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Abstract

The goal of this research was to investigate the potential for employing dynamic, decentralized
software architectures to achieve reliability in future high-performance computing platforms. These
architectures, inspired by peer-to-peer networks such as botnets that already scale to millions of un-
reliable nodes, hold promise for enabling scientific applications to run usefully on next-generation
exascale platforms (∼ 1018 operations per second). Traditional parallel programming techniques
suffer rapid deterioration of performance scaling with growing platform size, as the work of coping
with increasingly frequent failures dominates over useful computation. Our studies suggest that
new architectures, in which failures are treated as ubiquitous and their effects are considered as
simply another controllable source of error in a scientific computation, can remove such obstacles
to exascale computing for certain applications. We have developed a simulation framework, as
well as a preliminary implementation in a large-scale emulation environment, for exploration of
these “fault-oblivious computing” approaches.
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Chapter 1

Introduction

1.1 Background

High-performance computing (HPC) faces a fundamental problem of increasing total component
failure rates due to increasing system sizes, which threaten to degrade system reliability to an
unusable level by the time the exascale range is reached (∼ 1018 operations per second, requiring
of order millions of processors). As computer scientists seek a way to scale system software for
next-generation exascale machines, it is worth considering peer-to-peer (P2P) architectures that
are already capable of supporting 106–107 unreliable nodes. Exascale platforms will require a
different way of looking at systems and software because the machine will likely not be available
in its entirety for a meaningful execution time. Realistic estimates of failure rates range from a few
times per day to more than once per hour for these platforms.

P2P architectures give us a starting point for crafting applications and system software for
exascale. In the context of the Internet, P2P applications (e.g., file sharing, botnets) have already
solved this problem for 106–107 nodes. Usually based on a fractal distributed hash table structure,
these systems have proven robust in practice to constant and unpredictable outages, failures, and
even subversion. For example, a recent estimate of botnet turnover (i.e., the number of machines
leaving and joining) is about 11% per week. Nonetheless, P2P networks remain effective despite
these failures: The Conficker botnet has grown to ∼ 5× 106 peers [13]. Unlike today’s system
software and applications, those for next-generation exascale machines cannot assume a static
structure and, to be scalable over millions of nodes, must be decentralized. P2P architectures
achieve both, and provide a promising model for “fault-oblivious computing”.

1.2 Research Goals

This project aimed to study the dynamics of P2P networks in the context of a design for exascale
systems and applications. Having no single point of failure, the most successful P2P architectures
are adaptive and self-organizing. While there has been some previous work applying P2P to mes-
sage passing [7], little attention has been previously paid to the tightly coupled exascale domain.
Typically, the per-node footprint of P2P systems is small, making them ideal for HPC use. The
implementation on each peer node cooperates en masse to “heal” disruptions rather than relying
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on a controlling “master” node.

Understanding this cooperative behavior from a complex systems viewpoint is essential to pre-
dicting useful environments for the inextricably unreliable exascale platforms of the future. We
sought to obtain theoretical insight into the stability and large-scale behavior of candidate archi-
tectures, and to work toward leveraging Sandia’s Emulytics platform to test promising candidates
in a realistic (ultimately ≥ 107 nodes) setting.

Our primary example applications are drawn from linear algebra: a Jacobi relaxation solver for
the heat equation, and the closely related technique of value iteration in optimization. We aimed to
apply P2P concepts in designing implementations capable of surviving an unreliable machine of
106 nodes.
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Chapter 2

Example: Emergent Behavior in Botnets

The material in this chapter, which is excerpted from an earlier report [11], provides further expla-
nation and motivation for the use of botnets as an exemplar of emergent robustness that can inform
exascale computing.

2.1 Botnet Dynamics

All known early and current peer-to-peer botnets have been built on the Kademlia [9] P2P sharing
algorithm. Providing a binary fractal structure illustrated in Figure 2.1, Kademlia defines concepts
like “nearest neighbor” and a distance measure between peers. Interestingly, this distance measure
is completely aloof from the the physical location or subnet in which the peer is located. This
is accomplished by generating a random 128-bit hash key that will almost certainly be unique in
the bot-world and then determining the position of the peer in Kademlia space from there. The
implementation of Kademlia most botnets use, called Overnet, provides the connectivity of the
Kademlia algorithm as a protocol plus a means for bootstrapping newly infected nodes into the
net.

The robust functioning of a botnet depends primarily on maintaining connectivity and coordina-
tion among infected nodes. The topological aspect of this – understanding the extent of connected
clusters in various graphs – is a well-studied problem in mathematical physics known as percola-
tion. In fact, when the amount of local connectivity among “marked” (infected) nodes in a graph
approaches the threshold at which very large connected clusters appear (the percolation threshold),
the resulting topology is generically self-similar and can be understood using renormalization-
group techniques. This provides a particularly simple and relevant example of critical behavior
and associated scaling laws.

While there exists somewhere a bot-herder that exerts control over his botnet, it is in the bot-
herder’s advantage to make the bots as autonomous as possible. Because he does not have to attend
to the bots personally, the botnet scales to enormous proportions. It follows that a useful and not
too idealized model of a botnet is an array of automata. Each bot is a automaton in the array and
has some pre-defined role; the array taken as a whole will exhibit an emergent behavior dependent
upon, but not necessarily predictable from, the local behavior. This last observation merits some
exploration and is at the crux of the reason to model botnets in the first place.
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Figure 2.1. Schematic fractal network structure of a botnet using
the Kademlia protocol.

Why must botnets be simulated in aggregate and at scale? Turing’s halting problem, Rice’s
undecidability theorem and Gödel’s incompleteness proof all state that the emergent behavior of
an infinite array of automata cannot be decided ahead of letting it “run”. Another way of stating
this observation is that, in general, the behavior of such arrays is “irreducible”: No simpler or more
compact description of the system can be derived. Unlike in statistical thermodynamic systems,
there is no bound that can be put on the behavior even probabilistically. Understanding the behavior
of large arrays of automata is essential to understanding the behavior of botnets: From a simulation
perspective, botnets are little else.

As described in Section 2.2, there is ample evidence for this irreducibility manifested in other
arrays of automata – for example, the sandpile experiment in cellular automata [2] and other clas-
sical observations [10, 16]. Thus, in the general case, we need to “run” a botnet at scale before we
can understand its emergent behavior.

