
SANDIA REPORT
SAND2009-4181
Unlimited Release
Printed July 2009

Solar Mechanics Thermal Response
Capabilities

Dean Dobranich

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Solar Mechanics Thermal Response Capabilities

 i

SAND2009-4181
Unlimited Release
Printed July 2009

Solar Mechanics Thermal Response Capabilities

Dean Dobranich
Thermal and Fluid Processes

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-0346

Abstract

In many applications, the thermal response of structures exposed to solar
heat loads is of interest. Solar mechanics governing equations were developed
and integrated with the Calore thermal response code via user subroutines to
provide this computational simulation capability. Solar heat loads are
estimated based on the latitude and day of the year. Vector algebra is used to
determine the solar loading on each face of a finite element model based on
its orientation relative to the sun as the earth rotates. Atmospheric
attenuation is accounted for as the optical path length varies from sunrise to
sunset. Both direct and diffuse components of solar flux are calculated. In
addition, shadowing of structures by other structures can be accounted for.
User subroutines were also developed to provide convective and radiative
boundary conditions for the diurnal variations in air temperature and
effective sky temperature. These temperature boundary conditions are based
on available local weather data and depend on latitude and day of the year,
consistent with the solar mechanics formulation. These user subroutines,
coupled with the Calore three-dimensional thermal response code, provide a
complete package for addressing complex thermal problems involving solar
heating. The governing equations are documented in sufficient detail to
facilitate implementation into other heat transfer codes. Suggestions for
improvements to the approach are offered.

Solar Mechanics Thermal Response Capabilities

 ii

Acknowledgements

 Many thanks to Ronald C. Dykhuizen for his advice and for directing me
to reference material regarding the solar mechanics approach developed in
this work. Appreciation is also extended to Ron and to Samuel R. Subia for
technical review of this report.

Solar Mechanics Thermal Response Capabilities

 iii

Contents

Introduction ... 1

Governing Equations.. 2

Solar Flux Yearly Variation..3

Extinction Factor ...4

Orientation Factor ...5

The Sun Vector ... 6
The Daylight Equations ... 11
Transformation to Direction Cosines... 12

Shadow Factor ..14

Reflected Component of Total Incident Solar Flux ..19

Diurnal Air and Sky Temperatures ..20

Solar Mechanics Example Problems... 26

Comments and Summary... 32

References... 34

Appendix: Calore User Subroutines for Solar Mechanics 35

Solar Mechanics Thermal Response Capabilities

 iv

Figures

Figure 1. Solar Flux on a Horizontal Surface (air mass of unity)4
Figure 2. Extinction Factor as a Function of Solar Altitude5
Figure 3. Diagram Depicting Solar Angles and Global Coordinate System7
Figure 4. Declination as a Function of Julian Day..8
Figure 5. Solar Angles for Albuquerque, NM on June 21st 10
Figure 6. Trajectory of the Sun for Albuquerque, NM on June 21st 10
Figure 7. Duration of Daylight for Four Latitudes .. 12
Figure 8. Direction Cosines for Albuquerque, NM on June 21st 14
Figure 9. Example Finite Element Model for Demonstration of Shadowing ... 15
Figure 10. Sample Diagram for Derivation of Shadow Equations.................. 16
Figure 11. Diagram of Sun Line Intersection with a Wall.............................. 18
Figure 12. High and Low Air Temperatures for Albuquerque, NM................. 20
Figure 13. Yearly Air Temperature Variations for Albuquerque, NM 22
Figure 14. Diurnal Air and Sky Temperatures for Albuquerque, NM............. 24
Figure 15. Comparison to Hourly Temperature Measurements..................... 25
Figure 16. Incident Solar Flux, Various Days, Albuquerque, NM

(Latitude=35° N) .. 26
Figure 17. Incident Solar Flux, Various Latitudes, June 21st........................ 27
Figure 18. Incident Solar Flux, Albuquerque, NM, June 21st 28
Figure 19. Comparison to Hourly Solar Flux Measurements 29
Figure 20. Absorbed Solar Flux Example Problem Images 30
Figure 21. Temperature Distributions for Example Problem......................... 31

Introduction

 1

Introduction
 Thermal response codes enable the simulation of heat transfer to and
within a structure. It is often necessary to include solar loading as a heat flux
boundary condition, accounting for the trajectory of the sun as it passes over
the structure. Such a solar mechanics capability was developed via user
subroutines for the Calore1 thermal response code. This finite element code
provides three-dimensional transient heat conduction capabilities allowing
specification of heat flux, radiative, and convective boundary conditions,
along with specification of thermal radiation enclosures.

 The solar mechanics capability enables calculation of the solar flux on all
surfaces of a structure as a function of time depending on the latitude and
day of the year. Both direct and diffuse flux components are computed,
accounting for atmospheric attenuation. Vector algebra is used to calculate
the orientation-dependent flux on each exposed finite element face of the
structure. In addition, shadowing of surfaces by other surfaces is accounted
for. Along with the solar mechanics user subroutine, two other companion
subroutines were developed. One subroutine specifies the diurnal variation of
air temperature to be used for convective boundary conditions on the
structure, via Newton’s law of cooling. Input for this subroutine includes
yearly minimum and maximum air temperatures for the geographical location
of interest along with latitude and day of the year. The other subroutine uses
this diurnal air temperature to calculate an effective sky temperature to be
used for radiative boundary conditions on the structure. Together, these
three Calore user subroutines provide a general-purpose solar mechanics
thermal response capability useful for a variety of engineering problems. The
solar mechanics governing equations are documented in sufficient detail to
enable their implementation into other thermal response codes as desired.

 The governing equations for the solar mechanics implementation are
described in detail in the next section, with subsections for each of the
contributing terms. One subsection provides a brief description of a possible
implementation for the reflected component of solar flux, although this imple-
mentation was not exercised because of limitations in the user subroutine
capability. The following section provides several example problems that
demonstrate the solar mechanics capability. This is followed by a comments
and summary section in which comments are offered regarding the solar
mechanics capability along with recommendations for future efforts.

1 “Calore—A Computational Heat Transfer Program,” SAND2008-0098P, February 12, 2008.

Governing Equations

 2

Governing Equations
 The basic equation governing the calculation of absorbed solar flux is
based on an adaptation of a method outlined in the ASHRAE Handbook.2 The
governing equation, as developed here, expresses absorbed solar heat flux as
a function of several factors and is given as

  1abs inc am ext or clear sh dif reflq q q f f f f f q         (1)

where absq is the absorbed solar heat flux on a surface,  is the solar

absorptivity of the surface, incq  is the total incident solar heat flux, 1amq  is the
apparent solar heat flux on a horizontal surface at sea level if the sun were
directly overhead, corresponding to an air mass of unity, extf is a factor that

accounts for atmospheric extinction (i.e., absorption), orf is a factor that
accounts for the orientation of the surface with respect to the position of the
sun, clearf is a clearness factor that accounts for cloud cover, smog, elevation,
etc. and equals unity for a clear day (a value as high as 1.15 can be selected
for a very clear day, and a day with 20% cloud cover, for example,
corresponds to a value of 0.8), shf is a factor to account for shadowing and
equals zero or unity depending on whether the surface is shadowed or not,

diff is a factor that accounts for the diffuse component of solar flux as a

result of atmospheric scattering, ranging from 0.05 to 0.15 depending on time
of the year and other atmospheric conditions, with 0.1 a typical clear-day
value, and reflq  is the reflected component of the total incident flux, which

depends on the direct and diffuse components.* Two of the factors, clearf and

diff , are specified by the analyst to reflect local atmospheric conditions.#

Determination of the other factors requires additional orientation-dependent
computations as presented in following subsections.

2 ASHRAE Fundamentals Handbook (SI), 1997.

* The reflected component of incident flux is not included in this implementation because of
limitations in the user-subroutine capability within Calore. However, suggestions for its
implementation are offered in a subsequent subsection.

These two factors could be implemented as time-dependent factors to account for changing
atmospheric conditions throughout the day or year. For example, it might be desirable to
account for daily changing cloud coverage. As currently implemented, the two factors
represent constant average values. The clearness factor can be considered simply as a
correction factor to the direct component of solar flux, allowing the user to easily modify the
resulting flux as desired. The diffuse factor can also be modified by the user to reflect
atmospheric conditions of interest.

Governing Equations

 3

Solar Flux Yearly Variation

 Air mass is a commonly used term in the solar community that is a
relative measure of the optical path length through the atmosphere. An air
mass of unity corresponds to the path length at sea level if the sun were
directly overhead. (This does not necessarily correspond to the solar altitude
at solar noon, where solar noon refers to the time when the sun is at its
maximum altitude angle, which depends on latitude and the day of the year.)
An air mass of zero indicates a location above the atmosphere.

 The solar heat flux on a horizontal surface for an air mass of unity is
based on worldwide average measurements throughout the year as provided
in Reference 2. This data, based on 1964 measurements on the 21st day of
each month, was fit to a sine function as given by

  1

360
1160 74sin 88

365amq J
 

    
 



 W/m2 (2)

where J is the Julian day ranging from 1 to 365, with 1 corresponding to
January 1st. A plot of this equation is provided in Figure 1. The green vertical
dashed lines indicate the approximate times in the northern hemisphere for
the spring equinox (J = 81), the summer solstice (J = 172), the autumn
equinox (J = 265), and the winter solstice (J = 355). The figure also includes
the solar flux outside the atmosphere, where the air mass equals zero. The
solar flux changes as a result of the varying distance between the earth and
the sun throughout the year. The earth is closest to the sun on January 3rd (J
= 3) and furthest from the sun on July 4th (J = 185). The exoatmospheric flux
is not used in the method to determine absorbed surface flux but is
presented as data of interest. The related equation3 is given as

  360
1373 45.31sin 10

365exoq J
 

    
 



 W/m2 (3)

3 W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic, Handbook of Heat Transfer
Applications, 2nd Edition, McGraw-Hill, Inc., 1973.

