 4.8. The response of a system with a cubic nonlinearity
appears extremely nonlinear when the excitations are large. In this
case the peak excitation is 0.5.
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Kinetic Energy, F =05
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Figure 4.9. The kinetic energy of the system with a large cu-
bic nonlinearity resulting from a triangularly shaped impulse. The
Galerkin solution employing various numbers of eigen modes of
the reference linear system does not provide a good approxima-
tion to this nonlinear system unless the number of modes equals
the total number of degrees of freedom of the physical system.
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The source of the difficulty of performing model reduction gétems of local nonlin-
earity is suggested in Figure 4.10 where the first SVD mode of the full nonlinear solution
and the first eigen mode of the RLS are shown. We see an apparent discontinuity in the
SVD mode. Because there is a stiffening spring between'tharfsl 6" masses, there is
less deformation there than in the corresponding mode of the RLS. One should not be sur-
prised that attempting to capture this apparent discontinuity with a sum of modes of the
RLS would result in a Gibbs’ type phenomenon requiring a very large number of modes.

First Eigen Mode and First SVD Mode, FO =05
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Figure 4.10. The response of a system with a large cubic non-
linearity is explored the the singular value decomposition (SVD)
modes of the history of the full nonlinear system. Shown here are
the first SVD mode of the fully history and the first eigen mode
of the RLS. For this large nonlinearity, the modes show a marked
difference in the location of the nonlinear spring. Because there is
a stiffening spring between th&%nd 6" masses, the SVD mode
shows less deformation at that location than is the case of the linear
eigen mode.
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4.2.5 Joint Modes

One anticipates that discontinuities such as that illustrated in the SVD mode of the
above problem will be characteristic of systems with local stiffness nonlinearities. So one
should expect to encounter convergence issues when using approximation by modes of a
reference linear system. One well-known approach to accommodating analogous problems
in Fourier analysis is to subtract out the discontinuity; that is to augment the basis functions
with a simple function sharing the discontinuity of the function to be approximated.

Two candidate classes of basis function were examined for this study. The first is one
associated with eigen vector sensitivity analysis and the second is one associated with the
static response of the RLS to self-equilibrating loads.

Eigen Vector Sensitivities

The term eigen vector sensitivity can mean the sensitivity of eigen vectors of a ma-
trix system to small perturbations of those matrices or it may refer to sensitivities of the
eigenvectors of a mechanical system to physical parameters of that system. The concepts
presented here fit into both categories.

Consider a mechanical system with a nonlinear but differentiable connection between
degrees of freedom, andx, and that the tangent stiffness at zero load of that connection is
kj. As before, the stiffness matrix for that reference linear systdfg &1d the mass matrix
is M. We select an eigen mod;, of the reference linear system that causes significant
deformation at connectioh

Consider also another linear system that differs from the reference linear system only
in the stiffness at connectiohy where the stiffness ikj + dk;. The m" eigen mode of
this perturbed system & + 6V;? and the sensitivity of thet" eigen mode with respect to
stiffness at the connection is
V3 = 8V3/ 6k, (4.10)

Because the eigenvectors of the perturbed systems differ from those of the reference
system primarily in the displacement across the connection, sensitivity vectors will mani-
fest a discontinuity at the connection location. The reasoning presented above to explain
the slow convergence of a Galerkin procedure using only the eigen modes of the RLS would
argue that the discontinuity found in these perturbed eigen modes could make them valu-
able in accelerating the convergence of the Galerkin process. The sensitivity of the first
eigen mode of our example system with respect to the stiffness of the connection between
the 8" and 6" masses is shown in Figure 4.11.

The strategy proposed above is illustrated in Figure 4.12. Here we see that a Galerkin
basis that consists of the first four eigen modes of the RLS and the sensitivity mode pre-
sented in Figure 4.11 almost exactly captures the kinetic energy predicted by the full non-
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linear solution. In fact, even the use of just one eigen moalegalvith the sensitivity mode
does a pretty good job of predicting the kinetic energy (Figure 4.13).

Joint Sensitivity Mode

-0.015
1

Figure 4.11. The sensitivity of the first eigen mode of the refer-
ence linear system with respect to stiffness at the location of the
nonlinear spring manifests a discontinuity at that location.

Kinetic Energy with One Joint Mode, F =05

U

12

1

\“ \
x 0. 6
\
“ 5 Elastlc Modes
-— 4 Elastlc Modes and 1 Jomt Mode

1000 1500 2000
Time

Spacial Integration
+ 5 Elastic Modes 4
-==4 Elastlc Modes and l Joint Mode

150 200 250 300
Time

Figure 4.12. Convergence of the Galerkin procedure is greatly
enhance when the basis includes an eigen mode sensitivity vector.
In this case there are 4 eigen modes of the reference linear system
and one eigen mode sensitivity vector.
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Kinetic Energy with One Joint Mode, F =05
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Figure 4.13. Convergence of the Galerkin procedure is greatly
enhance when the basis includes an eigen mode sensitivity vector.
In this case there are 1 eigen mode of the reference linear system
and one eigen mode sensitivity vector.

Milman-Chu Modes

In addressing the optimal selection of dampers for linear systems, Milman and Chu
([11], [31])introduced basis functions obtained by solving the statics problem of self-
equilibrating loads acting between the degrees of freedom where the linear damper was
intended. A character of these basis functions is that they have a discontinuity at the loca-
tion of that connection.

Milman and Chu referred to their basis functions as Ritz vectors. Because this term is
so general as to be unhelpful in the context of the work reported here, we refer to their basis
functions as Milman-Chu vectors.

The Milman-Chu vector for our reference linear system is shown in Figure 4.14, where
that anticipated discontinuity is manifest. In Figures 4.15 and 4.16 we see that the Milman-
Chu vectors perform almost identically as the eigen mode sensitivity vectors in accelerating
the convergence of the Galerkin procedure. A major advantage of the Milman-Chu modes
over the eigen mode sensitivities is that they can be calculated much more economically.
Since the Milman-Chu (M-C) vectors perform as well as the eigen mode sensitivity vectors,
they are used exclusively in the following.

In the calculations presented, the M-C vectors were made orthonormal with respect
to the mass matrix to each of the eigen modes employed. This in no way changes the
configuration space available to the Galerkin algorithm, but it makes interpretation of the
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Figure 4.14. The Milman-Chu mode is the solution to a statics
problem. It also has the discontinuity that is desired at the location
of the local nonlinearity, but it is computed much economically

than is the eigen mode sensitivity.
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Figure 4.15. Convergence of the Galerkin procedure is greatly
enhanced when the basis includes an Milman-Chu vector. In this
case there are 4 eigen modes of the reference linear system and
one Milman-Chu vector.
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4.3 Model Reduction for a Structure Containing a Me-
chanical Joint

The major source of nonlinearity in structural dynamics is the localized frictional slip
processes at interfaces in mechanical joints. The two important qualitative properties of
mechanical joints - softening and dissipation - are illustrated in Figures 4.17 and 4.18.
With respect to the first figure, one sees that under small load, the force-displacement curve
appears nearly linear, though there is some amount of micro-slip and dissipation taking
place even there. At larger loads, the force-displacement curve begins to level off and at
very high loads macro-slip takes place and the tangent stiffness goes to zero. The second
figure shows the power-law relationship between the amplitude of oscillatory load and
the dissipation per cycle that is commonly seen experimentally over large load ranges.
Mechanical joints manifest very little rate dependence.

Beginning of Macroslip
\ (US'FS)

Pinning by Shank of Bal

Force

Microslip Regime

Displacement

Figure 4.17.Mechanical joints manifest small regions of micro-
slip where force-displacement appears linear, though some amount
of dissipation accompanies any load. As the load increases, the
tangent stiffness decreases until macro-slip initiates.

The usual process of dealing with the presence of joints in structural dynamics is to
represent the joint compliances by tunable springs and to represent the joint dissipation by
modal damping. The resulting tuned linear models are of course of little value except at the
excitation amplitudes at which the structure is calibrated. A discussion of the limitation of
such approaches can be found in [41].

A interesting feature of mechanical joints that increases their interest in the world of
nonlinear model reduction beyond their practical importance is the intrinsic path depen-
dence to their force-displacement properties. This feature is referred to as non-locality in
the sense that the full state of the system cannot be known solely from the current values
of kinematic variables and their rates. The nonlocality would appear to proscribe rigorous
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slope=3 + v

Log10(Dissipation/Cycle

Log10(Force)

Figure 4.18. When mechanical joints are subject to oscillatory
loads, the energy dissipation per cycle appears to increase with
load amplitude in a power-law manner. In the abgyes a number
such that —1 < x <0).

application of a number of otherwise powerful mathematical tools - including the use of
nonlinear normal modes.

We shall introduce a particular constitutive model for joints so that we may explore the
model reduction technique of this report in context of problems of practical importance.