2.2 Complex System Models

Botnets and similar large-scale networks are prototypical examples of “complex” systems, which
are characterized by emergent behavior that is irreducible and not predictable a priori. Idealized
models are a useful tool for understanding complex system dynamics. Cellular automata provide
an especially simple setting to illustrate the emergence of rich phenomena from basic underlying
rules. Extensive theoretical and computational results have been previously obtained for cellular
automata, showing that these systems exhibit a wide range of behaviors seen in the natural and
manmade world [16].
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A cellular automaton consists of a lattice of cells, each of which carries a definite state at any
given time. The evolution of the system is carried out in discrete timesteps. As a result, a specifica-
tion of the underlying dynamics of the system can be exactly reproduced in a computer simulation,
provided enough memory and processing time are available. The lattice of cells can exist in a
“space” of one, two, three, or more dimensions. The procedure for “updating” a cellular automa-
ton (evolving to the next discrete timestep) is usually specified via a function that determines the
new state of a given cell based on the current state of that cell and its nearest neighbors.

A well-known cellular automaton that provides an instructive comparison for malware is the
Bak–Tang–Wiesenfeld (BTW) sandpile model [2], which is defined on a two-dimensional square
lattice. This model represents an idealization of the complex behavior of a pile of sand, which
becomes unstable when its height exceeds a critical value. In the updating rule, a cell whose “sand
level” exceeds the threshold will relax by distributing sand to its nearest neighbors – potentially
causing them in turn to exceed the threshold. As a result, if sand is randomly added to a pile
in various locations, “avalanches” eventually occur. Depending on the exact configuration at the
location and time of the perturbation, an avalanche may be localized or it may sweep over a large
part of the system. If this model is run for a sufficient period of time, what is observed is something
similar to a second-order phase transition, where avalanches occur on all scales available to the
system, obeying a power-law distribution but appearing otherwise random.

The network analogue would be a possibly unremarkable protocol where each machine is sim-
ilarly arranged on a logical grid and has a counter that is incremented when either a random
event occurs or a neighbor communicates with it. If the counter reaches a specific threshold,
then the machine will communicate with its nearest neighbors. Because this behavior is isomor-
phic to the sandpile model, this innocuous-seeming protocol will result in similar communications
“avalanches” that will occur at all scales of the participating machines, including the entire net-
work. Such potentially disruptive avalanches are not “directed” in any way but are an artifact of
the emergent behavior of the protocol that each participant identically adopts.
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Chapter 3

Concepts for Fault-Oblivious Scientific
Computing

3.1 Coping with Ubiquitous Failure

Traditional parallel programming techniques have been developed at platform scales small enough
that the various causes of component failure (including hardware, operating system, and applica-
tion faults) can be neglected to a first approximation. Thus the emphasis has been on optimizing
the processing and communication performance of applications under a rare-failure assumption,
and separately on ensuring sufficient levels of component reliability to comply with this assump-
tion. In common parallel programming models such as MPI, an entire parallel job halts if a single
component contributing to the job fails, and so an add-on mechanism is required to deal with fail-
ures if one or more of them are likely to occur during a job. The “checkpoint-restart” solution,
where a snapshot of the global state of the application is periodically saved to disk and used to
resume the job in the event of failure, enables long jobs to run to completion at a manageable cost
in additional computing time, but only when failures are sufficiently rare – more precisely, when
the system-wide mean time between failures (MTBF) is large compared to the time required to
save a checkpoint [5].

Continuing large increases in system size, without corresponding increases in MTBF for indi-
vidual components (which would require infeasible levels of reliability), are reducing the system-
wide MTBF for leading HPC platforms to levels where checkpoint-restart will not remain a prac-
tical solution. As the system-wide MTBF becomes smaller than the checkpointing time, forward
progress of traditionally designed applications will slow dramatically and their useful completion
will become effectively impossible; thus the benefits of exascale computing will not be fully re-
alized in such a framework. Various enhancements, such as predictively monitoring components
to checkpoint selectively when failure is more likely [3] and making the checkpoint process itself
more efficient, can extend the feasibility of checkpoint-restart to a degree, but by themselves are
expected to be insufficient for exascale computing.

A class of solutions with the potential to extend useful HPC scaling to exascale and beyond are
those that remove the underlying assumption that failures are rare, and allow jobs to recover from
failure via mechanisms more flexible and efficient than checkpointing. Mechanisms of this sort are
suggested by the behavior of botnets. There are, however, important differences between botnets
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and HPC applications: The latter deal with large amounts of data, require high-bandwidth com-
munications, and deliver numerical results whose accuracy is relied upon. Thus, whereas recovery
of a botnet from the failure (e.g., disinfection) of some bot nodes consists simply of recruitment of
new bot nodes and a gradual, distributed determination of their places in the botnet topology, an
HPC application must ensure that the chunk of data located on a failed node is adequately recov-
ered for subsequent computations that rely on it. There arises a distinction, discussed more fully
in Chapter 4, between (1) applications that require exactly reproducible results, so that the results
obtained upon recovery must be the same as if the failure had not occurred, and (2) applications
where error analysis is a normal part of interpreting results, so that alterations in results due to
failure and recovery are acceptable if they are sufficiently small and well characterized.

For case (1), the need to recover data exactly is similar to the goal of traditional checkpoint-
restart. The key difference is the ability to supplement or replace checkpointing with reliance on
locally available intermediate results (in the vicinity of the failed node) to efficiently reconstruct
lost data. Recent Sandia work on data-driven parallel programming models, using dependency
graphs to identify the inputs truly needed for each computational task, provides a starting point
for this. Not only does the elimination of artificial dependencies (such as global synchronization)
improve performance even in the absence of failure by allowing more overlap of tasks, but it also
has the potential to streamline failure recovery by limiting the amount of data needed to restart a
task.

For case (2), even greater efficiencies are possible from “substituting” numerically close and
more readily reconstructible data for the lost data. In this approach, errors introduced by failure
recovery must be considered as part of the overall error budget of a computation. Because there are
several other common sources of error in computational science (floating-point error, discretization
error, statistical uncertainty, etc.), substitution error may in fact be negligible for a particular appli-
cation if it is dominated by another source. The effect of substitution error on results is naturally
influenced by the specific error-propagation characteristics of the computation.

