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Abstract 

The “probability of interruption”, PI, for a specific attack scenario is typically evaluated using 
conservative, point-estimate values.  The result is significant expenditure of resources – both 
hardware and response force personnel – to address such scenarios.  Also, less attention is paid 
to balance protection across the entire range of possible scenarios.   

This work provides a comprehensive uncertainty technique to evaluate uncertainty, resulting in a 
more realistic evaluation of PI, thereby requiring fewer resources to address scenarios and 
allowing resources to be used across more scenarios.  For a given set of adversary resources, two 
types of uncertainty are associated with PI for a scenario: (1) aleatory (random) uncertainty for 
detection probabilities and time delays and (2) epistemic (state of knowledge) uncertainty for the 
adversary resources applied during an attack.  Adversary resources consist of attributes (such as 
equipment and training) and knowledge about the security system; to date, most evaluations have 
assumed an adversary with very high resources, adding to the conservatism in the evaluation of 
PI.  The aleatory uncertainty in PI is addressed by assigning probability distributions to detection 
probabilities and time delays.  A numerical sampling technique is used to evaluate PI, addressing 
the repeated variable dependence in the equation for PI.  The epistemic uncertainty for adversary 
resources is considered using plausibility from the belief/plausibility measure of uncertainty.  
The uncertainty in adversary resources is epistemic (state of knowledge), not aleatory, so the 
belief/plausibility measure of uncertainty is appropriate to weight the likelihood of various 
adversary resources.  An evaluation was performed on the fidelity of the data available for use in 
the technique.  Insufficient data are available for a “look up” of a probability distribution for 
every detection and delay element for every set of adversary resources.  However, sufficient data 
exist such that the data combined with expert judgment can provide probability distributions for 
a given set of adversary resources.  The uncertainty in adversary resources can only be addressed 
by expert judgment.  This report develops a process for applying expert judgment to selected 
scenarios of concern to address uncertainty, thereby providing a better, less conservative, 
evaluation for PI.  The capabilities needed to support the steps in that process are discussed. 
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Executive Summary 

For a specific attack scenario, the traditional measure of the effectiveness of the detection and 
delay elements of a physical security system is the probability that the security system detects 
the adversary in time for interdiction by the response force.  This measure is denoted as PI: the 
“probability of interruption.”  This measure is typically evaluated using conservative, point-esti-
mate values for the detection and time-delay elements of the security system, and the conserva-
tism in the individual elements and in the overall PI for a scenario is not evaluated.  The result is 
significant expenditure of resources – hardware and response force personnel – to address such 
scenarios.  Also, less attention is paid to balance protection across the entire range of possible 
scenarios.  The subject of this report is the presentation of a comprehensive uncertainty 
technique to evaluate uncertainty resulting in a more realistic evaluation of PI, thereby requiring 
fewer resources to address scenarios and allowing resources to be used across more scenarios. 
 
The Laboratory Directed Research and Development (LDRD) program at Sandia National 
Laboratories (SNL) sponsored this project on developing a comprehensive uncertainty technique 
for application to the derivation of PI.  The work was performed between June 30 and September 
18, 2008 at SNL in Albuquerque, NM. 
 
This report addresses the following topics:   

• Development of the mathematical technique to include uncertainty in evaluation of PI. 
• Discussion of the fidelity of the data available to use in the approach. 
• A process for implementing the approach using the available data. 

 
Two types of uncertainty are associated with PI for a scenario: 

• For a given set of adversary resources, there is aleatory (random) uncertainty for 
detection probabilities and time delays.   

• Epistemic (state of knowledge) uncertainty addresses the adversary resources that will 
be brought to bear during an attack.   

 
Adversary resources consist of attributes (such as equipment and training) and knowledge about 
the security system; to date, most evaluations have assumed an adversary with very high 
resources, thereby adding to the conservatism in the evaluation of PI.   

 
In the past, the following main approaches have been used by security analysts in the DOE 
community to evaluate PI for a given set of adversary resources: 

• the Systematic Analysis of Vulnerability to Intrusion (SAVI) 
• the Analytic System and Software for Evaluating Safeguards and Security (ASSESS) 
• the Adversary Time-Line Analysis System (ATLAS) 

 
Each of these tools use point estimates for all variables.  The Estimate of Adversary Interruption 
(EASI) technique treats the time variables as random variables, each with a normal distribution; 
all the probability variables are evaluated as point estimates.  Our technique expands these 
approaches to include uncertainty for all the detection and delay elements, but incorporates the 
point estimate and the EASI approaches as special (degenerate) cases.  None of these earlier ap-
proaches addresses uncertainty in adversary resources; our technique addresses this uncertainty.   
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This mathematical technique treats all variables − time and probability − as uncertain.  For a 
given set of adversary resources, a probability distribution is assigned to each variable to reflect 
the aleatory (random) uncertainty in the performance of the adversary in defeating the security 
system elements.  For example, in penetrating a reinforced wall barrier, random effects are 
associated with the location of rebar, the distribution of rubble, and human factors for adversary 
actions that provide uncertainty for the time to penetrate the wall even if the set of adversary 
resources is fixed.   
 
This work describes a process to use available data for the technique developed in this report.  
The steps are:   
 

1. Specify the fuzzy sets for adversary resources, using expert opinion. 
2. Select scenarios of concern to be evaluated. 
3. Generate probability distributions for detection and delay elements for each set of 

adversary resources for each scenario. 
4. Evaluate PI for each set of adversary resources. 
5. Assign evidence over sets of adversary resources. 
6. Evaluate PI for weighted adversary resources. 

 
By considering both the random uncertainty associated with a specific set of adversary resources, 
and the state of knowledge uncertainty in the adversary resources, we produce a more realistic, 
less conservative estimate for PI. 
 
The application of this approach requires significant effort, including assembling a team of 
experts, gathering many sources of data, performing additional tests to gather new data in 
selected areas, and elicitation of expert opinion.  Experts in security system elements, human 
factors, statistics, and threat assessment are required. 
 
This report makes the following recommendations: 

• The comprehensive uncertainty approach should be applied only to scenarios where 
conservative point-estimate values result in prohibitively high costs of hardware and/or 
response force size to address that scenario.  Thus, a screening process can evaluate 
scenarios and retain only those of concern for subsequent detailed evaluation using this 
approach.  This screening process can be the one typically used where scenarios are 
identified – using such tools as table-top exercises or path-finding tools such as ATLAS 
– and evaluated using conservative point estimates. 

