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The primary purpose of this 3-year DOE-funded research effort, now completed, was to develop consistent, 
theoretical foundations of computations on discrete geometry, to realize the promise of predictive and 
scalable management of large geometric datasets as handled routinely in applied sciences. Geometry (be it 
simple 3D shapes or higher dimensional manifolds) is indeed a central and challenging issue from the 
modeling and computational perspective in several sciences such as mechanics, biology, molecular 
dynamics, geophysics, as well as engineering. From digital maps of our world, virtual car crash simulation, 
predictive animation of carbon nano-tubes, to trajectory design of space missions, knowing how to process 
and animate digital geometry is key in many cross-disciplinary research areas. 
 
Scientific Interest and Context  
 
Geometry has been extensively studied for centuries, almost exclusively from a differential point of view. 
However, with the advent of the digital age, the interest directed to smooth surfaces has now partially 
shifted due to the growing importance of discrete geometry. Whether it be in scientific computation or 
reverse engineering, in remote sensing or medicine, data sets with exquisite geometric details are created 
daily. The usefulness of such geometric datasets rests on our ability to process them efficiently: from 3D 
surfaces in graphics to higher dimensional manifolds in mechanics, computational science must deal with 
sampled geometric data on a daily basis. Alas, current data processing technology does not provide the 
efficient and geometrically faithful representations demanded by applications. In fact, only a strong grasp 
of classical differential geometry as well as a sound understanding of the computational needs in research 
and industry can bring forth the novel theoretical and practical foundations necessary to establish an 
accurate, structure-preserving discrete differential calculus. 
 
Recently, there has been a noticeable conjunction of approaches in many different fields (mimetic 
discretizations of continuum mechanics, discrete variational mechanics, etc.) that have all independently 
come to the conclusion that one must not discretize a continuous model arbitrarily---one must instead 
directly develop fully-discrete techniques based on discrete variational principles and discrete invariants in 
order to guarantee reliable computations. Independently of these applied sciences, the graphics community 
started in the digital age, and has been focusing on discrete techniques (triangle mesh processing, 
subdivision surfaces, etc.) since its early beginning, using invariants and defining variational approaches 
for discrete, piecewise-linear 3D geometry. A common research effort unifying these different findings and 
approaches is timely and will be at the core of our work. 
 
The proposed research effort is to study this promising field that we call Applied Geometry. It has its roots 
in a classical and deep connection between mechanics and geometry in the continuous world that goes back 
hundreds of years, to the work of Newton, Euler and Lagrange and Poincaré: exploiting this link has 
benefited both fields ever since. The development of similar connections in the discrete world should 
therefore have a huge impact in the development of algorithms on both ends of the mechanics-geometry 



spectrum. For the three year duration of this grant, we plan to focus our attention on these two inter-related 
topics, that cover most of the spectrum between graphics and physical sciences: 
 

• Discrete Exterior Calculus: we believe that a ``correct'' way to proceed with computations on 
digital geometry (simplicial complexes in particular) is to develop, ab initio, a calculus on discrete 
manifolds which parallels the calculus on smooth manifolds of arbitrary finite dimension. We are 
developing such a discrete exterior calculus, defining discrete differential forms along with vector 
fields and operators (exterior derivative, Hodge star, wedge product, flat and sharp, contraction, 
and Lie derivative), starting from our work on geometry processing. A formal derivation of all 
these basic elements in a non-smooth setting guarantees proper preservation of global invariants 
(through Stoke's theorem), while local discretization leads to superior numerical quality and good 
convergence properties. 

 
• Discrete Variational Geometry: many physical behaviors are dictated by variational principles: 

Hamilton's principle and Hodge decomposition in mechanics, or Clairaut's theorem in geometry 
are well-known examples. We are studying how these important principles can be rewritten in the 
discrete setting. This should lead to discrete constitutive equations, for which time integration will 
intrinsically preserve the fundamental discrete invariants. It should, additionally, exhibit intricate 
relationship with our discrete exterior calculus. 