A common aspect of both cases is that the detailed behavior of the fault-recovery mechanism
depends strongly on the application, in contrast to checkpoint-restart. This implies that fault-
oblivious computing will generally require programming languages or annotations that allow pro-
grammers to express the needed information.

3.2 Example Applications

The most promising HPC applications for initial validation of our concepts are those that share
structural features with botnets, allowing ready generalization of P2P mechanisms, and that exhibit
highly robust convergence behavior (damping of perturbations), allowing data substitutions with
controllable effects on error. The sandpile model described in Section 2.2 directly motivates our
identification of more “scientific” example problems with similar behavior.

First, interactions with nearest neighbors on a lattice (or more generally, with nearby cells on
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some kind of mesh) are typical of discretizations of partial differential equations (PDEs). An ele-
mentary and widely applicable PDE that has a natural nearest-neighbor discretization, and strongly
damps perturbations, is the heat equation (written in two dimensions)

∂θ

∂ t
= κ∇

2
θ ≡ κ

(
∂ 2θ

∂x2 +
∂ 2θ

∂y2

)
for (x,y) ∈ D, (3.2.1)

θ(x,y,0) = Θ(x,y) for (x,y) ∈ D, (3.2.2)
θ(x,y, t) = Θ(x,y) for (x,y) ∈ ∂D. (3.2.3)

Here κ is a positive constant, and we have written an initial-boundary-value problem with a Dirich-
let condition on the boundary ∂D of the domain D. This can be interpreted physically as the evo-
lution of the temperature field θ in a conductive medium such as a metallic plate, given an initial
temperature field and a prescribed temperature profile maintained around the edge of the plate.

A straightforward (and stable) discretization with a particular choice of timestep leads to the
Jacobi relaxation method [14], given by the cellular automaton rule

θi, j,t+1 =
1
4(θi+1, j,t +θi−1, j,t +θi, j+1,t +θi, j−1,t). (3.2.4)

That is, each cell’s value is updated to the average of its nearest neighbors (except for boundary
cells, which are maintained at their prescribed values). If the transient behavior of the field is
not of interest, then this updating rule can also be considered as simply a route to obtaining the
steady-state solution given by the Laplace equation

∇
2
θ = 0 for (x,y) ∈ D, (3.2.5)

θ(x,y) = Θ(x,y) for (x,y) ∈ ∂D. (3.2.6)

Upon failure of a computational node responsible for some (small) part of the domain, there
is a physically natural remedy in this problem: Adjacent cells (i, j) that lack neighbor information
substitute their own values θi, j for the missing neighbor when updating. This corresponds directly
to a Neumann boundary condition (zero heat flux) on the edge of the missing part of the domain,
which can thus be interpreted simply as a “hole” in the plate. The effect of this substitution with
a small hole is relatively minor because heat can flow around the hole. Due to the diffusive na-
ture of the heat equation, small-scale perturbations are strongly damped; thus there is no unstable,
growing error from the substitution, and the large-scale equilibration of the temperature field is
only slightly altered. Note that Jacobi relaxation – on conventional architectures – is known to
be a relatively inefficient algorithm compared to, e.g., multigrid methods. However, the tradeoffs
for evaluating algorithms become different in approaching the exascale domain where fault obliv-
iousness is necessary. There, the simplicity and resilience of the P2P-like Jacobi algorithm are
powerful advantages.

The structure and behavior of the heat equation are ideal for our P2P approach. Other PDEs
used in scientific computing applications lack its strong damping properties, but may have com-
pensating features. For example, the Navier–Stokes equation for high-Reynolds-number turbu-
lence exhibits chaotic behavior in which small perturbations cause a rapidly growing error in the
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solution. But, because this property applies even to unavoidable roundoff and discretization errors,
it is already accepted that the results of Navier–Stokes simulations should be interpreted as random
fields from a statistical ensemble. Thus the criterion in developing a P2P-like algorithm for such
equations is that the substitutions should have a small effect at the level of statistical properties
rather than individual solutions.

Our second example application is closely related in form but motivated by optimization (specif-
ically, dynamic programming) rather than PDEs: the Pre-Jacobi algorithm for value iteration [1].
Value iteration is one of the algorithms for computing the values of states of a discounted Markov
decision process (MDP) [15]. An MDP evolves over a sequence of discrete time steps, with evolu-
tion proceeding through a series of states. At a fixed time step t, the decision maker finds himself in
some state st ∈ S, and must choose some action at ∈ A(st), where A(st) is the set of feasible actions
in state st . Upon taking action at in state st , he receives a reward rt and probabilistically transitions
to next state st+1. The Markovian property ensures that both the distribution over rewards and the
distribution over next states depend only on the current state and action. We consider a slightly
simplified model in which rewards are a deterministic function of current state; thus, rt = r(st).
We denote the distribution over next states by P, with Pa

ss′ meaning the probability of transitioning
from state s to s′ if action a is taken in state s.

A solution to a MDP is a policy, which determines the sequence of action choices as a function
of state, denoted π(s). An optimal policy π∗ has the property that it is the policy that maximizes
the expected reward with the discount factor δ , that is,

π
∗ = argmax

π

∞

∑
t=0

δ
tE[r(st)|π]. (3.2.7)

An equivalent way of expressing the maximal expected reward (value) of any state s ∈ S is the
Bellman equation [15]:

V ∗(s) = max
a∈A(s)

[r(s)+δ ∑
s′

Pa
ss′V

∗(s′)] = r(s)+δ max
a∈A(s)

∑
s′

Pa
ss′V

∗(s′). (3.2.8)

The optimal policy can then be computed as

π
∗(s) = argmax

a∈A(s)
∑
s′

Pa
ss′V

∗(s′). (3.2.9)

Value iteration [1, 15] is a natural algorithm for iteratively computing optimal state values V ∗

that stems directly from the Bellman equation. In iteration n, the value Vn+1(s) is computed as

Vn+1(s) = r(s)+δ max
a∈A(s)

∑
s′

Pa
ss′Vn(s′). (3.2.10)

This algorithm is provably convergent to the true vector of valuations V ∗. We observe that for the
special case of states on a square lattice, with discount factor δ = 1, with a single action that moves
to any nearest-neighbor state with equal probability 1