Governing Equations

 4

5 35 65 95 125 155 185 215 245 275 305 335 365

Julian Day

1075

1100

1125

1150

1175

1200

1225

1250

1275

1300

1325

1350

1375

1400

1425

S
ol

a
r

F
lu

x
(W

/
m

2
)

surface, air mass = 1
exoatmospheric, air mass = 0

Figure 1. Solar Flux on a Horizontal Surface (air mass of unity)

Extinction Factor

 The first factor in Equation (1), the extinction factor, is estimated using

  sin
ext

altext

c

c am
extf e e 


  (4)

where extc is the atmospheric extinction coefficient, am is air mass, and alt is
the solar altitude, which is the angle from horizontal of a vector directed at
the sun that varies between 0° at sunrise (and sunset) and a maximum of 90°
at solar noon. The extinction coefficient is an analyst-specified parameter.
Worldwide clear-day values2 range from 0.142 in January to 0.207 in July. A
value of 0.1 is representative of a very clear day (i.e., low humidity and no
smog) while values closer to 1 are representative of very cloudy days. A value
of 0.2 is typical for a clear day. Reductions in the extinction coefficient below
0.1 may be appropriate for local elevations significantly above sea level. The
inverse sine of the solar altitude provides an estimate of the path length (i.e.,
air mass, am) through the atmosphere as the sun rises and sets. More
accurate formulas are available in the literature to estimate the path length
as the solar altitude approaches zero. However, because the solar flux is low
early morning and late evening, the simpler formula is used with division by
zero prevented by limiting the solar altitude to a minimum of 2°. The

Governing Equations

 5

extinction factor is plotted in Figure 2 as a function of solar altitude for three
values of extinction coefficient.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Solar Altitude (degrees)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
xt

in
ct

io
n

 F
a

ct
or

,
f e

xt

extinction coefficient = 0.1
extinction coefficient = 0.2
extinction coefficient = 0.3

Figure 2. Extinction Factor as a Function of Solar Altitude

Orientation Factor

 The next factor, orf , accounts for the orientation of each exposed surface
with respect to the position of the sun. Vector algebra is used to compute this
factor for each finite element face in the structure model. The orientation
factor is found as the dot product of the face surface normal vector and the
sun vector. Thus

 or x x y y z zf F S F S F S    F S (5)

where F and S are the face normal unit vector and the sun unit vector,
respectively, and the components of each vector in a rectangular coordinate
system are given by F and S with x, y, z subscripts. For example, the F vector
is written as

 ˆ ˆ ˆ
x y zF i F j F k  F (6)

where î , ĵ , and k̂ are the unit vectors along the three orthogonal coordinate
directions. A unit face vector can be constructed such that

 ˆ ˆ ˆli mj nk  F (7)

Governing Equations

 6

where l, m, and n are the direction cosines given as

 yx z
FF F

l m n
F F F

   (8)

where the magnitude of vector F is given by the Pythagorean Theorem as

  1/22 2 2
x y zF F F F   (9)

 The normal vector for each finite element face is found as the cross
product of two vectors on the face surface. Thus

      ˆ ˆ ˆ
y z z y x z z x x y y xA B A B i A B A B j A B A B k       F A B (10)

where the two vectors, A and B, are created based on the coordinates of the
finite element integration points. (Nodal coordinates could also be used but
are not conveniently available in Calore user subroutines.) Thus, one vector
can be constructed from integration point 1 to integration point 2, and the
second vector constructed from integration point 1 to integration point 3. For
example, vector A is determined as

      2 1 2 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ

x y zA i A j A k x x i y y j z z k        A (11)

where x, y, and z specify the coordinates of the integration points. Vector B is
formed similarly, replacing the “2” subscript with “3”. Thus

      3 1 3 1 3 1
ˆ ˆ ˆx x i y y j z z k     B (12)

It should be noted that this choice of surface vectors A and B is consistent
with the finite element numbering convention used in Calore and ensures
that the resulting normal vector points outward.

 The face vector F is thus constructed by first creating vectors A and B
based on Equations (11) and (12), and then forming the cross product based
on Equation (10). This provides the components of vector F, as used in
Equation (6), which is then converted to a unit vector based on direction
cosines using Equations (7), (8), and (9).

 Face vectors must be created for every participating element face in the
finite element model. These values can be computed once and stored for
subsequent use provided the geometry is static. The S vector, derived next,
changes with the position of the sun and must be reevaluated every time step
before performing the dot product operation of Equation (5).

The Sun Vector

 Next, a vector specifying the direction to the sun as a function of time
must be created. It is convenient to adopt a Ptolemaic view in which the sun
is assumed to revolve around the earth at the location of interest. Using

Governing Equations

 7

spherical coordinates, the sun vector can be expressed with two angles, the
solar altitude, alt , and the solar azimuth, azi . The solar altitude is the angle
from a local horizontal plane and a line to the center of the sun. The altitude
varies from 0° to a maximum of 90°. The solar azimuth is the angle measured
from either due south or due north to a line formed by a projection of the sun
line (a.k.a. the sun or solar vector) onto the horizontal plane. The azimuth
varies between -90° and 90°, and equals zero at solar noon when the sun lies
on the north-south axis. A diagram depicting the two angles is provided in
Figure 3. This figure also shows the global Cartesian coordinate system used
for development of the sun vector.

x
y

z

horizontal plane

alt

azi

north

east

sun vector

x
y

z

horizontal plane

alt

azi

north

east

sun vector

Figure 3. Diagram Depicting Solar Angles and Global Coordinate System

 Two quantities are needed before the two solar angles can be computed.
These two quantities are the declination and the hour angle. The declination,
which changes throughout the year as the earth revolves around the sun, is
the angle between the earth-sun line and the equatorial plane of the earth.
The north-south rotation axis of the earth is tilted 23.45° relative to the plane
of the earth’s orbit around the sun. Thus, the declination varies from -23.45°
at the winter solstice to 23.45° at the summer solstice. (The solstice terms are
defined for the northern hemisphere.) The declination is zero at the two
equinoxes. The declination, , as a function of the Julian day (J) is
approximated by

  360
23.45 sin 284

365
J

 
  

 


 (13)

The declination as a function of Julian day is plotted in Figure 4. Note that
the declination changes continuously throughout the day in the evaluation of
the solar angles. Thus, J is allowed to take on non-integer values.

Governing Equations

 8

5 35 65 95 125 155 185 215 245 275 305 335 365

Julian Day

-25

-20

-15

-10

-5

0

5

10

15

20

25

D
ec

lin
a

ti
on

,


Figure 4. Declination as a Function of Julian Day

 The hour angle is the angular distance that the earth rotates given a
rotation rate of 15° per hour. The hour angle, , is defined as

  15 12 t   (14)

where t is the time in hours between 0 and 24. With this definition, the hour
angle is positive before solar noon and negative after solar noon. Recall that
solar noon is the time when the sun is at its maximum altitude, independent
of time zone, daylight savings time, etc.

 The solar altitude is given by

            sin cos cos cos sin sinalt       (15)

where  is the latitude measured from the equator, with positive values north
and negative values south. Rather than performing an arcsine evaluation to
solve for alt via Equation (15), an alternate equation for solar altitude is used
to avoid difficulties when the sine of the angle is negative. The alternate
equation is given as

 
 

sin
arctan

cos
alt

alt
alt





 

  
  

 (16)

Governing Equations

 9

where the numerator term [sin(alt)] is calculated from Equation (15), but the

denominator term [cos(alt)] is calculated using the following trigonometric
relation

     1/22cos 1 sinalt alt     (17)

It turns out that the solar altitude, alt , is never needed in the formation of
the sun vector, only the individual sine and cosine terms given by Equations
(15) and (17), respectively.

 The second angle needed to specify the sun vector is the solar azimuth,
which is calculated as

 arctan azi
azi

azi

x
y


 

  
 

 (18)

where azix is given by

    sin cosazix   (19)

and aziy is given by

          cos sin cos cos sinaziy       (20)

Division by zero in Equation (18) is prevented by limiting the minimum value
of aziy to a small number (1.0E-26). The two solar angles are plotted in Figure
5, for Albuquerque, NM on June 21st. The two vertical green dashed lines
indicate the time of sunrise and sunset. Note that the data points were
plotted at ½-hr intervals such that the minimum and maximum values and
the transitions are not exactly captured. The maximum solar altitude is
78.4°, which indicates that on the summer solstice, the sun is not directly
overhead at solar noon. The solar azimuth is complicated as the sun passes
from quadrant to quadrant of the global coordinate system (see Figure 3). The
sun rises in the northeast quadrant at an azimuth of 60° measured from the
positive x axis with clockwise defined as the positive direction. Thus, the sun
rises 30° north of due east. The sun then passes into the southeast quadrant
at approximately 8.4 hr at which time the azimuth is measured from the
negative x axis. The azimuth equals zero at solar noon when the altitude is
maximum. The sun continues through the southwest quadrant into the
northwest quadrant, setting 30° north of due west. The trajectory of the sun
is better illustrated in Figure 6, which shows the sun track on December 22nd
and on June 21st. This plot was created with a commercial program4 that was
used to help validate the solar mechanics implementation.

4 SunPlot3D, version 1.1, 2001, Maui Solar Energy Software Corporation.

Governing Equations

 10

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

-90

-75

-60

-45

-30

-15

0

15

30

45

60

75

90

S
ol

a
r

A
n

gl
es

 (d
eg

re
es

) azimuth
altitude

Figure 5. Solar Angles for Albuquerque, NM on June 21st

Figure 6. Trajectory of the Sun for Albuquerque, NM on June 21st

sunrise sunset

Governing Equations

 11

The Daylight Equations

 The hour angle and the solar altitude equations are used to determine the
duration of daylight, from which the time of sunrise and sunset are
calculated as a function of day of the year and latitude. At sunrise, the solar
altitude equals zero and Equation (15) provides the corresponding hour
angle, sunrisew . Thus

    arccos tan tansunrisew      (21)

Dividing this angle (in units of degrees) by the earth’s rotation rate of 15°/hr
yields the elapsed time between sunrise and solar noon. The duration of
daylight is then twice this time difference. Thus

2

15daylight sunriset w 


 (22)

In determining solar angles, declination is evaluated continuously as a
function of time. However, in the evaluation of the daylight equations,
declination is calculated only for integer values of the Julian day, J, yielding
constant values for the duration of daylight and for the times of sunrise and
sunset for each day.

