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ABSTRACT
The success of gas reactors depends upon the safety and quality of the coated

particle fuel. The fuel performance modeling code PARFUME simulates the
mechanical, thermal and physico-chemical behavior of fuel particles during irradi-
ation. This report documents the theory and material properties behind various
capabilities of the code, which include: 1) various options for calculating CO pro-
duction and fission product gas release, 2) an analytical solution for stresses in the
coating layers that accounts for irradiation-induced creep and swelling of the
pyrocarbon layers, 3) a thermal model that calculates a time-dependent tempera-
ture profile through a pebble bed sphere or a prismatic block core, as well as
through the layers of each analyzed particle, 4) simulation of multi-dimensional
particle behavior associated with cracking in the IPyC layer, partial debonding of
the IPyC from the SiC, particle asphericity, and kernel migration (or amoeba
effect), 5) two independent methods for determining particle failure probabilities,
6) a model for calculating release-to-birth ratios of gaseous fission products that
accounts for particle failures and uranium contamination in the fuel matrix, and 7)
the evaluation of an accident condition, where a particle experiences a sudden
change in temperature following a period of normal irradiation. The accident con-
dition entails diffusion of fission products through the particle coating layers and
through the fuel matrix to the coolant boundary. This document represents the ini-
tial version of the PARFUME Theory and Model Basis Report. More detailed
descriptions will be provided in future revisions.
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1.  INTRODUCTION

PARFUME, the “PARticle FUel ModEl,” is being developed as an advanced gas-cooled reactor fuel
performance modeling and analysis code. This report presents the theory used to develop the code, includ-
ing theoretical descriptions of numerical and analytical models.

The coating layers of a fuel particle, which surround the fuel kernel and buffer, consist of an inner
pyrolytic carbon (IPyC) layer, a silicon carbide (SiC) layer, and an outer pyrolytic carbon (OPyC) layer.
These layers act as a pressure vessel for fission product gases as well as a barrier to the migration of other
fission products. The quality of the fuel can be characterized by how well the number of failures of the par-
ticles during reactor operation is minimized. Therefore, the PARFUME code has been developed to deter-
mine the failure probability of a population of fuel particles, accounting for all viable mechanisms that can
lead to particle failure. The code accounts for these calculated particle failures in determining the diffusion
of fission products from the fuel through the particle coating layers, and through the fuel matrix to the
coolant boundary.

Coated particle fuel exhibits statistical variations in physical dimensions and material properties from
particle to particle due to the nature of its fabrication process. Its behavior is also inherently multidimen-
sional, further complicating development of the model. The objective in developing PARFUME is to phys-
ically describe both the mechanical and physico-chemical behavior of the fuel particle under irradiation,
while capturing the statistical nature of the fuel. Several mechanisms have been identified that can poten-
tially lead to particle failure, including cracking of the IPyC during irradiation, debonding of the IPyC from
the SiC layer during irradiation, buildup of internal fission gas pressure, kernel/SiC interaction resulting
from the amoeba effect, and thinning of the SiC layer due to fission product/SiC interactions. This report
describes the theory behind the current capabilities of the code that are used ultimately to determine fuel
particle performance.

This document represents the initial version of the PARFUME Theory and Model Basis Report. More
detailed discussions will be provided in future revisions.

1.1.  Code Description

1.1.1.  Basic Fuel Particle Behavior

A typical TRISO-coated particle is shown in Figure 1-1. Several physical phenomena influence the
behavior of the particles, including fission gas production and irradiation effects. For example, fission gas
pressure builds up in the kernel and buffer regions, while the IPyC, SiC, and OPyC act as structural layers
to retain this pressure. The basic behavior modeled in PARFUME is shown schematically in Figure 1-2.
The IPyC and OPyC layers both shrink and creep due to irradiation of the particle, while the SiC response
is essentially limited to elastic behavior. The pressure generally increases as irradiation of the particle pro-
gresses, thereby contributing to a tensile hoop stress in the SiC layer. Countering the effect of the pressure
load is the shrinkage of the IPyC during irradiation, which pulls inward on the SiC. Likewise, shrinkage of
the OPyC causes it to push inward on the SiC. Failure of the particle is expected to occur if the stress in the
SiC layer reaches the fracture strength of the SiC. Failure of the SiC results in an instantaneous release of
elastic energy that should be sufficient to cause simultaneous failure of the pyrocarbon layers. These
effects are described using material, thermal, and physico-chemical models.  
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Figure 1-1.  Typical TRISO-coated fuel particle geometry.

Figure 1-2.  Behavior of coating layers in fuel particles.

kernel

buffer
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SiC
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1.1.2.  Basic Fuel Element Behavior

The fuel particles, described in Section 1.1.1, are embedded in a spherical, cylindrical, or plate-type
graphite matrix; collectively, the fuel particles and matrix are referred to as a fuel element. A fuel element
is subject to a temperature distribution that results from the heat generated in the fuel particles and condi-
tions at the element boundaries. A typical prismatic core fuel element is shown in Figure 1-3. The pris-
matic core consists of a graphite moderator with coolant channels and fuel compacts containing thousands
of randomly distributed fuel particles. 

1.1.3.  General Solution Procedure

The general solution procedure used by PARFUME consists of the basic processes depicted in the
flow chart of Figure 1-4. A general description of each process is given below, while detailed descriptions
are provided in the Sections identified in Figure 1-4.

1.1.3.1.  Compute Fuel Element “Macro” Temperature Profile

Once the fuel element geometry and temperature boundary conditions are identified, the general heat
conduction equation, represented by Equation (1-1), is used to compute the macro temperature distribution
throughout the fuel element. The volumetric heat generation rate consists of the total heat generation rate
of all the particles.

(1-1)

Figure 1-3.  Typical element geometry (Prismatic Core).

Coolant 
Channel

Fuel Compact
Graphite Moderator 

(white area)

�cp t�
�T k T�2� q·+=
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Figure 1-4.  PARFUME calculational flow chart.
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(using fuel particle temperatures and calculated gas pressure)

Fuel particle failure probability analysis
(pressure vessel failures and failures due to multi-dimensional effects

based on calculated stresses)

(time integrated)

particle temperatures, and failure probabilities)

Geometry specification
(based on user input) Section 2

Section 5

Section 4

Section 3

Section 6
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1.1.3.2.  Compute Fuel Particle “Micro” Temperature Profile

Once the macro temperatures for the fuel element are determined, the general heat conduction equation
is used to compute the micro temperature profile (using a quasi-steady state assumption). Specifically, the
term on the left-hand side of Equation (1-1) (time rate of change of temperature) is assumed to be zero,
resulting in Poisson’s equation. Therefore, two boundary conditions are required, i.e. the surface tempera-
ture of the particle surface and the spatial temperature gradient at the geometric line of symmetry. The par-
ticle surface temperature is obtained from the “macro” temperature distribution computed from
Equation (1-1), while the spatial temperature gradient at the line of symmetry is set equal to zero. The
micro temperature profile accounts for all deformations in the kernel, buffer, and coating layers of the par-
ticle as well as the potential for development of a gap between the buffer and the IPyC.

1.1.3.3.  Compute Particle Stress Distribution

Once a particle temperature profile is determined, the particle stress distribution is calculated to evalu-
ate whether or not the particle fails. Currently, stress distribution calculations are limited to the buffer,
IPyC, SiC, and OPyC though the effect of kernel swelling is included. Strain contributions from several
sources are included.

The system of equations used to compute the stress distribution in a spherical particle include constitu-
tive relationships (describing elastic, irradiation-induced, and thermal strain), strain-displacement equa-
tions, and the equilibrium stress equation. The two component strain equations (i.e., constitutive
relationships) take into account elastic, irradiation-induced creep, irradiation-induced swelling, and ther-
mal strain. The radial strain-rate equation, consisting of four strain-rate terms, is shown in Equation (1-2).
Note that the pressure contribution to strain as the result of fission gases and CO is accounted for in the dis-
placement and stress relationships presented in Section 4.

(1-2)

Table 1-1 summarizes the strain contributions associated with each fuel particle structure. Because
creep and swelling in the SiC layer are small relative to that of PyC and because of uncertainty in these
properties for SiC, the SiC strains do not currently include contributions from creep or swelling. The fuel
particle kernel is not considered to deform structurally, though a model is included in PARFUME to pre-
dict kernel volumetric changes over time. 

The stress state in a fuel particle is dependent on the internal gas pressure that exists during either nor-
mal reactor operation or an accident condition. Gas pressures are calculated according to the Redlich-
Kwong equation of state and account for the generation of CO and the release of noble fission product
gases.

t�
��r 1

E--- t�
��r 2� t�

��t–� �
� � c �r 2v�t–
 � Sr �rT

·+ + +=
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1.1.3.4.  Compute Failure Probability

Once stresses have been determined, they are used in conjunction with Weibull statistics to determine
particle failure probabilities in the fuel performance model. Assuming that the fuel particle failures follow
a Weibull statistical distribution, the failure probability (for example of the SiC layer) is computed by
inserting the calculated stress into Equation (1-3), where the characteristic strength ( ) and Weibull mod-
ulus (m) are determined from experimental data.

(1-3)

1.1.3.5.  Compute Fission Product Diffusion

In the fission product diffusion calculations, PARFUME estimates fission product gas release due to
both recoil and diffusion. It also incorporates the release of fission product gases from failed particles and
from uranium contamination in the fuel matrix material.

Once the fission product generation is determined, then the fission product transport calculations are
performed. The simulation of fission product transport via diffusion from the fuel through the particle coat-
ing layers to the surrounding fuel element graphite matrix, and finally to the coolant boundary is accom-
plished using the following fundamental transport equation of Equation (1-4), where the flux is driven by
fission product concentration gradients and temperature gradients as shown in Equation (1-5).

(1-4)

(1-5)

Similar to the temperature profile analyses, “micro” and “macro” diffusion analyses are performed.
The micro analysis is based on a model having five different materials (kernel, buffer, IPyC, SiC, and

Table 1-1. Fuel Particle Strain Contributions

Fuel Particle Component Elastic
Strain

Creep
Strain

Swelling
Strain

Thermal
Strain

kernel No No Yes No

buffer Yes Yes Yes Yes

IPyC Yes Yes Yes Yes

SiC Yes No No Yes

OPyC Yes Yes Yes Yes

�o

Pf 1 e

�
�o
-----� �
� �m

Vd

V

�–
–=

t�
�C J��– S+=

J D C� Q�C
RT2---------- T�+� �

� �–=
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OPyC). The macro solution is based on a model having two materials, the graphite containing fuel particles
and the surrounding graphite without fuel particles.

Results from all of the diffusion analyses are integrated over time to produce a total fission product
release from the fuel element. This is done for each of the fission products under consideration.

1.2.  Quality Assurance

A Software Quality Assurance Plan will be developed and implemented to assure that the final soft-
ware application will satisfy quality requirements.

1.3.  Document Organization

Section 2 of this report describes the various reactor geometries that are treated in the code. Section 3
describes the finite difference thermal models that are used to calculate temperature distributions in the
fuel matrix and the quasi-steady state models used to calculate temperature distributions through the fuel
particles. Section 4 presents the analytical solution that is used to calculate stresses and displacements in
the coating layers of a fuel particle and the various failure mechanisms that are considered in the code.
Section 5 presents the statistical method that is used to estimate stresses in particles that undergo multi-
dimensional behavior and describes algorithms that are used to evaluate particle failure due to the various
failure mechanisms. It also presents methods used to determine particle failure probabilities, which include
the Monte Carlo method, a full integration numerical method, and a fast integration method. Finally, it
explains how these failure probability determinations are linked to the fission product diffusion calcula-
tions. Section 6 describes the fission product diffusion models used to calculate diffusion through particle
coating layers and through the fuel matrix. Section 7 presents material properties that are used in the code
for the thermal, mechanical, and diffusion models.
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2.  GEOMETRIES

The basic fuel particle geometry, described in Section 1.1.1, consists of a kernel of UO2 or UCO sur-
rounded by a buffer and three structural layers (IPyC, SiC, OPyC). The particles are embedded in a spheri-
cal, cylindrical, or plate-type graphite matrix. Collectively, the fuel particles and matrix are referred to as a
fuel element. Note that the spherical graphite matrix containing fuel particles is called a “pebble;” approx-
imately 15,000 coated particles are contained within one pebble.

Some definitions:

• fuel particle: kernel + buffer + IPyC + SiC + OPyC
• fuel matrix: graphite + embedded fuel particles
• fuel element: fuel matrix + surrounding (unfueled) graphite shell
• fuel elements represent the “macro” level
• fuel particles represent the “micro” level

2.1.  Configurations

Within PARFUME, three different “macro” fuel element geometries (i.e., plane, cylindrical, and
spherical) may be simulated in one dimension as indicated in Figure 2-1. Each macroscopic geometry is
modeled by averaging spherical fuel particles, void regions (i.e., coolant channels), and the graphite
matrix. This modeling technique is necessary in order to capture the physical behavior of the fuel elements
while eliminating the complexities (i.e., computational requirements) of modeling the detailed composi-
tion of the fuel element.  

2.1.1.  Plane Configuration

A plane geometry option (i.e., PLANEGEOM) is provided to allow simulation of plate-type fuel. It is
assumed that the plate will consist of a center fueled region bounded on both sides by a non-fueled region.
The centerline of the plate therefore represents a line of symmetry for both heat and mass transfer.
Although plate-type fuel has become unpopular over the years, some reactors such as the Advanced Test
Reactor (ATR), continue to use plate-type fuel. Therefore, the plane geometry option is included in PAR-
FUME for completeness.

2.1.2.  Cylindrical Configuration

A cylindrical geometry option is provided to allow simulation of a unit cell from a prismatic reactor
assembly. As an approximation, an appropriate fraction of six fuel compacts represent an equivalent fueled
region in the form of a ring. The outer edge of that ring is symmetric relative to both heat and mass trans-
fer. An unfueled region representing the matrix graphite communicates with the fueled region on the inside
edge and the coolant channel on the outside edge. Figure 2-2 depicts the basic geometry used to develop
the cylindrical fuel element geometry and the transformed geometry.
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2.1.3.  Spherical Configuration

A spherical geometry option is provided to allow simulation of a single sphere from a pebble bed reac-
tor. The center of the sphere represents a line of symmetry relative to heat and mass transfer. An unfueled

Figure 2-1.  PARFUME “macro” geometries.

Figure 2-2.  PRISMATIC "macro” geometry.

CL

(a) PLANEGEOM (b) PRISMATIC (c) PEBBLEBED

adiabatic

surface temperature
or
convective boundary
(@ other boundary node)

(@ node 1)
unfueled shell
fuel matrix

unfueled shell
fuel matrix



11

region at the outer portion of the sphere communicates with the fueled region on one surface and the cool-
ant on the other surface.

2.2.  Meshing

The computational mesh represents an important step in the modeling and simulation process; in fact,
the accuracy of the results is influenced by the mesh and associated boundary conditions. PARFUME
requires generation of two 1-D meshes for heat and mass transfer analyses: the fuel particle “micro” mesh
and the fuel element “macro” mesh. An example fuel particle “micro” mesh is presented in Figure 2-3. 

The code currently provides automatic meshing for all analyzed fuel particles. This entails placing
nodes on the inner and outer surface of each layer followed by the division of the layer into elements that
are nominally 5 wide. (Obviously, element widths will vary because the material layers will not nor-
mally be even increments of 5 .) All interior nodes are then assumed to lie at the midpoint of each ele-
ment.

The fuel element “macro” mesh provides the user with more flexibility with respect to specifying the
number of nodes. Referring to Figure 2-4, a line of symmetry relative to both heat and mass transfer exists
in each geometry. Node 1 is always placed on that line of symmetry. Each geometry is then divided into
intervals consistent with the number of nodes specified by the user. The last node always aligns with a
boundary that, for thermal calculations, may have either a surface temperature specification or a convec-
tive surface specification. In diffusion calculations, this boundary has a surface concentration specifica-
tion.

