
Report on
Random Number Generation for Petascale Quantum Monte Carlo

Summary: The quality of random number generators can affect the results of Monte Carlo
computations [2], especially when a large number of random numbers are consumed.
Furthermore, correlations present between different random number streams in a parallel
computation can further affect the results [2]. The SPRNG software, which the author had
developed earlier, has pseudo-random number generators (PRNGs) capable of producing large
numbers of streams with large periods. However, they had been empirically tested on only
thousand streams earlier [2]. In the work summarized here, we tested the SPRNG generators with
over a hundred thousand streams, involving over 1014 random numbers per test, on some tests.
We also tested the popular Mersenne Twister. We believe that these are the largest tests of
PRNGs, both in terms of the numbers of streams tested and the number of random numbers
tested. We observed defects in some of these generators, including the Mersenne Twister, while
a few generators appeared to perform well. We also corrected an error in the implementation of
one of the SPRNG generators.

1. SPRNG MLFG bug: SPRNG can use either 32-bit integer types or 64-bit integer types for
representing the underlying states of the PRNGs. A bug was discovered in the 64-bit version of
the MLFG. This does not affect the quality of the random numbers generated. However, some of
the random number streams in the 64-bit version will not be identical to those in the 32-bit
version. Line 163/164 of SRC/mlfg/mlfg.c should be unsigned int i, j, k,
temp[2], length, instead of int i, j, k, temp[2], length. This fixes the error.

2. Tests results: Most of the tests in the SPRNG test suite were used to test the SPRNG
generators – 48-bit LCG, 64-bit LCG, Additive LFG, Multiplicative LFG, and CMRG – and also
a parallel Mersenne Twister1. Some of the tests, which had not been very effective in detecting
PRNG defects in [2], were not used. The sequential and parallel tests used are mentioned below,
along with their parameters, numbers of streams, and number of random numbers tested. The
details of the tests and meaning of the parameters are available in [2]. Each SPRNG generator
comes with several variants, which are distinguished by a value of one parameter to that
generator. In the tests below, we used the default parameter, which typically gives a variant with
the best quality. The exception was the multiplicative LFG, in which we use the variant with the
smallest state space, which also implies the worst quality. However, even with this, this
generator typically has very good quality and had passed all of Le'cuyer's tests [1], which most
other generators, including the Mersenne Twister, had failed.

The parallel tests interleaved 100 streams at a time to form a new stream, and tested the new
streams with the usual statistical tests. (The 'blocking/sum' test and the Ising model application-
based tests – Metropolis and Wolff algorithms – were exceptions.) We also modified the
existing SPRNG implementation of the above two application-based tests to permit greater
parallelism, in order to make more effective use of the Jaguar machine.

1 Mersenne Twister. The parallel implementation was based on the one by Geoff Kuenning, which can be
obtained from http://www.lasr.cs.ucla.edu/geoff/mtwist.html.

We test one or more blocks of random numbers from each stream. We can compare the result
from each block of number with the value expected from a truly random sample from the
uniform distribution. We typically get some percentile from this, which indicates, in some sense,
the fraction of truly random samples that are likely to have a smaller deviation from the true
expected value. For example, we may obtain the percentile from the chi-square statistic. We may
wish to consider blocks with percentiles lower than 2.5 % or greater than 97.5 % (5 % of all
streams) as defective. However, in a large test, several blocks (5 % of the total) can fall outside
these thresholds, even for a truly random sample. We wish to determine if the distribution of
percentiles is abnormal. We therefore, typically, perform a Kolmogorov-Smirnov test to
determine if the distribution of percentiles is abnormal. If the percentile in this is below 2.5% or
above 97.5%, then we consider the test as having failed. However, when we perform a large
number of tests, we can expect some tests (5% of the total) to fail. In order to determine if the
random number generator is truly defective, we repeat the test with a different random number
seed, when the streams fail the test. If the tests fail with a different seed too, then it is quite likely
that the random number generator is truly defective with respect to that test.