 For Polar latitudes above the Arctic Circle (greater than 66.568°) and
below the Antarctic Circle (less than -66.561°), the sun never sets or rises for
one or more days of the year. To account for this, the argument of the arccos
function in Equation (21) must be restricted to the interval -1 to 1 (inclusive)
to prevent undefined function evaluations. With this restriction, Equation
(22) correctly calculates the duration of daylight as either 24 or 0 hours for
the Polar latitudes for the appropriate days of the year.

 For illustrative purposes, the duration of daylight for four latitudes (the
first of which, 35° N, corresponds to Albuquerque, NM) is plotted in Figure 7.
This figure shows that for Albuquerque, there are approximately 9.64 hr of
daylight on December 21st and 14.37 hr of daylight on June 21st. Latitudes
closer to the equator (e.g., 15° N) have less variation in daylight duration. The
figure also includes results for the polar latitude of 75° N to demonstrate the
situation in which 24-hours of daytime or 24-hours of nighttime prevail for
many days of the year. Finally, a southern latitude (20° S) is included in the
figure to illustrate the reversed seasons in which June 21st is the shortest day
of the year. Of note is that during the two equinoxes, the duration of daylight
is 12 hr for all latitudes.

Governing Equations

 12

5 35 65 95 125 155 185 215 245 275 305 335 365

Julian Day

0

2

4

6

8

10

12

14

16

18

20

22

24

D
a

y
lig

h
t

(h
r)

35° N
15° N
75° N
20° S

Figure 7. Duration of Daylight for Four Latitudes

 Using the daylight equations, the times of sunrise and sunset relative to
solar noon are then simply

 12 and 12
2 2

daylight daylight
sunrise sunset

t t
t t

 
    (23)

In the implementation of the solar mechanics equations, the solar flux is set
to zero when the time is before sunrise or after sunset, i.e., nighttime. A 24-
hr repeating clock is used in the subroutine implementation. Likewise, a 365-
day repeating calendar is used for the Julian day.

Transformation to Direction Cosines

 The two solar angles must now be transformed into direction cosines in a
Cartesian coordinate system to enable execution of the vector dot product
operation given by Equation (5). The global coordinate system, as was shown
in Figure 3 (page 7), is based on the assumption that the positive x axis
points due north and the positive z axis points due east, with the sun
overhead in the positive y direction. Finite element models must be
constructed to correspond to this coordinate system. The m direction cosine (j
component) is determined as

  sins altm  (24)

Governing Equations

 13

The l (i component) direction cosine and n (k component) direction cosine for
the sun vector depend on the coordinate-system quadrant as the sun passes
overhead. If the azimuth is less than zero and the time is past solar noon, or
if the azimuth is greater than zero and the time is before solar noon, then the
sun is in the northern sky and the direction cosines are

    cos coss alt azil   (25)

    cos sins alt azin   (26)

where the s subscript refers to the sun and the direction cosine nomenclature
is consistent with that presented in Equations (7) and (8). When the sun is in
the southern sky, the direction cosines are

    cos coss alt azil    (27)

    cos sins alt azin    (28)

An exception occurs when the time exactly equals solar noon (i.e., 12 hr). In
this case

  cos with determined as the sign of s y alt y azil s s y (29)

 0sn  (30)

The value of aziy was determined from Equation (20). A negative value of ls
occurs when the sun is in the southern sky.

 The unit sun vector, pointing towards the sun, is now given as

 ˆ ˆ ˆ
s s sl i m j n k  S (31)

 Figure 8 provides a plot of the three direction cosines for Albuquerque,
NM on June 21st.

Governing Equations

 14

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

D
ir

ec
ti

on
 C

os
in

es

ls (i)
ms (j)
ns (k)

Figure 8. Direction Cosines for Albuquerque, NM on June 21st

 With the components of both the F and S vectors determined, the value of

orf can be calculated for every exposed finite element face [Equation (5)]. A

negative value of orf indicates that the surface is not exposed directly to the
sun and the direct component of solar flux is set to zero. With this vector
algebra approach, the direct solar flux on every face is automatically determ-
ined without the need for the analyst to specify the orientation of each face.

Shadow Factor

 The final factor from Equation (1) to be determined is shf , the shadow
factor. In general, every element face has the potential to cast a shadow on
every other element face in the model at any daylight time. Thus, the search
for shadowing is a computationally intensive operation. In addition, the
search for shadowed surfaces must be performed throughout daylight hours
as the sun traverses the sky, adding significant computational burden.
Sophisticated shadowing algorithms are available in the computer graphics
and gaming communities, but the expense of their implementation was
considered beyond currently available resources. Therefore, a simplified
approach was implemented in which only potential shadowing structures are
identified by the analyst. Taking advantage of the analyst’s knowledge of the
geometry greatly reduces the computational burden associated with the
determination of shadowing. This simplified approach also has the advantage

sunrise sunset

Governing Equations

 15

of allowing the specification of “pseudo” shadowing structures that are not
part of the finite element model. This is desirable if the thermal response of a
structure is not of interest but the shadow it casts influences the thermal
response of other structures.

 A potential shadowing structure, referred to as a wall, is defined by
specifying the coordinates of the top two corner locations of the wall, with the
simplifying assumption that the wall extends to the lowest point of the
structure. An image of an example finite element model created to
demonstrate shadowing is provided in Figure 9. The top two corners of the
blue wall are labeled points 1 and 2. This is an example of a “thin” structure
in which specification of a single wall is adequate to capture its shadowing
effect. In specifying the coordinates of the two points, it is important to select
points just inside the structure to prevent shadowing of the actual finite
element structure by the pseudo wall. If the structure is not thin,
specification of multiple pseudo walls would be required. For example, a cube
would require specification of four pseudo walls, one for each side. To capture
the shadows cast by a curved surface, such as the red cylinder, specification
of two perpendicular walls passing through the center (as indicated by the
two cyan lines) works quite well. Thus, complex structures can be
accommodated with the creative selection of multiple pseudo walls.

Figure 9. Example Finite Element Model for Demonstration of

Shadowing

 Each face on the surface of the finite element model is considered in the
determination of the shadow factors. The coordinates of the face centroid are
determined as the algebraic average of the integration point coordinates. For
additional resolution, the shadow factor for each integration point could be

1

2

north

Governing Equations

 16

determined separately. However, this adds significant computational burden;
therefore, the centroid approach was adopted for simplicity. Using the current
specification of the sun vector (i.e., solar direction cosines), a straight line is
constructed on the x-z plane passing through the face centroid location.
Recall from Figure 3 that the positive x axis is defined as north and the
positive z axis is defined as east in this solar-mechanics implementation. In
terms of the solar direction cosines, the slope of this sun line is

 s
s

s

l
s

n
 (32)

and the intercept is determined by one of the following equations depending
on the choice of abscissa and ordinate axes selected for the wall line, the
derivation of which is described next.

 s f s fb x s z  (33)

or

1

s f f
s

b z x
s

  (34)

where bs is the sun line intercept, xf and zf are the x and z coordinates of the
face centroid, respectively, and ss is the sun line slope. Equation (33) is used
if the x axis is the ordinate. Figure 10 provides a sample reference diagram to
accompany the following derivation of the wall line equations.

x

z

1

2

wall line

sun line 1

sun line 2

(xf, zf)

(xI , zI)

x

z

1

2

wall line

sun line 1

sun line 2

(xf, zf)

(xI , zI)

Figure 10. Sample Diagram for Derivation of Shadow Equations

Governing Equations

 17

 For every defined pseudo wall, a wall line in the x-z plane is determined
based on the coordinates of the two specified upper corner points. First,
however, based on the orientation of the wall, selection of which axis is to be
the abscissa and which the ordinate is made. The x and z distances between
the two wall corner points are given as

 1 2 1 2 and x x x z z z      (35)

If | z | is greater than | x |, then the x axis is the ordinate and the z axis is
the abscissa. Otherwise, the z axis is the ordinate and the x axis is the
abscissa. For | z | greater than | x |, the slope of the wall line is given as

 w

x
s

z





 (36)

and the intercept is

 1 1w wb x s z  (37)

where the w subscript refers to the wall. The coordinates of the intersection
of the sun line and the wall line are then given by the next two equations.

 s w
I

w s

b b
z

s s





 (38)

 I w I wx s z b  (39)

For | x | greater than or equal to | z |, the slope of the wall line is given as

 w

z
s

x





 (40)

and the intercept is

 1 1w wb z s x  (41)

The coordinates of the intersection of the sun line and the wall line are then
given by the next two equations.

1

s w
I

w
s

b b
x

s
s





 (42)

 I w I wz s x b  (43)

where the I subscript refers to the intersection point. If the intersection point
lies between the bounds of the two wall corner points, then shadowing of the
element face by this wall is possible. Figure 10 provides two notional sun

Governing Equations

 18

lines corresponding to two different face centroids. For sun line 1, the
intersection lies between the bounds whereas it does not for sun line 2. For
sun line 1, it is still necessary to determine if the face is shadowed depending
on the height of the wall at the intersection location.

 In this shadowing implementation, the two corner points of a pseudo wall
are assumed to be connected with a straight line. If the top contour of the
wall is curved, it would be necessary to split the wall into multiple walls to
approximate the curvature. The height of the wall at the wall intersection
point is given by

 1 1
2 1

1 2 1 2

1
L L

h y y
L L L L

 
     

 (44)

where

    
1

2 2 2
1 1 1I IL x x z z      (45)

and

    
1

2 2 2
2 2 2I IL x x z z      (46)

 Next, the height at which the sun line intersects the wall is determined
based on the direction cosine corresponding to the solar altitude, as depicted
in Figure 11. hI must be less than h for shadowing to occur.

alt
d

h

hI

alt
d

h

hI

Figure 11. Diagram of Sun Line Intersection with a Wall

The intersection height is given by

 I s fh dm y  (47)

where ms was defined in Equation (24) and d is given by

face centroid

Governing Equations

 19

    
1

2 2 2
I f I fd x x z z      

 (48)

and yf is the y coordinate of the element face. Before shadowing can be
confirmed, it is also necessary to consider the position of the face relative to
the wall and the time of day. If the face is east of the wall and the time is past
solar noon, then the face is shadowed and the shadow factor, shf , is set to
zero. Likewise, if the face is west of the wall and the time is before solar noon,
the face is shadowed. The shadow factor is set to unity if shadowing is not
detected. Once a face is determined to be shadowed, there is no need to check
for shadowing by additional walls.

