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Abstract

The centroid and envelope dynamics of a high-intensity charged particle beam are investigated

as a beam smoothing technique to achieve uniform illumination over a suitably chosen region of

the target for applications to ion-beam-driven high energy density physics and heavy ion fusion.

The motion of the beam centroid projected onto the target follows a smooth pattern to achieve

the desired illumination, for improved stability properties during the beam-target interaction. The

centroid dynamics is controlled by an oscillating “wobbler”, a set of electrically-biased plates driven

by RF voltage.

PACS numbers: 52.58.Hm
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Beam dynamics is often studied in terms of envelope and centroid motions [1–5]. For

example, unstable breathing modes can be described by envelope instabilities [1, 6], and the

two-stream electron cloud instability [7, 8] and beam-beam interactions [9] are effectively

modelled by following the centroid dynamics. Envelope dynamics is also employed to design

beam focusing systems [10, 11], while the purpose of studying centroid dynamics in most

cases is to suppress instability or minimize the oscillation of the beam centroid around the

design orbit [12]. As a general remark, the dynamics of the beam centroid has not been

extensively explored for practical applications.

Recently, the dynamics of the beam centroid has been investigated as a possible beam

smoothing technique [13–16] to achieve a uniform illumination over a suitably chosen region

of the target for applications to ion-beam-driven high energy density physics and heavy ion

fusion. The basic idea is to induce an oscillatory motion of the centroid for each transverse

slice of the beam such that the centroids of different slices strike different locations on the

target. The motion of the centroid projected onto the target is designed to follow a smooth

pattern in order to achieve the desired uniform illumination over a suitably chosen region,

e.g., an annular region, for significantly improved stability properties during the target

implosion phase [14, 17]. The centroid dynamics is actively controlled by the deflection

force imposed by a set of biased electrical plates, which are called “wobblers”, because of

the wobbling motion that they induce in the beam centroid motion. The bias voltage on

the wobbler plates oscillates with time in order to deliver different beam slices to different

locations on the target (See Fig. 1). In laser-driven inertial confinement fusion research,

uniformity of laser illumination is also critically important, and sophisticated smoothing

systems using distributed phase-plate technology have been developed [18]. The wobbler

system for high-intensity beams described here is analogous to these smoothing systems for

laser beams.

From the point of view of the beam dynamics, the motions of the centroid and envelope

represent different degrees of freedom. If the self-generated space-charge force is not strong,

then the centroid dynamics and the envelope dynamics are decoupled. In this case, the

centroid dynamics is described by the dynamical equations for a charged particle moving

in the external focusing lattice and wobbler fields. For heavy ion fusion and high energy

density physics applications, the beam intensity is high, and the effects of the self-generated

space-charge force must be included. It is therefore necessary to determine the governing
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FIG. 1: Quadrupole focusing lattice and wobbler system. The motion of the centroid projected

onto the target follows a smooth pattern in order to achieve uniform illumination over a suitably

chosen region of the target.

equations for the centroid dynamics for high-intensity beams, and ask whether the centroid

dynamics is coupled to the beam envelope dynamics relative to the centroid motion. The

purpose of this Letter is to address these important questions regarding the centroid and

envelope dynamics of high-intensity beams in an external focusing lattice and wobbler fields.

Our theoretical study is based on the nonlinear Vlasov-Maxwell equations for high-

intensity beams [19]. Two different approaches are adopted. The first approach is to

derive a set of rate equations for the centroid, and the root-mean-square (rms) envelope

and emittance, by taking appropriate moments of the Vlasov-Maxwell equations. The sec-

ond approach is to construct a generalized self-consistent Kapchinskij-Vladimirskij (KV)

solution of the Vlasov-Maxwell equations including the envelope dynamics as well as the

centroid dynamics. The external deflection force induced by the wobbler fields is included in

the models, in addition to the transverse focusing lattice. Since the Vlasov-Maxwell equa-

tions are nonlinear, adding this additional physics could result in unexpected results. In

order to systematically study the wobbler dynamics, we need to carry out a careful anal-

ysis of the Vlasov-Maxwell equations including simultaneously all of the relevant physics

components, i.e., the wobbler fields, the focusing lattice, the space-charge force, and the

emittance. Using these two models, we will show that the wobbler deflection force acts

only on the centroid motion, and that the envelope dynamics is independent of the wobbler

fields. Furthermore, if the conducting wall is far away from the beam, then the envelope

dynamics and the centroid dynamics are completely decoupled even when the space-charge
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force is strong. In a broader sense, this systematic study and conclusion are of general im-

portance for high-intensity beam dynamics, beyond the wobbler technique discussed here.