 
Our proposed synergetic mixture of discrete geometry and mechanics, when both are viewed from a 
unifying variational geometric point of view, also allows us to find common grounds for both communities. 
As a consequence, we have been able to discuss potential projects on subject ranging from black hole 
collision simulation, to numerical integration of Schrödinger equation: we have started such a mutually 
beneficial flow of ideas and results between physical sciences, mathematics, engineering and information 
technology with teams at Caltech (PI, Jerrold E. Marsden, Peter Schröder, Anthony Leonard), Columbia U. 
(Eitan Grinspun), NYU (Denis Zorin), Rice U. (Joe Warren), MIT (Fredo Durand), Duke U. (Herbert 
Edelsbrunner), and abroad (Pierre Alliez and David Cohen-Steiner, INRIA in France, and people from 
Microsoft Research in China).  
  
Applications Studied and Milestones Achieved 
 
We have been studying discrete differential calculus from a variational, geometric standpoint as sketched in 
our initial proposal, i.e., through various aspects varying from graphics to mechanics. Each project is one 
element in the entire “pipeline” needed for discrete differential calculus, going from how to start from a 
nice mesh to do computations on, to how to reliably handle differential forms on discrete meshes. Our 
research so far has focused on the following projects: 

 
• Variational Quadrangle Meshing: Partitioning a surface into quadrilateral regions is a common 

requirement in computational science, computer aided geometric design and reverse engineering. 
Such quad tilings are amenable to a variety of subsequent applications due to their tensor-product 
nature, such as B-spline fitting, simulation with finite elements or finite differences, texture atlasing, 
and addition of highly detailed modulation maps. Quad meshes are particularly useful in modeling as 
they aptly capture the symmetries of natural or man-made geometry, allowing artists to design 
simple surfaces using a quite intuitive placement of quad elements. Automatically converting a 
triangulated surface (issued from a 3D scanner for instance) into a quad mesh is, however, 
challenging. Stringent topological conditions make quadrangulating a domain or a surface a rather 
constrained and global problem. Application-dependent meshing requirements (edge orthogonality, 
alignment of the elements with the geometry, sizing, and mesh regularity) add further hurdles.  
In order to circumvent these issues, we recently introduced a framework for quadrangle meshing of 
discrete manifolds. Based on discrete differential forms (already detailed above), our method hinges 
on extending the discrete Laplacian operator (used extensively in modeling and animation) to allow 
for line singularities and singularities with fractional indices. When assembled into a singularity 
graph, these line singularities are shown to considerably increase the design flexibility of quad 
meshing. In particular, control over edge alignments and mesh sizing are unique features of our 



novel approach. Another appeal of our method is its robustness and scalability from a numerical 
viewpoint: we simply solve a sparse linear system to generate a pair of piecewise-smooth scalar 
fields whose isocontours form a pure quadrangle tiling, with no T-junctions. This research work, 
presented at the ACM Symposium on Geometry Processing 2006, further indicates the importance of 
discrete forms in computational endeavors as shown in Figure 1. 

 
Figure 1: Results of our Quadrangle Meshing technique based on discrete differential forms. By controlling the discontinuities 
of two gradient fields through a simple linear system, one can remesh a hand (left) or a bunny (right) with only quads, and no 

T-junctions. Notice the regularity (very few vertices have more (or less) than four neighbors) of the mesh, and the 
geometrically-pertinent placement of the discontinuities. 

 
• Variational Tetrahedral Meshing: Three-dimensional simplicial mesh generation aims at tiling a 

bounded 3D domain with tetrahedra so that any two of them are either disjoint or sharing a lower 
dimensional face. Such a discretization of space is required for most physically-based simulation 
techniques: realistic simulation of deformable objects in computer graphics, as well as more general 
numerical solvers for differential equations in computational science, often needs a discrete domain 
to apply finite-element or finite-volume methods. Most applications have specific requirements on 
the size and shape of simplices in the mesh. Isotropic meshing is desirable in the common case 
where nearly-regular tetrahedra (almost equal edge length) are preferred. However, creating high 
quality tetrahedral meshes is a difficult task for a variety of reasons. First, the mere complexity and 
size of the resulting meshes requires disciplined and robust data structures and algorithms. There are 
also basic mathematical difficulties which make tetrahedral meshing significantly harder than its 2D 
counterpart: the most isotropic 3D element, the regular tetrahedron, does not tile 3D space (let alone 
specific domains), while the equilateral triangle does tile the plane; unlike the 2D case, even well-
spaced vertices can create degenerate 3D elements such as slivers. Dealing with boundaries is also 
fundamentally more difficult in 3D: while there are 2D triangulations conforming to any set of non-
intersecting constraints, this is no longer true in 3D. All these facts conspire to make both the 
development of algorithms and suitable error analyses for the optimal 3D meshing problem very 
challenging. Given that one can often observe in applications that the worst element in the domain 
dictates accuracy and/or efficiency, it is clear that great care is required to design the underlying 
meshes and ensure that they meet the needed quality standards. 



