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Abstract 

In many applications, the thermal response of structures exposed to solar 
heat loads is of interest. Solar mechanics governing equations were developed 
and integrated with the Calore thermal response code via user subroutines to 
provide this computational simulation capability. Solar heat loads are 
estimated based on the latitude and day of the year. Vector algebra is used to 
determine the solar loading on each face of a finite element model based on 
its orientation relative to the sun as the earth rotates. Atmospheric 
attenuation is accounted for as the optical path length varies from sunrise to 
sunset. Both direct and diffuse components of solar flux are calculated. In 
addition, shadowing of structures by other structures can be accounted for. 
User subroutines were also developed to provide convective and radiative 
boundary conditions for the diurnal variations in air temperature and 
effective sky temperature. These temperature boundary conditions are based 
on available local weather data and depend on latitude and day of the year, 
consistent with the solar mechanics formulation. These user subroutines, 
coupled with the Calore three-dimensional thermal response code, provide a 
complete package for addressing complex thermal problems involving solar 
heating. The governing equations are documented in sufficient detail to 
facilitate implementation into other heat transfer codes. Suggestions for 
improvements to the approach are offered. 
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Introduction 
 Thermal response codes enable the simulation of heat transfer to and 
within a structure. It is often necessary to include solar loading as a heat flux 
boundary condition, accounting for the trajectory of the sun as it passes over 
the structure. Such a solar mechanics capability was developed via user 
subroutines for the Calore1 thermal response code. This finite element code 
provides three-dimensional transient heat conduction capabilities allowing 
specification of heat flux, radiative, and convective boundary conditions, 
along with specification of thermal radiation enclosures. 

 The solar mechanics capability enables calculation of the solar flux on all 
surfaces of a structure as a function of time depending on the latitude and 
day of the year. Both direct and diffuse flux components are computed, 
accounting for atmospheric attenuation. Vector algebra is used to calculate 
the orientation-dependent flux on each exposed finite element face of the 
structure. In addition, shadowing of surfaces by other surfaces is accounted 
for. Along with the solar mechanics user subroutine, two other companion 
subroutines were developed. One subroutine specifies the diurnal variation of 
air temperature to be used for convective boundary conditions on the 
structure, via Newton’s law of cooling. Input for this subroutine includes 
yearly minimum and maximum air temperatures for the geographical location 
of interest along with latitude and day of the year. The other subroutine uses 
this diurnal air temperature to calculate an effective sky temperature to be 
used for radiative boundary conditions on the structure. Together, these 
three Calore user subroutines provide a general-purpose solar mechanics 
thermal response capability useful for a variety of engineering problems. The 
solar mechanics governing equations are documented in sufficient detail to 
enable their implementation into other thermal response codes as desired. 

 The governing equations for the solar mechanics implementation are 
described in detail in the next section, with subsections for each of the 
contributing terms. One subsection provides a brief description of a possible 
implementation for the reflected component of solar flux, although this imple-
mentation was not exercised because of limitations in the user subroutine 
capability. The following section provides several example problems that 
demonstrate the solar mechanics capability. This is followed by a comments 
and summary section in which comments are offered regarding the solar 
mechanics capability along with recommendations for future efforts. 

 

                                       
1 “Calore—A Computational Heat Transfer Program,” SAND2008-0098P, February 12, 2008. 
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Governing Equations 
 The basic equation governing the calculation of absorbed solar flux is 
based on an adaptation of a method outlined in the ASHRAE Handbook.2 The 
governing equation, as developed here, expresses absorbed solar heat flux as 
a function of several factors and is given as 

  1abs inc am ext or clear sh dif reflq q q f f f f f q          (1) 

where absq  is the absorbed solar heat flux on a surface,  is the solar 

absorptivity of the surface, incq   is the total incident solar heat flux, 1amq   is the 
apparent solar heat flux on a horizontal surface at sea level if the sun were 
directly overhead, corresponding to an air mass of unity, extf  is a factor that 

accounts for atmospheric extinction (i.e., absorption), orf  is a factor that 
accounts for the orientation of the surface with respect to the position of the 
sun, clearf  is a clearness factor that accounts for cloud cover, smog, elevation, 
etc. and equals unity for a clear day (a value as high as 1.15 can be selected 
for a very clear day, and a day with 20% cloud cover, for example, 
corresponds to a value of 0.8), shf  is a factor to account for shadowing and 
equals zero or unity depending on whether the surface is shadowed or not, 

diff  is a factor that accounts for the diffuse component of solar flux as a 

result of atmospheric scattering, ranging from 0.05 to 0.15 depending on time 
of the year and other atmospheric conditions, with 0.1 a typical clear-day 
value, and reflq   is the reflected component of the total incident flux, which 

depends on the direct and diffuse components.* Two of the factors, clearf  and 

diff , are specified by the analyst to reflect local atmospheric conditions.# 

Determination of the other factors requires additional orientation-dependent 
computations as presented in following subsections. 

                                       
2 ASHRAE Fundamentals Handbook (SI), 1997. 

* The reflected component of incident flux is not included in this implementation because of 
limitations in the user-subroutine capability within Calore. However, suggestions for its 
implementation are offered in a subsequent subsection. 

# These two factors could be implemented as time-dependent factors to account for changing 
atmospheric conditions throughout the day or year. For example, it might be desirable to 
account for daily changing cloud coverage. As currently implemented, the two factors 
represent constant average values. The clearness factor can be considered simply as a 
correction factor to the direct component of solar flux, allowing the user to easily modify the 
resulting flux as desired. The diffuse factor can also be modified by the user to reflect 
atmospheric conditions of interest. 
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Solar Flux Yearly Variation 

 Air mass is a commonly used term in the solar community that is a 
relative measure of the optical path length through the atmosphere. An air 
mass of unity corresponds to the path length at sea level if the sun were 
directly overhead. (This does not necessarily correspond to the solar altitude 
at solar noon, where solar noon refers to the time when the sun is at its 
maximum altitude angle, which depends on latitude and the day of the year.) 
An air mass of zero indicates a location above the atmosphere. 

 The solar heat flux on a horizontal surface for an air mass of unity is 
based on worldwide average measurements throughout the year as provided 
in Reference 2. This data, based on 1964 measurements on the 21st day of 
each month, was fit to a sine function as given by 

  1

360
1160 74sin 88

365amq J
 

    
 



 W/m2 (2) 

where J is the Julian day ranging from 1 to 365, with 1 corresponding to 
January 1st. A plot of this equation is provided in Figure 1. The green vertical 
dashed lines indicate the approximate times in the northern hemisphere for 
the spring equinox (J = 81), the summer solstice (J = 172), the autumn 
equinox (J = 265), and the winter solstice (J = 355). The figure also includes 
the solar flux outside the atmosphere, where the air mass equals zero. The 
solar flux changes as a result of the varying distance between the earth and 
the sun throughout the year. The earth is closest to the sun on January 3rd (J 
= 3) and furthest from the sun on July 4th (J = 185). The exoatmospheric flux 
is not used in the method to determine absorbed surface flux but is 
presented as data of interest. The related equation3 is given as 

  360
1373 45.31sin 10

365exoq J
 

    
 



 W/m2 (3) 

                                       
3 W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic, Handbook of Heat Transfer 
Applications, 2nd Edition, McGraw-Hill, Inc., 1973. 
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Figure 1.  Solar Flux on a Horizontal Surface (air mass of unity) 

Extinction Factor 

 The first factor in Equation (1), the extinction factor, is estimated using 

  sin
ext

altext

c

c am
extf e e 


   (4) 

where extc  is the atmospheric extinction coefficient, am is air mass, and alt  is 
the solar altitude, which is the angle from horizontal of a vector directed at 
the sun that varies between 0° at sunrise (and sunset) and a maximum of 90° 
at solar noon. The extinction coefficient is an analyst-specified parameter. 
Worldwide clear-day values2 range from 0.142 in January to 0.207 in July. A 
value of 0.1 is representative of a very clear day (i.e., low humidity and no 
smog) while values closer to 1 are representative of very cloudy days. A value 
of 0.2 is typical for a clear day. Reductions in the extinction coefficient below 
0.1 may be appropriate for local elevations significantly above sea level. The 
inverse sine of the solar altitude provides an estimate of the path length (i.e., 
air mass, am) through the atmosphere as the sun rises and sets. More 
accurate formulas are available in the literature to estimate the path length 
as the solar altitude approaches zero. However, because the solar flux is low 
early morning and late evening, the simpler formula is used with division by 
zero prevented by limiting the solar altitude to a minimum of 2°. The 
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extinction factor is plotted in Figure 2 as a function of solar altitude for three 
values of extinction coefficient. 
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Figure 2.  Extinction Factor as a Function of Solar Altitude 

Orientation Factor 

 The next factor, orf , accounts for the orientation of each exposed surface 
with respect to the position of the sun. Vector algebra is used to compute this 
factor for each finite element face in the structure model. The orientation 
factor is found as the dot product of the face surface normal vector and the 
sun vector. Thus 

 or x x y y z zf F S F S F S    F S  (5) 

where F and S are the face normal unit vector and the sun unit vector, 
respectively, and the components of each vector in a rectangular coordinate 
system are given by F and S with x, y, z subscripts. For example, the F vector 
is written as 

 ˆ ˆ ˆ
x y zF i F j F k  F  (6) 

where î , ĵ , and k̂  are the unit vectors along the three orthogonal coordinate 
directions. A unit face vector can be constructed such that 

 ˆ ˆ ˆli mj nk  F  (7) 
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where l, m, and n are the direction cosines given as 

         yx z
FF F

l m n
F F F

    (8) 

where the magnitude of vector F is given by the Pythagorean Theorem as 

  1/22 2 2
x y zF F F F    (9) 

 The normal vector for each finite element face is found as the cross 
product of two vectors on the face surface. Thus 

      ˆ ˆ ˆ
y z z y x z z x x y y xA B A B i A B A B j A B A B k       F A B  (10) 

where the two vectors, A and B, are created based on the coordinates of the 
finite element integration points. (Nodal coordinates could also be used but 
are not conveniently available in Calore user subroutines.) Thus, one vector 
can be constructed from integration point 1 to integration point 2, and the 
second vector constructed from integration point 1 to integration point 3. For 
example, vector A is determined as 

      2 1 2 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ

x y zA i A j A k x x i y y j z z k        A  (11) 

where x, y, and z specify the coordinates of the integration points. Vector B is 
formed similarly, replacing the “2” subscript with “3”. Thus 

      3 1 3 1 3 1
ˆ ˆ ˆx x i y y j z z k     B  (12) 

It should be noted that this choice of surface vectors A and B is consistent 
with the finite element numbering convention used in Calore and ensures 
that the resulting normal vector points outward. 