• A pilot application of this approach to a specific set of scenarios should be performed.  
This will determine the usefulness, cost, and time required to apply the approach. 

 
Extensions to the technique are suggested.  Here, we focused on the uncertainty in PI.  Overall 
effectiveness, PE, is the product of PI and PN, where PN is the probability of neutralization of the 
adversary by the response force given interruption.  Uncertainty in neutralization, PN, could be 
addressed.  Other possible extensions to the technique are also discussed.   
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1 Introduction 

1.1 Background 

The Laboratory Directed Research and Development (LDRD) program at Sandia National 
Laboratories (SNL) sponsored this work, which is an investigation of a technique to evaluate 
uncertainty in adversary attacks against physical protection systems, resulting in a more realistic 
evaluation of the probability of interruption (PI).  Better definition of PI requires fewer resources 
to address adversary scenarios and allow resources to be used across more scenarios.  The work 
was performed between June 30 and September 18, 2008 at SNL in Albuquerque, NM. 
 
1.2 Probability of Effectiveness and Probability of Interruption 

The effectiveness of a physical security system for a specific adversary attack path is evaluated 
as the probability that the security system defeats an adversary, given an attack along the path.1  
[Vulnerability Assessment]  This measure is denoted as PE: the “probability of effectiveness.”  
PE includes the probability that the response force neutralizes the adversary, given that the 
adversary is detected in time for the response force to interdict the adversary.2  The probability 
that the adversary can be detected in time for response is referred to as the “probability of 
interruption,” denoted as PI.  PI is also referred to as the “probability of timely detection.”  Here 
we focus on the evaluation of PI. 
 
1.3 Defining the Path and its Relationship to Detection 

A path consists of a number of layers where the adversary may be detected and/or delayed by 
elements of the security system.  Typical layers include:  

• the protected area boundary,  
• the outer surfaces of buildings within the protected area,  
• areas internal to buildings, and  
• targets within the areas.   

 
At each layer, there is a probability of detection and a time delay; in general, time delay may 
occur both before and after detection.  Let “i” denote a layer.  Let Pi denote the probability of 
detection at the ith layer.  Let Ti1 denote the time delay before detection at the ith layer, and let Ti2 
denote the time delay after detection at the layer.3  Let PC denote the probability that a detection 
event is correctly assessed and communicated to the response force.  Let TR denote the time 
required for the response force to respond to detection and interdict the adversary.  For a given 
set of security system elements, Pi, T1i, and T2i depend on the adversary; PC and TR depend on 
the defender.   
The general equation for PI is: 

                                                 
1  We are evaluating a specific scenario.  Scenarios are selected using such techniques as expert judgment and table-top exercises, or path 

analysis with tools such as ATLAS.  [ATLAS]  
2  PE is the probability of effectiveness for a scenario: the probability that the security system defeats an adversary given an attack.  PE = PI × PN. 

 PI is the probability of interruption of the adversary attack path: the probability that the security detects the attack in time for the response 
force to interdict the adversary.  PN is the probability of neutralization: the probability that the response force neutralizes the adversary given 
interruption of the attack path.   

3  Time delays include time for the adversary to move from layer to layer, time for setup, etc., as well as the time to actually penetrate a delay 
element. 
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is the probability that the time remaining after detection is sufficient for the response force to 
interdict the adversary; it is the probability that the sum of the time delays from layer i into the 
final layer k −  following detection at layer i − exceeds the response force time.  Note that only 
delay after detection is counted for layer i, since at the layer of interest delay prior to detection is 
not counted. 
 
Table 1-1 summarizes the nomenclature for the variables in Equation 1. 

Table 1-1.  Nomenclature for Variables in Equation 1 

Variable Meaning of Variable 

PI Probability of interruption for a specific scenario 

PC Probability that an event that is detected is correctly assessed and 
communicated to the response force 

Pi Probability that adversary action at layer “i” is detected 

Ti1 Time delay at layer “i” before detection 

Ti2 Time delay at layer “i” after detection 

TR Time for response given detection and assessment 

∑
+=

>−++
k

im
Rmmi TTTTP

1
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Probability that the time delay following detection at layer “i” 
exceeds the guard response time given “k” total layers 

 

                                                 
4  In general TR and PC may depend on the layer, and TR and PC may be further developed as combinations of other variables.  Extension of the 

approach in this report to include such considerations is straightforward; here we are focusing on uncertainty for the adversary and these 
considerations address the defender.  Section 8 discusses expansion of the approach to include aspects associated with the defender.   
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2 Prior Evaluations 

This section summarizes two simplifications of equation 1 that have been used by various 
evaluation tools. 
 
2.1 Point-Estimate Evaluation 

In the past, Equation 1 has been solved using point estimates for the variables.  Such tools as 
SAVI, ASSESS, and ATLAS use this approach, where paths are found using graph theory 
algorithms and each path is evaluated using Equation 1 with point estimates for probabilities and 
times.  [SAVI] [ASSESS] [ATLAS] 
 
Using point estimates, if there is a layer in the path – call it c – that satisfies the following: 
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then layer c is called the Critical Detection Point (CDP).  There will be a CDP if the time delay 
remaining after detection at any layer in the path exceeds the response time.  Detection after 
layer c is of no use as there is insufficient time left for response.  If there is no CDP, PI is zero 
since there is insufficient delay for the response force to interrupt the adversary regardless of 
where or how well the adversary may be detected.  If there is a CDP, then Equation 1 simplifies 
to: 
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If there is no CDP, PI is zero. 
 
Typically, conservative values are used for the point estimates of detection and time delays for 
adversary actions in Equation 1, so that the point estimate for PI may in reality be conservatively 
low.  That is, low values for probabilities of detection and delay times result in a possible under-
prediction of PI.5 
 
If the uncertainty in the variables is accurately known and represented using probability 
distributions, conservative point estimate values will correspond to high percentiles of the 
distributions instead of means and therefore result in a relatively unlikely point estimate for PI.   
 

                                                 
5  A point estimate alone provides no indication of uncertainty.  Such a point estimate could be conservative or non-conservative.  The point 

estimates used by SNL are known to be conservative, and it is assumed in the rest of the report that the point estimate values are conservative. 
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2.2 The EASI Evaluation 

In reality, all the variables in Equation 1 have uncertainty.  The EASI technique treats all the 
time variables in Equation 1 as random variables, each with a normal distribution.  [EASI]  All 
the probability variables in Equation 1 are evaluated as point estimates.  EASI evaluates 
Equation 1 by analytical convolution of the probability distributions for times.   
 