         
Figure 2: Tetrahedral meshing: (Left) Our newly developed approach allows the tetrahedralization of any 3D region like this 
scanned hand, with a size of nearly-isotropic tets depending on the local feature size of the shape (i.e., large tets inside, small 
tets near curved boundaries). (Right) The same technique can handle mechanical parts by conforming to the features. Notice 

that arbitrary genus is easy to treat with the same algorithm. 
 

In this project, we developed a novel approach to isotropic tetrahedral meshing of complex 3D 
domains. To achieve robustness, efficiency, and flexibility, our technique consistently minimizes a 
simple quadratic energy through global updates of both vertex positions and connectivity. Mesh 
design can be controlled easily through a gradation smoothness parameter and a priori selection of 
the desired number of vertices. The theoretical background of our approach is a simple, underlying 
variational principle, for which we also foun n intuitive geometric interpretation tying the shap

 

that will be presented a

d a e 
 of the elements to their inertia moments. Our new technique results in high quality meshes as

demonstrated in Figure 2. The paper describing this method was published in the ACM Trans. of
Graphics journal (special issue of SIGGRAPH ’05), and we recently extended this work in a paper 

t SIGGRAPH 2009. 
 

    
Figure 3: (Left) Barycentric coordinates are a very versatile tool in computations. We have been exploring their use for free-

form deformation in a recent submission. (Right) Variational Geometry Approximation allows us to find a near-optimal 
approximation of curved manifolds in a principled manner. Such technique can be also used to simplify higher-dimensional 

datasets, such as motion (in space-time) or vector fields. 
 
• Barycentric Coordinates: Barycentric coordinates are one of the most basic mathematical tools in 

many computational sciences: they are a convenient and coordinate-free interpolation method. 
Although the formulas for simplices (triangles, tetrahedra and so on) are widely known and routinely 
used, there has been no satisfactory extension of these to arbitrary convex polytopes despite a 
plethora of potential applications. Since the beginning of our award, we have worked on a simple, 
computationally convenient formula of a canonical form of barycentric coordinates valid in arbitrary 
dimension (in collaboration with Joe Warren from Rice University). The resulting functions are 
rational, smooth and provably of the lowest possible degree. We have also extended the formulas for 
convex polytopes to smooth, convex domains, which led to new Green functions with interesting 



applications in PDE problems. The largely-geometric component of this work has already led to 
various applications (such as free-from deformation). This recent work has recently been published 
in the Advances in Computational Mathematics journal, and an extension was presented at the 
Symposium on Geometry Processing. We plan (in the near future—although this opens a vast array 
of research questions, so it may not be extremely soon) to use these coordinates as basis functions on 
Voronoi regions, for computational purposes. 

 
• Discrete Differential Forms for Computational Purposes: given the overwhelming geometric 

nature of the most fundamental calculus of these last few centuries, it seems relevant to approach 
computations from a geometric standpoint. This will allow us to clearly express and separate the 

 idea to foster the use of discrete differential forms.  
 