Reflected Component of Total Incident Solar Flux

 As mentioned at the beginning of the Governing Equations Section (page
2), the reflected component of incident solar flux is not included because of
limitations in the user-subroutine capability within Calore. However, a
formulation for the reflected flux component is offered here to support
potential future solar mechanics implementation in other heat transfer codes.

 The total incident solar flux on a surface is the sum of direct, diffuse, and
reflected flux components, expressed as

  1 1inc dir dif refl am ext or clear sh am ext dif refl

direct diffuse

q q q q q f f f f q f f q           
 

 (49)

where dirq  and difq  are the direct and diffuse components [both extracted

from Equation (1)], and reflq  is the reflected component of solar flux. It should

be noted that the reflected component does not provide an additional inde-
pendent source of solar flux. Instead, it provides an additional flux contri-
bution associated with incident solar flux that is not absorbed by other
surfaces or reflected into the sky. Thus, the reflected solar flux for each
element face is a function of the direct and diffuse fluxes on all other faces.
For surfaces that reflect diffusely (i.e., no specular reflections*), the reflected
flux for each element face can be determined by first solving for the total
incident flux using

    ,
1

N

inc i dir dif dir dif j j ii j
j

reflected

q q q q q F 


       


 (50)

* A similar (although much more complex) formulation can be derived for structures that
include specular surfaces, but is not addressed here.

Governing Equations

 20

where the i and j subscripts indicate face number, N is the total number of
finite element faces, j is the solar reflectivity of face j, (one minus the solar

absorptivity, ) and j iF  is the view factor from surface j to surface i. Such an

equation for every face in the model is constructed with the direct and diffuse
flux components first determined using the equations presented previously.
The system of equations given by Equation (50) is then solved simultaneously
to yield the total incident flux. If desired, the reflected component of flux can
be backed out based on Equation (49). Thus, the same view factors for the
structure partial radiation enclosure temperature solution, as discussed in
the next subsection, are used to determine the reflected flux component.

Diurnal Air and Sky Temperatures

 With the absorbed solar flux on each element face calculated based on
the latitude and the time of the year, it is necessary to consistently specify
the diurnal air and sky temperatures. That is, the diurnal variations in air
and sky temperatures must reflect the changing length of day throughout the
year. Air temperature, which is needed for the specification of convective heat
transfer boundary conditions via Newton’s law of cooling, reflects local
weather conditions. Maximum and minimum daily air temperatures are
readily available for most cities and towns in the world. One source of such
data can be found at www.weatherbase.com. A screen capture of such data
for Albuquerque, NM is provided in Figure 12.

Figure 12. High and Low Air Temperatures for Albuquerque, NM

Governing Equations

 21

 The average high and low temperature data for each month of the year
are used to fit cosine distributions given by

  360
cos

365high high high highT T A J O
 

   
 



 (51)

  360
cos

365low low low lowT T A J O
 

   
 



 (52)

with the average high and low temperatures, and the amplitudes (A) for the
high- and low-temperature data given by

max min

2
high high

high

T T
T


 (53)

max min

2
high high

high

T T
A


 (54)

max min

2
low low

low

T T
T


 (55)

max min

2
low low

low

T T
A


 (56)

where J is the Julian day [as was first defined in Equation (2)], and Ohigh and
Olow are offsets based on the day of the year in which the maximum high and
maximum low temperatures occur, respectively. Thus

 max365high highO J  (57)

 max365low lowO J  (58)

 For Albuquerque, max
highJ is approximately 192 days, and max

lowJ is

approximately 195 days. (The offset is analogous to the phase angle in
electrical engineering and serves to shift the cosine curve to the left or to the
right.) The weather data, along with the fitted cosine distributions, is plotted
in Figure 13, which indicates that the cosine functions provide a reasonable
approximation of the data. This was found to be the case for about a dozen
other cities across the world, providing partial validation of this approximate
approach.

Governing Equations

 22

1 2 3 4 5 6 7 8 9 10 11 12

Time (month)

-5

0

5

10

15

20

25

30

35

T
em

p
er

a
tu

re
 (
C

)

Thigh - cosine function
Tlow - cosine function
Thigh - weather data
Tlow - weather data

Figure 13. Yearly Air Temperature Variations for Albuquerque, NM

 With the yearly variation defined by the fitted cosine distributions, the
diurnal variation for any given day is determined as

  360
cos

24air airT T A t O
 

   
 



 (59)

where airT is the average air temperature given by

2

high low
air

T T
T


 (60)

and the amplitude, A, is given by

2

high lowT T
A


 (61)

where the high- and low-temperature values are determined using Equations
(51) and (52), respectively, evaluated at the current value of J, t is time in
units of hours, and O is the offset determined as

  360
cos

24
O O t O

 
   

 



 (62)

Governing Equations

 23

where O is the average offset given by

2

daylightt
O


 (63)

where daylightt is the number of hours of daylight calculated using Equation

(22), which is a function of latitude,  is the lag time in units of hours, and t
is time also in units of hours. The lag time accounts for the fact that often the
minimum temperature of the day occurs after sunrise and the maximum
temperature occurs before sunset. A typical value of  is about 1 hr, but can
vary between about ½ hr to 2 hr. If  is set to zero, then O is constant and
the temperature cosine curve is not skewed. Otherwise, the offset varies with
a cosine distribution, skewing the diurnal temperature curve. It should be
noted that the presence of heat sinks/sources can alter the local air
temperature variations—no attempt is made to account for this effect.

 The sky temperature is also needed for thermal simulations involving
solar mechanics. The sky temperature is used for far-field radiative boundary
conditions and represents an effective temperature, accounting for the fact
that the air is not perfectly transparent to infrared radiation. If the air were
transparent, the sky temperature would be approximately 3 K, which is the
background temperature of the universe. Water vapor, ozone, carbon dioxide,
other trace elements, and particulate matter associated with air pollution
contribute to the absorption of radiation through the atmosphere. There are
numerous empirical relations that allow the determination of sky tempera-
ture as a function of various parameters such as air temperature and
absolute humidity. One such relation for sky temperature5 is given by

   24

1
47.77*10 2734 1 0.261 airT

sky airT T e
     

 (64)

where the air temperature must be specified in the absolute temperature
units of Kelvin. This relation is a function only of air temperature but
provides reasonable agreement with data across the globe. For the Calore
implementation, the sky temperature is specified as the far-field reference
temperature in a partial radiation enclosure boundary condition based on a
gray-body approach. For such a boundary condition, view factors are
calculated for all element faces, including the associated view factor to the
environment, represented as a black surface at the reference (i.e., sky)
temperature. Thus, the fact that some element faces may have only a partial
view of the sky is accounted for in the implementation. The view factors for
the partial radiation enclosure can also be used to determine the reflected
component of solar flux, as was described in the previous subsection.

5 Sherwood B. Inso and Ray D. Jackson, “Thermal Radiation from the Atmosphere,” Journal
of Geophysical Research, Vol. 74, No. 23, October 20, 1969.

Governing Equations

 24

 It should be noted that for a partial radiation enclosure, the specified
surface emissivities are those for infrared radiation (IR), corresponding to
thermal radiation. Recall that surface absorptivity, , is specified for
wavelengths associated with solar radiation. In a gray-body radiation
enclosure implementation, such as that used in the Calore thermal response
code, absorptivity and emissivity are assumed equal. However, the solar
absorptivity and the IR emissivity often are not equal for some surfaces. The
solar mechanics approach implemented here allows separate specification of
solar absorptivity such that radiation transfer at the two wavelengths is
appropriately accounted for.

 The air temperature (assuming a lag time of 1 hr) and the associated sky
temperature are plotted in Figure 14 for Albuquerque, NM on June 21st (J =
172). On this day, with solar noon defined as 12 hr, sunrise occurs at 4.82 hr
(4:49 AM) and sunset occurs at 19.18 hr (7:11 PM). It should be noted that
calculation of sunrise and sunset is strongly dependent on the accuracy of
the declination equation [Equation (13)], which is an approximation for ease
of implementation. The sunrise/sunset times are consistent with values from
a variety of other sources that indicate variations of several minutes. Intro-
duction of the lag term results in the skewed cosine function distribution. An
air-temperature curve is also included in which the lag time was set to zero
for comparison to the skewed distribution. Obviously, the actual temperature
variations throughout the day will not be as smooth as provided by these
well-behaved functions for air and sky temperature.

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

0

5

10

15

20

25

30

35

T
em

p
er

a
tu

re
 (
C

)

Air
Sky
Air - No Lag

Figure 14. Diurnal Air and Sky Temperatures for Albuquerque, NM

June 21st (J = 172)

Governing Equations

 25

 Figure 15 compares the smooth temperature curve associated with the
simulation for Albuquerque, NM, to measured hourly temperature data on
June 21st for two years, 1990 and 2008. The temperature data was found at
www.wunderground.com/history/, which is one of several such databases.
The comparison indicates that the simulation approach provides a reasonable
reproduction of the data, approximately capturing the lag time effect. The
hourly measured data obviously reflects changing local conditions for the
particular day that are not captured with the smooth cosine distribution.
Also, the yearly temperature data is based on measurements averaged over
many years. Therefore, one can only expect the minimum and maximum
temperatures for any particular day to be representative of the actual. The
premise of the simulation approach is to provide time varying air temperature
consistent with the solar mechanics implementation, enabling meaningful
comparisons of thermal response at different times of the year and at
different geographical locations. An advantage of a general implementation of
the solar mechanics equations is that an analyst would not be restricted to
using the cosine distribution to specify air temperature, and could instead
use tabular data if desired.

