
The MGGB Equation-of-State for Multifield 
Applications: A Numerical Recipe for Analytic 
Expression of Sesame EOS Data 

LA-14421
Approved for public release;  
distribution is unlimited.



This report was prepared as an account of work sponsored by an agency of the U.S. Government.  
Neither Los Alamos National Security, LLC, the U.S. Government nor any agency thereof, nor any of 
their employees make any warranty, express or implied, or assume any legal liability or responsibility  
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by Los Alamos 
National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of Los Alamos National Security, LLC, the 
U.S. Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic 
freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse 
the viewpoint of a publication or guarantee its technical correctness.

Los Alamos National Laboratory, an affirmative action/
equal opportunity employer, is operated by Los Alamos 
National Security, LLC, for the National Nuclear Security 
Administration of the U.S. Department of Energy under 
contract DE-AC52-06NA25396.

Edited by Hector Hinojosa, Group IRM-CAS.



The MGGB Equation-of-State for Multifield  
Applications: A Numerical Recipe for Analytic  
Expression of Sesame EOS Data
 
B. A. Kashiwa  

LA-14421
Issued: September 2010





CONTENTS

Abstract 1

I. Introduction 2

II. The MGGB EOS in Functional Form 6
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The MGGB Equation–of–State for Multifield Applications:

A numerical recipe for analytic expression of Sesame EOS data

B. A. Kashiwa

Abstract A thermodynamically consistent and fully general equation–of–

state (EOS) for multifield applications is described. EOS functions are

derived from a Helmholtz free energy expressed as the sum of thermal

(fluctuational) and collisional (condensed–phase) contributions; thus the free

energy is of the Mie–Grüneisen1 form. The phase–coexistence region is defined

using a parameterized saturation curve by extending the form introduced by

Guggenheim,2 which scales the curve relative to conditions at the critical

point. We use the zero–temperature condensed–phase contribution developed

by Barnes,3 which extends the Thomas–Fermi–Dirac equation to zero pressure.

Thus, the functional form of the EOS could be called MGGB (for Mie–

Grüneisen–Guggenheim–Barnes). Substance–specific parameters are obtained

by fitting the low–density energy to data from the Sesame4 library; fitting the

zero–temperature pressure to the Sesame cold curve; and fitting the saturation

curve and latent heat to laboratory data,5 if available. When suitable

coexistence data, or Sesame data, are not available, then we apply the Principle

of Corresponding States.2 Thus MGGB can be thought of as a numerical recipe

for rendering the tabular Sesame EOS data in an analytic form that includes

a proper coexistence region, and which permits the accurate calculation of

derivatives associated with compressibility, expansivity, Joule coefficient, and

specific heat, all of which are required for multifield applications.
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I INTRODUCTION

I. INTRODUCTION

The goal of this work is to devise a reliable means of expressing equation–
of–state (EOS) data in a form suitable for general multifield problems. By

“general” we mean permitting all possible values of density and temperature. By
“multifield” we mean the averaged continuum dynamics of a set of substances,

each member of the set having a well–defined EOS. Given this collection of
substances, the averaged multifield EOS evaluation of specific interest here can

be stated as follows. Let Nf signify the size of the set. Using the integer index
subscript r, unique to a given member of the set, let p̃r [vr, Tr] signify its pressure
and ẽr [vr, Tr] signify its specific internal energy. In classical terms p̃r and ẽr are

thermal and caloric equations of state, both functions of the specific volume v
and temperature T . Further, let V be a volume containing a distribution of

masses Mr, each of which has a given specific internal energy er. The multifield
EOS of interest here is

V −∑Nf

r=1Mrvr = 0 (1)

p− p̃r [vr, Tr] = 0 r = (1, 2, . . . , Nf) (2)

er − ẽr [vr, Tr] = 0 r = (1, 2, . . . , Nf) (3)

a system of 2Nf +1 equations in the 2Nf+1 unknowns (p, vr, Tr). This is a semi–

equilibrium approximation. It is assumed that the Nf substances at the same
space–time point [x, t] will, on average, exhibit the same pressure, but they may
not share the same temperature (or the same velocity). The fully equilibrium

approximation, of course, assumes that all fields have achieved a state having
single–valued pressure, temperature, and velocity.

Evaluation of the system (1–3) is a nonlinear root finding problem. In
multifield numerical simulations this system is typically solved at a large number

of discrete space–time points. The computational speed, robustness, accuracy,
and validity of multifield dynamical simulations are all heavily dependent on the

nature of the multifield EOS. Therefore, it is sensible to engage in a dedicated
effort whose object is to formulate thermal and caloric EOS functions that

are true to the physical data, numerically tractable, and thermodynamically
consistent. This report is the result of one such effort. The means by which
the objective is approached is in no way unique; the methods of expression used

here are closely aligned with time–honored ones that have been found useful by
a collection of prior investigators far too numerous to name. Very loosely, the

methods employed here are analogous to those used for constructing the Sesame4

tabular EOS database, with extensions that become clear in later sections.
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I INTRODUCTION

Multifield theory is a continuum approach to problems in dynamics that

involve several distinct materials, separated in space, interacting at material
interfaces, and for which Local Thermodynamic Equilibrium is a good approx-

imation. In this theory it is also assumed, from the outset, that a complete
description of the dynamics for each material, taken in isolation (that is, without
regard to other materials) is available. For example, in classical fluid dynamics

problems a complete continuum description is provided by the conservation laws
for mass, linear momentum and total energy, plus closure data. The closure data,

which are material–specific, include complete equations of state, heat conduction
data, and a material response function. One simple form of material response,

is that of an isotropic viscous fluid, for which the stress is expressed using a
single coefficient of viscosity and local–instantaneous gradients of the velocity.
An equally simple material response is that of an elastic isotropic solid material

for which the rate of change of the stress is given by two elastic constants and
the strain rate (a tensor–valued object formed, typically, by local–instantaneous

velocity gradients). In general, the material response may be elasto–plastic, vis-
coelastic, thixotropic, or other strange nonideal responses that can be the cause

of interesting effects. For any material response the multifield EOS must be eval-
uated: the effects of this evaluation will ultimately feed back into, and influence,

the material response.
The basis for multifield theory consists of the classical continuum conservation

laws subjected to an averaging procedure that permits a finite probability for

any one of the Nf possible materials to occupy a space–time point. Ensemble
averaging is convenient for this purpose, and the result is a system of unclosed

conservation laws for the averaged collective dynamics of the Nf material set.
These are continuum field equations for which the entirety of multifield theory is

occupied with the problem of devising closure relations for interactions among the
fields. Multifield closures are needed for the turbulent stress; turbulent heat flux;

exchanges of mass, linear momentum and total energy among fields; averaged
equations of state; and averaged material response.6,7 This report considers only
one of these closure problems, namely, the EOS closure.

One very common EOS closure assumption is to suppose that the statistical
expectation for a particular substance residing at a space–time point is equal to

its averaged volume fraction θr [x, t], whereby

θr = Mrvr/V = ρrvr (4)

This may be the most common assumption used in multifield theory, and it is
the one used here; having made it the multifield EOS expressed in (1–3) follows;

the problem is that of finding the value of pressure p, such that all materials will
fill the volume V , given a specified collection of masses and internal energies.

3



I INTRODUCTION

Because the system (1–3) may involve materials at any point of [v, T ] space
(such as a gas and a solid), the only way to guarantee existence of a solution is

to permit phase–coexistence in the EOS for all materials. In this way p̃r ≥ 0, for
all r, and a solution will always exist.

Multifield applications are typically concerned with the forward–time inte-
gration of conservation equations using discrete numerical approximations. One
very common approximation uses a first–order Taylor series expansion in time, in

order to advance the thermodynamic state during the integration. Let the over-
dot signify the Lagrangian (material–frame) derivative. Using (4) and standard

symbols for specific heat cv; isothermal compressibility κ; and constant pressure
expansivity β; the Taylor expansions for energy and volume are

ρrėr = ρr

(
cvrṪr + e,vrv̇r

)
= work, chemistry, heat transport, heat exchange (5)

ρrv̇r = θr

(
−κrṗ+ βrṪr

)
= thermal expansion, volume exchange, dilation (6)

where e,v is the derivative of energy with respect to specific volume. Hence,
derivatives of the EOS become coupling coefficients for changes in energy and
specific volume. Accurate values of these derivatives are generally unavailable

when the EOS is furnished in tabular form, which is a significant motivating
factor behind this report.

