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ABSTRACT
This report documents the status of flexural strength evaluations from current 

ASTM procedures and of developing finite element models predicting the
probability of failure. This work is covered under QLD REC-00030.

Flexural testing procedures of the American Society for Testing and 
Materials (ASTM) assume a linear elastic material that has the same moduli for 
tension and compression. Contrary to this assumption, graphite is known to have 
different moduli for tension and compression. A finite element model was 
developed and demonstrated that accounts for the difference in moduli tension 
and compression. 

Brittle materials such as graphite exhibit significant scatter in tensile 
strength, so probabilistic design approaches must be used when designing 
components fabricated from brittle materials. ASTM procedures predicting 
probability of failure in ceramics were compared to methods from the current 
version of the ASME graphite core components rules predicting probability of 
failure. Using the ASTM procedures yields failure curves at lower applied forces 
than the ASME rules.

A journal paper was published in the Journal of Nuclear Engineering and 
Design exploring the statistical models of fracture in graphite.
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Progress In Developing Finite Element Models 
Replicating Flexural Graphite Testing

1. FINITE ELEMENT MODELING OF GRAPHITE FLEXURAL TESTING
Destructive mechanical testing uses load frames and jigs to stress graphite specimens in different 

configurations to determine mechanical properties. The flexural strength is the stress at which a slender 
bar fails with a bending moment applied by a three or four point fixture. The American Society for 
Testing and Materials (ASTM) standards provide equations using the measured failure data to calculate 
the flexural strength based on an isotropic linear elastic material. ASTM uses a single tensile modulus in
its derivation of equations to obtain the flexural strength.

1.1 Bimodulus Graphite Properties
Graphite moduli differ in tension and compression from the majority of materials that normally have 

the same linear elastic moduli. Graphite stress-strain curves are different in tension and compression. This 
material behavior deviates from the material model assumed in ASTM standards. Figures 1 and 2 show 
the nonlinear stress-strain relationship for H-451 and NBG-18. The curves are denoted as polyconvex and 
exhibit strain softening. Linear elastic stress-strain relationships are represented by a constant Young’s 
modulus until a yield stress is reached where the material plastically deforms or yields with hardening or 
softening behaviors. The graphite curves show an immediate nonlinearity stress/strain relationship 
starting from the origin. This has consequences for the analysis of three and four point bend specimens 
since different stress-strain relationships must be used whether the bulk material is in tension or 
compression. The data for H-451 is taken from GA documents and NBG-18 is taken from ORNL reports.

Figure 1. H-451 stress-strain curves determined from destructive testing.
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Figure 2. NBG-18 stress-strain curves determined from destructive testing.

The ASTM test procedures will produce the correct data but not the correct flexural strength based on 
the equations in the standard. Finite element models were built to account for the different moduli in 
graphite in the flexural test. No material models have been implemented in finite element codes at this 
time to address the nonlinearity of the stress-strain curves. A Nuclear Energy University Program (NEUP)
project is currently developing a mathematical model that takes into account the unique nonlinearity of 
graphite and will implement the model in the COMSOL (Commercial finite element program from 
Comsol Inc.) finite element program. All analyses on flexural testing will only use linear elastic 
(Hookean) material with different moduli in tension and compression. The term bimodulus is used to 
describe a linear elastic material with different moduli in tension and compression.

1.2 Modeling Three Point Flexural Testing
The three point flexural test is used for ASTM testing to determine the fracture toughness of many 

materials, including graphite. An analytical model for the three point test, assuming bimodulus material,
was developed by the National Aeronautics and Space Administration (NASA). The NASA1 report 
contains analytical derivation of the displacement of the neutral axis from its linear isotropic position. 
Displacement of the neutral axis is also found in the four point bend tests. For a linear elastic isotropic 
beam in bending, the neutral axis is a hypothetical line demarking that half of the beam is in compression 
and the other half is in tension. Unequal modulus for tension and compression causes the beam to 
experience a shift in the neutral axis. The ratio of the two moduli is related to the shift of the neutral axis 
changing the regions of the beam experiencing tension or compression. The shifted neutral axis is shown 
in Figure 3 as the dashed red line.

