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Abstract

It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode

does not generate a second harmonic in radial electric field using the fluid model. However, kinetic

effects of energetic particles can induce a second harmonic in the radial electric field. A formula

for the second order plasma density perturbation is derived. It is shown that a second harmonic of

plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and

energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation

(the sum of second harmonic and zero frequency sideband) is negative on the low field side with

its size comparable to the main harmonic at low fluctuation level. These analytic predictions are

consistent with the recent experimental observation in DIII-D.
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I. INTRODUCTION

Intense axisymmetric density fluctuations were recently observed in DIII-D neutral beam-

heated reversed shear plasmas[1]. The instability was driven by energetic neutral beam

ions[1] with its frequency near that of Geodesic Acoustic Mode (GAM)[2]. The instability

was identified as the energetic particle-driven GAM or EGAM[3]. The new mode is intrin-

sically an energetic particle mode since both the mode frequency and mode structure is

determined nonperturbatively by the energetic particle dynamics. As such, this new mode

is qualitatively different from the Global Geodesic Acoustic Mode (GGAM)[4, 5] which is

a pure MHD mode. The DIII-D experiment also revealed a significant second harmonic of

the density fluctuation when the instability was most intensive[6]. This indicates a strong

nonlinear self-interaction of the GAM oscillations.

In the past decade or so, there have been much renewed interests in GAM after its early

discovery in 1968[2]. The GAM is an n=0 electrostatic mode and is a finite frequency

counterpart of the zonal flow[7]. The GAM is usually driven nonlinearly by plasma micro-

turbulence. There is much linear study on GAM’s damping due to collision and ion Landau

resonance[8–16] and on GAM’s radial propagation due to finite thermal ion gyroradius and

plasma temperature profile inhomogeneity[13, 14]. Nonlinear studies found that that GAM

can be driven by plasma microturbulence[13, 17–19], consistent with experimental obser-

vation of GAM in the plasma edge region[20–22]. Recently, Sasaki et al. showed that

self-interaction of turbulence-induced GAMs can drive both second harmonic[23] and zonal

flow sideband[24].

In this work, we consider the self-interaction of an energetic particle-driven global GAM.

We consider both fluid nonlinearity of thermal species and kinetic nonlinearity of energetic

particles. First, we use fluid model to determine both the second harmonic and the zero

frequency sideband driven by fluid nonlinearity via self-interaction of GAMs. In this fluid

model, the primary GAM is given and is assumed to be linearly driven by energetic particles.

We will show that to the leading order, the fluid nonlinearity of thermal plasma does not

generate either the zero frequency sideband (zonal flow) or the second harmonic in radial

electric field. However, the fluid convective nonlinearity does generate both zero frequency

component and second harmonic in density fluctuation. Second, we use kinetic model to

study the energetic particle effects. We will show that the energetic particle nonlinearity can
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indeed generate a second harmonic in the radial electric field. This second harmonic of radial

electric field leads to a corresponding second harmonic in the density perturbation due to the

compression of the E × B velocity. Finally, we will show that near the midplane, the second

order density perturbation can be comparable to the size of the first order perturbation

even at low level of fluctuation. It has a fixed sign being negative on the low field side of

a tokamak. These analytic predictions are consistent with the experimental observations in

DIII-D[6].

The paper is organized as following. Sec. II describes the fluid model for the n = 0

electrostatic perturbation of GAM. Sec. III and Sec. IV gives linear and nonlinear results

from the fluid model respectively. Sec. V considers energetic particles’ contribution to the

nonlinear self-interaction. Finally, discussions and conclusions are given in Sec. VI.

II. FLUID MODEL

We start from ideal MHD equation equations:

ρ(
∂

∂t
v + v · ∇v) = −∇P + J × B (1)

E + v × B = 0 (2)

∂

∂t
ρ + v · ∇ρ = −∇ · vρ (3)

∂

∂t
P + v · ∇P = −γ∇ · vP (4)

where ρ is plasma mass density, B the magnetic field, J the plasma current, v the plasma

velocity, P the plasma pressure, E the electric field, and γ the coefficient of specific heat.