In this report, convolution means the evaluation of combinations of uncertainty distributions of 
random variables.  Analytical convolution means non-numerical convolution as opposed to a 
numerical sampling technique.  A random variable is a mapping from a sample space to the real 
number space that provides a probability distribution over real numbers. 
 
Using probability distributions for times, there is no CDP because Equation 3 can be greater than 
zero for more than one layer due to “overlap” of the probability distributions for the time 
variables.  For the point estimate model discussed in Section 2.1, at each layer Equation 3 is 
either zero or one.  Using probability distributions for times, Equation 3 can be any value within 
[0,1] for each layer. 
 
Note that Equation 3 always is a point value, not a distribution, even if the time variables in 
Equation 3 are random variables with probability distributions.  Since Equation 3 is a point 
value, and since EASI uses point values for all the probabilities in Equation 1, PI as calculated by 
EASI is a point value. 
 
3 Consideration of Aleatory Uncertainty for All Variables 

Aleatory (random) uncertainty is present in the performance of a given security system element 
for a given set of adversary resources.  For example, in penetrating a reinforced wall barrier, 
random effects are associated with the location of rebar, the distribution of rubble, and human 
factors for adversary actions that provide uncertainty for the time to penetrate the wall even if the 
set of adversary resources is fixed. 
 
It is not possible to correctly evaluate Equation 1 by analytically treating all variables as distinct 
random variables because of the “repeated variable dependence” in the equation.  For example, 
assuming three layers, Equation 1 is of the form: 
 
 1 2 1 3 2 1(1 ) (1 )(1 )IP P X P P Y P P P Z= ∗ + − ∗ + − − ∗  (6) 

where X, Y, and Z represent other variables in each term.  In Equation 6, P1 is a repeated 
variable – as is P2 – and analytical convolution will overestimate uncertainty as it will treat P1 
and (1−P1) as independent variables, which they are not.  This problem can be evaluated using a 
numerical sampling technique to convolute probability distributions for the variables in Equation 
1 instead of using an analytical technique for the convolution.  With a sampling technique, the 
repeated variable dependence is correctly considered by using the sample value for P1 to evaluate 
(1-P1), thereby explicitly accounting for the dependence. 
 
Also, in general the probability and time variables in Equation 1 do not have a normal 
distribution.  A given variable may be better represented using another distribution, such as: 
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lognormal, uniform, triangular, beta, etc.  In fact a normal distribution does not have the correct 
range for either a probability or a time, since the range for the normal distribution is [−∞,∞] but 
probability is restricted to [0,1] and time is restricted to [0,∞].  (In application, if the “tails” of 
the normal distribution are small outside the actual range of the variable, the effect is small.) 
 
Equation 1 can be evaluated by assigning probability distributions to each variable in the 
equation, and using a sampling technique to evaluate the equation.6  The sampling technique 
performs numerical convolution of algebraic combinations of random variables.7  
 
3.1 Definition of Probability 

We are using the name “probability” in two different ways.  For the probability variables in 
Equation 1, probability is used in the objective (classical or frequency) sense; it is the number of 
times an event occurs divided by the number of trials in the limit as the number of trials is 
infinite.  The uncertainty in any variable is represented by probability used in the subjective 
(state of knowledge) sense.  Therefore, the probability distribution for a probability variable is a 
subjective probability of an objective probability.  This confusing use of nomenclature is 
discussed in a 1981 paper.  [Kaplan]  Kaplan points out that we use the name “probability” to 
refer to two different concepts, and he recommends using the name “frequency” for objective 
probability and reserving the name “probability” to mean subjective probability.  He uses the 
nomenclature “probability of frequency” to denote uncertainty in a random variable.  The Kaplan 
nomenclature can confuse engineers because the frequency is not a physical rate, but the 
dimensionless classical definition of probability.  Also, both uses of probability satisfy the 
Kolmogorov axioms for a probability space, and in this sense probability is the correct term for 
both concepts.  In this report, for probability variables in Equation 1, we mean objective 
probability; for the uncertainty of any variable in Equation 1 – be it probability or time – we use 
probability in the subjective sense.  
 
Note that each term in Equation 1 considered as an event in a sample space is mutually exclusive 
since detection at a given layer considers no detection at all for the prior layers as discussed 
earlier. 
 
3.2 Crystal Ball Software Tool 

For this study, the Crystal Ball software tool was used to evaluate Equation 1.  [Crystal Ball]  
Crystal Ball is on overlay on the Excel spreadsheet software package that allows probability 
distributions to be assigned to variables, and evaluates algebraic combinations of these random 
variables expressed as equations in Excel.  Different types of standard probability distributions 
can be assigned to each variable, or a custom probability distribution can be specified for any 
variable.  Convolution is performed by the user specifying either a Monte Carlo or a Latin 
Hypercube numerical sampling technique. 
 
For example, let A and B be two variables in Excel, and let “C = A + B” be an equation in Excel. 
Crystal Ball allows the assignment of probability distributions to A and B, and generates a 
                                                 
6  The selection of the correct probability distribution is based on the nature of the problem, the data available, and experience. 
7  Others have addressed the consideration of aleatory uncertainty in detection and delay variables; for example, the SASRAP and Nextgen 

projects.  [Snell Communication] [Nextgen] [SASRAP] 
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probability distribution for C using sampling.  For our purposes, we will assign probability 
distributions to all the variables in Equation 1 and generate a probability distribution for PI.   
 
In contrast to EASI, our result for PI will be a probability distribution, not a point value.  But as 
previously discussed, Equation 3 is always a single value, not a distribution. 
 
4 Consideration of Epistemic Uncertainty for Adversary Resources 

Section 3 discusses solving Equation 1 using the probability measure of uncertainty.  Probability 
addresses random (stochastic) uncertainty, more precisely called aleatory uncertainty.  
Probability has difficulty dealing with state-of-knowledge uncertainty, more precisely called 
epistemic uncertainty.8 
 
For example, for a fair coin the uncertainty is aleatory: the probability of heads is ½ and the 
probability of tails is ½. 
 