Figure 2-3.  Thermal model “micro” mesh
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Figure 2-4.  PRISMATIC “macro” mesh.
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3.  THERMAL MODELS

The PARFUME thermal model for the fuel elements is based on a finite difference heat conduction
approach with internal heat generation capabilities. It is used to calculate temperatures that are required for
determining thermal response of individual fuel particles. Fuel particle results feed a number of tempera-
ture-dependent models including calculations for internal pressures, fission product release, and stresses in
the coating layers. Temperatures from the fuel element model are also used to evaluate migration of the
kernel toward the SiC layer in the direction of the global temperature gradient (the amoeba effect).

Thermal modeling in PARFUME begins with calculation of a temperature profile through a pebble
bed sphere, a prismatic block, or a planar geometry, depending on the reactor type specified by the user.
The temperature profile is based on a number of other user inputs including the fuel element geometry, the
number of fuel particles within the element, burnup specifications for the irradiation of interest, and the
fuel element boundary temperature (i.e., the surface temperature for a pebble bed sphere or the coolant
channel surface temperature for a prismatic block). Time-dependent burnup and/or boundary temperature
specifications are allowed. The boundary temperature can be provided by the user or can be read from
results of a reactor system analysis, for example a neutronic or thermal-hydraulic analysis, or experimental
data. The fuel element profiles account for material property dependence on temperature and/or fluence as
appropriate.

The resulting time-dependent fuel element temperature profiles, or the ‘macro’ gradients, are then used
to calculate time-dependent fuel particle temperature profiles, or ‘micro’ gradients, for each particle ana-
lyzed. Each micro gradient is based on a particle surface temperature, which is derived from the macro gra-
dients consistent with the statistically determined particle positions. Because fuel particles are very small,
the micro gradients are calculated using a quasi-steady state approach (i.e., time rate of temperature change
within the particle is approximated as zero). However, material property dependencies on temperature,
pressure, and/or fluence are treated as appropriate.

The capability to predict the potential development of a gap between the buffer and the IPyC is an
important feature of the thermal model because such a gap can significantly affect the micro temperature
distribution within the particle (i.e., micro temperature gradients). Accordingly, the thermal model simu-
lates all of the major factors in gap development including the net effects of kernel swelling; shrinkage and
creep in the buffer, IPyC, and OPyC layers; and the associated kernel/buffer contact pressure. Furthermore,
the model accounts for changes in gap conductivity with changes in particle geometry and gap gas compo-
sition, pressure, and temperature.

3.1.  Macro Temperatures

3.1.1.  Finite Difference Solution

One-dimensional, second order temperature solutions are currently implemented for plane, cylindrical,
and spherical geometries, which enables simulation of plate fuel, prismatic reactors, and pebble bed reac-
tors, respectively. Heat conduction equations for these geometries are given by:

(3-1)�cp
�T
�t------ x�

� k�T
�x------� �

� � q·+=
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(3-2)

and

(3-3)

Equations (3-1) through (3-3) can be re-written as fully-implicit (backward) difference equations in tri-
diagonal form for any interior node “i” as shown in Figure 3-1.  

3.1.1.1.  For plane geometry.

Equation (3-1) can be written in difference form as:

(3-4)

Expanding Equation (3-4) for node “i” yields:

(3-5)

After simplifying and expanding all temperature terms, Equation (3-5) becomes:

(3-6)

Finally, unknown temperatures at the new timestep (denoted by “n”) can be equated to known values.
The resulting equation, which is now in tri-diagonal form compatible with PARFUME, is given by:

(3-7)

Figure 3-1.  Finite difference notation used in the macro thermal model.
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3.1.1.2.  For cylindrical geometry.

Equations (3-4) through (3-7) can be re-cast in cylindrical geometry as:

(3-8)

(3-9)

(3-10)

(3-11)

3.1.1.3.  For spherical geometry.

Equations (3-4) through (3-7) can be re-cast in spherical geometry as:
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Based on the notation shown in Figure 3-2, Equation (3-15) and Fourier’s law (for spherical coordi-
nates) can be used to determine the temperature distribution within the fuel matrix, given the input for the
temperature of the exterior surface of the fuel element.

3.1.2.  Macro Temperature Initialization

The fuel matrix temperature can be initialized by specifying a constant temperature or a temperature
distribution. A constant temperature would be specified if, for example, there is interest in analyzing parti-
cles undergoing post irradiation heating tests in a furnace operating at a constant temperature. The temper-
ature distribution approach would be used if the user desires to manually input various temperatures at
discrete locations within the matrix or if a temperature data profile is available from either experimental
data or a systems level code calculation. Note that a file extension “.abq” is required by PARFUME if
experimental or "systems level" temperature data are provided.

3.2.  Micro Temperatures 

Temperatures within the TRISO-coated fuel particle are calculated based on a time-dependent exterior
surface (OPyC) temperature and a quasi steady-state approach. The exterior surface temperature is derived
from the macro temperature solution for the particle position of interest. The quasi steady-state approach

Figure 3-2.  Pebblebed Matrix used in the “macro” thermal model
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was adopted as an explicit first-order approximation to minimize calculation time. At this point, a more
refined transient temperature solution does not appear to be needed. The temperature solution at the parti-
cle centerline and at the interface of each particle layer was developed assuming:

• spherical symmetry (i.e., no particle defects or failures),
• particle materials are isotropic,
• particle material thermal properties are dependent on temperature only,
• the gap between the buffer and the IPyC, if it develops, can be treated as a conducting medium like

all other material layers,
• the contact resistance between particle layers is negligible, and
• internal (volumetric) heat generation, if any, exists only in the kernel layer.

The general conduction equation in spherical coordinates with an internal heat source as applicable to
this model is given by:

(3-16)

The assumptions of spherical symmetry and quasi steady-state allow simplification of Equation (3-16)
to read:

(3-17)

The solution of Equation (3-17) is given by Carslaw and Jaeger1 as:

(3-18)

where
= outer radius of the sphere (m) and
= temperature (K) at radius R.

Equation (3-18) can be applied to calculate any temperature (T) at any radius in the kernel. The calcu-
lation of temperatures on the outer surface of the kernel, and all other radii beyond the kernel, rely on the
quasi steady-state assumption that implies:

(3-19)
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= internal (volumetric) heat generation in the kernel layer (W/m3),
= kernel volume (m3),
= heat flow through the kernel layer (W),
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= heat flow (W) through the buffer/IPyC gap (if it develops),
= heat flow through the IPyC layer (W),
= heat flow through the SiC layer (W), and
= heat flow through the OPyC layer (W).

Based on the notation shown in Figure 3-3, Equation (3-19) and Fourier’s law (for spherical coordi-
nates) can be used to determine the temperature at the SiC / OPyC interface, given the input for the temper-
ature of the exterior surface of the TRISO-coated fuel particle. Specifically,  

(3-20)

(3-21)

Note that in instances where computational nodes are placed at the interface of each fuel particle layer
(i.e., Figure 3-3), with no interior layer nodes, Equation (3-21) reduces to:

(3-22)

where
= radius at the outer edge of the SiC layer,
= radius at the outer edge of the OPyC layer,
= conductivity of the OPyC layer,

Figure 3-3.  Fuel particle notation used in the “micro” thermal model.
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= temperature at the outer edge of the SiC layer, and
= temperature at the outer edge of the OPyC layer.

Equation (3-21) permits the direct (explicit) calculation for the temperature at the outer edge of the SiC
layer. Equations similar to those given in (3-20) and (3-21) can be solved sequentially to allow explicit cal-
culation of temperatures at the outer edge of the IPyC layer ( ), at the outer edge of the buffer/IPyC gap,
if one develops, at the outer edge of the buffer layer ( ), and at the outer edge of the kernel layer ( ).
Given those results, the temperature at the kernel centerline ( ) can be calculated with use of
Equation (3-18) given by:

(3-23)

where
= conductivity of the kernel layer and
= radius at the outer edge of the kernel layer.

This approach is used to calculate fuel particle temperatures of interest using “old time” values for
conductivity. The resulting temperatures are then used to update conductivities and refined temperatures
are calculated. This process is repeated until temperatures converge.

It should be noted that the thermal conductivity of the buffer-to-IPyC gap, if one develops, is calcu-
lated based on gap temperature, pressure, and gas composition. Temperature, pressure, and gas composi-
tion are calculated in the code as functions of time. Correlations used to calculate the gap conductivity
were based on coding extracted from the MATPRO Library.2

An example of results from the thermal model are shown in Figure 3-4, where kernel centerline tem-
peratures were calculated as functions of particle power and burnup. In this case, fuel particles with a
diameter of 780 �m were assumed to contain UCO kernels with a diameter of 350 �m. A volume average
irradiation temperature of 1250 oC was also assumed. This effectively sets the temperature on the outer
surface of each particle. The increase in kernel centerline temperatures as shown was due primarily to
increases in the size of the gap between the buffer and the IPyC as a result of buffer shrinkage with increas-
ing fast fluence and power being generated in the particle. At high particle powers that might be expected
in very accelerated irradiations, the model predicts that the kernel centerline temperature can be as much as
200 oC higher even though the average temperature is 1250 oC.
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Figure 3-4.  Kernel centerline temperatures as functions of particle power and burnup.
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4.  STRUCTURAL MODELS

A key element of the PARFUME program is a closed form solution that calculates stresses and dis-
placements in the coating layers of a one-dimensional (symmetrical) spherical particle.3,4 This solution
accounts for the irradiation-induced creep and swelling in the pyrocarbon layers in addition to the elastic
behavior of the three layers of a TRISO-coated particle. To treat situations where the particle temperature
varies throughout irradiation, the solution allows for time-varying temperatures and material properties
and includes the effect of differential expansion among the layers.4

4.1.  Background

Early models of coated fuel particles used iterative numerical procedures to include the effects of pyro-
carbon creep and swelling in determining stresses in the coating layers.5,6 Iterative procedures, though, are
cumbersome to apply when treating statistical variations in Monte Carlo sampling of large particle popula-
tions. Bongartz simplified the stress analysis with a closed-form solution based on the assumption of a
rigid SiC layer, which enhanced the speed of Monte Carlo calculations7. Miller and Bennett subsequently
derived a closed-form solution for a three-layer particle that allows for elastic deformation in the SiC
layer3 and is well suited for Monte Carlo simulations.

The solution of Miller and Bennett includes stresses that result from irradiation-induced creep and
swelling of the PyC layers, internal pressure due to fission gas release, external ambient pressure, and elas-
tic behavior of all three coating layers. As originally formulated, it solved for stresses at a point in time in a
single step that starts at the beginning of irradiation. Though this makes for a very efficient solution, it is
subject to a number of limitations. It does not allow material properties, such as the elastic moduli of the
coating layers, to change with time (or fluence). Nor does it address situations where the irradiation tem-
perature changes with time. A changing temperature significantly affects the stress evolution over time,
and induces differential thermal expansion stresses in the layers. A further limitation is the simplifying
assumption that Poisson’s ratio in creep for the pyrocarbons is 0.5. The stresses and displacements in the
coating layers are sensitive to this parameter, and experimental evidence suggests that the actual value
could start at 0.5 but decrease suddenly with irradiation.8 It is desirable, therefore, to allow this parameter
to assume any realistic value that could change with time. 

An updated solution4, as described below, removes all of the limitations described above. Addition-
ally, the solution is presented in a manner that would enable its application to a particle having any number
of coating layers, not just the three layers of a TRISO-coated particle. The basic approach used is to resolve
the solution into time increments, using stresses calculated at the end of an increment as initial conditions
for the following increment. The solution remains closed-form, and is used in PARFUME to calculate
stresses and displacements in TRISO-coated fuel particles. Applying the solution incrementally through
irradiation allows the material properties and irradiation temperature to change with time. The solution
allows Poisson’s ratio in creep for the pyrocarbon layers to be set to any realistic value that can change
with time. With these capabilities, it has been demonstrated to perform efficiently in particle failure proba-
bility determinations.
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4.2.  Stress Distribution Theory and Derivation

4.2.1.  Governing equations and solution

As in Reference 3, stress-strain relationships for the two components (radial and tangential) of strain in
the spherical geometry of a TRISO particle, including Poisson effects, are as follows (see Nomenclature
for definitions):

(4-1)

(4-2)

The four terms on the right-hand side of Equations (4-1) and Equation (4-2) represent the strains mod-
eled in PARFUME for the pyrocarbon layers:

• The first term represents elastic strain caused by radial and tangential stress components.
• The second term represents irradiation-induced creep strain resulting from the stress components.
• The third term represents irradiation-induced swelling strain.
• The fourth term represents strain caused by thermal expansion.

The strains due to anisotropic thermal expansion accommodate temperature changes that may occur
during irradiation. These equations incorporate the secondary creep (creep strain rate is proportional to the
stress) that characterizes the pyrocarbon material. 

The strain-displacement relationships and equilibrium requirements for a spherical system complete
the description of the behavior of the pyrocarbon layers:9
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The same equations describe behavior of the SiC layer except that creep and swelling terms are gener-
ally omitted. Note that if the swelling or thermal expansion in a layer is isotropic, the radial and tangential
strain components can be set equal.

The following series solution is initially assumed:

(4-6)

(4-7)

(4-8)

where i is the term number and is an exponent on time t.

The t0 term is included in these summations to accommodate the presence of internal or external pres-
sures at time zero. In Reference 3, the simplification of setting Poisson’s ratio in creep (�) equal to 0.5 was
made, which would make the pyrocarbons incompressible as they creep. Material properties used in the
PARFUME code for the coating layers are generally obtained from Reference 25, which recommends the
use of 0.5 for � but acknowledges that some other sources prescribe a lower value. Calculations have
shown that a lower value can significantly lower the stresses in the coating layers. 

Therefore, this derivation is modified to allow any value (from 0 to 0.5) for this parameter. With the
incremental solution derived here, the parameter � can be varied as desired throughout irradiation. Incor-
porating this generalization into the derivation modifies Equations (11) and (12) of Reference 3 and results
in the following:
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In these expressions, the functions for swelling and thermal expansion strain rates have been expanded
into series, such as . As before, a function F(t) is defined as follows:

(4-11)

This function includes the necessary physics for determining stresses that are affected by creep, swell-
ing, and thermal expansion deformation of the coating layers.

The displacement equation of Reference 3 becomes:

(4-12)

while the following equation remains unchanged:

(4-13)

Following the process of Reference 10, Equations (4-12) and (4-13) can be used to develop a closed-
form analytical solution, which evolves from simplification of the series solution, and solves for radial dis-
placement at any radial location in a spherical shell that exhibits swelling and creep in addition to normal
elastic behavior:

(4-14)

(4-15)

where the coefficients Ki, which are dependent on the geometry and properties of the layer and on the
radius r, are given by Equations A-1 through A-7 of the Appendix, and the analytical formulation for F(t)
is presented in Section 4.2.3. It is noted that the coefficient K7 vanishes at the layer surfaces. The stresses
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(or pressures) p and q acting at the layer surfaces are treated as positive outward. If the layer does not creep
or swell (such as the SiC layer), this equation reduces to that of a pressurized thick elastic shell.

The fact that the series solution of Equations (4-6) through (4-8) evolves into a closed form solution
for the displacement in Equation (4-14) and for stresses in Equations (4-31) and (4-32) below suggests that
the solution could be developed using a different mathematical approach. It may be feasible, for example,
that with appropriate manipulations the solution could be developed using the LaPlace transform method.
The key though is to produce Equations (4-14), (4-31), and (4-32) by whichever means, since these give
the general solution at any time for the displacement and stresses in a single layer. From these, the solution
for any multi-layered particle can be derived. It is noted that the contribution to displacement from the inte-
gral terms of Equation (4-14) can grow steadily with time as energy is imparted to the layer. In a single
layer, these displacements could grow without bound until failure is reached. Deformations in the three-
layer coating system of a TRISO-coated particle, though, are controlled by the restraint of the stiff SiC
layer.