For simplicity, we assume that the perturbation is electrostatic and axisymmetric. Then,

the electric field has only radial component according to the ideal Ohm’s Law (Eq. (2)) and

can be written as

E = −∇Φ = Er∇r (5)

where Φ is electric potential and r is a radial flux variable. Note that Er is a function of r

only.
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From the momentum equation (Eq. (1)) and the condition of < Jr >= 0 with the bracket

< ... > denoting flux average, we can derive the following equation for the radial electric

field:

<
ρ|∇r|2

B2
>

∂

∂t
Er+ <

ρ

B2
(∇r × B) · (v · ∇v) >= − <

(∇r × B) · ∇P

B2
> (6)

or

<
ρ|∇r|2

B2
>

∂

∂t
Er+ <

ρ

B2
(∇r × B) · (v · ∇v) >= −2 < G(r, θ)P > (7)

where the function G(r, θ) is related to the geodesic curvature and is given by

G(r, θ) = −
BφR

JB3

∂B

∂θ
(8)

where B is the strength of the magnetic field, Bφ is the toroidal component of the magnetic

field, J is the Jacobian of the coordinates (r, θ, φ).

The equation for the parallel fluid velocity is given by

ρ(
∂

∂t
v‖ + b · (v · ∇v)) = −b · ∇P (9)

Note that the fluid velocity can be decomposed as

v = v‖b +
E × B

B2
= v‖b +

BφREr

B2
∇r ×∇φ (10)

This leads to the following useful expressions for v · ∇ and ∇ · v:

v · ∇ =
v‖
B

B · ∇ −
BφREr

JB2

∂

∂θ
(11)

∇ · v = B · ∇(
v‖
B

) − 2G(r, θ)Er (12)

Equations (3), (4), (7) and (9) constitute a simple fluid model for Geodesic Acoustic

Modes. In the following two sections, we will examine the linear and nonlinear properties

of GAM based on this model.
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III. LINEAR THEORY

The linearized equations of GAM can be derived straightforwardly from our model and

are given by

<
ρ0|∇r|2

B2
>

∂

∂t
Er1 = −2 < G(r, θ)P1 > (13)

∂

∂t
P1 = −γ∇ · v1P0 = −γ(B · ∇(

v‖1
B

) − 2G(r, θ)Er1)P0 (14)

ρ0

∂

∂t
v‖1 = −b · ∇P1 (15)

∂

∂t
ρ1 = −∇ · v1ρ0 = −(B · ∇(

v‖1
B

) − 2G(r, θ)Er1)ρ0 (16)

where the subscript 0 denotes equilibrium quantities and subscript 1 denotes linear pertur-

bations.

Substitute solution of v‖1 into Eq. (14), the equation for P1 then becomes

∂

∂t
P1 = 2γP0(L

−1G(r, θ))Er1 (17)

where L−1 is the inverse of the operator L with L defined as

L = 1 +
γP0

ρ0ω2
B · ∇

1

B2
B · ∇ (18)

Here ω is the mode frequency. Similarly, the equation for ρ1 becomes

∂

∂t
ρ1 = 2ρ0(L

−1G(r, θ))Er1 (19)

and v‖1 is given by

v‖1 =
2γP0

ρ0ω2
b · ∇(L−1G(r, θ))Er1 (20)

Note that the first order density perturbation can be obtained from Eq. (16) as

ρ1 = 2ρ0(L
−1G(r, θ))

∫ t

0

dt′Er1(r, t
′) (21)
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assuming a growing mode. Combining Eq. (13) and (17), we arrive at the following disper-

sion relation for GAM:

ω2 = ω2

GAM =
4γP0

ρ0

< GL−1G >

< |∇r|2/B2 >
(22)

In the limit of large aspect ratio tokamak equilibria with circular flux surfaces, the GAM

frequency reduces to the familiar form:

ω2

GAM =
2γP0

ρ0R2
(1 +

1

2q2
) (23)

where q is the safety factor. This result reproduces the original work of Winsor et al.[2].