However, if we do not know the coin is fair, the coin may be biased for heads or may even be 
two-headed.  Our uncertainty for the coin is not random at all − the coin is either fair or not − we 
just do not know.  Our uncertainty is epistemic, or state of knowledge.  In the limit where we 
have no information about the coin, the case of total ignorance, all we can state is that the 
probability of either heads or tails is somewhere in [0,1].  Belief/plausibility is a measure of 
uncertainty that is a generalization of the probability measure of uncertainty that can capture 
epistemic uncertainty.  [Theory of Evidence]  Belief and plausibility form lower and upper 
bounds on probability, respectively.  For total ignorance the belief/plausibility for heads − or 
tails − is 0/1. 
 
4.1 Defining Variables 

A variable may be difficult to describe numerically; a purely linguistic description is more 
appropriate for variables that have an unknown numeric scale.  For example, for the variable 
“Health” the linguistic bins “Poor”, “Moderate”, and “Excellent” have more meaning than an 
arbitrary numeric scale, since the scale is unknown.  Does “Health” have the numerical range 
[0,3] or [1,106] or something else?  The problem of unknown scale is made worse when different 
variables are combined, leading to a result that is dependent on the arbitrary numeric scale that is 
used.  For such situations, it is more appropriate to reason on the words themselves instead of 
forcing the use of an arbitrary numeric scale.  Linguistic bins for a variable are fuzzy sets, and 
combinations of variables with fuzzy sets can be accomplished using approximate reasoning. 
 
We have applied the belief/plausibility measure of uncertainty to variables described using 
purely linguistic fuzzy sets.  [Terrorist Risk]  A computer tool called LinguisticBelief© has been 
written to evaluate uncertainty using approximate reasoning for combinations of variables 
represented as purely linguistic fuzzy sets using the belief/plausibility measure of uncertainty.  
[LinguisticBelief]  
 

                                                 
8  The SASRAP project addressed epistemic uncertainty, but not with belief/plausibility.  [Snell Communication] [SASRAP] 
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4.2 Adversary Resources and Creating Fuzzy Sets 

Our uncertainty in adversary resources is epistemic, not aleatory, in that the level of adversary 
resources is not random but fixed and known to the adversary that decides to attack, but 
unknown to us, the defender.  Resources include both attributes and knowledge.  Attributes 
include equipment, weapons, number of adversaries, level of training, etc.  Knowledge is the 
information about the target and the security system known to the adversary. 
 
PI is dependent on adversary resources.  Most prior evaluations assume that the adversary has 
extensive resources and evaluate PI accordingly.  We denote this adversary by the linguistic 
fuzzy set “omniscient” or all-knowing.9  Such an adversary may have significant knowledge 
supplied by an “insider” as well as significant attributes.   
 
We will consider two other fuzzy sets for the adversary: “Expected” and “Poor”.  Thus our 
linguistic bins for adversary resources are the fuzzy sets {Omniscient, Expected, Poor}.  These 
fuzzy sets form our sample space for the adversary.  In application, each set of adversary 
resources needs to be defined; that is, the fuzzy sets over adversary resources need to be defined. 
 
Using expert opinion for our epistemic uncertainty for adversary resources we can assign 
evidence to families of fuzzy sets.  Figure 4-1 is an example of such an assignment. 
 

 

Figure 4-1.  Example Evidence 

Subsets of the sample space with evidence are called focal elements.  Evidence is denoted by 
“m.”  In Figure 4-1 we have two focal elements: {Omniscient, Expected} with evidence 0.3 and 
{Expected} with evidence 0.7.  For any subset A, the belief and plausibility of A can be 
evaluated from the focal elements as follows:   
 

                                                 
9  We do not assume that the adversary is omnipotent, or all powerful, as an all-powerful adversary has unlimited resources and PI would always 

be zero for such an adversary. 

Omniscient Poor   Expected 

m = 0.3 
m = 0.7 
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where B is a focal element.  If all the focal elements are singletons − that is, each subset B with 
evidence has only one element − both belief and plausibility are the same, the probability. 
 
For the example in Figure 4-1, the belief/plausibility for each fuzzy set is: 
 

• “Omniscient” has Belief 0 and Plausibility 0.3 
• “Expected” has Belief 0.7 and Plausibility 1.0 
• “Poor” has Belief 0 and Plausibility 0. 

 
4.3 Using PoolEvidence Software to Compile Results 

A set of experts may not agree on the evidence over the adversary fuzzy sets; the PoolEvidence© 
software can pool the results from different experts to produce a set of pooled focal elements.  
[Qualitative Uncertainty]  PoolEvidence is a utility for LinguisticBelief.10  For example, assume 
four different experts assign evidence to our set of adversaries.  Figure 4-2 is the model for this 
situation in PoolEvidence.  Figure 4-3 shows the evidence assigned by each expert and the 
overall pooled evidence. 
 

                                                 
10  The development of variables, fuzzy sets, combinations of variables, approximate reasoning rules, and the assignment of evidence is an art 

that requires training of experts and the use of formal expert elicitation techniques.  LinguisticBelief is a tool that captures and processes the 
information so produced.  Here, we are reasoning on one variable, Adversary Resources, and the belief/plausibility for that single variable 
can be easily calculated using Equation 7.  To evaluate combinations of variables, LinguisticBelief can be used. 



 

19 

 

Figure 4-2.  Example of Evidence from Numerous Experts in PoolEvidence 

 

Figure 4-3.  Example of Pooled Evidence 
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4.4 Probability Distributions for the Variables 

The probability distributions for the variables in Equation 1 are dependent on the adversary 
resources, and thus the final probability distribution for PI is dependent on the adversary 
resources.  The detection probabilities and time delays for the Omniscient adversary are worse − 
lower probability of detection and shorter time delay − than are the detection probabilities and 
time delays for the Expected adversary.  Similarly, the detection probabilities and time delays for 
the Expected adversary are worse than for the Poor adversary.  We denote the conditionality of 
PI on adversary resources as PI| adversary, and we have three such conditional probabilities: PI| 
Omniscient, PI| Expected, and PI| Poor. 
 
We evaluate Equation 1 for each of these adversaries.  We – the Defender – use plausibility for 
the weighting, since we wish to conservatively evaluate the scenarios of concern, and plausibility 
is an upper bound for PI.11   
 
The overall PI is evaluated by weighting each conditional PI by plausibility.  Specifically: 
 

( ) | ( ) | ( ) |
( ) ( ) ( )

I I I
I weighted

Plaus Omniscient P Omniscient Plaus Expected P Expected Plaus Poor P PoorP
Plaus Omniscient Plaus Expected Plaus Poor

• + • + •
=

+ +
   (8) 

where “Plaus” denotes plausibility.  For example, PI|Expected is the probability distribution for 
PI evaluated using Equation 1 for the Expected adversary.  Plaus(Expected) is the plausibility 
that the adversary is the Expected adversary evaluated from the assignment of evidence over the 
set of adversaries as discussed previously. 
 