 The face vector F is thus constructed by first creating vectors A and B 
based on Equations (11) and (12), and then forming the cross product based 
on Equation (10). This provides the components of vector F, as used in 
Equation (6), which is then converted to a unit vector based on direction 
cosines using Equations (7), (8), and (9). 

 Face vectors must be created for every participating element face in the 
finite element model. These values can be computed once and stored for 
subsequent use provided the geometry is static. The S vector, derived next, 
changes with the position of the sun and must be reevaluated every time step 
before performing the dot product operation of Equation (5). 

The Sun Vector 

 Next, a vector specifying the direction to the sun as a function of time 
must be created. It is convenient to adopt a Ptolemaic view in which the sun 
is assumed to revolve around the earth at the location of interest. Using 
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spherical coordinates, the sun vector can be expressed with two angles, the 
solar altitude, alt , and the solar azimuth, azi . The solar altitude is the angle 
from a local horizontal plane and a line to the center of the sun. The altitude 
varies from 0° to a maximum of 90°. The solar azimuth is the angle measured 
from either due south or due north to a line formed by a projection of the sun 
line (a.k.a. the sun or solar vector) onto the horizontal plane. The azimuth 
varies between -90° and 90°, and equals zero at solar noon when the sun lies 
on the north-south axis. A diagram depicting the two angles is provided in 
Figure 3. This figure also shows the global Cartesian coordinate system used 
for development of the sun vector. 

x
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z

horizontal plane
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azi

north

east

sun vector

x
y

z

horizontal plane
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azi

north

east

sun vector

 
Figure 3.  Diagram Depicting Solar Angles and Global Coordinate System 

 Two quantities are needed before the two solar angles can be computed. 
These two quantities are the declination and the hour angle. The declination, 
which changes throughout the year as the earth revolves around the sun, is 
the angle between the earth-sun line and the equatorial plane of the earth. 
The north-south rotation axis of the earth is tilted 23.45° relative to the plane 
of the earth’s orbit around the sun. Thus, the declination varies from -23.45° 
at the winter solstice to 23.45° at the summer solstice. (The solstice terms are 
defined for the northern hemisphere.) The declination is zero at the two 
equinoxes. The declination, , as a function of the Julian day (J) is 
approximated by 

  360
23.45 sin 284

365
J

 
  

 


  (13) 

The declination as a function of Julian day is plotted in Figure 4. Note that 
the declination changes continuously throughout the day in the evaluation of 
the solar angles. Thus, J is allowed to take on non-integer values. 
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Figure 4.  Declination as a Function of Julian Day 

 The hour angle is the angular distance that the earth rotates given a 
rotation rate of 15° per hour. The hour angle, , is defined as 

  15 12 t    (14) 

where t is the time in hours between 0 and 24. With this definition, the hour 
angle is positive before solar noon and negative after solar noon. Recall that 
solar noon is the time when the sun is at its maximum altitude, independent 
of time zone, daylight savings time, etc. 

 The solar altitude is given by 

            sin cos cos cos sin sinalt        (15) 

where  is the latitude measured from the equator, with positive values north 
and negative values south. Rather than performing an arcsine evaluation to 
solve for alt  via Equation (15), an alternate equation for solar altitude is used 
to avoid difficulties when the sine of the angle is negative. The alternate 
equation is given as 

 
 
 

sin
arctan

cos
alt

alt
alt





 

  
  

 (16) 
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where the numerator term [sin( alt )] is calculated from Equation (15), but the 

denominator term [cos( alt )] is calculated using the following trigonometric 
relation 

     1/22cos 1 sinalt alt      (17) 

It turns out that the solar altitude, alt , is never needed in the formation of 
the sun vector, only the individual sine and cosine terms given by Equations 
(15) and (17), respectively. 

 The second angle needed to specify the sun vector is the solar azimuth, 
which is calculated as 

 arctan azi
azi

azi

x
y


 

  
 

 (18) 

where azix  is given by 

    sin cosazix    (19) 

and aziy  is given by 

          cos sin cos cos sinaziy        (20) 

Division by zero in Equation (18) is prevented by limiting the minimum value 
of aziy  to a small number (1.0E-26). The two solar angles are plotted in Figure 
5, for Albuquerque, NM on June 21st. The two vertical green dashed lines 
indicate the time of sunrise and sunset. Note that the data points were 
plotted at ½-hr intervals such that the minimum and maximum values and 
the transitions are not exactly captured. The maximum solar altitude is 
78.4°, which indicates that on the summer solstice, the sun is not directly 
overhead at solar noon. The solar azimuth is complicated as the sun passes 
from quadrant to quadrant of the global coordinate system (see Figure 3). The 
sun rises in the northeast quadrant at an azimuth of 60° measured from the 
positive x axis with clockwise defined as the positive direction. Thus, the sun 
rises 30° north of due east. The sun then passes into the southeast quadrant 
at approximately 8.4 hr at which time the azimuth is measured from the 
negative x axis. The azimuth equals zero at solar noon when the altitude is 
maximum. The sun continues through the southwest quadrant into the 
northwest quadrant, setting 30° north of due west. The trajectory of the sun 
is better illustrated in Figure 6, which shows the sun track on December 22nd 
and on June 21st. This plot was created with a commercial program4 that was 
used to help validate the solar mechanics implementation. 

                                       
4 SunPlot3D, version 1.1, 2001, Maui Solar Energy Software Corporation. 
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Figure 5.  Solar Angles for Albuquerque, NM on June 21st 

 
Figure 6.  Trajectory of the Sun for Albuquerque, NM on June 21st 
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The Daylight Equations 

 The hour angle and the solar altitude equations are used to determine the 
duration of daylight, from which the time of sunrise and sunset are 
calculated as a function of day of the year and latitude. At sunrise, the solar 
altitude equals zero and Equation (15) provides the corresponding hour 
angle, sunrisew . Thus 

    arccos tan tansunrisew       (21) 

Dividing this angle (in units of degrees) by the earth’s rotation rate of 15°/hr 
yields the elapsed time between sunrise and solar noon. The duration of 
daylight is then twice this time difference. Thus 

 
2

15daylight sunriset w 


 (22) 

In determining solar angles, declination is evaluated continuously as a 
function of time. However, in the evaluation of the daylight equations, 
declination is calculated only for integer values of the Julian day, J, yielding 
constant values for the duration of daylight and for the times of sunrise and 
sunset for each day. 

 For Polar latitudes above the Arctic Circle (greater than 66.568°) and 
below the Antarctic Circle (less than -66.561°), the sun never sets or rises for 
one or more days of the year. To account for this, the argument of the arccos 
function in Equation (21) must be restricted to the interval -1 to 1 (inclusive) 
to prevent undefined function evaluations. With this restriction, Equation 
(22) correctly calculates the duration of daylight as either 24 or 0 hours for 
the Polar latitudes for the appropriate days of the year. 

 For illustrative purposes, the duration of daylight for four latitudes (the 
first of which, 35° N, corresponds to Albuquerque, NM) is plotted in Figure 7. 
This figure shows that for Albuquerque, there are approximately 9.64 hr of 
daylight on December 21st and 14.37 hr of daylight on June 21st. Latitudes 
closer to the equator (e.g., 15° N) have less variation in daylight duration. The 
figure also includes results for the polar latitude of 75° N to demonstrate the 
situation in which 24-hours of daytime or 24-hours of nighttime prevail for 
many days of the year. Finally, a southern latitude (20° S) is included in the 
figure to illustrate the reversed seasons in which June 21st is the shortest day 
of the year. Of note is that during the two equinoxes, the duration of daylight 
is 12 hr for all latitudes. 
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Figure 7.  Duration of Daylight for Four Latitudes 

 Using the daylight equations, the times of sunrise and sunset relative to 
solar noon are then simply 

 12     and    12
2 2

daylight daylight
sunrise sunset

t t
t t

 
     (23) 

In the implementation of the solar mechanics equations, the solar flux is set 
to zero when the time is before sunrise or after sunset, i.e., nighttime. A 24-
hr repeating clock is used in the subroutine implementation. Likewise, a 365-
day repeating calendar is used for the Julian day. 