The right side of (5) contains the physics of energy evolution, which is common
knowledge. The right side of (6) is less commonly known — it is determined by

taking the time derivative of (1), for which the mass conservation equation is
needed. That is

∂ρr
∂t

+∇ · ρrur = Γr (7)

where ρr is the mass of field–r material, per unit of volume, and Γr is the source
due to conversion to/from other fields. The mass conservation equation, summed

on all fields, can be combined with the volume rate to obtain

∇ · u−∑ρsv̇s =
∑

vsΓs (8)

where the velocity u =
∑

θsus is the total volume flux. The volume sum in (8)

is set to the field–sum of (6) and solved for ṗ. That is

ṗ =

∑
θsβsṪs +

∑
vsΓs −∇ · u∑

θsκs
(9)
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I INTRODUCTION

This in turn is placed in (6) to determine the physical evolution of r–field specific
volume, subject to satisfying the time–derivative of the EOS:

ρrv̇r =
(
θrβrṪr − f θ

r

∑
θsβsṪs

)
− f θ

r

∑
vsΓs + f θ

r ∇ · u (10)

where

f θ
r =

θrκr∑
θsκs

(11)

is clearly a fraction that lies between zero and one. This fraction shows that the

total volume dilation is distributed among materials according to their relative
compressibility. The conservative form of (10) is found by adding vr times the

r–mass equation. It is

(ρrvr)˙ =
(
θrβrṪr − f θ

r

∑
θsβsṪs

)
+
(
vrΓr − f θ

r

∑
vsΓs

)
+ f θ

r ∇ · u (12)

By inspection
∑

(ρrvr)˙ = ∇ · u; which is a well–known kinematic condition on
the total volume rate.

Historically the EOS for materials that can sustain a certain amount of tensile
stress in the solid phase have been generated; this means that regions of negative

pressure were included in such a way that the EOS would furnish the isotropic
part of the material stress. The deviatoric part was furnished by a relationship

separate from the EOS evaluation. In the present approach to problems with a
solid–phase material strength we instead provide full material stress by means of
integrating in time a stress history equation.6,7 This method permits a completely

unrestricted material stress to develop; meaning that the stress response to
straining motions may be isotropic or anisotropic, and the stress can exhibit an

arbitrarily large state of tension or compression. Insofar as the stress is concerned
in this method, the role of the EOS is to provide an accurate determination of

the present [v, T ] state (which may have a profound effect on the evolution of
the stress).

To reiterate, the central thrust of this report is the analytic expression of EOS
data that has been developed and reported elsewhere, and in a form needed
for multifield applications. Hence the physical, theoretical, and experimental

details that underlie the EOS data itself are not described here; this information
is readily available in the literature cited in the text. Any connection with the

fundamentals of statistical physics is mentioned only very briefly in areas where
it may be helpful to provide the genesis of certain functional forms used here.
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II FUNCTIONAL FORM

The report is organized as follows. In §II we describe the EOS parameteri-

zation beginning with an extended form of the Mie–Grüneisen1 Helmholtz free
energy similar in spirit to the one used by Sewell & Menikoff;8 the coexistence

region is defined by tailoring the universal one originally given by Gueggenheim;2

and with the solid–phase contribution in the form developed by Barnes;3 in
§III we illustrate the means by which substance–specific parameters are found

by fitting to Sesame4 data, and we compare the results to the original Sesame
data for dry air9, water10, methane11, aluminum12, copper13, and tungsten14; §IV
describes a robust numerical procedure for solving the nonlinear problem posed
by (1–3); and §V is a discussion of areas in which some follow–on work may

prove valuable. Appendices are used liberally to harbor summaries, standard
knowledge, and tricks that are handy, typically elementary, and easy to forget.

II. THE MGGB EOS IN FUNCTIONAL FORM

Viewed from a sufficiently high level, the procedure described here will appear
to be very similar to the one used for many of the EOS data tables in the

Sesame4 library. This procedure begins by defining a Helmholtz free energy
in a general parametric functional form. This form is supposed to reflect the

equilibrium statistics of a large collection of “particles” (atoms or molecules)
over the range of density–temperature space considered. Parameters appropriate
for any given substance are determined from a large variety theoretical and

experimental means. Given the parameters and the Helmholtz free energy, the
caloric and thermal EOS are completely determined by differentiation. If we

let F [v, T ] signify the Helmholtz free energy for any substance as a function of
specific volume v and temperature T , then by definition the pressure p [v, T ],

entropy s [v, T ], and specific internal energy e [v, T ] are

p [v, T ] = −∂F

∂v

s [v, T ] = −∂F

∂T

e [v, T ] = F + Ts

In general F is expressed in terms of a sum of parts that represent the
contributions of various physical effects. Here we consider F to be the sum

of two parts: one for the contribution due to thermal fluctuations, called the
thermal part, and signified by the subscript T ; and another for the contribution

due to collisional forces, called the condensed–phase part, and signified by the
subscript φ. This two–part F was used almost exclusively in the early Sesame4

6



II FUNCTIONAL FORM

database. (A more comprehensive additive approach is described, for example,
by Chisolm.15)

It has long been recognized that EOS functions of the form used here are

capable of exhibiting so–called “critical phenomena,” said to arise when the
interparticle force becomes sufficiently attractive.16 For multifield problems the
critical phenomenon of most interest is phase–coexistence. When conditions are

such that a gas and its condensed phase can coexist in equilibrium (which is said
to be metastable) the region of v–T space within which such states reside can be

derived from the EOS by means of a so–called “Maxwell’s construction.” This
is a process by which a region of F [v, T ] space below the critical temperature is

replaced by a linear variation in v, and whose limits are given by conditions on
F [v, T ] itself.16 Having performed this construction, a well–defined coexistence

region has been found; in this region the pressure is positive (or negligibly small)
and constant on isotherms.

Most but not all of the Sesame data exclude the coexistence region. Tables
for the metals such as copper, aluminum, and tungsten do not; one table for

water does; and for methane there are tables both with and without a region
of coexistence. Here we use, in effect, a parameterized form of Maxwell’s

construction that is rooted in the work summarized by Guggenheim2 and called
“The Principle of Corresponding States.” In this Guggenheim showed that the
saturation curve and latent heat, defining the coexistence region, are readily

parameterized in terms of the critical temperature. We make use of this
parameterization to carry the results of Maxwell’s construction, and show that

the result is sensible in view of both Sesame and experimental data.

For simplicity we ignore the distinction between the liquid and solid phase,
so that the volume discontinuity connected with melting/freezing phenomena
is not explicitly included; thus a triple point does not appear. Nevertheless the

energetics of condensation (or sublimation) are fully contained in the EOS. Hence
our coexistence region spans the transition from pure gas to pure “condensed–

phase;” we use the subscript g for gas and the subscript n for the condensed–
phase (“not–gas”), so that ρg [T ] = 1/vg [T ] is the density of saturated gas and

ρn [T ] = 1/vn [T ] is the density of saturated condensed–phase. As an aid to
describing how the coexistence region is determined, we divide the [v, T ] domain

into a pentad of regions according to Fig. 1, where dashed lines signify the
saturation curve. In this figure Region I is entirely gas–phase, and contains
all temperatures greater than the critical temperature Tc and all densities to

the expansion side of the critical density; Region II is subcritical gas–phase
with all densities expanded relative to the saturation curve; Region III is the

coexistence region; Region IV is the subcritical condensed–phase, and Region V
is the supercritical condensed–phase.

7
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Figure 1. Definition of the region pentad. (a) Linear scale; (b) Log-Log scale; in both plots
the dashed line identifies the saturation curve, which has a branch–cut extending from the
critical temperature to infinity. Red line is the critical isotherm; blue is the cold curve.
Region I is supercritical and to the expanded side of the saturation curve; Region II is
subcritical and to the expanded side of the saturation curve; Region III is the coexistence
region; Region IV is the subcritical condensed–phase region; and Region V is supercritical
condensed–phase.