4.2.2.  Internal Gas Pressure

It is evident from Equation (4-14) that the displacements, and therefore stresses, in a fuel particle are
dependent on the internal gas pressure.

Particle internal gas pressures are calculated according to the Redlich-Kwong equation of state.11

Parameters utilized by this equation of state are derived from the critical temperature and pressure of each
gas specie12 occupying void volume within the particle. PARFUME considers the generation of CO and
the release of the noble fission product gases, xenon and krypton, in this pressure calculation.

PARFUME calculates fission product gas release due to both recoil and diffusion. Direct fission recoil
from the kernel to the buffer is accounted for by geometrical considerations and fission fragment ranges
derived from compiled experimental data 13. Diffusive release is calculated according to the Booth equiva-
lent sphere diffusion model 14 which utilizes an effective diffusion coefficient formulated by Turnbull.15

This effective diffusion coefficient accounts for intrinsic, thermal and radiation-enhanced diffusion.

One of three algorithms may be chosen for calculating CO production: the General Atomics (GA)
model, Proksch model, or HSC model. The GA model is a simple temperature dependent correlation16 that
is used primarily for comparison to historic evaluations. The Proksch model is also used primarily for com-
parison to historic German evaluations.17 The final model, referred to as the “HSC model” in this report, is
a detailed model derived from thermochemical free energy minimization calculations performed by the
HSC code.18 This CO production model considers burnup, temperature, uranium enrichment, and fuel
composition in the calculation. Input to the HSC code consisted of elemental fission product inventories
generated by the MOCUP 19 code which couples the MCNP 20 and ORIGEN2 21 codes. 

4.2.3.  Function F(t)

The function F(t) contains the physics required to appropriately capture effects of irradiation-induced
creep and swelling deformation. There is a function F(t) for each of the pyrocarbon layers. If the SiC layer
is treated as an isotropic elastic medium, then its F(t) becomes zero.
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Substituting Equation (4-10) into (4-11) and differentiating with respect to t gives the following equa-
tion for the function F(t):

(4-16)

The overlines in Equation (4-16) serve to indicate that swelling and thermal expansion strain rates are
numerically averaged over the time increment, and are treated as constants through the increment. The
general solution to this differential equation is the closed-form function

(4-17)

where a0 for time increment n is:

(4-18)

4.3.  General Stress Equations

4.3.1.  Radial Stresses at Layer Interfaces

The radial stresses at the IPyC/SiC and SiC/OPyC interfaces must be determined so that general
expressions for radial and tangential stresses, Equations (4-31) and (4-32) below, can be developed. The
radial stresses at the interfaces are solved by equating displacements at the interfaces and differentiating
the resulting equations with respect to t. This results in two simultaneous differential equations as follows:

(4-19)

(4-20)

where the quantities Bi are determined from Equations A-8 through A-12 of the Appendix.
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With the functions x(t) and y(t) expressed as follows, which is a suitable representation over a time
increment:

(4-21)

(4-22)

the solution to Equations (4-19) and (4-20) becomes:

(4-23)

(4-24)

where x0, x1, y0, y1, m1, m2, v0, v1, w0, and w1 are given by Equations A-13 through A-21. These quantities
are constant during a time increment, but change from one increment to the next. In this solution, the SiC
layer is assumed to not creep or swell.

Equations (4-19) and (4-20) apply to a three-layer system where there are two interface surfaces. This
method of solution, though, can be applied as well to a system with any number of coating layers. The
result is a set of simultaneous differential equations of the form of Equations (4-19) and (4-20), where
there is an equation for each interface surface. These can be solved using matrix analysis, which yields a
set of eigenvalues and eigenvectors for the system. The eigenvalues for the two-equation system above are
m1 and m2.

As discussed above, the solution is applied in time increments, which means that coefficients D1 and
D2 for each increment are determined from the initial conditions for that increment. At the start of irradia-
tion (t = 0), the initial values for internal pressure p and external pressure q are applied. At time zero, all
integral terms in Equations (4-33) through (4-36) vanish, and the equations are readily solved to give the
following for the radial interface stresses at the start of irradiation:

(4-25)

(4-26)
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These become the initial conditions for determining the coefficients D1 and D2 for the first increment.
In subsequent time increments, the radial stresses at the end of an increment become the initial conditions
for the next increment. Using Equations (4-23) and (4-24), then, the coefficients for the general time incre-
ment n are determined to be:

(4-27)

(4-28)

where

(4-29)

(4-30)

and tn-1 denotes the time t at the end of the previous increment n-1. In applying these equations, all material
properties, swelling strain rates, thermal expansion strain rates, and known internal and external pressures
are numerically averaged over the time increment.

4.3.2.  General Equations for Radial and Tangential Stresses

Equations (4-23) and (4-24) give the radial contact stresses at the inside and outside surfaces of the SiC
layer. Once these equations have been solved, together with F(t) from Equation (4-17), it is possible to
determine radial or tangential stresses at any radial location in the coating layers. Note that tangential
stresses are needed to determine whether the coating layers fail.

As shown in Reference 10, the following general expressions for radial and tangential stresses in a
coating layer can then be developed:

(4-31)
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(4-32)

where ra and rb are the inner and outer radii of the layer, respectively, and p and q are the radial stresses
acting on the inner and outer surfaces of the layer, respectively. Unlike the F(t) of Reference 10, that of
Equation (4-17) allows Poisson’s ratio in creep (�) to be set to any value.

4.4.  General Displacement Equations

Equation (4-14) is the basic equation used in PARFUME to calculate radial displacement. Displace-
ments are calculated at the radial locations r2, r3, r4, and r5 so that new values can be determined for these
radii at the end of each time increment; radial displacement is not calculated at r1 since it is assumed that
the inner portion of the buffer moves with the kernel. The updated radii are needed in the thermal and fis-
sion product transport analyses of the particle, and are be used in the stress solution.

Equation (4-14) is applied below to the four shell surfaces located at the two interfaces (r = r3, r4) of
the TRISO-coated particle. Note that the IPyC and OPyC layers are assumed to exhibit secondary creep
and anisotropic swelling, and all three layers are allowed to exhibit anisotropic thermal expansion.

IPyC outer surface

(4-33)

SiC inner and outer surfaces
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OPyC inner surface

(4-36)

where the coefficients aj, bj, cj, and dj are determined by substituting the appropriate radii and material
properties into the expressions for Ki.

4.4.1.  SiC Displacement (r3 and r4)

Once the radial stresses �rO and �rI are determined, then the displacements at the inner and outer sur-
faces of the SiC are determined from Equations (4-34) and (4-35). 

Because of the integrations in these equations, the displacements at r3 and r4 are most readily deter-
mined by differentiating through with respect to t, and calculating the displacements incrementally. For
example, Equations (4-34) and (4-35) become:

(4-37)

(4-38)

4.4.2.  IPyC and OPyC Displacement (r2 and r5)

The displacements at r2 and r5 are obtained from Equations (4-33) and (4-36) except that the coeffi-
cients are modified appropriately and the equations are applied incrementally. These become

(4-39)

(4-40)

The coefficients ai  and di  are calculated from Equations A-1 through A-6 using dimensions appro-
priate for the IPyC inner surface and OPyC outer surface, respectively.
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4.4.3.  Modeling of the Buffer-IPyC Gap

An important aspect of the fuel particle behavior is the development of a gap between the buffer and
IPyC layers (i.e., at r2) during irradiation. The gap is formed because the irradiation-induced shrinkage of
the porous buffer exceeds that of the IPyC layer. A significant consequence of this gap is that the low ther-
mal conductivity of the gap region (which is occupied by fission products) contributes to an increase in the
kernel temperature. The kernel temperature affects fission gas release, which in turn affects the gas pres-
sure acting on the coating layers and fission product transport through the particle layers and fuel matrix.
Because the magnitude of the increase in kernel temperature depends on the size of the gap, PARFUME
calculates the gap size throughout irradiation. This is done by calculating a displacement for the outer sur-
face of the buffer layer in addition to displacement u2 of the IPyC inner surface. 

4.4.3.1.  Buffer Displacement

In this calculation, the buffer is assumed to shrink and creep due to irradiation and the fuel kernel is
assumed to swell throughout irradiation. It is currently assumed in PARFUME for purposes of this calcula-
tion that the inner surface of the buffer moves with the kernel, and that the buffer remains intact throughout
irradiation. Application of Equation (4-14) to the inner surface of the buffer gives the following:

(4-41)

where pB is the radial contact stress at the interface of the kernel and buffer; uk is the known displacement
of the kernel surface; and cB, SB, and �B are creep, shrinkage, and expansion properties for the buffer. The
coefficients a1B and a3B are obtained by substituting appropriate values into Equations A-1 and A-3.

Because of its porosity, the buffer is assumed to experience no deformation due to the gas pressure. Thus,
there is no pressure applied to its outer surface. Also, because the buffer is assumed to be isotropic (per
Reference 25, for low-density pyrocarbon), the radial components of swelling and thermal expansion strain
rate (S, � ) are set equal to the corresponding tangential components.

The pressure pB can be determined from Equation (4-41) by differentiating through with respect to t,
and solving the resulting differential equation. This gives the following for the pressure at any time during
time increment n:

(4-42)

where tn-1 is the time at the start of the increment, and the derivative duk/dt is treated as a constant through
the time increment. Using this contact pressure, the displacement at the outer surface of the buffer (u2B) is
then determined incrementally from
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(4-43)

where b1B and b3B are determined from Equations A-1 and A-3 using dimensions at the outer surface of the
buffer, and r2B is the outer radius of the buffer.

4.4.3.2.  IPyC Displacement

The displacement of the IPyC is initially formulated by applying Equation (4-14) in time increments as
shown below:

(4-44)

The displacement of the IPyC is determined from Equation (4-44) setting p equal to the internal gas
pressure and q equal to the calculated radial stress at the interface between the IPyC and SiC layers.

4.4.3.3.  Example Gap Behavior

To demonstrate that PARFUME produces accurate results for the buffer/IPyC gap (assuming accuracy
of the assumptions), a finite element analysis was performed using the ABAQUS program.22 In this analy-
sis, the buffer was assumed to remain intact and sustain a tangential stress. The Poisson's ratio in creep for
the PyC and buffer layers was changed from 0.4 to 0.5, since the algorithm for creep behavior in ABAQUS
permits only this value. As shown in Figure 4-1, results show close agreement for the two analyses

4.5.  Two-layer and One-layer Solutions

Situations arise in fuel particle evaluations that require stress analysis of a two-layer or one-layer shell.
For example, a detachment of the IPyC from the SiC results in both two-layer (SiC/OPyC) and one-layer
(IPyC) shells. In such cases, an assessment is made as to whether the IPyC shell can sustain the internal
pressure on its own. If it fails, then the internal pressure is applied directly to the two-layer (SiC/OPyC)
shell.

Stresses and displacements for a two-layer shell are obtained in the same manner as used for the three-
layer shell, i.e., by equating displacements at the interface between layers to solve for the radial stress at
the interface. This contact stress, together with the known internal and external pressures, is used to deter-
mine displacements at the layer surfaces. The tangential stresses in the layers are determined using Equa-
tion (4-32) [and Equation (4-17) for F(t)].
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The radial stress at the SiC/OPyC interface for a particle having a debonded IPyC is as follows:

(4-45)

while the radial stress at the IPyC/SiC interface for a particle having a debonded OPyC is:

(4-46)

where the primed quantities are determined from Equations A-22 through A-29.

Since there is no radial interface stress to calculate in a one-layer particle, the known internal and
external pressures acting on the layer are used directly to determine displacements and tangential stresses. 

4.6.  Particle Failure Mechanisms

The solution described above for stresses in a TRISO-coated particle is one-dimensional, relying on
perfect spherical symmetry. Failure of a one-dimensional particle occurs if the internal pressure is high

Figure 4-1.  PARFUME and ABAQUS comparison.
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enough that the tangential stress in the SiC layer reaches the SiC strength for that particle. PARFUME also
considers multi-dimensional behavior that has been observed in post-irradiation examination (PIE) of US
fuel particles and may contribute to particle failures, such as 1) cracking of the IPyC layer, 2) partial
debonding of the IPyC from the SiC layer, 3) an aspherical geometry, and 4) the amoeba effect.

4.6.1.  Pressure Vessel Failure

A traditional failure mechanism addressed in PARFUME as well as other fuel performance codes is
the pressure vessel failure of a one-dimensional spherical particle. The particle is one-dimensional because
of perfect symmetry in the tangential and azimuthal directions. Early during irradiation, the shrinkage of
the pyrocarbon layers puts the SiC layer in compression. As irradiation progresses, the irradiation-induced
creep of the pyrocarbon layers tends to relieve some of this compressive stress. Additionally, the buildup
of fission gas pressure tends to put the coating layers in tension. If the gas pressure increases enough, the
tangential stress in the SiC layer could eventually become tensile. A traditional pressure vessel failure is
expected to occur if the tangential stress reaches a value that exceeds the strength of the SiC for that parti-
cle.

4.6.2.  Cracking of the IPyC

One form of multi-dimensional behavior that is modeled in PARFUME is a radial shrinkage crack in
the IPyC. The crack in the IPyC is typical of those observed in post irradiation examination (PIE) of the
New Production Modular High-Temperature Gas Cooled Reactor (NP-MHTGR) fuel particles. During
irradiation, shrinkage of the initially intact IPyC layer induces a significant tensile stress in that layer. If the
stress exceeds the tensile strength of the IPyC layer, then a radial crack develops in the IPyC. The radial
crack creates local tensile stresses in the SiC layer that could lead to particle failure. An axisymmetric
finite element model used in an ABAQUS22 analysis of a cracked three-layer geometry is shown in
Figure 4-2. Figure 4-3 plots a time history for the maximum calculated principal stress at a point in the SiC
layer near the tip of the crack. The stress at this point increases as the pyrocarbon layers shrink during irra-
diation, but eventually peaks as creep in the pyrocarbon layers overcomes the shrinkage effect. The evalu-
ation of particles for potential failure due to a cracked IPyC is discussed in Section 5.3.2.1.  

4.6.3.  Partial Debonding of the IPyC from the SiC

A second form of multi-dimensional behavior modeled in PARFUME is partial debonding between
the IPyC and the SiC, which has also been observed in PIE of the NP-MHTGR fuel particles. During irra-
diation, shrinkage of the IPyC layer induces a radial tensile stress at the interface between the IPyC and
SiC layers. If the stress exceeds the bond strength between layers, then debonding of the IPyC from the
SiC occurs. The debonding process is not likely to be an instantaneous detachment over the entire surface
of the interface. Rather, it begins at an initiation point from which the layers progressively unzip during
irradiation. An axisymmetric finite element model used in ABAQUS analysis for the debonded geometry
is shown in Figure 4-4. The model plotted is a deformed shape as it appears part way through irradiation,
after the unzipping process has begun.

In an ABAQUS analysis of a debonded particle, the IPyC and SiC are initially assumed to be debonded
at an arbitrary point in the model. Continued debonding, if it occurs, then progresses from this point. The
criterion used is that the next node ahead of the crack tip debonds when the local stress across the interface
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at a specified distance ahead of the crack tip reaches the specified bond strength. A stress concentration
occurs in the SiC layer at the tip of the debonded region, containing tensile stress components that could
contribute to failure of the SiC. Figure 4-5 plots a time history for the maximum calculated principal stress
at a point (point 1) on the inner surface of the SiC layer along the debonded path. The stress at this point
rose to a peak as the tip of the debonded region passed through this location. With continued unzipping

Figure 4-2.  Finite element model for fuel particle having radial crack in IPyC layer.