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

16

18

20

22

24

26

28

30

32

34

36

T
em

p
er

a
tu

re
 (
C

)

Simulation
Measured - 1990
Measured - 2008

Figure 15. Comparison to Hourly Temperature Measurements

Solar Mechanics Example Problems

 26

Solar Mechanics Example Problems
 Solar mechanics results for a few example problems are provided for
demonstration purposes. The examples include solar flux as a function of day
of year and latitude. In addition, an example for solar flux incident on vertical
and horizontal surfaces is provided along with comparison to measured
values on a horizontal surface. An example problem is also included to
demonstrate shadowing.

 Figure 16 provides the calculated solar flux incident on a horizontal plate
in Albuquerque, NM, which is at a latitude of 35° north. The figure
demonstrates the variation in peak flux occurring on four different days
throughout the year. The summer solstice occurs on day 172, the winter
solstice occurs on day 355, and the two equinoxes occur on days 81 and 265.
The differences in peak fluxes and daylight time are clearly demonstrated.

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

0

200

400

600

800

1000

In
ci

d
en

t
S

ol
a

r
F

lu
x

(W
/

m
2
)

Day81
Day172
Day265
Day355

Figure 16. Incident Solar Flux, Various Days, Albuquerque, NM

(Latitude=35° N)

 Figure 17 provides the incident solar flux on June 21st for cities at four
different latitudes. Death Valley, CA, which is the farthest north location,
exhibits the longest day, and Singapore, which is near the equator, exhibits
the shortest day.

Solar Mechanics Example Problems

 27

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

0

200

400

600

800

1000

In
ci

d
en

t
S

ol
a

r
F

lu
x

(W
/

m
2
)

Djibouti (10.50°)
Singapore (1.23°)
Death Valley (36.23°)
Bogata (4.53°)

Figure 17. Incident Solar Flux, Various Latitudes, June 21st

 For Albuquerque, NM, on June 21st, the incident solar flux on both sides
of a horizontal plate and on both sides of a vertical plate is provided in Figure
18. For this example, the two plates are considered standalone such that
reflections or shadowing influences are not present. The calculated flux
includes both direct and diffuse components. For the bottom surface of the
horizontal plate, there is no direct component, only the diffuse component.
Recall that the diffuse flux is a result of scattering in the atmosphere, which
is considered to be isotropic. Thus, all surfaces, regardless of orientation,
receive the diffuse component of solar flux. For the back face of the vertical
plate (i.e., west facing), there is no direct component for times before solar
noon. Likewise, for the front face, there is no direct component for times after
solar noon. The peak total flux on the two sides of the vertical plate is not as
great as the peak total flux on the top surface of the horizontal plate because
of greater atmospheric attenuation early and late in the day when the optical
path length through the atmosphere is greater than it is at noon.

Solar Mechanics Example Problems

 28

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

0

200

400

600

800

1000

In
ci

d
en

t
S

ol
a

r
F

lu
x

(W
/

m
2
) Horizontal-bottom

Horizontal-top
Vertical-front
Vertical-back

Figure 18. Incident Solar Flux, Albuquerque, NM, June 21st

 The calculated total and diffuse incident solar fluxes on a horizontal
surface for Albuquerque, NM are compared to the corresponding measured
flux values. The flux data, for June 21st of the year 2005, was found at
http://rredc.nrel.gov/solar/old_data/nsrdb/. For the simulation, the extinc-
tion factor was assumed equal to 0.2; the diffuse factor was assumed equal to
0.1; and the clearness factor was set to unity. Better agreement could be
achieved if desired by modifying these input parameters. The comparison
shows that the measured diffuse component is larger than calculated,
indicating that a larger value of the diffuse factor may be warranted. Also, the
calculated flux during sunrise and sunset does not quite match the data,
indicating a discrepancy in the simplified model. A more sophisticated model
for extinction would be needed to capture this response, although this may
not be warranted because of the very low relative flux contributions at these
times. Otherwise, the agreement between the simulation and the data is
reasonable for this single-day comparison. As with the temperature model,
solar mechanics was implemented with the major premise that the model
provides solar flux predictions that can be used to consistently compare
thermal response simulations at different times of the year at different
geographical locations. The available input constants allow the user to modify
the results to reflect specific local atmospheric conditions if desired.

diffuse flux

total flux (direct
and diffuse)

Solar Mechanics Example Problems

 29

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (hr)

0

100

200

300

400

500

600

700

800

900

1000

In
ci

d
en

t
S

ol
a

r
F

lu
x

(W
/

m
2
) Total - Model

Diffuse - Model
Total - Measured
Diffuse - Measured

Figure 19. Comparison to Hourly Solar Flux Measurements

 The example finite element model presented in Figure 9 (page 15) was
used to demonstrate the influence of shadows on calculated absorbed solar
flux. For simplicity, the structure was assumed to be all steel with a solar
absorptivity of 0.7 and an infrared emissivity of 0.2. Recall that for the Calore
implementation, the positive z axis points due east. The calculation is for
Albuquerque, NM at a latitude of approximately 35° N, and begins on June
21st. Six images at different times of the day are provided in Figure 20. The
varying flux level on the curved surface of the cylinder is readily apparent.
The figure also shows the changing position of the shadows on the multi-wall
structure. Ragged edges on some of the shadows are a result of the relative
coarseness of the mesh. The temperature distribution on the structure, as
provided in Figure 21 at 13 and 18 hours, is smoother but still reflects the
remnants of the shadows at the end of the day.

Solar Mechanics Example Problems

 30

Figure 20. Absorbed Solar Flux Example Problem Images

(W/m2)

Solar Mechanics Example Problems

 31

Figure 21. Temperature Distributions for Example Problem

Comments and Summary

 32

Comments and Summary
 An approach has been developed to enable simulation of the thermal
response of structures in which incident solar heat flux is an important
thermal load. This approach was implemented into the three-dimensional
Calore thermal response code via a user subroutine for solar mechanics,
along with subroutines for the diurnal variation of air temperature and
effective sky temperature.

 The selected solar mechanics approach is an adaptation of one of several
similar approaches found in the solar literature. A basic premise of the
approach is that the normal clear day solar loading is of primary interest,
although analyst-specified factors can be modified to approximate non-clear
day weather conditions. The different approaches found in the literature all
seem to yield similar solar mechanics results. However, it should be noted
that the results should not be expected to match identically because of
differences in approximations used to develop the governing equations. Using
commercial and internet-based software, limited validation of the approach
with regard to peak solar flux, solar trajectories, and times of sunrise and
sunset indicate reasonable agreement. In addition, most of the governing
equations were implemented within an Excel spreadsheet, available from the
author upon request, before implementation into the FORTRAN user
subroutines. However, limited resources prevented thorough validation of the
approach. No attempt was made to validate the shadowing capability, other
than verifying that the predicted shadows were reasonable and consistent
with the solar trajectories.

 There are three parameters in the solar mechanics approach related to
atmospheric conditions that must be specified by the analyst: the extinction
coefficient (cext), the diffuse factor (fdif), and the clearness factor (fclear). The
extinction coefficient is representative of the absorption of solar radiation
whereas the diffuse factor is representative of scattering. It is expected that
the two parameters are correlated, although no such correlation was available
in the original approach reference. The clearness factor is essentially a correc-
tion factor on the direct component of flux as implemented in the adapted
approach. Again, no correlation with the other atmospheric parameters is
readily available. Further research regarding these parameters and their
implementation is warranted.

 Three features of note in the developed approach are (1) the use of vector
algebra to automatically determine the orientation factor, accounting for the
orientation of each finite element face relative to the position of the sun, (2)
the capability to account for shadows cast by “pseudo” walls, and (3)
integration of the solar mechanics capability with the capability to specify
diurnal variations in air temperature (relying on published weather data) and
the related effective sky temperature as functions of latitude and day of the
year, consistent with the solar mechanics implementation.

Comments and Summary

 33

 The approach is sufficiently developed for implementation into other
thermal response codes if desired. In addition to formal validation, other
future development efforts could address a more general and sophisticated
shadowing capability, inclusion of a reflected flux contribution, and addition-
al options for calculation of the effective sky temperature (several empirical
correlations are readily available in the literature). Because of restrictions in
the user-subroutine capability, only a single value of solar absorptivity can be
specified for each implementation of a solar boundary condition. The ability to
specify solar absorptivity as a material or surface property is desirable in a
general implementation. Restrictions in the user-subroutine capability also
prevented inclusion of the reflected flux contribution, which also is desirable
in a general implementation. The developed approach, as currently imple-
mented via Calore user subroutines, provides a useful capability for engineer-
ing problems involving solar loading.

References

 34

References
1) “Calore—A Computational Heat Transfer Program,” SAND2008-0098P,

February 12, 2008.

2) ASHRAE Fundamentals Handbook (SI), 1997.

3) W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic, Handbook of Heat
Transfer Applications, 2nd Edition, McGraw-Hill, Inc., 1973.

4) SunPlot3D, version 1.1, 2001, Maui Solar Energy Software Corporation.

5) Sherwood B. Inso and Ray D. Jackson, “Thermal Radiation from the
Atmosphere,” Journal of Geophysical Research, Vol. 74, No. 23, October
20, 1969.

Appendix: Calore User Subroutines for Solar Mechanics

 35

Appendix: Calore User Subroutines for Solar Mechanics
 For ease of readability, angles in all of the equations presented in the text
were expressed in units of degrees. However, in the FORTRAN implemen-
tation presented in this appendix, all operations are performed with angles in
units of radians.