A. Extended Mie–Grüneisen: The Helmholtz Free Energy

We extend the Helmholtz function used by Sewell & Menikoff,8 by adding the

cohesive energy e◦ corresponding to v = v◦ and T = 0:

F [v, T ] = −v◦

∫ v/vn

1

pφ [η] dξ −Θ

∫ T/Θ

0

C [τ ]

(
T

Θ
− τ

)
dτ

τ
+ e◦ (13)

where the dummy variable η = 1/ξ. We further extend by permitting the scaling
temperature Θ [v, T ] to be a function of both volume and temperature; and we

permit the upper limit of the condensed–phase contribution to be a function of
temperature, by way of vn [T ], in order to provide a smooth transition into the

compressed condensed–phase region, details of which are given in section II C.
In (13) the first integral is the collisional contribution (expressed in terms of the

compression of the condensed–phase, so it is understood that the upper limit is
min [1, v/vn] because pφ is nonnegative). The second integral is the fluctuational

(thermal) contribution. By differentiation we have

p [v, T ] = −∂eφ
∂v

− e
T

v

∂ logΘ

∂ log v
(14)

s [v, T ] = −∂eφ
∂T

− e
T

T

∂ logΘ

∂ logT
+ s

T
(15)

e [v, T ] =

(
eφ − T

∂eφ
∂T

)
+ e

T

(
1− ∂ logΘ

∂ logT

)
+ e◦ (16)

8



II FUNCTIONAL FORM A Mie–Grüneisen

where we signify the integrals by

eφ [v, T ] = −v◦
∫ v/vn

1

pφ [η] dξ (17)

e
T
[v, T ] = Θ

∫ T/Θ

0

C [τ ] dτ (18)

s
T
[v, T ] =

∫ T/Θ

0

C [τ ]

τ
dτ (19)

Equation (14) may be recognized as identical to that which was displayed by
Grüneisen1 where we use (v, eφ, eT

) in place of (V,Φ, E). For this reason we

refer to (13) as having the Mie–Grüneisen functional form. Following Sewell &
Menikoff 8 we define

ΓV [v, T ] ≡ −∂ logΘ

∂ log v
(20)

It is also convenient to define

ΓT [v, T ] ≡ −∂ log Θ

∂ logT
(21)

Here we use

C [τ ] = C◦
(
1 + c1H◦ [τ/Θ1, d1]

)
(22)

Γ◦ [T ] = c2 +
(
2
3 − c2

)
H◦[T/Θ2, d2] (23)

b [T ] = c3H1[T/Tc, d3] (24)

where C◦ = 3R/M̂ a reference specific heat, per unit mass, in which R is the

gas constant, and M̂ is the substance weight (either atomic or mean molecular),
per mole. Also H◦[x, y] is an Heaviside function centered at x, and having width

y log x; accordingly it has the value H◦[1, y] = 1/2. This function is described
in full detail in Appendix A, along with its normalized derivative H1[x, y] which

looks like a Delta function with H1[1, y] = 1. Differentiation of the integral
functions is a straightforward matter using Leibnitz’s rule, and is shown in
Appendix B. The integral expressions are displayed in Appendix C.

We modify the Sewell–Menikoff expression for ΓV such that

ΓV [v, T ] = Γ◦ − bH1[ηc, d4] (25)

9



B Guggenheim II FUNCTIONAL FORM

in which

ηc [v] =

(
α
v

v◦
+ (1− α)

v

vc

)−1

(26)

where α is another substance–dependent constant. By integration we have

Θ [v, T ] = ηΓ◦
c e−bHz (27)

where Hz = (
√
π/2d4)Erf[d4 log ηc]; and by differentiation we have

ΓT [v, T ] = Tb′Hz − TΓ′
◦ log ηc (28)

where the prime signifies differentiation with respect to the single independent
variable T .

To summarize what we have so far, (14–28) define parameterized equations of
state. For any substance, these depend on the 15 parameters(

Tc, vc, v◦, e◦, M̂ ,Θ1,Θ2, c1, c2, c3, d1, d2, d3, d4, α
)

In the next section we display the parameterization of the coexistence region,
which adds four more parameters associated with defining the saturation curve

and the latent heat. These four are signified by

(q, r, ρz, σ)

Then we complete the parameter inventory with three more substance–specific

constants that define the condensed–phase pressure function pφ[η], given in § II C,
and signified by

(B◦, ba, br)

which is the same nomenclature used by Barnes.3 This brings the grand total of
parameters to 22, which are determined in §III.

B. Extended Guggenheim: The Coexistence Region

To define the coexistence region we extend the functions given by Guggenheim2

for the lines of saturated vapor and saturated liquid. Using τ = T/Tc ≤ 1 (which
is not to be confused with the dummy variable used in the energy integrals), those

functions are

ρg [τ ] /ρc = 1 + (3/4) (1− τ)− (7/4) (1− τ)1/3 (29)

ρn [τ ] /ρc = 1 + (3/4) (1− τ) + (7/4) (1− τ)1/3 (30)

ρc = (2/7) ρ◦ (31)

10



II FUNCTIONAL FORM B Guggenheim

where, again, we use the subscript “g” for gas, and “n” for the condensed–phase,

and where we use (ρ◦ = 1/v◦; ρc = 1/vc), both constants. These functions are
fits to a large collection of experimental data; they are considered to be applicable

to any substance for which the Principle of Corresponding States applies, which
is supposed to include any element, nonpolar molecule, or mixture thereof.

Here we extend the saturation functions in two essential ways: 1) for saturated

gas a particular exponential form is selected in order to obtain a finite latent heat
at zero temperature; and 2) the polynomial form for the saturated condensed–

phase is modified in order to permit fitting to data for any substance, including
polar molecules (like water). These extended functions are

ρg [τ ] /ρc = exp [− (q/τ) (1− τ)r] (32)

ρn [τ ] /ρc = 1 + (ζ − 1) (1− τ)0.48 (33)

ζ = (ρz/ρc) τ
1.30 + (ρ◦/ρc)

(
1− τ 1.30

)
(34)

where we introduce three new variable parameters (q, r, ρz), and two fixed ones
(0.48, 1.30). The motive for these selections is given shortly. The extended

functions are compared with (29–31) in Fig. 2. There we use (q, r, ρz/ρ◦) =
(4.50, 0.54, 1.00), which we regard as a “universal” parameter set because the

functions fit the experimental data equally as well as do (29–31). By “universal”
we simply mean that the functions define the saturation curve for any substance
for which the Principle of Corresponding States applies. The practical utility of

(32–34) is that they provide a means of fitting data for any substance, if that
data were to exist, and a useful gauge for any other substance assumed to obey

the Principle of Corresponding States.

The motive behind the variable factor ζ in (32–34) is to allow more flexibility

in the process of fitting experimental data for the saturated condensed–phase
side of the curve, particularly for substances having a polar molecule — which
typically excludes them from obeying the Principle of Corresponding States.

This added feature is used here mainly to accommodate water, because of its
importance in many problems of interest. The quantitative effect of this factor

is shown later when we display plots of the EOS in comparison to experimental
data.

11
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Figure 2. The Extended Guggenheim saturation curve. (a) Linear scale; (b) Log-Linear
scale; in both plots solid lines correspond to (29–31); dashed lines correspond to (32–34).

The exponential form used in (32) for the density of saturated gas is suggested
by the expression we use for the latent heat ∆h [T ] = hn−hg < 0 where h = e+pv

is the enthalpy. We find that a simple form involving one new variable parameter
provides a good correlation to the latent heat data for all substances. Using σ
for the latent heat parameter, this form is

∆h [T ] = σΓ◦CT log [ρg/ρn] (35)

where the functions (Γ◦ [T ] , C [T ]) are given by (22–23). Using (32–34) we have

∆h◦ = lim
T→0

∆h = −qσc2C◦Tc (36)

a substance–specific constant, which turns out to be very similar in magnitude
to the cohesive energy e◦ for the selection of materials studied here. Indeed, if

we were to set e◦ = −∆h◦ then the value of energy at normal density and zero
temperature would be e [v◦, 0] = 0. (Because the reference energy is arbitrary, it

is tempting to use e◦ = −∆h◦ simply for the sake of tidiness — but we refrain
from doing so in order to facilitate comparison with the Sesame data, which
furnish e◦ explicitly.)

Now let the subscript s signify conditions in Region III, and let (vg[T ], vn[T ]) =
(1/ρg[T ], 1/ρn[T ]). With these symbols our Maxwell’s construction is as follows.

The saturation pressure is simply

ps [T ] = p [vg, T ] (37)

which is constant on isotherms. The energy at any point in Region III is

es [v, T ] = e [vg, T ] + ∆h

(
v − vg
vn − vg

)
− ps (v − vg) (38)

12



II FUNCTIONAL FORM C Barnes

which corresponds to replacing F [v, T ] with a linear function in v, as was
suggested by Maxwell. Formally this requires matching the Gibbs free energy,

g = F + pv = h− Ts, for saturated gas to that for saturated condensed–phase.
At a specified value of T < Tc there there will be one value of pressure ps that

satisfies

F
[
vn, T

]− F
[
vg, T

]
+ ps

(
vn − vg

)
= 0

p [vn, T ]− ps = 0

p [vg, T ]− ps = 0 (39)

where
(
F [v, T ] , p [v, T ]

)
are given by (13–14). The solution gives the latent heat

∆h = T
(
s [vn, T ]− s [vg, T ]

)
(40)

where s is given by (15). Hence the saturation curve given by (32–34), and
the latent heat given by (35), represent a parameterization of the root finding

problem (39–40) posed by Maxwell for construction of the coexistence region.