Figure 4-3.  Stress history in SiC layer (near crack tip) for cracked particle.
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between layers, the stress at this location rapidly diminished. Also shown in Figure 4-5 is a stress history at
a point further down the debonded path (point 2). As would be expected, the stress at this point peaked at a
later time during irradiation. The evaluation of particles for potential failure due to a partially debonded
IPyC is discussed in Section 5.3.2.2.  

4.6.4.  Pressure Vessel Failure of an Aspherical Particle

A third form of multi-dimensional behavior modeled in PARFUME is asphericity. The Code incorpo-
rates the effects of asphericity for particles that have a flat facet but that are otherwise spherical. Because
the effects of an ellipsoidal shape are small in comparison, this type of asphericity is not included in the
Code. During irradiation, the faceted portion of the particle acts as a flat plate that retains the internal gas
pressure. If the pressure builds up high enough, this results in a local region of tensile stress in the central
portion of the plate, which can contribute to particle failures. Unlike failures caused by cracking of the
IPyC or partial debonding of the IPyC, which are governed by shrinkage of the pyrocarbons, failures
caused by asphericity are controlled by the internal pressure. Therefore, while failures due to IPyC crack-
ing and debonding tend to occur early during irradiation when shrinkage stresses are at their highest, fail-

Figure 4-4.  Finite element model for a partially debonded particle.
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ures due to asphericity are likely to occur later when the internal pressure is highest. An axisymmetric
finite element model used to analyze for the effects of asphericity is shown in Figure 4-6.

The degree of asphericity for a particle is defined in terms of an aspect ratio, which is the ratio of the
major diameter to minor diameter. A reason for defining this parameter is that it is a commonly used mea-
sure of the severity of deformity in a particle, and is thereby used as a criterion for particle acceptability.
Using dimensions shown in Figure 4-6, the aspect ratio (A) is

(4-47)

where R is the outer radius of the particle and r is the radius of the facet. PARFUME allows the user to
specify a statistical distribution for the aspect ratio when considering asphericity.

Figure 4-7 plots a time history for the principal stress in the SiC calculated at the center of the faceted
portion of an aspherical (faceted) particle. Also plotted is the time history for the tangential stress at a loca-
tion removed from the facet. A comparison of these stress histories shows how the facet intensifies the
stress in that local region of the particle. Depending on its severity, this stress intensification could contrib-
ute to particle failures. The evaluation of particles for potential failure due to asphericity is discussed in
Section 5.3.2.3.  

4.6.5.  Amoeba Effect

A final failure mechanism currently considered in the code is failure of the SiC due to the amoeba
effect, which does not involve stress levels in the coating layer. Failure due to the amoeba effect is evalu-
ated by determining the distance that the fuel kernel migrates as a function of the temperature gradient at
the particle location. The migration distance is calculated according to the formulation of Reference 23.

Figure 4-5.  Inner SiC layer stress histories at two points that experience debonding.
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Particle failure is assumed to occur when the kernel comes into contact with the SiC layer. The evaluation
of particles for failure due to the amoeba effect is discussed in more detail in Section 5.3.2.4.

Figure 4-6.  Finite element model for an aspherical fuel particle.

Figure 4-7.  Stress histories for a faceted and spherical fuel particle.
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5.  MULTI-DIMENSIONAL STRESS BEHAVIOR

5.1.  Overview

Based upon post-irradiation examination results of U.S. fuel particles, it was concluded that modeling
one-dimensional pressure vessel failure alone was insufficient. For example, one-dimensional pressure
vessel failure models could not predict particle failures due to irradiation-induced shrinkage cracks in the
IPyC layer. Therefore, several models to predict multi-dimensional behavior were implemented in PAR-
FUME. For example models which predict particle failure due to asphericity, debonding, and IPyC crack-
ing have been incorporated into PARFUME. A general software development process was followed in
order to incorporate these multi-dimensional effects into the code. 

As depicted in Figure 5-1, the methodology used to model the effects of multi-dimensional behavior in
PARFUME consists of a 3-step process which includes: finite element analyses, statistical analyses, and
failure probability determinations. A detailed finite element (FE) analysis on cracked, debonded, or
aspherical particles for a selected range of parametric variations is used, in conjunction with results from
the solution described in Section 4 to make a statistical approximation of the stress levels in any particle.
Using this approach, numerous parameters can be varied statistically (about a mean value) including thick-
nesses of the three coating layers, densities and Bacon Anisotropy Factor (BAF) values for the pyrocar-
bons, irradiation temperature, the creep coefficient for the pyrocarbons, kernel diameter, buffer thickness,
and Poisson’s ratio in creep for the pyrocarbons. In the statistical approach used,24 FE analyses are per-
formed (using the ABAQUS program22) on just enough cases that the effects of varying each parameter
individually can be determined. The information obtained from the FE analyses is used in conjunction with
one-dimensional stress analysis results obtained using the closed-form solution described in Section 4.
Simple statistical fits are performed on the results of the analyses and a correlation is drawn between the
stresses in the one-dimensional and multi-dimensional particles for the same parametric variations. Finally,
particle failure probabilities are computed using Weibull statistics. 

5.2.  Statistical Approach for Determining Stresses 

The statistical approach used to correlate one-dimensional and multi-dimensional stresses is developed
in terms of variations about mean values for the parameters that describe a batch of fuel particles. Since a
set of mean values, and the statistical deviations from the mean for any particular batch of particles is gen-
erally unique to that batch, it is important that the method be flexible in addressing any set of mean values
and statistical variations about the mean.

The fundamental equation used to determine multi-dimensional stress (i.e., �c) in particles by correlat-
ing mean stress values is shown in Equation (5-1) and consists of four quantities: �cv, �uv, �u, and h (see
Nomenclature for definitions). When all parameters in a cracked particle in a multi-dimensional stress state
are at the mean values for a specified batch of particles, the maximum calculated stress in the SiC layer of
the particle (as determined by FE analysis) assumes a value �cv. Similarly, when all parameters in a non-
cracked one-dimensional particle are at the same mean values, the maximum calculated stress in the SiC
layer (as determined by the closed-form PARFUME solution) is �uv. Upon varying a single parameter �
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from its mean value, the maximum stress in the SiC layer of the one-dimensional particle is readily deter-
mined from the closed-form solution for �u. The stress in the multi-dimensional particle having parameter

 that varies from its mean value by an amount  becomes

(5-1)

where h(	�) is a function of the following quadratic form:

(5-2)

that brings the maximum stress in the one-dimensional particle into essentially exact correlation with that
in the multi-dimensional particle. This is effectively a Taylor series expansion, where all terms above sec-
ond order drop out because higher order derivatives become very small. A function hi(	�i) exists for each
parameter that exhibits a statistical variation among the particles in a batch.

When several parameters are varied from their mean values, which is characteristic of a typical coated
fuel particle, the stress �u in the one-dimensional particle is again readily determined from the closed-form
solution (in PARFUME). The stress in the multi-dimensional particle is then approximated from:

(5-3)

Figure 5-1.  Flow diagram for general statistical approach
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where there is a function hi for each statistically varying parameter.

Figure 5-2 demonstrates how the h function for a parameter is produced from several data points. At
the midpoint, where 	� = 0, h always has a value of 1. The other data points are determined by performing
FE analysis in which the parameter under consideration is varied approximately four standard deviations to
each side of its mean value. All other parameters in these analyses are held at their mean values. The same
cases are solved for a one-dimensional particle using the closed-form solution in PARFUME. The value
for h at these data points is the ratio between the stresses for multi-dimensional and one-dimensional parti-
cles, respectively. A polynomial curve fit is then made on the data points to generate the quadratic function
h. Though Figure 5-2 uses five data points to produce the h function, a suitable function can generally be
produced from just the two outside data points in addition to the center point (i.e., )  

Determining a function h for each statistically varying parameter in a batch of particles can in some
cases involve more work than is desired to calculate a failure probability, since several FE analyses must
be performed to generate a set of h functions. For situations where some loss of accuracy in the failure
probability is acceptable, it has been found that a reasonable estimate can be obtained by simply setting the
correlation functions equal to one. With this approximation, the SiC stress in the multi-dimensional parti-
cle becomes:

(5-4)

It is also shown in Reference 24 that a high level of accuracy may be attained by including selected h
functions in the equation above. Reference 24 shows that including h functions for just the three layer
thicknesses gave very accurate results when evaluating particles having a cracked IPyC. The user of PAR-
FUME inputs values for coefficients c1 and c2 [in Equation (5-2)] for h functions that correspond to the
selected parameters, and sets c1 and c2 equal to zero for all other parameters.

Figure 5-2.  Generating an h function for variations in IPyC density.
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5.3.  Failure Probability Determination

5.3.1.  Failure Probability Theory

Once stresses have been determined, the next step is to use the stresses calculated to determine particle
failure probabilities in the fuel performance model. As with other models, Weibull statistics are used to
evaluate failure. The methodology is discussed in the context of SiC layer failure, but this process is appli-
cable to any layer.

In this approach, a strength distribution for the SiC layer is characterized by a mean strength �ms and a
modulus m. The mean strength for these evaluations is determined from a characteristic strength �0
obtained from data of Reference 25. The method used for determining the mean strength is summarized
below. 

In the Weibull theory, the failure probability for the SiC is as follows:26

(5-5)

Once finite element results are obtained from the analysis of the spherical particle, the stress integra-
tion above can be performed using the principle of independent action (PIA) model for treating multiaxial
stress states:26

(5-6)

Since only tensile stresses contribute to fracture of the material, compressive stresses are not included
in the integration. Based on the stress distribution throughout the volume of the SiC layer, the integral
above assumes a value that can be written as follows:

(5-7)

where �c is the maximum value calculated for a principal stress anywhere in the volume. The integral I is a
normalized integration of the stress distribution, where the maximum stress (taken to the m power) has
been factored out. The failure probability then becomes:

(5-8)

In the fuel performance model, the strength of the layer is sampled according to the following cumula-
tive distribution function:27

(5-9)
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The mean strength �ms then is determined by applying the condition that the failure probability calcu-
lated by the fuel performance model per Equation (5-9) equals that of Equation (5-8). This is done by
equating the exponents of the two equations and using stresses for a particle having nominal values for all
parameters to determine the integral I. The effective mean strength for the layer is then defined to be:

(5-10)

where the subscript n denotes a particle having nominal values for all parameters. Note that the integral In
for the IPyC layer and for the SiC layer of a one-dimensional spherical particle is calculated within PAR-
FUME, for example when evaluating failure due to pressure stresses (one-dimensional analysis). The inte-
gral In for the SiC layer of a multi-dimensional particle is based on the integration of the stress distribution
in the SiC obtained from finite element analysis of a particle having nominal values for all parameters. The
mean strength from Equation (5-10) for a batch of fuel particles is then input to the PARFUME code so
that a failure probability can be determined. In the Monte Carlo routine of PARFUME, the maximum
stress �c in the SiC for each particle is compared to a strength that is sampled from a Weibull distribution
having mean strength �ms and modulus m to determine whether or not particle failure occurs.

5.3.2.  Determining Failure Modes

Understanding and determining failure modes is an important aspect of the internal logic structure in
PARFUME. The various failure modes described below are assimilated into PARFUME such that failure
of a particle in one mode excludes failure in any other mode for the same particle. The fundamental failure
logic is described in Section 5.4.

As discussed in Section 4.6, the multi-dimensional failure mechanisms modeled in PARFUME are
failures of the SiC due to 1) cracking of the IPyC layer, 2) partial debonding of the IPyC from the SiC
layer, 3) aspherical geometry, and 4) the amoeba effect. The treatment of the cracked IPyC is published in
References 28 and 29, while debonding and asphericity are published in Reference 30. Details of these treat-
ments are described below.

Another failure mechanism that has been investigated but not yet modeled in the code is failure due to
thinning or degradation of the SiC layer.31

5.3.2.1.  Cracking of the IPyC

To evaluate particles for potential failure due to a cracked IPyC, the Code first determines whether the
IPyC cracks. This is done by calculating the tangential stress in the IPyC layer using the solution in the
subroutine FSICFUEL, which is a subroutine that performs all structural mechanics calculations in PAR-
FUME. In the solution schemes discussed in Section 5.4, it compares this tangential stress to a strength that
is sampled from a Weibull distribution having mean strength �ms and modulus m. The mean strength �ms
for the IPyC is calculated using Equation (5-10), where the integral In accounts for the stress distribution
throughout the volume of the IPyC, and �* is a characteristic strength for the IPyC. Because of the symme-
try of the stress distribution, one-dimensional theory is appropriate; therefore, this integration is performed
internally in the PARFUME code instead of being determined from results of FE analysis. If the tangential
stress exceeds the strength for a given particle, then the IPyC layer is assumed to fail.

�ms �0 In) 1 m)=
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If the code determines that the IPyC cracks, it then evaluates the integrity of the SiC layer. Multi-
dimensional behavior generally creates stress concentrations in the SiC material that can lead to particle
failure. These stresses are estimated according to the statistical methodology described above and then
used to determine particle failure probabilities in the fuel performance model. As has been historically
done in fuel particle evaluations, Weibull statistics are used to evaluate failures of the SiC layer. The mean
strength for these evaluations is determined from the characteristic strength �0 according to Equation (5-
10).

To evaluate the structural integrity of the SiC layer, PARFUME calculates a stress for the SiC layer
utilizing the statistical method described above in Equation (5-3) or Equation (5-4). It compares this stress
to a strength that is sampled from a Weibull distribution having mean strength �ms and modulus m. The
mean strength is calculated from Equation (5-10), where the integral In represents a stress distribution
obtained from an ABAQUS22 analysis of a cracked particle having mean values for all parameters. Particle
failure is indicated when the maximum stress exceeds the sampled strength.

The characteristic strength for the SiC layer is obtained from the General Atomics data. The integral In
is a normalized integration of the stress distribution over the volume V of the SiC layer as follows:

(5-11)

where the subscript n denotes a particle having mean values for all parameters. Since only tensile stresses
contribute to fracture of the material, compressive stresses are not included in the integration. Equation (5-
11) accounts for the stress distribution in the layer resulting from multi-dimensional behavior.

5.3.2.2.  Partial Debonding of the IPyC from the SiC

To evaluate particles for potential failure due to debonding, the Code first determines whether debond-
ing occurs. It calculates the radial stress at the interface between the IPyC and SiC layers using the closed-
form solution in the subroutine FSICFUEL. It compares this stress to the bond strength between layers.
PARFUME currently treats the bond strength as a parameter having a Gaussian distribution with a speci-
fied mean value and standard deviation. In the Monte Carlo or integration solution schemes for calculating
particle failures, the bond strength for a particle is obtained from this distribution. If the radial stress
exceeds the bond strength for a given particle, then debonding is assumed to occur at the IPyC and SiC
interface. If the code determines that debonding occurs, it then calculates a stress for the SiC layer utilizing
the statistical method described above, i.e., Equation (5-3) or Equation (5-4). It compares this stress to a
strength that is sampled from a Weibull distribution having mean strength �ms and modulus m. The mean
strength is calculated from Equation (5-10), where the integral In [of Equation (5-11)] represents a stress
distribution obtained from the ABAQUS analysis of a debonded particle having mean values for all param-
eters (referred to as a nominal particle). With the moving crack tip, significant stress intensifications may
occur at many points along the debonded path. These stress concentrations are typically not as severe as
those at the crack tip of a cracked IPyC, but they occur over a larger portion of the SiC volume. Because
the peak stresses at these points do not occur simultaneously, the calculation of In is based on a stress dis-
tribution reflecting the maximum stresses that occur at any time during irradiation. 