We have also developed novel high-order basis functions for differential forms. Vertex- and face-
based subdivision schemes are now routinely used in geometric modeling and computational 
science, and their primal/dual relationships are well studied. We have managed to interpret these 
schemes as defining bases for discrete differential 0- resp. 2-forms, and complete the picture by 
introducing edge-based subdivision schemes to construct the missing bases for discrete differential 
1-forms. Such subdivision schemes map scalar coefficients on edges from the coarse to the refined 
mesh and are intrinsic to the surface. Our construction is based on treating vertex-, edge-, and face-
based subdivision schemes as a joint triple and enforcing that subdivision commutes with the 
topological exterior derivative. We demonstrated our construction for the case of arbitrary topology 
triangle meshes. Using Loop’s scheme for 0-forms and generalized half-box splines for 2- forms 
results in a unique generalized spline sc  for 1-forms, easily incorporated into standard 

 
particularly easy w was presented at ACM 

topological (metric-independent) and geometrical (metric-dependent) components of equations, 
rendering them amenable to direct and proper discretization. In particular, the resulting discrete 
treatment will be formally identical to–and will partake of the same properties as—the continuum 
model: their implementation on a discrete domain will respect the intrinsic structure, even at a 
numerical level. Also, it is interesting to notice that our discrete versions of forms or manifolds are 
often much simpler to define that their continuous counterparts; basically we can define a k-form as a 
certain type of mapping (integration) from oriented k-dimensional submanifold to a real number. 
Likewise, even if the continuous idea of orientation is the equivalence class of atlas determined by 
the Jacobian (intuitively, a point can have two orientations as positive or negative; a curve have 2 
directions; a surface can be clockwise or counterclockwise; a volume can have a direction as a right-
handed helix or a left-handed one), the discrete counterpart is more straightforward as no notion of 
atlas is needed. Using values on simplices as integrals of forms offers a principled calculus that 
generalizes the traditional method of computations (finite element, finite differences, finite volume). 
An introductory chapter for a book on Discrete Differential Geometry will appear (by the end of the 
year) on this integral-based

heme
 subdivision surface codes. Once a metric is supplied, the scalar 1-form coefficients define a smooth

tangent vector field on the underlying subdivision surface. Design of tangent vector fields is made
ith this machinery as Figure 4 shows. This work 

SIGGRAPH 2006 venue. 
 

      
Figure 4: (Left). Discrete forms, equipped with a discrete exterior derivative (dual to the boundary operator) and a discrete 

Hodge star, provide a direct discretization of the DeRham complex. (Right). We have also defined smooth basis forms to 
interpolate these discrete forms in the ambient continuous space. 



 
• Design and manipulation of Tangent Vector Fields: Smoothly varying tangent vector fields 

appear in many applications that either deal with flow on curved surfaces, or simply need to control 
the appearance of surfaces. Examples in graphics include anisotropic, texture synthesis, non-
photorealistic rendering, line integral convolution, and spot noise among many others. A huge 
majority of approaches use coordinates of these vectors in the embedding, leading to both continuity 
issues on the manifold and the need for constraining these vectors to remain in the tangent plane. In 
contrast, we have been able to treat these tangent vectors as proxies of one-forms (i.e., one value per 
edge regardless of the dimension of the embedding space). This allowed us to formulate vector field 
design as a linear problem by using an intrinsic, coordinate-free approach based on discrete 
differential forms and the associated Discrete Exterior Calculus (DEC). By representing the field as 
scalars over mesh edges (i.e., discrete 1-forms), we obtain an intrinsic, coordinate-free formulation 
in which field smoothness is enforced through discrete Laplace operators. Unlike previous methods
such a formulation leads to a linear system whose sparsity permits efficient pre-factorization. 

 
 

5)
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Constraints are incorporated through weighted least squares and can be updated rapidly enough to
enable interactive design, as demonstrated in the context of anisotropic texture synthesis (see Figure

. This work was published at ACM SIGGRAPH 2007. 
 

 

e 5: Design of Tangent Vector Fields. Gallery of surface texture synthesis results based on vector fields specified with a 
y of constraints, demonstrating that even just a few constraints can quickly build overall fields with pleasing flows. The 

resulting vector fields are defined through one value per edge, and thus do not require the use of coordinates. 