Transformation to Direction Cosines 

 The two solar angles must now be transformed into direction cosines in a 
Cartesian coordinate system to enable execution of the vector dot product 
operation given by Equation (5). The global coordinate system, as was shown 
in Figure 3 (page 7), is based on the assumption that the positive x axis 
points due north and the positive z axis points due east, with the sun 
overhead in the positive y direction. Finite element models must be 
constructed to correspond to this coordinate system. The m direction cosine (j 
component) is determined as 

  sins altm   (24) 
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The l (i component) direction cosine and n (k component) direction cosine for 
the sun vector depend on the coordinate-system quadrant as the sun passes 
overhead. If the azimuth is less than zero and the time is past solar noon, or 
if the azimuth is greater than zero and the time is before solar noon, then the 
sun is in the northern sky and the direction cosines are 

    cos coss alt azil    (25) 

    cos sins alt azin    (26) 

where the s subscript refers to the sun and the direction cosine nomenclature 
is consistent with that presented in Equations (7) and (8). When the sun is in 
the southern sky, the direction cosines are 

    cos coss alt azil     (27) 

    cos sins alt azin     (28) 

An exception occurs when the time exactly equals solar noon (i.e., 12 hr). In 
this case 

  cos   with  determined as the sign of s y alt y azil s s y  (29) 

 0sn   (30) 

The value of aziy  was determined from Equation (20). A negative value of ls 
occurs when the sun is in the southern sky. 

 The unit sun vector, pointing towards the sun, is now given as 

 ˆ ˆ ˆ
s s sl i m j n k  S  (31) 

 Figure 8 provides a plot of the three direction cosines for Albuquerque, 
NM on June 21st. 
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Figure 8.  Direction Cosines for Albuquerque, NM on June 21st 

 With the components of both the F and S vectors determined, the value of 

orf  can be calculated for every exposed finite element face [Equation (5)]. A 

negative value of orf  indicates that the surface is not exposed directly to the 
sun and the direct component of solar flux is set to zero. With this vector 
algebra approach, the direct solar flux on every face is automatically determ-
ined without the need for the analyst to specify the orientation of each face. 

Shadow Factor 

 The final factor from Equation (1) to be determined is shf , the shadow 
factor. In general, every element face has the potential to cast a shadow on 
every other element face in the model at any daylight time. Thus, the search 
for shadowing is a computationally intensive operation. In addition, the 
search for shadowed surfaces must be performed throughout daylight hours 
as the sun traverses the sky, adding significant computational burden. 
Sophisticated shadowing algorithms are available in the computer graphics 
and gaming communities, but the expense of their implementation was 
considered beyond currently available resources. Therefore, a simplified 
approach was implemented in which only potential shadowing structures are 
identified by the analyst. Taking advantage of the analyst’s knowledge of the 
geometry greatly reduces the computational burden associated with the 
determination of shadowing. This simplified approach also has the advantage 

sunrise sunset 
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of allowing the specification of “pseudo” shadowing structures that are not 
part of the finite element model. This is desirable if the thermal response of a 
structure is not of interest but the shadow it casts influences the thermal 
response of other structures. 

 A potential shadowing structure, referred to as a wall, is defined by 
specifying the coordinates of the top two corner locations of the wall, with the 
simplifying assumption that the wall extends to the lowest point of the 
structure. An image of an example finite element model created to 
demonstrate shadowing is provided in Figure 9. The top two corners of the 
blue wall are labeled points 1 and 2. This is an example of a “thin” structure 
in which specification of a single wall is adequate to capture its shadowing 
effect. In specifying the coordinates of the two points, it is important to select 
points just inside the structure to prevent shadowing of the actual finite 
element structure by the pseudo wall. If the structure is not thin, 
specification of multiple pseudo walls would be required. For example, a cube 
would require specification of four pseudo walls, one for each side. To capture 
the shadows cast by a curved surface, such as the red cylinder, specification 
of two perpendicular walls passing through the center (as indicated by the 
two cyan lines) works quite well. Thus, complex structures can be 
accommodated with the creative selection of multiple pseudo walls. 

 
Figure 9.  Example Finite Element Model for Demonstration of 

Shadowing 

 Each face on the surface of the finite element model is considered in the 
determination of the shadow factors. The coordinates of the face centroid are 
determined as the algebraic average of the integration point coordinates. For 
additional resolution, the shadow factor for each integration point could be 

1 

2

north 
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determined separately. However, this adds significant computational burden; 
therefore, the centroid approach was adopted for simplicity. Using the current 
specification of the sun vector (i.e., solar direction cosines), a straight line is 
constructed on the x-z plane passing through the face centroid location. 
Recall from Figure 3 that the positive x axis is defined as north and the 
positive z axis is defined as east in this solar-mechanics implementation. In 
terms of the solar direction cosines, the slope of this sun line is 

 s
s

s

l
s

n
  (32) 

and the intercept is determined by one of the following equations depending 
on the choice of abscissa and ordinate axes selected for the wall line, the 
derivation of which is described next. 

 s f s fb x s z   (33) 

or 

 
1

s f f
s

b z x
s

   (34) 

where bs is the sun line intercept, xf and zf are the x and z coordinates of the 
face centroid, respectively, and ss is the sun line slope. Equation (33) is used 
if the x axis is the ordinate. Figure 10 provides a sample reference diagram to 
accompany the following derivation of the wall line equations. 

x

z

1

2

wall line

sun line 1

sun line 2

(xf, zf)

(xI , zI )

x

z

1

2

wall line

sun line 1

sun line 2

(xf, zf)

(xI , zI )

 
Figure 10.  Sample Diagram for Derivation of Shadow Equations 
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 For every defined pseudo wall, a wall line in the x-z plane is determined 
based on the coordinates of the two specified upper corner points. First, 
however, based on the orientation of the wall, selection of which axis is to be 
the abscissa and which the ordinate is made. The x and z distances between 
the two wall corner points are given as 

 1 2 1 2  and   x x x z z z       (35) 

If | z | is greater than | x |, then the x axis is the ordinate and the z axis is 
the abscissa. Otherwise, the z axis is the ordinate and the x axis is the 
abscissa. For | z | greater than | x |, the slope of the wall line is given as 

 w

x
s

z





 (36) 

and the intercept is 

 1 1w wb x s z   (37) 

where the w subscript refers to the wall. The coordinates of the intersection 
of the sun line and the wall line are then given by the next two equations. 

 s w
I

w s

b b
z

s s





 (38) 

 I w I wx s z b   (39) 

For | x | greater than or equal to | z |, the slope of the wall line is given as 

 w

z
s

x





 (40) 

and the intercept is 

 1 1w wb z s x   (41) 

The coordinates of the intersection of the sun line and the wall line are then 
given by the next two equations. 

 
1

s w
I

w
s

b b
x

s
s





 (42) 

 I w I wz s x b   (43) 

where the I subscript refers to the intersection point. If the intersection point 
lies between the bounds of the two wall corner points, then shadowing of the 
element face by this wall is possible. Figure 10 provides two notional sun 
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lines corresponding to two different face centroids. For sun line 1, the 
intersection lies between the bounds whereas it does not for sun line 2. For 
sun line 1, it is still necessary to determine if the face is shadowed depending 
on the height of the wall at the intersection location. 

 In this shadowing implementation, the two corner points of a pseudo wall 
are assumed to be connected with a straight line. If the top contour of the 
wall is curved, it would be necessary to split the wall into multiple walls to 
approximate the curvature. The height of the wall at the wall intersection 
point is given by 

 1 1
2 1

1 2 1 2

1
L L

h y y
L L L L

 
     

 (44) 

where 

    
1

2 2 2
1 1 1I IL x x z z       (45) 

and 

    
1

2 2 2
2 2 2I IL x x z z       (46) 

 Next, the height at which the sun line intersects the wall is determined 
based on the direction cosine corresponding to the solar altitude, as depicted 
in Figure 11. hI must be less than h for shadowing to occur. 

alt
d

h

hI

alt
d

h

hI

 
Figure 11.  Diagram of Sun Line Intersection with a Wall 

The intersection height is given by 

 I s fh dm y   (47) 

where ms was defined in Equation (24) and d is given by 

face centroid 
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    
1

2 2 2
I f I fd x x z z      

 (48) 

and yf is the y coordinate of the element face. Before shadowing can be 
confirmed, it is also necessary to consider the position of the face relative to 
the wall and the time of day. If the face is east of the wall and the time is past 
solar noon, then the face is shadowed and the shadow factor, shf , is set to 
zero. Likewise, if the face is west of the wall and the time is before solar noon, 
the face is shadowed. The shadow factor is set to unity if shadowing is not 
detected. Once a face is determined to be shadowed, there is no need to check 
for shadowing by additional walls. 

Reflected Component of Total Incident Solar Flux 

 As mentioned at the beginning of the Governing Equations Section (page 
2), the reflected component of incident solar flux is not included because of 
limitations in the user-subroutine capability within Calore. However, a 
formulation for the reflected flux component is offered here to support 
potential future solar mechanics implementation in other heat transfer codes. 

 The total incident solar flux on a surface is the sum of direct, diffuse, and 
reflected flux components, expressed as 

  1 1inc dir dif refl am ext or clear sh am ext dif refl

direct diffuse

q q q q q f f f f q f f q           
 

 (49) 

where dirq   and difq   are the direct and diffuse components [both extracted 

from Equation (1)], and reflq   is the reflected component of solar flux. It should 

be noted that the reflected component does not provide an additional inde-
pendent source of solar flux. Instead, it provides an additional flux contri-
bution associated with incident solar flux that is not absorbed by other 
surfaces or reflected into the sky. Thus, the reflected solar flux for each 
element face is a function of the direct and diffuse fluxes on all other faces. 
For surfaces that reflect diffusely (i.e., no specular reflections*), the reflected 
flux for each element face can be determined by first solving for the total 
incident flux using 

    ,
1

N

inc i dir dif dir dif j j ii j
j

reflected

q q q q q F 


       


 (50) 

                                       
* A similar (although much more complex) formulation can be derived for structures that 
include specular surfaces, but is not addressed here. 
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where the i and j subscripts indicate face number, N is the total number of 
finite element faces, j  is the solar reflectivity of face j, (one minus the solar 

absorptivity,  ) and j iF   is the view factor from surface j to surface i. Such an 

equation for every face in the model is constructed with the direct and diffuse 
flux components first determined using the equations presented previously. 
The system of equations given by Equation (50) is then solved simultaneously 
to yield the total incident flux. If desired, the reflected component of flux can 
be backed out based on Equation (49). Thus, the same view factors for the 
structure partial radiation enclosure temperature solution, as discussed in 
the next subsection, are used to determine the reflected flux component. 