Figure 3. Shift of neutral axis due to unequal modulus in tension and compression.
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The following equation calculates the fractional height of the beam, hc, in compression:

(1)

where h = hc + ht , and ET and EC are the elastic modulus for tension and compression. Figure 4 shows the 
fraction of the beam height experiencing tension and compression as a function of the ratio of moduli 
(ET/EC).

Figure 4. Portion of beam in tension or compression depending on the modulus ratio.

The NASA document also derives the load displacement curve for a load applied at the midspan 
between the two supports. This expression relates the deflection of the beam’s top face versus the applied 
load. The expression can be found in NASA’s report but is not reproduced here because of its algebraic 
complexity. A COMSOL finite element model was constructed for the three point bend specimen. 
Figure 5 shows the load displacement curve determined by the COMSOL model overlaid on the 
analytical load displacement curve calculated from the NASA report. The three point bending finite 
element model used to determine the load displacement curve is shown in Figure 6. Only half of the three
point fixture is modeled because of symmetry.
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Figure 5. Comparison of analytical load displacement curve and results from finite element modeling for 
a three point bend test.

Figure 6. Three point bend finite element model.

The bending stress determined by the COMSOL finite element model at the midspan (left side of 
Figure 6) is shown in Figure 7. The large blue square (right side) and blue circle (left side) in Figure 7 is 
the maximum tensile and compressive stresses predicted by the analytical equations in the NASA report. 
The black line in the middle of the figure is the shifted neutral axis calculated by Equation 1. The beam 
height, h, is from -8 to 8 mm with zero located at the midsection of the beam. Beyond 8 mm is the 
bending stress in the roller applying the displacement. The compressive bending stress does not intersect 
the blue square because of the presence of Hertzian contact stresses in the specimen.
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Figure 7. Finite element determined bending stresses at the midpoint for three point bend fixture.

Two points are worthy of note from the NASA report:

1. Assuming a linear isotropic material for a bimodulus material underestimates the flexural deflection 
by 25% at a ratio (ET/EC) of 1.5 and overestimates flexural deflection by 25% at a ratio (ET/EC) of 
0.5.

2. The beam’s length-to-height ratio has negligible effect on the flexural deflection when the ratio is 
greater than 10 in the modulus ratio range of 0.5 ��������	
��.

1.3 Modeling Four Point Flexural Testing
Four point flexural testing creates two opposing moments 

on either side of the specimen’s centerline creating a constant 
bending stress between the applied moments. The flexural 
strength is the maximum stress on the outer fibers at the point 
of maximum force. The maximum bending stress occurs on 
the bottom face just in front of the top roller. Figure 8 shows 
a typical four point flexural setup where the load is applied at 
two points on the top of the specimen by rollers and support 
loads are supplied by two rollers on the bottom of the 
specimen located outside the two top rollers. The fixture is 
symmetric about the middle of the specimen so only half of 
the test fixture is modeled as show in Figure 9. 

Figure 8. Typical four point test fixture.
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Figure 9. shows the layout of the finite element model. Only 
half of the model is analyzed due to symmetry.

INL has purchase a flexural fixture shown in Figure 10. The fixture is scaled up from the one in the 
picture to accommodate the size of the specimens (6.5 in. long, 0.63 in. high, and 1.25 in. wide). Rollers 
are allowed to rotate in the fixture, but translation is restricted. The displacement is applied to each 
individual roller. The only contact forces present are the rollers touching the specimen thus the finite 
element model for this fixture has less complexity. The ram of the load frame imparts a monotonic force
of P on the fixture and each of the top rollers applies a 
force of P/2 on the specimen. The bottom rollers 
support the specimen creating the moment or bending 
action in the middle of the specimen. All four rollers 
are free to rotate about their own axis and are 
restrained from lateral movement by the fixture. 
ASTM has four axioms or assumptions used in the 
derivation of bending stresses. These assumptions are 
also the same in basic beam theory:

1. Transverse plans perpendicular to the longitudinal 
axis of the beam remain plain after the beam is 
bent.

2. The modulus of the elasticity in tension is equal to 
the modulus of elasticity in compression; the beam 
material is isotropic and homogeneous.