C. Extended Barnes: The Condensed–Phase Contribution

For the condensed–phase contribution in (13) we utilize the Barnes3 zero–

temperature pressure function, which extends the so–called Thomas–Fermi–
Dirac equation to a the proper limit pφ [1] = 0, using an experimentally measured

bulk modulus B◦. This function is used in the construction of tables for many (if
not most) of the materials in the Sesame4 tabular EOS library. Barnes originally

developed this in terms of the compression η = 1/ξ ≥ 1, parameters (B◦, ba, br),
ν = 1− η−1/3, and a = B◦

/(
1 + 1

3 (br − ba)
)
, with which

pφ [η] = aη2/3
(
ηebrν − ebaν

)
(41)

The extension here is to permit the compression to be a function of both density
and temperature, as follows. On the zero–temperature isotherm, we let the
compression be η◦ = v◦/v = ρ/ρ◦. For temperatures above zero we construct the

function η [η◦, T ] such that

η [η◦, T ] = η◦ + (1− ηn) (ηn/η◦)
pz eηn−η◦ (42)

ηn [T ] = v◦/vn (43)

pz = (v◦/vc)
2 / (1− v◦/vc) (44)

13



C Barnes II FUNCTIONAL FORM

Figure 3 illustrates the function η used in (41), and which has the asymptotic
property limη◦→∞ η = η◦. The exponent pz is chosen so that in the limit T → Tc

the derivative ∂η/∂ηn = 0 in order to avoid a singularity described shortly.

0.0 0.5 1.0 1.5 2.01.0

1.2

1.4

1.6

1.8

2.0

Η0

Η

Figure 3. The function η [η◦, T ]. Plotted for values of ηn [T ] = (0.2, 0.4, 0.6, 0.8, 1.0).

This usage of the Barnes pressure formula in (13) has an upper limit that
is temperature dependent. Hence the derivative for the condensed–phase

contribution to the pressure must be evaluated with some care. In particular
we find

−∂eφ
∂v

=
∂

∂v
v◦

∫ ξ

1

pφ [η̃] dξ̃

= v◦pφ [η]
∂ξ

∂v

= pφ [η]
∂ξ

∂ξ◦
(45)

in which the second line follows by use of Leibnitz’s rule; and the third line

follows because ξ◦ = 1/η◦. Similarly we have

∂eφ
∂T

= − ∂

∂T
v◦

∫ ξ

1

pφ [η̃] dξ̃

= −v◦pφ [η]
∂ξ

∂T

= −v◦pφ [η]
∂ξ

∂ξn

∂ξn
∂T

= −v◦pφ [η]
∂ξ

∂ξn

(
−ρ◦
η2

∂ρn
∂T

)
(46)

which is needed for evaluation of the condensed–phase contribution to the
energy in (16). Note that the derivative ∂ρn/∂T is infinite at the critical

point, which is why it is that we require the function (42) to have the property
∂ξ/∂ξn = (ηn/η)

2∂η/∂ηn = 0 for T → Tc.
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II FUNCTIONAL FORM D Patches

D. Patches

Here we describe four different patches to the EOS functions that are
necessitated either by Maxwell’s construction or by pathologies that arise when

computing second derivatives of the Helmholtz free energy (13). Each of these
patches is designed to be a solution to a particular problem; the efficacy of the

solution is measured by how the thermodynamic consistence may be affected.
Thermodynamic consistency is a relationship between the thermal and caloric
EOS given by

∂e

∂v
+ p− T

∂p

∂T
= 0 (47)

which is, in terms of F ,

∂F

∂v
+ T

∂

∂v

(
−∂F

∂T

)
+

(
−∂F

∂v

)
− T

∂

∂T

(
−∂F

∂v

)
= 0 (48)

and the equality will hold provided that the order of differentiation can be
reversed, which is always true when the differentiation is analytic. Hence
any EOS derived from a Helmholtz free energy will automatically satisfy (47).

Because our treatment of Region III is a parameterized version of Maxwell’s
construction, consistency will be only approximate there; the accuracy of which

is made quantitative in § III D.
The first patch is required due to introducing the coexistence region by means

of the parameterized Maxwell’s construction. In Region IV condition (47) is
satisfied by setting the thermal part of the pressure (equation (14) second term)
equal to ps [T ]. Then the thermal part of the energy (equation (16) second term)

is

e [vn, T ] +

(
T
∂ps
∂T

− ps

)
(v − vn) (49)

which is the exact integral of (47) because both the derivative, and the saturation
pressure, are constants.

The second patch is needed because ∂e/∂T can become negative at low
temperatures in Region II. In this region there is only a thermal contribution.

The remedy is to use a cut–off procedure on temperature, using an additional
input parameter c4, as follows. For T/Tc < c4 we compute the pressure p4 and

energy e4 on the saturation curve and temperature T4 = c4Tc:

p4 = p[vg[T4], T4] (50)

e4 = e[vg[T4], T4] (51)
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and for Region II points such that T < T4 and v > vg we use the perfect gas

relations

p[v, T ] = p4 (T/T4) (v4/v) (52)

e[v, T ] = e4 (T/T4) (53)

with which consistency (47) is satisfied exactly.

The third patch is needed because the condensed–phase part of ∂e/∂T can
become negative at large compressions in Region IV. The remedy is to simply

evaluate ∂η/∂ηn in (46) at T = Tc. This formally destroys consistency in Region
IV in favor of retaining physical values for the derivatives. The penalty for this

approximation is shown in later figures where we plot the literal value of the
normalized consistency defined in § III E.

The fourth and final (so far) patch is introduced for safety’s sake, and it covers
an extremely small part of the [v, T ] phase space. This is a small slice of isotherms

that pass through the critical point, where the slope of the saturation curve is
infinite. Whereas we have taken care to mitigate the effects of this singularity, we

believe that it is safer to use a preemptive measure to ensure that a pathological
energy derivative will not be computed there. The safety remedy is to multiply

the energy correction (49) by the factor 1 − 2H◦[T/Tc, 50] which removes the
correction in a tiny slice of temperature space at and slightly below the critical
temperature.

III. DETERMINATION OF SUBSTANCE–SPECIFIC

PARAMETERS

Here we begin the process of finding the substance–specific parameters by
fitting the MGGB EOS to the data in the Sesame tabular database. For any

substance, the Sesame data for pressure and internal energy are stored in a two–
dimensional array of discrete values of density–temperature space (ρi, Tj), such

that (1 ≤ i ≤ NR, 1 ≤ j ≤ NT), where (NR,NT) are the array dimensions. Data
for constant j are isotherms and data for constant i are isochores. For increasing
i and j the density and temperature increase. The next three sections detail

the means by which parameters are found; particular values of the parameters
are summarized in Appendix D. A summary of the “goodness–of–fit” is given in

Appendix E where the root–mean–square (RMS) difference between the MGGB
fit and the Sesame data is displayed on a region–by–region basis.
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III PARAMETERS A Energy at Low Density

A. Energy at Low Density

For the first fitting exercise, we extract Sesame data for energy and pressure,

e [ρ1, Tj] and p [ρ1, Tj], at the lowest nonzero isochore (which is sometimes i = 1
and sometimes i = 2, depending on the particular Sesame table). We call this

data the “low” density data because ρ1 is small compared to ρ◦, and we let
v∞ = 1/ρ1. We also let e◦ = e [ρ1, T1], if T1 = 0, and use an extrapolation to zero
temperature otherwise.

Figure 4 plots the low density data compared to the MGGB functions for

Sesame 7150 Water. The first coefficient to be found is c1, used in (22), which
controls the magnitude of the upward energy shift in the thermal energy e− e◦,
plotted by the dashed curve. The coefficient c2 establishes the fit to the low
temperature pressure. Coefficients (Θ1, d1) control the centering temperature
and width of the numerical Heavyside function H◦ in (22); these parameters

determine the location and width of the bump that is exhibited in both the
Sesame data and the MGGB fit (solid line). Parameters (Θ2, d2) control the

centering temperature and width of the H◦ appearing in (23).

Thus the function C [τ ], used in (18–19), plays the role of a low–density specific
heat, which increases from some constant value at low temperature to a higher

constant value at high temperature; representing the energetics of dissociation
and ionization. The function Γ◦ [T ] plays the role of a quantity like (γ − 1);
it increases from c2 at temperatures far below Θ2 to a value of two–thirds at

temperatures far above Θ2. This is supposed to represent the change in the
internal degrees of freedom as the substance approaches a fully ionized state at

high temperature.

1 100 104 106 108
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100

104

106

T �K�

e
�MJ�kg�

�a�
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p
�MPa�

�b�

Figure 4. MGGB fit to the “zero” density data for Sesame 7150 Water. (a) e [v∞, T ]; (b)
p [v∞, T ]; in both plots, symbols are the Sesame data. In (a) data for both e and e− e◦ are
shown; dashed line is the MGGB fit for the energy evaluated using Θ = 1, which removes
the effect of the scaling temperature.