In summary, the technique is to assign probability distributions for all the variables in equation 1 
for each of three sets of adversary resources, evaluate Equation 1 for each of these three cases, 
then weight the three cases using plausibility calculated using Equation 8.   
 
This technique has been implemented in Crystal Ball, and example results are provided in 
Section 5.  Section 6 discusses the difficulties in generating both (a) the probability distributions 
from available data, and (b) the evidence using expert opinion to calculate the plausibility for 
each set of adversary resources. 
 
5 Example Results 

The prior evaluations discussed in Section 2 are special cases of the general evaluation technique 
discussed in Sections 3 and 4.   
 
For only one adversary – say Omniscient – and using point estimates for detection probabilities, 
the solution of Equation 1 is the same as results obtained using EASI, where each time variable 
is assigned a normal distribution.  This was verified by solving Equation 1 in the Crystal Ball 

                                                 
11  The Adversary may weight by belief to select a scenario with a high lower bound for PI.  One of the references discusses this in more detail.  

[Terrorist Risk] 
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framework for the example problem #1 in the EASI report; the Crystal Ball solution was the 
same as the EASI solution.  [EASI] 
 
The following sections provide an example of the approach.  First, PI is evaluated using conser-
vative point estimate values.  Then, PI is evaluated considering uncertainty using the approach 
previously described.  This illustrates how conservative the point estimate for PI may be.   
 
5.1 Example with Conservative Point Estimates 

Consider an example with seven layers.  Figure 5-1 conceptually shows the detection proba-
bilities and time delays for the seven layers along the attack path for this example using the 
nomenclature of Table 1-1.  Dummy data are used in this example.    
 

 
Figure 5-1.  Example Attack Path 

For this example, TR is 3.00 minutes, and Pc is 0.9.  For the Omniscient Adversary, assume the 
conservative point estimate values in Table 5-1.   

Table 5-1.  Point Estimate Values for the Omniscient Adversary 

Layer 
Time Delay Before 
Detection at Layer, 

Minutes 

Probability of Detection 
at Layer 

Time Delay After 
Detection at Layer, 

Minutes 

Layer 1 T11 is 0.15 P1 is 0.10 T12 is 0.00 

Layer 2 T21 is 0.10 P2 is 0.40 T22 is 0.04  

Layer 3 T31 is 0.30 P3 is a 0.75 T32 is 0.10  

Layer 4 T41 is 0.40 P4 is 0.08 T42 is 0.00 

Layer 5 T51 is 1.00 P5 is 0.30 T52 is 0.30 

Layer 6 T61 is 0.15 P6 is 0.00 T62 is 0.00 

Layer 7 T71 is 0.70 P7 is 0.00 T72 is 0.00 

 
Using these point values in Equation 4, the CDP is at layer 1, and using Equation 5, PI is only 
0.09 for the Omniscient Adversary.  We do not know the conservatism in this point estimate; but, 
if conservative estimates are used for each detection probability and delay time, the conservatism 
in the overall PI can be quite large, as indicated in Section 5.2.12 
 

                                                 
12  For example, if the conservative point estimate for each of two time delays has a 10% chance of being too high, the sum of the times has less 

than a 10% chance of being too high.   

T11 T12       T21 

P1 P2 P3 P4 P5 P6 P7 

T22       T31 T32       T41 T42       T51 T52       T61 T62       T71 T72 
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5.2 Example Considering Uncertainty 

The example was evaluated using probability distributions for the security system elements 
instead of the conservative point estimate values used in the previous section.  Crystal Ball was 
used for the evaluation; Latin Hypercube sampling was selected with 10,000 trials.   
 
All of the three adversaries discussed in Section 4 were considered.  For each adversary, the 
response time TR and the probability of communication PC have probability distributions as 
follows: 
 

• TR is lognormal with a mean of three minutes and a standard deviation of one minute. 
• PC is uniform with a minimum of 0.87 and a maximum of 1.0.   

 
For the Omniscient Adversary, assume the probability distributions in Table 5-2.   

Table 5-2.  Probability Distributions for the Omniscient Adversary 

Layer Time Delay Before Detection 
at Layer, Minutes 

Probability of Detection 
at Layer 

Time Delay after Detection at 
Layer, minutes 

Layer 1 T11 is triangular with minimum 
0.10, likeliest 0.25, and 
maximum 0.40 

P1 is uniform with minimum 
0.05 and maximum 0.20 

T12 is 0.00 

Layer 2 T21 is triangular with minimum 
0.10, likeliest 0.17, and 
maximum 0.30  

P2 is triangular with minimum 
0.36, likeliest 0.40, and 
maximum 0.44 

T22 is lognormal with mean 0.03 
and standard deviation 0.03 

Layer 3 T31 is triangular with minimum 
0.20, likeliest 0.50, and 
maximum 0.80  

P3 is a beta distribution with 
minimum 0.72, maximum 
0.88, alpha 2, and beta 3 

T32 is triangular with minimum 
0.10, likeliest 0.25, and 
maximum 0.60 

Layer 4 T41 is lognormal with mean 0.50 
and standard deviation 0.20 

P4 is uniform with minimum 
0.00 and maximum 0.20 

T42 is 0.00 

Layer 5 T51 is lognormal with mean 1.5 
and standard deviation 0.70 

P5 is triangular with minimum 
0.25, likeliest 0.50, and 
maximum 0.75 

T52 is uniform with minimum 
0.25 and maximum 0.75 

Layer 6 T61 is uniform with minimum 0.08 
and maximum 

P6 is 0.00 T62 is 0.00 

Layer 7 T71 is triangular with minimum 
0.5, likeliest 0.75, and maximum 
0.85 

P7 is 0.00 T72 is 0.00 
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For the Expected Adversary, assume the probability distributions in Table 5-3.   