3. The maximum deflection must be small compared 
to the beam depth.

4. The beam must deflect normally under elastic 
bending stresses but not through any local collapse 
or twisting. 

Figure 10. INL’s ASTM C-1161 flexural testing 
fixture.
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The first assumption is valid if the flexure could be obtained without applications of local forces, such 
as, friction between the rollers and specimen and applied contact forces of the rollers creating 
compressive stresses in the region contact surrounding the roller. The second assumption is not valid for 
graphite, since the modulus for tension and compression are different for graphite. The second assumption 
is also not valid since graphite is nonlinear elastic orthotropic material and not linear elastic isotropic. The 
third assumption is valid if the deflection is less than 10% of the beam depth. The fourth assumption is 
valid so long as the graphite is not modeled as an orthotropic material. The COMSOL mesh of fixture is 
shown in Figure 11.

Figure 11. Finite element model of the four point flexural fixture modeling only half of the specimen

The symmetry axis is the left side of the model. An applied displacement is imposed on the top roller. 
The bottom roller is fixed supporting the bar. As the imposed displacement is increased, the graphite bar 
bends creating a state of tensile stress on the bottom and a compressive stress on the top. Between the two 
stress states is the neutral axis that has a stress state of zero. In Figure 12, the color in the bar represents 
the tensile and compressive bending stress. Blue is a compressive stress state and red is the tensile stress 
state. The colors gradually turn to green representing a zero bending stress. The black contour line is the 
neutral axis. The white arrows are the principle stresses. Arrow heads pointing outward are tensile and 
inward pointing arrow heads are compressive stresses.

Figure 12. Results of the finite element model showing bending stresses. Blue is for compression and red 
is for tensile stresses. The black line is the neutral axis.
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To check the validity of the model results of graphite, Grade Q was tested in the four point fixture. A 
load displacement curve measured from the applied load is plotted against the measured midpoint 
deflection, which is measured at the bottom left hand corner in Figure 12. Figure 13 shows the measure 
results plotted against the results of the finite element model only using a tensile modulus as required by 
the ASTM standard. 

The three lines of graphite Grade Q represent results from three different bars tested. Figure 14 are 
the results of the three bars plotted against the finite element model taking into account the different 
moduli in Grade Q. This model is denoted as the bimodulus model.

Figure 14 shows that a bimodulus model captures the different stress state because of the difference in 
moduli while the linear model used in Figure 13 does not. The curvature of the measured data is because
of graphite’s nonlinear elastic model discussed above. The bimodulus model does not account the 
nonlinear elastic model. This capability will be added to the model in the future.

Figure 13. Measured flexural data plotted against linear elastic finite element model for graphite Grade Q. 

Figure 14. Results of the flexural testing of Grade Q plotted against the predicted results from the 
bimodulus finite element model.
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2. PROBABILISTIC DESIGN – DETERMINATION OF PROBABILITY 
OF FAILURE

Brittle materials such as graphite exhibit significant scatter in tensile strength, thus probabilistic 
design approaches must be utilized when designing components fabricated from brittle materials. 
Accounting for the inherent scatter in tensile strength requires a change in philosophy on the design 
engineer’s part that leads to a reduced focus on the use of safety factors in favor of reliability analyses. If 
a brittle material with an statistical distribution in tensile strength is selected for its high strength 
attributes or inert behavior, then components should be designed using an appropriate design 
methodology rooted in statistical analysis. However, the reliability approach demands that the design 
engineer must tolerate a finite risk of unacceptable performance. This risk of unacceptable performance is 
identified as a component's probability of failure (or alternatively, component reliability). The primary 
concern of the engineer is minimizing this risk in an economical manner. 