4 (random walk), and with rewards equal to
zero except on the boundary of the domain, this algorithm is equivalent to the Jacobi relaxation
method (3.2.4).
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Moving from a serial to a parallel implementation of the value iteration algorithm is rather
natural. For simplicity, suppose that a processor is tasked with computing a value for a single state
s ∈ S (thereby eschewing any state partitioning issues for the moment). The internal data on the
processor will be r(s), δ , and the part of Pa

ss′ with s as the initial state, which can be represented
as a matrix with a as rows, s′ as columns, and corresponding transition probabilities as entries. At
each iteration, the entire vector Vn must be broadcast to all processors in order to compute Vn+1 [1].
There are three problems with this approach:

1. It requires synchronization, with the concomitant performance hit.

2. It requires broadcast transmission of the entire vector Vn in every iteration n.

3. It requires storing internally the data matrix of size |S||A(s)|.

The least of these issues is perhaps the last, although it may become important in practice if the state
space becomes extremely large; in any case, any economy here will have direct impact on algorithm
performance. The most important issue is the second, since message passing would likely be the
performance bottleneck and, with large state spaces, the parallel algorithm will become entirely
impractical as a consequence (message passing will dominate computation). Synchronization is
the easiest issue to overcome in a natural way: Rather than requiring all states to broadcast their
values Vn synchronously, let them do so every time a new value is computed. In this way, each state
has the latest vector of values, but the process no longer requires any synchronization. It turns out
that asynchrony does not preclude convergence, as long as processors do not stall (i.e., values of all
states keep being updated) [8]. The other two issues are resolved by the decentralized dependency
graph, which we discuss in the next chapter.
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Chapter 4

DAS Architecture for Dynamic Task
Replication and Substitution

The goal of this chapter is to introduce a general architecture that allows effective failure man-
agement and, under some conditions, fault obliviousness in exascale computing scenarios. Here,
we envision jobs that are divided into a very large number of interdependent tasks. Consequently,
a failure of one processor running a certain task can potentially bring down the entire job due to
the intricate interdependencies. Our goal is to manage such interdependencies in order to dynam-
ically restart tasks or replace them with other tasks that generate similar data. To this end, we
introduce two graphical data structures: a dependency graph and a substitution graph. The former
keeps track of data dependencies between tasks, while the latter is a representation of substitution
relationships between tasks (that is, whether data from one task can substitute for the data from
another, possibly failed, task). The former structure primarily manages failures, while the latter is
a means of fault obliviousness, insofar as it can be achieved. As the architecture depends on these
two graphical structures, we term it the DAS (dependency and substitution) architecture.

4.1 Dependency Graph

A dependency graph is a directed graph representation of data dependencies between tasks, with
each node representing a computational task (e.g., computing the value of a state s), while a di-
rected edge from i to j means that task i depends on task j (for example, a non-zero probability
transition from s to s′). See Figure 4.1. In parallel computation we would wish to keep as much
decentralization of information as possible, and so it would be greatly undesirable (if not entirely
impractical) to maintain a completely centralized dependency graph. Instead, each node maintains
the dependency subgraph immediately relevant to it. In our current implementation, a node merely
maintains the list of all nodes j that it depends on, as well as those nodes that depend on it, although
a more robust implementation would allow it also to maintain dependencies of its inputs (i.e., of
the nodes it depends on), etc. The first thing that a decentralized dependency graph wins us is a
simple resolution of the scalability issues outlined in Section 3.2 in the value iteration discussion
(but applicable broadly). In our case, rather than broadcast messages sent to all nodes, a node
queries all its dependencies for their values by the means of message passing (e.g., using MPI).
This illustrates that the use of message passing for communication does not entail adoption of the
traditional MPI programming model. Perhaps a better implementation would have a node multi-
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Figure 4.1. Example of a simple dependency graph involving
four tasks.

cast results of its computation to all those who depend on it (in addition to responding to standard
data requests). In any case, communication is limited to a potentially small fraction of the entire
state space. An additional, relatively minor, benefit to a parallel value iteration implementation is
that internal storage requires maintaining only nonzero state transition probabilities. In fact, the
dependency graph in the Markov decision process (MDP) context is entirely determined by the
directed links corresponding to nonzero transition probabilities. In principle, a dependency graph
is a completely general architecture, since it certainly allows all tasks to be interdependent, but its
benefits only arise if it is sparse (or, more accurately, if the dependencies between processors once
tasks are allocated to these are sparse; more on that later).

Focusing now on our stated main task of fault tolerance and obliviousness, the dependency
graph provides our main mechanism for fault tolerance. Suppose that a task i detects that one of
its dependencies j has failed (perhaps because j did not respond to some query within a timeout
period, or i was notified somehow of this failure either by the failing node or by the operating
system). If i already has required data from j, it needs to do nothing. If not, it can notify the
system of the failure. If there is a provision in the running job to restart specified tasks, or if there
is a checkpoint that we can refer back to, the dependency can be placed on the run queue to be
restarted so as to provide the required data. Note that we are not requiring that the dependency
graph be specified at the time that the main job is started; it can be generated dynamically, as
tasks are spawned by the main process. An important aspect is the decentralization of the graph,
so that tasks themselves may determine whether any failed dependency actually needs restarting.
Consider, for example, a situation in which a task that fails is not depended upon by any other task.
Its failure will then go essentially unnoticed, except, perhaps, by the system, and so the job may
well continue running, entirely oblivious to any failure having occurred. This ensures that progress
can be made even under considerable failures (as compared to the common alternative, which is a
halt to the entire system due to occasional isolated failures).

Another utility of the dependency graph is that it can be a means of restoring state without
frequent checkpointing. Checkpointing is known to be extremely expensive, often dominating
performance, and reducing the frequency of checkpointing can account for dramatic performance
improvement. Now, suppose that computation of a task produces incremental results, which also
provide a starting point at the time of restart. If these incremental (intermediate) results of a com-
putation are multicast to those tasks that depend on it, then in the event of a task failure and restart,
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Figure 4.2. An example of a simple substitution graph involving
four tasks. Numbers above edges represent weights on substitu-
tions, that is, errors incurred due to these substitutions.

the task can receive these intermediate results from its dependencies without requiring any check-
pointing (except, perhaps, that required to start up the task at all). As a result, checkpointing can
perhaps be considerably less frequent. While such “hotstarts” are not yet a part of our implemen-
tation, they could provide an important part of the proposed architecture without very much added
effort.

