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ABSTRACT 

The Safeguards Envelope is a strategy to determine a set of specific operating 
parameters within which nuclear facilities may operate to maximize safeguards 
effectiveness without sacrificing safety or plant efficiency.  This paper details advanced 
statistical techniques that will be applied to real plant process monitoring (PM) data from 
the Idaho Chemical Processing Plant (ICPP).  As a result of the U.S. having no 
operating nuclear chemical reprocessing plants, there has been a strong interest in 
obtaining process monitoring data from the ICPP.  The ICPP was shut down in 1996 
and a recent effort has been made to retrieve the PM data from storage in a data mining 
effort.  In a simulation based on this data, multi-tank and multi-attribute correlations 
were tested against synthetic diversion scenarios.  Kernel regression smoothing was 
used to fit a curve to the historical data, and multivariable, residual analysis and 
cumulative sum techniques set parameters for operating conditions.  Diversion 
scenarios were created and tested, showing improved results when compared with a 
previous study utilizing only one-variable Z-testing7. 
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Safeguards Envelope Progress FY09 
 

INTRODUCTION 
 

The benefits of nuclear power are again allowing the nuclear industry to refocus efforts 
on developing new technologies and processes to further the safe use of this 
reemerging power source.  Specifically, it is clear that modern nuclear facilities will 
require enhanced safeguards, but for nuclear energy to remain competitive in a free 
market, these enhanced safeguards cannot significantly increase cost.  Safeguards 
have not historically been integrated into the design process, or even integrated fully 
into the operation of facilities.  This has resulted in external, regulatory requirements 
adding synthetic costs to nuclear facilities because the industry has not embraced a 
systems engineering approach to safeguards.  While the design phase systems 
engineering approach to safeguards would be Safeguards-by-Design, the operating-
phase systems engineering approach is the creation of a Safeguards Envelope.  The 
Safeguards Envelope Program is currently working on a project to increase the security 
within nuclear facilities, using the Idaho Chemical Processing Plant as an example 
case. 
 
The Idaho Chemical Processing Plant (ICPP) was a spent nuclear fuel reprocessing 
plant at the Idaho National Laboratory (INL) site which operated from 1953 through 
1996.  In 1980, a state-of-the-art process monitoring system was installed which 
measured temperature and pressure information at regular time intervals.  This data is 
very valuable to process monitoring (PM) research, which is continually attempting to 
increase the ability to detect ever smaller diversions of special nuclear material (SNM) 
as well as increase the material balance period (MBP). 
 
Two factors determine the optimum MBP.  The false alarm rate (FAR) is the rate or 
percent of alarms which falsely declare a diversion scenario is taking place.  The 
probability of nondetection (PND) is simply 1 minus the probability that a diversion will 
be detected.  For a given set of parameters, decreasing the FAR usually requires 
relaxing the operational constraints and thresholds, but at the same time can increase 
the PND as it raises the possibility of hiding an abnormality.  Thus, optimizing the MBP 
is also a problem of optimizing the FAR and PND. 
 
Different statistical tests, however, provide different optimal FAR and PND.  In this 
study, kernel regression analysis is applied to a declared ‘event’ from ICPP PM data to 
create a best fit curve.  A trial data set is simulated from the ICPP data consisting of a 
‘normal set’ and a ‘diversion set.’  Residual analysis and cumulative sum techniques are 
applied to determine optimum bounds for acceptable operating conditions based upon 
resultant FAR, PND, and MBP. 
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THEORY OF SAFEGUARDS ENVELOPE 
 

Definition of Safeguards 
 

Safeguards are put into place to protect nuclear material from proliferation or other non-
declared purposes, and are vital for securing the future of nuclear energy domestically 
and globally.  This principle defines the need for fields such as nuclear nonproliferation, 
which guards against the theft or diversion of SNM.  SNM is tracked through a nuclear 
facility, and that facility is responsible for ensuring that no more than one significant 
quantity (SQ) is unaccounted for in a given timeframe, ranging form one year to as little 
as 30 days.  Depending upon the size of the plant, this can be an enormous and 
seemingly impossible task. 
 