Test Parallel
/Serial Parameters # of

streams
of
RNs

Blocking Parallel 28000, 1, 0, 0, 1, 0, 1000000, 1024 28000 2.8×1013
Collisions Serial 28000, 1, 0, 0, 100, 0, 200000, 4, 7 28000 2.2×1012
Collisions Parallel 280, 100, 0, 0, 100000, 0, 200000, 4, 7 28000 2.2×1013
Coupon Serial 28000, 1, 0, 0, 1, 0, 5000000, 30, 10 28000 ≈ 4×1012
Coupon Parallel 280, 100, 0, 0, 100, 0, 5000000, 30, 10 28000 ≈ 4×1012
Gap Serial 28000, 1, 0, 0, 1, 0, 200, 0.5, 0.51, 1000000 28000 2.8×1012
Gap Parallel 280, 100, 0, 0, 1000, 0, 200, 0.5, 0.51,

1000000
28000 2.8×1013

Maxt2 Serial 28000, 1, 0, 0, 100, 0, 50000, 16 28000 2.2×1012
Maxt Parallel 280, 100, 0, 0, 10000, 0, 50000, 16 28000 2.2×1012
Perm Serial 28000, 1, 0, 0, 1, 0, 7, 14000000 28000 2.7×1012
Perm Parallel 280, 100, 0, 0, 1000, 0, 7, 14000000 28000 2.7×1013
Poker Serial 28000, 1, 0, 0, 1, 0, 9000000, 10, 10 28000 2.5×1012
Poker Parallel 280, 100, 0, 0, 100, 0, 9000000, 10, 10 28000 2.5×1012
Runs Serial 28000, 1, 0, 0, 1, 0, 10, 50000000 28000 2.1×1012
Runs Parallel 280, 100, 0, 0, 100, 0, 10, 50000000 28000 2.1×1012
Serial Serial 28000, 1, 0, 0, 1, 0, 100, 50000000 28000 2.8×1012
Serial Parallel 280, 100, 0, 0, 100, 0, 100, 50000000 28000 2.8×1012
Metropolis Parallel 0, 0, 16, 1000, 100, 1000000, lattices=513 131,328 ≈ 1.3×1014
Wolff Parallel 0, 0, 16, 1000, 100, 1000000, lattices=513 131,328 ≈ 1014

Table 1: Summary of tests

Test Parallel MLFG LFG CMRG LCG LCG64 MT

2 In this test, we have taken 16 random numbers at a time, and determined the largest. The cumulative
distribution for a truly random sequence should be x16, 0 ≤ x ≤ 1.

/Serial
Blocking Parallel Passed Passed Passed Passed Passed Passed
Collisions Serial Passed Passed Passed Passed Passed Passed
Collisions Parallel Passed Passed Passed Passed Passed Passed
Coupon Serial Passed Passed Passed Passed Passed Passed
Coupon Parallel Passed Passed Passed Passed Passed Passed
Gap Serial Passed Passed Passed Passed Passed Passed
Gap Parallel Passed Passed Passed Passed Passed Passed
Maxt Serial Failed Failed Failed Failed Failed Failed
Maxt Parallel Failed Failed Failed Failed Failed Failed
Perm Serial Passed Passed Passed Passed Passed Passed
Perm Parallel Passed Passed Passed Passed Passed Passed
Poker Serial Passed Passed Passed Passed Passed Passed
Poker Parallel Passed Passed Passed Passed Passed Passed
Runs Serial Passed Passed Passed Passed Passed Passed
Runs Parallel Passed Passed Passed Failed Failed Failed
Serial Serial Passed Passed Passed Passed Passed Passed
Serial Parallel Passed Passed Passed Passed Passed Passed
Metropolis Parallel Passed Passed Passed Passed Passed Passed
Wolff Parallel Passed Passed Passed Passed Passed Passed

Table 2: Summary of PRNG results

The parallel runs test was failed by the Mersenne Twister and both the SPRNG LCGs. The
SPRNG LCGs failed this test with several different values of the parameters. This is not entirely
unexpected, because these generators have certain parallel correlations [2] that can cause errors.
Earlier tests were not large enough to detect these errors, while the new ones are. The Mersenne
Twister failed with four of six seeds on this test. The reason for this is that the parallelization of
the Mersenne Twister does not guarantee that each stream is independent. The maxt test was
failed by all PRNGs. This is discussed in further detail below.