Solar Mechanics:

c ===
c
 subroutine Solar_flux_shadows(faceID, nelemf, nip, coords, t,
 * flux, ierror)
c
c absorbed Solar flux on an object oriented arbitrarily with respect to the sun.
c the flux is adjusted as the sun rises and sets based on the direction cosines.
c the assumed coordinate system is based on the sun traveling in the y-z plane with
c sunrise and sunset at y = 0, and the sun is somewhere overhead for y > 0.
c thus, the positive z axis points east and the positive x axis points north.
c (SolarFlux is written as a user face variable for subsequent output.)
c
c this subroutine accounts for shadows with an approximate method in which the
c user must specify the coordinates of the corners of shadowing pseudo walls.
c currently, only the top location of the wall is specified, assuming that the
c wall extends down to the ground (y=0 or some common elevation).
c
c created by Dean Dobranich, 3/2009
c
 implicit none
c
 integer ierror, nip, nelemf
 integer faceID(nelemf)
 double precision flux(nelemf, nip)
 double precision coords(3, nelemf, nip)
 double precision t(nelemf, nip)
c
c ierror: user defined error code for calore to test. zero means success.
c nip : number of gauss integration points per face
c nelemf: number of element faces in workset
c flux: array of length nelemf containing the values of the
c heat flux that the subroutine calculates at
c integration points of element faces
c coords: coords of the integration points on each element face.
c t: array of temperatures at the integration points on each element face
c
 integer i, j, nr, found
 double precision time, time_24hr, pi, pio2, zero, one
 double precision t_sunrise, t_sunset, solar_flux, absorpt
 double precision daylight, gamma, beta, f
 double precision xa, xb, xc, ya, yb, yc, za, zb, zc
 double precision v1i, v1j, v1k
 double precision v2i, v2j, v2k
 double precision v3i, v3j, v3k, v3m
 double precision vsi, vsj, vsk, vsm
 double precision JulianDay, latitude, declination
 double precision hour_angle_sunrise, hour_angle

Appendix: Calore User Subroutines for Solar Mechanics

 36

 double precision surface_flux, fext, fdif, fclear, ext_coef
 double precision shadow_dt1, shadow_dt2
c
 integer k, ni, nwalls, m, n, mo, ko
 double precision slope_solar, intercept_solar
 double precision slope_wall, intercept_wall
 double precision dx1, dx2, dz, dx
 double precision xe, ye, ze, x, z
 double precision l1, l2, wf, h, d, hi
c double precision solar_alt, solar_azi, rotation_rate, arg
 double precision solar_azi, rotation_rate, arg
 double precision cos_ha, cos_lat, sin_lat, cos_dec, sin_dec
 double precision sin_alt, cos_alt, x_azi, y_azi
c
 double precision small
c
 parameter (pi=3.1415926535897932384626433d0, pio2=0.5d0*pi)
 parameter (zero=0.0d0, one=1.0d0, small=1.0d-26)
 parameter (rotation_rate=15.0d0*pi/180.0d0)

c nr is number of real data variables read in from .i file, ni is number of integers
 integer max_num_walls
 parameter (max_num_walls=8)
 parameter (nr=8+max_num_walls*6, ni=1)
 double precision rdata(nr)
 integer idata(ni)
 double precision wall_coords(max_num_walls,2,3)
 logical possible
c
 ierror = 0
c
c idata(1) => number of walls that may shadow a structure
c
c rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way
c through the third day of the year; progresses with simulation time)
c rdata(2) => latitude (+ for northern hemisphere)
c rdata(3) => solar absorptivity of surface
c rdata(4) => ext_coef (extinction coefficient through atmosphere, typically = 0.2)
c rdata(5) => fdif (fraction of solar flux that is diffuse, typically = 0.1)
c rdata(6) => fclear (clearness factor, direct solar flux component multiplier;
c = 1.0 for clear day, 0.8 for 20% cloud cover, etc.)
c rdata(7) => shadow_dt1 (time when structure is in shadow relative to sunrise)
c rdata(8) => shadow_dt2 (time when structure is in shadow relative to sunset)
c thus, if time is less that sunrise + shadow_dt1 or greater than
c sunset - shadow_dt2, then only diffuse flux is applied
c rdata(9-m) => x,y,z coordinates of walls 1 through max_num_walls with 2 coordinates per wall
c where m = 8 + max_num_walls*6
c
c
c get current simulation time and convert to hours
 call acal_get_time(time)
 time = time/3600.0d0
c use a 24 hour repeating clock
 time_24hr = mod(time,24.0d0)
c
 call acal_get_instance_int_data(ni,idata)

Appendix: Calore User Subroutines for Solar Mechanics

 37

 nwalls = idata(1)
c
 call acal_get_instance_real_data(nr,rdata)
 JulianDay = mod(rdata(1) + time/24.0d0, 365.0d0)
 latitude = rdata(2)*pi/180.0d0
 absorpt = rdata(3)
 ext_coef = rdata(4)
 fdif = rdata(5)
 fclear = rdata(6)
 shadow_dt1 = rdata(7)
 shadow_dt2 = rdata(8)

c rdata must be entered in input file for all max_num_walls, but only nwalls assigned and used
c m is counter for points 1 and 2 of wall; n is pointer for x, y, z (1, 2, 3) axis
 ko = 0
 do k = 1, nwalls
 mo = 0
 do m = 1, 2
 do n = 1, 3
 wall_coords(k,m,n) = rdata(8+ko+mo+n)
 enddo
 mo = mo + 3
 enddo
 ko = ko + 6
 enddo
c
c declination (radians) [23.45 degrees = 0.40927971 radians]
c truncate Julian Day for calculation of sunrise time
 declination = 0.40927971d0*dsin(pi/182.5d0*
 & (dint(JulianDay)+284.0d0))
 arg = -dtan(latitude)*dtan(declination)
 arg = max(arg,-one)
 arg = min(arg,one)
c argument of arccos must be between -1 and 1, inclusive (bounds would be
c exceeded for polar angles when daylight may equal 0 or 24 hours)
 hour_angle_sunrise = dacos(arg)
 daylight = 24.0d0/pi*hour_angle_sunrise
 t_sunrise = 12.0d0 - daylight*0.5d0
 t_sunset = t_sunrise + daylight
c
c recalculate declination for determining solar angles
 declination = 0.40927971d0*dsin(pi/182.5d0*(JulianDay+284.0d0))
c
c if time >= t_sunset or time < t_sunrise, set flux to zero (night time)
 if (time_24hr .ge. t_sunset .or. time_24hr .lt. t_sunrise) then

 do i = 1, nelemf
 do j = 1, nip
 flux(i,j) = zero
 end do
 call acal_put_real_face_var(zero,faceID(i),9,
 & "SolarFlux",found)
 end do

 else

Appendix: Calore User Subroutines for Solar Mechanics

 38

c solar_flux initially is the flux on a surface normal to the sun for m = 1 (1 air mass)
 solar_flux = 1160.0d0 + 74.0d0 * dsin(pi/182.5d0 *
 & (JulianDay + 88.0d0))
c
c determine position of sun in sky based on hour_angle, latitude, and declination
 hour_angle = rotation_rate * (12.0d0 - time_24hr)
 cos_ha = dcos(hour_angle)
 cos_lat = dcos(latitude)
 sin_lat = dsin(latitude)
 cos_dec = dcos(declination)
 sin_dec = dsin(declination)
 sin_alt = cos_lat*cos_dec*cos_ha + sin_lat*sin_dec
 cos_alt = dsqrt(1.0d0 - sin_alt**2)
c find the solar altitude angle (varies from 0 up to a max of 90 and back to 0)
c solar altitude is never used directly so comment out unless desired to print
c solar_alt = datan(sin_alt/max(small,cos_alt))
c
c find the solar azimuthal angle (varies between -90 and +90 degrees)
 x_azi = dsin(hour_angle)*cos_dec
 y_azi = cos_lat*sin_dec - cos_ha*cos_dec*sin_lat
 y_azi = dsign(max(dabs(y_azi),small),y_azi)
 solar_azi = datan(x_azi/y_azi)
c
c create a unit vector representing the direction of the sun
c a negative value of vsi indicates that the sun is in the southern sky
 vsj = sin_alt
c x-z plane coordinates depend on time of day and sign of azimuthal angle
 if (time_24hr .eq. 12.0d0) then
 vsi = dsign(cos_alt,y_azi)
 vsk = zero
 elseif (solar_azi*(time_24hr - 12.0d0) .lt. zero) then
c sun is in the northern sky
 vsi = cos_alt*dcos(solar_azi)
 vsk = cos_alt*dsin(solar_azi)
 else
c sun is in the southern sky
 vsi = -cos_alt*dcos(solar_azi)
 vsk = -cos_alt*dsin(solar_azi)
 endif
c
c determine atmospheric extinction factor (minimum horizon angle of 2 degrees (0.0349 radians))
c an atmosphere mass of 1 corresponds to when the sun is at its zenith
c the inverse sine of the solar altitude angle accounts for the greater
c distance through the atmosphere at lower angles
 fext = dexp(-ext_coef/max(dabs(sin_alt),0.0349d0))
c
c apply aborptivity and account for extinction from atmosphere
 solar_flux = solar_flux * absorpt * fext
c
c ---
c check for shadow time (simple approximate way to account for blocking structures)
 if (time_24hr .gt. t_sunset - shadow_dt2 .or.
 & time_24hr .lt. t_sunrise + shadow_dt1) then
c
c only diffuse component is applied when shadowed
 surface_flux = solar_flux * fdif

Appendix: Calore User Subroutines for Solar Mechanics

 39

c
 do i = 1, nelemf
 do j = 1, nip
 flux(i,j) = surface_flux
 end do
 call acal_put_real_face_var(surface_flux,faceID(i),9,
 & "SolarFlux",found)
 end do
c
 return
 endif
c ---
c
c determine direct and diffuse flux levels for all element faces
 do i = 1, nelemf
c
c determine two vectors on element surface using the integration point coordinates
 xa = coords(1, i, 1)
 ya = coords(2, i, 1)
 za = coords(3, i, 1)
 xb = coords(1, i, 2)
 yb = coords(2, i, 2)
 zb = coords(3, i, 2)
 xc = coords(1, i, 3)
 yc = coords(2, i, 3)
 zc = coords(3, i, 3)

 v1i = xb - xa
 v1j = yb - ya
 v1k = zb - za

 v2i = xc - xa
 v2j = yc - ya
 v2k = zc - za

c vector 3 is normal to vectors 1 and 2 that lie on the surface of the element face,
c found by the cross product
 v3i = v1j*v2k - v1k*v2j
 v3j = v1k*v2i - v1i*v2k
 v3k = v1i*v2j - v1j*v2i

c vector magnitude
 v3m = dsqrt(v3i**2 + v3j**2 + v3k**2)

c unit vector (direction cosine components)
 v3i = v3i/v3m
 v3j = v3j/v3m
 v3k = v3k/v3m

c now find the dot product of the sun vector, vs, with the surface normal vector, v3
c both vs and v3 are unit vectors, so the dot product is the fraction of solar flux on the surface

 f = v3i*vsi + v3j*vsj + v3k*vsk

c a negative f indicates the surface of the element face is not visible; thus set direct flux to zero
 if (f .gt. zero) then

