
Report on  
Random Number Generation for Petascale Quantum Monte Carlo  

 
 

Summary: The quality of random number generators can affect the results of Monte Carlo 
computations [2], especially when a large number of random numbers are consumed. 
Furthermore, correlations present between different random number streams in a parallel 
computation can further affect the results [2]. The SPRNG software, which the author had 
developed earlier, has pseudo-random number generators (PRNGs) capable of producing large 
numbers of streams with large periods. However, they had been empirically tested on only 
thousand streams earlier [2]. In the work summarized here, we tested the SPRNG generators with 
over a hundred thousand streams, involving over 1014 random numbers per test, on some tests. 
We also tested the popular Mersenne Twister. We believe that these are the largest tests of 
PRNGs, both in terms of the numbers of streams tested and the number of random numbers 
tested. We observed defects in some of these generators, including the Mersenne Twister, while 
a few generators appeared to perform well. We also corrected an error in the implementation of 
one of the SPRNG generators.  

 
1. SPRNG MLFG bug: SPRNG can use either 32-bit integer types or 64-bit integer types for 
representing the underlying states of the PRNGs. A bug was discovered in the 64-bit version of 
the MLFG. This does not affect the quality of the random numbers generated. However, some of 
the random number streams in the 64-bit version will not be identical to those in the 32-bit 
version. Line 163/164 of SRC/mlfg/mlfg.c should be unsigned int i, j, k, 
temp[2], length, instead of int i, j, k, temp[2], length. This fixes the error. 
 
2. Tests results: Most of the tests in the SPRNG test suite were used to test the SPRNG 
generators – 48-bit LCG, 64-bit LCG, Additive LFG, Multiplicative LFG, and CMRG – and also 
a parallel Mersenne Twister1. Some of the tests, which had not been very effective in detecting 
PRNG defects in [2], were not used. The sequential and parallel tests used are mentioned below, 
along with their parameters, numbers of streams, and number of random numbers tested. The 
details of the tests and meaning of the parameters are available in [2]. Each SPRNG generator 
comes with several variants, which are distinguished by a value of one parameter to that 
generator. In the tests below, we used the default parameter, which typically gives a variant with 
the best quality. The exception was the multiplicative LFG, in which we use the variant with the 
smallest state space, which also implies the worst quality. However, even with this, this 
generator typically has very good quality and had passed all of Le'cuyer's tests [1], which most 
other generators, including the Mersenne Twister, had failed.  
 
The parallel tests interleaved 100 streams at a time to form a new stream, and tested the new 
streams with the usual statistical tests. (The 'blocking/sum' test and the Ising model application-
based tests –  Metropolis and Wolff algorithms –  were exceptions.) We also modified the 
existing SPRNG implementation of the above two application-based tests to permit greater 
parallelism, in order to make more effective use of the Jaguar machine. 

                                                
1 Mersenne Twister. The parallel implementation was based on the one by Geoff Kuenning, which can be 
obtained from http://www.lasr.cs.ucla.edu/geoff/mtwist.html. 



 
We test one or more blocks of random numbers from each stream. We can compare the result 
from each block of number with the value expected from a truly random sample from the 
uniform distribution. We typically get some percentile from this, which indicates, in some sense, 
the fraction of truly random samples that are likely to have a smaller deviation from the true 
expected value. For example, we may obtain the percentile from the chi-square statistic. We may 
wish to consider blocks with percentiles lower than 2.5 % or greater than 97.5 % (5 % of all 
streams) as defective. However, in a large test, several blocks (5 % of the total) can fall outside 
these thresholds, even for a truly random sample. We wish to determine if the distribution of 
percentiles is abnormal. We therefore, typically, perform a Kolmogorov-Smirnov test to 
determine if the distribution of percentiles is abnormal. If the percentile in this is below 2.5% or 
above 97.5%, then we consider the test as having failed. However, when we perform a large 
number of tests, we can expect some tests (5% of the total) to fail. In order to determine if the 
random number generator is truly defective, we repeat the test with a different random number 
seed, when the streams fail the test. If the tests fail with a different seed too, then it is quite likely 
that the random number generator is truly defective with respect to that test.  
 