IV. NONLINEAR THEORY

Here we derive the leading order nonlinear response given an unstable linear mode. In

particular, we aim to evaluate the second harmonic of density perturbation due to quadratic

nonlinearity. It is clear that the leading order nonlinear response is quadratic in perturbation

amplitude in the fluid model. Using perturbation amplitude as a small parameter, we can

expand any variable u as following:

u = u0 + u1 + u2 + ...... (24)

where the subscript 0 denotes equilibrium, subscript 1 denotes linear perturbation, and

the subscript 2 denotes the second order perturbation driven by quadratic nonlinearity.

Expanding Eq. (7), (9), (4) and (3) to second order, we obtain

<
ρ0|∇r|2

B2
>

∂

∂t
Er2 = − <

ρ1|∇r|2

B2
>

∂

∂t
Er1− <

ρ0

B2
(∇r × B) · v1 · ∇v1 > −2 < G(r, θ)P2 >(25)

ρ0

∂

∂t
v‖2 = −ρ1

∂

∂t
v‖1 − ρ0b · (v1 · ∇v1) − b · ∇P2 (26)

∂

∂t
P2 = −v1 · ∇P1 − γ∇ · v1P1 − γ∇ · v2P0 (27)

∂

∂t
ρ2 = −v1 · ∇ρ1 −∇ · v1ρ1 −∇ · v2ρ0 (28)

We first show that Er2 = 0 based on symmetry. From the linearized expressions in the

preceding section, we observe that P1 and ρ1 are odd functions of θ and v‖1 is an even
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function. Based on the symmetry of these linearized solutions, we can deduce that the first

term of the right hand side of Eq. (25) is zero because ρ1 is odd. The second term can be

shown to be zero as well because the integrant is an odd function in θ. The last term is

related to P2. . From Eq. (26) and (27), it can be shown that P2 can be decomposed into

two parts:

P2 = P2,1 + P2,2Er2 (29)

where the first part comes from the quadratic nonlinearity and the second part is proportional

to Er2. By checking the contributions to the first part carefully, it can be shown thatP2,1 is

an even function of θ. Thus, P2,1 does not contribute to Er2 because the function G is odd

(see Eq. (25)). Furthermore, the second part is an odd function and thus contribute to the

third term of the righ hand side of Eq. (25). However, since the second part is proportional

to Er2, it can be combined with the left side of Eq. (25). From this analysis we can conclude

that Er2 = 0, i.e., there is no quadratic nonlinear contribution to the radial electric field.

Therefore, fluid nonlinearity does not generate a second harmonic in the radial electric field

associated with GAM.

We now proceed to determine P2 and v‖2. Equation (26) can be rewritten as

ρ0

∂

∂t
v‖2 = ρ0v1 · ∇v‖1 − b · ∇P2

= b · ∇

[
2γP0

BφR

JB2

∂

∂θ
(L−1G)

1

ω2
E2

r1 − P2

]
(30)

where we have dropped the first term in Eq. (27) because it is smaller than the second term

by a factor of aspect ratio. We can write P2 = P̃2 + P̄2 where P̄2 is the time-averaged part

of P2(i.e., zeroth harmonic) and P̃2 is the oscillative part(i.e., second harmonic). From Eq.

(30), P̄2 can be determined as

P̄2 = 2γP0

BφR

JB2

∂

∂θ
(L−1G)

1

ω2
Ē2

r1 (31)

Using Eq. (31), we can show that the last term in Eq. (28) can also be neglected because

it is smaller than the fist term by a factor of q2 (we assume q2 > 1 here for simplicity).

Then,P̃2 can be obtained from Eq. (28) and the full expression for P2 is given by

P2 = 2γP0

BφR

JB2

∂

∂θ
(L−1G)

[
2

ω2
Ē2

r1 −
˜

(
∫

Er1dt)2

]
(32)
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and Eq. (30) can be rewritten as

ρ0

∂

∂t
v‖2 == b · ∇

[
γP0

BφR

JB2

∂

∂θ
(L−1G)(

2

ω2
Ẽ2

r1 +
˜

(
∫

Er1dt)2)

]
(33)

We are now ready to determine the second order density perturbation ρ2. Equation for

ρ2 can be simplified to

∂

∂t
ρ2 = −v1 · ∇ρ1 − ρ0B · ∇(

v‖2
B

) (34)

where we have used Er2=0 and have dropped the second term of the right hand side of Eq.

(28) because it is a factor of aspect ratio smaller than the first term.