Appendix: Calore User Subroutines for Solar Mechanics

 40

c check for shadowing by any pseudo walls (if shadowed, set f = 0.0)
c find element centroid coordinates
 if (nwalls .gt. 0) then
 slope_solar = vsi/dsign(max(dabs(vsk),small),vsk)
 xe = coords(1, i, 1)
 ye = coords(2, i, 1)
 ze = coords(3, i, 1)
 do j = 2, nip
 xe = xe + coords(1, i, j)
 ye = ye + coords(2, i, j)
 ze = ze + coords(3, i, j)
 end do
 xe = xe/nip
 ye = ye/nip
 ze = ze/nip
 endif
c
 do k = 1, nwalls
c
c perform a first check to eliminate element faces that are not shadowed
c note that a negative value of vsi indicates that the sun is in the southern sky
c
c find x distances from element face centroid to each of the two defining wall points
c wall#, point#, x-y-z (1-2-3)
 dx1 = xe - wall_coords(k,1,1)
 dx2 = xe - wall_coords(k,2,1)
c if sun is in the northern sky and the element face is north of wall, no shadows are possible
 if (dx1 .gt. zero .and. dx2 .gt. zero
 & .and. vsi .gt. zero) go to 5
c if sun is in the southern sky and the element face is south of wall, no shadows are possible
 if (dx1 .lt. zero .and. dx2 .lt. zero
 & .and. vsi .lt. zero) go to 5
c
c now check to see if face is possibly shadowed based on its x-z location and the sun vector
c
c determine equation of wall line in the x-z plane (this could be pulled outside of face do loop)
c also find equation of the solar line in the x-z plane passing through the face centroid
c then find x, z coordinates of intersection of the two lines
 dz = wall_coords(k,1,3) - wall_coords(k,2,3)
 dx = wall_coords(k,1,1) - wall_coords(k,2,1)
 possible = .false.
 if (dabs(dz) .gt. dabs(dx)) then
 slope_wall = dx/dz
 intercept_wall = wall_coords(k,1,1) -
 & slope_wall*wall_coords(k,1,3)
 intercept_solar = xe - slope_solar*ze
 z = (intercept_solar - intercept_wall)/
 & (slope_wall - slope_solar)
 x = slope_wall*z + intercept_wall
c if z intersection lies between bounds of the wall line, then shadowing is possible
 if (z.lt.max(wall_coords(k,1,3),wall_coords(k,2,3))
 & .and. z.gt.min(wall_coords(k,1,3),wall_coords(k,2,3)))
 & possible = .true.
 else
 slope_wall = dz/dx

Appendix: Calore User Subroutines for Solar Mechanics

 41

 intercept_wall = wall_coords(k,1,3) -
 & slope_wall*wall_coords(k,1,1)
 intercept_solar = ze - 1.0d0/slope_solar*xe
 x = (intercept_solar - intercept_wall)/
 & (slope_wall - 1.0d0/slope_solar)
 z = slope_wall*x + intercept_wall
c if x intersection lies between bounds of the wall line, then shadowing is possible
 if (x.lt.max(wall_coords(k,1,1),wall_coords(k,2,1))
 & .and. x.gt.min(wall_coords(k,1,1),wall_coords(k,2,1)))
 & possible = .true.
 endif
c
 if (possible) then
c
c determine height of wall at intersection of sun vector with the wall
c once an element face is found to be shadowed, no need to check additional walls, exit do (go to 10)
c
 l1 = dsqrt((wall_coords(k,1,1) - x)**2 +
 & (wall_coords(k,1,3) - z)**2)
 l2 = dsqrt((wall_coords(k,2,1) - x)**2 +
 & (wall_coords(k,2,3) - z)**2)
 wf = l1/(l1+l2)
 h = wf*wall_coords(k,2,2) +
 & (1.0d0 - wf)*wall_coords(k,1,2)
c
c find height of wall at intersection with solar line assuming common bottom location
 d = dsqrt((x - xe)**2 + (z - ze)**2)
 hi = d * vsj + ye
 if (hi .lt. h) then
c for times before solar noon:
 if (time_24hr .lt. 12.0d0) then
 if (ze .lt. z) then
 f = zero
 go to 10
 endif
c for times after solar noon:
 elseif (time_24hr .gt. 12.0d0) then
 if (ze .gt. z) then
 f = zero
 go to 10
 endif
c for time = solar noon (z wont discriminate so need to look at x coordinate):
 else
 if (vsi .lt. zero .and. xe .gt. x) then
 f = zero
 go to 10
 endif
 if (vsi .gt. zero .and. xe .lt. x) then
 f = zero
 go to 10
 endif
 endif
 endif
 endif
c
 5 continue

Appendix: Calore User Subroutines for Solar Mechanics

 42

c no shadowing, continue with do loop to check next wall
c
 end do
 10 continue
c
c determine total surface flux accounting for orientation
c apply fdif to account for diffuse flux component and apply clearness factor
c to modify direct component (only the direct component is affected by clearness)
 surface_flux = solar_flux * (f * fclear + fdif)

 else
c
c only diffuse component is applied
 surface_flux = solar_flux * fdif

 endif
c
c assign fluxes
 do j = 1, nip
 flux(i,j) = surface_flux
 end do
 call acal_put_real_face_var(surface_flux,faceID(i),9,
 & "SolarFlux",found)
c
 end do
c
 endif
c
c
 return
 end
c
c ==

Diurnal Air Temperature:

c
 subroutine DiurnalAirT(faceID, nelem, nint, coords, t,
 & refTemp, ierror)
c
c calculate diurnal cycle air temperature for convective reference temperature
c determine sunrise time based on latitude and day of year, and account for yearly variation
c based on weather data, which can be obtained from such sites as weatherbase.com
c created by Dean Dobranich, 1/2009
c
 implicit none

 integer nelem
 integer nint
 integer faceID(nelem)
 double precision coords(3, nelem, nint)
 double precision t(nelem, nint)
 double precision refTemp(nelem, nint)
 integer ierror

c

Appendix: Calore User Subroutines for Solar Mechanics

 43

c ierror: (output)user defined error code for calore to test.
c zero means success.
c nelem: (input)number of elements in workset
c nint: (input)number of elements in workset
c refTemp: (output)array containing the magnitude of the reference
c temperature that the subroutine calculates at a face
c coords: (input) coords of the integration points on each element.
c t: (input)array of temperatures at the integration points
c on each element

 integer i, j, nr
 double precision time, time_24hr, time_days
 double precision JulianDay, latitude, declination, hour_angle
 double precision daylight, Tref_max, Tref_min, period
 double precision T_high_max, T_high_min, JD_high_max
 double precision T_low_max, T_low_min, JD_low_max
 double precision T_high_avg, T_high_amp, T_low_avg, T_low_amp
 double precision Tref_avg, Tref_amplitude
 double precision offset_avg, offset
 double precision Lag, refT, arg
 double precision pi, twopi_o_period, one
c
 parameter (pi=3.1415926535897932384626433d0)
 parameter (twopi_o_period=2.0d0*pi/24.0d0)
 parameter (one=1.0d0)

c nr is number of real data variables read in from .i file
 parameter (nr=9)
 double precision rdata(nr)
c
 ierror = 0
c
c Tref = Tref_avg + Tref_amplitude*cos(2*pi/period*(t + offset))
c with offset = offset_avg + Lag*(cos(2*pi/period*(time + offset_avg))
c rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way
c through the third day of the year; progresses with simulation time; max of 365)
c rdata(2) => latitude (+ for northern hemisphere), used with day to find sunrise time
c rdata(3) => T_high_max (maximum high daily temperature throughout the year)
c rdata(4) => T_high_min (minimum high daily temperature throughout the year)
c rdata(5) => JD_high_max (Julian day corresponding to max high daily temperature)
c rdata(6) => T_low_max (maximum low daily temperature throughout the year)
c rdata(7) => T_low_min (minimum low daily temperature throughout the year)
c rdata(8) => JD_low_max (Julian day corresponding to max low daily temperature)
c rdata(9) => Lag (time interval after sunrise that air temperature is minimum; also
c the time interval before sunset that air temperature is maximum; usually ~1)

c
c get current simulation time and convert to hours
 call acal_get_time(time)
 time = time/3600.0d0
 time_days = time/24.0d0
c use a 24 hour repeating clock
 time_24hr = mod(time, 24.0d0)

 call acal_get_instance_real_data(nr,rdata)
 JulianDay = mod(rdata(1) + time_days, 365.0d0)

