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Implicit Methods for the Magnetohydrodynamic Description of
Magnetically Confined Plasmas

S. C.Jardin!
Princeton Plasma Physics Laboratory, Princeton, NJ 08543
Abstract

Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in
today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit
solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots
in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-
linear solver techniques make practical much more comprehensive implicit algorithms than were
previously possible. Combining these advanced implicit algorithms with highly accurate spatial
representations of the vector fields describing the plasma flow and magnetic fields and with improved
methods of calculating anisotropic thermal conduction now makes possible simulations of fusion
experiments using realistic values of plasma parameters and actual configuration geometry.

I. Introduction

This article is a review of the progress made during the last 35 years in developing accurate and efficient
implicit algorithms for simulating the global dynamics of strongly magnetized low [ (ratio of plasma to
magnetic pressure) plasmas such as exist in modern magnetic fusion experiments; in particular the
tokamak configuration [wesson04]. Other, related confinement configurations that these methods are
useful for include stellarators, reversed field pinches, spheromaks, and spherical tori. We limit our
discussion to algorithms for solving the magnetohydrodynamic (MHD) equations [jardin10], in which the
plasma is described as a conducting fluid. Several forms of these equations are summarized in Appendix
B. Efforts at extending this work to include intrinsically kinetic effects are presently underway, but this
will not be covered in the present review.

The typical geometry of a tokamak experiment is shown in Figure 1 where a cylindrical (R,(p, Z)

coordinate system is used. The equilibrium magnetic field is axisymmetric; independent of the toroidal
angle @. The magnetic field is composed of a toroidal field, which is into the plane of the paper, and a

poloidal field, which lies within the plane of the paper. The magnetic field lines interior to the separatrix
surface form closed flux surfaces on which the temperature, pressure, and density are nearly constant.
These are shown as solid curves in the figure. The ratio of the number of times a magnetic field line
goes the long way around the torus to the number of times it goes the short way around on one of these
surfaces is called the safety factor, which we denote as( . It typically varies from 1 near the magnetic

axis to 3 or 4 near the edge. Exterior to the separatrix surface, the magnetic surfaces are open and the
field lines intersect the vacuum vessel or other structures. The plasma on these open surfaces will
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necessarily be very low pressure, density, and temperature. The vacuum vessel is sometimes modeled
as a perfect conductor, but in reality has some electrical resistance, which can be important for some
plasma dynamics [bondeson94, smith09]. Exterior to the vacuum vessel, it is normally assumed that a
vacuum exists so that the free-space Maxwell equations are satisfied. This is the geometry we are
interested in simulating, although much of the algorithm development leading up to simulations in this
geometry has occurred using much simpler geometry.

In Section Il we review the reasons for the multiple timescales that exist when describing the global
dynamics of magnetized plasma, and hence the need for an implicit algorithm. Section Il traces back
the origins of modern algorithms for treating the hyperbolic terms (ideal MHD) to similar methods
proposed for implicit hydrodynamics in the 1960s. In Section IV we discuss some of the considerations
in choosing a spatial representation, including the choice of variables used in representing the vector
fields. We discuss implicit treatment of the anisotropic heat conduction in Section V, and techniques for
dealing with the terms that occur in the two-fluid (2F) description in Section VI. Section VII contains a
short summary and some observations. In Appendix A, we show the relation of the algorithms most
widely used for implicit treatment of the hyperbolic terms to the Schur complement of a matrix.

Il. The Need for an Implicit Algorithm

|”

Global plasma instabilities are termed either “ideal” or “resistive” depending on the minimum equation
set that is required to describe their onset. Ideal instabilities require only the ideal MHD equations
[freidberg87], while resistive instabilities require the presence of resistivity, or other forms of
dissipation. In general, resistive instabilities occur on significantly slower timescales than do ideal

instabilities since the resistivity in high temperature plasma is very low.

There is a wide separation in timescales even within phenomena described by the ideal MHD equations
in tokamak geometry. There are three characteristic wave propagation velocities in ideal MHD: that of
the slow waveV, , the Alfvén waveV,, and the fast waveV.. These satisfyV, <V, <V.. Since the fast
wave is the only one that compresses the magnetic field, a motion that is highly stabilizing, all low- S
tokamak ideal MHD instabilities are associated with the slow wave and the Alfvén wave. The plasma
will “slip through” the background field rather than compress it. However it is the fast wave that sets
the maximum allowable time step when using an explicit time advance.

To better understand the time step restriction imposed by the presence of the fast wave, consider the
timescales associated with the three types of waves. The slow wave and Alfvén wave only propagate in
the direction parallel to the background magnetic field whereas the fast wave’s propagation is nearly
isotropic [jardin10]. If we denote the local safety factor as q and the local aspect ratio as &, then the

ratio of the transit times of these three waves is: gs: gs': 1. However, the difference in the explicit
time step constraint associated with the three waves is much more extreme than this. The spatial
resolution requirements perpendicular to the magnetic field are much more severe than those parallel
to the magnetic field, making the Courant-Friedrichs-Lewy (CFL) [courant67] condition associated with
the fast wave much more restrictive than that associated with the others; typically by two or more



orders of magnitude. An implicit treatment of at least the fast wave is therefore essential if one is to
follow even relatively rapid growing ideal MHD instabilities.

Resistive instabilities present even more of a timescale problem. The Lundquist number, S, is the ratio
of the resistive diffusion time for the magnetic field to the Alfvén wave transit time. If we denote the
minor radius as a, the poloidal magnetic field as B, , the plasma resistivity as 7, the number density asn

, the ion mass as M, and the permeability of free space as 1, =47 x107", then we can approximate this

as (Sl units):

aB
- nllc)l Tp @)

In modern fusion experiments, this number is typically in the range: S ~10° —10°. Resistive instabilities
will grow on times proportional to inverse fractional powers of this multiplied by the Alfvén wave transit
time: 7, ~ S “r, where typically « ~]/3—3/5 [coppi6b, glasser75]. The initial growth of these
instabilities involves plasma motion highly localized in the vicinity of a particular flux surface,
necessitating very high spatial resolution in the direction perpendicular to the magnetic field. During
the nonlinear growth, it is typical to have a ~1[rutherford73] so that very long integration time scales
are required. It is clear that a highly implicit treatment of the ideal MHD wave terms (hyperbolic terms)
is essential if one is interested in simulating these slowly growing resistive instabilities.

I1l. Implicit Algorithms for Time Advancing the Hyperbolic Terms

If the (small) resistive and other dissipative terms are neglected, the resistive MHD equations reduce to
the ideal MHD equations, a symmetric hyperbolic system of equations. In this section, we review
progress in developing implicit algorithms for this type of system of equations.