4.3.1 Whole-Joint Approximation

Modeling the complexity of interface mechanics in the midst of structural dynamics cal-
culations would be impractical. A tractable approach involves the introduction of a class
of approximation that reduces the complexity of the contact problem to a small number of
scalar constitutive equation. This approximation constrains the kinematics of all degrees
of freedom on each side of the contact patch to a single kinematic variable. Correspond-
ing kinematic variables on opposite sides of the interface are connected by a single scalar
constitutive equation each. Such approximations are called “whole-joint” models. The
whole-joint approximation currently employed in Sandia codes imposes multi-point con-
straints to cause surface nodes on each side of the interface to be constrained rigidly to a
centralized node on that surface (Figure 4.19). In the absence of more complete knowledge
of joint physics, the constitutive equations for the six relative degrees of freedom are treated
as being independent.
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Figure 4.19.The mathematical complexity of the joint is simpli-
fied by approximating the whole interface by a single scalar con-
stitutive equation for each of the six relative degrees of freedom.
In the illustration shown here all of the nodes on each side of the
interface are held rigid and connected to a single joint.

4.3.2 The Four-Parameter Iwan Model

A constitutive equation consistent with the more important qualitative joint behavior
observed experimentally is the four-parameter Iwan model discussed in [40] and [42]. This
model is an instance of lwan’s parallel-series configuration ([25], [26]) represented graph-
ically in Figure 4.20 showing a continuum of Jenkins elements. All the spring stiffnesses
are identical, so the model response is determined entirely by the population gensity
Jenkins elements of given slider strengghs'he mathematics of such models is discussed
in depth in the papers of the above four citations.

The 4-parameter lwan model is defined as follows:

p(®) = RY! [H (@) —H(¢— @nax)] + SO(P — ¢hnax) (4.11)

whereH () is the Heaviside step function and the the process for finding pararke@rg,

and @nax is found in [40] and [42] . Values of 1 < x < O results in power-law exponents
of 3+ x. The general form of this 4-parameter distribution is shown in Figure 4.21. A
major deficiency of the above set of parameters is the fractional dimensiéharnafS so

an alternate and preferred set of parametéis K, x, and) for this model have been
developed [42]. In the following we use values

Fs=1.0 the force that initiates macro-slip.

Kr =1.0 joint stiffness in the regime of small load.

X = —0.5 the dimensionless strength of the singularity at zero.

=2 a dimensionless parameter having to do with the shape of the dissipation curve.
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Figure 4.20.The parallel series lwan model consists of a contin-
uum of Jenkins elements. All the spring stiffnesses are identical,
so the model response is determined entirely by the population
density of Jenkins elements of given slider strengths.
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Figure 4.21.The four-parameter Iwan model predicts the correct
gualitative behavior of mechanical joints.

4.3.3 Numerical Results for Problems of Micro-Slip

We first examine the results of a numerical experiment associated with the structure
shown in Figure 4.3 but where the cubic nonlinearity is replaced with the lwan model
described above. In this case the amplitude of the triangular pulge=s0.5 - just one
half of the break-free forcEs of the joint. Referring to Figure 4.22, we see that a Galerkin
solution using the first five eigen modes of the reference linear system does a very poor job
of capturing the kinetic energy of this system, but a Galerkin solution using the first three
elastic modes and a joint mode (Milman-Chu) performs very well.

We also see that once the excitation is complete, the energy of the system continuously
declines because of the hysteretic nature of the joint. This joint damping plays a major role
in mitigating the shock that weapons systems can experience in a hostile environment.

It is natural at this point to ask the question: if the joint mode is necessary to capture
the mechanics of the system, how does it change the kinematics that would be observed
from the transient solution. This question is addressed with reference to Figure 4.23 where
we see that the generalized accelerations seem to be dominated by the first mode - as one
would expect. One order of magnitude lower are the kinematics of the second mode and
the kinematics of the third mode and the joint mode are an order of magnitude yet smaller.
Each of the modes is mass normalized, so the contributions to the physical accelerations
are roughly proportional to the generalized accelerations.

Recall also that in these simulations the Milman-Chu mode that is employed has been
made orthogonal to the elastic modes with respect to the mass and stiffness matrices. The
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Kinetic Energy with One Joint Mode, F0 =05
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Figure 4.22. Convergence of the Galerkin procedure is greatly
enhanced by the presence of Milman-Chu vector in this problem
involving the structure shown in Figure 4B = 0.5, and a non-
linear lwan joint model. In this case there are 3 eigen modes of the
reference linear system and one Milman-Chu vector.

Generalized Accelerations of Reduced Model: FO:O.S
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Figure 4.23. Though the presence of the joint mode among the
basis vectors of the Galerkin calculation greatly accelerates con-
vergence, the amplitude of the generalized acceleration associated
with that vector is actually fairly small in this problem.
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coupling evidenced by the peaks of the generalized accelerassociated with the M-C

mode occurring at frequencies of the peaks of the generalized accelerations of the elastic
modes is purely a nonlinear effect. Because the Milman-Chu mode has been made or-
thogonal to only the first three elastic modes, it carries some part of the shapes of higher
modes and the peaks of the corresponding generalized accelerations at higher frequencies
are reflective of modes at those frequencies.

In the following simulations we highlight both the softening and dissipative features
of mechanical joints through simulations of base excitation experiments. Again, we con-
sider an eleven mass system with the nonlinear element placed between the fifth and sixth
masses. This configuration is illustrated in Figure 4.24.

Figure 4.24. An eleven-mass system with a nonlinear joint ex-
cited at its base.

In these experiments, we employ an impulse of a sort that is increasingly popular in
base excitation experiments - the Morlet wavelet of frequency 4:

f(t) = Ao cogw?2mt/1) exp(w) (4.12)

2
whereA is the peak amplitude to be obtaineds the period of the frequency to be excited,
and w defines the shape of the wavelet. In the experiments presentedhereand the
characteristic shape is shown in Figure 4.25.

In the first set of numerical experiments the max impulse is 9&460.005 and Figure
4.26 shows that the resulting joint force calculated from the full spatial solution stays well
below the break-free forcEy of the joint. The corresponding portion of the monotonic
force-displacement curve for the joint is shown along with the tangent stiffness at zero load
in Figure 4.27. One expects such excitations to cause very little nonlinear response in the
joint.

Indeed Figure 4.28 shows that the Galerkin solution employing eigen modes of the
reference linear system generates a very good approximation for the kinetic energy of the
jointed system subject to a small amplitude impulse. There is so little nonlinearity at the
joints that the linear eigen modes do a good job of spanning the configurations taken on by
the jointed structure. The presence of the joint is indicated only by the decrease in system
energy over time due to dissipation in the joint.

One could also anticipate the adequacy of the eigen modes of the RLS in solving this
low amplitude problem by consideration of Figures 4.29 |and|4.30 obtained from the full
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Morlet Wavelet
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Figure 4.25.The Morlet wavelet withw = 4.

Joint Load: A0=O.005
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Figure 4.26. The force history of the joint resulting from a very
low amplitude Ay = 0.005) base excitation.
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Monotonic Force/Displacement of Joint
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Figure 4.27.The force history of the joint resulting from a very
low amplitude Ay = 0.005) base excitation corresponds to the
above portion of the monotonic force-displacement curve for the
joint. Also shown is the tangent stiffness at zero load.
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Figure 4.28. The Galerkin solution employing eigen modes of
the reference linear system generates a very good approximation
for the kinetic energy of the jointed system subject to a small am-
plitude impulse &o = 0.005).
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nonlinear spatial solution. The first shows that the nonlisgatem response is limited to
resonance of just the first natural frequency of the reference linear system and the second
shows that the first SVD mode of the numerical solution is almost identical to the first eigen
mode of the RLS.

PS of R-H Mass Acceleration, A0 =0.005
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Figure 4.29. When subject to very small amplitude excitation
(Ao = 0.005), the system responds with a nearly monochromatic
response at the frequency of excitation - which was tuned to the
first natural frequency of the reference linear system.

Interestingly Figure 4.31 shows that even for the nearly linear case discussed in this
section, the use of a single Milman-Chu joint mode greatly increases convergence of the
reduced order model to the solution of the full system.

83



First Eigen Mode and First SVD Mode, A0 =0.005
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Figure 4.30. The SVD of the full nonlinear spacial solution
and the first eigen-mode of the reference linear system are nearly
identical when the system is subject to a very low amplitude
(Ap = 0.005) base excitation.
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Figure 4.31. Even when the system is subject to a very low am-
plitude (Ao = 0.005) base excitation, the use of a Milman-Chu joint
mode makes a noticeable improvement in convergence.
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When the amplitude of the base excitation is raisefgte- 0.02, the elastic modes are
a much less satisfactory basis of modeling the more nonlinear system. [Figure 4.32 shows
that three elastic modes augmented with a Milman-Chu mode provide a much better basis
for modeling vibration ring-down in this problem than are six elastic modes. Though not
shown here, the peak joint force encountered in this simulation is approximately 70% the
break-free forcé-s.

