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Summary 
In recent years, applications of numerical heat transfer and fluid flow models of fusion 

welding have resulted in improved understanding of both the welding processes and welded 

materials. They have been used to accurately calculate thermal cycles and fusion zone geometry 

in many cases.  Here we report the following three major advancements from this project.  First, 

we show how microstructures, grain size distribution and topology of welds of several important 

engineering alloys can be computed starting from better understanding of the fusion welding 

process through numerical heat transfer and fluid flow calculations.  Second, we provide a 

conclusive proof that the reliability of numerical heat transfer and fluid flow calculations can be 

significantly improved by optimizing several uncertain model parameters.  Third, we 

demonstrate how the numerical heat transfer and fluid flow models can be combined with a 

suitable global optimization program such as a genetic algorithm for the tailoring of weld 

attributes such as attaining a specified weld geometry or a weld thermal cycle. 

The results of the project have been published in many papers and a listing of these are 

included together with a list of the graduate thesis that resulted from this project.  The work 

supported by the DOE award has resulted in several important national and international awards. 

A listing of these awards and the status of the graduate students are also presented in this report.  
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Introduction 
Although welding is a critical technology for the civilian infrastructure and national 

defense of the United States, the construction of structurally sound and reliable welds is still 

done largely by trial and error aided by experience. Since there are a large number of process 

variables in welding, the desired weld attributes such as the weld geometry and structure are 

difficult to produce. Furthermore the empirical approach does not always produce optimum 

welds and inappropriate choice of variables can lead to poor welds.   

In many simple alloy systems, the computed thermal cycles have been used to 

quantitatively understand weld microstructure and inclusion structure.   However, there are two 

major problems in the previous research.  Often the thermal cycles necessary for the calculation 

of structures have been obtained from the cooling rates computed from the heat conduction 

equations.  Previous work has shown that these calculations are inaccurate because they ignore 

the dominant mechanism of heat transfer, i.e., convective eat transport.  Second the traditional 

weld microstructural studies using post weld characterization does not provide any pathways of 

the evolution of  microstructures, since microstructures change during heating and cooling 

during welding.  Through development of advanced numerical models to obtain accurate cooling 

rates and in-situ, real time studies of phase transformation using X-ray (synchrotron) diffraction 

through collaborative research with Lawrence Livermore National Laboratory (Dr. J. W. Elmer 

and Dr. T. A. Palmer), we have shown that microstructural evolution of welds in both carbon 

steel and stainless steels can be understood at a level that has never been achieved before.  

Systematic tailoring of weld attributes based on scientific principles still remains an 

important milestone in changing welding from almost an empirical art to a mainstream science-

based technology. The ability to determine multiple welding variable sets to achieve desired 

weld attributes, based on scientific principles, is an important step to achieve this goal.  The 

existing transport phenomena based models of welding can only predict weld characteristics for 

a given set of input welding variables. What is needed, and not currently available, is a capability 

to systematically determine multiple paths to tailor weld geometry and assess robustness of each 

individual solution to achieve safe, defect free welds. Therefore, these heat transfer and fluid 

flow based models are restructured to predict the welding conditions to achieve welds with 

desired attributes.  
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Three main requirements are desirable in a model for systematic tailoring of a weld 

attributes. First, the procedure should embody an adequate phenomenological description of the 

complex physical processes in welding. Although the heat transfer and fluid flow models use 

time-tested equations of conservation of mass, momentum and energy, the predictions of 

temperature fields and thermal cycles do not always agree with experimental results because the 

models require many input variables all of which cannot be prescribed with certainty.  For 

example, the reported values of arc efficiency vary significantly for minor differences in the 

surface characteristics of work pieces that are difficult to characterize for every welding process. 

Second, the models are designed to calculate the temperature and velocity fields for a given set 

of welding variables.  However, very often what is needed is to determine the welding variables 

required to achieve a given weld attribute such as the weld geometry, cooling rate and the 

microstructure. The current generation of unidirectional heat transfer and fluid flow models are 

designed to calculate temperature and velocity fields from welding conditions and are incapable 

of determining welding conditions. Finally, the welding system is highly complex and involves 

non-linear interaction of several welding variables. As a result, a particular weld attribute such as 

the geometry can be obtained via multiple paths, i.e., through the use of various sets of welding 

variables. The current generation of numerical heat transfer and fluid flow models cannot 

determine alternative pathways to achieve a target weld attribute.  

In this project, a new structure of the phenomenological models is developed by 

combining numerical heat transfer and fluid flow models with a suitable optimization procedure 

in the form of a genetic algorithm. The combined model has new capabilities for bi-directional 

simulation where either the traditional input or the output variables can be specified. The new 

formulation also allows determination of multiple solutions to attain a specified weld attribute. 