17



B Pressure at Zero Temperature III PARAMETERS

Clearly the MGGB fit is an approximation to the Sesame data, which has the

effect of smoothing over some of the physical detail such as the dissociation of
water shown here. The goodness of this fit varies with the particular substance

considered. A quantitative measure of the smoothing is given in Appendix E,
where we display the RMS difference between MGGB and the Sesame tabular
data, on a region–by–region basis, for dry air, water, methane, aluminum, copper,

and tungsten.

B. Pressure at Zero Temperature

Substance–specific values of (B◦, br, ba) are determined from the so–called
Sesame cold curve p [ρi, T1], where the value of T1 is typically zero (or at least

a very low value). In most cases this is a simple matter of finding the values
originally used in the EOS table construction process. Therefore, we regard

(B◦, br, ba) as being given directly by the Sesame data. For water the fit is
shown in Fig. 5. In this case it is likely that the Sesame cold curve pressure
was generated by a function nearly identical to the Barnes3 expression used

here, although the means by which the transition into Region IV at higher
temperatures is unknown.

For most of the materials studied in this report, the value of bulk modulus
B◦ at normal conditions is typically given in the Sesame Handbook.4 Given
B◦, the other two parameters are found using a function fitting routine in

Mathematica,17 called FindFit, which finds parameters that minimize the RMS
difference between a functional and specified data. Here, the specified data are

the cold curve pressures at and above the normal density ρ◦.

10�4 0.01 1 100
10�7

10�4

0.1

100

105

Ρ �g�cm3�

p
�MPa�

Figure 5. MGGB fit to the “zero” temperature pressure data (cold curve) for Sesame 7150
Water. Symbols are the Sesame data for T = 290.121 K, which is the lowest isotherm in
the tabular data.
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III PARAMETERS C Coexistence

Unfortunately not every Sesame EOS table was generated using the Barnes

formula for pφ [η], however, the preponderance of the tables were. The table for
dry air, for example, clearly did not use the Barnes form and the fit is not nearly

as good as for others that did use it. The quantitative measure of the goodness of
fit is given in the RMS differences displayed for Regions IV & V in Appendix E.

C. Coexistence

Measured data for the density of saturated vapor, saturated liquid, saturation
pressure, and latent heat are summarized for a large collection of substances in
a handy reference by Vargaftik.5 When the corresponding Sesame table contains

the phase–coexistence region, it is (typically) gauged to fit the measured data as
well. Hence, we find that fitting measured data is essentially the same as fitting

the Sesame data, when it exists.

The MGGB parameters (q, r, ρz) control the fit of the saturation curve to the
data. For water the result is shown in Fig. 6. Similar accuracy is obtained for

dry air and for methane, both of which have data in the Vargaftik handbook.
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Figure 6. MGGB fit to the saturation density data of Vargaftik5 for water. (a) Linear scale;
(b) Log–Linear scale; in both plots symbols are the Vargaftik data; solid line is the MGGB
fit for water; dashed lines show the “universal” saturation curve from Figure 2.

Figure 6 illustrates the reason that we go to all the trouble of using the extra

shaping parameter ζ in (32–34); the MGGB fit to the data is quite good, while
the universal curve, which is associated with materials obeying the Principle of
Corresponding States, does not fit the data at all. This is supposed to be due to

the fact that the water molecule is a polar one, to which the Principle does not
apply. For methane (a nonpolar molecule) the universal curve fits the data well;

hence we apply the universal curve parameters to methane, aluminum, copper
and tungsten, assuming that they all obey Principle outlined by Guggenheim.2
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Figure 7. MGGB fit to the saturation pressure and latent heat data of Vargaftik5 for water.
(a) saturation pressure; (b) latent heat; in both plots symbols are the Vargaftik data.

The MGGB saturation pressure and critical pressure pc = p [vc, Tc] are

controlled by the parameters (c3, d3, d4, α); and the latent heat is controlled by
the parameter σ. The fitting result for water is shown in Fig. 7; with similar
accuracy found for dry air and methane.

When the Sesame EOS does not contain the coexistence region, either via
Maxwell’s construction or otherwise, MGGB inserts one; in which case, the

Sesame data for energy at the density of saturated condensed–phase is used to
determine the value of the latent heat parameter σ. In those cases for which this

procedure is used, the parameter is generally very close to that for a substance
that obeys the Principle of Corresponding States. According to Guggenheim,2

for such a substance the value of −∆h/R̂T = 9.05 at T/Tc = 0.57 (where
R̂ = R/M̂). When data are not available that establish the condensed–phase
energy, we assume that this condition holds exactly, which determines σ. For

materials that are not expected to obey the Principle of Corresponding States,
such as water, then the experimental data are relied upon entirely for finding σ.

The result is that the value of T/Tc for which −∆h/R̂T = 9.05 will be different
from 0.57, as is shown in Fig. 8.
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Figure 8. MGGB fit for the latent heat of water. The symbol shows the value of T/Tc for
which −∆h/R̂T = 9.05.
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D. Sesame Comparison

The next figures furnish a graphical comparison of the MGGB EOS with the
corresponding Sesame EOS. First for Sesame 7150 Water:
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Figure 9. Comparison of the MGGB fit to Sesame 7150 Water. Top p [v, T ]; bottom e [v, T ];
solid line connects the Sesame tabular data points; symbols mark the MGGB fit evaluated
at the Sesame [v, T ] points.

21



D Sesame Comparison III PARAMETERS

and second, for Sesame 3336 Copper:
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Figure 10. Comparison of the MGGB fit to Sesame 3336 Copper. Top p [v, T ]; bottom
e [v, T ]; solid line connects the Sesame tabular data points; symbols mark the MGGB fit
evaluated at the Sesame [v, T ] points.

In the foregoing display the tabular Sesame data points are connected by the
solid line; symbols are centered at the MGGB EOS evaluated at the Sesame
points [ρi, Tj] for selected isotherms as marked in the figures. The quantitative

differences are given in Appendix E. Figure 9 shows that when a coexistence
region exists in the Sesame data, the MGGB EOS reproduces it well; further,

the fit is generally good everywhere except just above the critical point where
the MGGB pressure tends to be low. Because this is an area of [v, T ] space for
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which there is considerable uncertainty anyway, we do not regard the difference

as being a flaw in the MGGB formulae.

In the case of copper, shown in Fig. 10, the Sesame EOS does not contain the

coexistence region; and the one exhibited by the MGGB EOS is plausible in the
sense that the data for all regions except for Region III appear to overlap well.

E. Derivatives

Between the thermal EOS p [v, T ] and the caloric EOS e [v, T ] there are four
derivatives; given the condition (47) only three of them are independent. These

derivatives appear in the definition of four measurable quantities. Using the
classical symbol for each quantity they are18

κ ≡ −1

v

(
∂v

∂p

)
T

: constant temperature compressibility (54)

β ≡ κ

(
∂p

∂T

)
v

=
1

v

(
∂v

∂T

)
p

: constant pressure expansivity (55)

η ≡ −
(
∂T

∂v

)
e

=
1

cv

(
∂e

∂v

)
T

: Joule coefficient (56)

cv ≡
(
∂e

∂T

)
v

: constant volume specific heat (57)

(Note: the classical symbol η used for the Joule coefficient is not to be confused

with the compression.) In that which follows we use these classical symbols to
carry the derivative data, with the exception of the first energy derivative for

which we use the symbol e,v ≡ (∂e/∂v)T .

In the coexistence region, where the pressure is constant on isotherms, the

derivative (∂p/∂v)T is zero; so the compressibility is, literally, infinite. For
the purposes of numerical integration of multifield problems, this is not very
helpful. Because the mixture compressibility is presumably finite there, we define

a “physical” one simply as the mass–weighted average of the compressibility on
the saturation curve. That is, for any temperature we compute κg [T ] and κn [T ]

on the saturation curve and for any point in the coexistence region we let

κ [v, T ] = fκn + (1− f)κg

f =

(
1/v − 1/vg
1/vn − 1/vg

)
(58)
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In a similar fashion we define the expansivity in the coexistence region by

evaluating βg [T ] and βn [T ] on the saturation curve and for any point in the
coexistence region we let

β [v, T ] = fβn + (1− f)βg (59)

using the same interpolant f. In what follows we will refer to the foregoing κ and

β as the “physical” derivatives, in contrast to those which would be computed
directly from the EOS which we will call the “literal” derivatives. Note that the

physical and literal derivatives are the same everywhere except in Region III.
For a perfect gas κ = 1/p and β = 1/T , so it is natural to plot κp and βT ;

thus, both quantities will have a unit value in regions for which the material

may be well represented by a perfect gas. The consistency condition (47) is
1 + e,v/p = (T/p) (∂p/∂T )v. Thus, it is natural to plot the function 1 + e,v/p,

which we will call the “Joule Function”; a quantity that should be greater than
zero and has a unit value for a perfect gas. In the figure that follows, the

specific heat is normalized by the constant value C◦ = 3R/M̂ . Using these
normalizations, the derivatives for MGGB Water are plotted in Fig. 11; the

same plots for all six test materials are displayed in Appendix E.