The techniques of calculating brittle component reliability were not used in previous HTGR design or 
licensing activities. However, they are accepted in the design of ceramic components in other fields and 
will be needed for new reactor licensing. 

2.1 Use and Determination of Effective Volumes in Probability of
Failure Calculations

The use of probabilistic determination of survival for ceramics using standard ASTM mechanical test 
specimens is well established in ASTM standards C-1239 and C-1683.2,3

[2]

The failure probability for a 
mechanical test specimen is given by the Weibull cumulative distribution function

where:

Pf is the probability of failure


max is the maximum tensile stress in a test specimen at failure


� is the Weibull characteristic strength (corresponding to a Pf = 0.632)

m is the Weibull modulus determined from testing.

The Weibull characteristic strength is dependent on the test specimen and will change with the test 
specimen geometry as well as the stress state. If the strength controlling flaws are volume distributed, an 
alternative formulation of the above expression is 

[3]

where Pf ���������
�����

����������
0)V is called the Weibull material scaled parameter and can be described as the Weibull 
characteristic strength of a hypothetical test specimen with unit volume loaded in uniform uniaxial 
tension. For the general case where stress varies with position in the mechanical test specimen and the 
flaw variation is volume distributed, the integral yields the expression

[4]
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where 

����������������������������������������������� �
 ������!�"!���#�"���$�����!$�%������&��������s of the 
principle stresses. These algebraic expressions are different failure theories assumed for the material. The 
most general expression is Principle of Independent Action (PIA). The value V is the stress volume and k 
is a fitting parameter determined from the experimental data. Today, with finite element software, solving 
for the effective volume VE is a straight forward numerical process. The Weibull characteristic strength 

is a function of specimen geometry and stress gradients while the Weibull scale parameter is a 
derived material parameter used to compute the probability of failure (POF) of a component based on the 
strength test from simple test components. Conceptually, one determines from simple test 
configurations such as uniaxial, flexural, or pressurized ring and uses the effective volume integral 
expression applied to the test specimen to compute . In theory, the Weibull scale parameter should 
be the same from each simple test specimen. Once the Weibull scale parameter is determined, the 
component POF is calculated using the integral in Equation 3 and the Weibull scale parameter from any 
of the simple tests. Experimental techniques can cause deviations from theory where the Weibull scale 
parameter obtained from simple tests are not the same. This means ASTM mechanical test for procedures 
for graphite must be reviewed and tested to ensure that optimal repeatable techniques are used. 

ASTM C 1683 has analytical expressions for VE for simple ASTM mechanical test specimen 
geometries. The standard also has a method that can be used to determine VE for mechanical test 
specimen geometries not covered in the ASTM standard. One such specimen geometry is the doubled 
notch tensile bar. The geometry of the notched tensile bar is shown in Figure 15. The problem was 
modeled with two- and three-dimensional (2-D and 3-D) models in COMSOL. The necessary calculations 
to determined the VE where implemented inside the COMSOL model using a PIA model for the effective 
stress. For comparison, the commercial program CARES was used to predict the effective volume based
on the results from the 3-D COMSOL model. 

Figure 16 shows the comparison between the 
2-D model, 3-D model, and CARES analysis for the 
notch tensile bar. CARES extracts the data from the 
output of the 3-D COMSOL model to calculate the 
effective volume. A comparison was made by 
Connecticut Reserve Technologies4 (CARES 
developer) using ANSYS on the same tensile bar 
geometry. 

Figure 15. Sketch of the flat notched tensile bar 
used in the effective volume calculations.
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Figure 16. Effective volume for a notched tensile bare with a radius of 20 mm.