Genetic algorithms (GA) can systematically search for multiple combinations of welding 

variable sets that comply with the phenomenological laws of welding physics and obtain a 

population of solutions following certain rules of evolution. This research represents the very 

first effort to adapt transport phenomena based models along with genetic algorithm based 

optimization model to achieve welds with desired attributes.  
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Technical Progress 
The phase transformations during fusion welding of a low-carbon steel, a stainless steel 

and Ti-6Al-4V alloy were investigated by a combination of experiments and modeling. The 

experiments involved the real-time phase mapping using the x-ray diffraction technique at 

Lawrence Livermore National Lab. Numerical heat transfer and fluid flow calculations were 

used to obtain the weld temperature distribution, heating and cooling rates under both linear and 

transient spot welding conditions. The computed FZ geometries using the thermo-fluid model 

were compared with the experimental results. A kinetic model was developed to describe the 

kinetics of phase transformations controlled by the nucleation and growth mechanism. The 

necessary kinetic parameters were computed from the x-ray diffraction data, allowing the rates of 

phase transformations to be predicted under various heating conditions. In particular, the kinetic 

parameters were determined for the α-ferrite to γ-austenite transformation in the 1005 low-

carbon and 1045 medium carbon steels, and the α-Ti to β-Ti transformation in the Ti-6Al-4V 

alloy.  

Kinetics of the γ-austenite to δ-ferrite transformation during welding of 2205 DSS was 

studied experimentally by the SRXRD technique and simulated using a combination of thermo-

fluid and diffusion models. A numerical diffusion model employing a moving grid system to 

trace the moving interface was developed to calculate the kinetics of γ→δ transformation during 

heating of the 2205 DSS. The predicted transformation kinetics agree reasonable well with those 

measured using the SRXRD technique at various monitoring locations in the weldment. The 

calculated fraction converted curve exhibits an S-shaped profile as a result of the non-isothermal 

heating. The TTT and CHT diagrams were calculated for the 2205 DSS using the numerical 

diffusion model, providing a graphical means to predict the kinetics of the γ→δ transformation. 

Both TTT and CHT diagrams show that the transformation rate increases with temperature. A 

preliminary study of the effect of non-uniform starting microstructure on the transformation rate 

was carried out considering a system with two γ grains and two δ grains. It is found that the 

overall transformation rate is fastest when the starting structure is uniform. The non-uniform 

starting structure slows down the transformation rate, particularly towards the end of the 

transformation, because the small γ grains dissolve at the initial stage of the transformation, 

thereby reducing the δ/γ interface area. The overall reaction rate is then controlled by the 
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dissolution of large γ grains. The variation of γ grain thickness has a more profound effect on 

retarding the transformation kinetics than that of δ grain thickness. 

Grain size and topological class distributions in the heat-affected zone (HAZ) of gas 

tungsten arc welded Ti–6Al–4V alloy were measured for various heat inputs. The evolution of 

grain structure and topological class distributions were also calculated using a three-dimensional 

Monte Carlo model utilizing thermal cycles computed from a well tested numerical heat transfer 

and fluid flow model. Both the experimental data and the calculated results showed that the 

average prior-β grain size near the fusion plane was about four to twelve times larger than the 

average grain size in the base plate, depending on the heat input. At locations equidistant from 

the fusion plane, the grains were larger in the mid-section vertical symmetry plane as compared 

to those at the top surface due to local variations of the thermal cycles. The normalized grain size 

distributions were unaffected by the local differences in the thermal cycles. It is demonstrated 

that the presence of a spatial gradient of temperature in the HAZ significantly impeded grain 

growth due to thermal pinning effect. Furthermore, the steep temperature gradients near the 

fusion plane did not introduce any significant texture in the grains. Both the experimental data 

and the calculated results indicated that the grains in the HAZ of the Ti–6Al–4V alloy were 

significantly smaller than the grains in the commercially pure titanium for identical welding 

conditions. 

Six neural networks have been developed for GTA welding of stainless steel. Each of 

these neural networks takes 17 input variables, which include welding process parameters and 

important material properties, and provides one output variable. The output variables include 

depth, width and length of the weld pool, peak temperature, cooling time from 800°C to 500°C 

and maximum liquid velocity in the weld pool. The networks were trained using a hybrid 

optimization scheme including the gradient descent method and a genetic algorithm. The hybrid 

approach gave lower errors than only the gradient descent method on both training and testing 

datasets, and the results did not depend on the initial choice of weights. The training and testing 

datasets contained results from the reliable numerical transport phenomena based model for GTA 

welding. The accurate prediction of these results by the neural networks ensured that the output 

of these networks complies with the phenomenological laws of welding physics. 