Table 5-3.  Probability Distributions for the Expected Adversary 

Layer Time Delay Before Detection 
at Layer, Minutes 

Probability of Detection  
at Layer 

Time Delay After Detection at 
Layer, Minutes 

Layer 1 T11 is triangular with minimum 
0.30, likeliest 0.42, and 
maximum 0.60  

P1 is uniform with minimum 
0.10 and maximum 0.30 

T12 is 0.00 

Layer 2 T21 is triangular with minimum 
0.20, likeliest 0.33, and 
maximum 0.56 

P2 is triangular with minimum 
0.50, likeliest 0.70, and 
maximum 0.80 

T22 is lognormal with mean 0.17 
and standard deviation 0.04 

Layer 3 T31 is triangular with minimum 
0.40, likeliest 0.75, and 
maximum 1.20 

P3 is a beta distribution with 
minimum 0.81, maximum 
1.00, alpha 2, and beta 3 

T32 is triangular with minimum 
0.12, likeliest 0.33, and 
maximum 0.70 

Layer 4 T41 is lognormal with mean 1.00 
and standard deviation 0.55 

P4 is uniform with minimum 
0.00 and maximum 0.20 

T42 is 0.00 

Layer 5 T51 is lognormal with mean 2.17 
and standard deviation 1.40 

P5 is triangular with minimum 
0.30, likeliest 0.80, and 
maximum 0.90 

T52 is uniform with minimum 
0.25 and maximum 0.75 

Layer 6 T61 is uniform with minimum 0.16 
and maximum 0.66 

P6 is 0.00 T62 is 0.00 

Layer 7 T71 is triangular with minimum 
1.00, likeliest 1.50, and 
maximum 2.30 

P7 is 0.00 T72 is 0.00 

 
For the Poor Adversary, assume the probability distributions in Table 5-4. 

Table 5-4.  Probability Distributions for the Poor Adversary 

Layer Time Delay Before Detection 
at Layer, Minutes 

Probability of Detection 
at Layer 

Time Delay After Detection at 
Layer, Minutes 

Layer 1 T11 is triangular with minimum 
0.70, likeliest 0.83, and 
maximum 1.20 

P1 is uniform with minimum 
0.45 and maximum 0.55 

T12 is 0.00 

Layer 2 T21 is triangular with minimum 
0.30, likeliest 0.67, and 
maximum 0.92 

P2 is triangular with minimum 
0.65, likeliest 0.80, and 
maximum 0.94 

T22 is lognormal with mean 0.33 
and standard deviation 0.10 

Layer 3 T31 is triangular with minimum 
0.93, likeliest 1.50, and 
maximum 2.1 

P3 is a beta distribution with 
minimum 0.92, maximum 
1.00, alpha 5, and beta 2 

T32 is triangular with minimum 
0.36, likeliest 0.50, and 
maximum 1.23 

Layer 4 T41 is lognormal with mean 2.00 
and standard deviation 0.87 

P4 is uniform with minimum 
0.45 and maximum 0.55 

T42 is 0.00 

Layer 5 T51 is lognormal with mean 5.12 
and standard deviation 1.23 

P5 is triangular with minimum 
0.86, likeliest 0.90, and 
maximum 1.00 

T52 is uniform with minimum 
0.60 and maximum 0.74 

Layer 6 T61 is uniform with minimum 0.50 
and maximum 0.84 

P6 is 0.00 T62 is 0.00 

Layer 7 T71 is triangular with minimum 
3.00, likeliest 3.33, and 
maximum 6.39 

P7 is 0.00 T72 is 0.00 
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The plausibility for each adversary is assumed to be that as discussed for Figure 4-1, specifically: 
 

• Omniscient has Plausibility 0.3 
• Expected has Plausibility 1.0 
• Poor has Plausibility 0. 

 
PI is a random variable over [0,1] calculated by convoluting the probability distributions for its 
constituent variables.  The Complementary Cumulative Distribution Function (CCDF) for PI is a 
graph of the probability that PI exceeds any value in [0,1].13 
 
The results for the example follow.  Figure 5-2 is the CCDF for PI for the Omniscient Adversary. 
 

 

Figure 5-2.  PI CCDF for the Omniscient Adversary 

Based on the statistics calculated by Crystal Ball, PI for the Omniscient Adversary has a mean of 
0.68.  However the use of a mean as the point estimate is misleading in that the uncertainty is not 
captured; different estimates for PI can have the same mean but have very different uncertainty.  
A better point estimate is the probability that PI exceeds some value, such as 0.85.  The CCDF 
can be used to provide this value.  The probability that PI for the Omniscient Adversary exceeds 
0.85 is essentially 0. 
 

                                                 
13  For a random variable X, let x denote a specific value of X.  The CCDF over x is the probability that X is greater than x. 
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The use of probability distributions instead of conservative point estimates provides a less 
conservative estimate of PI.  For example, using the conservative point estimates from Section 
5.1, the conservative point estimate for PI for the Omniscient Adversary is 0.09.  Using 
distributions for the detection and delay variables, the mean value of PI is 0.68, considerably 
higher than the 0.09 point estimate.  Also, Figure 5-2 indicates that it is essentially certain that PI 
will exceed 0.60.  So, the point estimate of Section 5.1 is so conservative that it is not useful. 
 
Figure 5-3 is the CCDF for PI for the Expected Adversary. 
 

 

Figure 5-3.  PI CCDF for the Expected Adversary 

Based on the statistics calculated by Crystal Ball, PI for the Expected Adversary has a mean of 
0.88.  However, the use of a mean as the point estimate is misleading in that the uncertainty is 
not captured; different estimates for PI can have the same mean but have very different 
uncertainty.  A better point estimate is the probability that PI exceeds some value, such as 0.85.  
The CCDF can be used to provide this value.  The probability that PI for the Expected Adversary 
exceeds 0.85 is about 0.70. 



 

26 

 
Figure 5-4 is the CCDF for PI for the Poor Adversary. 
 

 

Figure 5-4.  PI CCDF for the Poor Adversary 

Based on the statistics calculated by Crystal Ball, PI for the Poor Adversary has a mean of 0.93.  
However, the use of a mean as the point estimate is misleading in that the uncertainty is not 
captured; different estimates for PI can have the same mean but have very different uncertainty.  
A better point estimate is the probability that PI exceeds some value, such as 0.85.  The CCDF 
can be used to provide this value.  The probability that PI for the Poor Adversary exceeds 0.85 is 
essentially 1.0. 
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The weighted result PI weighted presented as a CCDF is provided in Figure 5-5. 
 