The dependency graph is one central data structure that allows us to implement decentralized
fault tolerance and, to some degree, fault obliviousness. The central structure that targets specif-
ically fault obliviousness (to the extent it is possible) is the substitution graph, which we discuss
presently.

4.2 Substitution Graph

A substitution graph specifies, for node i, a collection of nodes that generate data that can substitute
for the data generated by i. As an example, consider a pair of states in value iteration that transition
to each other with high probability for some actions, and suppose that the discount factor is not too
low. The values at these two states are natural substitutes, since each of these can be reached from
the other in just a single step. While it is not necessary that substitution relationships are reciprocal,
it is quite natural that they are, and we therefore assume that the substitution graph is undirected.
Note that while it seems also natural that these relationships are transitive, they certainly need not
be. The weights on substitution links represent errors, and it is only meaningful to include edges
between tasks that can substitute at some relatively small loss; hence, transitivity may easily fail
because errors, individually small enough, exceed the threshold once added together. An example
of a substitution graph is shown in Figure 4.2.

The substitution graph mediates fault obliviousness as follows. Suppose that a processor (and
a corresponding task) fails, but there is a good substitute for this task (in terms of generated data).
The tasks that depend on it may then use the best substitute, rather than requiring the failed task to
be restarted (which may happen anyway, but we no longer need to worry about any computational
expense associated with task restart).
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In many domains, closeness of two tasks would depend on who needs the resulting data. If
we implement the substitution graph in a decentralized fashion, allowing this is a trivial general-
ization, since each node would simply store internally its private set of substitution weights for its
dependents.

4.3 Trading Off Replication and Substitution

The main operation of the DAS architecture would trade off replication and substitution by at-
tempting to substitute for tasks as long as it is efficacious to do so. Specifically, suppose that we
set an upper bound on the error tolerance of the job, say at ε . Let us first consider a simplification
where, when failures occur, we take a myopic point of view that no further error conditions will
occur before the conclusion of the entire job. We now introduce some formal notation that will
allow us to pose the tradeoff we wish to address as a mixed integer program. First, suppose that all
errors are additive (e.g., using the l1 norm). Let wi jk be the error incurred when task j is substituted
for task i as input to a task k that depends on i. Let I be the set of tasks that have failed and Di
denote the set of tasks that depend on a task i ∈ I. We denote by vi a decision variable that is 1
if task i is to be substituted for (rather than replicated), and let zi jk denote a decision to substitute
task j for i for a dependent task k (thereby replacing k’s dependence on i with j). We then obtain
the following mixed integer program (MIP):

max
v,z ∑

i∈I
vi subject to: (4.3.1)

Error budget: ∑
i∈I

∑
j/∈I

∑
k∈Di

wi jkzi jk ≤ ε, (4.3.2)

Single substitute for i, j: ∑
j/∈I

zi jk = vi ∀i ∈ I,k ∈ Di, (4.3.3)

No failed tasks: zi jk = 0 ∀i, j ∈ I,k ∈ Di, (4.3.4)
Binary variables: vi,zi jk ∈ {0,1}. (4.3.5)

Note that Constraint (4.3.4) is actually unnecessary to specify in practice, since we can simply
ignore the corresponding entries of z in implementing the optimal policy; Constraint (4.3.3) already
ensures that there is exactly one substitute from only the functioning tasks for any task dependency
pair if and only if the corresponding vi = 1.

While the number of variables and constraints is polynomial, solving this integer program is
likely infeasible in many realistic cases, and simplifications may need to be made in order to do
so in real time. Denote by Ni the number of tasks that depend on i (and that will be using the
substitute). One simplification is to restrict attention to wi j without reference to k (or maximal over
all k), then focus only on best substitutes for any failed i, letting wi = Ni min j/∈I wi j, and allow only
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a single substitute for any task. This results in the following simpler MIP:

max
v ∑

i∈I
vi subject to: (4.3.6)

error budget: ∑
i∈I

wivi ≤ ε, (4.3.7)

binary variables: vi ∈ {0,1}. (4.3.8)

Observe that the resulting MIP represents a classic knapsack problem, which, while NP-hard, can
be approximated by a greedy algorithm which adds tasks to be substituted in increasing order of
wi, until the error budget is saturated. This greedy heuristic would be fast enough to be run in real
time and is, in fact, what we have implemented in the simulation below.

4.4 Allocating Tasks to Processors

For the discussion above, we have often implicitly assumed that a single task is allocated to a
processor (although in most cases we have not lost any generality in our discussion). This is also
a very explicit assumption in the simulations below. Realistically, of course, multiple tasks will be
allocated to a single processor, and the question of interest in our framework becomes two-fold: (a)
how to allocate tasks to processors so that there is minimal interdependence between processors
and (b) how to substitute in a way that preserves this initially low interdependence. To begin, let us
assume that no substitution is allowed. The problem is then an instance of graph partitioning [6].
In a graph partitioning problem, the goal is, informally, to partition a set of nodes in a graph
such that the weighted sum of nodes in each partition is bounded by some positive integer K
and the weighted sum of edges between partitions is bounded by another positive integer J. This
problem is known to be NP-complete, although algorithms to solve it exist, including in the Zoltan
library [4]. In our case, all weights would be 1. To incorporate information about substitutes, we
can superimpose the two graphs, but choose weights on substitute edges to be lower than those on
dependency edges (to reflect that we may not need to substitute at all). Additionally, weights may
decay as the substitution weights wi jk increase. We can also add the graph partitioning constraint
on substitutions when tasks fail, requiring that, upon substitution, no more than J dependencies
cross processor boundaries. Formally, letting p jk = 1 if and only if tasks j and k run on different
processors, we constrain that

∑
j/∈I

∑
k∈Di

p jkzi jk ≤ J ∀i ∈ I. (4.4.1)

in the first MIP. In the second, simplified, MIP, let pik = 1 if and only if the best substitutes for i
and task k lie on different processors. We then constrain that

∑
k∈Di

pikvi ≤ J ∀i ∈ I. (4.4.2)

Note, however, that in this case the simple greedy algorithm will no longer apply to solve this
problem and alternative, custom heuristics or algorithms are required to approximate it in real
time.