Test Parallel 
/Serial Parameters # of 

streams 
# of 
RNs 

Blocking Parallel 28000, 1, 0, 0, 1, 0, 1000000, 1024 28000 2.8×1013 
Collisions Serial 28000, 1, 0, 0, 100, 0, 200000, 4, 7 28000 2.2×1012 
Collisions Parallel 280, 100, 0, 0, 100000, 0, 200000, 4, 7 28000 2.2×1013 
Coupon Serial 28000, 1, 0, 0, 1, 0, 5000000, 30, 10 28000 ≈ 4×1012 
Coupon Parallel 280, 100, 0, 0, 100, 0, 5000000, 30, 10 28000 ≈ 4×1012 
Gap Serial 28000, 1, 0, 0, 1, 0, 200, 0.5, 0.51, 1000000 28000 2.8×1012 
Gap Parallel 280, 100, 0, 0, 1000, 0, 200, 0.5, 0.51, 

1000000 
28000 2.8×1013 

Maxt2 Serial 28000, 1, 0, 0, 100, 0, 50000, 16 28000 2.2×1012 
Maxt Parallel 280, 100, 0, 0, 10000, 0, 50000, 16 28000 2.2×1012 
Perm Serial 28000, 1, 0, 0, 1, 0, 7,  14000000 28000 2.7×1012 
Perm Parallel 280, 100, 0, 0, 1000, 0, 7, 14000000 28000 2.7×1013 
Poker Serial 28000, 1, 0, 0, 1, 0, 9000000, 10, 10 28000 2.5×1012 
Poker Parallel 280, 100, 0, 0, 100, 0, 9000000, 10, 10 28000 2.5×1012 
Runs Serial 28000, 1, 0, 0, 1, 0, 10, 50000000 28000 2.1×1012 
Runs Parallel 280, 100, 0, 0, 100, 0, 10, 50000000 28000 2.1×1012 
Serial Serial 28000, 1, 0, 0, 1, 0, 100, 50000000 28000 2.8×1012 
Serial Parallel 280, 100, 0, 0, 100, 0, 100, 50000000 28000 2.8×1012 
Metropolis Parallel 0, 0, 16, 1000, 100, 1000000, lattices=513 131,328 ≈ 1.3×1014 
Wolff Parallel 0, 0, 16, 1000, 100, 1000000, lattices=513 131,328 ≈ 1014 

 
Table 1: Summary of tests  

 
 

Test Parallel MLFG LFG CMRG LCG LCG64 MT 
                                                
2 In this test, we have taken 16 random numbers at a time, and determined the largest. The cumulative 
distribution for a truly random sequence should be x16, 0 ≤ x ≤ 1. 



/Serial 
Blocking Parallel Passed Passed Passed Passed Passed Passed 
Collisions Serial Passed Passed Passed Passed Passed Passed 
Collisions Parallel Passed Passed Passed Passed Passed Passed 
Coupon Serial Passed Passed Passed Passed Passed Passed 
Coupon Parallel Passed Passed Passed Passed Passed Passed 
Gap Serial Passed Passed Passed Passed Passed Passed 
Gap Parallel Passed Passed Passed Passed Passed Passed 
Maxt Serial Failed Failed Failed Failed Failed Failed 
Maxt Parallel Failed Failed Failed Failed Failed Failed 
Perm Serial Passed Passed Passed Passed Passed Passed 
Perm Parallel Passed Passed Passed Passed Passed Passed 
Poker Serial Passed Passed Passed Passed Passed Passed 
Poker Parallel Passed Passed Passed Passed Passed Passed 
Runs Serial Passed Passed Passed Passed Passed Passed 
Runs Parallel Passed Passed Passed Failed Failed Failed 
Serial Serial Passed Passed Passed Passed Passed Passed 
Serial Parallel Passed Passed Passed Passed Passed Passed 
Metropolis Parallel Passed Passed Passed Passed Passed Passed 
Wolff Parallel Passed Passed Passed Passed Passed Passed 