 

Figure 5-5.  PI CCDF Weighted for All Adversaries 

Based on the statistics calculated by Crystal Ball, PI for the Weighted Adversary has a mean of 
0.83.  Note that PI weighted is considerably higher than PI|Omniscient, due to the consideration of 
PI|Expected.  (In this example, PI| Poor has zero plausibility and has no effect on PI weighted.)  
Specifically, PI weighted has a mean of 0.83 while PI|Omniscient has a mean of 0.68. 
 
However, the use of a mean as the point estimate is misleading in that the uncertainty is not 
captured; different estimates for PI can have the same mean but have very different uncertainty.  
A better point estimate is the probability that PI exceeds some value, such as 0.85.  The CCDF 
can be used to provide this value.  The probability that PI for the Weighted Adversary exceeds 
0.85 is about 0.38.  Note that the probability that PI exceeds 0.85 for the Weighted Adversary is 
0.38, while the probability that PI exceeds 0.85 for the Omniscient Adversary is essentially 0. 
 
This example used dummy data for illustrative purposes, but it illustrates how the technique 
works in application.14   
 
This example evaluation supports the following conclusions.  Evaluations that use conservative 
point estimates for detection and delay values to evaluate PI produce a point estimate for PI that 

                                                 
14  Of course, if very conservative probability distributions are used, the answer considering uncertainty will be too conservative.  So, the 

probability distributions have to reflect the actual uncertainty to the extent possible without being overly conservative.   
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has a low (perhaps extremely low) probability of being that low.  The use of probability 
distributions for a given adversary indicates the uncertainty in PI.   
Although the consideration of aleatory uncertainty for the Omniscient Adversary produces a less 
conservative estimate of PI than that produced using conservative point estimates, evaluations 
that only consider the Omniscient Adversary produce a conservative estimate for PI.  The 
consideration of the plausibility of different adversaries indicates the uncertainty in PI based on 
the resources that may be brought to bear by the adversary, and provides a more realistic, less 
conservative estimate for PI. 
 
6 Performance Data Sources and Application to the Technique 

A great deal of data has been collected over the years for the performance of detection and delay 
elements of a security system.  The references provided in this report summarize some of these 
data sources.  Due to classification constraints, this report will not discuss actual data in any 
detail. 
 
The data sources were reviewed to determine their fidelity for implementing the technique 
developed in this report.  There are more data on the uncertainty in delay times than on the 
uncertainty in detection probabilities.  For both time delays and detection probabilities it is not 
possible to have a comprehensive “look up” database with probability distributions for every 
element for every set of adversary resources.  It is also concluded that cost precludes performing 
enough tests to generate a comprehensive database that includes every element, due to the 
extremely large number of elements and the variation in adversary resources used to defeat the 
elements. 
 
However, in many cases the data are sufficient so that expert judgment can generate 
approximate, conservative probability distributions for some of the security elements for a given 
set of adversary resources.  Where the data are not sufficient, conservative point estimates can be 
used, or more specific testing can be performed to allow generation of the probability 
distributions. 
 
The data sources also include the adversary resources used to defeat the security element, 
thereby providing information for the consideration of different sets of adversary resources.  
Section 4 discussed using the fuzzy sets Omniscient, Expected, and Poor for adversary resources. 
 
7 Process Steps 

This section proposes a process to use available data for the technique developed in this report.  
The steps are:   
 

1. Specify the fuzzy sets for adversary resources, using expert opinion. 
2. Select scenarios of concern to be evaluated. 
3. Generate probability distributions for detection and delay elements for each set of 

adversary resources for each scenario. 
4. Evaluate PI for each set of adversary resources. 
5. Assign evidence over sets of adversary resources. 
6. Evaluate PI for weighted adversary resources. 
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7.1 Overview of Process 

This section describes each of the steps to implement the comprehensive uncertainty approach. 
 
Step 1:  Use expert judgment to define the fuzzy sets for adversary resources, specifically the 
types of attributes and knowledge (including insider supplied information).  This requires 
consideration of the Design Basis Threat (DBT), knowledge of the fidelity of the available data, 
and expertise in assessing threats.   
 
Step 2:  Select scenarios of concern to be evaluated.  Each scenario is defined to the level where 
the detection and delay elements encountered by an adversary for that scenario can be identified. 
 The specific detection and delay elements are specified sufficiently such that an evaluation of 
detection probabilities and time delays can be performed.    
 
Step 3:  For each scenario, generate probability distributions for each detection and delay 
element for each set of adversary resources.  The probability distributions are generated based on 
expert judgment using the data available.  The following areas of expertise are needed: 
 

• Expertise in time delays for the elements 
• Expertise in detection probabilities for the elements 
• Expertise in human factors associated with the complexity of defeating the elements 

 
For a given scenario, for a given set of adversary resources, we can segregate each element into 
one of two bins: 
 

1. We have sufficient data that with expert judgment we can generate a conservative 
probability distribution for that element, or 

2. We have insufficient data to generate a probability distribution for that element. 

Note that a given element may fall into bin #1 for one set of adversary resources and bin #2 for 
another set of adversary resources, since the available data may focus on a limited set of 
adversary resources.  For elements in bin #2, we have the following choices: 
 

a. Perform additional tests to allow the generation of a probability distribution using expert 
judgment and generate a probability distribution, or 

b. Assign a conservative point-estimate value. 

Step 4:  Evaluate PI using equation 1 for each set of adversary resources for each scenario of 
concern. 
 
Step 5:  For each scenario, assign degrees of evidence over the set of adversary resources using 
expert judgment.  The following areas of expertise are needed: 
 

• Expertise in intelligence associated with adversaries gathering and using attributes. 
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• Expertise in intelligence associated with adversaries gathering and using information. 
• Expertise in human factors associated with adversary decisions for gathering and using 

resources. 
 
Step 6:  Evaluate PI weighted using Equation 8 for each scenario.  If PI weighted is high and if the 
scenario has some elements that were modeled using conservative point estimates instead of 
probability distributions, consider performing more tests of these critical elements to generate 
probability distributions, then re-evaluate PI weighted with the newer, less conservative data for 
these elements.   
 