A. Implicit Hydrodynamics

The algorithm now widely used to obtain implicit solutions (and hence enable large time steps) for the
MHD equations has its roots in the ICE algorithm of Harlow and Amsden for hydrodynamics [harlow68].
The essence of this algorithm can be illustrated by applying it to the 2D isothermal hydrodynamic
system of equations:

p , om, oM,
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Here pis the fluid density, m, = pu and m, = pv are momentum densities, and c?is a constant. The

method is motivated by the need to treat the sound wave characteristics implicitly when the flow Mach
number is small. This is accomplished by using the advanced time value of the momentum density in
the density evolution equation, Eq. (2a), and the advanced time value of the density in the momentum
density evolution equations, Eq. (2b)-(2c). Introduce the time step St and consider the time advance
from time n(denoted with a superscript) to timen+1. Using “dots” to denote time differentiation; i.e.

a= 8a/8t = (an+1 —a")/ ot for any scalar quantity @, we can introduce an implicit parameter #and

write the implicit time advance equations as

e G .

p+&(mx +65tmx)+5(my +05tm, ) =0, (3a)
, +§[(p“ +9§tp)u2]+%[(p” +95tp)uv]+c2§(p" +05tp) =0, (3b)
R [ R I P S

Those variables without a superscript or dot are evaluated at time level n. We can now use Eq. (3b) and

(3¢) to eliminate M, and M, from Eq. (3a) to obtain

p—(65t)’ [%};[(uz + cz)p]+ 2@8—;([uvp]+;—22[(v2 +c2)pﬂ

(4)
0 n 0 n 82 2 2 62 0 2 2
:—&(mx)——(my)+95t(a7[(u +C )p}+27[UVp]+—2[(V +C )pjlj

Letting St p = p"" — p", and multiplying through by 5t , we have

pn+1—pn—(9&)2[§[(U2+Cz)pn+l]+2;;X[UVpn+l]+§[(V2+C2)pn+1]]

o, .\ 0 )
~- ()L () )

2 2 2

+0(1-0)(st)’ (%[(uz +c? )p] +2 ;ax [uvp]+ %[(vz +c? )p]] .

This can be put into the form used in [harlow68] by setting € =1 (backward in time), using centered
finite difference operators, and subtracting Eq. (3a) in the form

oo :5t§(m;‘)5t%(m;) . (6)



This yields the finite difference equation for the new time density:
n+l

2
Pl —2p, +Pir,]}1 _%[((Uz)iﬂu,j +02)Pin+11j _2((U2)in,j +C2)Pirj;l +((U2);11,j +Cz)pin:1,lj]

ot? 2 2\ sl 2 2\ sl 2 2\ _n+l
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n+1

=0.
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Subscripts denote the spatial index on an equally spaced Cartesian grid with x =iox and y= joy.

n+1

Equation (7) is then solved iteratively for the new time density: p;;*. Once this is obtained, it is used in

the finite difference forms of Eq. (3b) and (3c) to advance the momentum density from time Nton+1.
Equation (7) is seen to be a diagonally dominant matrix equation that is readily solved by relaxation
techniques. The noteworthy features of this unconditionally stable method are that (1) the matrix
equation that needs to be solved is for only one variable, p"”, as the momentum variables at the new

time level have been eliminated algebraically, and (2) the matrix equation is diagonally dominant and
nearly symmetric, and thus well conditioned.

B. Implicit Treatment of the Fast Wave

Consider now the ideal MHD equations (given in Appendix B), a purely hyperbolic system of equations.
These are similar to the hydrodynamic equations, but are considerably more complicated in that they
have additional characteristics. As discussed above, in a low B strongly magnetized fusion plasma, such
as a tokamak, the ideal MHD equations contain three types of wave solutions that differ greatly in their
structure and propagation properties. Since the CFL condition for the fastest of these waves is unduly
restrictive, some type of implicit treatment is required if one is to integrate the equations over times of
interest. We can use the fact that the fast wave is the only one that compresses the magnetic field and
hence has a non-zero divergence perpendicular to the field, VsV, # 0, [jardin10] to isolate it for an

implicit advance in a relatively simple equation. Consider the ideal MHD equations in the form:

\'/+V-VV+£V(p+ﬁBZ):+LB-VB ) (8a)
P ’ PHq

p+VeVp+ypVeV =0, (8b)

B+V.VB+BV.V, -B:VV, =0. (8c)

Next, define the total (fluid + magnetic pressure) P=p +i82 and the perpendicular divergence of the

velocity A=V <V . By taking the perpendicular divergence of Eq. (8a) and adding Eq. (8b) to the inner
product of B with Eq. (8c) we obtain [jardin78]



F"+(ﬂiOBZ+;/p)A+N:O, (9a)

A+V 1VP+Q=0 . (9b)
Yo
Here, we have defined
N zV-Vp+7/pVo\/H +iB-V-VB—iB-BoVVl , (10a)
Q= Vi{ — B.VB +v.vv} : (10b)
Hop

In a manner analogous to what was done in going from Eq. (2) to Eq. (3), we construct a partially implicit
time advance by evaluating the perpendicular velocity divergence and the total pressure in Eqg. (9) at the
advanced time to obtain

P+(LB%+yp)(A"+05tA)+N =0, (11a)
A+Vi-%V(P”+95tF")+Q:0 . (11b)

Next, use Eq. (11b) to eliminate A from Eg. (11a) to obtain the single equation for the advanced time
pressure:

P™ _ (GS1)2C2V oL VP = P + 3t —¢’A" = N +¢*05tQ | + 9(1—9)§t2c2VL.lVP” . (12)
p p

Here, we have defined c? siB2 + 7 p . Again, we note that after applying centered spatial finite

differencing operators, Eq. (12) becomes a well conditioned, diagonally dominant nearly symmetric
matrix equation for the new time total pressure, very similar to the equation for the new time density in
Eq. (7). The total pressure, P™™" , can be readily solved for using relaxation or other techniques
[Jardin78]. Once this is obtained, we can use it in Eq. (8a) to advance the velocity, and then use the
advanced velocity in Eq. (8b) and (8c) to advance the pressure and magnetic field. The time step using
this method need only obey the CFL condition for the Alfvén wave and slow wave, not the fast wave.

This basic technique of solving a separate equation for the advanced time total pressure has been
extended to 3 dimensions in [aydemir85] and to 3D toroidal geometry [park90]. However, in
[aydemir85], the operator in Eq. (12) is replaced in their Eq. (32) by:

P" — (65t)° [y p*VL-EVP“” -B'.V xlvpnﬂ X B*} = (13)
p P



Here starred quantities are predicted values in their predictor-corrector algorithm. Equation (13) is
what results if all the terms in Eq. (8c) are retained in the implicit solve rather than just the one involving
compression. It is not clear what the advantage of this is, or if the authors studied its effect. This
algorithm was first successfully implemented in circular cylindrical geometry where the two equilibrium
ignorable periodic coordinates were treated using a Fourier series expansion. In order to obtain

separable equations to facilitate rapid inversion, the quantities p and B" were approximated as being

independent of the angles during the matrix solve [aydemir85]. This was later extended to toroidal
geometry [aydemir89] .