25



4.5 Running Tasks with a Limited Number of Processors

One important subproblem when resources are severely constrained is to determine whether it is
possible to run a subset of tasks on available processors, given a specified dependency graph. Here,
imagine a case where there are not enough processors to run the entire job. In principle, if all tasks
are interdependent, it may be impossible to make any progress until all tasks can be allocated
concurrently. However, if dependencies are sparse, it may well still be feasible to make progress
on the problem by running a subset of tasks that is independent of any others. It turns out that this
problem can be solved in polynomial time by the following algorithm (assuming here again that
each task is mapped to a single processor):

1. Let T be the set of all tasks, K the number of available processors

2. For each task i ∈ T ,

• Let D = Di

• For each j ∈ D,

– set D← D∪D j

• until D j ⊂ D ∀ j ∈ D

• If |D| ≤ K, return D

3. return 0

The running time of this algorithm is O(n3) (where n is the number of tasks), and it will either
return a set of tasks that has no internal dependencies, D, such that |D| ≤ K, or 0 if such a set
cannot be constructed. In fact, it runs in time O(n2) if the number of dependencies between tasks
is bounded. Since we follow the dependency links from all possible starting points (all tasks), this
algorithm is complete. The problem is that even though it runs in quadratic time if the maximum
number of dependencies is bounded by a (small) constant, this is still too slow to do in real time
in an exascale computing system. One solution is to only perform the procedure until we run out
of search time (perhaps on a random permutation of tasks) in the outer loop, and only for a small
number of iterations at the inner loop. There may also be a faster algorithm (on average) than the
simple one described above, that would allow this problem to be solved very fast exactly in most
cases.

4.6 Empirical Substitution Weights

The main question relating to the substitution graph is how to obtain the substitution weights. One
possibility is that they are given (as upper bounds, perhaps, or some crude approximation) by the
job developer himself, who knows something about the relationship between tasks. That may be
reasonable in some scenarios, but would usually place a high burden upon the programmer. As an
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alternative, we may consider deriving them empirically. One general paradigm is to assume that
the data generated by tasks (over time) constitute a sequence of real vectors. Given such sequences
for two tasks that are meant to substitute for each other, we can create an empirical measure of
the substitution weight as the actual error between the generated data streams. For example, if the
error between the entire data streams is important, we would use something like Hausdorff distance
between the two sequences, while if only the latest updates are significant, it would suffice to
measure, say, l1 distance between the latest data generated (as is the case in our grid world example
below). We may still wish for the programmer to specify the actual substitution weights, as well as
initial weights, but neither is strictly speaking necessary: We can measure weights between pairs
of tasks, and add a substitution edge if the empirical weight is below some threshold (or, instead,
place a threshold on the number of edges, and only add those with the lowest empirical weight). If
the programmer does not specify initial weights, we can take them to be infinite by default, forcing
replication until sufficient data about tasks is obtained to make substitutions useful.

4.7 Simulation and Results

We use simulations to provide a limited evaluation of our DAS architecture, implemented in Java.
These are centered on the application to distributed asynchronous implementation of value iteration
in the domain of a “grid world”, which we now describe.

4.7.1 The Grid World

The grid world is a simple geographical representation of an agent walking in two dimensions. In
our even simpler representation, an agent is allowed at most four actions in each cell: left, right,
up, and down (corresponding essentially to the directions of a walk). The catch is that a walk to the
right does not necessarily result in the agent ending up in the cell immediately to the right. Rather,
he moves in the direction of his action with some probability (0.8 in our implementation), while
the remaining probability is divided evenly among all the remaining physically adjacent cells (as
well as current cell). The rewards of states are generated independently following a distribution
with Pr{r(s)≤ r}= r1/3. Figure 4.3 shows an example 3×3 grid world.

In our implementation we set the discount rate δ to be 0.95, and let the number of states
vary (although always maintained as a square grid). To prevent computation from proceeding
indefinitely, we also set a stopping criterion to be convergence within 0.001.

Based on the grid world model, we generate the dependency graph by adding links in both
directions between any two neighboring cells. Since neighboring cells also provide good substi-
tutes for each other, we add links between all neighbor cells into the substitution graph. Initial (or
default) weights are generated as upper bounds on the difference between final state valuations.
These differences can be bounded by observing that, if s and s′ are neighbors, then

V (s)≥ δPa
ss′V (s′) (4.7.1)
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Figure 4.3. Example of a 3×3 grid world with the corresponding
state reward structure.

or
V (s′)�V (s)≤V (s′)(1�δPa

ss′) (4.7.2)

for any action a, and, simultaneously,

V (s′)≥ δPa′
s′sV (s) (4.7.3)

or
V (s)�V (s′)≤V (s)(1�δPa

s′s) (4.7.4)

for any a′. Taking a and a′ to maximize the right-hand side in Equations (4.7.1) and (4.7.3), we get
the tightest bounds. This is the case when the action in the grid world is toward s′ and s respectively,
which achieves the fixed transition probability p that an agent ends up in the direction he tried to
follow. Further, if δ is the discount factor, then V (s) ≤ 1/(1�δ ) for any state s. Combining, we
get

|V (s)�V (s′)| ≤ 1�δ p
1�δ

. (4.7.5)

Note that if p is large, the difference between values of neighbor cells is tightly bounded, while
with a small p, this bound is loose. In any case, this provides either the actual or initial substitution
weights in our simulations (actual if we turn off empirical tuning of substitution weights, and initial
if we turn it on).

4.7.2 Simulation Setup

In order to perform a first-order analysis of the proposed architecture, we developed simulation
software that generates sample grid worlds and performs asynchronous distributed value iteration,
with the architecture governing how tasks are allocated computing time on a simulated cluster.
Time in the simulator is discrete, and we run it for 100 iterations (time units). Given the high
discount rate, this ensures that tasks rarely complete in the allotted time, even if no processor
failures occur. We assume, furthermore, that processors fail independently with probability pb,
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Figure 4.4. The 2-state Markov chain model of the processor
failure and repair process.

and a broken processor is fixed with probability p f . Figure 4.4 shows the resulting Markov chain
process that models transitions between a fixed and broken state for each processor.