7.2 Applying the Comprehensive Uncertainty Approach 

To apply this approach, this significant effort requires assembling a team of experts, gathering 
many sources of data, and eliciting much expert opinion.  Experts in security system elements, 
human factors, statistics, and threat assessment are required.  NUREG-1563 provides useful 
guidance for expert elicitation.  [NUREG-1563] 
 
Due to the effort involved, it is recommended this approach be applied only to scenarios of 
concern where conservative point-estimate values result in prohibitively high costs of hardware 
and/or response force size to address those scenarios.  Thus, a screening process is needed to first 
evaluate scenarios using conservative point estimates; only those of concern are retained for 
subsequent detailed evaluation using this approach.  This screening process can be the one 
typically used where scenarios are identified − using such tools as tabletop exercises or path-
finding tools such as ASSESS or ATLAS − and evaluated using conservative point estimates. 
 
7.3 Capabilities Required for Process 

This process (described in Section 7.1) requires the following capabilities: 
 

• a team of experts in intelligence 
• a team of experts in security system element detection probabilities and time delays 
• a formal procedure for expert elicitation 
• a database for security system elements 
• testing capabilities for security elements 
• a few experts for applying the mathematics of the technique to evaluate weighted PI. 
 

Figure 7-1 summarizes how these capabilities integrate into the process steps.   
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Figure 7-1.  Integration of Capabilities into Process Steps 

It is recommended that a pilot application of this approach to a specific set of scenarios be 
performed.  This will determine the usefulness, cost, and time required to apply the approach. 
 
8 Extensions of the Technique 

The mathematical approach developed in this report addresses uncertainty, with the focus on the 
Adversary.  For example, the approach considers different sets of adversary resources as 
described in Section 5. 
 
Uncertainties are associated with the Defender as well.  Equation 1 considers uncertainty in the 
response time, TR, and in the probability of communication, PC, but only at a high level.  TR 
should be treated as dependent on the layer and should be segregated into constituent factors 
such as time for detection, time for assessment, time for communication, and time for response 
after communication.  Similarly, PC should be segregated into constituent factors.  The 
incorporation of these details into Equation 1 is straightforward as they merely add more 
variables into the equation.  These details could easily be addressed in future work. 
 
Equation 1 uses a set of values for each security system layer, specifically, {Ti1, Pi, Ti2} using the 
nomenclature of Table 1-1.  At each layer, the adversary may attempt to defeat the layer using 
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force, stealth, or deceit tactics, and the set of values for that element depends on the tactics.  For 
example, stealth typically has a lower Pi than does force, but stealth typically has higher Ti1 and 
Ti2 than does force.  In practice, the set {Ti1, Pi, Ti2} uses the minimum times and minimum 
detection probabilities regardless of the tactics, and therefore the evaluation of PI assumes that 
the adversary optimizes the tactics for defeating each element.  In reality, the adversary does not 
know when to switch tactics and our evaluation of PI is conservative.  This conservatism should 
be addressed in future work, using some of the ideas that have been proposed for this issue.  
[Utility Theory and Path Timeline] [Snell Communication]   
 
Here, we focused on the uncertainty in PI.  Overall effectiveness, PE, is the product of PI and PN, 
where PN is the probability of neutralization of the adversary by the response force given 
interruption.  Uncertainty in neutralization, PN, should be addressed.   
 
The Design Analysis and Neutralization Technique Evaluation (DANTE) simulation framework 
addresses the uncertainty in PN.  [DANTE]  The approach developed in this effort could perhaps 
be integrated with the simulation of PN from DANTE. 
 
9 Conclusions and Recommendations 

For a specific attack scenario, the traditional measure of the effectiveness of the detection and 
delay elements of a physical security system is the probability that the security system detects 
the adversary in time for interdiction by the response force.  This measure is denoted as PI: the 
“probability of interruption.”  This measure is typically evaluated using conservative, point-
estimate values for the detection and time delay elements of the security system; the 
conservatism in the individual elements and in the overall PI for a scenario is not evaluated.  The 
result is significant expenditure of resources – hardware and response force personnel – to 
address such scenarios.  Also, less attention is paid to balance protection across the entire range 
of possible scenarios. Two types of uncertainty are important: 
 

1. Aleatory (random) uncertainty for detection probabilities and time delays for a given set 
of adversary resources. 

2. Epistemic (state of knowledge) uncertainty for the adversary resources.  

For a given set of adversary resources, there is aleatory uncertainty for detection probabilities 
and time delays.  Also, there is epistemic uncertainty as to the adversary resources that will be 
brought to bear during an attack.  Adversary resources consist of both attributes – such as 
equipment and training – and knowledge about the security system; to date, most evaluations 
have assumed an adversary with very high resources, thereby adding to the conservatism in the 
evaluation of PI.   

This work provides a mathematical technique to include both types of uncertainty to provide a 
more realistic evaluation of PI.   

Aleatory uncertainty for a given adversary is considered using probability distributions instead 
of conservative point-estimate values for element performance for a specific set of adversary 
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resources.  Epistemic uncertainty for the adversary resources is considered using plausibility 
from the belief/plausibility measure of uncertainty.   
 
Sources of data were reviewed.  More data exist on the uncertainty in delay times than on the 
uncertainty in detection probabilities.  It is not possible to have a comprehensive “look up” 
database with probability distributions for every element for every set of adversary resources.  
Also, cost precludes performing enough tests to generate such a comprehensive database. 
 
However, in many cases the data are sufficient so that expert judgment can generate 
approximate, conservative probability distributions for some of the security elements for a given 
set of adversary resources.  Where the data are not sufficient, conservative point estimates can be 
used, or more specific testing can be performed to allow generation of the probability 
distributions. 
 
The data sources also address the adversary resources used to defeat the security elements, 
thereby providing information for the consideration of different sets of adversary resources.   
 
Application requires significant effort, including assembling a team of experts, gathering many 
sources of data, and eliciting much expert opinion.  Experts in security system elements, human 
factors, statistics, and threat assessment are required. 
 
This approach is recommended for application only to scenarios of concern where conservative 
point-estimate values result in prohibitively high costs of hardware and/or response force size to 
address that scenario.  Thus, a screening process is used to evaluate scenarios and to retain only 
scenarios of concern.  This screening process can be the one typically used where scenarios are 
identified – using such tools as tabletop exercises or path-finding tools such as ASSESS or 
ATLAS – and evaluated using conservative point estimates. 
 
This report describes a process for implementing the approach, and identifies the capabilities 
needed to support the steps in that process. 
 
It is recommended that a pilot application of this approach to a specific set of scenarios be 
performed.  The pilot will determine the usefulness, cost, and time required to apply the 
approach. 
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