Diurnal Air and Sky Temperatures 

 With the absorbed solar flux on each element face calculated based on 
the latitude and the time of the year, it is necessary to consistently specify 
the diurnal air and sky temperatures. That is, the diurnal variations in air 
and sky temperatures must reflect the changing length of day throughout the 
year. Air temperature, which is needed for the specification of convective heat 
transfer boundary conditions via Newton’s law of cooling, reflects local 
weather conditions. Maximum and minimum daily air temperatures are 
readily available for most cities and towns in the world. One source of such 
data can be found at www.weatherbase.com. A screen capture of such data 
for Albuquerque, NM is provided in Figure 12. 

 
Figure 12.  High and Low Air Temperatures for Albuquerque, NM 
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 The average high and low temperature data for each month of the year 
are used to fit cosine distributions given by 

  360
cos

365high high high highT T A J O
 

   
 



 (51) 

  360
cos

365low low low lowT T A J O
 

   
 



 (52) 

with the average high and low temperatures, and the amplitudes (A) for the 
high- and low-temperature data given by 

 
max min

2
high high

high

T T
T


  (53) 

 
max min

2
high high

high

T T
A


  (54) 

 
max min

2
low low

low

T T
T


  (55) 

 
max min

2
low low

low

T T
A


  (56) 

where J is the Julian day [as was first defined in Equation (2)], and Ohigh and 
Olow are offsets based on the day of the year in which the maximum high and 
maximum low temperatures occur, respectively. Thus 

 max365high highO J   (57) 

 max365low lowO J   (58) 

 For Albuquerque, max
highJ  is approximately 192 days, and max

lowJ  is 

approximately 195 days. (The offset is analogous to the phase angle in 
electrical engineering and serves to shift the cosine curve to the left or to the 
right.) The weather data, along with the fitted cosine distributions, is plotted 
in Figure 13, which indicates that the cosine functions provide a reasonable 
approximation of the data. This was found to be the case for about a dozen 
other cities across the world, providing partial validation of this approximate 
approach. 
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Figure 13.  Yearly Air Temperature Variations for Albuquerque, NM 

 With the yearly variation defined by the fitted cosine distributions, the 
diurnal variation for any given day is determined as 

  360
cos

24air airT T A t O
 

   
 



 (59) 

where airT  is the average air temperature given by 

 
2

high low
air

T T
T


  (60) 

and the amplitude, A, is given by 

 
2

high lowT T
A


  (61) 

where the high- and low-temperature values are determined using Equations 
(51) and (52), respectively, evaluated at the current value of J, t is time in 
units of hours, and O is the offset determined as 

  360
cos

24
O O t O

 
   

 



 (62) 
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where O  is the average offset given by 

 
2

daylightt
O


  (63) 

where daylightt  is the number of hours of daylight calculated using Equation 

(22), which is a function of latitude,   is the lag time in units of hours, and t 
is time also in units of hours. The lag time accounts for the fact that often the 
minimum temperature of the day occurs after sunrise and the maximum 
temperature occurs before sunset. A typical value of   is about 1 hr, but can 
vary between about ½ hr to 2 hr. If   is set to zero, then O is constant and 
the temperature cosine curve is not skewed. Otherwise, the offset varies with 
a cosine distribution, skewing the diurnal temperature curve. It should be 
noted that the presence of heat sinks/sources can alter the local air 
temperature variations—no attempt is made to account for this effect. 

 The sky temperature is also needed for thermal simulations involving 
solar mechanics. The sky temperature is used for far-field radiative boundary 
conditions and represents an effective temperature, accounting for the fact 
that the air is not perfectly transparent to infrared radiation. If the air were 
transparent, the sky temperature would be approximately 3 K, which is the 
background temperature of the universe. Water vapor, ozone, carbon dioxide, 
other trace elements, and particulate matter associated with air pollution 
contribute to the absorption of radiation through the atmosphere. There are 
numerous empirical relations that allow the determination of sky tempera-
ture as a function of various parameters such as air temperature and 
absolute humidity. One such relation for sky temperature5 is given by 

   24

1
47.77*10 2734 1 0.261 airT

sky airT T e
     

 (64) 

where the air temperature must be specified in the absolute temperature 
units of Kelvin. This relation is a function only of air temperature but 
provides reasonable agreement with data across the globe. For the Calore 
implementation, the sky temperature is specified as the far-field reference 
temperature in a partial radiation enclosure boundary condition based on a 
gray-body approach. For such a boundary condition, view factors are 
calculated for all element faces, including the associated view factor to the 
environment, represented as a black surface at the reference (i.e., sky) 
temperature. Thus, the fact that some element faces may have only a partial 
view of the sky is accounted for in the implementation. The view factors for 
the partial radiation enclosure can also be used to determine the reflected 
component of solar flux, as was described in the previous subsection. 
                                       
5 Sherwood B. Inso and Ray D. Jackson, “Thermal Radiation from the Atmosphere,” Journal 
of Geophysical Research, Vol. 74, No. 23, October 20, 1969. 
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 It should be noted that for a partial radiation enclosure, the specified 
surface emissivities are those for infrared radiation (IR), corresponding to 
thermal radiation. Recall that surface absorptivity, , is specified for 
wavelengths associated with solar radiation. In a gray-body radiation 
enclosure implementation, such as that used in the Calore thermal response 
code, absorptivity and emissivity are assumed equal. However, the solar 
absorptivity and the IR emissivity often are not equal for some surfaces. The 
solar mechanics approach implemented here allows separate specification of 
solar absorptivity such that radiation transfer at the two wavelengths is 
appropriately accounted for. 

 The air temperature (assuming a lag time of 1 hr) and the associated sky 
temperature are plotted in Figure 14 for Albuquerque, NM on June 21st (J = 
172). On this day, with solar noon defined as 12 hr, sunrise occurs at 4.82 hr 
(4:49 AM) and sunset occurs at 19.18 hr (7:11 PM). It should be noted that 
calculation of sunrise and sunset is strongly dependent on the accuracy of 
the declination equation [Equation (13)], which is an approximation for ease 
of implementation. The sunrise/sunset times are consistent with values from 
a variety of other sources that indicate variations of several minutes. Intro-
duction of the lag term results in the skewed cosine function distribution. An 
air-temperature curve is also included in which the lag time was set to zero 
for comparison to the skewed distribution. Obviously, the actual temperature 
variations throughout the day will not be as smooth as provided by these 
well-behaved functions for air and sky temperature. 
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Figure 14.  Diurnal Air and Sky Temperatures for Albuquerque, NM 

June 21st (J = 172) 
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 Figure 15 compares the smooth temperature curve associated with the 
simulation for Albuquerque, NM, to measured hourly temperature data on 
June 21st for two years, 1990 and 2008. The temperature data was found at 
www.wunderground.com/history/, which is one of several such databases. 
The comparison indicates that the simulation approach provides a reasonable 
reproduction of the data, approximately capturing the lag time effect. The 
hourly measured data obviously reflects changing local conditions for the 
particular day that are not captured with the smooth cosine distribution. 
Also, the yearly temperature data is based on measurements averaged over 
many years. Therefore, one can only expect the minimum and maximum 
temperatures for any particular day to be representative of the actual. The 
premise of the simulation approach is to provide time varying air temperature 
consistent with the solar mechanics implementation, enabling meaningful 
comparisons of thermal response at different times of the year and at 
different geographical locations. An advantage of a general implementation of 
the solar mechanics equations is that an analyst would not be restricted to 
using the cosine distribution to specify air temperature, and could instead 
use tabular data if desired. 

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

16

18

20

22

24

26

28

30

32

34

36

T
em

p
er

a
tu

re
 (
C

)

Simulation
Measured - 1990
Measured - 2008

 
Figure 15.  Comparison to Hourly Temperature Measurements 
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Solar Mechanics Example Problems 
 Solar mechanics results for a few example problems are provided for 
demonstration purposes. The examples include solar flux as a function of day 
of year and latitude. In addition, an example for solar flux incident on vertical 
and horizontal surfaces is provided along with comparison to measured 
values on a horizontal surface. An example problem is also included to 
demonstrate shadowing. 