Lemma 4.7.1 [Steady State] Let π f and πb be the steady state probabilities of being in a fixed
and broken states respectively. Then

π f

πb
=

p f

pb
. (4.7.6)

Proof. That there is a steady state is trivial here, and by the definition of steady state, π = Pπ ,
where P is the matrix of state-to-state transition probabilities. Thus, π f = (1� pb)π f + p f π f and
πb = (1� p f )πb + pbπ f . Solving this system of two equations gives the result.

As a consequence of this lemma, we can observe that the main parameter that governs the
fraction of time each processor spends in a fixed and broken state (and, thus, the expected number
of fixed and broken processors) is α = p f /pb. For example, setting α = 1 ensures that 1/2 of all
processors are functional on average in the steady state. In the simulation, we let the number of
processors be twice the number of tasks, and set α = 1, thereby focusing primarily on the variance
due to a specified failure probability (since, on average, there are enough processors to run all the
tasks, but often in reality there will not be). Furthermore, we initialize the processors to be in a
broken and fixed state precisely according to the corresponding steady state fractions. Our choice
that the steady state fraction of available processors matches exactly the number of tasks that need
solving may seem idiosyncratic, since it is easy to ensure that we have enough tasks such that
they are not prone to processor failures (and, thus, at most we only require replication, but not
substitution of tasks). Note, however, that we in general wish to utilize all the available resources:
in a way, if we are, say, discretizing our problem more coarsely due to system considerations, we
are in effect wasting available system capacity, which is certainly undesirable. Furthermore, such
simplifications introduce error into our problem, which we can potentially avoid by fully utilizing
available processing capacity. Thus, we would actually expect that the system capacity is fully
used (which in our case means that all processors that are available in expectation are used to run
tasks), and our assumption is not so outlandish.
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4.7.3 Performance Measures

In our simulations we evaluate two extreme policies: the first allows no substitutions at all, whereas
the second allows unlimited substitution. Thus, neither policy actually involves solving the opti-
mization problems described above, and our results are in a sense unfavorable, since it is quite
likely that in fact a mix of replication and substitution is necessary for good performance.

The first performance measure is the probability that the tasks make any progress in a given
iteration (note that since all the tasks in the grid world example are initially interdependent, either
all or none can make progress, depending on processor availability). The second performance
measure is the l1 error (relative to failure-free runs) of the computed state values.

4.7.4 Simulation Software

The key to our simulation software is a collection of Java interfaces which essentially describe its
high-level operation:

• World

• Task

• Cluster

The World interface features the following methods, which in essence describe an MDP:

• getReward(state): returns the reward for a specified state

• getAvailableActions(state): returns the set of actions available in the specified state

• getReachableStates(state): returns the set of states that can be reached directly from current
state with non-zero probability

• getTransitionProbability(curState, nextState, thisAction): returns the probability of transi-
tioning from curState to nextState if action thisAction is taken

The GridWorld class implements the World interface, specializing it to the two-dimensional grid
world described above.

The Task interface is the central interface to tap the dependency and substitution graphs:1

1We have implemented it in simulation not entirely the way we described such decentralized implementation
above, primarily to make implementation slightly simpler (since we merely want a simulation tool, not the actual
architecture); it is natural to implement the decentralized substitution graph as above, however.
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• getData(String msg): simulates a message passing interface for querying the needed data; in
practice we wish to also have a multicast interface, which could be simulated by a sendData()
method, though we did not include that in our simulated implementation

• getDependencies(): returns all tasks that this task depends on

• getDependOnMe(): returns all tasks that depend on this task

• getSubstitutes(): returns all tasks that substitute for this task (together with corresponding
substitution weight, via a class TaskWeight that stores two substitute tasks and the substitu-
tion weight

• getBestSubstitute(failedTasks): returns the best (lowest weight) substitute to this task that is
not one of the specified failed tasks

• replaceDependence(toReplace, replaceWith): replaces a (failed) dependence toReplace
with replaceWith; this allows implementation of the substitution mechanism described above

• updateState(): simulated interface to allow computation to occur in this task

• completedTask(): returns true if the task has completed its computation

The Task interface is implemented by a combination of AbstractTask, which implements the de-
pendency and substitution graph (and would be a part of the architectural/OS platform), and Grid-
WorldTask, which implements the methods as relevant to the specifics of the grid world.

Finally, Cluster interface describes the methods associated with a cluster (or any multiproces-
sor/multicore system):

• runCluster(numIterations): run the computation on the cluster for a specified number of it-
erations (100 in our implementation). Our implementation simulates asynchrony by running
each task in a given iteration with a specified probability (0.9 in our implementation).

• addTask(task): adds the specified task to the task/job queue

• removeTask(task): removes the specified task from the task/job queue (if it is running, kill
it)

• getActiveTasks(): returns the set of tasks that have not yet completed or been removed from
the queue

4.7.5 Simulation Results

We ran simulations with two problem instances, one with 100 tasks, the other with 2500. While
both are a far cry from the exascale environment that we target, they allow us to focus on the
primary issues that concern us: resilience in the face of frequent failures and scalability, at least
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Figure 4.5. Probability that tasks are making progress on a 10×
10 grid world as a function of failure probability (keeping α = 1
fixed).

to a limited degree. The results we present are averaged over 150 random realizations of the grid
world model. Our initial inquiry concerns the first performance measure: probability that any
progress is made in a given iteration. Figures 4.5 and 4.6 plot the probability of making any
progress on a 10×10 and 50×50 grid, comparing a case where no substitutions are allowed with
one that allows unlimited substitutions. These figures demonstrate very strongly the resilience
of the jobs due to the substitution framework: With arbitrary and unlimited substitutions, failure
probability has to approach 1 before progress is even somewhat halted. By comparison, progress
ratio drops dramatically with increasing failure probability when no substitutions are allowed.