Kinetic Energy with One Joint Mode, A0 =0.02
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Figure 4.32. At a higher level of base excitatio®{ = 0.02),
the use of a Milman-Chu joint mode makes a more noticeable im-
provement in convergence.

The generalized accelerations shown in Figure|4.33 show behavior similar to that pre-
sented in Figure 4.23. Again, we see that though the joint mode is necessary for capturing
the correct mechanics in this problem, it mode does not make a strong appearance in the
structural kinematics.
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Generalized Accelerations of Reduced Model: A0=0.02

L

= = = Milman-Chu

Figure 4.33. As was the case in the resonance calculation of
Figure[ 4.23, though the presence of the joint mode among the
basis vectors of the Galerkin calculation greatly accelerates con-
vergence, the amplitude of the generalized acceleration associated
with that vector is actually fairly small in this base excitation prob-
lem (Ag = 0.02).
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4.3.4 Numerical Results for Problems of Macro-Slip

A Galerkin solution using just the eigen modes of the reference linear system is dramat-
ically less successful for problems where applied loads approach or exceed the break-free
force g of the joint.

In the cases considered here, the amplitude of input waveledtsahd the resulting
joint load history predicted by the full nonlinear spatial solution is shown in Figure 4.34.
We see here that the joint is brought into macro-slip and peak force levels in the joint
are saturated ds until enough energy has dissipated that the system loads on the joint
drop to lower levels. This force history on the joint corresponds to the monotonic force-
displacement curve shown in Figure 4.35, where the strong nonlinearity is illustrated by its
contrast to the zero-load tangent stiffness curve.

Joint Load: A0=0.05
15

05

X0)
—_—
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-15
0

I I I I
500 1000 1500 2000 2500
time

Figure 4.34. When the system is subject to a high amplitude
(Ao = 0.05) base excitation, the joint is brought into macro-slip
and force levels in the joint are saturatedrat

The nonlinearity that the joint lends to the system dynamics is suggested by the plots
of the first SVD mode of the full nonlinear spatial solution and the first eigen mode of the
reference linear system in Figure 4.36. Note that these curves are quite different in the
vicinity of the joint.

Another indication of the strong nonlinearity of this system is shown in Figure 4.37.
Here we see that the acceleration of the right hand mass of the system contains not only
components at the frequency of the excitation (which was tuned to the first natural fre-
guency of the reference linear system), but also many higher frequency components.

Given the above, it should be no surprise that Galerkin solution using just the eigen
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Figure 4.35. The force history of the joint resulting from a high
amplitude Ay = 0.05) base excitation corresponds to the above
portion of the monotonic force-displacement curve for the joint.
Also shown is the tangent stiffness at zero load. The nonlinearity
manifest at these force levels is large.

First Eigen Mode and First SVD Mode, AO =0.05
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Figure 4.36. The first SVD mode of the full nonlinear spacial
solution and the first eigen mode of the reference linear system
are quite different in the vicinity of the joint when the system is
subject to a high amplituded§ = 0.05 base excitation.
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Figure 4.37.Macro-slip causes frequency responses of the struc-
ture that well above that of the base excitation - which was tuned
to the first resonance of the reference linear system.
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modes of the reference linear system demonstrates very pdormance. In Figure 4.38

we see that even with ten elastic modes, the kinetic energy is approximated very poorly
despite the fact that those modes correspond to much higher frequencies in the linear system
than are indicated in Figure 4.37. The transitions to macro-slip in this problem appear to
be responsible for the transfer of energy from the low excitation frequency to much higher
frequencies. As expected, when sufficient modes to reach the frequency response of the
corresponding linear system are augmented by a joint mode, the system is modeled much
better (Figure 4.39). Figure 4.40 shows that the augmented basis set captures the correct
character of the magnitude of the Fourier transform of acceleration of the right-most mass,
while the approximate solution that employs only the elastic eigen modes leaves too much
energy at the lower frequencies.
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Figure 4.38. The Galerkin solution employing eigen modes of
the reference linear system generates a very poor approximation
for the kinetic energy of the jointed system subject to a large am-
plitude impulse.

That the displacement across the joint in macro slip can be an appreciable part of the
overall kinematics is evidenced in Figure 4.41 where the generalized acceleration associ-
ated with the joint mode is comparable with that of the first linear vibration mode.

An interesting result is found when a “ruthlessly reduced” model is employed. When
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Figure 4.39. The Galerkin solution employing seven eigen
modes of the reference linear system augmented by one joint mode
generates approximation for the kinetic energy of the jointed sys-
tem subject to a large amplitude impulse. A large number of elastic
modes are necessary to capture the high frequency response of the
systems. The necessity of including the joint mode is illustrated
by comparison to the prediction resulting from use of eight elastic
modes.
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Figure 4.40. Comparison of the acceleration power spectra for
the right most mass for the full spacial solution and the two re-
duced order solutions illustrates how resolution of joint kinemat-
ics is necessary to capture the energy shift from low frequencies to
high.
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Generalized Accelerations, A0 =0.05
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Figure 4.41.In this problem of macro-slip the generalized accel-

eration of the joint coordinate is no longer small.
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this large amplitude experiment, resulting in high freqyecemponents in the structural
response, is approximated by three elastic eigen modes and one joint mode, the kinetic
energy predicted (Figure 4.42 ) is in noticeable error. However, the error is substantially
less than that of the Galerkin solution where eight elastic eigen modes but no joint mode
are employed.

Kinetic Energy with One Joint Mode, A, = 0.05
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Figure 4.42. A “ruthlessly reduced” analysis using only three

elastic eigen modes and one joint mode results in noticeable error
in the kinetic energy, but substantially less error than an analysis
using twice the number of elastic eigen modes and no joint mode.

Particularly intriguing is the predicted acceleration of the right-most mass. In Figure
4.43 the accelerations predicted by the very reduced model appear as though they were
the full spatial solution as seen through a low-pass filter. That hypothesis is tested by
comparing the full solution and the very reduced solution when both are sent through a
low-pass filter. (Sixth order Butterworth filter with cut-off frequency 0.03). The results
shown in Figure 4.44 do argue that for the special case of these Ilwan joint models, a low-
order model for the full non-linear structure seems to capture the low frequency response of
the structure reasonably well. Why this reduced order model works so well for these joint
models is not entirely clear at this time, though one would have every reason to believe that
such fortuitous results would not occur for a rate-type nonlinearity.
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Acceleration of RHS Mass, A0=0.05
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Figure 4.43. A “ruthlessly reduced” analysis using only three
elastic eigen modes and one joint mode results results in accelera-
tions of the right most mass that have the appearance of a low-pass
filter of the full spacial solution.
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acceleration

Acceleration of RHS Mass: Low—-Pass Filtered
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Figure 4.44. When the “ruthlessly reduced” analysis using only
three elastic eigen modes and one joint mode and the full spacial
solution are seen through a low pass filter, they appear very similar.

96



4.4 Implementationin the Context of Finite Element Anal-
ySis

The tools presented in this report are intended to facilitate predictive structural dynamic
simulation, and that means integration into finite element analysis. Most of the necessary
components for large scale analyzes of jointed structures are available in standard finite
element packages, including eigen analysis and elastic static analysis. Additionally, the
techniques presented here seem to be complementary to other model reduction methods -
component mode synthesis especially.

4.4.1 Automatic Determination of Special Vectors and Matrices

The only quantities whose construction is not obvious are the vegtaligned along
the joint j, the tangent stiffness matri ({s;}), and the Milman-Chu vectosg,. ;.

Algebraic Vector F;

In the simplest case, when the joint is aligned in a principle direction, the vegtors
are constructed by putting a 1 in the entry associated with the degree of freedom of the
first joint node and the joint direction and-&l in the entry associated with the degree of
freedom of the second joint node and that joint direction.

On the other hand, the task is more difficult when the joint is aligned in a local co-
ordinate system and here we discuss a formal strategy for dedEgiimgsuch general
circumstances. Recall th& is the stiffness of the reference linear system, where each
joint j is represented by a properly oriented spring of stiffrigssLet’s defineK; to be
the corresponding stiffness matrix when the equivalent spring for joisireplaced by a
spring of stiffnes; + dk;. The difference matridK; = K; — Ko will have nonzero entries
only for degrees of freedom associated with the nodes associated with that joint. For an
extensional joint (or a torsional joint), those entries map to a six by six mi&grjxwhich
has only one nonzero eigen value. I?qeibe the corresponding eigen vector, normalized so
thatF"F; = 2 and letF; be that vector mapped back to the full system.

Gradient Matrix Ky

In solving the nonlinear dynamic equations numerically one often employs methods
such as Newton iteration which require taking the gradient of all terms in the governing
equation with respect to all the kinematic variables. The relevant gradient of the joint terms
are neatly merged to those of the stiffness matrix of the reference linear system in the
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following manner

f.
Kn=Ko+ Y G (d ’(S>—k,-) (4.13)
- . ds
joints;j

where
Gj=FF (4.14)

Milman-Chu Algebraic Vector y,,. j

The Milman-Chu vector associated with joiptis easily constructed by performing
a static analysis associated with applying equal and opposite loads on the joint nodes in
the direction of the joint alignment while applying no loads at other joints or external
boundaries.