In above equation, we can also neglect the second term on the right hand side because it

is smaller than the first term by a factor of q2 >> 1. In this limit, the second order density

perturbation is driven only by the convective nonlinearity due to E× B drift. From Eq.

(19), we obtain an explicit expression for the first order density perturbation

ρ1

ρ0

= 2G
∫ t

0

Er1(r, t
′)dt′ = −2

r

R
sin θ

BφR

JB2

∫ t

0

Er1(r, t
′)dt′ (35)

where we have assumed ρ1(t = 0) = 0 for a growing mode. Note also that L−1 ∼ 1 in the

limit of q2 >> 1. Using this expression for ρ1, we then obtain the second order density

perturbation as

ρ2

ρ0

= −
r

R
cos θ

(
BφR

JB2

∫ t

0

Er1(r, t
′)dt′

)2

≈ −
r

2R
cos θ

(
BφR

JB2ω
Ê(r, t)

)2

(1 + cos2ωt)) (36)

where we have also assumed ρ2(t = 0) = 0 and Er1(r, t) = Ê(r, t)cos(ωt) with Ê(r, t) describ-

ing a slowing-varying part of electric filed evolution (i.e., slowing growing with a small but

finite growth rate γ such that γ/ω << 1). Note that the second order density perturbation

contains both zero frequency harmonic and second harmonic with equal amplitude.

The total density perturbation (up to second order) is then given by

δρ

ρ0

= −
r

R

[
2 sin θ

BφR

JB2

∫ t

0

Er1(r, t
′)dt′ + cos θ

(
BφR

JB2

∫ t

0

Er1(r, t
′)dt′

)2
]

(37)

Note that in arriving at Eq. (37), we have neglected the v‖1 term in the operator v‖1 · ∇

because it is smaller than the E× B term by a factor of aspect ratio.
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From Eq. (36), an interesting and important property for the second order density

perturbation is that it has a fixed sign. It is negative for cos θ > 0 (low field side) and

positive otherwise (high field side). In contrast, the first order perturbative is oscillatory

(true for any linear perturbation with finite real frequency). Furthermore, the second order

perturbative is up-down symmetric and peaks at midplane whereas the linear perturbation

is up-down asymmetric and is zero at the midplane. Because of this, the second order

perturbation is relatively large near the midplane. In the DIII-D experiment, the density

measurement was made near the midplane at the low field side. At this location, the second

order perturbation can be comparable to the first order perturbation and is always negative.

In particular, the ratio of ρ2 and ρ1 is

ρ2

ρ1

=
cos θ

2 sin θ

BφR

JB2

∫ t

0

Er1(r, t
′)dt′ = −

cos θ

4 sin2 θ

R

r

ρ1

ρ0

(38)

We observe that near midplane, the second order perturbation (both zero frequency

harmonic and second harmonic) can be comparable to the first order perturbation even

for low level of density perturbation. These results are consistent with the experimental

observation of the beam ion-driven GAM in DIII-D plasmas[6].

V. ENERGETIC PARTICLE EFFECTS

So far, we have used fluid model to describe nonlinear self-interaction of GAMs driven

by energetic particles and we have neglected energetic particle effects on the nonlinear gen-

eration of second harmonic. We find that there is no second harmonic in the radial electric

field due to fluid nonlinearity of thermal plasmas. Here we investigate whether the kinetic

effects of energetic particles can nonlinearly generate second harmonic in radial electric field

and its impact on the plasma density perturbation.

The energetic particle effects can be included in radial electric field equations (Eq. (6),

Eq. (7), Eq. (13) and Eq.(25)) by adding energetic particle pressure terms. Equation (7)

then becomes:

<
ρ|∇r|2

B2
>

∂

∂t
Er+ <

ρ

B2
(∇r × B) · (v · ∇v) >= − < G(r, θ)(2P + P‖h + P⊥h) > (39)

where P‖h and P⊥h is the parallel pressure and perpendicular pressure of energetic particles
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given by

P‖h + P⊥h =
∫

d3v(mv2

‖ +
1

2
mv2

⊥)f (40)

with f being the energetic particle distribution function. We use the drift-kinetic equation

to solve for the distribution function:

∂f

∂t
+ (v‖b + vd +

E × B

B2
) · ∇f +

dE

dt

∂f

∂E
= 0 (41)

where v‖ and vd is the particle parallel velocity and the magnetic drift velocity respectively,

E is particle energy (not to be confused with the electric field E). For pure radial electric

field, the rate of energy change is given by

dE

dt
= (mv2

‖ +
1

2
mv2

⊥)G(r, θ)Er (42)

Similar to the expansion of fluid perturbation (Eq. 24), we expand the energetic particle

distribution function by

f = f0 + f1 + f2 (43)

where f0 is the equilibrium distribution, f1 is the linear perturbed distribution, and f2 is

the second order perturbed distribution. Expanding Eq. (41) order by order, we arrive the

following equations for f1 and f2,

df1

dt
= −(mv2

‖ +
1

2
mv2

⊥)G(r, θ)Er1

∂f0

∂E
(44)

df2

dt
= −

E1 × B

B2
· ∇f1 − (mv2

‖ +
1

2
mv2

⊥)G(r, θ)(Er1

∂f1

∂E
+ Er2

∂f0

∂E
) (45)

where d
dt

is the total time derivative along the equilibrium orbit and is given by

d

dt
=

∂

∂t
+ (v‖b + vd) · ∇ (46)

In order to solve Eq. (44-45), we express Er1 as Er1 = Ê cos(ωt) without loss of gener-

ality. We also consider large aspect ratio tokamak equilibria with circular flux surfaces for

simplicity. In this limit, the function G(r, θ) can be written as G = − sin θ/BR. The linear

distribution f1 can then be obtained from the Eq. (44) as
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f1,non−res =
mv2

‖ + 1

2
mv2

⊥

2BR
Ê

∂f0

∂E
(
cos(ωt − θ)

ω − ωb

−
cos(ωt + θ)

ω + ωb

) (47)

for the non-resonant part of the solution and

f1,res = π
mv2

‖ + 1

2
mv2

⊥

2BR
Ê

∂f0

∂E
(sin(ωt + θ)δ(ω − ωb) − sin(ωt − θ)δ(ω − ωb)) (48)

for the resonant part of the f1. Substituting f1 into Eq. (39), we can obtain the linear

dispersion relation for the Energetic Particle-induced GAM (EGAM)[3], i.e., ω2 = ω2

EGAM .

In the preceding section, we have already shown that the second order radial electric field,

Er2, is zero in the fluid model. Then, finite Er2 can only come from the kinetic response.

The equation for Er2 with energetic particle effects is given by

<
ρ0|∇r|2

B2
>

∂

∂t
Er2 = − < G(r, θ)(2P2 + P‖h2 + P⊥h2) > (49)

where the second order energetic particle pressures come from the second order distribution

f2. We now solve Eq. (45) for f2 by substituting the first order solution f1. Here we

assume that the contribution of resonant particles to the second harmonics generation can

be neglected and consider only the non-resonant part of f1. Substituting f1,non−res into Eq.

(45), the solution for f2 is obtained as

f2 =
3(mv2

‖ + 1

2
mv2

⊥)

2B2rR
Ê2

∂f0

∂E

ωωb

(4ω2 − ω2

b )(ω
2 − ω2

b )
sin θ cos 2ωt + f2,lin (50)

where f2,lin is the response due to Er2. It should be noted that in the first term of f2 we

have only kept the term proportional to sin θ that has finite contribution to Er2 (see the

right hand side of Eq. (49)). We also note that the first term comes from the convective

nonlinearity. Substitute above equation into Eq. (49), we arrive at

Er2 = −
ω2

h

ω2
2 − ω2

EGAM

Ê

ωBr
Ê sin(2ωt) (51)

where ω2 = 2ω and

ω2

h = −
3

2ρR2

∫
ω3ωb

(4ω2 − ω2

b )(ω
2 − ω2

b )
(mv2

‖ +
1

2
mv2

⊥)2
∂f0

∂E
d3v (52)

It should be noted that the thermal ion kinetic effects can also contribute to the second

order radial electric field as the hot ions do in Eq. (51) due to their non-adiabatic response,
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however, the thermal ion effects are much smaller due to their lower energy. From Eq. (51),

it can be easily estimated that ratio of therma ion contribution and fast ion contribution to

Er2 is on order of ω2

b,th/ω
2

b,h ∼ Tth/Th << 1 (the subscript th denotes thermal ion species).