Considering now the l1 error measure, our results are somewhat mixed (see Figures 4.7 and 4.8).
On a 10×10 grid, it appears that substitutions do introduce greater overall evaluation error. How-
ever, a 50×50 grid shows an unambiguous advantage to substitutions, so it seems that substitutions
are more advantageous with greater scale, something of great relevance to us since we are moti-
vated by exascale computing. In these figures, we also compare the case when substitution weights
are the constant bounds that we derived above, or are empirically derived by directly comparing
task data. Surprisingly, even though we do not impose a limit on substitution weights, empiri-
cally derived weights show a clear advantage, most likely because even though we allow unlimited
substitutions, the choice of which tasks to substitute is driven by optimization, and finer-grained
information about the resulting errors allows us to make better decisions.
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Figure 4.6. Probability that tasks are making progress on a 50×
50 grid world as a function of failure probability (keeping α = 1
fixed).
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Figure 4.7. l1 error (over all state values) on a 10×10 grid world
as a function of failure probability (keeping α = 1 fixed).
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as a function of failure probability (keeping α = 1 fixed).
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Chapter 5

Emulation Technology

Building on related work implementing the sandpile model as a emulated representation of a bot-
net, we developed a preliminary implementation of the Jacobi relaxation solver described in Sec-
tion 3.2 in a large-scale emulation environment. We have not fully tested the Jacobi relaxation
implementation or characterized its behavior quantitatively in this project. But we have success-
fully run the implementation at a scale of tens of thousands of virtual nodes, in a setup where
hundreds of the virtual nodes typically fail, and have observed the expected characteristic patterns
of fault-oblivious behavior.

5.1 Experiment Setup and Tools Used

The hardware in this experiment consisted of 128 Dell 1850 servers that were oversubscribed to
boot 32,768 virtual Linux instances. Virtual LANs (known as VLANs), gateways, and routers
were constructed to emulate the configuration of modern large-scale HPC platforms. The system
software used in this exercise, called VMatic and Pushmon, was developed at Sandia [12].

5.1.1 VMatic

VMatic is a tool that assists with the creation of the emulated environment. It allows for the rapid
provisioning and configuration of virtual machines by extending the OneSIS cluster management
program. Via computational configuration of system properties such as networks, VLANs, or run
level programs, VMatic makes it possible to instantiate a custom environment quickly and reliably.

5.1.2 Pushmon

Pushmon is a hierarchical program for monitoring the system- and application-generated data on
virtual machines, physical hosts, and routers. The tool is designed to minimize system perturba-
tion whenever possible, taking advantage of virtual machines’ relationship to their physical host.
Collections of data between virtual machines are passed through an out-of-band virtual block de-
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vice layer that is shared between the hosts and all virtual machines, thus removing the need for
traversing through the network subsystems.

5.2 Emulation Overview

By using emulation, we are providing a more realistic environment that allows for more data paral-
lelism than what can be provided from simulation alone. Our approach involves the oversubscrip-
tion of physical resources to allow the instantiation of true operating systems on top of virtualized
hardware. For this particular experiment, the goal was to create a network environment that would
be able to reach to largest possible scale given the amount of time and resources at our disposal.

Emulation can be used as a validation mechanism for testing the effectiveness of algorithms
and proposed policies that are being considered. While simulation provides a useful insight into
the functioning of these proposed changes, emulation can provide better fidelity by using the ac-
tual code and more realistic hardware that is used in practice. We have seen cases where the actual
implementations of strategies have had consequences that could have only have been realized on
an emulation of the actual network using the same system calls and operating system code that are
used in production. In our computational experiments, modeled on the problem of heat transfer
through a metallic plate, we have witnessed properties of the Jacobi relaxation algorithm that per-
mit failures of computational resources to be interpreted as local abnormalities in the composition
of the plate. These features are of interest because of the resilience to random abnormalities or
failures in this system.

5.3 Jacobi Relaxation Experiment Deployed on the Emulator

In this experiment, we have implemented the behavioral properties of heat transfer through a metal-
lic plate in software, as well as using it for a network architecture deployed on an HPC platform. A
previous cellular automaton implementation of the sandpile model has been modified to reflect this
heat transfer behavior. To test this networking model, we operate with a square lattice as the fixed
domain of nodes for the entire experiment. This is not unlike current HPC applications that are
executed in the MPI programming model where nodes are statically defined for each job execution.

In our experiment we emulate network communication defined by a set of rules that cannot be
changed. A node may only directly communicate with an adjacent peer that is north, south, east,
and west of the cell itself, and when the cell communicates with a peer it is allowed to only send
one message to that peer. Cells are oblivious to the state of their peers and will send messages to
peers regardless of the peer’s actual existence. If the peer has died or fails to accept the message,
the message will simply be lost and no re-transmission of the message will occur. The peer-to-
peer interactions are in fact oblivious to the state of neighboring nodes in the lattice and are also
oblivious to the overall nature or behavior of the system as a whole. Each individual cell behaves
an independent automaton relying only on input from its neighbors to drive its behavior. It is
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important to note that nodes are real instances of the Linux operating system. When a network
operation or any system call occurs, a full traversal through the operating system subsystem code
takes place as if it were being executed on real hardware, the major difference being a slower code
execution speed.

Failures in this model are handled in an unobservant manner. Having no dependent state is
part of the network implementation, making the network capable of communication throughout
the system in the presence of faults as long as a critical threshold of failed nodes is not exceeded.
This is already an improvement on current programming models in which single component failure
constitutes a failure of the entire system regardless of the criticality or significance of the data in
question. That data loss may or may not affect the overall result of the computation, but the fact that
a failure of any kind has occurred would traditionally be enough to stop the run from progressing.

Node placement in the overlay network creates the set of connections, and is extremely impor-
tant because of the need to minimize the grouping of failures that are all within a close proximity
region. Gaps in the overlay network change the behavior of network communication patterns, at
best by changing the timing with which a certain result will occur, or at worst by preventing the
result from occurring at all. This is not unlike how critical services are structured on the Internet,
taking DNS as an example. Clone or slave DNS servers are replicated throughout different geo-
graphical locations, minimizing the amount of shared resources (such as power infrastructure or
routers) that could create a failure on all redundant servers.

In the setup of the Jacobi relaxation implementation deployed on our emulated environment
of virtual machines, peers are randomly distributed across the two-dimensional square lattice of
the overlay network. The emulation of thousands of nodes is not only to represent a size closer
to that of an exascale system but also to demonstrate the effect of physical node failures on the
functionality of the overlay network. Since hundreds of virtual machines are sharing the same
critical resources – i.e., the same physical host – a node failure can be likened to a power outage
of an entire rack unit on an exascale machine. In the same manner that heat will propagate around
a small hole, our nodes communicate around a small gap in the P2P lattice, giving us the ability to
observe when and how critical thresholds that break down normal behavior occur.
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