4.4.2 How Many Modes?

The number of elastic modes and Milman-Chu modes necessary for application to a par-
ticular problem can be estimated in a manner similar to that employed in modal truncation
of linear systems. In the simplest implementation, one employs all elastic modes corre-
sponding to frequencies below an appropriately chosen cut-off frequency and one uses a
Milman-Chu mode for each joint degree of freedom.

4.5 Employment in Conjunction with Component Mode
Synthesis

The model reduction method presented here addresses difficulties particularly associ-
ated with local nonlinearities. It is consistent with other model reduction methods - the
method of component mode synthesis in particular.

Consider a structurg? consisting of a number of substructurgg with joint models
connecting some of the interface degrees of freedom. The kinematics of each substructure
is characterized by the values of interface degrees of free{dmm} and modal degrees of
freedom{ flkn}- The development of the reduced order model proceeds much as discussed
earlier in this report:

e Eigen analysis is performed on the linearized component mode representatién for

e The Milman-Chu vector is calculated by placing self equilibrating loads on nodes on
the interface between substructures and performing a system level statics solution.

e The numerical results are in terms of vectors whose support is the whole structure.
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4.6 Nonlinear Normal Modes

Because Nonlinear Normal Modes (NNMs) have proven helpful in understanding the
dynamics of many nonlinear systems, it is helpful to discuss the approach presented here
in terms of NNMs in the hope of expanding the utility of NNMs in structural dynamics.

In the sense of Preisach et al. [37] the existence of a nonlinear normal mode is equiva-
lent to the assertion that the deformation field at any time can be expressed

N .
ut) =At)y1+ %Pn(A, A) yn (4.15)

where vectorqy,} are a displacement basis for the structdxés a periodic function of
time, and the coefficient functiori®, are characteristic of the system. Usually, all basis
vectors are chosen to be the eigen modes of the reference linear system.

The similarity of equations 4.3 and 4.15 and the numerical calculations of the previous
section permit us to make the following assertiéar structures containing localized non-
linearities, unless the set of basis functions is selected to include some with the appropriate
discontinuities, expansions such as the above cannot converge to the true solution.

On the other hand, the analysis technique explored in the previous chapter does em-
ploy basis vectors with the appropriate discontinuity so it might be profitable to see if that
technique yields solutions containing any of the character of nonlinear normal modes. We
consider “ruthlessly-reduced” cases using as basis vectors just the first eigen mode of the
reference linear system and a Milman-Chu vector. We perform simulatiotig fe10.05,
Fo=0.1, andFy = 0.5.

The nonlinear normal mode expression corresponding to our two-basis element Galerkin
formulation is

h(t) = A(t)y+ f(A(t))w (4.16)

In the context of Equatian 4.3; = A(t) and the assertion of this being a nonlinear normal
mode would be

ay(t) = f(AA) (4.17)

We examine the results of our transient numerical calculation to assess if Eq. 4.17 is satis-
fied. Figure 4.45 shows plots af(t) vsa;(t) for each of our three cases. These plots are
obscured by gray clouds of higher frequency components. When the phaséapace

is distributed into binsd; x &; into 15x5 bins) and the values af in each bin in averaged,

the points shown in dark squares results. The lack of scatter in these dots indicates the
absence of velocity dependence - as one would expect for a perfectly elastic system.

The averaged results of the previous figure are plotted together in Figure 4.46 and in-
deed the data are consistent with an assertiorethigtsome function of;. This is the the
assertion of the manifestation of a nonlinear normal mode.
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Figure 4.46. When averaged mapping of the coefficient for the
second generalized coordinate (Milman-Chu) against the first we
see a pattern suggestive of the existence of a nonlinear normal
mode.
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Let’'s now see how consistent these results are with a simpiénear normal mode
calculation. Recall that the joint mode (Milman-Chu in this case) is made orthonormal
with respect to the mass matrix to the linear eigen modes that employed. Sgy-thais
the first eigen mode of the RLS amds the M-C mode made orthonormalytevith respect
to the mass matrix:

yMy=1 y"Mw=0 w'Mw=1 (4.18)

Contraction of these vectors with the stiffness matrix yields the Rayleigh quotients
Yy Ky=wf wKw=&? (4.19)

whereay is the natural frequency of the first eigen mode of the RLS @rid a number
greater than or equal to the second natural frequency of the RLS. (This is the minimax

principle. [30])

We do not know much about the evolution of this NNM, but we can assert that the
system is conservative so that the kinetic energy when the system velocities are maximum
equals the strain energy when the system displacements are greatest. The maximum kinetic
energy is

KEmax = 3A% (y+ f'(AW) " M (y+ f'(A)w) (4.20)
~ 2B A% (1+/(A)?) (4.21)

whereAm is the maximum value taken on \(t) during the cycleAm is the maximum
value taken on byA(t) during the cycle,f’(A) = df(A)/dA, and we have assumed that

Am: wo Am.

The maximum strain energy is

SEmax= }(Amy+ f(AMW)" K (Amy+ f(Am)w)

2
+N(Am oy + f(Am)ow") (4.22)
whereN is the nonlinear part of the strain energy at the joint. In the case of our cubic

spring,
N(Su) = Kaou* /4 (4.23)
The maximum strain energy is now

1 1.
SEmax= 5 W5AM + 5@ (Am)®+ N (Am 3y + f(Am)ow’) (4.24)
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wheredy* anddw* are the displacements across the nonlinear joigtesfdw respectively
andN is the strain energy associated with the essential nonlinearity. When we equate the
two energies (Equations 4.21 and 4.24, we obtain an equatidh for

Wb Ady F/(A)?w = @7 f (Am)2+ 2N (Am 8y* + f(Am)dw") (4.25)

which can be solved numerically fdA). These results are shown in Figure 4.47 along
with the data shown previously in Figure 4.46. We see a strong similarity between the
NNM prediction and the values deduced from post-processing of simulations and we also
see systematic differences that can be attributed to the ambitious effort to represent the
system dynamics with just two basis vectors.
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Figure 4.47. When one assumes that a nonlinear normal mode
exists and can be represented by the first eigenmode and a Milman-
Chu mode, energy methods permit the estimation of the depen-
dence of the second generalized coordinate as a function of the
first.
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4.7 Implementation in Finite Element Analysis

In a series of calculations reported in [20] Griffith and Segalman performed finite ele-

ment analysis on two structures to explore the utility of the method of discontinuous basis
functions in true computational problems.

The object in Figure 4.48, containing two lwan joints was subject to a uniform traction
in they direction on the free side of the structure as noted in the figure modulated by a
triangular pulse of 1e-4 second duration. Each joint is capable of deformation in only the
indicatedx direction. This system contains 722 nodes or 2166 total degrees of freedom,;
however, due to boundary and MPC constraints the model possesses only 1803 active de-
grees of freedom. We consider the analysis of this 1803 degree of freedom model to be the
full order system. Geometry and material parameters are presented in [20].
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Figure 4.48.Mesh for two-joint structure.

Cases of two very different load amplitude were examined, but the large load is of

greater interest as stronger nonlinearities and longer compute times are involved. In each
case, three analyses were performed:

1. Transient analysis of the full nonlinear finite element model. This serves as a truth
model.

2. Transient analysis of a nonlinear Galerkin model using twenty eigen modes of the

reference linear system. In the following, we refer to these analyses of the modally
truncated system as the reference model reduction.
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3. Transient analysis of a nonlinear reduced model usingezgheigen modes of the
reference linear system and one joint mode appropriate for each of the two system
joints. (The first eighteen eigen modes of the reference linear system include all those
with frequencies below 20 kHz.)

The relative compute time between the full finite element analysis (in Salinas) and the
Matlab calculations using the MDBF for this simple problem is shown in Table 4.1.

Table 4.1. Timing Summary for Two Joint Structure Nonlinear

Model Reduction.

)

C)

Full System(sec) Reduced System(se
1803 DOF 20 DOF
Nominal Load 426.5 0.4
10x Nominal 2281.2 0.4

Much more demanding calculations were performed on the nfékk inted structure

shown in Figure 4.49.

Figure 4.49. Mass mock used to test three transient analysis
methods.
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This object is subject to a base excitation of the form showRigure/4.50 and of
sufficient amplitude to cause the joints on the joints almost to be sufficient to initiate macro-

slip.

Figure 4.50. Base excitation imposed on the object of Figure
4.49.

Three methods of analysis were employed:

1. Full transient finite element analysis.

2. Reduction of the degrees of freedom of each monolithic substructure by Component
Mode Synthesis and while solving the nonlinear joint equations connecting them.

3. Galerkin calculation using the first 15 eigen modes of the linearized structure.

4. Calculation using the method of discontinuous basis functions employing the lowest
twelve natural modes and a Milman-Chu mode each joint degree of freedom.