 Figure 16 provides the calculated solar flux incident on a horizontal plate 
in Albuquerque, NM, which is at a latitude of 35° north. The figure 
demonstrates the variation in peak flux occurring on four different days 
throughout the year. The summer solstice occurs on day 172, the winter 
solstice occurs on day 355, and the two equinoxes occur on days 81 and 265. 
The differences in peak fluxes and daylight time are clearly demonstrated. 
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Figure 16.  Incident Solar Flux, Various Days, Albuquerque, NM 

(Latitude=35° N) 

 Figure 17 provides the incident solar flux on June 21st for cities at four 
different latitudes. Death Valley, CA, which is the farthest north location, 
exhibits the longest day, and Singapore, which is near the equator, exhibits 
the shortest day. 
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Figure 17.  Incident Solar Flux, Various Latitudes, June 21st 

 For Albuquerque, NM, on June 21st, the incident solar flux on both sides 
of a horizontal plate and on both sides of a vertical plate is provided in Figure 
18. For this example, the two plates are considered standalone such that 
reflections or shadowing influences are not present. The calculated flux 
includes both direct and diffuse components. For the bottom surface of the 
horizontal plate, there is no direct component, only the diffuse component. 
Recall that the diffuse flux is a result of scattering in the atmosphere, which 
is considered to be isotropic. Thus, all surfaces, regardless of orientation, 
receive the diffuse component of solar flux. For the back face of the vertical 
plate (i.e., west facing), there is no direct component for times before solar 
noon. Likewise, for the front face, there is no direct component for times after 
solar noon. The peak total flux on the two sides of the vertical plate is not as 
great as the peak total flux on the top surface of the horizontal plate because 
of greater atmospheric attenuation early and late in the day when the optical 
path length through the atmosphere is greater than it is at noon. 
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Figure 18.  Incident Solar Flux, Albuquerque, NM, June 21st 

 The calculated total and diffuse incident solar fluxes on a horizontal 
surface for Albuquerque, NM are compared to the corresponding measured 
flux values. The flux data, for June 21st of the year 2005, was found at 
http://rredc.nrel.gov/solar/old_data/nsrdb/. For the simulation, the extinc-
tion factor was assumed equal to 0.2; the diffuse factor was assumed equal to 
0.1; and the clearness factor was set to unity. Better agreement could be 
achieved if desired by modifying these input parameters. The comparison 
shows that the measured diffuse component is larger than calculated, 
indicating that a larger value of the diffuse factor may be warranted. Also, the 
calculated flux during sunrise and sunset does not quite match the data, 
indicating a discrepancy in the simplified model. A more sophisticated model 
for extinction would be needed to capture this response, although this may 
not be warranted because of the very low relative flux contributions at these 
times. Otherwise, the agreement between the simulation and the data is 
reasonable for this single-day comparison. As with the temperature model, 
solar mechanics was implemented with the major premise that the model 
provides solar flux predictions that can be used to consistently compare 
thermal response simulations at different times of the year at different 
geographical locations. The available input constants allow the user to modify 
the results to reflect specific local atmospheric conditions if desired. 

diffuse flux 

total flux (direct 
and diffuse) 
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Figure 19.  Comparison to Hourly Solar Flux Measurements 

 The example finite element model presented in Figure 9 (page 15) was 
used to demonstrate the influence of shadows on calculated absorbed solar 
flux. For simplicity, the structure was assumed to be all steel with a solar 
absorptivity of 0.7 and an infrared emissivity of 0.2. Recall that for the Calore 
implementation, the positive z axis points due east. The calculation is for 
Albuquerque, NM at a latitude of approximately 35° N, and begins on June 
21st. Six images at different times of the day are provided in Figure 20. The 
varying flux level on the curved surface of the cylinder is readily apparent. 
The figure also shows the changing position of the shadows on the multi-wall 
structure. Ragged edges on some of the shadows are a result of the relative 
coarseness of the mesh. The temperature distribution on the structure, as 
provided in Figure 21 at 13 and 18 hours, is smoother but still reflects the 
remnants of the shadows at the end of the day. 
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Figure 20.  Absorbed Solar Flux Example Problem Images 
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Figure 21.  Temperature Distributions for Example Problem 
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Comments and Summary 
 An approach has been developed to enable simulation of the thermal 
response of structures in which incident solar heat flux is an important 
thermal load. This approach was implemented into the three-dimensional 
Calore thermal response code via a user subroutine for solar mechanics, 
along with subroutines for the diurnal variation of air temperature and 
effective sky temperature. 

 The selected solar mechanics approach is an adaptation of one of several 
similar approaches found in the solar literature. A basic premise of the 
approach is that the normal clear day solar loading is of primary interest, 
although analyst-specified factors can be modified to approximate non-clear 
day weather conditions. The different approaches found in the literature all 
seem to yield similar solar mechanics results. However, it should be noted 
that the results should not be expected to match identically because of 
differences in approximations used to develop the governing equations. Using 
commercial and internet-based software, limited validation of the approach 
with regard to peak solar flux, solar trajectories, and times of sunrise and 
sunset indicate reasonable agreement. In addition, most of the governing 
equations were implemented within an Excel spreadsheet, available from the 
author upon request, before implementation into the FORTRAN user 
subroutines. However, limited resources prevented thorough validation of the 
approach. No attempt was made to validate the shadowing capability, other 
than verifying that the predicted shadows were reasonable and consistent 
with the solar trajectories. 

 There are three parameters in the solar mechanics approach related to 
atmospheric conditions that must be specified by the analyst: the extinction 
coefficient (cext), the diffuse factor (fdif), and the clearness factor (fclear). The 
extinction coefficient is representative of the absorption of solar radiation 
whereas the diffuse factor is representative of scattering. It is expected that 
the two parameters are correlated, although no such correlation was available 
in the original approach reference. The clearness factor is essentially a correc-
tion factor on the direct component of flux as implemented in the adapted 
approach. Again, no correlation with the other atmospheric parameters is 
readily available. Further research regarding these parameters and their 
implementation is warranted. 

 Three features of note in the developed approach are (1) the use of vector 
algebra to automatically determine the orientation factor, accounting for the 
orientation of each finite element face relative to the position of the sun, (2) 
the capability to account for shadows cast by “pseudo” walls, and (3) 
integration of the solar mechanics capability with the capability to specify 
diurnal variations in air temperature (relying on published weather data) and 
the related effective sky temperature as functions of latitude and day of the 
year, consistent with the solar mechanics implementation. 
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 The approach is sufficiently developed for implementation into other 
thermal response codes if desired. In addition to formal validation, other 
future development efforts could address a more general and sophisticated 
shadowing capability, inclusion of a reflected flux contribution, and addition-
al options for calculation of the effective sky temperature (several empirical 
correlations are readily available in the literature). Because of restrictions in 
the user-subroutine capability, only a single value of solar absorptivity can be 
specified for each implementation of a solar boundary condition. The ability to 
specify solar absorptivity as a material or surface property is desirable in a 
general implementation. Restrictions in the user-subroutine capability also 
prevented inclusion of the reflected flux contribution, which also is desirable 
in a general implementation. The developed approach, as currently imple-
mented via Calore user subroutines, provides a useful capability for engineer-
ing problems involving solar loading. 
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Appendix: Calore User Subroutines for Solar Mechanics 
 For ease of readability, angles in all of the equations presented in the text 
were expressed in units of degrees. However, in the FORTRAN implemen-
tation presented in this appendix, all operations are performed with angles in 
units of radians. 

Solar Mechanics: 

c   =========================================================================== 
c 
      subroutine Solar_flux_shadows(faceID, nelemf, nip, coords, t, 
     * flux, ierror) 
c 
c  absorbed Solar flux on an object oriented arbitrarily with respect to the sun. 
c   the flux is adjusted as the sun rises and sets based on the direction cosines. 
c   the assumed coordinate system is based on the sun traveling in the y-z plane with 
c   sunrise and sunset at y = 0, and the sun is somewhere overhead for y > 0. 
c   thus, the positive z axis points east and the positive x axis points north. 
c   (SolarFlux is written as a user face variable for subsequent output.) 
c 
c  this subroutine accounts for shadows with an approximate method in which the 
c   user must specify the coordinates of the corners of shadowing pseudo walls. 
c   currently, only the top location of the wall is specified, assuming that the 
c   wall extends down to the ground (y=0 or some common elevation). 
c 
c   created by Dean Dobranich, 3/2009 
c 
      implicit none 
c 
      integer ierror, nip, nelemf 
      integer faceID(nelemf) 
      double precision flux(nelemf, nip) 
      double precision coords(3, nelemf, nip) 
      double precision t(nelemf, nip) 
c 
c     ierror: user defined error code for calore to test. zero means success. 
c     nip :  number of gauss integration points per face 
c     nelemf:  number of element faces in workset 
c     flux:  array of length nelemf containing the values of the 
c           heat flux that the subroutine calculates at 
c           integration points of element faces 
c     coords: coords of the integration points on each element face. 
c     t:  array of temperatures at the integration points on each element face 
c 
      integer i, j, nr, found 
      double precision time, time_24hr, pi, pio2, zero, one 
      double precision t_sunrise, t_sunset, solar_flux, absorpt 
      double precision daylight, gamma, beta, f 
      double precision xa, xb, xc, ya, yb, yc, za, zb, zc 
      double precision v1i, v1j, v1k 
      double precision v2i, v2j, v2k 
      double precision v3i, v3j, v3k, v3m 
      double precision vsi, vsj, vsk, vsm 
      double precision JulianDay, latitude, declination 
      double precision hour_angle_sunrise, hour_angle 
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      double precision surface_flux, fext, fdif, fclear, ext_coef 
      double precision shadow_dt1, shadow_dt2 
c 
      integer k, ni, nwalls, m, n, mo, ko 
      double precision slope_solar, intercept_solar 
      double precision slope_wall, intercept_wall 
      double precision dx1, dx2, dz, dx 
      double precision xe, ye, ze, x, z 
      double precision l1, l2, wf, h, d, hi 
c      double precision solar_alt, solar_azi, rotation_rate, arg 
      double precision solar_azi, rotation_rate, arg 
      double precision cos_ha, cos_lat, sin_lat, cos_dec, sin_dec 
      double precision sin_alt, cos_alt, x_azi, y_azi 
c       
      double precision small 
c 
      parameter (pi=3.1415926535897932384626433d0, pio2=0.5d0*pi) 
      parameter (zero=0.0d0, one=1.0d0, small=1.0d-26) 
      parameter (rotation_rate=15.0d0*pi/180.0d0) 
 