Appendix: Calore User Subroutines for Solar Mechanics

 44

 latitude = rdata(2)*pi/180.0d0
 T_high_max = rdata(3)
 T_high_min = rdata(4)
 JD_high_max = rdata(5)
 T_low_max = rdata(6)
 T_low_min = rdata(7)
 JD_low_max = rdata(8)
 Lag = rdata(9)

c declination (radians); 23.45 degrees = 0.40927971 radians
c truncate Julian Day for calculation of sunrise time
 declination = 0.40927971d0*dsin(pi/182.5d0*
 & (dint(JulianDay)+284.0d0))
 arg = -dtan(latitude)*dtan(declination)
 arg = max(arg,-one)
 arg = min(arg,one)
c argument of arccos must be between -1 and 1, inclusive (bounds would be
c exceeded for polar angles when daylight may equal 0 or 24 hours)
 hour_angle = dacos(arg)
c hour_angle = dacos(-dtan(latitude)*dtan(declination))
 daylight = 24.0d0/pi*hour_angle

c set cosine function for yearly T variation based on min and max high and low Ts
 T_high_avg = (T_high_max + T_high_min)*0.5d0
 T_high_amp = (T_high_max - T_high_min)*0.5d0
 T_low_avg = (T_low_max + T_low_min)*0.5d0
 T_low_amp = (T_low_max - T_low_min)*0.5d0
c
 offset = 365.0d0-JD_high_max
 Tref_max = T_high_avg + T_high_amp*
 & (dcos(pi/182.5d0*(JulianDay + offset)))
 offset = 365.0d0-JD_low_max
 Tref_min = T_low_avg + T_low_amp*
 & (dcos(pi/182.5d0*(JulianDay + offset)))

c now set cosine function for daily T variations
c
c Tref = Tref_avg + Tref_amplitude*cos(2*pi/period*(t + ov))
c with ov = offset_avg + Lag*(cos(2*pi/period*(time + offset_avg))
 Tref_avg = (Tref_max + Tref_min)*0.5d0
 Tref_amplitude = (Tref_max - Tref_min)*0.5d0
 offset_avg = daylight*0.5d0
c
c calculate refT vs time
c offset shifts the cosine distribution to the left
 offset = offset_avg + Lag*
 & (dcos(twopi_o_period*(time_24hr + offset_avg)))
 refT = Tref_avg + Tref_amplitude*
 & (dcos(twopi_o_period*(time_24hr + offset)))

c
c pass reference temperature to Calore for subsequent output (add as user variable in Calore)
 call acal_lupdate_global_real_var(refT,8,"Tref-air")
c
c assign Tref
 do j = 1, nint

Appendix: Calore User Subroutines for Solar Mechanics

 45

 do i = 1, nelem
 refTemp(i,j) = refT
 end do
 end do

 return
 end

c ===

c
 subroutine getDiurnalAirT(faceID, nelem, nint, coords, t,
 & refTemp, ierror)
c
c get diurnal cycle air temperature for convective reference temperature
c this subroutine simply gets the user variable Tref-air, which is determined
c by the DiurnalAirT subroutine. This avoids having to recalculate this quantity
c for multiple convection boundary conditions.
c created by Dean Dobranich, 1/2009

 implicit none

 integer nelem
 integer nint
 integer faceID(nelem)
 double precision coords(3, nelem, nint)
 double precision t(nelem, nint)
 double precision refTemp(nelem, nint)
 integer ierror

c
c ierror: (output)user defined error code for calore to test.
c zero means success.
c nelem: (input)number of elements in workset
c nint: (input)number of elements in workset
c refTemp: (output)array containing the magnitude of the reference
c temperature that the subroutine calculates at a face
c coords: (input) coords of the integration points on each element.
c t: (input)array of temperatures at the integration points
c on each element

 integer i, j
 double precision refT
c
 ierror = 0

c
c the following call retrieves Tref-air from a user subroutine that calculates
c the convective reference temperature; this user variable must be available
 call acal_get_global_real_var(refT,8,"Tref-air")
c
c assign Tref
 do j = 1, nint
 do i = 1, nelem
 refTemp(i,j) = refT

Appendix: Calore User Subroutines for Solar Mechanics

 46

 end do
 end do

 return
 end
c

Sky Temperature:

c
 subroutine Sky_T(faceID, nelem, nint, coords, t,
 & refTemp, ierror)
c
c calculate sky temperature based on the diurnal cycle air temperature
c used as the reference temperature for far-field radiative boundary conditions
c reference: Sherwood B. Inso and Ray D. Jackson
c "Thermal Radiation from the Atmosphere"
c Journal of Geophysical Research, Vol. 74, No. 23, October 20, 1969.
c created by Dean Dobranich, 12/2008
c
 implicit none

 integer nelem
 integer nint
 integer faceID(nelem)
 double precision coords(3, nelem, nint)
 double precision t(nelem, nint)
 double precision refTemp(nelem, nint)
 integer ierror

c
c ierror: (output)user defined error code for calore to test.
c zero means success.
c nelem: (input)number of elements in workset
c nint: (input)number of elements in workset
c refTemp: (output)array containing the magnitude of the reference
c temperature that the subroutine calculates at a face
c coords: (input) coords of the integration points on each element.
c t: (input)array of temperatures at the integration points
c on each element

 integer i, j
 double precision refT, skyT
c
 ierror = 0

c
c the following call retrieves Tref-air from a user subroutine that calculates
c the convective reference temperature; this user variable must be available
 call acal_get_global_real_var(refT,8,"Tref-air")
c
 skyT = (refT**4*(1.0d0 - 0.261d0*dexp(-7.77d-4*
 & (273.0d0 - refT)**2)))**0.25d0
c
c pass reference temperature to Calore for subsequent output (add as user variable in Calore)
 call acal_lupdate_global_real_var(skyT,8,"Tref-sky")

Appendix: Calore User Subroutines for Solar Mechanics

 47

c
c assign Tref
 do j = 1, nint
 do i = 1, nelem
 refTemp(i,j) = skyT
 end do
 end do

 return
 end
===

Sample Input:

==

 Begin Heat Flux Boundary Condition SolarFlux
 add surface surface_3 #exposed surfaces, not including bottom
 #add surface surface_1 #top only

 element subroutine is Solar_flux_shadows

qpp = absorbed total solar flux vs time; includes direct and diffuse components
rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way
through the third day of the year; progresses with simulation time)
rdata(2) => latitude (+ for northern hemisphere)
rdata(3) => solar absorptivity of surface
rdata(4) => ext_coef (extinction coefficient through atmosphere, typically = 0.2)
rdata(5) => fdif (fraction of solar flux that is diffuse, typically = 0.1)
rdata(6) => fclear (clearness factor, direct solar flux component multiplier;
= 1.0 for clear day, 0.8 for 20% cloud cover, etc.)
rdata(7) => shadow_dt1 (time when structure is in shadow relative to sunrise)
rdata(8) => shadow_dt2 (time when structure is in shadow relative to sunset)
thus, if time is less that sunrise + shadow_dt1 or greater than
sunset - shadow_dt2, then only diffuse flux is applied
rdata(9-m) => x,y,z coordinates of walls 1 through max_num_walls with 2 coords per wall
where m = 8 + max_num_walls*6 (currently max_num_walls = 8)

 #real data 172.0, 10.0, 0.8, 0.2, 0.1, 1.0, 0.0, 0.0
 integer data 2 #nwalls (data for max_num_walls must be entered but only nwalls used)
 real data 218.0, 30.0, 0.8, 0.2, 0.1, 1.0, 0.0, 0.0 \$
 0.0 1.6 0.6 0.55 1.2 0.6 \$
 0. 1.4 0. 0. 1.6 0.35 \$
 0. 0. 0. 0. 0. 0. \$
 0. 0. 0. 0. 0. 0. \$
 0. 0. 0. 0. 0. 0. \$
 0. 0. 0. 0. 0. 0. \$
 0. 0. 0. 0. 0. 0. \$
 0. 0. 0. 0. 0. 0.

 integrated power output q_Solar
 integrated flux output qpp_Solar
 end

Appendix: Calore User Subroutines for Solar Mechanics

 48

==

 Begin Convective Flux Boundary Condition BoxC
 Add Surface surface_5001 #exposed surfaces, including bottom

 Convective coefficient = 2.85 #for a 1 m high vertical plate

 Reference Temperature Subroutine is DiurnalAirT

Tref = Tref_avg + Tref_amplitude*cos(2*pi/period*(t + offset))
with offset = offset_avg + Lag*(cos(2*pi/period*(time + offset_avg))
rdata(1) => Julian day (fractional day permissible, i.e., 3.5 indicates half way
through the third day of the year; progresses with simulation time; max of 365)
rdata(2) => latitude (+ for northern hemisphere), used with day to find sunrise time
rdata(3) => T_high_max (maximum high daily temperature throughout the year)
rdata(4) => T_high_min (minimum high daily temperature throughout the year)
rdata(5) => JD_high_max (Julian day corresponding to high daily temperature)
rdata(6) => T_low_max (maximum low daily temperature throughout the year)
rdata(7) => T_low_min (minimum low daily temperature throughout the year)
rdata(8) => JD_low_max (Julian day corresponding to low daily temperature)
rdata(9) => Lag (time interval after sunrise that air temperature is minimum; also
the time interval before sunset that air temperature is maximum; usually ~1 hr)

 real data 218.0 30.0 311.4833 300.3722 196.0 305.9278 297.0389 196.0 1.0

 integrated power output qc_box
 integrated flux output qcpp_box
 End Convective Flux Boundary Condition BoxC

==

 Begin Radiative Flux Boundary Condition BoxR #
 add surface surface_2 surface_3 #bottom and sides

 emissivity = 0.8
 Radiation Form Factor is 1.0

this subroutine relies on the DiurnalAirT subroutine to calculate air temperature
that assigns the Tref-air user variable
 Reference Temperature Subroutine is Sky_T

 integrated power output qr_box
 integrated flux output qrpp_box
 End

==

Distribution

 49

Distribution:

3 MS-0346 01514 D. Dobranich
1 MS-0826 01512 M. T. Valley
1 MS-0836 01514 T. L. Aselage

Electronic copy only:

1 MS-0899 09536 Technical Library

1 MS-0382 01514 D. R. Noble
1 MS-0382 01541 S. W. Bova
1 MS-0382 01541 S. R. Subia
1 MS-0382 01543 M. W. Glass
1 MS-0382 01541 B. Hassan
1 MS-0382 01541 T. O. Okusanya
1 MS-0405 00426 R. D. Waters
1 MS-0614 02547 S. A. Whalen
1 MS-0734 06337 J. R. Tillerson
1 MS-0735 06313 G. T. Klise
1 MS-0828 01544 A. R. Black
1 MS-0828 01544 V. J. Romero
1 MS-0836 01510 J. S. Lash
1 MS-0836 01514 R. L. Akau
1 MS-0836 01514 R. C. Dykhuizen
1 MS-0836 01514 N. D. Francis
1 MS-0836 01514 R. E. Hogan, Jr.
1 MS-0968 02611 B. D. Boughton
1 MS-1033 06335 C. J. Hanley

50