�2�4�6�8 0 2 4 6
0.0

0.5

1.0

1.5

2.0

log10 Ρ �g�cm3�

Κp

7150 Compressibility

T �K�
6.47E�06

6.47E�04

6.47E�02

4.53E�02

1.94E�02

�2�4�6�8 0 2 4 6
0.0

0.5

1.0

1.5

2.0

log10 Ρ �g�cm3�

ΒT

7150 Expansivity

T �K�
6.47E�06

6.47E�04

6.47E�02

4.53E�02

1.94E�02

�2�4�6�8 0 2 4 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

log10 Ρ �g�cm3�

1�
e ,

v
�p

7150 Joule Function

T �K�
6.47E�06

6.47E�04

6.47E�02

4.53E�02

1.94E�02

�2�4�6�8 0 2 4 6
0

2

4

6

8

10

log10 Ρ �g�cm3�

c v
�C 0

7150 Specific Heat

T �K�
6.47E�06

6.47E�04

6.47E�02

4.53E�02

1.94E�02

Figure 11. Derivatives for MGGB 7150 Water. Compressibility and Expansivity are the
physical derivatives; Joule Function and Specific Heat are both literal derivatives.

The plots in Fig. 11 are furnished in order to illustrate the fact that the
physical κ and β make a sensible transition between perfect gas behavior at low

24



III PARAMETERS E Derivatives

density and temperature and highly nonperfect behavior at high temperature and

high density. Furthermore, the values are finite and nonnegative everywhere,
including the coexistence region, which is important for obtaining sensible

numerical solutions using the specific volume evolution expressed in (10). The
literal values for Joule Function and specific heat are likewise sensible insofar as
they are both positive; these are necessary for use in the model equations for

energy (5).
The ratio of specific heats γ appears prominently in the wave theory of gas

dynamics. For γ ≥ 0 the gas dynamic equations are hyperbolic.19 In Fig. 12 we
use the identity

γ [v, T ] =
cp
cv

=
(∂p/∂v)s
(∂p/∂v)T

=
c2κ

v
(60)

where we use the physical values for κ. The sound speed c is given by the
isentropic derivative

c2 [v, T ] ≡
(
∂p

∂ρ

)
s

=
v

κ
+ v2

(
p+ e,v
cv

)
β

κ
(61)

where we again use the physical κ and β, and the literal e,v and cv. Our
normalization of the sound speed is c2/pv, which is identical to γ for a perfect

gas.
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Figure 12. Derivatives for MGGB 7150 Water. γ, c2, Γ and normalized consistency ε.
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In Fig. 12 we also plot the so–called Grüneisen coefficient

Γ [v, T ] ≡ v

(
∂p

∂e

)
v

= v
(∂p/∂T )v
(∂e/∂T )v

(62)

using only literal derivatives. Recall the condition for thermodynamic consis-
tency (47), whose locally normalized residual, squared, is

ε [v, T ] ≡ (e,v + p− T∂p/∂T )2

(e,v)2 + p2 + (T∂p/∂T )2
(63)

in which only literal derivatives are used, and for which we plot − log10 ε; this

estimates the number of digits in the normalized residual. (So that larger values
indicate “more consistency.”)

Values of γ, c2 and Γ exhibit the kind of variation to be expected over the
full range of temperature–density space. The consistency (which is limited to 16
digits) is good everywhere except in Region III, where it is only fair. This is a

result of the approximation used to represent Maxwell’s construction, and varies
from material to material. Generally the one to two digit consistency shown

there is judged to be acceptable.

F. Isentropes and Hugoniots

Let TS [v] be the temperature at specific volume v for which the isentropic

expression

de [v, TS] + p [v, TS] dv = 0 (64)

is satisfied. The level curves e [v, TS] and p [v, TS] are called isentropes. A
particular isentrope is found by integration of (64) in v, using a specified

point [v, T ] as an initial condition. The next figure (Figure 13) shows selected
isentropes for water, using both the MGGB fit and the Sesame data.
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Figure 13. Isentropes comparing the MGGB fit to Sesame 7150 Water. (a) TS [v]; (b)
p [v, TS]; solid lines are for Sesame 7150 Water; dashed lines are for the MGGB fit; in both
plots, the axes origin is the critical point; curves are for isentropes passing through four
points: Black[vc, 100Tc]; Blue[vc, 10Tc]; Red[vc, 0.9Tc]; Cyan[vc, 0.5Tc].
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Clearly the temperature is not a constant on isentropes, so the pressure

isentrope is not an isotherm. The nature of pressure isentropes indicates certain
features of solutions to wave problems using the corresponding EOS. In this

regard, the fundamental derivative in gas dynamics G is helpful; again using c
for the isentropic sound speed, G is defined

G =
1

c

∂ρc

∂ρ
(65)

According to Menikoff,19 when G > 0 the sound modes of the gas–dynamic
equations are linearly non–degenerate: compressive waves steepen to form shocks

and expansive waves spread out to form rarefactions. This is the physical case of
interest. The derivative G is a measure of convexity of pressure isentropes; and

the Grüneisen Coefficient Γ is a measure of their spacing; for Γ > 0 isentropes
do not intersect.19 Convexity is difficult to observe in Fig. 12. The subcritical
curves exhibit a cusp on the condensed–phase side of the saturation curve; on

the high density side it is difficult to see if they may intersect. The next figure
(Figure 14), which displays G [v, TS] and Γ [v, TS] corresponding to the isentropes

in Fig. 13, shows that the pressure isentropes are indeed convex and that they are
nonintersecting (although they come very close, as indicated by the very small

values of Γ on the low temperature isotherm). Note that on the lowest isotherm
the convexity is essentially zero, corresponding to the very flat pressure isotherm

in the coexistence region where the isentropic sound speed is very small, in which
case our numerical evaluation of G becomes noisy.
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Figure 14. G and Γ for the MGGB fit to Sesame 7150 Water. (a) G [v, TS ]; (b) Γ [v, TS ];
curves are for isentropes passing through four points: Black[vc, 100Tc]; Blue[vc, 10Tc];
Red[vc, 0.9Tc]; Cyan[vc, 0.5Tc]; axes origin passes through the critical density.

Using subscripts (L,R) for the uniform conditions to the left and right of

a steady one–dimensional compression wave moving with speed U , the closed
conservation laws can be expressed:

27



F Isentropes and Hugoniots III PARAMETERS

−U (ρ
R
− ρ

L
) + (ρ

R
u

R
− ρ

L
u

L
) = 0 (66)

(u
R
− u

L
)2 + (p

R
− p

L
) (v

R
− v

L
) = 0 (67)

(e
R
− e

L
) + 1

2 (pR
+ p

L
) (v

R
− v

L
) = 0 (68)

p
L
− p̃[v

L
, T

L
] = 0 (69)

e
L
− ẽ[v

L
, T

L
] = 0 (70)

a system commonly called the “Hugoniot relations.” When conditions are
specified on the right side, say, these are five equations in the unknown left side

state (ρ
L
, u

L
, e

L
, p

L
, T

L
) plus the wave speed U . Hence, if any element of the state,

or the wave speed itself, is specified, then the Hugoniot relations determine all of

the other unknowns. When the left side velocity is specified such that u
L
= up,

and the right side velocity is zero, then the problem is that of a piston moving

toward a stationary medium, which generates a shock wave moving with speed
U = us into the medium. The curve defined by us [up] is often referred to simply
as the “Hugoniot.” These curves are plotted here for both the MGGB fit and

for Sesame 7150 Water (Figure 15).
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Figure 15. Hugoniot comparing MGGB fit to Sesame 7150 Water. Conditions to the right
are (p

R
, T

R
) = (1 bar, 300 K); speeds are normalized by the right side isentropic sound speed

c
R
; solid line is the Sesame 7150 Water EOS; dashed line is the corresponding MGGB EOS.