Definition of the Safeguards Envelope 
 

Safeguards envelopes are operational spaces designed similarly to the idea of a safety 
envelope1.  For years, the concept of an area of operation that does not needlessly 
endanger the public, personnel, or equipment of a nuclear facility has been a major 
component of nuclear facility design.  This safety envelope methodology can just as 
easily be applied to safeguards, such that an operating space can be constructed that 
does not needlessly risk proliferation activities, while also not overburdening the 
operator with regulatory costs.  The goal is simply to define a set of operational 
parameters which increase the probability of detecting a diversion of nuclear material1 

and apply them to operating and new nuclear facilities to make safeguards a point of 
optimization for operations instead of a fixed, ad hoc procedure.  The most effective way 
to develop these parameters is to use real nuclear plant process monitoring data and 
perform statistical analyses and modeling methods. 

 

Previous Work 
 

Much effort has already gone into research to determining these parameters.  Tom Burr 
of Los Alamos National Laboratory (LANL) has done several studies on various types of 
statistical analyses as well as multivariate correlation.  While he has looked into 
performing some of these analyses over the transient modes of a plant (filling and 
emptying a tank or tank to tank transfers), much of his research was done over static 
states in which nuclear material was not moving at all2, 3, 4, 5, 6. 
 
Richard Metcalf and Aaron Bevill of Idaho National Laboratory/Texas A&M University 
retrieved some of the process monitoring data from ICPP and performed a basic Z-test 
with a simulated diversion to demonstrate the usefulness of this data7. 
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PROBLEM STATEMENT 
 

ICPP Facility 
 

During its 43 years of operation, process monitoring was of great importance in the day 
to day operations of the Idaho Chemical Processing Plant.  When the state-of-the art 
level/density scanner was introduced as part of the process monitoring system, the 
accuracy of the data improved drastically, allowing a greater confidence in nuclear 
materials control and accountability (MC&A).  With this more reliable data, statistical 
analysis methods can be more effectively utilized to detect diversions of special nuclear 
material (SNM), and determine optimum operating parameters for both materials 
accountability and operator impact. 

 

Diversion Detection 
 

Process monitoring techniques and analysis methods are a primary focus in attempts to 
increase the ability to detect a diversion.  The goal is to be able to detect as small of a 
diversion as possible without raising the false alarm rate (FAR) or the probability of 
nondetection (PND) above a reasonable level.  If a FAR is too high it is not cost 
effective, for every alarm must be investigated which would be intrusive on the plant 
operator’s other duties.  With a high PND the issues are obvious; it is unacceptable to 
rely on a system for nuclear security when it fails to detect diversions.  By utilizing 
advanced statistical analysis techniques, one can determine a balance of optimum 
working parameters and also obtain a better material balance period (MBP).  In this 
study, MBP is used as the figure of merit because it can easily accept the FAR and 
PND into a single metric.  This single figure of merit allows for a single optimization 
point rather than two, but these are both available for more detailed or plant specific 
studies. 
 

DATA DESCRIPTION 
 

The raw data obtained from ICPP contains over six gigabytes of information and spans 
from October of 1986 through April 1996.  Over this 10 year period, data was recorded 
for each tank, centrifuge, evaporator, column, valve, jet, and air lift.  Some of this data, 
for example for a valve, simply consists of either a 1 or a 0 to denote whether it was 
open or closed.  The centrifuges only had speed indicators, and dissolution tanks only 
contain information for off-gas control signal or charge soot hydraulics.  The most 
effectively analyzed process monitoring data consists of that found in the accountability 
tanks, feed tanks, and sample pots. 
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The raw measured data associated with these tanks leads to the ability to calculate 
specific gravity, volume, and level of material in the tank.  These values are calculated 
from the highly accurate LR and DR dip tube measurements.  LR and DR are each 
pressure differences between a given dip tube (D or L) and a reference vapor pressure 
(R)8 illustrated in Figure 1 below. 

 
Figure 1. Crude diagram of the dip tube set-up within a tank.  R measures reference vapor 

pressure, D measures pressure at one depth in the tank, L measures the pressure at a set height 
above the bottom of the tank, and H is a known distance between L and D. 

 
Density is calculated using the equation below, where g is the acceleration due to 
gravity and H is a known distance between D and L.  Volume and level are calculated 
with additional constants and are not described in detail here. 
 

             
gH

DRLR −
=ρ                       (1) 

 
Although the pressure measurement error associated with the dip tubes is extremely 
small (level calculations can reach less than 0.015%8), the purely raw data 
measurements LR, DR, and TT (Temperature) are used in the program with added 
noise to simulate more realistic data relative to most nuclear facilities. 