3. Maxt results: We discuss results with a multiplicative LFG (MLFG) as example. Other
generators show similar trends. Both parallel and sequential tests fail, with both small and large
lags. In fact, all SPRNG generators fail this test, as does the Mersenne Twister.

We created the histogram for the Kolmogorov-Smirnov percentiles for the individual results
from the original sequential test (each data point is the percentile for the combined result of ten
streams). In figure 1, we compare the cumulative distribution for the histograms with the exact
distribution. We can see that the cumulative distribution obtained is always below the exact one
(except at 0 and 1). This suggests that the number of streams with a percentile close to 100 is
higher than it ought to be. Note that no stream actually has a percentile of 100 (though some
come close to it), as often happens when a test fails badly. Instead, we have a situation where the
distribution of the percentiles is not satisfactory.

Figure 1: (Left) Cumulative distribution function for percentiles. (Right) Histogram for percentiles.

We need to find out if there are some streams that are consistently bad, in which case, it may be
possible to eliminate them. In figure 2 (left), we try to get a qualitative idea of whether there is
an pattern in the streams that have poor quality. For example, are the lower numbered streams
bad, or are the higher numbered streams bad? The results here do not show any particular trend.
Next, we wish to see if there are particular streams that are bad. If we could identify certain bad
streams, then we could omit them, and obtain a random number generator with good streams. We
expect that a bad stream would give bad results consistently, even if choose different
subsequences. In fig. 2 (right), we plot the percentile for each stream group with two different
subsequences used along the x and y direction respectively. Bad streams would give poor results
in both cases (points on the top right corner).

Figure 2: (Left) Percentile for each group of streams. Each group of streams consists of ten streams.
(Right) Correlation between subsequences of the same streams. Set 1 contains the results for each stream
group of the MLFG. Set 2 contains the results of the same streams, except that we skip 10,001 random
numbers between each block.

When we test a large number of streams, one would expect a few streams to have percentiles
close to 100 in both sets of tests, even if the streams were truly random. For example, we can
expect 1% of the streams to have percentiles over 90% on each of the two tests. That is, we

would expect 28 streams groups to have percentiles of 90% in both the tests and seven stream
groups to have percentiles over 95% on both. In practice, we obtain 70 and 23 streams having
these properties, which is a little larger than expected. This is reflected in more points in the top
right, compared with other regions. If the streams were truly random, then we would expect
correlation coefficient close to 0 between the two sets of results. However, the correlation
coefficient is 0.12, which is a little higher than what we would expect. We next wish to identify
which streams are truly bad, by performing more sets of tests, and seeing which streams are
consistently bad. We performed four additional sets of tests, with gaps of 10K, 20K, 30K, and
40K between blocks respectively. However, only one group of streams was consistently bad in
all cases (with thresholds of either 95% or 97.5%). Omitting this group of streams does not
significantly affect the results.

Consequently, it appears that the results are poor because the set of streams taken together
perform a little worse than would be expected, and not because there are a few streams in
particular that give poor results. Considering that all generators fail this test, we need to examine
further whether this is due to the inherent nature of this tests with large number of random
numbers used, or due to approximations in the test implementation, because it is unusual for a
single test to be sensitive to the different types of correlations in the different generators.

References

1. P. L'Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number

generators, ACM Transactions on Mathematical Software, Vol. 33, 2007.

2. A. Srinivasan, M. Mascagni, and D.M. Ceperley, Testing parallel random number

generators, Parallel Computing, Vol. 29, 2003, 69-94.