The slope of the us [up] curve is usually found experimentally by observing
the shock wave generated in a sample of material by the impact of a projectile
from a gas gun. The Sesame data are typically gauged in order to reproduce

this experimental data; note that the MGGB result reproduces the Sesame data.
The accuracy of this agreement is almost wholly dependent on the accuracy of

the cold curve pressure/energy agreement; which is quite good in this particular
case.
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In the limit of zero piston speed, the shock speed should be the isentropic

sound speed c
R
, corresponding to an infinitely weak wave. Hence, the Hugoniot

curve should go to us/cR = 1 for up/cR = 0 which appears to be true for

MGGB but not for Sesame 7150 Water. This difference is of little significance in
problems for which the principal interest is the effects of strong shocks. However,
when the waves are weak this difference could lead to difficulties in obtaining

robust numerical solutions. (As a general rule numerical solutions are more
robust when they mimic the physical behavior of the system studied. In this

case the compression waves are entropy–increasing ones, and the amount of
entropy produced in the physical waves is a stabilizing factor in the forward–

time numerical solution of the wave dynamics. When the entropy–production
is underestimated by a flawed EOS, the stability of the numerical solution can
become poor.)

IV. NUMERICAL EVALUATION OF THE MULTIFIELD EOS

A. The Semi–Equilibrium Case

We use Newton’s iterative method to find the solution to (1–3) in such a way
that the volume condition (1) is satisfied at every iteration. Using ρr = Mr/V ,

and (f, gr, hr) for the 2Nf + 1 residuals of (1–3), we have

f = 1−∑ρrvr (71)

gr = p̃r[vr, Tr]− p (72)

hr = ẽr[vr, Tr]− er (73)

where the sum over all fields is understood. We seek changes in pressure, volume,
and temperature (∆p,∆vr,∆Tr) such that values of (p, vr, Tr) used for the next

iteration will produce residuals of reduced magnitude. [Important remark: We
find that using the physical derivatives is very helpful in stabilizing the iteration;

the literal derivatives (for which κ and β are infinite) are pathological, which is
destabilizing.] The residuals will go exactly to zero if the functions are linear

and the changes are given by the system

−f = −∑ρr∆vr (74)

−gr = − 1

vrκr
∆vr +

βr
κr
∆Tr −∆p (75)

−hr = e,vr∆vr + cvr∆Tr (76)
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where all functions are evaluated explicitly using data for the current iteration.

This is Newton’s method. One can readily solve this system for the changes by
eliminating ∆p as follows. By solving (76) for ∆Tr and placing the result in (75)

and using (74) with f = 0, we find that

p+ = p+∆p =

∑
ρr (arp̃r − brhr/cvr)∑

ρrar
(77)

where p+ is the next–iterate value, and where we use ηr = e,vr/cvr in the

coefficients

ar = κr/ (1/vr + βrηr) (78)

br = βr/ (1/vr + βrηr) (79)

Using g+r to signify (72) with p replaced by p+ we have

∆vr = arg
+
r − brhr/cvr (80)

∆Tr = − (hr + ηr∆vr) (81)

Whereas the EOS functions for p̃ and ẽ are continuous in the dependent

variables [v, T ], the derivatives can possess very large discontinuities. Because
the trial solution depends on these derivatives, some care must be taken to

prevent excessive excursion in the trial solution during the iteration. For this
we resort to a trick used by Ramshaw & Chang20 for analogous nonlinear root

finding problems using Newton’s method. The trick is to limit the changes so
the largest change is of such a nature that the resulting value of vr or Tr is, at
least, nonnegative. This is ensured by applying a multiplicative limiter µ to each

of the changes. We use

µ = Max [1,−2∆min,∆max]
−1 (82)

where

∆min = Min [0,∆vr/vr,∆Tr/Tr] (83)

∆max = Max [1,∆vr/vr,∆Tr/Tr] (84)

which limits the largest decrease in value to be one that cuts the value in half;

and also (just for the sake of robustness) it limits the largest increase to one that
doubles the current value. The effect of the limiter is to under–relax the Newton

iteration when at least one of the 2Nf +1 elements is far from the solution, while
using a literal Newton iteration otherwise.
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B. The Full–Equilibrium Case

In this case condition (1) is replaced by one involving a single temperature,
and the condition (3) is replaced by a single expression involving the mass–mean

EOS energy. Hence we now have the Nf + 2 residuals

f = 1−∑ρrvr (85)

gr = p̃r[vr, T ]− p (86)

h =
∑

ρrẽ[vr, T ]−
∑

ρrer (87)

and the changes for Newton’s iteration are given by the solution to the linear
system

−f = −∑ρr∆vr (88)

−gr = − 1

vrκr
∆vr +

βr
κr
∆T −∆p (89)

−h =
∑

ρr (e,vr∆vr + cvr∆T ) (90)

Using g+ to signify (86) with p replaced by p+ we have from (89)

∆vr = vr
(
κrg

+
r + βr∆T

)
(91)

which can be used in (90) to obtain

∆T = −(h/b)−∑arg
+
r (92)

where

b =
∑

ρrcvr (ηrvrβr + 1) (93)

ar = ρrcvrηrvrκr/b (94)

By combining (92) and (89), and using (88) with f = 0, we have the next–iterate
pressure

p+ =

∑
rρrvrκrp̃r +

∑
rρrvrβr

∑
sasp̃s − (h/b)

∑
rρrvrβr∑

rρrvrκr +
∑

rρrvrβr
∑

sas
(95)

which is to be used to replace p in (86) so that the volume changes are ones that
exactly satisfy the volume condition at every iteration. And again, because of

the potentially large variation in the derivatives, robustness is improved by use
of the limiter µ to prevent catastrophic excursions in the trial solution.
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V. FURTHER WORK

There are two main areas in which users of the MGGB EOS could benefit
from follow on work. One area is the formulation of the fitting functions, and

the other is computational evaluation of the functions.
With respect to the fitting functions there are a number of improvements and

extensions that could be pursued. One is the addition of a contribution to (13)
due to free electrons. In terms of Sesame data this would require an additional
function that fits the ionization table, in order to determine the free electron

number density. Another improvement could be found by performing a more
detailed evaluation of the equations defining Maxwell’s construction (39–40), so

that the saturation curve consistent with (13) can be found more accurately.
This would improve the consistency in Region III.

Computer evaluation of the MGGB EOS requires a great deal more operations
on the Central Processing Unit (CPU) than for, say, a perfect gas EOS or
interpolation in a tabular database. This is the CPU cost of doing more detailed

physics over a full–range of [v, T ] space. The main value obtained from doing this
CPU work is to retrieve good physical derivatives of the EOS, which are required

for multifield applications. It may be possible to tabulate these derivatives along
with the thermal and caloric EOS, and thereby achieve satisfactory results at

a much lower CPU cost. Because the density of data in the tabular database
determines how well the EOS is rendered, it could be profitable to build the table

during the calculation. In this way a high resolution of the EOS data could be
maintained in the region of [v, T ] space associated with the particular problem
of interest.

There are certainly other areas of improvement that will likely become
apparent as the MGGB EOS is put into practice, and which are not anticipated

here. For those future investigators who may wish to make repairs, explore
improvements, and install extensions, the Mathematica17 notebooks used in this

work can be made available.
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B TRICKS

Appendix A: Handy Functions

The logarithmic Heaviside function used in this report is defined

H◦[x, d] = 1
2

(
1 + Erf[d log x]

)
(A1)

The first derivative, normalized to a unit value at x = 1, is

H1[x, d] =
x
√
π

d

∂H◦
∂x

= e−(d log x)2 (A2)

These two functions look like this
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Figure A1. Logarithmic Heavyside and Delta functions. (a) H◦ [x, d]; (b) H1 [x, d];
increasingly sharper curves correspond to d = (0.5, 1.0, 5.0, 50.); H◦[1, d] = 1/2; and
H1[1, d] = 1.

Appendix B: Dirty Tricks

Leibnitz’s rule21 for the differentiation of an integral is

∂

∂λ

∫ v(λ)

u(λ)

f(x, λ) dx =

∫ v(λ)

u(λ)

∂

∂λ
f(x, λ) dx+ f(v, λ)

∂v

∂λ
− f(u, λ)

∂u

∂λ
(B1)

which is used for differentiation of the Helmholtz free energy. This comes into play for terms like
the thermal part of (14) which contains the term

− ∂

∂v

(
−Θ

∫ T/Θ

0

C [τ ]

(
T

Θ
− τ

)
dτ

τ

)
= T

∂s
T

∂v
− ∂Θe

T

∂v

=

(
T
∂s

T

∂v
−Θ

∂e
T

∂v

)
− e

T

∂Θ

∂v

=

(
T
∂s

T

∂v
−Θ

∂e
T

∂v

)
− Θe

T

v

∂ log Θ

∂ log v
(B2)

where the integrals are
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e
T
[v, T ] =

∫ T/Θ

0

C [τ ] dτ (B3)

s
T
[v, T ] =

∫ T/Θ

0

C [τ ]

τ
dτ (B4)

Using Leibnitz’s rule we have

Θ
∂e

T

∂v
= Θ

∂

∂v

∫ T/Θ

0

C [τ ] dτ = ΘC[T/Θ]
∂T/Θ

∂v

T
∂s

T

∂v
= T

∂

∂v

∫ T/Θ

0

C [τ ]

τ
dτ = ΘC[T/Θ]

∂T/Θ

∂v
(B5)

so the first right side term of (B2) is exactly zero, showing that expressing the Helmholtz free
energy in the form (13) is clearly a subterfuge aimed at obtaining a Mie–Grüneisen functional
form for p.