Note that the radial stress must exceed the bond strength in order to determine the stress distribution in
the nominal debonded particle. For example if the maximum radial stress for the nominal particle is less
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than the mean bond strength, then debonding would not occur in the nominal particle. Debonding could,
however, still occur in some particles in the batch. In order to capture the debonding of these particles in
the calculations, the bond strength (in the ABAQUS analysis of the nominal particle) should be set equal to
the maximum radial stress minus a selected value , and In should be calculated from the resulting stress
distribution. Note that scoping studies have shown that 5 MPa is a reasonable value to choose for .

5.3.2.3.  Asphericity

In evaluating asphericity, the Code calculates a maximum stress for the SiC layer utilizing the statisti-
cal method described above [Equation (5-3) or Equation (5-4)]. However, a second term is added to the
right hand side of these equations to correctly estimate the maximum stress �c for an aspherical particle30,
as follows for Equation (5-4):

(5-12)

where 	�cv, 	�uv, and 	�u are changes in the stresses �cv, �uv, and �u in going from the first extremum
(or minimum) to the end of irradiation in each respective stress time history. Refer to Figure 4-7 for a typi-
cal time history of the SiC principal stress in a faceted particle. If a second extremum (or maximum) occurs
before the end of irradiation is reached, then 	�cv, 	�uv, and 	�u are taken as changes in these stresses in
going from the minimum to the maximum. This ensures calculation of the largest value of stress that
occurs anytime during the irradiation history. In Equation (5-12), �cv, �uv, and �u are stress values occur-
ring at the time of the minimum in each time history. The first term then takes the solution from time zero
to the time of the minimum in the stress history, while the second term takes the solution from the mini-
mum to the end of irradiation or to a maximum, whichever occurs first. The additional term is needed for
asphericity evaluations because failures due to asphericity occur after the first extremum for �u has been
reached, when shrinkage effects from the pyrocarbons are diminishing.

With the addition of a second term, Equation (5-3) becomes:

(5-13)

The second set of correlation functions h2i is determined in the same way as the first set h1i (Section
5.1), using output from the same ABAQUS finite element analyses.

PARFUME compares the stress from Equation (5-12) or (5-13) to a strength that is sampled from a
Weibull distribution having mean strength �ms and modulus m. If the stress exceeds the strength for a
given particle, then the particle is assumed to have failed. Note that the mean strength is calculated from
Equation (5-10), where the integral In represents a stress distribution obtained from the ABAQUS analysis
of a faceted particle having mean values for all parameters (referred to as a nominal particle). If there is no
asphericity, then the solution reverts to the traditional pressure vessel failure of a perfectly spherical parti-
cle, with an SiC strength appropriate for this symmetrical stress distribution.
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5.3.2.4.  Amoeba Effect

Kernel migration (amoeba effect) occurs within the presence of a macroscopic temperature gradient
and is calculated according to a standard formulation.23 This algorithm utilizes kernel migration coeffi-
cients derived from experimental data. For UCO fuel where kernel migration is expected to be miniscule, a
General Atomics derived correlation23 is used. For UO2 fuel, where kernel migration can be significant,
recent data (from the last 20 years)32,33 was fitted to an Arrhenius function to derive a kernel migration
coefficient correlation. Particle failure is assumed to occur when the kernel comes into contact with the
SiC layer.

Determining failure of the SiC due to the amoeba effect is a straightforward process. The distance that
the kernel has migrated is calculated at each time step in a particle solution using a kernel migration coeffi-
cient (KMC) appropriate for the fuel type. The KMC is described in Equation (5-14), where T is the kernel
temperature (K), dy/dt is the observed kernel migration rate (m/s), and dT/dx (K/m) is the temperature gra-
dient across the fuel matrix.34

(5-14)

Once the kernel has migrated far enough (as determined from integrating  over time) to make con-
tact with the SiC, the SiC is assumed to fail.

5.3.2.5.  Thinning of the SiC Layer

As stated above, thinning of the SiC is an additional failure mechanism that is currently under develop-
ment. Results of a study into the effects of SiC layer thinning are described in Reference 31. Thinning of
the SiC in local areas makes a negligible contribution to the particle failure probability when considering
failures of the SiC due to stresses in the layer. However, complete penetration through the SiC provides an
open path for fission product transport, and, therefore, constitutes a functional failure of the particle. For
thinning over global areas of the SiC, failures can occur due to stress concentrations at the edges of the
thinned regions induced by shrinkage of the pyrocarbons. If the thinning occurs over a significant portion
(or all) of the SiC surface, the detachment of the IPyC from the SiC over the thinned region also enhances
the probability that the IPyC will fail due to internal pressure loading. If the IPyC fails, then the internal
pressure loading is directly transmitted to a portion or all of the SiC surface area, which can lead to failure
of the SiC layer. The criterion used in PARFUME for the failure of thinned particles due to internal pres-
sure loading, therefore, will include an evaluation for failure of the IPyC layer.

As part of the SiC thinning mechanism, a Pd-SiC interaction model is nearing completion. To date, all
available in-reactor data for Pd penetration in SiC35,36,37,38 have been fitted to an Arrhenius function. The
resulting penetration depth correlation will be coupled with finite element stress analyses of corroded, or
thinned, SiC to develop a failure algorithm.
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5.4.  Solution Schemes for Predicting Failure

PARFUME provides two basic solution schemes for predicting particle failure: Monte Carlo and
numerical integration. An advantage of having two solutions schemes is that the integration scheme can be
used to check the results of the Monte Carlo scheme and vice versa. The integration scheme includes both
a full integration solution scheme and a fast integration solution scheme. Using the fast integration scheme
can substantially reduce the time required to perform the integration with only a minimal loss of accuracy.
Therefore, an added advantage of the integration method is that it can greatly enhance efficiency of the
failure probability calculation. The Monte Carlo and integration failure probability schemes are discussed
below.

5.4.1.  Monte Carlo

In the Monte Carlo routine of PARFUME, stresses are analyzed for a statistically sampled batch of
particles, where the parameters sampled may include any of those identified in Section 5.1 together with
the strength for each of the coating layers. The stresses in each sampled particle are solved incrementally
from the beginning to the end of irradiation. At each time increment, the particle is checked for debonding
between the IPyC and SiC layers, for cracking of the IPyC layer, and for failure of the SiC layer. If
debonding occurs, the particle is checked for failure of the SiC in that mode throughout the remainder of
irradiation. If the particle does not fail due to debonding, then the particle is checked for failure of the SiC
due to the buildup of internal gas pressure. If cracking of the IPyC occurs, then the particle is checked for
failure of the SiC due to the cracked IPyC at each increment thereafter. If the particle does not fail due to
IPyC cracking, then the particle is checked for failure of the SiC due to buildup of internal pressure. If nei-
ther cracking nor debonding occurs, then the SiC layer is evaluated for failure due to buildup of internal
gas pressure. In addition to these potential failure modes, a particle is evaluated at each time increment for
failure due to the amoeba effect.

If the particle is aspherical, then the stress in the SiC layer due to internal pressure is adjusted to
account for the asphericity. Also, the strength of the SiC layer is based on the stress distribution for an
aspherical particle. Failure of the SiC layer is then measured in terms of this adjusted stress and SiC
strength. If there is no asphericity, then the solution reverts to the traditional pressure vessel failure of a
perfectly spherical particle, with an SiC strength appropriate for this symmetrical stress distribution. PAR-
FUME allows the user to specify statistical distributions for the bond strength and the aspect ratio when
considering debonding and asphericity. It also allows the user to opt out from considering debonding or
asphericity.

In the failure evaluations, the Weibull strength of the SiC layer is based on a stress distribution corre-
sponding to a cracked IPyC, a debonded IPyC, or an intact IPyC, whichever is appropriate. In the evalua-
tion for failure due to gas pressure, the effect of any cracking or debonding of the IPyC layer is neglected.
This is because the crack or debond has only a minor effect on the overall SiC stress distribution once the
hoop stress in the SiC becomes tensile.

PARFUME retains the time and location at which each failure occurs in the Monte Carlo sampling
process. This information is used to construct a time evolution of the failure probability for a batch of par-
ticles. It is also used as input to the fission product diffusion calculations.
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5.4.2.  Integral Formulation 

In the integration approach, the failure probability Pf for a particle batch will be formulated in terms of
an integral. Because the integral typically involves Gaussian statistical distributions for particle design
parameters, it generally cannot be integrated in closed-form. The development of the failure probability
integral and methods for numerically evaluating the integral are described below.

5.4.2.1.  Full Integration

Failure of a particle is assumed to occur when the maximum stress � in the SiC layer exceeds the
strength . Initially assuming that the strength levels  for the particles in a batch are distributed normally
according to a Gaussian distribution, the particles in a batch have a mean strength ,with a standard devi-
ation Ds. The stress � is a function of a parameter vk that also is assumed to vary according to some statis-
tical distribution. Thus, the stress in a particle can be expressed as follows:

(5-15)

Assuming momentarily that the parameter vk is fixed for a batch of particles, then the probability that
the stress in a particle exceeds its strength is:39

(5-16)

This is the failure probability associated with a specific value for the parameter vk. We next consider
variations in this parameter. If ai is the fraction of particles within the batch that have a parameter vk equal
to vki, then the total failure probability for the batch is:

(5-17)

This summation is converted to an integral by writing the ai as a density function for the parameter vk.

(5-18)

If the parameter vk is assumed to be distributed normally with a mean value �k and a standard deviation
of Dk, then

(5-19)

Determining the failure probability for this batch of particles is reduced to performing the integration
above. Because Equation (5-19) must be solved numerically, its accuracy depends on the level of precision
in the numerical integration performed. This is discussed later in more detail.
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The formulation above can be extended to situations where the stress � is a function of several param-
eters that vary according to some statistical distribution. Consider the case of a batch of particles where the
stress is a function of two such parameters, vj and vk:

(5-20)

The probability of failure associated with specific values vj and vk for the two parameters is:

(5-21)

If am is the fraction of particles having parameter vj equal to vjm, and an is the fraction of particles hav-
ing parameter vk equal to vkn, then the total batch failure probability is:

(5-22)

Again, this is converted to an integral by writing am and an as density functions for the parameters vj
and vk. Then,

(5-23)

Assuming that the parameters vj and vk are both normally distributed, then the failure probability
becomes:

(5-24)

A pattern is established by comparing Equations (5-19) and (5-24). Each parameter considered adds a
density function to the integrand and increases the level of integration by one. Any number of parameters
can be accommodated in the formulation, but each adds to the computational time required to perform the
integration.

In what is labeled the “full integration” method, the limits of integration in the mathematical expres-
sion above extend to infinity. In reality, of course, these parameters do not physically cover this range. It is
found that a full value for the integral can be attained by integrating over a range of four standard devia-
tions to each side of the mean value for each parameter. An integral for n parameters then appears as fol-
lows:

(5-25)

Finally, a variation in strengths using Weibull statistics must be considered. Recall that in the Weibull
theory, the probability of failure for the particles in a batch is expressed as follows:
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(5-26)

where �max is the maximum principal stress in the SiC layer.

We now consider the case where the maximum stress is a function of a parameter (�k) that varies with
some statistical distribution.

(5-27)

The failure probability associated with a specific value �k for this parameter is:

(5-28)

The total failure probability for a batch of particles is:

(5-29)

where a(�k) is a density function for the parameter �k.

In the situation where the stress is a function of multiple parameters having normal statistical distribu-
tions, the total failure probability becomes:

(5-30)

Unfortunately, Equation (5-30) cannot be integrated in closed form. The traditional method of deter-
mining the failure probability with Monte Carlo statistical sampling of the integration variables is a means
of evaluating this integral. The other approach exercised in PARFUME is a direct numerical integration of
Equation (5-30).   The integration is generally performed at eleven Gaussian quadrature points over the
range of �i-4Di to �i+4Di for each parameter �/. An odd number of points is used so that an integration is
always performed at the mean value �i for each parameter, which is essential to achieving maximum accu-
racy in the calculation.

An exception to the use of a Gaussian distribution to characterize the statistical variation in a parame-
ter is in the temperature distribution among particles. The temperature of a fuel pebble, for example, is
dependent on its radial position in the pebble. The distribution used to represent the radial density of parti-
cles in a pebble is 3r2/R3, where r is any radial location in the pebble and R is the outside radius of the peb-
ble. When integrated over the range of 0 to R, the density sums to 1.
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The full integration method is executed in the code with a set of nested DO loops, one for each statisti-
cally varying parameter. Each parameter is cycled through its full range of values within its respective
loop.

5.4.2.2.  Fast Integration

The time required to execute the probability calculation of Equation (5-30) depends on how many
parameters are given a statistical variation. For example, the execution time is just a fraction of a second
when only one parameter is statistically varied, no matter how small the failure probability. The computa-
tion time can, though, become inordinately large when a large number of parameters are considered.
Therefore, an approximation is developed below that can substantially reduce the time required to perform
the integration with only a minimal loss of accuracy.

Considering for the moment statistical variations in four parameters, Equation (5-30) can be expressed
as the following integral:

(5-31)

or in the basic form:

(5-32)

where 	�i is the variation in parameter i from its mean value �i. Additionally, the subscript 1,2,3,4 on the
integral I indicates that the integral entails variations in the parameters 1, 2, 3, and 4.

The integrand f(	�1,	�2,	�3,	�4) can be expanded into a Taylor series having the following form: 

(5-33)

The coefficients in this series (aip, bijpq, cijkpqr, and dijkl) are derivatives of the function f with respect
to the parameters �i. The error that would be incurred in dropping some of the summations in this series
may be small, depending on the degree of coupling between the parameters �i. The maximum stress
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g(	1,	�2,	�3,	�4) can similarly be expanded into a Taylor series. A study of the stresses in the coating
layers has revealed that g can be well approximated by carrying only terms involving variations in two or
fewer parameters. In this case, summations in the series involving variations in three or more parameters
can reasonably be neglected. Because the integrand f is strongly a function of the stress g, it can be
expected that summations in its series involving variations in three or more parameters can be neglected as
well.

Prior to eliminating the summations, the following relations can be established from Equations (5-32)
and (5-33):

(5-34)

(5-35)

(5-36)

or

(5-37)

Substituting Equation (5-33) into Equation (5-32), neglecting all summations involving more than two
parametric variations, and utilizing the relations of Equations (5-34), (5-35), and (5-37), the failure proba-
bility integral becomes:

(5-38)

where p<q and only those parameters having a �� that deviates from zero are shown in subscripts. On sim-
plification,
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(5-39)

For the more general case of N variables of integration, Equation (5-39) becomes:

(5-40)

which is simplified to

(5-41)

where p<q. This resolves the multiple integral (over N variables) into a number of subintegrals that each
require integration over two or fewer variables.

There may be some concern that the error associated with neglecting terms involving three or more
parametric variations in the Taylor series for f may become significant if a large number of statistically
varying parameters are considered. If such error becomes significant, Equation (5-41) can be modified to
include the three-level summations [those involving three parametric variations in Equation (5-33)]. To
accomplish this, the following relation is needed to complement Equations (5-34) through (5-37):

(5-42)

Following the same process as before, this leads to the following expression for the multiple integral
involving N variables:

(5-43)

In this case, the full integral is broken into subintegrals that each require integration over three or fewer
variables. It is noted that the approximation equations, Equations (5-41) and (5-43), would apply to essen-
tially any multiple integration, not just the failure probability integral for TRISO-coated fuel particles. The
accuracy in any case is dependent upon the degree of coupling among the integration variables. The time
required to perform the integration using either of Equations (5-41) or (5-43) relative to the full integration
can be measured in terms of the number of integration points required for each. It has been found that the
integrations for a fuel particle can generally be carried out to a high degree of accuracy in PARFUME
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using 11 integration points over the range of each statistically varying parameter. The number of integra-
tion points n needed to perform the full integration of Equation (5-30), then, is:

(5-44)

Resolving the integral into subintegrals up to level two, as in Equation (5-41), reduces the number of
integration points to

(5-45)

whereas the use of Equation (5-43) requires the following number of integration points:

(5-46)

The full integration method is executed in the code with a set of nested DO loops, one for each statisti-
cally varying parameter. Each parameter is cycled through its full range of values within its respective
loop. The two-level method is executed with two nested loops. These two loops execute subintegrals
involving all possible combinations of parameters taken two at a time [the third term on the right-hand side
of Equation (5-41)]. They are also used to execute all subintegrals involving variations in one or no param-
eters [the second and first terms of Equation (5-41) respectively].