 
Table 2: Summary of PRNG results 

 
The parallel runs test was failed by the Mersenne Twister and both the SPRNG LCGs. The 
SPRNG LCGs failed this test with several different values of the parameters. This is not entirely 
unexpected, because these generators have certain parallel correlations [2] that can cause errors. 
Earlier  tests were not large enough to detect these errors, while the new ones are. The Mersenne 
Twister failed with four of six seeds on this test. The reason for this is that the parallelization of 
the Mersenne Twister does not guarantee that each stream is independent. The maxt test was 
failed by all PRNGs. This is discussed in further detail below. 
 
3. Maxt results: We discuss results with a multiplicative LFG (MLFG) as example. Other 
generators show similar trends. Both parallel and sequential tests fail, with both small and large 
lags. In fact, all SPRNG generators fail this test, as does the Mersenne Twister. 
 
We created the histogram for the Kolmogorov-Smirnov percentiles for the individual results 
from the original sequential test (each data point is the percentile for the combined result of ten 
streams). In figure 1, we compare the cumulative distribution for the histograms with the exact 
distribution. We can see that the cumulative distribution obtained is always below the exact one 
(except at 0 and 1). This suggests that the number of streams with a percentile close to 100 is 
higher than it ought to be. Note that no stream actually has a percentile of 100 (though some 
come close to it), as often happens when a test fails badly. Instead, we have a situation where the 
distribution of the percentiles is not satisfactory. 
 



 
 

Figure 1: (Left) Cumulative distribution function for percentiles. (Right) Histogram for percentiles. 
 
We need to find out if there are some streams that are consistently bad, in which case, it may be 
possible to eliminate them. In figure 2 (left), we try to get a qualitative idea of whether there is 
an pattern in the streams that have poor quality. For example, are the lower numbered streams 
bad, or are the higher numbered streams bad? The results here do not show any particular trend. 
Next, we wish to see if there are particular streams that are bad. If  we could identify certain bad 
streams, then we could omit them, and obtain a random number generator with good streams. We 
expect that a bad stream would give bad results consistently, even if choose different 
subsequences. In fig. 2 (right), we plot the percentile for each stream group with two different 
subsequences used along the x and y direction respectively. Bad streams would give poor results 
in both cases (points on the top right corner).  

 
 
Figure 2: (Left) Percentile for each group of streams. Each group of streams consists of ten streams. 
(Right) Correlation between subsequences of the same streams. Set 1 contains the results for each stream 
group of the MLFG. Set 2 contains the results of the same streams, except that we skip 10,001 random 
numbers between each block. 
 
When we test a large number of streams, one would expect a few streams to have percentiles 
close to 100 in both sets of tests, even if the streams were truly random. For example, we can 
expect 1% of the streams to have percentiles over 90% on each of the two tests. That is, we 



would expect 28 streams groups to have percentiles of 90% in both the tests and seven stream 
groups to have percentiles over 95% on both. In practice, we obtain 70 and 23 streams having 
these properties, which is a little larger than expected. This is reflected in more points in the top 
right, compared with other regions. If the streams were truly random, then we would expect 
correlation coefficient close to 0 between the two sets of results. However, the correlation 
coefficient is 0.12, which is a little higher than what we would expect. We next wish to identify 
which streams are truly bad, by performing more sets of tests, and seeing which streams are 
consistently bad. We performed four additional sets of tests, with gaps of 10K, 20K, 30K, and 
40K between blocks respectively. However, only one group of streams was consistently bad in 
all cases (with thresholds of either 95% or 97.5%). Omitting this group of streams does not 
significantly affect the results.  
 
Consequently, it appears that the results are poor because the set of streams taken together 
perform a little worse than would be expected, and not because there are a few streams in 
particular that give poor results. Considering that all generators fail this test, we need to examine 
further whether this is due to the inherent nature of this tests with large number of random 
numbers used, or due to approximations in the test implementation, because it is unusual for a 
single test to be sensitive to the different types of correlations in the different generators. 
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