 

STATISTICAL ANALYSIS 
 
In this study, kernel regression was used to create a best fit function to the data 
received from ICPP.  Kernel regression is a state estimation technique which is 
considered a nonparametric technique, for unlike linear regression, it does not assume 
a fundamental distribution in the data9.  At each observed data point, a Kernel, or 
weighted function, is centered, and the Kernel assigns a weight to each position based 
on its proximity to each data point9.  A more detailed discussion of Kernel regression 
can be found in Appendix A. 
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The proposed algorithm compares historical and trial data sets and tests the ability to 
detect a diversion by looking at two items: degree of residual randomness and deviation 
from the mean.  To determine the effectiveness of the statistical tests, we perform a 
Markov Monte Carlo simulation and run 500,000+ trials as a simple method for finding 
out the resultant FAR and PND values. 
 

ANALYSIS 
 

Theory  
 

In reality, data always has noise, and due to this noise detecting small diversions is 
often difficult.  To an approximation, we can assume that all measurements take the 
following form: 
 
               ymeasured(t) = ytrue(t) + �calibration + �measurement                   (2) 
 
where �calibration is the calibration error and �measurement is the measurement error.  
Calibration error is due to the non-perfect tuning of the measurement device and is 
usually a static additive error.  The error however is randomly distributed from one 
device to another.  The more familiar measurement error is that which arises from small 
fluctuations within the control volume (e.g. miniscule temperature fluctuations, or small 
movement) and is known to be normally distributed.  As Eq. (2) shows, both errors 
mask what the true value actually is and can hamper any type of verification process.  
Indeed, both can also be averaged assuming enough data exists to do so.  
Unfortunately, that is not the case in most scenarios, including our ICPP data.  This is 
the realm in which statistical tests find their application as they look to the overall data 
trends to discover any abnormalities.  Before tests are created, diversion behavior must 
first be understood. 
 
Material diversions affect two components of measurement data: residual randomness 
and deviation from the mean or “expected” value.  A residual is defined as the 
difference between the measured value and the true value where ytrue(t) would be an 
exact analytical value. 
 
       yresidual(t) = ymeasured(t) – ytrue(t) = �calibration + �measurement                     (3) 
 
As Eq. (3) shows, a measurement residual should be nothing more than a time series of 
errors with a random distribution and mean of zero.  In a diversion case however, the 
residual would take on an entirely different behavior.  First, it is important to understand 
that abnormal data can be seen as normal data with an added deviation where 
diverted(t) is the nuclear quantity taken as a function of time as shown in Eq. (4) below. 
 

    yabnormal(t) = ytrue(t) + �calibration + �measurement  - diverted(t)                (4) 
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If the residual of this curve was computed with respect to the true values of a normal 
curve, illustrated in Eq. (5) below, then it becomes obvious that the residual of an 
abnormal data curve is just a normal residual, such as Eq. (3), but with an added non-
random and/or non-zero mean function. 
 
                 yabnormal(t) – ytrue(t) = �calibration + �measurement  - diverted(t)       (5) 
 
In other words, to determine whether or not a tank has been tapped, one simply needs 
to look at the residual of its data; if the residual has neither a purely random distribution 
nor a zero mean, then assume that a diversion has taken place.  These tests can be 
performed with hypothesis Z-testing, standard deviation calculation, or cumulative sum 
examinations. 
 
Unfortunately, detection with the above methodology is difficult for two reasons: not 
knowing ytrue(t), and having sparse data.  Computing the most accurate residuals 
requires knowing before-hand what ytrue(t) is, which is technically impossible.  In fact, 
knowing it would imply perfect measurements and make this entire statistical process 
pointless.  However, what is known is the historical data, which tells what the 
measurement “ought” to be.  With that, it becomes feasible to make good 
approximations of ytrue(t), especially with good fitting techniques.  One must take 
caution, for approximations can be too uncertain if the base data is too sparse.  Even 
the tests themselves can be misleading if not enough information is present.  Again, 
advanced statistics become useful.  Numerous techniques have evolved which take 
advantage of sparse data and create reliable models to work with (e.g. Principle 
Component Analysis, Least-Squares Fit, Student’s T-testing).  With both reliable 
historical data and advanced statistics, it becomes very possible to distinguish abnormal 
behavior from normal operating conditions. 
 