Figure 17 shows the results between ANSYS and COMSOL CARES results. In the COMSOL model 
an adaptive meshing algorithm was used to force refinement of the mesh at the point of peak stress 
concentration. This provided the best results. If a uniform mesh had been used and the mesh density had 
increased uniformly, less accurate results would have been obtained. In fact this exercise demonstrated 
the need for a fine mesh at the point of stress concentration for an accurate determination of the effective 
volume. Iterative adaptive mesh cycles were employed in COMSOL before the value of the effective 
volume reached an asymptote. This is the point being made by Connecticut Reserve Technologies in 
Figure 17. The mesh used in COMSOL is shown in Figure 18.

Figure 17. Comparison between COMSOL and ANSYS on the notched tensile bar 
performed by Connecticut Reserve Technologies using ANSYS and COMSOL.
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Figure 18. COMSOL after cycles of adaptive meshing at the stress concentration.

The 2-D effective volume calculations in COMSOL used higher order elements and a higher mesh 
density around the notch than the 3-D calculation. The 3-D model could not use higher order elements 
because of insufficient memory available on the workstation. There was a difference in the effective 
volume and peak stresses seen between the 2-D and 3-D models. A 2-D model does not capture the 
variance of the tensile stresses across the thickness of the bar. To ascertain if the 3-D model has truly 
reached an asymptotic value for the effective volume, an upgraded workstation must be acquired with 
more memory. 3-D models of the four point bend test require even higher mesh densities than tensile bar 
because of the Hertizan contact that be must modeled. 

In Figure 16, as the Weibull modulus decreases the scatter in the data increases, thus larger effective 
volumes must be used. This also shows a need to determine the Weibull modulus of the prospective 
NGNP graphite accurately since most nuclear graphite have moduli between 5 and 24. This problem was 
further studied by Brücker-Foit et al.,5 for notches of different geometries and different stress 
concentrations. The researchers looked at the effect of stress concentration on the probability of failure in 
different regions around the notch. Figure 19 shows the probability of failure in different regions around 
the notch geometry as a function of Weibull modulus. For the volume of the entire bar, Volume 5, it is 
preferable to select a material with a Weibull modulus above 8. If a material with a high Weibull 
modulus, say above 10, is selected, the area of probability of failure is highest for half of an ellipsoid 
centered on the apex of the notch.
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Figure 19. Figure 7 from the journal paper by Brücker-Foit.

Thus for material with a higher Weibull modulus, the potential for a crack to appear in the half 
ellipsoidal volume next to the apex of the notch may not lead to a failure in the component. Because of 
crystalline damage due to irradiation in graphite, mechanical properties of graphite change requiring 
reevaluation of the probability of failure throughout the graphite core’s lifetime.

The researchers also looked at the ratio of the stress integral, H, in all five volumes over the stress 
concentration, �k. The stress integral includes the effects of the Weibull strength distribution. For design, 
the engineer does not want the stress concentration to exceed the stress integral. This is shown in 
Figure 20 where, for a chosen notch geometry and corresponding stress concentration, the ratio versus 
Weibull modulus is plotted. The engineer then looks at this plot to determine the minimum Weibull 
modulus plus a safety factor the material must have to survive the stress concentration.

Figure 20. Figure 8 from the journal paper by Brücker-Foit.
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2.2 Influence of Effective Stress on Effective Volume Value

The Weibull scale parameter is obtained by calculating the effective volume .
An intermediate step in obtaining the effective volume is evaluating the integral over the simple test 
specimen. Equation 5 is the integral performed over the tensile regions of the test specimen in the finite 
element model.