Table 5-1 summarizes the number of integration points required for the full, 2-level, and 3-level inte-
gration methods for values of N up to 12. It also shows ratios between the number of integration points
required for each method, which are a direct measure of the time saved in using the 2-level and 3-level
methods. For example, PARFUME would execute a 2-level integration in approximately 1/(4.67&106) the
time required to execute the full integration when 10 variables are considered. While the 3-level integra-
tion method could be implemented if needed, it is not currently employed in PARFUME. 

Table 5-1.  Number of integration points required for the three integration methods. 

Number of variables
Number of integration points Ratios between integration points

full two-level three-level full/two full/three three/two

2 121 121 121 1 1 1

3 1331 397 1331 3.353 1 3.353

4 14641 771 6095 18.99 2.402 7.905

5 161051 1266 14576 127.2 11.05 11.51

6 1.772&106 1882 28502 941.3 62.16 15.14

7 1.949&107 2619 49204 7441 396.0 18.79

8 2.144&108 3477 78013 61651 2748 22.44

9 2.358&109 4456 116260 529162 20282 26.09
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5.5. Resolution of Failure Probabilities in the Integration Method

5.5.1.  Resolution Process

The integration method is implemented in PARFUME in such a manner that in principle it produces
the same failure probability as calculated by the Monte Carlo method. This is done by integrating over a
parameter space consisting of those parameters � that exhibit a statistical variation about a mean value. For
each differential volume element (of parameter space), PARFUME solves incrementally for stresses in a
particle from the beginning to the end of irradiation. It then determines a differential particle failure proba-
bility for each of several failure modes (IPyC cracking, partial debonding, internal pressure, and the
amoeba effect) and adds this to a cumulative probability for each mode. If a failure probability at the end of
a time increment exceeds the accumulated probability at the beginning of the increment, the cumulative
probability for the volume element is increased accordingly. 

To determine the probability that particles will fail due to IPyC cracking, the code first determines the
probability that cracking of the IPyC will occur. It then determines the probability that the SiC layer of a
cracked particle will fail due to the presence of the crack. The product of these probabilities then gives a
probability for particle failure due to IPyC cracking. The probability that particles will fail due to partial
debonding of the IPyC layer is likewise determined by first calculating the probability debonding occurs,
then determining the probability that a debonded particle will fail. A complication in these calculations is
that there are times when IPyC cracking or IPyC debonding would occur in the same particle, introducing
overlap in the probabilities of IPyC cracking and IPyC debonding. To develop an appropriate split between
the probabilities of IPyC cracking and IPyC debonding, the code uses the basic process described below. It
determines maximum values for the IPyC hoop stress and the radial stress at the interface between IPyC
and SiC layers occurring throughout irradiation. It uses the maximum IPyC hoop stress in Equation (5-9)
to determine the probability (within a differential volume element of the parameter space) that the IPyC
would crack, where �max,�ms,and m are now maximum stress, Weibull mean strength, and Weibull modu-
lus values for the IPyC layer. Because the bond strength is currently treated in PARFUME as having a nor-
mal statistical distribution, the code uses Equation (5-24) to determine the probability that the IPyC layer
would debond from the SiC, where g is now the maximum radial stress at the interface and  is the mean
bond strength.

Having determined probabilities that a particle within the differential volume element would crack
(Pa) or debond (Pb), the program now determines what fraction of particles within the volume element will
crack (a), debond (b), or do neither (c). Two conditions that a, b, and c must meet are:

10 2.594&1010 5556 165276 4.67&106 156934 29.75

11 2.853&1011 6777 226392 4.21&107 1.26&106 33.41

12 3.138&1012 8119 300939 3.87&108 1.04&107 37.07

Table 5-1.  Number of integration points required for the three integration methods.  (continued)

Number of variables
Number of integration points Ratios between integration points

full two-level three-level full/two full/three three/two

�s
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(5-47)

(5-48)

A third condition comes from recognizing that the probability that a particle neither cracks nor
debonds (Pc) is:

(5-49)

A particle that would crack may also be a particle that would debond. However, a particle that would
do neither has no such overlap. Hence,

(5-50)

Substituting Equations (5-48), (5-49) and (5-50) into Equation (5-47) gives:

(5-51)

The fractions a and b are calculated above as if the values for the quantities are developed in a single
time step. Since PARFUME solves through irradiation in time increments, the process described above has
to be modified accordingly. Within a time increment, the probabilities for cracking and debonding increase
incrementally by Pa and Pb, respectively, resulting in corresponding increases in the fractions a and b
of a and b. Then Equations (5-47)and (5-48) are modified as follows:

(5-52)

(5-53)

where a and b are the crack and debond fractions at the beginning of the increment. Equations (5-49) and
(5-50) remain unchanged, and the probabilities in these equations are those occurring at the end of the time
increment. Substituting Equations (5-49), (5-50), and (5-52) into Equation(5-53) results in:

(5-54)

The incremental fractions a and b are then added to a and b, respectively, to produce new failure
fractions at the end of the increment.

Once the fractions a, b, and c are determined for the volume element, the program computes a differen-
tial failure probability for each of three failure mechanisms, i.e. IPyC cracking, IPyC debonding, and inter-
nal gas pressure loading. To do this it first calculates the maximum stress in the SiC layer for each of these
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mechanisms in a particle corresponding to the volume element. For IPyC cracking or debonding, this is
done using the statistical methodology described in Section 5.2. For internal pressure loading, the maxi-
mum stress in the SiC layer for a spherical particle is calculated using the solution of Section 4. However,
if asphericity in the particles is considered, then the maximum SiC stress due to internal pressure is calcu-
lated using the methodology described in Section 5.3.2.3. Asphericity can be treated as a statistical param-
eter, in which case the aspect ratio becomes one of the parameters in Equations (5-12) or (5-13).

For each of the three failure mechanisms, the program then applies the maximum SiC stress in the inte-
grand of Equation (5-30) to calculate a differential failure probability. It applies the factors a and b to the
probabilities for IPyC cracking and debonding, respectively. It applies the following factor to the failure
probability for internal pressure loading:

(5-55)

where,

�maxa = maximum principal stress in the SiC layer of a particle having a cracked IPyC (MPa)

�msa = mean strength for the SiC layer of a particle having a cracked IPyC (MPa)

�maxb = maximum principal stress in the SiC layer of a particle having a partially debonded IPyC
(MPa)

�msb = mean strength for the SiC layer of a particle having a partially debonded IPyC (MPa)

m = Weibull modulus for the SiC

The second and third terms in this factor allow a particle that survives either IPyC cracking or debond-
ing to subsequently fail due to internal pressure loading. Finally, PARFUME accumulates total failure
probabilities for each of the three failure modes utilizing Equation (5-30).

If failure due to the amoeba effect is found to occur in a differential volume element during any time
increment, then 100% of the differential failure probability for the element is attributed to the amoeba
effect for that increment.

5.5.2.  Accumulation of Failure Probabilities Through Time

In executing the integration method, PARFUME accumulates a failure probability for each type of
failure mechanism considered (IPyC cracking, failure of the SiC due to IPyC cracking, etc.). In doing this,
it calculates an incremental failure probability for each time increment in the analysis of each particle. The
incremental probability for a time increment in a particle is determined by subtracting the probability for
that failure mechanism at the beginning of the increment from the probability at the end of the increment.
The incremental probability for that time increment for that particle is weighted by the appropriate proba-
bility density functions for that particle, then is added to a cumulative probability for that time increment.
At the end of the integration, then, each time increment has a cumulative failure probability for that failure
mechanism. The cumulative failure probabilities for all increments up to a time ti are then summed to pro-
duce a total failure probability at time ti.
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If failure due to the amoeba effect is found to occur in the analysis of a particle during any time incre-
ment, then the incremental probability for that increment is set to one and is attributed fully to the amoeba
effect. This incremental probability is weighted by the probability density functions for that particle, then
is added to the cumulative failure probability due to the amoeba effect for that time increment.

Figure 5-3 shows a time history calculated for a representative experiment. The failure probability
reaches 2.5&10-5 early during irradiation due to cracking of the IPyC, then levels off for a period of time.
After the neutron fluence reaches 3&1025 n/m2 (E>0.18 MeV), particles progressively fail due to the
buildup of internal pressure until the failure probability reaches 1.8&10-2 at the end of irradiation. 

5.6.  Linking Particle Failures with the Diffusion Calculations

5.6.1.  Monte Carlo

When the Monte Carlo approach is used in the PARFUME program, it is a rather straightforward pro-
cess to link particle failures to the diffusion calculations. For any sampled particle, normal diffusion is
assumed to occur through intact particle layers unless the failure of a coating layer occurs. The strengths of
the three coating layers are randomly sampled for each particle, so these are known quantities for each par-
ticle analyzed. Additionally, the specific location of the particle within the fuel matrix is known, since this
is also determined in the sampling process. The cracking of a pyrocarbon layer or failure of the SiC layer
of a particle occurs if the stress in that layer exceeds its strength. Failures are then determined according to
the process described in Section 5.4.1. Since the location and timing of any coating layer failure becomes
known at the moment it occurs during the solution, diffusivities for the coating layers are immediately

Figure 5-3.  Calculated failure probability time history.
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adjusted and the source term at that location in the fuel matrix is also modified to reflect the failure. The
calculated diffusion for all sampled particles is accumulated into a sum that represents the entire fuel
matrix.

5.6.2.  Full Numerical Integration

When the numerical integration method is used to calculate failure probabilities, Equation (5-30) must
be modified to enable linking particle failures to the diffusion calculations. With each evaluation of the
integrand in Equation (5-30), values are established for all of the integration parameters. This set of param-
eters is used to calculate a stress history for a particle having this set of parameters. While the integration
process according to Equation (5-30) produces an incremental failure probability associated with that set of
parameters and the resulting stress history, it does not delineate the time at which failures occur. This tim-
ing is needed, though, to correctly link the failures to the diffusion calculation. To make this link, specific
values must be established for the strengths of the coating layers so that the time at which the stress reaches
the layer strength (i.e., failure occurs) can be determined. This is achieved by differentiating the expression
for failure probability [within brackets on the right-hand side of Equation (5-30)] with respect to the stress
s and integrating from 0 to the stress level . This adds another variable to the integral as fol-
lows:

(5-56)

where

(5-57)

As with Equation (5-24) the stress s within the integral of Equation (5-56) becomes the strength vari-
able for the coating layer, except that the strength has a Weibull distribution rather than a Gauss distribu-
tion. Integrating the strength variable over the range of 0 to g requires dividing this integration region into
intervals. The strength value occurring at the midpoint of an interval represents the strength for that inter-
val. Thus, in addition to the set of values for all other parameters we now have a specific value for the coat-
ing layer strength for each evaluation of the integrand of Equation (5-56). This enables a determination of
the time at which a coating layer failure occurs. The failure probability density associated with an interval
is obtained by antidifferentiation of the bracketed quantity in the integrand of Equation (5-56) and applica-
tion of integration limits at the left (L) and right (R) ends of the interval, which gives:

(5-58)

This density must be applied to the fission product diffusion calculation for the particle represented by
the set of parameters under consideration (including coating layer strength) to properly weight the diffu-
sion calculation. If the coating layer strength for a particle is greater than , then the density
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must be applied to the diffusion calculation for a particle where the coating layer does not fail. The density
of Equation (5-59) is the probability of survival for the coating layer. These densities are applied in addi-
tion to the appropriate densities for the other integration variables.

The discussion above demonstrates the process of resolving the Weibull expression for failure proba-
bility into a strength distribution for a coating layer that can then be used to establish the timing of coating
layer failures. Since fission product diffusion is affected by failure in any of the three coating layers, this
process must be exercised for all three layers. Thus, the analysis of fission product diffusion using the inte-
gration scheme adds three integration variables to the overall integral.

5.6.3.  Fast Numerical Integration

As stated above, incorporating particle failures into the diffusion calculations with the full integration
method entails the addition of three integration loops, which significantly increases the computational time
required to perform the integration. Therefore, the fast integration approach has also been adapted to calcu-
lating failure probabilities when diffusion calculations are performed. The method currently used in PAR-
FUME when diffusion calculations are performed with fast integration is to add two DO loops that are
devoted specifically to IPyC and SiC strength variables. This assures that subintegrals are evaluated that
entail variations in two non-strength parameters in conjunction with these strength variables. The OPyC
strength variable is treated in the original two loops along with the other statistically varying parameters.
OPyC failures generally occur much less frequently than IPyC failures, so need not be captured to the same
level of accuracy. With this approach, subintegrals are evaluated that entail variations in one non-strength
parameter in conjunction with the OPyC strength variable.

A fourth strength variable considered in PARFUME is the IPyC/SiC bond strength. Unlike the IPyC,
SiC, and OPyC strength variables, the bond strength is treated with a Gaussian distribution rather than a
Weibull distribution. This is done because there is not sufficient bond strength data to identify the parame-
ters of a Weibull distribution or to demonstrate that a Weibull distribution is applicable. In fact, users may
often elect to give the same of value of bond strength to all particles in a batch rather than treat it with a sta-
tistical distribution. When the bond strength is given a statistical distribution, PARFUME treats it as an
integration variable whether or not a diffusion calculation is performed. This is because a Gaussian distri-
bution, unlike a Weibull distribution, has to be integrated numerically.

As with the other strength variables, the integration region for bond strength is divided into uniformly
spaced intervals up to the stress level g( j, k,...). In this case g( j, k,...) is the maximum radial
(contact) stress between the IPyC and SiC layers that occurs anytime in the irradiation history. The bond
will fail for all of these intervals at some time during irradiation. The final integration interval extends
from g( j, k,...) to infinity, and a particle having a bond strength anywhere in this interval will not
debond during irradiation. As with the OPyC strength, the bond strength is treated along with the non-
strength variables in the first two DO loops of the fast integration method. This saves significantly in the
execution time for the code, and has been shown to produce accurate results in determining probabilities of
debonding and failure of the SiC due to debonding.

	� 	� 	� 	�

	� 	�
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6.  FISSION PRODUCT DIFFUSION MODELS

Predicting fission product transport by diffusion is necessary for reactor safety and source term assess-
ments. PARFUME allows simulation of fission product (FP) transport from individual TRISO-coated fuel
particles to the surrounding graphite and from the surrounding graphite to a release from the fuel element.
These capabilities are based on portions of existing coding extracted from the Tritium Migration Analysis
Program, TMAP440,41 and adapted to run within PARFUME. Additionally, development is underway on
an analytical diffusion model.

A model accounting for release of short-lived fission product gases from failed particles and from ura-
nium contamination in the fuel matrix material is incorporated into PARFUME. This correlation calculates
release rate to birth rate (R/B) ratios for several prominent fission product nuclides. Also based upon the
Booth equivalent sphere gas release model 42, this correlation uses different reduced diffusion coefficients
for release from failed particles 43 and from uranium contamination.45

6.1.  TMAP

TMAP4, a finite difference based code, was originally developed to assist in evaluation of tritium
losses from fusion reactor systems during normal and accident conditions. However, it became evident that
TMAP4 has application to a much wider variety of problems, including fuel particle analysis. TMAP4
incorporates a one-dimensional diffusion capability that predicts the thermal response of structures (i.e.,
fuel particles), and solves equations for gas movement through surfaces (layer interfaces) and in bulk
materials (i.e., layers). Specifically TMAP4 calculates:

• Movement of species across structure surfaces, governed by dissociation/recombination or by a
solution law, such as Sieverts’ or Henry’s Law.