C. Semi-Implicit treatment of the Fast Wave

At about the same time as [aydemir85] appeared; Harned and Kerner [harned85] developed a semi-
implicit algorithm that also allows exceeding the CFL condition for the fast wave. Although not cited in
this first paper, a similar semi-implicit algorithm had been used previously by others in large scale
meteorological calculations to eliminate the severe time step constraint due to external gravity waves.
This techniqgue was shown to be exceptionally efficient when using a spectral representation [robert69]
but had also been shown to be effective when using a finite difference model [robert72]. This early
meteorological work is reviewed in [robert85 ] and referred to in later MHD publications[harned86].

The Harned and Kerner algorithm is noteworthy in several respects: (1) it solves for the velocity field
(rather than the total pressure) with an implicit operator. This is important in that it was essential for
subsequent extensions of this technique to an implicit treatment of the other ideal MHD characteristics,
(2) it uses an approximate implicit operator rather than the full operator. This has the potential for
greatly increasing the efficiency of the method for a nonlinear problem since the same (approximate)
implicit operator could be used repeatedly without having to be inverted each time step, and (3) the
same operator appears on each side of the equals sign in the equation for the new time velocity; it
operates on V"™ on the left and V" on the right. This provides a convenient prescription for developing
a second order in time implicit operator that again allowed for generalization in future works.

To derive the Harned and Kerner algorithm, consider the ideal MHD equations as given in Eq. (8).
Analogous to Eqg. (11), we evaluate only the terms that contribute to the fast wave at the advanced time:

V+V-VV+£V[p+0§tp+ﬁBz+%9§tB-B]:+LB-VB, (14a)
p ’ ’ Py

p+VeVp+ypVe(V+05tV)=0, (14b)

B+V-VB+BV+(V+65tV)-BVV =0. (14c)

Substitution of Eq. (14b) and (14c) to eliminate P and B from Eqg. (14a), and keeping only those terms in
Eq. (14b) and (14c) which multiply \Y/ yields



v—(aat)ziv[(ypmz)v-v} = —v-vv—lv[ P+t Bz]+iB-VB . (15a)
P p ’ PHy
The semi-implicit method now introduces a constant, A, and replaces Eq. (15a) with the following

modified form:

v—(at)ngvv-\'/:-V-vv—iv[p+ﬁ BZ}+LB.VB. (15b)
P ’ PHq
The discrete version of Eq. (15b) is obtained by substituting V = (V™ —V")/ 5t and applying central

finite differences and/or a Fourier series expansion. This, together with the discrete forms of Eq. (14b)-
(14c) with @>1/2, is shown to be numerically stable for time steps that exceed the CFL condition for

the fast wave (but not the Alfven wave) as long as A? > (1/ 4p0)(7 Py + Bé) This was implemented in a

predictor-corrector algorithm in which the explicit forms (with & =0) of Eqg. (14) were used to calculate
predicted values of V,B, and p. Then, the velocity at the new time level, V™ was calculated from
Eq. (15b). This and the predicted values of B and p were then used in Eq. (14b) and (14c) to get new

time values of these quantities.
D. Semi-Implicit Treatment of the Alfven and Fast Waves

Not long after the semi-implicit operator for the fast wave in Eq. (15b) was derived, it was extended by
Harned and Schnack [harned86] to include the Alfven wave. Consider the full ideal MHD equations
applied to a uniform magnetic field configuration, but with all the terms that lead to wave solutions
evaluated at the advanced time. The analogue of Eq. (14) is

) 1 1 .
V+VeVV +=V(p+05tp)=+——| Vx(B+65tB) [xB
+ +p (p+065tp) +pﬂ0[ ><( + 6ot )]x ) (16a)
p+VeVp+ypVe(V+05tV) =0, (16b)
B:W[(vﬂ%t\'/)xs]. (16¢)

Using Eq. (16b)-(16c) to eliminate P and B from Eqg. (16a), and keeping only the terms in the

substitution proportional to V gives the following operator equation for the time derivative of the
velocity:

. , 1 . 1 , .
V- (665%) ;V(;/pV-V)—p—ﬂO(@&) [vx(vx[vxsmxs

. 1 (17a)
- _V.VV——Vp+—[V>< B]x B.
P Py



The semi-implicit operator used in [harned86] replaced the magnetic field on the left in Eq. (17) by a
vector quantity with constant coefficients: C, = C X+ ny +C,Z. The pressure term is dropped, with

the reasoning that it does not enter into the Alfvén wave and enters into the fast wave with the same
form as the perpendicular magnetic field. Therefore, the semi-implicit approximation to Eq. (17a) is just

1
Poto

V2

St? [VX(VXI:VXCOJ)}XCO = —V-VV—%Vp +piﬂo[w B]xB . (17b)

This was implemented in Cartesian geometry in [harned86] in the following way: First the velocity and
field quantities are updated explicitly to a provisional time value (*) in a predictor step by using Eq. (16)
with 6=0. These provisional values are used to advance the velocity from time n to n+1 using the semi-
implicit Eq. (17b). They then use an average of the velocity at from time n and n+1 and the field
guantities at time value (*) to perform a corrector step to advance the field variables from time n to
n+1. However, for the magnetic field (or vector potential), they then perform a final split semi-implicit
advance where the resistive part of the MHD equations is included.

It is shown in [harned86] that this algorithm is unconditionally stable as long as C, > B, everywhere for
I = X, Y, Z with the crucial modification that all terms that appear in the semi-implicit operator as

products as C,C; be replaced by C,C,5;, where & is the Kronecker delta.

This work was extended in [schnack87] to cylindrical geometry where a spectral representation was
used in the periodic poloidal and axial coordinates. Define the semi-implicit operator in Eq. (17b) as

G{V}E[VX(VX[VXCOJ)}XCO, (18a)

Besides retaining only terms proportional to Ci, where now a =Tr,8, Z, they further ignored any

coupling between V, and (Vr ,Vg) , allowing the algorithm to retain a 2x 2 block tridiagonal structure.

An additional approximation that was considered in [Schnack87] was to approximate Eq. (18a) by the
much simpler isotropic operator

G{V}=C;v’V . (18b)

They present comparisons of long time simulations using Eqg. (18a) and (18b) and conclude that the
accuracy of the linear modes for a given time-step size is improved by using Eq. (18a) (including the
modifications discussed above), but that far into the nonlinear phase of a reversed field pinch simulation
the results of using the two approximate operators are similar.