The relative computational efficiency of these methods is shown in Table 4.2.
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Table 4.2. Timing Summary for Mock AF&F Structure Nonlin-
ear Reduced Models.

Model No. DOF CPU Time (sec)
CMS 117 36.3
Reference Reduced 15 2.8
Augmented Reduced 15 9.3
Full Salinas 206,343 | 40 hours (approximate)

Several observations should be made:

e One sees extraordinary increases in computational efficiency moving from the full
finite element model to the CMS model. The method of discontinuous basis functions
provides solutions in a quarter the time required by CMS. Solution using eigen modes
along is faster still. Not all of these methods yield solutions of comparable quality.

e Not shown here, but presentedin [20], the results full finite element analysis manifest
a number of spurious spikes. These are a result of the sharp nonlinearity of the joint
model. (Physical joints have these sharp nonlinearities, but they also have additional
properties that largely suppress such spikes.)

e The CMS analysis has similar spikes, but it can accommodate larger time steps than
are possible in stable analysis of the full finite element analysis.

¢ Analysis using only eigen modes predicts ring-down very poorly. This is because the
kinematics in the neighborhoods of the joints is not captured at all well and dissipa-
tion is grossly under-predicted.

e Predictions of the method of discontinuous basis functions predicts the experimental
results better than any of the other analysis methods

On should note that the reduced order models discussed in this section do require the
use of massively parallel computers to calculate matrices that are requisite for their em-
ployment.

We next consider a much larger problem. The structure shown in Figure 4.51 has about
six million degrees of freedom. The five components are held together by a number Iwan
joints and the base is subject to a prescribed acceleration.
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Figure 4.51. A very large structure mesh for testing model re-
duction.
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The relative efficiency of the full finite element analysis arfccalculation using the
reduced order modeling of this chapter was explored by Mathew Brake and is indicated
in Table/4.3. One notes that the time required for full finite element analysis is at best
measured in hundreds of hours while the corresponding compute times when the reduced
order model is employed is measured in minutes.

Table 4.3. Timing summary for dynamic analysis using very
large mesh.

Time Step (sec) Finite Element CPU Time (se¢)ROM CPU Time
1E-4 Canceled after 200 Hours 312 minutes
2E-4 Canceled after 200 Hours 156 minutes
4E-4 122.5 Hours 79 minutes
8E-4 Unstable 39 minutes
2E-3 Unstable 19.5 minutes
4E-3 Unstable Unstable

This new ability to do capacity computing enables us to dostygeanalysis that are
critical to the SNL missionAn example is that of mechanical systems such as discussed
here, but with consideration of the statistical variability of joint properties and of load
amplitudes. For instance, Fourier transform amplitudes are shown in Figure 4.52 for several
hundred cases of excitation of the system considered here. (Principle component analysis
of a small number of known joint parameter sets was employed to generate a very large
pool of plausible parameter sets.) A very large number of transient dynamic simulations
enables a statical analysis of component vulnerability.

4.8 Convergence of the Method of Discontinous Basis Func-
tions

Many engineering systems are made of structures containing mechanical joints. These
joints are nonlinear components that are spatially localized. Even though localized non-
linearities constitute a small part of the structure, the dynamic response of the structure is
completely nonlinear and the analysis of the dynamic behavior is different from the analysis
of linear structures. Assuming the knowledge of a realistic joint model, numerical simula-
tions for structures with joints are still challenging. The direct integration for the resulting
equations of motion is the simplest method. But it is computationally expensive. Several
efforts have been made to extend techniques of linear structural dynamics to the analysis
of systems with localized nonlinearities. How to best exploit these tools for solving the
resulting nonlinear equations is still to be determined.

Above sections introduce a reduced order model for structures with localized nonlin-
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Figure 4.52. The many Fourier transforms that have been calcu-
lated from the very reduced model.
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earities. The method combines eigenmodes of a referencar laystem with functions
having appropriate discontinuities at the locations of nonlinearity. Numerical experiments
illustrate that the solution of the global nonlinear model is well approximated by a linear
combination of eigenmodes and discontinuous modes. However, the mathematical analysis
of the method is still to be developed and open questions remain.

So far, the number of elastic eigenmodes and discontinuous joint modes has been esti-
mated in a heuristic manner. One employs all elastic modes corresponding to frequencies
below a heuristically chosen cutoff frequency and one joint mode for each joint degree of
freedom. In order to have confidence in the accuracy of the resulting analysis, quantify-
ing the modal truncation error and the effect of discontinuous functions is important. A
posteriori error analysis is critical for this quantification. The objective of this study is to
develop a posteriori error estimators for this model reduction. We consider estimation for
global norms of the error. We study first the static problem and, then, analyze the dynamic
problem. In both cases, numerical experiments illustrate the numerical efficiency of the
proposed estimators.

4.8.1 Static nonlinear problem

In this section, we study the static problem. After reviewing the formulation, we de-
scribe some properties of the nonlinear problem. For the reduced order model proposed in
this chapter, we discuss an a posteriori error estimator.

Formulation

Consider a nonlinear problem composed of masses connected by springs. Between
springsp andp+ 1, a cubic nonlinear spring is inserted. The left end of the system is fixed
while the other end is free. The potential energy of the system is

1 1
&) = Su"Ku+ Zke(Up — Upy1)* —u'f (4.26)

whereK is the matrix associated with the system of linear springslkand a stiffness
constant for the nonlinear spring.

We remark that the potential energy from the nonlinear spring is

1 1
ahe(up— Upi1)* = 21|<2(uTo|)4 (4.27)



where the vectod is

The stationary point to the energywill satisfy
Ku 4+ N(u) = f (4.28)
whereN is a localized nonlinearity of the form
N(u) =a(u'd)d (4.29)

with a(x) = kox3 and

Interesting property for Newton nonlinear solver

Consider the problem (4.28) and its solution with the Newton nonlinear algorithm.
Starting with a zero initial guessi§ = 0), we have

I’o:f—KUo—N(Uo) =f.

The next iteratels is defined by

{K - (;—tl(uo)] (U1 —Up) =ro.

The derivative folN is

ON

o5 = a’(dTu)dd" = 3ky(dTu)?dd".
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Note that this derivative is of rank 1. Consequently, we catewhe inverse matrix for
K+a'(d"u)dd",
which is a rank one pertubation of the stiffness makix With the Sherman-Morrison
formula, its inverse satisfies
a’(dTu)
~1+a’(dTu)dTK-1d

[K+a'(d"uydd"] P =K1 K-lddTk L. (4.30)

The new iteratel, will satisfy
up = Up+ [K +a’(d"ug)dd™] tro=K 1+ &K 1d
whered; is a scalar number (where we used the Sherman-Morrison formula (4.30)).

The new residual; is
ri=f—Ku;—N(up) =f—f—&d—a(d"uy)d = Bid
wheref3; is a scalar number. The new iteratenow becomes

Uz =up+ [K +a'(dTup)dd™] try =K 24 &K 1d+ &K 1d
=K +&K1d
whered, is a scalar number. It is easy to generalize for any itarg@nd any residuail.
Proposition 4.8.1.Whenup = 0 and we are solving
Ku+N(u) =f (4.31)

with the Newton algorithm, the first residugd is equal tof. Then every iteratel,, 1
satisfies

Unsr = K+ 0h 1K ~1d (4.32)
and every residualy,, 1 is aligned with the vectad, i.e.
1= Bniad. (4.33)

Remark.If we know the vectors, K —1f, andK ~1d, then we could exploit the equations
(4.32) and[(4.33) by computing only the scaléss, andf,.1. This property could speed
up the nonlinear solver.

Remark.When we are working with a reduced space spanned,tilie nonlinear problem
becomes
VIKV U +VIN(Vu) = VTS (4.34)

or N

VTKV i +N(u) =VTf
where the nonlinear functioN satisfies

N(u)=a(u'VvidVvTd.
Starting from a zero initial guegs = 0, we havepy = V' f and the iterates, 1 will satisfy

tnir = (VTKV) VT 4y 1 (VTKV) " vTd
and the residugb, 1 will be
Pny1= Zn+1VTd-
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A posteriori error estimation on reduced space

We denote by ¢,, 6)1<i<n the eigenmodes df such that the eigenvalues are ordered
in a non-decreasing wa(is the dimension oK). Consider the subspace

Vn - [K_ldv (p17 o 7(pn—1]7

where we solve approximately the nonlinear problem (4.28). The objective of this section
is to estimate the error between the reduced solutior, iand the exact solution iRN.

Before studying an a posteriori error estimator, we state a result satisfied by the solution in
the reduced space.

Interesting property of the approximate solution

Proposition 4.8.2.The solutioru, in the reduced spaceg,Yor the nonlinear problené.28)
satisfies
d'u=dTu,, V¥n>0, (4.35)

whereu denotes the solution fd4.28)in the whole space.