c  nr is number of real data variables read in from .i file, ni is number of integers 
      integer max_num_walls 
      parameter (max_num_walls=8) 
      parameter (nr=8+max_num_walls*6, ni=1) 
      double precision rdata(nr) 
      integer idata(ni) 
      double precision wall_coords(max_num_walls,2,3) 
      logical possible 
c 
      ierror = 0 
c 
c   idata(1) => number of walls that may shadow a structure 
c 
c   rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way 
c               through the third day of the year; progresses with simulation time) 
c   rdata(2) => latitude (+ for northern hemisphere) 
c   rdata(3) => solar absorptivity of surface 
c   rdata(4) => ext_coef (extinction coefficient through atmosphere, typically = 0.2) 
c   rdata(5) => fdif (fraction of solar flux that is diffuse, typically = 0.1) 
c   rdata(6) => fclear (clearness factor, direct solar flux component multiplier; 
c               = 1.0 for clear day, 0.8 for 20% cloud cover, etc.) 
c   rdata(7) => shadow_dt1 (time when structure is in shadow relative to sunrise) 
c   rdata(8) => shadow_dt2 (time when structure is in shadow relative to sunset) 
c               thus, if time is less that sunrise + shadow_dt1 or greater than 
c               sunset - shadow_dt2, then only diffuse flux is applied 
c   rdata(9-m) => x,y,z coordinates of walls 1 through max_num_walls with 2 coordinates per wall 
c                 where m = 8 + max_num_walls*6 
c 
c 
c  get current simulation time and convert to hours      
      call acal_get_time(time) 
      time = time/3600.0d0 
c  use a 24 hour repeating clock  
      time_24hr = mod(time,24.0d0) 
c 
      call acal_get_instance_int_data(ni,idata) 
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      nwalls = idata(1) 
c       
      call acal_get_instance_real_data(nr,rdata) 
      JulianDay = mod(rdata(1) + time/24.0d0, 365.0d0) 
      latitude = rdata(2)*pi/180.0d0 
      absorpt = rdata(3) 
      ext_coef = rdata(4) 
      fdif = rdata(5) 
      fclear = rdata(6) 
      shadow_dt1 = rdata(7) 
      shadow_dt2 = rdata(8) 
       
c  rdata must be entered in input file for all max_num_walls, but only nwalls assigned and used 
c   m is counter for points 1 and 2 of wall; n is pointer for x, y, z (1, 2, 3) axis 
      ko = 0 
      do k = 1, nwalls 
         mo = 0 
         do m = 1, 2 
            do n = 1, 3 
               wall_coords(k,m,n) = rdata(8+ko+mo+n) 
            enddo 
            mo = mo + 3 
         enddo 
         ko = ko + 6 
      enddo 
c       
c  declination (radians) [23.45 degrees = 0.40927971 radians] 
c   truncate Julian Day for calculation of sunrise time 
      declination = 0.40927971d0*dsin(pi/182.5d0* 
     &              (dint(JulianDay)+284.0d0)) 
      arg = -dtan(latitude)*dtan(declination) 
      arg = max(arg,-one) 
      arg = min(arg,one) 
c  argument of arccos must be between -1 and 1, inclusive (bounds would be 
c   exceeded for polar angles when daylight may equal 0 or 24 hours)       
      hour_angle_sunrise = dacos(arg) 
      daylight = 24.0d0/pi*hour_angle_sunrise 
      t_sunrise = 12.0d0 - daylight*0.5d0 
      t_sunset = t_sunrise + daylight 
c 
c  recalculate declination for determining solar angles 
      declination = 0.40927971d0*dsin(pi/182.5d0*(JulianDay+284.0d0)) 
c 
c  if time >= t_sunset or time < t_sunrise, set flux to zero (night time) 
      if (time_24hr .ge. t_sunset .or. time_24hr .lt. t_sunrise) then 
       
        do i = 1, nelemf 
          do j = 1, nip 
            flux(i,j) = zero 
          end do 
          call acal_put_real_face_var(zero,faceID(i),9, 
     &                                "SolarFlux",found) 
        end do 
         
      else 
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c  solar_flux initially is the flux on a surface normal to the sun for m = 1 (1 air mass) 
        solar_flux = 1160.0d0 + 74.0d0 * dsin(pi/182.5d0 * 
     &               (JulianDay + 88.0d0)) 
c 
c  determine position of sun in sky based on hour_angle, latitude, and declination 
        hour_angle = rotation_rate * (12.0d0 - time_24hr) 
        cos_ha = dcos(hour_angle) 
        cos_lat = dcos(latitude) 
        sin_lat = dsin(latitude) 
        cos_dec = dcos(declination) 
        sin_dec = dsin(declination) 
        sin_alt = cos_lat*cos_dec*cos_ha + sin_lat*sin_dec 
        cos_alt = dsqrt(1.0d0 - sin_alt**2) 
c  find the solar altitude angle (varies from 0 up to a max of 90 and back to 0) 
c   solar altitude is never used directly so comment out unless desired to print 
c        solar_alt = datan(sin_alt/max(small,cos_alt)) 
c 
c  find the solar azimuthal angle (varies between -90 and +90 degrees) 
        x_azi = dsin(hour_angle)*cos_dec 
        y_azi = cos_lat*sin_dec - cos_ha*cos_dec*sin_lat 
        y_azi = dsign(max(dabs(y_azi),small),y_azi)         
        solar_azi = datan(x_azi/y_azi) 
c 
c  create a unit vector representing the direction of the sun 
c   a negative value of vsi indicates that the sun is in the southern sky            
        vsj = sin_alt 
c  x-z plane coordinates depend on time of day and sign of azimuthal angle 
        if (time_24hr .eq. 12.0d0) then 
          vsi = dsign(cos_alt,y_azi) 
          vsk = zero 
        elseif (solar_azi*(time_24hr - 12.0d0) .lt. zero) then 
c  sun is in the northern sky         
          vsi = cos_alt*dcos(solar_azi) 
          vsk = cos_alt*dsin(solar_azi) 
        else 
c  sun is in the southern sky         
          vsi = -cos_alt*dcos(solar_azi) 
          vsk = -cos_alt*dsin(solar_azi) 
        endif 
c 
c  determine atmospheric extinction factor (minimum horizon angle of 2 degrees (0.0349 radians)) 
c   an atmosphere mass of 1 corresponds to when the sun is at its zenith 
c   the inverse sine of the solar altitude angle accounts for the greater 
c   distance through the atmosphere at lower angles 
        fext = dexp(-ext_coef/max(dabs(sin_alt),0.0349d0)) 
c         
c  apply aborptivity and account for extinction from atmosphere 
        solar_flux = solar_flux * absorpt * fext 
c 
c ---         
c  check for shadow time (simple approximate way to account for blocking structures) 
        if (time_24hr .gt. t_sunset - shadow_dt2 .or. 
     &      time_24hr .lt. t_sunrise + shadow_dt1) then 
c        
c  only diffuse component is applied when shadowed         
          surface_flux = solar_flux * fdif 
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c         
          do i = 1, nelemf 
            do j = 1, nip 
              flux(i,j) = surface_flux 
            end do 
            call acal_put_real_face_var(surface_flux,faceID(i),9, 
     &                                  "SolarFlux",found) 
          end do 
c         
          return 
        endif          
c --- 
c         
c  determine direct and diffuse flux levels for all element faces 
        do i = 1, nelemf  
c         
c  determine two vectors on element surface using the integration point coordinates 
          xa = coords(1, i, 1) 
          ya = coords(2, i, 1) 
          za = coords(3, i, 1) 
          xb = coords(1, i, 2) 
          yb = coords(2, i, 2) 
          zb = coords(3, i, 2) 
          xc = coords(1, i, 3) 
          yc = coords(2, i, 3) 
          zc = coords(3, i, 3) 
           
          v1i = xb - xa 
          v1j = yb - ya 
          v1k = zb - za 
           
          v2i = xc - xa 
          v2j = yc - ya 
          v2k = zc - za 
           
c  vector 3 is normal to vectors 1 and 2 that lie on the surface of the element face, 
c   found by the cross product 
          v3i = v1j*v2k - v1k*v2j 
          v3j = v1k*v2i - v1i*v2k  
          v3k = v1i*v2j - v1j*v2i 
           
c  vector magnitude 
          v3m = dsqrt(v3i**2 + v3j**2 + v3k**2) 
           
c  unit vector (direction cosine components) 
          v3i = v3i/v3m 
          v3j = v3j/v3m 
          v3k = v3k/v3m 
                              
c  now find the dot product of the sun vector, vs, with the surface normal vector, v3 
c   both vs and v3 are unit vectors, so the dot product is the fraction of solar flux on the surface 
 
          f = v3i*vsi + v3j*vsj + v3k*vsk 
 
c  a negative f indicates the surface of the element face is not visible; thus set direct flux to zero 
          if (f .gt. zero) then 