It is also noteworthy in [schnack87] that the leap-frog method was combined with the semi-implicit
method in a way that reduced the dissipation of the algorithm. They define the field quantities at times
offset from the velocity by half a time step. After performing a predictor-corrector step just for the field
quantities which includes an implicit treatment of the resistive term, and a predictor step for the



velocity that includes only the convective derivative term, they use these on the right side to Eq. (17b) to
advance the velocity to the new time level.

The algorithm presented in [schnack87] was later found to be unstable if significant plasma flow was
present. However, it was shown that if the semi-implicit operator was included in both the predictor
and corrector steps for the velocity, a method that was stable for CFL numbers based on the flow speed
up to 1 could be obtained [lionello99]. This was also demonstrated in [lerbinger91].

E. The Method of Differential Approximation

Consider now the ideal MHD equations where all the terms containing the pressure and magnetic field
in the momentum equation are evaluated at the advanced time, as are all the terms containing the
velocity in the pressure and magnetic field equations. The analogue of Eq. (14) and (16) is

: 1 1 . .
V+VeVV+ =V (p+05tp)=+——| Vx(B+05tB) |x(B+05tB)
#VTV 4=V (p+31p) = +— | Vx(B-+ 6618) |(B + 051B) (12)
p+(V+05tV )Vp+ypVe(V +05tV) =0, (19b)
B=V><[(V+05t\'/)xB]. (19¢)

In a manner closely analogous to the above, we linearized Eq. (19a) in the terms involving Ot , and then

use Eqg. (19b)-(19c) to eliminate P and B from the linearized Eg. (19a). This yields

o1 2 . 1 1 1
V-——(0ot) G{Vi=—(00t)G{VI-V.VV-—Vp+—(VxB)xB. (20a)
(0t 6 {V} =" (653G (V) VP —(VxB)

Here, Gis the full ideal MHD operator [bernstein58]
G{V} :Vx[Vx(VxB)}xB+(V><B)x[Vx(VxB)}LV[V-Vp+;/pV-V]. (20b)

Caramana [caramana91] noted that it is the numerical dispersion coming from the implicit operator
acting on V, i.e. the second term on the left in Eg. (20a), that is the primary numerical stabilization
mechanism, rather than the first term on the right, that provides numerical dissipation. Thus, implicit
methods can get rid of numerical dissipation by dropping that term and combining with leapfrog for the
field advance equations (or by setting 8 =1/2in a @ -implicit scheme) and still have numerical stability
with an arbitrarily large time step. He therefore replaced Eq. (20a) with [caramana91]

\'/—l(eét)ze{\'/}?v-VV—EVp +L(VXB)XB . (20¢)
p P PH,

The system given by Eq. (20c), (20b), (19b), and (19c) looks very similar to the semi-implicit method, Eq.
(17b), but it has one important advantage. Since no additional approximations to the operator G were

10



made, the eigenvalues of G are the same as the eigenvalues of the ideal MHD equations. This means
that there is no mixing of the linear eigenvalues and thus the system given by Eq. (20b), (20c), (19b) and
(19c) can be used to faithfully compute eigenvectors of the original system. In particular, there is no
intrinsic “spectral pollution” [gruber85] introduced in this algorithm whereby eigenmodes associated
with the fast waves will produce artificial stabilization of the possibly unstable eigenmodes associated
with the Alfven and/or slow wave branches. The disadvantage of this technique is that it requires the
inversion of a complicated linear operator each time step in the calculation.

The semi-implicit XTOR code [lerbinger91, lutjens08] goes partway towards implementing the full ideal
MHD operator as given in Eq. (20b). Their method approximates the full ideal MHD operator in Eq.
(20b) as the full ideal MHD operator based on the equilibrium fields plus a small coefficient multiplying
the Laplacian as follows:

GV} -G, [V} +ov? {V] . 21

Thus, the constant Cin Eq. (21) could be very small compared to that used in [Schnack87] since it is
needed only for the small departure of the computed nonlinear solutions from their linear eigenmodes.
This was implemented in toroidal geometry using a spectral representation in both the poloidal and
toroidal angles. The stabilizing implicit operator G was included in both steps of a predictor-corrector
scheme in [lerbinger91] and in only the second step of a modified predictor-corrector scheme in
[lutjens08]. Resistive terms are included in an implicit resistive advance for the magnetic field in a
separate step after the corrector step.

The NIMROD code [glasser99,sovinec04] uses basically the same implicit operator as given in Eq. (21),
but combines this with an explicit leap-frog scheme. However, they also include the symmetric part of
the deviation of the solution from equilibrium in the operator G in Eq. (21), and the constant Cis
computed to be the maximum difference between the actual and equilibrium fast wave speed. This has
been implemented using high-order finite elements in the poloidal plane and a spectral representation
in the toroidal angle.

The M3D-C” code line has implemented a similar algorithm for nonlinear calculations in 2D
[jardin07,ferraro09] and linear calculations in 3D [breslau09,ferraro10] in which the full ideal MHD
operator in Eq. (20b) has been implemented. In [ferraro09] they describe implementing a general
method which can be invoked as either the semi-implicit method using the full implicit operator (which
they call the Caramana method [caramana91]) or as the split 0-implicit method which one obtains if
Eg.(19b) and (19c) are substituted into Eq. (19a) and all terms are retained. Consider now the general
algorithm that has three implicit parameters: 8,a,¢, and offset time levels.

(p1-6*t°G)V™ =(pl -adt’G ) V" +5t[—Vp +i(w B)x B}
Hy

_p§t [(1— 29)V”°VV” n e(vml.vvn n Vn-VV"”)]

(22a)
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N L NI
p Y
= g St(l-
|:B:| |:B:| " t¢ g(Bm+l,Vn+l) + t( ¢) g(Bm+1,Vn) ’ (22b)

Here, G is the full ideal MHD operator given in Eq. (20b), | is the identity operator, and f and g are the

functions implied by Eq. (19b) and (19¢). Setting m=n+1/ 2 corresponds to the leap frog treatment of
the explicit terms. If we linearized about a configuration with V =0and consider an eigenmode such
that GV = 4V, defining D = —5t22,| , we find that the amplification factor, r , satisfies the quadratic

equation
(1+6°D)(r-1)° +D(¢* +¢-a)(r-1)+ D =0. (23)

Analysis of the roots of Eq. (23) shows that for the Caramana method, for which¢ =1and o = 6, we

have |r|2 =1 corresponding to linear stability and no-dissipation for @ >1/ 2. Truncation error analysis
shows the time discretization error to be second-order in ot for any stable value of @. This method has
the additional feature that the multiplier of the operator G is the same on both sides of Eq. (22a), so

that in steady state, when V" = V", the operator will have no effect on the solution.