• Movement by Fick’s diffusion law in the bulk of a structure.
• Thermal response of structures to applied heat or boundary temperature loading conditions.
• Chemical reactions within volumes.
• Convective flow between volumes.

Note that TMAP4 was developed for a plate geometry. The corresponding models to simulate move-
ment of FP species across material layer interfaces and through bulk materials was extracted from TMAP4
and modified for use in PARFUME. In addition, those models were modified within PARFUME to treat
diffusion within cylindrical and spherical coordinate systems (associated with prismatic and pebblebed
reactor geometries).

Similar to previously discussed thermal analyses see Section 3, both “micro” and “macro” diffusion
analyses are performed. In this case, FP transport first involves diffusion calculations from individual fuel
particles (or the “micro” analysis). Results from each fuel particle then serve as time- and position-depen-
dent FP “sources” for the subsequent fuel element transport analysis (or the “macro” analysis). Details
regarding the implementation of fuel particle and fuel element FP transport models in PARFUME are pro-
vided in Sections 6.2 and 6.3, respectively.
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6.2.  Micro Solution

FP transport for fuel particles, or the micro solution, is based on a model with five different materials
(the kernel, buffer, IPyC, SiC, and OPyC). It is assumed that FPs flow without resistance through the buf-
fer-to-IPyC gap, if one develops during irradiation. Nodalization of the five remaining materials is handled
automatically within the code. Specifically, a node is placed on the inner and outer surface of each material
layer. Each layer is then divided into a number of elements of uniform thickness where the thickness is as
close to 5 �m as possible. Interior nodes are then placed at the center of each element. This nodalization
scheme is established at time = 0 for each particle calculation and dimensions are based on user input plus
the statistical variations that may be considered for each particle. There are no changes in nodalization cor-
responding with changes in particle geometry that may develop during irradiation.

The model for FP diffusion in plane geometry was derived from the general equation for the conserva-
tion of atoms. Specifically, the change in the atom concentration (of any specie of interest) can be deter-
mined through the application of an atom balance (for the specie). The corresponding equation is given by

(6-1)

The diffusive atom flux (for any specie of interest) is

(6-2)

The required derivatives for the numerical solution of Equation (6-1) are based on a space-centered,
implicit difference approximation for the nodalization scheme shown in Figure 6-1. Specifically,
Equations (6-1) and (6-2) can be combined to give  

(6-3)

Figure 6-1.  Finite difference notation used in the numerical diffusion model.
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where

x = the spatial coordinate (m),

and the ‘o’ superscript refers to results from the previous time step.

It should be noted that current time step concentrations (Ci-1, Ci, and Ci+1) are the only unknowns in
Equation (6-3). As such, the equation can easily be rewritten in tridiagonal form by collecting terms rela-
tive to the unknown concentrations. A series of such equations leads to a tridiagonal matrix, which is
solved via Gaussian elimination within PARFUME.

Extensions of the existing numerical model were needed to also allow simulation of fission product
diffusion in both cylindrical and spherical coordinates. The spherical coordinate extension should increase
fidelity when modeling TRISO-coated fuel particles and pebble bed reactors. The cylindrical coordinate
extension should increase fidelity when modeling prismatic reactors.

In cylindrical coordinates, Equations (6-1) and (6-3) become

(6-4)

and

(6-5)

where r = the spatial coordinate (m).

In spherical coordinates, Equations (6-1) and (6-3) become

(6-6)

and

(6-7)

A simplification is evident through examination of Equations (6-3), (6-5), and (6-7). Specifically, if x
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(6-8)

where

n (the spatial exponent) = 0 for plane geometry,

= 1 for cylindrical geometry,

= 2 for spherical geometry.

In PARFUME, user input provides all of the information needed to automatically assign values for the
spatial exponent n. Specifically, n is always set equal to 2 when simulating diffusion through TRISO-
coated fuel particles. Diffusion through the fuel matrix corresponds with the reactor type, which is a
required user input. Currently supported options include ‘PEBBLEBED’, resulting in n = 2; ‘PRIS-
MATIC’, resulting in n = 1; and ‘PLANEGEOM’, resulting in n = 0.

The radial position (within the fuel element) of the fuel particle being analyzed is determined at the
beginning of each particle FP transport simulation. This ultimately allows development of a position-
dependent FP “source” to be used in fuel element transport analyses. During each time step throughout the
particle simulation, calculated release fractions are used with the incremental FP yield to assign the initial
deposition of FPs from the analyzed particle into the fuel element. FP contamination is assumed to begin
diffusion from the outer edge of the buffer.

FP transport calculations assume a “non-flow” condition at the fuel particle center (due to symmetry)
and a fixed concentration of FPs of “0” on the fuel particle outer surface (i.e., the OPyC outer surface). Use
of a fixed outer surface concentration (of essentially any arbitrary value) is recommended to determine the
net integrated flow of FPs into or out of a material segment. Calculation of the net integrated flow of FPs is
needed as the “source” input for subsequent fuel element transport analyses. Although trapping models,
used to account for species trapping due to microstructure irregularities, are implemented in PARFUME,
current calculations use diffusivities that effectively combine all transport processes for analysis using a
simplified diffusion approach.

FP transport calculations are first completed for “nominal” fuel particles (i.e., those fuel particles that
normally remain intact) to establish a “baseline” for the FP “source” used in fuel element transport analy-
ses. Subsequent calculations for all other fuel particles are then completed to add the effects of particle fail-
ures to the “baseline”. Specifically, provisions are included to allow incremental failures of the 3 outer
most layers (i.e., the IPyC, SiC, and OPyC). Diffusivities are increased to an arbitrarily large value (cur-
rently 1x10-6) in any layer that has been predicted to fail. FP transport from each failed particle that is
above the “baseline” is then added to complete the time- and position-dependent “source” for FP transport
from fuel elements.
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6.3.  Macro Solution

Fuel element FP transport, or the macro solution, is based on a model with two different materials: the
graphite containing fuel particles and the surrounding graphite without fuel particles. User input defines
the dimensions and the number of nodes in each. As previously indicated, PARFUME thermal models cal-
culate time-dependent temperatures for the nodes based on user-specified boundary conditions and the
total particle heat load.

The time- and position-dependent FP “source” established during fuel particle analyses is augmented
with FP contributions due to uranium contamination. Specifically, uranium contamination (as specified
through user input) is initially assumed to be uniformly distributed on the outer surface of OPyC layer
throughout the fueled region of the fuel element model. Addition of FPs to the fuel particle FP “source” are
based on the level of contamination, the FP yield, and the calculated release fraction.

Using Equation (6-8), FP transport calculations then proceed assuming a “non-flow” condition of FPs
at the fuel element centerline (due to symmetry) and a fixed concentration of FPs of “0” on the fuel ele-
ment outer surface (i.e., the outer surface of the unfueled graphite). Use of a fixed outer surface concentra-
tion (of essentially any arbitrary value) is the approach recommended to determine the net integrated flow
of FPs into or out of a material segment. Calculation of the net integrated flow of FPs is needed to quantify
the fuel element FP release. The calculations use diffusivities that effectively combine all transport pro-
cesses for analysis using a simplified diffusion approach.
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7.  MATERIAL PROPERTIES

Material properties are needed to support the three primary models contained in the PARFUME code,
i.e. the mechanical, thermal, and diffusion models. A discussion of each model including capabilities and
limitations is included below.

7.1.  Mechanical

The mechanical properties used in the stress analysis of fuel particles in PARFUME were obtained
from a report compiled by the CEGA Corporation25. These properties include elastic moduli and Poisson’s
ratios, the creep coefficient and Poisson’s ratio in creep for the PyC layers, swelling strain rate data for the
PyC layers, Weibull statistical parameters, and coefficients of thermal expansion. With the exception of
the swelling strain data, the material properties are incorporated into PARFUME with a straightforward
application of equations given in Reference 25. 

A linear viscoelastic material model and Weibull statistical strength theory are used to predict material
behavior and failure strengths for the buffer layer, PyC layers, and SiC layer. The strain components mod-
eled include thermal, elastic, irradiation-induced swelling, and irradiation-induced steady-state creep.

7.1.1.  Assumptions and Approximations

Due to uncertainties or incompleteness in the material data, several assumptions and approximations
were required to develop the material properties25. Additionally, the majority of the material properties
were obtained from strip samples (i.e., flat geometry). Though the coating layers in the fuel particle have
spherical geometry, it is assumed that these material properties of PyC and SiC are representative. Addi-
tional details, related to mechanical properties, are presented here: 

• In general, application of the material models is limited to the range of 4 x 1025 n/m2, E > 0.18
MeV) for fast neutron fluence and 600o to 1300oC for irradiation temperature. 

• The densities of the dense structural PyC and the porous PyC are limited to 1.8 to 2.0 Mg/m3 and
approximately 0.9 to 1.1 Mg/m3, respectively; the density of SiC is at least 3.18 Mg/m3.

• Due to the scarcity of material data, it is assumed in the material models that the effects of several
parameters (i.e., temperature, fluence, density) are mutually independent and their combined effect
can be obtained by multiplying them together. For example, the modulus of elasticity for dense
PyC is approximated as a product of several effects as shown in Equation (7-1). 

• Irradiation-induced creep in the pyrocarbon layers is treated as secondary creep, i.e. the creep
strain rate is proportional to the level of stress in the pyrocarbon. The creep coefficient increases
significantly with increases in the irradiation temperature.

• Thermal expansion of the pyrocarbons is anisotropic, and is a function of the Bacon Anisotropy
Factor (BAF) and temperature. 

• Swelling in the pyrocarbon layers is anisotropic and a function of four variables, i.e. fluence level,
pyrocarbon density, degree of anisotropy (as measured by BAF), and irradiation temperature. The
magnitude of the shrinkage increases as BAF increases or as the irradiation temperature increases. 
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• The SiC layer has an elastic modulus (stiffness) that is an order of magnitude higher than that for
the pyrocarbons.

• The dependence of Poisson ratio, , (for the PyC layers) on density, crystallite size, temperature
and fluence is largely unknown; therefore, it is assumed that Poisson’s ratio is independent of
these parameters.

• Most available mechanical property test data for PyC correspond to densities of 1.5 Mg/m3 or
higher. For the buffer layer (porous PyC), which has a density of approximately 1.0 Mg/m3, a
large extrapolation of the data is required, which may significantly affect its accuracy.

7.1.2.  Modulus of Elasticity

7.1.2.1.  Pyrocarbons (IPyC and OPyC layers)

As shown in Equation (7-1), the elastic modulus for the PyC layers is applied as a function of four
variables, i.e. fluence level ( ), pyrocarbon density ( ), degree of anisotropy as measured by the BAF,
and irradiation temperature (T).

(7-1)

The final equations used in PARFUME for elastic modulus in the tangential and radial directions,
respectively, are as follows:

(7-2)

(7-3)

where = density (Mg/m3), BAF = degree of anisotropy, = fluence (1025 n/m2), T = temperature - 20 
(  ), E01 = E03 = 25.5 GPa.

In PARFUME, the value for crystallite diameter size, , is set equal to 30 Angstroms, resulting in the
fourth factor of Equations (7-2) and (7-3) taking on a value equal to 1.

7.1.2.2.  Pyrocarbon (buffer layer)

PyC exhibits isotropic characteristics at low density, i.e. densities less than 1.8 Mg/m3; this density
corresponds to a porosity, p, of 20%. In PARFUME, a density of 1 Mg/m3 is assumed for the buffer layer,
which corresponds to a porosity of 56%. The following relation is used to compute modulus of elasticity:

(7-4)

where E is in units of psi, and  and T are as above.
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7.1.2.3.  Silicon Carbide (SiC Layer)

The elastic modulus for SiC is a function of temperature as shown in Table 7-1.

The elastic moduli at temperatures between those listed are determined by linearly interpolating
between the values given. 

7.1.3.  Poisson’s Ratio

7.1.3.1.  Pyrocarbons (IPyC and OPyC layers)

Since the dependency of Poisson’s ratio ( ) on the various factors which effect material properties is
unknown, it is assumed that the value for  is a constant 0.23, which is the value prescribed in
Reference 25 for isotropic pyrocarbon.

7.1.3.2.  Pyrocarbon (buffer layer)

Since the buffer layer behaves as an isotropic material at low density, a value of 0.23 for Poisson’s
ratio is used in PARFUME.

7.1.3.3.  Silicon Carbide (SiC Layer)

In accordance with recommendations of Reference 25, the Poisson’s ratio for the SiC is set equal to
0.13 in PARFUME.

7.1.4.  Irradiation-induced Dimensional Change

7.1.4.1.  Pyrocarbons (IPyC and OPyC layers)

Incorporating the swelling strain physics requires some detailed interpolation to treat the dependence
on temperature, density, and BAF. This process starts with fourth-order polynomials that define swelling

Table 7-1.  SiC Modulus of Elasticity as a Function of Temperature

T ( ) E (MPa)

25 4.276x105

940 3.752x105

1215 3.400x105

1600 1.979x105

�C

�
�
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strains as a function of fluence at given values of BAF (ranging from 1.0 to 1.3333) and temperature
(600�C, 1032�C, or 1350�C). The general form of the polynomial is shown in Equation (7-5). 

(7-5)

where the subscript i represents either the radial (r) or tangential (t) component of strain; the isotropic com-
ponent of strain (i.e., ) is represented as . These polynomials are differentiated to give third-
order polynomials for swelling strain rates. Polynomial coefficients are given in Table 7-2 for both the
radial and tangential directions.  

Table 7-2.  Polynomial Coefficients for PyC with =1.96 Mg/m3

T (C) Component R (note 1) BAFo a1 a2 a3 a4 r (note 2)

1350 radial 0.61 1.2787 3.7162 -2.7042 1.1799 -0.13910 1.0000

1350 radial 0.63 1.1746 1.2093 -0.53861 0.43114 -0.05590 1.000

1350 radial 0.65 1.0769 -0.89522 0.80331 -0.09009 0.00467 0.999

1350 radial 0.656 1.0488 -1.4964 1.16621 -0.30106 0.03475 0.998

1350 radial 0.662 1.0212 -1.5433 0.59804 -0.09997 0.00978 0.999

1350 isotropic 2/3 1.000 -1.4284 -0.19563 0.18991 -0.02591 0.998

1350 tangential 0.67 1.0303 -2.2468 0.48243 -0.07687 0.00464 1.000

1350 tangential 0.675 1.0769 -2.8293 0.76088 -0.22314 0.02431 1.000

1350 tangential 0.68 1.125 -3.2555 0.90423 -0.33175 0.04329 0.999

1350 tangential 0.69 1.2258 -4.4478 1.6032 -0.58683 0.07458 0.999

1350 tangential 0.70 1.3333 -5.6714 2.4192 -0.86155 0.10668 0.999

1032 radial 0.61 1.2787 -0.45900 0.51172 -0.03245 -0.00142 0.949

1032 radial 0.63 1.1746 -1.1854 0.64995 0.01380 -0.01284 0.988

1032 radial 0.65 1.0769 -1.8169 1.1085 -0.23868 0.02484 0.997

1032 radial 0.656 1.0488 -2.0047 1.3038 -0.3728 0.04538 1.000

1032 radial 0.662 1.0212 -2.0752 1.37845 -0.48993 0.06602 1.000

1032 isotropic 2/3 1.000 -1.5239 0.13048 0.06299 -0.01072 1.000

1032 tangential 0.67 1.0303 -1.5759 0.09019 0.05306 -0.00815 1.000

1032 tangential 0.675 1.0769 -1.3220 -0.51928 0.27603 -0.03465 1.000

1032 tangential 0.68 1.125 -1.1870 -0.90635 0.41046 -0.05067 1.000

1032 tangential 0.69 1.2258 -0.96963 -1.5911 0.64689 -0.07682 1.000

1032 tangential 0.70 1.3333 -0.81239 -2.20760 0.88496 -0.10457 0.999

600 radial 0.61 1.2787 0.40265 -0.16501 0.03676 0.00706 0.999

600 radial 0.63 1.1746 -0.15714 -0.14889 0.07546 -0.00293 0.985

�i a1� a2�
2 a3�

3 a4�
4+ + +=

�t �r= �T
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Notes:
(1) R = orientation parameter giving a measure of anisotropy
(2) r = statistical coefficient indicating closeness of curve fit to data

Isotropic swelling strain computed using Equation (7-5) is adjusted for other densities by applying a
scaling factor, ,defined in Equation (7-6). The scaling factor is the ratio of the isotropic strain at a given
density to the isotropic strain at a density of 1.96 Mg/m3. The values for ( ) are obtained from Table 7-
3.