Appendix: Calore User Subroutines for Solar Mechanics 

 40 

 
c  check for shadowing by any pseudo walls (if shadowed, set f = 0.0) 
c   find element centroid coordinates 
            if (nwalls .gt. 0) then         
              slope_solar = vsi/dsign(max(dabs(vsk),small),vsk) 
              xe = coords(1, i, 1) 
              ye = coords(2, i, 1) 
              ze = coords(3, i, 1) 
              do j = 2, nip 
                 xe = xe + coords(1, i, j) 
                 ye = ye + coords(2, i, j) 
                 ze = ze + coords(3, i, j) 
              end do 
              xe = xe/nip 
              ye = ye/nip 
              ze = ze/nip 
            endif 
c 
            do k = 1, nwalls 
c 
c  perform a first check to eliminate element faces that are not shadowed 
c   note that a negative value of vsi indicates that the sun is in the southern sky 
c 
c  find x distances from element face centroid to each of the two defining wall points 
c                            wall#, point#, x-y-z (1-2-3) 
               dx1 = xe - wall_coords(k,1,1) 
               dx2 = xe - wall_coords(k,2,1) 
c  if sun is in the northern sky and the element face is north of wall, no shadows are possible 
               if (dx1 .gt. zero .and. dx2 .gt. zero 
     &           .and. vsi .gt. zero) go to 5 
c  if sun is in the southern sky and the element face is south of wall, no shadows are possible                
               if (dx1 .lt. zero .and. dx2 .lt. zero 
     &           .and. vsi .lt. zero) go to 5 
c                
c  now check to see if face is possibly shadowed based on its x-z location and the sun vector 
c 
c  determine equation of wall line in the x-z plane (this could be pulled outside of face do loop) 
c   also find equation of the solar line in the x-z plane passing through the face centroid 
c   then find x, z coordinates of intersection of the two lines 
               dz = wall_coords(k,1,3) - wall_coords(k,2,3) 
               dx = wall_coords(k,1,1) - wall_coords(k,2,1) 
               possible = .false. 
               if (dabs(dz) .gt. dabs(dx)) then 
                 slope_wall = dx/dz 
                 intercept_wall = wall_coords(k,1,1) - 
     &                            slope_wall*wall_coords(k,1,3) 
                 intercept_solar = xe - slope_solar*ze 
                 z = (intercept_solar - intercept_wall)/ 
     &               (slope_wall - slope_solar) 
                 x = slope_wall*z + intercept_wall 
c  if z intersection lies between bounds of the wall line, then shadowing is possible 
                 if (z.lt.max(wall_coords(k,1,3),wall_coords(k,2,3)) 
     &           .and. z.gt.min(wall_coords(k,1,3),wall_coords(k,2,3))) 
     &           possible = .true. 
               else 
                 slope_wall = dz/dx 
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                 intercept_wall = wall_coords(k,1,3) - 
     &                            slope_wall*wall_coords(k,1,1) 
                 intercept_solar = ze - 1.0d0/slope_solar*xe 
                 x = (intercept_solar - intercept_wall)/ 
     &               (slope_wall - 1.0d0/slope_solar) 
                 z = slope_wall*x + intercept_wall 
c  if x intersection lies between bounds of the wall line, then shadowing is possible 
                 if (x.lt.max(wall_coords(k,1,1),wall_coords(k,2,1)) 
     &           .and. x.gt.min(wall_coords(k,1,1),wall_coords(k,2,1))) 
     &           possible = .true. 
               endif 
c 
               if (possible) then 
c                
c  determine height of wall at intersection of sun vector with the wall 
c  once an element face is found to be shadowed, no need to check additional walls, exit do (go to 10) 
c 
                 l1 = dsqrt((wall_coords(k,1,1) - x)**2 + 
     &                (wall_coords(k,1,3) - z)**2) 
                 l2 = dsqrt((wall_coords(k,2,1) - x)**2 + 
     &                (wall_coords(k,2,3) - z)**2) 
                 wf = l1/(l1+l2) 
                 h = wf*wall_coords(k,2,2) + 
     &               (1.0d0 - wf)*wall_coords(k,1,2) 
c 
c  find height of wall at intersection with solar line assuming common bottom location 
                 d = dsqrt((x - xe)**2 + (z - ze)**2) 
                 hi = d * vsj + ye 
                 if (hi .lt. h) then 
c   for times before solar noon: 
                   if (time_24hr .lt. 12.0d0) then 
                     if (ze .lt. z) then 
                       f = zero 
                       go to 10 
                     endif 
c   for times after solar noon: 
                   elseif (time_24hr .gt. 12.0d0) then 
                     if (ze .gt. z) then 
                       f = zero 
                       go to 10 
                     endif 
c   for time = solar noon (z wont discriminate so need to look at x coordinate): 
                   else 
                     if (vsi .lt. zero .and. xe .gt. x) then 
                       f = zero 
                       go to 10 
                     endif 
                     if (vsi .gt. zero .and. xe .lt. x) then 
                       f = zero 
                       go to 10 
                     endif 
                   endif 
                 endif 
               endif 
c 
    5          continue 
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c  no shadowing, continue with do loop to check next wall 
c 
            end do 
   10       continue 
c    
c  determine total surface flux accounting for orientation 
c   apply fdif to account for diffuse flux component and apply clearness factor 
c   to modify direct component (only the direct component is affected by clearness) 
            surface_flux = solar_flux * (f * fclear + fdif) 
             
          else 
c           
c  only diffuse component is applied           
            surface_flux = solar_flux * fdif 
             
          endif 
c           
c  assign fluxes           
          do j = 1, nip 
            flux(i,j) = surface_flux 
          end do 
          call acal_put_real_face_var(surface_flux,faceID(i),9, 
     &                                "SolarFlux",found) 
c           
        end do 
c         
      endif 
c 
c 
      return 
      end 
c       
c   ============================================================================ 
 

Diurnal Air Temperature: 

c 
      subroutine DiurnalAirT(faceID, nelem, nint, coords, t, 
     &                       refTemp, ierror) 
c 
c  calculate diurnal cycle air temperature for convective reference temperature 
c   determine sunrise time based on latitude and day of year, and account for yearly variation 
c   based on weather data, which can be obtained from such sites as weatherbase.com 
c   created by Dean Dobranich, 1/2009 
c 
      implicit none 
       
      integer nelem 
      integer nint 
      integer faceID(nelem) 
      double precision coords(3, nelem, nint) 
      double precision t(nelem, nint) 
      double precision refTemp(nelem, nint) 
      integer ierror 
       
c 
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c     ierror:  (output)user defined error code for calore to test.  
c              zero means success. 
c     nelem:   (input)number of elements in workset 
c     nint:    (input)number of elements in workset 
c     refTemp: (output)array containing the magnitude of the reference 
c              temperature that the subroutine calculates at a face 
c     coords:  (input) coords of the integration points on each element.   
c     t:       (input)array of temperatures at the integration points 
c              on each element 
 
      integer i, j, nr 
      double precision time, time_24hr, time_days 
      double precision JulianDay, latitude, declination, hour_angle 
      double precision daylight, Tref_max, Tref_min, period 
      double precision T_high_max, T_high_min, JD_high_max 
      double precision T_low_max, T_low_min, JD_low_max 
      double precision T_high_avg, T_high_amp, T_low_avg, T_low_amp 
      double precision Tref_avg, Tref_amplitude 
      double precision offset_avg, offset 
      double precision Lag, refT, arg 
      double precision pi, twopi_o_period, one 
c       
      parameter (pi=3.1415926535897932384626433d0) 
      parameter (twopi_o_period=2.0d0*pi/24.0d0) 
      parameter (one=1.0d0) 
 
c  nr is number of real data variables read in from .i file 
      parameter (nr=9) 
      double precision rdata(nr) 
c 
      ierror = 0 
c 
c  Tref = Tref_avg + Tref_amplitude*cos(2*pi/period*(t + offset)) 
c   with offset = offset_avg + Lag*(cos(2*pi/period*(time + offset_avg)) 
c   rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way 
c               through the third day of the year; progresses with simulation time; max of 365) 
c   rdata(2) => latitude (+ for northern hemisphere), used with day to find sunrise time 
c   rdata(3) => T_high_max (maximum high daily temperature throughout the year) 
c   rdata(4) => T_high_min (minimum high daily temperature throughout the year) 
c   rdata(5) => JD_high_max (Julian day corresponding to max high daily temperature) 
c   rdata(6) => T_low_max (maximum low daily temperature throughout the year) 
c   rdata(7) => T_low_min (minimum low daily temperature throughout the year) 
c   rdata(8) => JD_low_max (Julian day corresponding to max low daily temperature) 
c   rdata(9) => Lag (time interval after sunrise that air temperature is minimum; also 
c               the time interval before sunset that air temperature is maximum; usually ~1) 
 
c 
c  get current simulation time and convert to hours      
      call acal_get_time(time) 
      time = time/3600.0d0 
      time_days = time/24.0d0 
c  use a 24 hour repeating clock  
      time_24hr = mod(time, 24.0d0) 
       
      call acal_get_instance_real_data(nr,rdata) 
      JulianDay = mod(rdata(1) + time_days, 365.0d0) 
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      latitude = rdata(2)*pi/180.0d0      
      T_high_max = rdata(3) 
      T_high_min = rdata(4) 
      JD_high_max = rdata(5) 
      T_low_max = rdata(6) 
      T_low_min = rdata(7) 
      JD_low_max = rdata(8) 
      Lag = rdata(9) 
 
c  declination (radians); 23.45 degrees = 0.40927971 radians 
c   truncate Julian Day for calculation of sunrise time 
      declination = 0.40927971d0*dsin(pi/182.5d0* 
     &              (dint(JulianDay)+284.0d0)) 
      arg = -dtan(latitude)*dtan(declination) 
      arg = max(arg,-one) 
      arg = min(arg,one) 
c  argument of arccos must be between -1 and 1, inclusive (bounds would be 
c   exceeded for polar angles when daylight may equal 0 or 24 hours)       
      hour_angle = dacos(arg) 
c      hour_angle = dacos(-dtan(latitude)*dtan(declination)) 
      daylight = 24.0d0/pi*hour_angle 
 