[5]

�����������
������������$���#�����������������"���"��#��������������������������!"����"������"���$�����
principle stresses in the element. One stress measure commonly used is the PIA, which sums the 
������%"���������������������������������!�����������
1, 
2 ���#�
3 (tensile stress only). The stress 
�������������'�����(�����������������������!���������!)�����������$��#����
MAX. The integral for effective 
volume using PIA in the integrand is

. [6]

PIA has no failure theory or fracture geometry associated with its use. It is widely used because of its 
simplicity in implementation. It is used for static analysis where there is no temperature or fatigue 
dependence. Another stress measure is the Maximum Strain Energy (MSE), commonly referred to a Von 
Mises stress. The integral for effective volume using MSE in the integrand is

[7]

������
MSE ���
1
2 *�
2

2 *�
3
2 -
+�
1 
2*�
2 
3*�
1 
3))0.5.

MSE is associated with a known failure theory without a prescribing a crack geometry and has 
superior representation of multiaxial stress states over PIA. Other stress measures that model actual 
fracture/crack geometries can be used. Implementation of these requires additional modeling using 
MATLAB and COMSOL because of the additional stress integration over the hypothetical prescribed 
crack geometry in each element. These models will be assessed at a later time.

Figure 21 is a plot of the effective volume calculation using both PIA and MSE in the effective 
volume integral. There is a small difference between the curve for PIA and MSE.
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Figure 21. Effective volume as a function of Weibull modulus using both PIA and 
MSE stress measures.

2.3 Comparison of POF Values Using ASTM and ASME Rules
Using the effective volumes, POF calculations were performed on the same notch tensile bar reported 

in last month’s work. Figure 22 shows the probability of failure as a function of applied load to the notch 
tensile bar. The POF calculation used step-wise increases in the uniform mesh density in the finite 
element model analysis. This was done to determine if mesh size has an effect on the determination of the 
POF. The mesh is proportional to the number of degrees of freedom reported in the legend—the higher 
the number of POF, the smaller the mesh size. There is no indication of mesh size dependence for the 
POF calculation. An additional test was done using the mesh for the effective volume calculation where 
the mesh was concentrated at the peak stress and not uniformly distributed. The same results were 
obtained. So, not only is there no mesh size dependence, there is no dependence on meshing stress 
concentration. These results differ from the effective volume calculation where mesh density will 
influence the effective volume. The red trace in Figure 22 is the POF determined effective volume for 
PIA and the blue trace is the POF determined effective volume for MSE. Numbers in the legend are the 
numbers of the degree of freedom. Increasing DOF represents smaller mesh sizes. The difference between 
the curves is due to the improved representation of the multiaxial stress state in the MSE effective stress. 

Figure 23 is a plot of POF calculation using Weibull weakest link theory as reported in this essay and 
the method in the current ASME graphite component code. The ASME rule replaces the Weibull scale 
parameter with the uniaxial characteristic strength in the integral and therefore does not use the effective 
volume. The characteristic strength obtained from uniaxial tensile tests is not representative of the 
specimen size or stress state in the notch bar. The difference between the two POF calculations is 
significant.
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Figure 22. POF calculation for the notch tensile bar (r=20mm) as a function of applied 
load on the bar. 

Figure 23. POF calculation as a function of the applied load on the notched tensile bar.
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3. NUCLEAR ENGINEER AND DESIGN PAPER ON STATISTICAL
MODELS FOR NONIRRADIATED GRAPHITE

A journal paper authored by NASA and INL is published in the Journal of Nuclear Engineering and 
Design, Vol. 240, pages 1–29. The title of the paper is “Overview of statistical models of fracture for 
nonirradiated nuclear-graphite.” The paper discusses the quasi-brittle nature of graphite and relevant 
statistical failure models. Various brittle and quasi-brittle material systems are discussed in reference to 
graphite regarding strength distribution, size effect, multiaxial strength, and damage accumulation. This 
includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the 
strength response of composite materials, which involves distributed damage. Consideration is given to 
the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage 
(level of disorder) within the material system. The literature indicates that weakest-link-based failure 
modeling approaches appear to be reasonably robust in that they can be applied to materials that display 
distributed damage, provided that the level of disorder in the material is not too large. The Weibull 
distribution is argued to be the most appropriate statistical distribution to model the stochastic strength 
response of graphite.
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