Appendix C: Summary of Integrals and Derivatives

Recall the Barnes formula for the Thomas–Fermi–Dirac equation, corrected for a zero pressure
at zero compression:

pφ [η] = aη2/3
(
ηebrν − ebaν

)
(C1)

where η = ρ/ρ◦; ν = 1−η−1/3; and a = B◦/
(
1+(ba − br) /3

)
. If we let ξ = 1/η then ν = 1− ξ1/3

and the integral is

eφ [v, T ] = −v◦

∫ v/vn

1

pφ [η] dξ

= −3

2
v◦a
[
2

ba
ebaν +

brξ
1/3 − 1

ξ2/3
ebrν + Ei

[−brξ
1/3
]
b2re

br

]v/vn
1

(C2)

For e
T
we need

e
T
[v, T ] = Θ

∫ T/Θ

◦
C [τ ] dτ

= Θ

∫ T/Θ

0

C◦ (1 + c1H◦[τ/Θ1, d1]) dτ

=
1

2
C◦Θ

[
(c1 + 2)τ + Erf

[
d1 log

τ

Θ1

]
c1τ − Erf

[
d1 log

τ

Θ1
− 1

2d1

]
c1Θ1e

−1/4d21

]T/Θ
0

(C3)

and for s
T
we have
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s
T
[v, T ] =

∫ T/Θ

0

C [τ ]
dτ

τ

=
1

2
C◦

[
(c1 + 2) log τ + Erf

[
d1 log

τ

Θ1

]
c1 log

τ

Θ1

+
c1√
πd1

e−(d1 log τ/Θ1)2
]T/Θ
0

(C4)

We also need the derivatives with respect to T of (23–24), as follows:

Γ′
◦ =

∂Γ◦
∂T

=
(
2
3
− c2

) d2√
π
exp

[− (d2 log [T/Θ2])
2] (C5)

b′ =
∂b

∂T
= −c3d3√

π
exp

[− (d3 log [T/Θ3])
2] (C6)
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Appendix D: Summary of MGGB Parameters

Here we display values of the 23 MGGB parameters found to fit the Sesame EOS data for
a selection of materials. Densities are given in units of [g/cm3]; in the normalization we use

T◦ = 298.15 K; e∗ = C◦T◦; p∗ = ρ◦e∗; and as before, our reference specific heat is C◦ = 3R/M̂ .
By using the nondimensional parameters listed below, the EOS units can be established by the
user’s choice of gas constant R. Here we have assumed the value

R = 8.314472× 10−3 [MJ/mole–K] (D1)

which should render the EOS in Sesame4 the unit system (which turns out to be, in effect,
[g–cm–10µs–K]).

The first table lists eight parameters taken directly from the data for the Sesame material
appearing the handbook edited by Holian.4 As noted in §III B the parameters (B◦, br, ba) were
obtained by a fitting procedure (rather than by finding the exact values used for generating the
Sesame table, which would not be possible in all cases anyway).

Name Year Number M̂[g/mole] Tc[K] ρc ρ◦ e◦[MJ/kg] e◦/e∗ B◦[GPa] B◦/p∗ br ba

Dry Air9 1976 5030 29.6060 1.32E+02 0.31 1.19 0.09 0.37 1.00 3.35 3.18 6.02

Water10 1976 7150 18.0159 6.47E+02 0.32 1.00 1.87 4.54 3.00 7.27 2.64 5.19

Methane11 1980 5500 16.0426 1.91E+02 0.16 0.57 0.36 0.77 1.00 3.80 1.04 3.97

Aluminum12 1982 3720 26.9815 5.73E+03 0.77 2.70 11.8 42.9 77.0 103. 3.42 1.90

Copper13 1983 3336 63.5460 7.58E+03 2.55 8.93 5.21 44.5 134. 128. 3.91 5.01

Tungsten14 1979 3541 183.85 1.74E+04 5.50 19.2 4.64 115. 313. 402. 6.02 -3.38

The next table has the 15 remaining MGGB parameters that were found to give the best fit
to the corresponding Sesame data.

Name Θ1[K] Θ2[K] c1 c2 c3 c4 d1 d2 d3 d4 α q r ρz σ

Air 1.19E+06 2.64E+05 8.00 0.33 0.29 0.35 0.35 0.35 0.55 0.45 0.70 4.80 0.65 1.25 1.70

Water 5.18E+04 5.18E+04 6.00 0.20 0.18 0.35 0.30 0.30 0.50 0.50 0.70 6.50 0.65 1.50 2.50

Methane 9.53E+04 1.91E+22 0.00 0.33 0.29 0.35 1.00 1.00 0.55 0.45 0.70 4.00 0.54 0.57 1.70

Aluminum 1.72E+05 1.72E+05 6.00 0.20 0.14 0.35 0.40 0.40 1.00 0.95 0.40 4.0 0.54 2.70 2.25

Copper 7.58E+05 7.58E+05 13.7 0.20 0.14 0.35 0.30 0.30 1.00 0.95 0.40 4.00 0.54 9.38 2.25

Tungsten 3.48E+06 3.48E+06 38.3 0.33 0.24 0.50 0.30 0.30 0.80 0.80 0.50 4.00 0.54 20.2 1.60
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Appendix E: Summary of MGGB–Sesame Comparisons

This table displays the RMS difference between the MGGB fit and the Sesame EOS data,
broken down according to the regions of [v, T ] space defined in Fig. 1. This is followed by a display
of the EOS for each of the six materials for which MGGB parameters have been determined. To
be clear, the RMS energy difference ∆e is defined

∆e =
1

N

∑
i

∑
j

(ẽ [vi, Tj]− e [vi, Tj ])
2

ẽ [vi, Tj]
2 (E1)

where there are N points in the region for which ẽ [vi, Tj ] is the Sesame EOS and e [vi, Tj] is the
MGGB EOS, each evaluated at a collection of evenly Log–spaced [v, T ] coordinates, such that
there are 50 isotherms and 50 isochores in the total range of density–temperature space of the
Sesame data, for a total of 2500 [v, T ] points among the five regions. Determination of the region
is, of course, made on the basis of the saturation curve defined by the MGGB EOS.

Region I Region II Region III Region IV Region V

Name Number ∆e ∆p N ∆e ∆p N ∆e ∆p N ∆e ∆p N ∆e ∆p N

Dry Air 5030 0.10 0.05 1950 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.22 0.25 550

Water 7150 0.04 0.04 1457 0.01 0.03 40 38. 0.18 45 0.06 0.07 50 0.05 0.06 893

Methane 5500 0.20 0.01 1344 0.68 0.09 270 104. 0.17 81 0.32 0.16 77 0.31 0.27 256

Aluminum 3720 0.07 0.07 660 0.08 4.16 23 1.07 1.44 366 0.71 0.01 461 0.05 0.03 990

Copper 3336 0.04 0.01 640 0.02 0.06 29 0.89 0.97 342 0.01 0.01 489 0.07 0.05 960

Tungsten 3541 0.09 0.23 672 0.02 0.69 43 1.14 0.99 761 0.11 0.01 496 0.16 0.10 528

Generally, the RMS difference is smallest in Regions I, II, and V, which is to be expected
because these areas are not associated with the phase–coexistence region. The difference is
greatest in Region III which is likewise to be expected, especially for aluminum, copper and
tungsten, for which the Sesame EOS does not exhibit the coexistence region. In Region IV the
differences are not very great except for the aluminum energy, which suggests that the location
of the MGGB saturation curve is somewhat different from the one implied by the Sesame data.
In the case of air, the Sesame data is all supercritical so there appear no comparisons in Regions
II, III, and IV.
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Comparison of the MGGB fit to Sesame 3720 Aluminum. Top p [v, T ]; bottom e [v, T ]; solid
line connects the Sesame tabular data points; symbols mark the MGGB fit evaluated at the
Sesame [v, T ] points.
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Comparison of the MGGB fit to Sesame 3336 Copper. Top p [v, T ]; bottom e [v, T ]; solid
line connects the Sesame tabular data points; symbols mark the MGGB fit evaluated at the
Sesame [v, T ] points.
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