= ( )/ ( =1.96 Mg/m3) (7-6)

Adjustments for density at other BAF values are made by applying a scaling factor v� to the difference
between the radial and tangential strain components; as defined in Equation (7-7), the scaling factor is the
ratio of the strain difference at a given density to the strain difference at a density of 1.96 Mg/m3. The val-
ues for ( ) are obtained from Table 7-4.

600 radial 0.65 1.0769 -0.78045 -0.02975 0.06655 -0.00626 0.994

600 radial 0.656 1.0488 -0.94333 -0.03589 0.08184 -0.00958 0.996

600 radial 0.662 1.0212 -1.1064 -0.03128 0.09184 -0.01220 0.998

600 isotropic 2/3 1.000 -1.2408 0.00175 0.08533 -0.01253 0.998

600 tangential 0.67 1.0303 -1.3855 0.05307 0.07620 -0.01245 0.999

600 tangential 0.675 1.0769 -1.4679 -0.02836 0.12139 -0.01948 0.999

600 tangential 0.68 1.125 -1.6466 0.03928 0.10067 -0.01764 0.999

600 tangential 0.69 1.2258 -1.8499 -0.09358 0.18119 -0.03036 0.999

600 tangential 0.70 1.3333 -2.1919 0.02675 0.15352 -.02972 0.999

Table 7-3.   at 1100 C Irradiation Temperature to 3.7x1025 n/m2

, g/cm3 1.0 1.2 1.4 1.5 1.6 1.8 1.9 1.96 2.0

, % -16.15 -13.11 -9.98 -8.93 -6.97 -4.42 -3.41 -2.75 -2.33

Table 7-2.  Polynomial Coefficients for PyC with =1.96 Mg/m3 (continued)

T (C) Component R (note 1) BAFo a1 a2 a3 a4 r (note 2)

�

u�

�T �

u� �T � �T �

�T �

�

�T

�r �t–
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= ( )/ ( =1.96 Mg/m3)  (7-7)

Using Equations (7-8) and (7-9), the general process used to compute strain is summarized below.

(7-8)

(7-9)

As shown in Figure 7-1, which was extracted from Reference 25, the radial and tangential components
of swelling strain at any density straddle the isotropic swelling strain at that density. 

For the density of 1.96 Mg/m3, this relationship can be approximated as follows:

(7-10)

where �r 7 �t. The quantity k is determined by solving Equation (7-10) using the polynomial data for the
standard density, � = 1.96 Mg/m3. The same value of k is then used to make this interpolation at other den-
sities. This results in the following expressions for the swelling strain rates at any density:

(7-11)

(7-12)

These density interpolations are made at the two temperature values that straddle the temperature
under consideration. Then, the final swelling strain rates are determined by interpolating between these
two temperature values. 

Table 7-4.   at 1100 C Irradiation Temperature to 3.7x1025 n/m2

, g/cm3 1 1.2 1.4 1.5 1.6 1.8 1.9 1.96 2.0

, % 0 0.5 1.1 1.65 2.45 6.305 7.9 9.6 11.1

�� �r �t–
 � � �r �t–
 � �

�r �t– �

�

�r �t–

�T� u��T=

�r� �t�– v� �r �t–
 �=

�T �t k �r �t–
 �+=

�rp up�T vp �r �T–
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Reference 25 presents a relationship between BAF and fluence, which indicates that BAF increases
steadily with fluence. The relationship (shown in Table 7-5) is the ratio between BAF at fluence  and
BAF at zero fluence and is programmed into the PARFUME code. 

7.1.4.2.  Pyrocarbon (buffer layer)

Similar to the PyC layer, dimensional changes such as swelling are computed using Equation (7-5).
The coefficients for the equation are obtained from Table 7-2. Since the buffer layer is assumed to behave

Figure 7-1. Irradiation Strain vs. Preirradiation Density for PyC irradiated at 1100 C to 3.7x1025 n/m2

Table 7-5.   BAF as a function of fluence

, 1025 n/m2 0 1 2 3 3.5 4 4.5 >5

BAF 1.0000 1.0019 1.0114 1.0219 1.0786 1.0324 1.0362 1.0381

�

�

�
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as an isotropic material, the coefficients used correspond to a BAFo = 1 associated with the temperatures of
1350 oC, 1032oC, or 600oC. Deformation at other temperatures is determined by interpolating between
these temperatures. 

7.1.4.3.  Silicon Carbide (SiC Layer)

Irradiation-induced dimensional change for the SiC layer is assumed to be negligible in accordance
with the recommendation of Reference 25. This has historically not been included in performance models,
though Reference 25 indicates that there can be situations where it is significant, such as “when either or
both of the IPyC and OPyC peel away from the SiC layer.” Irradiation-induced swelling of the SiC could
be readily added to the PARFUME model using the methodology presented in Section 4 if an analysis of
data, such as in References 25 and 44, indicate a need to do so.

7.1.5.  Weibull Strength Parameters

The Weibull characteristic strength ( ) for the PyC layers is a function of BAF, temperature, and flu-
ence. The Weibull modulus for the IPyC is held constant throughout irradiation. Reference 25 indicates
that the strength of the SiC may be a function of temperature, but that this dependence needs further study.
The Weibull characteristic strength and modulus for the SiC are therefore currently held constant through-
out irradiation.

7.1.5.1.  Pyrocarbons (IPyC and OPyC layers)

The Weibull statistical strength theory is applied in the code according to the following formula:

(7-13)

It is noted that, since compressive stresses do not contribute to failure of a coating layer, only tensile
stresses are included in the integral above.

In keeping with recommendations of Reference 25, the Weibull modulus for the pyrocarbon layers is
not treated as a function of fluence or temperature. A value of 9.5, which corresponds to a density of
1.9 Mg/m3, is assumed for the modulus.

The second Weibull parameter, the characteristic strength of the pyrocarbons, is a function of anisot-
ropy and is determined from the following equation for room temperature:

(7-14)

where BAFo is the unirradiated value of BAF. The characteristic strength has units of MPa-m3/9.5.

At other temperatures and non-zero fluence, Equation (7-14) is multiplied by the factor (E0i/E0)1/2 as
follows:

�o

Pf 1 � �0)
 �m Vd
V
�–exp–=

�0 154.46BAF0
2 141.1BAF0–=
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(7-15)

where

= fluence (1025 n/m2)

T = temperature - 20 ( ) and Tr = room temperature - 20 ( )

7.1.5.2.  Pyrocarbon (buffer layer)

Currently, the evaluation of buffer layer failure is not included in PARFUME.

7.1.5.3.  Silicon Carbide (SiC Layer)

The following Weibull parameters are used for the SiC layer in PARFUME:

m = 6 and =9.64 MPa-m3/6

7.1.6.  Irradiation-induced Creep

7.1.6.1.  Pyrocarbons (IPyC and OPyC layers)

Irradiation-induced steady state creep is treated as secondary creep with a coefficient that is a function
of pyrocarbon density and irradiation temperature. Though transient creep could have an effect early in
irradiation, the parameters needed to model it are not well established. Furthermore, a study of transient
creep46 showed it to have at most a nominal effect on particle stresses. The steady state creep coefficient is
obtained from the following equation:

(7-16)

where T = temperature ( ) and KS has units of 10-25(MPa-n/m2)-1. Note that due to a lack of available
data, KS is assumed to be independent of fast fluence. Note that the code provides the user with an input
parameter called CREEPAMP, which is a factor applied to KS that can be used to amplify (or reduce) the
creep coefficient if desired.

7.1.6.2.  Pyrocarbon (buffer layer)

Using a buffer density equal to 1 Mg/m3, Equation (7-16) is used to compute the steady state creep
coefficient for the buffer layer.

7.1.6.3.  Silicon Carbide (SiC Layer)

Irradiation-induced creep in the SiC layer is not computed in PARFUME.

E0i

E0
-------� �
� �

1 2) 1 0.23�+
 � 1 0.00015T+
 �
1 0.00015Tr+------------------------------------------------------------------

1 2)
=

�

�C �C
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KS 1 2.38 1.9 �–
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7.2.  Thermal

7.2.1.  Thermal Conductivity

Functional relationships for the thermal conductivity for PyC and UO2 were obtained from Reference
47. The relationships are presented below. Due to the lack of published UCO material properties and
respective correlations, functional relationships for UCO are assumed to be the same as UO2.

7.2.1.1.  Pyrocarbons (IPyC and OPyC layers)

k = 4 W/m/K

7.2.1.2.  Pyrocarbon (buffer layer)

k = 0.5 W/m/K

7.2.1.3.  UO2 Fuel

 in W/m/K and T in (7-17)

for

(7-18)

for

7.2.1.4.  SiC Layer

 in W/m/K and T in 

7.2.1.5.  Matrix

The correlation used in PARFUME for the matrix thermal conductivity was obtained from
Reference 48 where: 

(7-19)

(7-20)

(7-21)

k T
 � 0.0132e1.88E 3T– 4040
464 T+------------------+= �C

T 1650 �C8

k T
 � 0.0132e1.88E 3T– 1.9+=

T 1650 �C9

k T
 � 17885
T 273+------------------ 2+= �C

k T
 � f unirradiated
 � f fluence
 � f packing
 � f matrix density
 �6 6 6=

f unirradiated
 � k100 1 �T�e:T–! "=

f fluence
 � 1 ;– 1 e <– T–! " �=–=
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(7-22)

(7-23)

and

T = temperature in oC and  = T - 100 oC

Note that for A3-27 material (i.e., carbon) heat treated at 1800 C:

k100 = 47.4 W/mK

 = 9.7556x10-4

 = -6.0360x10-4

7.2.2.  Specific Heat Capacity

7.2.2.1.  Pyrocarbons (IPyC and OPyC layers)

The specific heat capacity for the IPyC and OPyC is not required in PARFUME since a quasi-steady
approach is utilized in the heat transfer calculations for fuel particles.

7.2.2.2.  Pyrocarbon (buffer layer)

The specific heat capacity for the buffer layer is not required in PARFUME since a quasi-steady
approach is utilized in the heat transfer calculations for fuel particles.

f packing
 � 1 P–

1 P
2---+

-------------=

f matrix density
 � matrix density
1.7 mg/m3----------------------------------=

T�

= fast neutron fluence in n/m2 for E>0.18 MeV
1.52x1025 n/m2------------------------------------------------------------------------------------------------------------=

; 0.940 0.604 T
1000------------� �
� �–=

< 2.960 1.955 T
1000------------� �
� �–=

� 0.043 T
1000------------� �
� � 0.008 T

1000------------� �
� �

8
–=

P number particles per compact
 � volume per particle
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-------------------------------------------------------------------------------------------------------------------------------=
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7.2.2.3.  Fuel

The specific heat capacity for fuel is not required in PARFUME since a quasi-steady approach is uti-
lized in the heat transfer calculations for fuel particles.

7.2.2.4.  Matrix

The specific heat capacity correlation for the fuel element matrix, shown in Equation (7-24) for carbon
brick was taken from Reference 49.

(7-24)

The units for specific heat capacity are J/(m3K) and 

(7-25)

The minimum allowed value for specific heat capacity is 3.54x10-6 J/(m3-K).

7.2.3.  Thermal Expansion

7.2.3.1.  Pyrocarbons (IPyC and OPyC layers)

The coefficients of thermal expansion in the radial and tangential directions for the pyrocarbons are
functions of an orientation parameter R as follows:

in units of 10-6/ , where  and , and the orientation parameters in the radial and tan-
gential directions are related to the BAF as follows:

and A is a temperature adjustment factor given by

and T is the temperature of the pyrocarbon layer in .

cp 1.75x106 6.45 3.14T 2.809T2– 0.959T3+ +
 �=

T Co

1000------------=

�r A 37.5Rr– 30+
 �=
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7.2.3.2.  Pyrocarbon (buffer layer)

The buffer layer utilizes the equations presented in 7.2.3.1. Due to its isotropic behavior,
.

7.2.3.3.  Silicon Carbide (SiC Layer)

The thermal expansivity of SiC has a mean value of 4.9x10-6 per oC for a temperature range between
22 and 1000 ; furthermore, it is assumed that thermal expansivity remains constant between 900
and 1300 . Therefore, a constant value of 4.9x10-6 per  is used in PARFUME. Note that the pres-
ence of free carbon in the SiC layer could reduce the thermal expansivity by 40%.

7.3.  Diffusion Coefficients

Currently PARFUME uses models available in TMAP (The Tritium Migration Analysis Program), a
finite difference based code, to predict fission product diffusion. TMAP incorporates a one-dimensional
diffusion capability that predicts the thermal response of structures (i.e., fuel particles), and solves equa-
tions for gas movement through surfaces (layer interfaces) and in bulk materials (i.e., layers). In order to
predict the migration of fission products, diffusion coefficients must be determined.

Diffusion coefficients for all nuclides considered within the PARFUME FP transport models are listed in
Table 7-6.46 The corresponding diffusivities can be calculated using these coefficients in an Arrhenius-
type equation given by  

(7-26)

where

 = the pre-exponential factor (m2/s),

 = the activation energy (J/mol),

 = the gas constant (8.3142 J/mol K), and

 = temperature (K).

Rr Rt R 2 3)= = =
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Table 7-6.  PARFUME diffusion coefficients.

Material Nuclide D0,1 (m2/s) Q1 (kJ/mol) D0,2 (m2/s) Q2 (kJ/mol)

fuel kernel
(either UO2 or UCO)

Ag 6.7e-9 165

Cs 5.6e-8 209 5.2e-4 362

Kr
(normal operation) 1.3e-12 126

Kr
(accident conditions) 8.8e-15 54 6.0e-1 480

Sr 2.2e-3 488

Buffer

Ag 1.0e-8 0

Cs 1.0e-8 0

Kr 1.0e-8 0

Sr 1.0e-8 0

PyC

Ag 5.3e-9 154

Cs 6.3e-8 222

Kr 2.9e-8 291 2.0e5 923

Sr 2.3e-6 197

SiC

Ag 3.6e-9 215

Csa 5.5e-14*e=/4.5 125 1.6E-2 514

Kr
(temperature < 1626 K) 8.6e-10 326

Kr
(temperature > 1626 K) 3.7e1 657

Sr 1.2e-9 205 1.8e6 791

matrix graphite
(either A3-3 or A3-27)

Ag 1.6e0 258

Cs 3.6e-4 189

Kr 6.0e-6 0

Sr 1.0e-2 303

a. Note that =,= fast neutron fluence (e25 n/m2, E > 0.18 MeV).
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Appendix A

Equations for quantities contained in the derivations of Section 4 are:
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Thermal expansion in the SiC layer, represented by �S	BS, is assumed to be isotropic in this Appendix.
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