Proof. To prove this result, we write the orthogonality of the residual with the subspace
V. We have
z (F=N(up) —Kup) =0 VzneVy

and
zl (Ku+N(u) —=N(up) —Kup) =0 ¥z, € Vi

We can select, = K ~1d and we obtain
d" (U—up)+d"K 1 (N(u) = N(up)) = 0.
Using the special form faN, we have
N(u) —N(un) =d (a(u’d) — a(ujd))
and
a(uTd)—a(uld) =k (u"d—uld) ((uTd)?+ (uTd) x (ufd) + (ufd)?).
Next we write
d" (U—un) x [1+ked"K™1d ((uTd)? + (uTd) x (ufd) + (uid)?)] = 0.

Notice that

2
(UTd)2+ (UTd) x (uTd) + (uTd)2 = (qu + %uﬁd) + g(ugd)Z >0,
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Sincek, > 0andd"™K ~1d > 0, we obtain
[1+kod"K™1d ((uTd)? + (uTd) x (uld) + (urd)?)] > 0.

and, consequently,
d"(u—u,) =0.

0

The result does not depend on the vectors used to enrich tispaedy,, (here the
eigenvectors), on the right hand side, nor on the valle ¢dis long ak, > 0). It indicates
that the reduced space will immediately capture the correct value'as. A practical
consequence is that we do not need to update the Jacobian matrix for the nonlinear spring
whenn > 1.

Remark.The result holds for nonlinearities of the form

N(u) = a(u'd)d (4.36)
where the functiomr satisfies
ax—ay) - (4.37)
X=y

Remark.A similar result holds for nonlinearities of the form

N(u) =Y aj(u’d;)d; (4.38)

M-

J

when the reduced space contains the direction&dy, --- , K~1d; and with the assump-
tions that the functionea satisfy

>0 (4.39)

and the vectord; verify
d'K1d;j=0 foralli# j. (4.40)

A posteriori error estimator We derive a simple a posteriori error estimator for the
nonlinear problem. We have

y'K(Uu—uy) = y'[Ku—Kup (4.41)
y'K(u—uy) = y'[f—N(u)—Kup] (4.42)
y'K@Uu—uy) = y'[f—N(uy) —Kun] +y"[N(up) — N(u)] (4.43)

Note that the result
d'u=d"u,
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implies that the second term satisfiggN(un) — N(u)] = 0.

We assume that the approximate solutigrsatisfies the relation

zp [f—N(un) -

(becausel, comes from a reduced subspage Then we have

(y—2n) " [f —N(un) —

yTK(Uu—up) = Kup].

So we get
y K (U—un) < [ly —2za|[|f = N(up) — V zn € Vh.

Introducing the projection inta/", Py, we write

Kunl|,,

y K (u—un) < Hpvniy

| IF = N(un) — Kugll,.

Recall that ) ( )
y' K(u—un) T
)S/;J(?W = \/(U —Un) 'K (U—un).
We obtain
VTR Py
VE—uTKu—u) s supy S I Kun - N,
y
Proposition 4.8.3. The constant satisfies
1 _ yT P\-I;nL PvLy - 1
< sup <
VOhi1 T yev yTKy V6n
Proof. First we prove the upper bound
y PvLPVniy < 1
sup 2 < :
y£0 yTKy V6h

Forn=1, we havevV,, = [K1d]. PVf‘ is a projection. So we have

2
< IviE=yTy

TpT
YR} Py = HPVlLy

and
yTP PVLy
su
y;é(I)J yT Ky
Recall that
yTKy
< inf
=Ty
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(4.47)
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and

T T -1
sup Yr Yo (infy TKy)
y20Y' Ky \y#0 y'y

So we obtain

YTPL Py g
sup = < .
y£0 y'Ky Vo1

Consider now the case whare- 1. We decompose the vectbon the basis of eigenvectors

N

(whereN is the dimension of the matrix) and introduce the vectak

Note that

and
oK td=0 fori<n.

The subspac¥, satisfies

span(K *d, @y,...,@_1) =span(K d, @y,.... ¢ 1)

but the basis for the right hand side is orthogonal. So we can decompose the projection
Py as follows

I::'VnL - P[Kfla]LP[‘P17-~-(Pnf1]L'
So we have
2 2
‘2 < HP[(Plr-anfﬂLy ‘2

YTRy Pysy Y Plerin o Ploron Y 1
sup\/ ——--—— < sup = = .
y£0 y'Ky Y40 y'Ky V6h

Next we need to prove the lower bound

yT I:)\-I;nL I:)VnLy - HP[Kfla]J‘P[‘le-(PnfﬂLy

and

1 yTP) Py.y
<sup\| ————

VBhi1 ~ y40 yTKy
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Consider a vectoy such thatd"K ~Ty = 0. Using an eigendecomposition yfthe ratio
becomes

The result would hold if we have

iiayiz < ii Bni1y7

or
n—1 N
> BY + (6h— Bne1)¥a +0x Vi1 + Y (B~ By <O (4.50)
i= i=n+2

Since the eigenvalue@ are positive and ordered in a non-decreasing fashion, only the

coefficients of/3 andy? , are negative or zero. If we selecta vegtan (span{K ~1d}) N
span(¢h, ¢h-1), then the bound (4.50) holds, which proves

§ yTP) PyLy
<sup - n -
VBhi1 ~ y£0 yTKy

Note that the intersectio(lspan{Kfld})L N span(¢h, ¢h.1) contains a vector different
from 0 because the sum of their dimensions is greater than O

On the subspatk, an a posteriori error estimator for tkenorm of the error is

1
Voh

|[f —Kun—N(un)|5- (4.51)

Numerical experiment on efficiency To assess the efficiency of the estimator (4.51),

we consider a system composed of 21 unit masses connected by springs of unit stiffness.
Between springs 10 and 11, a cubic nonlinear spring is inserted. The left end of the system
is fixed while the other end is free. The source term is

f=fo[l,---,1]". (4.52)
The estimator is 1
\/97||f—KUn—N(Un)||2. (453)
n
In Figure 4.53, we plot the ratio
—= [|f = Kup = N(up) |
Von " v (4.54)

NOETSUICENSE
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DimensionV_n

Figure 4.53. Efficiency with a subspace composedkof'd and
of eigenmodes

For this example, the estimator is fairly accurate for all values ¢for high values of
n, the a posteriori estimator tends asymptotically towardsthreorm of the error

\/(u—un)TK(u—un). (4.55)

In Figure 4.54, we plot the ratio

1 yTP\-ELPVnJ-y
S —r
Ve s\ YKy

124 (]

s e
2747678 T Tz T 16 18 2
DimensionV_n

Figure 4.54.Comparison of constants with a subspace composed
of K~1d and eigenmodes

The ratio is always greater than 1 because we have an upper bound. For this example,
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the upper bound

y'P) Py g
w n
Y40 yTKy V6h

IN

is sharp.

4.8.2 Dynamic nonlinear problem

Consider a nonlinear problem composed of masses connected by springs. Several non-
linear springs are inserted between linear springs. The left end of the system is fixed while
the other end is free. We study now the dynamic problem. The semi-discrete undamped
equations of motion are

J
I\/IU-I-KU-l-an(Ude)dj =f. (4.56)
=1

Gronwall inequalities

For the sake of completeness, we recall some variants of the Gronwall lemma that will
be useful in the following analysis.

Lemma 4.8.4.Leta € (0,1) and C> 0. Consider two continuous positive functiop&)
and mt) such that

vt € [0,T], o(t) gC-l—/Ot m(s)p(s)?ds (4.57)

Then we have, for all€ [0, T],

L

o(t) < {Cl“”-l—(l—or)/ot m(s)ds} o (4.58)

Lemma4.8.5.Leta € (0, %]. Consider two continuous positive functionf jrand p(t) on
[0, T]. Denoteg a differentiable positive function 0@, T| whose derivative is continuous
and satisfying

vte[0,T], ¢(t) <mt)et)” + p(t)e(t). (4.59)
Then we have, for all& [0, T],

1
t Ta

o(t) < |@(0)- e EPEIds | (1 _ g / m(g)e- @ Kpmdrggl  (4.60)
0

Proof. If @is zero on0, T], then the result holds. DenoB&= ¢“. We have
1 l1-a
/ — —G/GT
L
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and
1

EG'Gl?T" < MG+ pGe.

Consider a sub-interval of0, T] whereg is non-zero. Then we obtain dpnafter dividing
by G,

%G’G%Z— pGi—l<m

1 1 1
(— - 1) GGai2_q (— - 1) pGal<q (— - 1) m.
o o o

The inequality remains true for artyin [0, T] because the left hand side is equal to 0 on
[0, T]\I. The left hand side is an exact derivative

and

d 1 1,-(1-a) fyp(s)ds) _
- (e 0PI —
K % B 1) GGi2_(1-a) pGél} o—(1-a) i p(s)ds

Integrating the previous inequality, we obtain

G(t)%_le_(l—a)fé p(s)ds _ G(o)%—l < (1_ a) /t m(s)e—(l—a)fosp(r)drds

0
and t
G(t)a 1 < G(0)aLel M oP(s, (1 q) / m(s)el-@) s POdTgg
0
We get
: =
ot) < | @)t @&l lopEds (1 q) / m(s)eﬂ—au;p(r)drds] h
0
]
Analysis

In this section, we perform the analysis of the semi-discrete equations of motion. In
particular, we study stability bounds, uniqueness of the solution, and a priori error esti-
mates.