For the split ©-implicit method, for which ¢ =60 and a = 9(9—1), the amplification factor is less than or

equal to 1 (and hence stable) when &>1/2. However in this case |r|2 =1 only when 8=1/2 as the
method is dissipative for@>1/2. Itis also second-order accurate only for @ =1/2. When the resistive
terms are treated implicitly in the time advance for B (but not included in the operator G ) it does not
affect the numerical stability.

Breslau and Fu [breslau10] have found that the approximate (of order ¢ ) separation of the MHD wave
characteristics into different components of the momentum equation in M3D allows them to
approximately split the operator in Eq. (20) and to use a different operator in different projections of the
momentum equation to obtain stability to both the fast wave and shear Alfven wave for a range of time
steps. Thus, for the divergence of the momentum equation, they replace G with the semi-implicit
operator: (B?+yp)R°V+R™?V, while for the toroidal component of the curl of the momentum
equation and for the toroidal component, they replace the operator G with the semi-implicit operator:
(B-V)B-V . While not providing numerical stability for an arbitrarily large time step, this allowed
approximately an order of magnitude increase in time step over that allowed by the CFL condition for
the Alfven wave.

F. Non-linear Implicit Methods

The implicit methods discussed so far utilize a linearization either about the initial equilibrium or about
the current state in order to construct the implicit operator needed to advance to the next time step.
Another class of methods [chacon08, lutjens10] use Jacobian-free Newton-Krylov techniques [knoll04]
to solve iteratively for the new time values that self-consistently satisfy the nonlinearly implicit
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equations. The entire system of discretized nonlinear MHD equations is considered as a single system
to which the nonlinear Newton-Krylov method is applied. However, it is found that it is much more
efficient [chacon08] to break up the linear solves that occur during each Newton step into smaller
subsystems and to iterate between these subsystems using predictor corrector techniques to obtain a
converged solution.

Let V" be the approximate value of the new time velocity V", and define the difference as

oV =V" —V™  Adopting similar notation for the other variables, the residual of the momentum
equation at a given Newton iteration is defined as:

\

R, =p" (V™= V") 4 08t pmVT gV vpT - g x|

(24a)
+(1-0)St[ p"V"VV" +Vp" - J"xB" |.
Similarly, the residuals for the density, pressure, and magnetic field are given by:
R, ( p”Tl) = ( P o ) + t%tV-( PV DVp"Tl) +(1-0)5tv+(p"V" -DVp"), (24b)
Rp(pm):(p”jl—p“)+9§t[VmV-pm+7p”T1V-V”T1] ac)
o
+(1-0) St V'Vep" +7p"VeV" |+ Veq,
Ry (B™)=(B" —B")+95{V><(v“+1 xB"™)-Lvxvx B””}
)7
° (24d)
+(1—(9)5{V><(V" x B")—leVx B”}.
Ho
At each step in the Newton iteration, the corrections to the density, pressure, magnetic field and
velocity are determined as follows:
Step 1: Predictor step for the field quantities at fixed velocity
1 -1 -1
. oR . oR .
op =-— £ ‘R, op =—| —= ‘R, oB =—[ aRB} Ry . (25a)
aanrl aanrl aBI‘Hl
Step 2: Velocity update
—pSVVV = pVeVSV - 5p'VVV -V5p
(p1-6°6t°G)oV =-R, +65t| 1 (25b)

+—(Vx0B)x B+1(VxB)xdB’
Hy Ho

Step 3: Corrector step for the field quantities
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Sp=38p —05tV+(psV),
5p=5p —05L[SVVp +ypVesV], (25¢)
5B =68 +05tV x5V xB).

The operator on the left in Eq. (25b) is the same as that in Eq. (22a). The authors of this method refers
to the inclusion of this term as “parabolization” of the equations, and to the technique as a “physics
based preconditioner”. It is implied that this term is essential to obtain good performance in the

iteration. Performing just a single Step 2 (with Vi V", etc) and then combining Steps 3 and 1 appears
to be equivalent to the method in Eq. (22) with & =#?and ¢ =@ so that this is seen to be a way of

generalizing that method to account for the non-linearity in the implicit solve.

This method has been implemented using a multi-grid preconditioner and FGMRES [saad93] as the
Krylov solver for a Cartesian finite volume discretization [chacon08]. A very similar nonlinearly implicit
Newton-Krylov method has now been implemented in the XTOR-2F code [lutjens10] using the NITSOL
package [pernice98]. The primary difference is that the XTOR-2F uses a direct solver for the
preconditioner and uses linear finite differences in the radial (equilibrium flux) coordinate and a Fourier
representation in the poloidal and toroidal angles.

G. Unsplit Implicit solves

In the methods described in sections A-F above, the implicit time advance is split in that the advance for
the velocity and the field quantities are done sequentially (although in the method in section F, these
are cycled through iteratively each time step so that the final solution at the end of a time step can be
considered unsplit). There are also several algorithms that advance the velocity and field variables on
an equal footing in a full unsplit nonlinearly implicit [popov01, glasser04, dudson09, lukin10,shadid10,
ovtchinnikov07] or linearly implicit [delucia84,charlton90, czarny08, huysmans09] solve. The matrices
that enter the unsplit solves are known to be poorly conditioned. However these works have shown
that unsplit solves are feasible if direct matrix inversion methods or specially preconditioned iterative
methods are used. In algorithms in which the angular spatial coordinates are represented as Fourier
series and only one coordinate is represented by finite differences, the matrices take on a block
tridiagonal form for which a direct solve is particularly efficient [delucia84, charlton90, popov01].

There have also been efforts to solve the full implicit unsplit system using alternating direction implicit
(ADI) methods [lindemuth73, finan81, breslau03]. While stable solutions have been obtained with time
steps 10 or more times the CFL limit for a purely explicit method, it has not yet been demonstrated that
this is a viable technique for use in a highly anisotropic configuration such as one with realistic geometry
as shown in Figure 1 and with parameters of a magnetic fusion experiment.

A finite volume implicit method is presented in [jones97] that is based on an approximate Riemann
solver for the hyperbolic fluxes [harten83] and central differencing for the parabolic fluxes. The implicit
operator is inverted using an iterative lower upper symmetric Gauss-Seidel technique [Yoon88]. It was
demonstrated for a problem in model geometry that this technique could produce a CPU savings of a
factor of 3 compared to a comparable explicit method.
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Several papers have also appeared recently in which a Newton-Krylov solver with an operator-based
preconditioner based on directional splitting [reynolds06, reynolds10] and multi-grid techniques
[adams10] have been applied to the MHD equations in model geometry. While these initial studies look
promising, it remains to be seen the applicability of these methods to the calculation of global dynamics
of magnetic fusion devices with realistic parameters and geometry.