Several uncertain parameters affect the reliability of heat transfer and fluid flow 

calculations welding because their values cannot be prescribed from fundamental principles. 
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These parameters include absorptivity of the energy, effective thermal conductivity and effective 

viscosity of liquid metal in the weld pool. Values of these parameters are usually adjusted by 

trial and error so that the computed results agree with the corresponding experimental values. We 

have shown that by integrating multivariable constrained optimisation with convective heat 

transfer and fluid flow calculations, the values of the uncertain parameters can be obtained from 

a limited volume of experimental data.  The numerical heat transfer and fluid flow model 

embodying the optimized values of the uncertain parameters could accurately compute values of 

weld dimensions for new welding conditions. Reliability of heat transfer and fluid flow 

calculations can be significantly enhanced by determining the values of uncertain parameters 

from a limited volume of experimental data using a multivariable optimization technique with a 

numerical heat transfer and fluid flow model. 

A bidirectional model of gas tungsten arc (GTA) welding was developed by coupling a 

neural network model with a real number based genetic algorithm to calculate the welding 

conditions needed to obtain a target weld geometry. Unlike conventional neural network models 

that are trained with experimental data, which predict weld geometry for a particular set of 

welding conditions, the proposed model could estimate the welding conditions necessary for 

obtaining a target weld geometry within the framework of phenomenological laws.   

The model was used to determine multiple sets of welding variables, i.e., combinations of 

arc current, voltage and welding speed to obtain a specified weld geometry. It was found that a 

specific weld geometry was attainable via multiple pathways involving various sets of welding 

variables. Furthermore, these sets of welding variables involved significantly different values of 

current, voltage and welding speed. The use of a neural network model in place of numerical 

transport phenomena based model reduced the computation time and provided the solution 

within one minute. The high speed makes the neural network based model appropriate in various 

applications where rapid calculations are desired. Good agreement between the model 

predictions and the experimental data of weld pool penetration and width for various welding 

conditions shows that this approach is promising.   

Apart from the bead-on-plate welds, the approach was also tested with fillet welds.  The 

main computational engine used in this work is a neural network model which is trained and 

validated using the results of well-tested heat transfer and fluid flow model. The neural network 

model includes all the welding variables and material properties as input and provides weld 
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dimensions, peak temperatures, maximum velocities and the cooling rates between 800 °C to 500 

°C.  This network has 22 input parameters which are connected to output layer through a hidden 

layer of 19 nodes. A hyperbolic tangent function (which is a symmetric sigmoid function) was 

used as the activation function to include non-linear behavior of different variables.  A back-

propagation algorithm was used to update the synaptic weights of the neural network. A large 

database of outputs for different welding conditions was generated based on design of 

experiments (DOE) to capture the correlations between the welding variables and the weld 

attributes. Separate feed forward neural networks were developed, one each for predicting 

penetration, leg-length and throat of GMA fillet weld in spray mode to achieve high accuracies 

in the calculation of penetration, leg-length and throat. The weights in the neural network models 

were calculated using a hybrid optimization scheme involving the conjugate gradient (CG) 

method and a genetic algorithm (GA). The network was trained using only the training data. The 

validation and testing data were randomly generated independent of the training data. The 

performance of the network was tested using the validation and testing datasets. The testing data 

was used to check the overall performance of the network. The hybrid optimization scheme 

helped in finding optimal weights through a global search as evidenced by good agreement 

between all the outputs from the neural networks and the corresponding results from the heat and 

fluid flow model.  

The effectiveness of the model was tested by finding different sets of welding variables 

which could provide a specified weld geometry. The computational task involved three steps. 

First, a target weld geometry was selected by specifying one set of values of penetration, throat 

and leg-length. Second, the model was run to obtain multiple combinations of welding variable 

sets each of which could produce the target weld geometry. Third, and final, the results obtained 

from the model were adequately verified by comparing experimental results with the computed 

results. 

Significance of the Work 
With the advancement of computational hardware and software, many research projects 

that could not be undertaken just a few years ago can now be tried.  It is demonstrated here that 

when numerical heat transfer and fluid flow models are combined with real time experiments, 

details of microstructure evolution can be studied with clarity and certainty that have not been 

possible before. The ability of the modern numerical models to correctly predict multiple 
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welding variable sets that can lead to the target weld dimensions proves that by combing the 

principles of evolutionary biology with welding physics, a useful phenomenological framework 

can be created to systematically tailor a weld attribute via multiple paths. Although the work 

reported here focuses on tailoring of weld geometry, these results provide hope that by using the 

proposed approach, welding engineers will be able to tailor the structure and properties of 

weldments in the future.  
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