Stability estimates
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Theorem 4.8.6.Consider the semi-discrete undamped equations of motion
J
M +Ku + Y nj(u'dj)dj =f. (4.61)
=1

We assume that each functionhras a positive primitive. Then, for any time {0, T], we
have

1 1 J 1
“UTMU -+ =yt S(uTd:) < - B ]
Jzu Mu+2u Ku+;lN,(u d,)_\/Eo+ﬁ/o If(s)||p-2ds (4.62)
where E is the initial energy
11 17 s T
EO:évono—l-éuoKuo-l—j;Nj(uodj). (4.63)

Remark.Theorem 4.8.6 still holds with a weaker assumption on the functipns
1.1, 1+ J -
5U Mu+§u KU+Zle(U dj) >0, VvtelO,T]. (4.64)
]:

Proof. We start by multiplying the equations of motion with the veaibr Notice that we
have

) 1d,. ) ) 1d
Tage . =9 o1 Ty 29 T
UMU_Zdt< Mu) and U'Ku 2dt<u Ku)
and g
ny(uTd))a"d] = 2 (Nj(uTd))).
Denote
E(t)—}uTMu+}uTKu+ J Nj(u'd;)
=3 5 j; j(u'd)).

Then we have

%(t) =0Tf < VUTMUVITM -1 < /2E(1)VITM-1f.

After integration, we obtain

t
E(t) < E(0)+/0 1£(9) 1 V/2E(9)ds
We conclude by using the Gronwall inequality from Lemma 4.8.4. O
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Corollary 4.8.7. Consider the semi-discrete undamped equations of motion
J
I\/IU-I-KU-l-an(Ude)dj =f. (4.65)
=1

We assume that each functionhras a positive primitive. Then, for any time {0, T], we
have

t
ol < v/2Eo+ [ [1(8)]ly-rds (4.66)
t
Jull < v/2Eo-+ [ I1f(5)y-+dls (4.67)
J t
S Nj(uTdj) < x/2Eo+/0 1£(S) ||y 2 ds (4.68)
j=1
t
[ullm < [[uollm +W2Eo+/0 (t—s)[[f(s)llm-2ds (4.69)
where F is the initial energy
11 17 s T
Eo = évono+ éuoKuo+j;Nj(uodj). (4.70)

Proof. The first three inequalities are straightforward because the energy is bounding the
left hand sides. The last estimate is obtained by writing

u(t) = uo—i—/otU(s)ds

and using the bound fayu||,, . O
Corollary 4.8.8. Consider the semi-discrete undamped equations of motion

J
VTMV i +VTKV u+ > nj(u"VvTd)VvTd; =VTf. (4.71)
=1

We assume that each functionhras a positive primitive. Then, for any time {0, T], we
have

1. 1 J
J EuTVTMVu-|—§/JTVTKV/J-l— Z N;(uTVTd))
=1

1 t
< Eo—i—ﬁ/o IVTH(9)]|,, 2 s (4.72)

where F is the initial energy

1 1 J
Eo = évgvTMvVoJr éugvTKVuo+ Y Nj(ugVTdj). (4.73)
=1
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Uniqueness Next we study the uniqueness of the solution.

Theorem 4.8.9.Consider the semi-discrete undamped equations of motion
J
MU +Ku + 5 nj(uTdj)d; = f (4.74)
with u(0) = up andu(0) = up. If the solutionu exists, it is unique.

Proof. Consider two solutions andv in [0, T|. We start by writing the equation satisfied
byu-—v,

J
MU - V) + Ku — v) = f — Snudpd; — f + 3 nj(v'djd;
=1 j
We multiply this equation witlu — v to obtain

d

p [1(u HY (U—V)+%(U—V)TK(U—V)}

i [y (vTdy) —y ("] (0 —¥)T o

and

&[0T M@0+ -0k E-v)

J
< Zl‘nj(Vde> —nj(udy)[ ][0 =Vl [|dj][y-2
]:

Corollary|4.8.7 implies thatl andv are bounded for € [0, T]. Since the functions; are
locally Lipschitz continuous, there exists a cons@ndepending orT, f, and the initial
conditions(ug, Up) such that

[nj(uTd;)) —nj(vTdj)| < CouTdj —vTdj| < Collu—V] [[djl- (4.75)
Denote
~ 1 . 1 .
E(t) = E(U V) M (U V)—l—é(u V)TK (u—v)
We obtain
dE
dt —ZCOEZ 11—+ {11y =

which implies that
E(t) < E(0)e2% % =1/ldillc-1[di ][y

Assuming thak (0) = 0, we obtain thaE is zero at all time and that the solutionsndv
are equal. 0
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Error estimates

Theorem 4.8.10.Consider the semi-discrete undamped equations of motion

J
Ml +Ku + Z nj(u'dj)d; =f
and the reduced-order model

J
VIMV i+ VTRV g+ 5 nj(u'Vvid)vidi =V'f.

(4.76)

(4.77)

We assume that the columns\otontain the vector& ~d; and that the functions;rare
locally Lipschitz continuous. Deno}&,,, the projection ofu into the span o¥ for the

K-inner product,
VTK (U=VUewae) =0 = VT KV Uexact= VTKu.

Then there exists a constant€0 such that, for any time¢ [0, T|, we have

V) ~ Hexact >||€TMV+||u< ) Horae)Priy

< €4/ 14(0) ~ iterackO) Zraay + 11(0) — Hoxacl Oy

t
+ 18 Viteraclly €

Proof. We start by writing the equation satisfied py- Uayacp
\ (U - ﬂexact) +KV (IJ - “exact)
J
=MV i +KVu+ S nj(u'vid)d; —f

+ M( u _Vﬂexact) +K (u _V“exact)

(4.78)

O—st

J
+ .Zl [nj (Ude) —n;j (HTVde)] dj
i=

We multiply this equation withf 1 — f1o,,c) TV to obtain

d [1
gt |21 Fexac) VMV (K = fteac) + 5 (1 Hoac) VKV (1~ Hggac)

= (U - pexact)TVT (u _VUexact)

+ Z nj u'd; )_nl(u TVTd, )] (U ”exact)TVTdJ
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becausgu is the solution of the reduced-order problem angd, . is the projection ofi into
the span o¥ for theK-inner product. The Cauchy-Schwarz inequality gives

d

1
dt[ (i = Hexac) VMV (i = flexac) + 5 (u Hexacd)' V'KV (H = Hexac)

<\ Poacd TVIMV (i — feyaed) 16— Vi ggacly

J
+ .Zl }nj(quj> - ni(“TVTdiM \/(IJ - I:lexact)TVTMV (H = Hexac) de HM*l
]:

Corollary 4.8.7 implies that andV u are bounded far € [0, T]. Since the functions; are
locally Lipschitz continuous, there exists a cons@ntlepending orT, f, and the initial
conditions(ug, Vo) such that

Inj(uTdj) —nj(uTVTd))| <ColuTdj—pTVTdjl. (4.79)
The columns o/ contain the vectork ~1d; and we have
qui = “-tla-xactVTdi'
We obtain

d |1, . :
& {é H”(t) _uexact( )HVTMV +5 H”( ) ”exact(t)H\z/TKV}

< \/ u — l"leXaCQTVTMV (“ - pexact) ||u _Vi:lexactHM

+Co Z \/H“ — Hexactt HVTMV \/H“ “exact(t)H\z/TKV Hdi HK*l Hdi HM*l

We conclude by using the Gronwall inequality from Lemma 4.8.5 wita 1/2 and

M(t) = V2|0 — Vlexactly @nd p(t) zcesz [l

0

Corollary 4.8.11. Under the assumptions of Theorem 4.8.10, we have, for any time t
[07 T]l

VIO Va2 +llu) — V()2

< e“v 12(0) — ftexackO) 2oy + 11(0) — Hoxac O) |27y
+ ||U(t) Vuexact(t)HM + ||U(t) _Vuexact(t)HK

t
+ 18 Viteyaelly €9
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A posteriori error estimator

In this section, we study an a posteriori error estimator. This work was made in collab-
oration with Mikala Johnson, graduate student in the Department of Applied Mathematics
at University of Washington.