IV. Spatial Representation

It has been recognized since the 1970s that special care must be given to the spatial representation of
the magnetic and velocity vector fields in highly magnetized plasma if interest lies in computing unstable
motions. Not only must the divergence of the magnetic field be constrained to vanish, but the
treatment must be such as to accurately describe a flow field that avoids compressing the strong
externally imposed magnetic field to a large degree [chance77]. In linear MHD, this latter property has
been called the avoidance of spectral pollution [gruber85]. There have been several approaches to
satisfying these requirements.

One approach is to construct a representation based on ordering assumptions using the toroidal aspect
ratio € as a small parameter. To lowest order in this parameter, unstable motions of tokamaks can be
well described by just two scalar functions: a flux function for the magnetic field and a stream function
for the incompressible flow field. This was first introduced in 2D cylindrical geometry [rosenbluth76]
and then generalized to 3D [strauss76,strauss77] and extended to higher order in £ and more variables
[schmalz81, strauss83, izzo85]. This led to a fully general representation of the velocity and magnetic
vector potential fields involving five scalar quantities. If we use a cylindrical (R,¢,Z) coordinate

system, and denote by V, the gradient in the (R,Z) plane, the vector fields in a tokamak can be

represented as [breslau09]:

V=R*VUxVg¢+R’wVg+R?V g, (26a)
A=R¥V¢xVf +yVp—F InRZ . (26b)

Here F,is a constant proportional to the total current in the toroidal field coils. The particular
representation for the vector potential in Eq. (26b) has the associated gauge conditionV, -R?A =0.

This has been found to be convenient [maschke89, breslau09], but is certainly not the only choice
possible.

The first two terms in Eq. (26a) do not compress the strong externally imposed toroidal field and will
thus be the dominant contribution to the flow field describing a global instability in a tokamak. (The
second term in Eq. (26a) has also been taken to be in the direction of the magnetic field, B=V x A
[maschke89, huysman09].) Approximate formulations based on an aspect ratio expansion will omit the
second and/or third term in Eq. (26a) to obtain a “reduced” set of equations that is capable of describing
the dominant plasma motion but is free of this compressible term that leads to the fast wave [izzo85,
huysmans09]. If this third term is kept, taking appropriate projections of the momentum equation will
approximately isolate the fast wave motion to separate equations, which are then solved by implicit
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techniques, and this term will effectively serve as a small correction to the dominantly compression-free

motion [breslau09]. The factor of R™2in the last term in Eq. (26a) is shown to make the first and last
terms in that equation orthogonal in the sense that the cross product involving these will vanish when
V 2is integrated over the torus volume. (Note that in cylindrical geometry, the factors of R?or R
become constants [delucia84, garcia86].) Implicit methods that are based on finite elements that use
these and similar representations contain higher order spatial derivatives than occur when using scalar
projections of the vector fields and thus benefit from using elements with continuous first derivatives
that can represent spatial derivatives up to 4™ order when applying the Galerkin method
[jardin04,czarny08].

The other technique that has been shown to be effective is to use high-order spatial discretization to
represent the scalar projections of the vector fields in a cylindrical or other coordinate system. In
addition, it is desirable to separate out equilibrium from non-equilibrium fields, and to use the
equilibrium equation to analytically remove the zero order terms. This has been demonstrated using
high-order Lagrangian finite elements [sovinec04] and high-order spectral elements [glasser04,
lukin10,sovinec10]. If the magnetic field is advanced rather than the magnetic vector potential,
divergence cleaning can be used to enforce the condition V«B =0 [sovinec04].

A number of published algorithms have used a spectral representation in two of the angle coordinates
as a way of accurately computing derivatives of scalar fields [aydemir85, harned85, harned86, garcia86,
schnack87, charlton90, lerbinger91, popov01, lutjens08]. While this technique has proven effective in
representing internal instabilities in mildly shaped tokamaks, it is not clear how effective it will be in
representing more shaped, separatrix limited plasmas, where the solution domain is extended to the
highly resistive plasma on the open field lines out to the vacuum vessel wall. (However, [aydemir09]
demonstrates that this is feasible to some extent, at least in 2D). In contrast, recent studies have shown
that the use of high-order finite elements in the poloidal plane can handle this geometry to very high
accuracy [burkel0, ferraro10].

V. The Heat-Flux Term

The thermal conductivity in a high-temperature magnetized plasma is extremely anisotropic due to the
fact that charged particles can free-stream parallel to the magnetic field but are confined perpendicular
to it. Consider the temperature evolution equation in the presence of anisotropic thermal conduction.

Neglecting terms arising from convection and compression, we have

3 0
—N—T=-Veq+S , 27
2 ot q (27a)

where the heat flux vector is of the form

q=-n[ ybb+ z, (I1-bb) VT . (27b)
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Here, y, and y, are the thermal conductivities parallel and perpendicular to the direction of the

magnetic field, b is a unit vector in the direction of the magnetic field, | is the identity matrix, and S
represents a volumetric source term. Since this is an equation for the temperature that depends only
on the temperature, it can normally be solved separately from the other equations in a “time step
splitting” fashion.

The concern in solving this equation is that if 3, > y, , errors proportional to y, will tend to dominate
the solution in the perpendicular direction, making the effective value of y, much larger than the
specified value. It has been demonstrated that by using high order finite elements, values of y, up to
10®times larger than , can be used without causing unacceptable pollution in the perpendicular
direction [sovinec04, jardin04]. Lutjens [lutjens2008] reports solving anisotropic thermal conduction
with a ratio y, ly = 3x10* using a preconditioned conjugate gradient method in a mixed spectral/finite

difference representation. It has also been reported that high order spectral elements yield a given
accuracy with less total degrees of freedom than lower-order elements, especially when significant grid
misalignment was present [meier10, lukin10].

Gunter, et al. [gunter05, gunter07] demonstrated that even low order finite differences or finite
elements can be used to compute highly anisotropic heat conduction accurately if a certain procedure is
followed. The prescription is to first calculate temperature gradients at locations staggered from the
locations where the temperatures are defined. These gradients are used to calculate parallel heat flux
vectors at those same locations. The divergence of the parallel heat flux is then calculated in a
conservative manner that maintains the self-adjointness of the operator.