The decoupling of the envelope and centroid motions in the presence of space charge has

been assumed for approximately 50 years in calculating the modification to resonances by

space charge in circular accelerators [1]. However, the envelope dynamics and the centroid

dynamics will be coupled through the self-field potential if the conducting wall is nearby.

In a quadrupole focusing lattice with wobbler fields, the transverse dynamics of a particle

in the laboratory-frame coordinates (x, y) is determined from [19]

x′′ = −κx (s)x−
∂ψ

∂x
+ Fx (s) , y

′′ = −κy (s) y −
∂ψ

∂y
+ Fy (s) , (1)

where ψ = eφ/γ3mβ2c2 is the normalized self-field potential, κx (s) = κq (s) and κy (s) =

−κq (s) are the focusing strengths of the quadrupole lattice, and Fx (s) and Fy (s) are the

transverse deflection forces due to the wobblers. The nonlinear Vlasov-Maxwell equations

for the beam distribution function f (s, x, y, vx, vy) and self-field potential ψ are [19]

∂f

∂s
+ vx

∂f

∂x
+ vy

∂f

∂y
−

(

κxx+
∂ψ

∂x
− Fx

)

∂f

∂vx
−

(

κyy +
∂ψ

∂y
− Fy

)

∂f

∂vy
= 0, (2)

(

∂2

∂x2
+

∂2

∂y2

)

ψ = −2πKb

Nb

∫

f dvxdvy , (3)

where Nb =
∫

fdvxdvydxdy is the line density of the beam particles, and Kb =

2Nbe
2/γ3mβ2c2 is the self-field perveance. To derive the rms envelope equations and the

centroid equations [1–5], we start from the rate equation for a phase-space moment of the

Vlasov equation. Let χ (x, y, vx, vy, s) be any phase-space function, then the χ-moment of

f is defined as 〈χ〉 ≡ (
∫

χf dxdydvxdvy)/Nb. From Eq. (2), we obtain [19] the rate equation

for 〈χ〉

d 〈χ〉
ds

=

〈

∂χ

∂s
+ vx

∂χ

∂x
+ vy

∂χ

∂y
−

(

κxx+
∂ψ

∂x
− Fx

)

∂χ

∂vx
−

(

κyy +
∂ψ

∂y
− Fy

)

∂χ

∂vy

〉

. (4)

The transverse displacement of the beam centroid is defined by the first moment of f , i.e.,

µ ≡ 〈x〉 , ν ≡ 〈y〉 . Applying Eq. (4), we obtain µ′ = 〈x〉′ = 〈vx〉 and ν ′ = 〈y〉′ = 〈vy〉.
Letting χ = vx and χ = vy in Eq. (4), we obtain the dynamical equations for the centroid
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motion

µ′′ = 〈vx〉′ = −κxµ+ Fx −
〈

∂ψ

∂x

〉

, (5)

ν ′′ = 〈vy〉′ = −κyν + Fy −
〈

∂ψ

∂y

〉

. (6)

The rms envelope dimensions (a, b) and transverse emittances (εx, εy) are defined relative

to the centroid by

a ≡
√

〈x− µ〉2 , εx ≡ 2
√

a2
〈

(vx − µ′)2
〉

− 〈(vx − µ′) (x− µ)〉2,

b ≡
√

〈y − ν〉2 , εy ≡ 2
√

b2
〈

(vy − ν ′)2
〉

− 〈(vy − ν ′) (y − ν)〉2 .

From the rate equations for χ = (x− µ)2 , χ = (vx − µ′) (x− µ) , and χ = (vx − µ′)2, we

obtain the following dynamical equations for a and εx

a′′ + κxa =
ε2x
4a3

− 1

a

〈

∂ψ

∂x
(x− µ)

〉

, (7)

d

ds

(

ε2x
8

)

=
d

ds

(

a2

2

)〈

∂ψ

∂x
(x− µ)

〉

− a2
〈

∂ψ

∂x
(vx − µ′)

〉

. (8)

Similarly, the dynamical equations for b and εy are given by

b′′ + κxb =
ε2y
4b3

− 1

b

〈

∂ψ

∂y
(y − ν)

〉

, (9)

d

ds

(

ε2y
8

)

=
d

ds

(

b2

2

)〈

∂ψ

∂y
(y − ν)

〉

− b2
〈

∂ψ

∂y
(vy − ν ′)

〉

. (10)