The corresponding second order density perturbation due to Er2 is given by

ρ2,h

ρ0

= −
ω2

h

ω2
2 − ω2

EGAM

Ê

ω2B2Rr
Ê sin(θ) cos(2ωt) (53)

where the subscript h denotes the energetic particle contribution.

From Eq. (36), the second harmonic of the density perturbation due to fluid nonlinearity

can be written as

ρ2,f

ρ0

= −
Ê

2ω2B2rR
Ê cos(θ) cos(2ωt) (54)

It is instructive to compare the second harmonic ρ2,h due to fluid nonlinearity to ρ2,h due to

energetic particle nonlinearity. We have

ρ2,h

ρ2,f

=
ω2

h

ω2
2 − ω2

EGAM

sin θ

cos θ
∼

P‖h + P⊥h

P

sin θ

cos θ
(55)

We see that the ratio ρ2,h/ρ2,f is proportional to the ratio of energetic particle pressure

and thermal plasma pressure. We also see that the ρ2,f is updown symmetric whereas

ρ2,h is updown asymmetric. Thus, near the midplane of a tokamak, the energetic particle-

induced density second harmonic is negligible and our fluid results of the second order density

perturbation are still valid.

Finally, we discuss the role of resonant particles. As pointed out above, we have ne-

glected effects of resonant particles in deriving the energetic particle contribution to the

second order radial electric field. This might be justified for weakly unstable cases where

the resonant region is rather narrow and there were few resonant particles. Furthermore, we

note that the perturbative expansion of Eq. (43) breaks down for resonant particles due to

their trapping in the finite amplitude wave. The nonlinear response of resonant particles had

been considered by Berk and Breizman for the problem of nonlinear saturation of energetic

particle-driven instabilities. Their analysis showed that nonlinear response of resonant parti-

cles can reduce mode growth rate[26] and can lead to mode frequency chirping[27]. However,

no second harmonic perturbations are generated as a results. Thus, we conjecture that reso-

nant particles and non-resonant particles play separate roles in the nonlinear response. The
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main nonlinear effects of non-resonant particles are generation of second order radial electric

field, while the main nonlinear effects of resonant particles are mode saturation and mode

frequency chirping. As long as the mode frequency chirping is sufficiently small and slow,

these two roles are independent of each other. This conjecture will be assessed in our future

work.

VI. DISCUSSIONS AND CONCLUSIONS

In this work, we have derived perturbatively the quadratic nonlinear response of an en-

ergetic particle-driven Geodesic Acoustic Mode. A fluid model is used for the nonlinear

response of thermal plasma whereas a kinetic model is used to describe the energetic parti-

cles’ nonlinear interaction with GAM. Compared to the recent work of Sasaki et al[15, 23].,

our result of the second harmonic of the density perturbation is similar to theirs (see Eq.

(36) of this paper and Eq. (21) of Ref. 23). On the other hand, our result of the zero

frequency side band in density perturbation is new. After the fluid results of this work were

obtained, we became aware of a concurrent work by Zhang et al.[25] on gyrokinetic kinetic

theory and simulation of the GAM’s nonlinear self-interaction. They concluded that the

self-interaction does not generate a second harmonic in radial electric field. It is interesting

that our fluid result is similar to their gyrokinetic result in this regard.

In conclusion, we have shown that nonlinear self-interaction of energetic particle-driven

GAM does not generate a second harmonic in radial electric field in the fluid limit. However,

kinetic effects of energetic particles can induce a second harmonic in the radial electric field.

A formula for the second order plasma density perturbation is derived. It is shown that the

density second harmonic is generated by the convective nonlinearity of both thermal plasma

and energetic particles. Near the midplane of a tokamak, the second order plasma density

perturbation (the sum of second harmonic and zero frequency sideband) is negative on the

low field side with its size comparable to the main harmonic at low fluctuation level. These

analytic predictions are consistent with the recent experimental observation in DIII-D.
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