Park, et al [park86, park99] introduced an “artificial sound” method to represent the fast thermal
equilibration along field lines. Instead of solving an equation like Eq. (27), they solve additional wave
equations for the temperature:

ar s

> B.Vu (28a)
ot p

gt—usz-VT -Wa . (28b)

1/2

The wave speed, a constant s times B/ o™ (the Alfvén speed), represents the free streaming velocity of

electrons with a dissipation v . The thermal energy inside a flux tube is conserved with this technique,
and the asymptotic state satisfiesBsVT =0. An explicit difference method can be used to advance Eq.
(28) and the temperature will equilibrate much faster than it would if solving Eq. (27) with an explicit
method. There is a close connection between this technique and that of dynamic relaxation [jardin10].

VI. Two-Fluid terms
The basic techniques described here have been extended to the two-fluid description of plasma
[harned89, sugiyama00,sovinec05,schnack06,ferraro09,sovinec10,lutjens10]. When applying the
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method of differential approximation, the stabilizing operator that appears in the momentum equation
is the same as that used for MHD [ferraro09, sovinec10,lutjens10]. The implicit treatment of the J x B
term that now appears in the time evolution equation for the magnetic field is handled by some much
the same way as the V+VV term is treated in the momentum equation in Eq. (22a). Thus, in a split
leap-frog implicit time advance where the velocity is defined at integer time levels and the magnetic
field and pressure are defined at half time levels, the magnetic field time advance can be written as

B=Vx {77(\]””’2 +05t3) = V" x (B"Y? + 058 ) + %(J“*l’2 +05t3)x(B™” + 65tB) —%Vﬁe"“} . (29)

In Eq. (29), B E(BM/2 — B”*”z)/& , J=VxB, and a bar over a quantity means evaluating the quantity

centered in time. Time centering corresponds to choosing the implicit parameter § =1/2. A linearly

implicit implementation of Eq. (29) will ignore the term proportional to Jt?[sovinec05,ferraro09],
whereas a nonlinearly implicit implementation will include this with a Newton iteration[sovinec10].

The question arises if there is an effective semi-implicit operator for use in the two-fluid magnetic field
advance equation, (29), either to improve the conditioning of the matrix in a semi-implicit time advance
or as a “physics based” preconditioner in a nonlinear implicit advance. Harned and Mikic [harned89]
proposed the following semi-implicit modification of the left side of Eq. (29):

(1-G)B=--
2 o2
G:L&z
(nex,)

30
(Bo'v)2 v? =0

They report favorable results with this semi-implicit operator for #>1/2and using for B, a large

externally imposed field and implementing either using leap-frog centering with the velocity, or using a
separate predictor-corrector step for the magnetic field advance. Their application was a 2D helical
symmetry calculation where spectral methods were used in the helical coordinate and finite differences
were used in the radial coordinate.

Techniques for evaluating the operator in Eq. (30) and using it as a preconditioner for a nonlinear
Newton-Krylov solve in 2D reduced 2F MHD are given in [chacon03]. However, a more general analysis
of this operator included in a split linearly implicit time advance, such as in Eq. (22) with m=n+1/2,
and making some reasonable assumptions regarding the time levels that different quantities are
evaluated at shows the presence of a numerical instability in the general case, even if the equivalent of
the magnetic field advance, Eq. (22b) is replaced with a predictor-corrector step [sovinec10].

A semi-implicit operator of the form of that in Eq. (30) has been successfully implemented as part of an
iterative semi-implicit method using a spectral representation of reduced MHD in2D [loueiro08]. In
[laveder09] they describe a semi-implicit operator based on Eq. (30) implemented in a third-order
Runge-Kutta time advance using a spectral method in 3D. In [arnold08] they describe a local specially
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preconditioned Jacobi-like iteration based on this operator that they demonstrate is effective when
used in a multigrid scheme with Cartesian coordinates in 2D.

VII. Summary and Discussion

Returning to Figure 1, it is interesting to review what groups have actually attempted to simulate this
configuration. Most of the papers cited here have utilized simulation domains that have made some
approximations to this geometry. In Table 1 we list the published codes which solve the 3D MHD
equations. Papers using the codes CTD (in 2D) [aydemir09], M3D [sugiyamal0,strauss10], M3D-
C'[ferraro10], NIMROD[burke10], and JOREK[Huysmans] have reported on calculations that extend
outside the separatrix surface to the vacuum vessel, and M3D[strauss10] has included resistivity in the
vacuum vessel and thereby extended the solution domain to infinity.

A largely unanswered question has to do with what is the relative advantage of using a nonlinear implicit
method [chacon08,dudson09,ludjens10,lukin10] over one that is linearized about each timestep (which
we call here linearly implicit) [brelsau09,sovinec10,huysmans09] . It is possible that this is problem
dependent. In [lutjens10], one such comparison is made for the XTOR code and it is stated that the
Newton-Krylov nonlinearly implicit method is about a factor of 3 more costly than the linearly implicit
method for the same accuracy for the resistive MHD case. However, this is likely not a general result.

Another comparison of interest is that between split and unsplit linearly implicit methods, and similarly
between un-preconditioned and preconditioned nonlinear implicit methods. One such comparison is
made in [ferraro09] where it was found that by most measures, the split and unsplit linearly implicit
methods had very similar accuracy for the same time step, but that the matrices in the unsplit case were
rank 8N as opposed to two rank 3N and two rank N matrices in the split linearly implicit case, and thus
considerable more effort was required for direct inversion. However, it was found that in one case a
nonlinear instability occurred in the split case when the transport coefficients were strong functions of
the changing temperature, but that a single predictor-corrector iteration corrected this and allowed the
split linearly implicit timestep to increase by several orders of magnitude and remain stable. For the
Newton-Krylov nonlinear implicit methods, several authors have indicated that including the same
operator preconditioner used in the split linearly implicit methods, Eq. (20b), led to greatly improved
performance in the iterative solves [chacon08,lutjens10].

A great amount of progress has been made since the first papers appeared in which any implicit
algorithms for the MHD equations in magnetized plasma were mentioned. Further progress will result
from finding the preferred combination of implicit algorithm, spatial representation, and solver
methodology, and adapting these techniques to perform efficiently on today’s massively parallel
computers. This is an area where close collaboration between theoretical and computational physicists,
applied mathematicians, and computer scientists will bring great benefits.
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Appendix A: Implicit Hyperbolic Algorithms and Relation to Schur
Complement

First consider the simple wave equation in 1D with constant propagation velocity c:

ot OX ot OX

The two equations in Eq. (A-1a) could also be written as a single wave equation for either por V, i.e.