The evolution of the centroid dynamics, the rms envelope dimensions, and the transverse

emittances are determined from Eqs. (5), (6), and (7)-(10). From Eqs. (7)-(10), it is clear

that the deflection force imposed by the wobbler fields does not directly affect the envelope

dynamics and emittances. Furthermore, if the conducting wall is far away from the beam, or

if image-charge effects are negligible, then it can be shown that the self-field terms in Eqs. (5)

and (6) vanish, and the self-field potential ψ in Eqs. (7)-(10) is a function of (x− µ, y − ν)

only, which indicates that the self-field force does not affect the centroid dynamics, and

the evolution of the envelope dimensions and emittances is independent of the centroid

motion. In this case, there is a complete decoupling between the centroid dynamics and
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the dynamics of the envelope dimensions and emittances. The centroid motion is affected

only by the focusing lattice and wobbler fields, and the envelope dimensions and emittances

evolve as if there were no wobbler fields and no centroid dynamics. This is an ideal situation

for the envisioned applications of the beam wobbling technique, because the wobbler system

can be designed to generate the desired centroid motion on the target without considering

the potentially deleterious effects on the envelope and emittance.

However, if the conducting wall is not far removed from the beam, then the dynamics

of the centroid, the envelope dimensions and emittances are coupled through the self-field

force. To determine the self-field force on the beam centroid, we note that in Eqs. (5) and

(6),

−
(〈

∂ψ

∂x

〉

,

〈

∂ψ

∂y

〉)

= −〈∇ψ〉 = Nb

2πKb

∫

wall

(

∇ψ∇ψ− |∇ψ|2 I
)

· ds , (11)

where I is the unit tensor, and the surface integral is over the conducting wall. The self-field

force on the centroid motion is determined by the self-field on the conducting wall. As the

conducting wall approaches infinity, the self-field force vanishes. For the self-field force terms

in Eqs. (7)-(10), ψ will depend on (x− µ, y − ν) as well as (µ, ν) if the conducting wall is

nearby, and the centroid dynamics will affect the dynamics of the envelope dimensions and

emittances. This effect should be minimized in the design of wobbler systems. The image

charge effect has been previously analyzed in Ref. [3], and the equations employed in CIRCE

[4] show that the equations become decoupled when the pipe radius is set to infinity.

Assuming that the conducting wall is far away from the beam, then in the coordinate

system centered at the centroid, X = x− µ, Y = y− ν, we find that the envelope equations

and the emittance equations are exactly the same as those in the laboratory coordinate

system in the absence of centroid dynamics. Therefore, known results for the latter case can

be applied directly to Eqs. (7)-(10). A particularly important result is for the case where the

beams have fixed-shape density profiles n (X, Y, s) = NbS (X2/2a2 + Y 2/2b2) /2πab, where

S is the density shape function. It can then be shown [19] that Eqs. (7) and (9) reduce

exactly to

a′′ + κxa =
ε2x
4a3

− Kb

2(a+ b)
, b′′ + κxa =

ε2y
4b3

− Kb

2(a+ b)
. (12)

The similarity between the cases with and without centroid dynamics suggests that a

self-consistent KV solution to the nonlinear Vlasov-Maxwell equations may exist for high-

intensity beams including the centroid dynamics in an external focusing lattice and wobbler
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fields. We now show that this is indeed true. To construct the self-consistent solution of

the nonlinear Vlasov-Maxwell equations, we adopt a model in which the self-field force is

assumed to be linear in the centroid frame, i.e., ψ = −Kb

(

X2/ā2 + Y 2/b̄2
)

/
(

ā+ b̄
)

. Here,

ā and b̄ are the envelope dimensions in the centroid frame that will be determined from

Eq. (15). It will be clear later that ā and b̄ are related to the rms envelope dimensions a and

b through ā =
√
2a and b̄ =

√
2b. Let the centroid motion satisfy

µ′′ + κxµ− Fx = 0 , ν ′′ + κyν − Fy = 0 , (13)

then it follows that X and Y evolve according to

X ′′ +

[

κx −
2Kb

ā(ā + b̄)

]

X = 0 , Y ′′ +

[

κy −
2Kb

b̄(ā+ b̄)

]

Y = 0 . (14)

Since Eq. (14) is linear in X and Y , it admits the Courant-Snyder invariants for the X and

Y motions, i.e.,

AX =
ε2xX

2

ā2
+ ε2x (āX

′ −Xā′)
2
, AY =

ε2yY
2

b̄2
+ ε2y

(

b̄Y ′ − Y b̄′
)2
,

where εx and εy are constants corresponding to the conserved transverse emittances, and ā

and b̄ are determined from the envelope equations

ā′′ + κxā−
2Kb

(ā + b̄)
=
ε2x
ā3
, b̄′′ + κy b̄−

2Kb

(ā+ b̄)
=
ε2y
b̄3
. (15)