c  set cosine function for yearly T variation based on min and max high and low Ts      
      T_high_avg = (T_high_max + T_high_min)*0.5d0 
      T_high_amp = (T_high_max - T_high_min)*0.5d0 
      T_low_avg = (T_low_max + T_low_min)*0.5d0 
      T_low_amp = (T_low_max - T_low_min)*0.5d0 
c 
      offset = 365.0d0-JD_high_max 
      Tref_max = T_high_avg + T_high_amp* 
     &           (dcos(pi/182.5d0*(JulianDay + offset))) 
      offset = 365.0d0-JD_low_max 
      Tref_min = T_low_avg + T_low_amp* 
     &           (dcos(pi/182.5d0*(JulianDay + offset))) 
       
c  now set cosine function for daily T variations 
c 
c  Tref = Tref_avg + Tref_amplitude*cos(2*pi/period*(t + ov)) 
c   with ov = offset_avg + Lag*(cos(2*pi/period*(time + offset_avg)) 
      Tref_avg = (Tref_max + Tref_min)*0.5d0 
      Tref_amplitude = (Tref_max - Tref_min)*0.5d0 
      offset_avg = daylight*0.5d0 
c 
c  calculate refT vs time 
c   offset shifts the cosine distribution to the left 
      offset = offset_avg + Lag* 
     &         (dcos(twopi_o_period*(time_24hr + offset_avg))) 
      refT = Tref_avg + Tref_amplitude* 
     &       (dcos(twopi_o_period*(time_24hr + offset))) 
 
c 
c  pass reference temperature to Calore for subsequent output (add as user variable in Calore) 
      call acal_lupdate_global_real_var(refT,8,"Tref-air") 
c 
c  assign Tref 
      do j = 1, nint 
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        do i = 1, nelem 
          refTemp(i,j) = refT 
        end do 
      end do 
 
      return 
      end 
 
c   =================================================================== 
 
c 
      subroutine getDiurnalAirT(faceID, nelem, nint, coords, t, 
     &                          refTemp, ierror) 
c 
c  get diurnal cycle air temperature for convective reference temperature 
c   this subroutine simply gets the user variable Tref-air, which is determined 
c   by the DiurnalAirT subroutine. This avoids having to recalculate this quantity 
c   for multiple convection boundary conditions. 
c   created by Dean Dobranich, 1/2009 
 
 
      implicit none 
       
      integer nelem 
      integer nint 
      integer faceID(nelem) 
      double precision coords(3, nelem, nint) 
      double precision t(nelem, nint) 
      double precision refTemp(nelem, nint) 
      integer ierror 
       
c 
c     ierror:  (output)user defined error code for calore to test.  
c              zero means success. 
c     nelem:   (input)number of elements in workset 
c     nint:    (input)number of elements in workset 
c     refTemp: (output)array containing the magnitude of the reference 
c              temperature that the subroutine calculates at a face 
c     coords:  (input) coords of the integration points on each element.   
c     t:       (input)array of temperatures at the integration points 
c              on each element 
 
      integer i, j 
      double precision refT 
c 
      ierror = 0 
 
c 
c  the following call retrieves Tref-air from a user subroutine that calculates 
c   the convective reference temperature; this user variable must be available 
      call acal_get_global_real_var(refT,8,"Tref-air") 
c 
c  assign Tref 
      do j = 1, nint 
        do i = 1, nelem 
          refTemp(i,j) = refT 
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        end do 
      end do 
 
      return 
      end 
c 
 
Sky Temperature: 

c 
      subroutine Sky_T(faceID, nelem, nint, coords, t, 
     &                refTemp, ierror) 
c 
c  calculate sky temperature based on the diurnal cycle air temperature 
c   used as the reference temperature for far-field radiative boundary conditions 
c   reference: Sherwood B. Inso and Ray D. Jackson 
c              "Thermal Radiation from the Atmosphere" 
c               Journal of Geophysical Research, Vol. 74, No. 23, October 20, 1969. 
c   created by Dean Dobranich, 12/2008 
c 
      implicit none 
       
      integer nelem 
      integer nint 
      integer faceID(nelem) 
      double precision coords(3, nelem, nint) 
      double precision t(nelem, nint) 
      double precision refTemp(nelem, nint) 
      integer ierror 
       
c 
c     ierror:  (output)user defined error code for calore to test.  
c              zero means success. 
c     nelem:   (input)number of elements in workset 
c     nint:    (input)number of elements in workset 
c     refTemp: (output)array containing the magnitude of the reference 
c              temperature that the subroutine calculates at a face 
c     coords:  (input) coords of the integration points on each element.   
c     t:       (input)array of temperatures at the integration points 
c              on each element 
 
      integer i, j 
      double precision refT, skyT 
c 
      ierror = 0 
 
c 
c  the following call retrieves Tref-air from a user subroutine that calculates 
c   the convective reference temperature; this user variable must be available 
      call acal_get_global_real_var(refT,8,"Tref-air") 
c 
      skyT = (refT**4*(1.0d0 - 0.261d0*dexp(-7.77d-4* 
     &        (273.0d0 - refT)**2)))**0.25d0 
c 
c  pass reference temperature to Calore for subsequent output (add as user variable in Calore) 
      call acal_lupdate_global_real_var(skyT,8,"Tref-sky") 
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c 
c  assign Tref 
      do j = 1, nint 
        do i = 1, nelem 
          refTemp(i,j) = skyT 
        end do 
      end do 
 
      return 
      end 
#   ================================================================= 
# 
 
Sample Input: 
     
#  ================================================================ 
 
      Begin Heat Flux Boundary Condition SolarFlux 
        add surface surface_3  #exposed surfaces, not including bottom 
        #add surface surface_1  #top only 
 
        element subroutine is Solar_flux_shadows 
 
# 
#  qpp = absorbed total solar flux vs time; includes direct and diffuse components 
#   rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way 
#               through the third day of the year; progresses with simulation time) 
#   rdata(2) => latitude (+ for northern hemisphere) 
#   rdata(3) => solar absorptivity of surface 
#   rdata(4) => ext_coef (extinction coefficient through atmosphere, typically = 0.2) 
#   rdata(5) => fdif (fraction of solar flux that is diffuse, typically = 0.1) 
#   rdata(6) => fclear (clearness factor, direct solar flux component multiplier; 
#               = 1.0 for clear day, 0.8 for 20% cloud cover, etc.) 
#   rdata(7) => shadow_dt1 (time when structure is in shadow relative to sunrise) 
#   rdata(8) => shadow_dt2 (time when structure is in shadow relative to sunset) 
#               thus, if time is less that sunrise + shadow_dt1 or greater than 
#               sunset - shadow_dt2, then only diffuse flux is applied 
#   rdata(9-m) => x,y,z coordinates of walls 1 through max_num_walls with 2 coords per wall 
#                 where m = 8 + max_num_walls*6 (currently max_num_walls = 8) 
# 
         
        #real data 172.0, 10.0, 0.8, 0.2, 0.1, 1.0, 0.0, 0.0 
        integer data 2   #nwalls (data for max_num_walls must be entered but only nwalls used) 
        real data 218.0, 30.0, 0.8, 0.2, 0.1, 1.0, 0.0, 0.0  \$ 
                  0.0 1.6 0.6  0.55 1.2 0.6 \$ 
                  0. 1.4 0.  0. 1.6 0.35 \$ 
                  0. 0. 0.  0. 0. 0. \$ 
                  0. 0. 0.  0. 0. 0. \$ 
                  0. 0. 0.  0. 0. 0. \$ 
                  0. 0. 0.  0. 0. 0. \$ 
                  0. 0. 0.  0. 0. 0. \$ 
                  0. 0. 0.  0. 0. 0. 
 
        integrated power output q_Solar 
        integrated flux output qpp_Solar 
      end 
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# 
#  ================================================================ 
# 
      Begin Convective Flux Boundary Condition BoxC 
        Add Surface surface_5001 #exposed surfaces, including bottom 
         
        Convective coefficient = 2.85  #for a 1 m high vertical plate 
 
        Reference Temperature Subroutine is DiurnalAirT 
         
#  Tref = Tref_avg + Tref_amplitude*cos(2*pi/period*(t + offset)) 
#   with offset = offset_avg + Lag*(cos(2*pi/period*(time + offset_avg)) 
#   rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way 
#               through the third day of the year; progresses with simulation time; max of 365) 
#   rdata(2) => latitude (+ for northern hemisphere), used with day to find sunrise time 
#   rdata(3) => T_high_max (maximum high daily temperature throughout the year) 
#   rdata(4) => T_high_min (minimum high daily temperature throughout the year) 
#   rdata(5) => JD_high_max (Julian day corresponding to high daily temperature) 
#   rdata(6) => T_low_max (maximum low daily temperature throughout the year) 
#   rdata(7) => T_low_min (minimum low daily temperature throughout the year) 
#   rdata(8) => JD_low_max (Julian day corresponding to low daily temperature) 
#   rdata(9) => Lag (time interval after sunrise that air temperature is minimum; also 
#               the time interval before sunset that air temperature is maximum; usually ~1 hr) 
         
        real data 218.0 30.0 311.4833 300.3722 196.0 305.9278 297.0389 196.0 1.0 
                 
        integrated power output qc_box 
        integrated flux output qcpp_box 
      End Convective Flux Boundary Condition BoxC 
# 
#  ================================================================ 
# 
      Begin Radiative Flux Boundary Condition BoxR  # 
        add surface surface_2 surface_3  #bottom and sides 
         
        emissivity = 0.8 
        Radiation Form Factor is 1.0 
         
# this subroutine relies on the DiurnalAirT subroutine to calculate air temperature 
#  that assigns the Tref-air user variable 
        Reference Temperature Subroutine is Sky_T 
 
        integrated power output qr_box 
        integrated flux output qrpp_box 
      End 
# 
#  ================================================================ 
# 
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