Theorem 4.8.12.Consider the semi-discrete undamped equations of motion
J
MU+Ku+ Y nj(u'd;)d; =f (4.80)
=1
and the reduced-order model
J
VIMV i+ VTRV p+ 5 nj(u'VvTd)vTd; = V'f. (4.81)
=1

We assume that the columns\btontain the vector& ~1d; and that the functions;rare
locally Lipschitz continuous. Then there exists a constant €such that, for any time
t € [0,T], we have

VI = Vi), + u(t) — Va2
< \/||u )12, + [u(0) — V(0|2 X E1-aldilli-alleilly -+

t
[l s STl s

where the residual vectaris defined by

J
r=f—MVji—KVu— nju"Vvid))d,
=1

Proof. Without any loss of generality, we consider only one nonlinearity. Recall the exact
equation of motion:
Mi+Ku +n(u'd)d=f (4.82)

and the equation of the reduced order model:
VIMV ji+VTKV ji+n(uvTd)vTid=VTf (4.83)
Then the residual is given by:
r=f—MVj—KVji—n(uvidyd (4.84)
Replacing the expression fbin equation|((4.84) with the expression|in (4.82):
r=Mi+Ku+nu'd)d—MVjii—KVj—n(u"vTd)d,
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f—MVji—KVji—nu'Vvidd=
Mi+Ku +n(u'd)d—MV ji —KV ji—n(u"VTd)d

and

M(U—-Vi)+Ku-Vu) =
f—MV jI—KVp—n(u™VvTd)d— [n(uTd) —n(u"VTd)]d.

Multiplying the above equation bt — V1) to obtain an exact derivative on the left hand
side:

% E'TM e+ %eTKe] =(U-V)Tr+[nu"VTd) —nuTd)] (0-Vi)'d (4.85)
Let R(t) = [3€"Mé+ 3eTKe], bound each term of the right hand side separately as a
functionR(t) starting with the first term, lettingl — V1) = ¢, then utilizing the Cauchy-
Schwarz inequality

[&Tr| < (Il [Tl

Next, we note that the quantifje||,, can be bounded as:

lelly = VeTMe< v/eTMe+eTKe= /2R(t)
sincee’Ke > 0. Thus, for the first term of equatidn (4!85) we find:
(U—V)Tr=e"r < /2Rt)r||y- (4.86)

The second part of the second term of equation (4.85) is bounded as was done before except
this time instead of we now haved:

(U—Vi)Td=e"d < /2R(t)||d|[y-1 (4.87)

Next we must bound the first part of the second term assuming Lipschitz continuity of the
nonlinear function:

IN(u"VTd) —n(uTd)| <C|(u"VT —uT)d|
<Cle'd|
< Cllellk [|dllx-2
<CJ|d||x-1v2R(t) (4.88)

whereC is the Lipschitz constant. Putting all three bounds together (4.86,4.87,4.88) into
equation/(4.85) we obtain:

dz*_@ < V2RW)|IF -1+ v/2R() [[d[l-+C 1]l -2 v/2R(E)
< V2R 1 [lyy-1+2C | dll -1 [|d]| -2 R(E)
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To this equation we are able to apply the Gronwall inequaliberem(t) = v/2||r ||y,
p(t) = 2C||d||k -1 ||d|[yy-2, anda = 1/2:

F. 1/t
R)? < REO)e(5 [ 2Cdll dlly-+)

1t 1/
+5 [ V2l [ 2C -+ dl-)ds
0 s

Note thatp(t) does not depend anso the integrals can be simplified, and also note that
R(t) is the expression for the energy of the error in both the linear acceleration and linear
spring-stiffness terms:

NI

! [e"Me+e'Ke| < [R(0)

5 exp(C||dl|x-1 l[dllm-11)+

1 t
73 Jo IF [ -+ xp(Clld [+ [l -1 (t —5))ds? (4.89)

0

Numerical efficiency of estimator The results in figure (4.55) were compiled using the
solutions obtained from solving the problem in equation (4.83) with the local cubic nonlin-
earity,

n(u'd)d = (u'd)3d,
on the subspaces of exact eigenvectoslaindK with the augmenting vectd¢ —1d. The
At used for the numerical solutions wA#kyax/128, while the timestep for the “true” solu-
tion was taken to bAtyax/2048. The “true” solution was obtained by directly integrating
the full nonlinear problem (eq. 4.82). In addition, the Lipschitz constant was approximated
as

C= max |3(u"d)?.
(ut)eD

For this particular formulation of the problem a couple simplifications of equation
(4.89) can be made. First the initial error is zeR0Q) = 0, sinceup =Up=Vu =V =0.
Also, it is possible to separate the term,

exp(C||d]lk-1[|d]y-11),
from the square:
e'Me+e'Ke < exp(2C ||d||y -1 [|d||y-2t) X
t
[/0 IF [ €xp(—C|d[ - [|d[|y-2 S)dS?
Clearly this estimator radically overestimates the errortfor4 or so, and it grows

exponentially with the length of integration. However, it does not ever underestimate the
error, even at the beginning of the time integration.

129



Figure 4.55. Comparison of Gronwall-derived error estimator
and computed error as a function of time for various dimension
subspaces including the augmenting ve&tord.

4.9 Conclusion

We have demonstrated the feasibility of achieving reduced models for systems with lo-
calized nonlinearities by augmenting the most natural basis functions with vectors that have
appropriate discontinuities at the locations of nonlinearity. This assures that the kinematics
necessary to couple the nonlinearity to the rest of the structural response are present.

An important observation - regardless of what analogies one wishes to make - is that
it is because of the mechanical coupling of those joint modes with the eigen modes of
the reference linear structure that those eigen modes satisfactory describe the nonlinear
structural dynamics.

Though this model reduction appears to work well for both large and small structural
loads, a few words are appropriate about how the results manifest themselves for the cases
of small loads. It is observed in the examples shown here that for such cases the amplitude
of the generalized coefficient for the discontinuous basis function is always very low com-
pared to those of the first several elastic eigen modes. The augmenting mode serves the
purpose of coupling the joint mechanics into the dynamics of the other modes. In doing so
it does not change the characteristic mode shapes as seen by SVD, it just provides modest
nonlinear damping. In these ways, the apparent modal response of the reduced nonlinear
systems appears very much like that found in a modal lab for real structures: one sees
apparently linear modes, except for nonlinear damping of each mode.

When this technique is employed in finite element analysis of jointed structures - espe-
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cially when Component Mode Synthesis is employed along the-wleamatic increases in
computing efficiency can be achieved. This new ability to do capacity computing enables
us to do types of analysis that are critical to the SNL mission, such as when variability in
joint properties of applied loads must be considered in a statistical analysis of component
vulnerability.

Finally, original work by Ulrich Hetmaniuk demonstrates a theoretical basis for the
quality of approximation demonstrated by the method of discontinuous basis functions
exploratory computations.
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Chapter 5

Conclusion

Each of the model reduction methods presented in this report has the capacity to reduce
compute times for realistic problems by orders of magnitude. Taken together, and inte-
grated so much as possible, they can change the manner in which real problems of value
to the SNL mission can be addressed. Instead of doing one or two simulations of a large
system, we shall be able to deanysuch calculations accounting for uncertainties in loads,
boundary conditions, and interface parameters. It will be possible to make meaningful
probabilistic statements about system performance.

The first step in this acceleration of analysis is provides by stabilized tied contact. The
analyst if freed to mesh each component of a structure independent of others, so long as
the interfaces have sufficient fidelity to capture the physics of the problems. Mesh A of
Figurel 5.1 illustrates how when meshing the left and right blocks, one must specify the
locations of the nodes on the interface for each to align with those specified for the other.
The advantages of stabilized tied contact are illustrated in Mesh B, The blocks on the left
and right are meshed independently of each other. The block on the left has a fine mesh
appropriate to the load distribution anticipate for it. The block on the right is meshed in
two regions: the region on the left is course but suitable for the strain gradients anticipated
while the region on the left of that block is fine enough to accommodate the strain gradients
associated with the corners of the interfaces of the two blocks. In Mesh B, stabilized tied
contact is used in both interfaces.

One can integrate stabilized tied contact and scalable component mode synthesis. Con-
sider the shape function of Figure 3.9 imposed between adjacent substructures. In that
figure, one assumes the the nodal arrangements are identical across the interface. That con-
dition is not necessary at all. One may connect the two interfaces via stabilized tied contact
and then solving the specialized local problems (Equations 3.30 and 3.17).

A further integration of these methods can be employed in the integration of CMS
models for components provided by different sources. Much current project management
energy goes into seeing that the nodal configurations of these CMS models is consistent.
This problem can be mitigated using the stabilized tied contact method provided the surface
shape functions for each substructure model is available. (See Figure 5.2.)

The combination of stabilized tied contact and scalable component mode synthesis so
reduces the size to the underlying model that it is now tractable to perform the system
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Figure 5.1. Creating conformal mesh integrating two features re-
quires coordinated meshing of each. Stabilized tied contact makes
it possible to mesh each independently.

Figure 5.2. Stabilized tied contact can also be used to connect
substructures, each of which is modeled by CMS, so long as shape
functions for the surfaces are given.
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eigen analysis and and the many quasi-static analyses aecéssthe use of the method

of discontinuous basis functions. This nonlinear transient analysis can then be performed
using even fewer degrees of freedom. The large time steps possible with this method and
the small problem size make it possible to perform the number of analyses to account for
system variabilities.
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