Numerical theory aside, some important notes must be mentioned about the testing 
scenario.  The setting involves a reprocessing facility tank filling and flushing a 
(assumed) homogenous nuclear material solution.  Measurements of the solution’s 
level, density, and temperature (LDT) are taken every four minutes and assumed to 
have a form similar to that of Eq. (2), but with an assumed zero calibration error.  An 
artificial diversion is introduced in the same way as Eq. (4) and involves gradually taking 
0.5% of the tank (in terms of level) in a linear fashion until flushing is complete.  The 
exact start and stop times of the tank fill and flush is assumed known at all times. 
 

Methodology 
 

The basic premise of the algorithm is to take a trial data set and statistically compare it 
with a historical set by residual analysis.  Before beginning residual construction, the 
data must first be collected and processed in the appropriate manner.  A fully transient 
state was first isolated within the data logs and its LDT information was extracted into a 
data array with MATLAB.  Because the state-of-the-art measurement systems ICPP had 
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The degree of fitting is also a user-set 
parameter, called the kernel bandwidth.  
Too low of a value connects the dots 
poorly, while one too high will “over fit” 
and produce large errors.  This is one of 
the parameters that can be optimized in 
the algorithm for best performance. 
 

at the time, there was very little error within the data itself.  Therefore, it was assumed 
that this information represented the “true” values, henceforth called the true curve, with 
which to build our simulated, noisier measurements. 
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Once the three simulated curves were created, Kernel regression was performed on the 
historical set to later approximate residuals.  Kernel regression is a powerful state 
estimation technique designed to fit an approximate curve to noisy data.  Unlike most 
familiar regression techniques, kernel regression is non-parametric and does not 
actually make any initial assumptions about the shape of the curve.  Instead, it applies a 
Gaussian weight function centered at each data point and gives each neighboring point 
a contribution that is proportional to their distance. 
 

 
Figure 3.  Kernel Smoothing on fake historical  
data.  The example above is a noisy quadratic. 

In order to fully test the algorithm 
capabilities, a total of three curves were 
created: a historical curve, a normal trial 
curve, and a diversion trial curve.  The 
latter two were meant to test the FAR and 
PND respectively.  To build the “historical” 
curve, Gaussian noise with a standard 
deviation of 0.2% was added to the true 
set to simulate measurement error and 
labeled accordingly.  To create a normal 
trial curve, henceforth called the normal 
curve, true curve values were again taken 
and similar noise was added.  Creating the 
diversion trial curve, henceforth called the 
diversion curve, followed a similar process, 
but this time with a linearly increasing 
diversion function that peaked with a value 
of 0.5%. 

Figure 2.  Probability density of 
measurement error.  In this case, it is for the 

tank level. 
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Figure 4. Diagram showing residual analysis  
with historical data and diversion data. 
 
With the computed residuals, hypothesis Z-testing is then used to test for the criteria of 
randomness.  To be considered normal, the residuals must have a mean of zero and a 
standard deviation similar to that of the historical residual (historical data minus kernel 
smoothed data).  The resultant probability reveals how well the trial residual follows the 
stated constraints and can be compared to a threshold for judgment. 
 
In addition to the Z-test, a cumulative sum threshold test was also implemented in order 
to measure mean and deviation behaviors in a way that the Z-test does not. 

 

To this end, the residual vector components were each taken to the 1.5 power in order 
to better distinguish outliers (an L 1.5 norm).  Then, a summation of the residual was 
taken and compared to a threshold to determine abnormal trends.  Both these tests 
were used in OR fashion (if either test dismissed a case as a diversion, that result must 
be recorded). 
 

 

 
 
Once the kernel smoothed 
historical curve is obtained, the 
difference between that curve and 
the two trial curves (normal and 
diversion curve) give each trial 
curve their respective residual 
approximations.  This is done by 
simply subtracting the raw data 
from the kernel smoothed curve 
for both the historical and trial 
case. 
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Figure 5. Flow-chart of the test priorities and the order in which they are executed, as well as 

how their results are interpreted. 
 

Moving into the multi-variate tests, a difference residual comparison between, say, the 
level curve was compared against that of the density and temperature curves.  This was 
done by computing the residuals for each individual curve with the same methodology 
as the one-variable scenario, and then taking the residual difference between curves.  
This was done to compute an “effective” difference between the two curves in terms of a 
normal distribution.  Having these residuals, the same Z-test and cumulative sum 
threshold tests from before were used, but this time a stricter criterion was used to 
decide final judgment on a trial case.  Because multi-variate calculations add more 
noise than a single, both the comparison between, say, a trial level curve and a density 
curve as well as a temperature must agree in result (there must be a majority rule).  
This result then was also used in areas where the one-variable tests were unable to 
detect anything abnormal.  This way, the baseline PND could only be decreased at a 
cost of a small sacrifice of the FAR. 
 