2 2
Zt\zl =c’ ZX\Q (A-1b)
or
2 2
th =c? gxf : (A-1c)

Introduce s =cot/IX , where ot and OX are the time and space increments. A centered in space,
backward in time, implicit finite difference method for Eq. (A-1a) corresponds to:

VI =V s[ i - Pl ] (A-2a)
1 1 1
Pis = Pl + S[VjTl -V (A-2b)

A centered in space, backward in time, implicit finite difference method for Eq. (A-1b) is likewise given
by

an+1 _ 2an +an—1 =2 |:V_n+1 _ 2an+l +an:[l:| . (A-2c)

j+1
Note that we can add Eq. (A-2a), withn — n—1, to Eq. (A-2c), and move the advanced time value to the
left side of the equation to obtain

V=t [V -2Vt eV =V sl — P | (A-2d)

j+l

Equation (A-2d) is also obtained if we use Eq. (A-2b) to algebraically eliminate both p?ﬁ,z and p?flllz

from Eq. (A-2a). This can be solved either iteratively or directly (tridiagonal in 1D) for the new time

velocity an+1' which is then, in turn, used in Eq. (A-2b) to solve for the new time pressure p?jll,z .

In this 1D simple example where the pressure and velocity appear symmetrically, we could equally as
well have used Eg. (A-2a) to eliminate the new time velocity from Eq. (A-2b), and solved an equation
identical in form to Eq. (A-2d) to first solve for the new time pressure, and then used this in Eqg. (A-2a) to
solve for the new time velocity.
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Alternatively, as another way of obtaining this same result, we could start with Eq. (A-2a) and (A-2b) in

A B V n+l V n
. = (A-3)
C P P
Here A and D are identity matrices, and B and C are lower and upper triangular matrices of the form

(ignoring boundary conditions):

matrix form:

S S s =S Via Vi
B= s s , C=-B"= s s . V=V, |, P=|V,,
S S s =S Via Vi

L S - L - L - (. -

Eqg. (A-2d) can also be written in matrix form as
ArVn+l — V!n . (A-4)

Here the matrix A" and the vector V'" are given by

r A r -n

—-s? 1428 -¢? Via+8(Pjys = Pja)
A= —-s*  1+2s° - : V=1 V48P0, = Pja2)

s 1+2s* -¢? Vi +5(Pja = Piaw2)

This is seen to be simply the Schur Complement of the matrix in Eq. (A-3),i.e. A'=A-BD'C,

V" =V"—-BD'P" The matrixin Eq. (A-4) is seen to be half the rank of that in Eq. (A-3), and is
diagonally dominant and symmetric. Once the new time velocity is solved for, the pressure is updated
from Eq. (A-2b) without need for further matrix inversion.
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Appendix B: The MHD Equations

In this paper, we are concerned with three fluid models: ideal MHD, resistive MHD, and two-fluid (2F)
MHD. A more complete description of these models can be found in [jardin10]. The equations for the
three models are given here. The continuity equation for the number density is:

%-FV'(nV):O : (B-1)

MHD assumes that there is no net charge density. For a single species of singly charged ions, the
electron and ion densities are therefore equal: n,=n, =n. Assuming the electron mass is much

smaller than the ion mass, m, < M,, the momentum equation for the mass averaged velocity takes the

form:

nMi(%+VoVV)+Vp—J><B=O ideal MHD
=-V.II, resistive MHD . (B-2)
=—V.l,, 2F MHD

The magnetic field must be initialized with V«B =0. It then evolves according to Faraday’s law:

@z—VxE. (B-3)
ot

The divergence condition will remain satisfied by Eq. (B-3). However, it is often enforced by introducing
a vector potential A such that B=V x A, and time advancing Arather than B. In MHD, the electrical
current density is defined as [SI units]

H,d =V xB. (B-4)

The generalized Ohm'’s law equation for the electric field is

E+VxB=0 ideal MHD
=nJ resistive MHD . (B-5)

1
=nd +—[J x B —Vpe] 2F MHD
ne
Here, 77 is the electrical resistivity and e is the electron charge. The internal energy equation is

§[a_p+v.( pv)}+ pVeV =0 ideal MHD

2| ot (B-6)

=-Veq+nJ? -[1;:VV  resistive MHD
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The pressure is related to the density and the temperature by p=p, + p; =nk, (Te +Ti) . Inideal and

resistive MHD it is normally assumed the electron and ion temperatures are equal. The heat flux vector
occurring in Eq. (B-6) is normally of the anisotropic form given in Eq. (27b). In 2F MHD, the energy
equation is somewhat more complicated and an additional energy equation needs to be added for
either the ions or electrons. For this, and the definition and some common approximations to the stress
tensor terms occurring in Eq. (B-2) and (B-6), the reader is referred to [jardin10].
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Figure 1: In a tokamak, the equilibrium plasma is axisymmetric. Magnetic flux surfaces are closed
interior to the separatrix and open exterior to it. Plasma is surrounded by a metallic vacuum vessel.
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Table 1: Summary of 3D MHD codes referenced in text.

Reference Name geometry | discretization | Time advance DivB Vector
constraint | fields
Finan81 IMP curvilinear | FD(3) ADI-Newton Vector Coordinate
potential projections
Aydemir85 CTD cylindrical | FD(1), SP(2) Semi-implicit Vector Cylindrical
potential components
Harned85 cartesian FD(1), SP(2) Semi-implicit Vector Cartesian
potential components
Harned86 Cartesian/ | FD(1), SP(2) Semi-implicit Vector Cart./cyln.
cylindrical potential components
Schnack87 DEBS cylindrical | FD(1), SP(2) Semi-implicit Vector Cylindrical
potential components
Charlton90 FAR torus FD(1), SP(2) Unsplit, direct | Vector Potentials
solve potential for velocity
Lerbinger91 cylinder FD(1), SP(2) Semi-implicit Cylindrical
components
Popov01 torus FD(1), SP(2) Unsplit non- Enforced Co and
linear implicit, using Bg contra
Lutjens08 XTOR torus FD(1), SP(2) Semi-implicit Co and
contra
Park90 M3D Toroidal FE(2),FD(1) Partially- Vector Stream ftn.
implicit potential / potential
Breslau09 M3D-C* | Toroidal C' FE(3) Split linearly Vector Stream ftn.
implicit potential / potential
Sovinecl0 NIMROD | Toroidal FE(2), SP(1) Split linearly Divergence | Toroidal
implicit cleaning components
Chacon08 Cartesian Finite volume | Preconditioned | Solenoidal Cartesian
Newton-Krylov | differencing | components
Huysmans09 | JOREK Toroidal Bezier FE(2), | Unsplitlinearly | Vector Reduced
SP(1) implicit potential MHD
Dudson09 BOUT++ | Toroidal Finite Unsplit Newton | Vector Reduced
Field align. | difference Krylov (CVODE) | potential MHD
Lutjens10 XTOR-2F | Torus FD (1), SP(2) Preconditioned Co and
Newton-Krylov contra
Lukin10 HiFi Flexible Spectral FE Unsplit Vector Flexible
(Cartesian) Newton-Krylov | potential (Cartesian)
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