Therefore, it can be shown that the choice of distribution function [19]

f =
Nb

π2εxεy
δ

(

AX

εx
+
AY

εy
− 1

)

(16)

is an exact solution of the Vlasov equation (2). To verify that the distribution function

f given by Eq. (16) generates the linear self-field force assumed, we calculate the density

profile to be spatially uniform inside of the elliptical cross-section beam, i.e., n (X, Y, s) =
∫

fdvxdvy = Nb/πāb̄ when X
2/a2 + Y 2/b2 ≤ 1 , and n (X, Y, s) = 0 when X2/a2 + Y 2/b2 >

1, which indeed generates the initially assumed self-field potential upon solving Poisson’s

equation (3). Note that the KV distribution does not follow directly from the moment
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equations for the envelope and centroid because the moment equations do not specify the

distribution function, and finding a distribution function that solves the Vlasov-Maxwell

equations is generally non-trivial. Since the KV distribution is not particularly physical, it

serves primarily as a simplified theoretical model for the wobbler dynamics. Combined with

the moment equations, it gives a leading-order description of the wobbler dynamics. A KV

solution for axisymmetric (solenoidal) focusing without wobbler fields is given in Ref. [20].

In summary, a fully self-consistent solution for high-intensity charged particle beams in

a quadrupole lattice with wobbler fields is given by Eqs. (16) and (15), and the centroid

dynamics is determined from Eq. (13). The deflection force imposed by the wobbler fields

acts only on the centroid, and the self-consistent space-charge field only affects the envelope

motion. This is consistent with the analysis leading to the rms envelope equations including

the centroid dynamics. These conclusions and the corresponding envelope equations and

centroid equations are expected to serve as theoretical tools in designing beam wobbler

systems for applications to higher energy density physics and heavy ion fusion. The KV

solution to the nonlinear Vlasov-Maxwell equations considered in this paper corresponds

(exactly) to the case where the beam has a flat-top density profile. For more general choices

of distribution function corresponding to beams with density profiles that are not flat-top,

we expect that the rms envelope equations and the associated centroid equations derived by

taking appropriate moments of the Vlasov-Maxwell equations remain a good approximation,

particularly if the change in beam emittance remains small.

As a design example, the final focus and wobbler system for a heavy ion fusion driver

is illustrated in Fig. 2. For simplicity, it is assumed that at s = 0, the wobbler fields (not

shown) imposes a transverse momentum to the beam centroid. The beam then propagates

through the final focus magnets with focusing strength κq (s) , and is focused onto the target

at s = 19m, with transverse spot size a = b = 1.2mm. The initial envelope dimensions at

s = 0 are (a, b) = (4 cm, 2.28 cm). The region between s = 11m and s = 19m is filled

with pre-formed plasma which neutralizes the space-charge potential of the beam [10]. The

beam is a Cs+ beam with rest mass m = 132.9au, kinetic energy (γ − 1)mc2 = 2.43GeV,

and current I = 2895A. The normalized strength κ̂q of the four quadrupole magnets is

0.13m−2, 0.22m−2, 0.44m−2,and −0.47m−2 . These parameters are similar to the heavy ion

fusion driver design described in Ref. [11]. The beam centroid traces out a circle with

a 3.4mm radius when the wobbler fields induce different transverse momenta for different
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FIG. 2: Final focus and wobbler system for an illustrative heavy ion fusion driver. The vertical

scale for κq is m−2. The envelope dimensions (a, b) are normalized by the initial beam envelope

dimension a (0) . The centorid positions (µ, ν) are normalized by a (0) /10 for better illustration.

slices according to oscillatory sinusoidal forces at s = 0 with π/2 phase difference between

the x- and y-directions. The centroid dynamics illustrated in Fig. 2 corresponds to the slice

where (µ, ν) = (2.4mm, 2.4mm) on the target, and the normalized momentum input by

the wobbler fields is (µ′, ν ′) = (8.5× 10−4,−1.15× 10−4) at s = 0. For a beam pulse of

15 ns long, the frequency of the wobbler fields is 67MHz. Assuming the wobbler field is 10m

long, the RF field strength required is 0.4MV/m. These parameters are achievable with

current technology. If the wobbler fields are placed in the upstream of the beam before the

longitudinal compression [11], then a lower frequency can be used.

In practice, several non-ideal effects may exist. When the envelope amplitude is large, the

nonlinearities associated with lens and kinetic effects can couple the centroid and envelope

dynamics. The error field of the wobbler should be considered as well. To leading order, the

error field can be modeled as a linear focusing force which modifies the focusing strengths

κx and κy in Eq. (1).
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