Finally a transient operated at half speed is simulated in order to grab more data points.  
This was primarily to show that with more data points, and assuming easy diversion 
detection at steady-states, the FAR and PND values can be markedly decreased and 
the MBP should increase.  To simulate half-speed at the transients, linear interpolation 
was done with the true curve between data points and applying the algorithm to the 
‘new’ data to obtain new FAR, PND, and MBP values. 
 

Results 
 

The results of the tests were largely satisfactory and showed especially large 
improvement when considering half-speed operation at the transients.  Assuming a 
baseline of 8 days, an increase in MBP as high as 50% was observed for three 
variables at half speed.  For an explanation of the MBP derivation, see Reference 7, 
Appendix A.  With three variables, FAR was improved from 1.47% to 0.79% and PND 
had a drastic improvement from 10.36% to an impressive 1.30% when changing to half 
speed. 
 
Of particular interest is the change from analyzing only one variable with just Z-testing, 
to analyzing one variable with higher statistics, to analyzing three variables with higher 
statistics.  The FAR for the developed algorithm improved from only Z-test results for 
one variable, but when three variables were analyzed together, FAR was actually 
worse.  PND and MBP on the other hand, improved for each test. Overall, while FAR 
was worse with three variables, multivariate analysis appears to be more beneficial, for 
PND is lower and MBP is able to be longer, benefiting plant operations.  A summary of 
the  results are tabulated below. 
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TABLE 1 

Tabulated Results Including Previous Work. 
 

Data Type Z-test Kernel Reg.  CUMSUM Speed FAR PND MBP 
One-Var. YES  NO  NO Normal 1.39% 23.20% 8.57 
One-Var. YES NO NO Half-speed 2.91% 1.41% 10.85 

  

One-Var. YES YES YES Normal 1.15% 12.39% 9.05 
One-Var. YES YES YES Half-speed 0.44% 1.85% 11.5 

  

Three-Var. YES YES YES Normal 1.47% 10.36% 9.15 
Three-Var. YES YES YES Half-speed 0.79% 1.30% 12.03 

 
More work, however, still needs to be performed as there are multiple variables within 
the algorithm that can be further optimized.  Additionally, even more tests could be 
added such as tank-tank correlations and neural network optimization to achieve even 
better results.  Some of the tests currently used could also be modified such that they 
offer less FAR, higher signal-to-noise ratios, or require fewer computations.  
Nevertheless, it is clear that a combination of both half speed operation at the transients 
and better statistical tests can not only improve security, but also productivity. 

 

EXPECTED CHALLENGES 
 

Determining Equipment Failure versus Diversion 
 

An alarm is raised because the plant begins operating outside the accepted parameters.  
However, the abnormality can be due to something as devious as material diversion, or 
as innocent as equipment failure.  Since equipment does wear out and eventually fail, it 
could affect the process monitoring system and its ability to detect diversions effectively, 
raising the FAR7.  A code was developed in 1997 to address this specific problem, 
called IGENPRO, which was designed based on fuzzy logic and PM techniques10.  
IGENPRO attempted to effectively estimate when a component might fail within the 
plant, and could be used to develop a more proactive maintenance schedule, rather 
than waiting until things failed completely.  This system or possibly a more advanced 
code could alleviate the issue of increased FAR due to equipment failure. 
 

Tight Boundaries for Each Variable 
 

Three variables are being analyzed in this study: level, density and temperature.  To 
analyze each variable independently, one must define bounds, or parameters for the 
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variable, outside of which the process cannot operate.  Individually these parameters 
work well.  However, when correlating multiple variables for a given level and density, 
as an example, one would expect temperature to be within a more narrow range, and 
could thus raise an alarm more easily, raising the FAR.  The desired scenario is that 
which achieves as low FAR as possible for each variable without significantly increasing 
PND.  Further investigation to identify the proper optimization is needed. 

 

FUTURE WORK 
 

Multi-Attribute Utility Analysis 
 

Multi-Attribute Utility Analysis, (MAUA) is a decision analysis technique which utilizes 
several methods to analyze several factors or variables, and come up with a single 
decision7.  This tool will be applied to two safeguards areas of focus: proliferation 
resistance (PR) and diversion detection/physical protection (PP). 
 
MAUA can be applied to a plant process to determine a lower threshold which the PR 
level is not allowed to go below during plant operation in both steady state and transient 
state conditions.  This could help to determine areas of the plant which need additional 
safeguards measures to raise PR7. 
 
Using MAUA for diversion detection is an aspect which will be explored, but not as a 
current main focus.  Several different diversions would be simulated using a Markov 
Monte Carlo method, with varying weights and paths. Compared with more general 
algorithms, MAUA would be able to optimize a set of parameters to specific diversion 
types, which could raise detection rates and lower FAR and PND.  However to apply 
this method in real time would require a detailed knowledge of the diversion paths’ 
significance which is rarely the case in real-life operations. 
 

Automated Optimization 
 

While applying kernel regression analysis to process monitoring data improved the 
ability to detect a diversion, lowered the PND, and also resulted in a lower FAR than the 
student Z-testing performed by Metcalf and Bevill, further optimizations can be made 
through automated optimization techniques such as neural network modeling and auto 
associative kernel regression (AAKR) modeling.  One such option is the use of the 
Process Equipment Monitoring (PEM) MATLAB toolbox developed by J. Wesley Hines 
at the University of Tennessee Knoxville. 
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Scalability Studies 
 

Once working parameters have been formed for nuclear facilities, we must determine 
whether these conditions can be applied to a facility and allow it to operate efficiently.  
Some areas of concern are how things may scale, operational impact, and cost.  Much 
of the data monitoring methods should scale linearly, according to the size of the plant.  
The volume of data obtained from the process, and the length of the material balance 
period dictate the impact on plant operators.  For a large process monitoring system, 
more data points will be collected, which will increase the amount of data which must be 
tracked and analyzed.  A longer MBP will allow the plant to operate longer between 
material accounting inventories, which could save the plant extraneous costs.  Further 
study is needed to identify scaling issues that must be addressed as the Safeguards 
Envelope concept is applied to larger facilities. 
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 APPENDIX A 

Kernel Regression 
 

Problem 

A scientist has collected some measurements, and they seem to have no discernable 
trend that he can describe (it is clearly non-linear).  However, he wants to accurately 
interpolate his data such that he can well approximate a true description of his 
measurements.  The scientist cannot use simple fitting methods such as least square fit 
or polynomial regression because he has no clue as to the correct shape of the data 
and does not want to assume incorrectly. 

Solution 

A non-parametric fitting technique is needed that does not make any initial assumptions 
as to the shape of the data, yet still reliably creates a best fit curve.  Kernel Regression 
is a good candidate for this type of problem. 

 

How it works 

With a given data set, a kernel (or weight function) is centered at each data point and at 
each point is used to evaluate the weight of its neighbors for local fitting. 
 

 
Figure A-1a, A-1b.  Plot of a) measurement points which have no linear relationship and  

(a) 

(b) 
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b) associated Gaussian weight functions for their respective data points. 
 
In reality, there exist many different kernel functions (e.g. square, quartic, cosine), but 
the Gaussian remains the most popular.  The Gaussian kernel function is as follows: 
 

                                                                                                    
(1)

 
                                                                                          
Where X represents the x-value of the measurement point, x represents the x-value of 
the interpolated point, and a represents the kernel bandwidth.  More will be explained 
about the kernel bandwidth later, but for now assume it to be any value. 
 
Once applying the weight functions at each desired point, the interpolated y-value can 
be computed using the Nadaraya-Watson estimator: 
 

          

(2)

 
 
where i represents the ith measured point, j the jth interpolated point, Yi  the ith 
measurement, and yj the jth weight, interpolated value.  As the kernel bandwidth has yet 
to be chosen, here are the results for Figure A-1-a data at various bandwidth values. 
 

 
 

(a) (b) 

(c) 
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Figure A-2a, A-2b,A-2c. Plot of data from Figure A-1a with kernel smoothing at various kernel 
bandwidths.  Higher values approach linear best-fit as shown by c). 

 
As can be seen from Figure A-2, various kernel bandwidths give drastically different 
results.  The kernel bandwidth is a user-set parameter that essentially controls the width 
of the weight function (or rather the “broadening”).  Too low of a kernel bandwidth and 
each measurement point carries all the weight, resulting in just step interpolation such 
as in Figure A-2a.  Too high of a value will “overfit” the data by giving every point nearly 
equal weight and will approach fitting a single line (linear best fit) to the entire data set.  
In order to find the best value of the kernel bandwidth, optimization is necessary.  This 
usually requires some outside knowledge that can hint at which value is “right.” 
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