Spherical Parameterizations: There is by now a rich literature on the construction of energy-based 
parameterizations for surface. While much of this work has focused on the planar case, i.e., the 
mapping of a topological disk region of a given mesh to the plane, spherical parameterization
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s have 
een singled out as a special case occurring frequently enough in practice to warrant their own 

methods. These approaches often extend a specific method known in the planar setting to the sphere. 
Unfortunately, the intrinsic non-linearity of these extensions coupled with the lack of boundary 
vertices to anchor the parameterization seriously hinder practical implementation: tailored solvers 
are often used in conjunction with several vertex constraints in order to obtain non-degenerate 
solutions. Alas, these fixes do not lead to optimal parameterizations as constraints often introduce 
severe distortion. 
Consequently, our approach began with the observation that it would be desirable to construct a 
general procedure to take existing methods (we remained deliberately agnostic as to the particular 

rical 
parameterizations by a simple modification of traditional planar parameterization methods: our 

b

weights being used) from the planar parameterization case and adapt them to the sphere. In this 
work, we thus introduced a straightforward technique for easing the computation of sphe

spherical energies differ from the usual planar quadratic energies only in the multiplication by a 
simple factor based on the inverse distance of each triangle from the sphere center. The simplicity of 
the method (Figure 6) resulted in a paper in the Journal of Graphics Tools published in 2006. 
 



 
 
Figure 6: Results of spherical parameterization of a triceratops model using various schemes (leftmost: simplest, Tutte-like 
embedding) that preserve either angles (2nd from left) or areas (last), or even linear combinations of them (middle ones). 

 
• Circulation-Preserving Integration Scheme for Fluids: Physical accuracy, numerical stability, 

and low computational cost are foremost goals in applied mathematics and computational science. 
An important ingredient in achieving hese goals is the conservation of fundamental motion 

t is the resolution of complex 

 

 t
invariants. For example, rigid or deformable body simulation have benefited greatly from 
conservation of linear and angular momenta. In the case of fluids, however, none of the current 
techniques focuses on conserving invariants, and consequently, they often introduce a visually and 
physically disturbing numerical diffusion of vorticity. Just as importan
simulation domains: regular (even if adaptive) grid techniques can be computationally delicate.  

     

7: Geometry-Based Simulation of Fluids:  using a flux-based discretization (naturally Eulerian and coordinate-free), we 
orce a discrete Kelvin theorem to integrate Euler’s equations. Once viscosity is added, this simple, geometry-based 
tion scheme exhibits the well-known von Karmann vortex streets in the typical flow past an obstacle (rightmost: 
y plot of the simulation, making evident the creation of vorticity on boundaries). 
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cient due to discrete operators with small support; (3) the method is stable for 
rbitrarily large time steps; (4) it preserves a discrete circulation, reducing significantly the usual 

vort it
 

It is known that it is not possible to exactly preserve momenta and total energy simultaneously in the 
discrete setting as shown in Zhong and Marsden in 1988. One can, however, design integration 
scheme to keep underlying geometric structures intact as one goes from the continuous to the 
discrete formulation. More precisely, appropriate geometric discretization of the physics allows one 
to construct discrete analogs of momenta and energy. Equipped with these discrete structure-
preserving quantities, integration schemes can then be designed to enforce their invariant nature. We 
followed this path by using vorticity as our primary simulation variables and designing a time 
integration scheme which will conserve circulation through vorticity advection—i.e., through a 
discrete Kelvin theorem. As a by-product our velocity fields are divergence free without any need 
to continually re-project to keep this property. For comparison, and to the best of our knowledge, 
none of the integration schemes proposed in CFD have been designed to satisfy the conservation 
properties of the underlying equations (aside from the limited case of linearized NS equations).  
Consequently, our method offers several new and desirable properties: (1) arbitrary simplicial 
meshes (triangles in 2D, tetrahedra in 3D) can be used to define the fluid domain; (2) the 
computations are effi
a
numerical diffusion of vorticity; and (5) its implementation is straightforward. This work (Figure 7) 
was published in the ACM Transactions on Graphics journal in 2007. 
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 sampling irregularity. Due to its central importance in geometry 
processing, the subject of mesh parameterization has been researched for a number of years. 
“Parameterizing” a triangle mesh traditionally means computing a correspondence between a 
discrete, triangulated surface patch (possibly with holes) and a homeomorphic planar mesh through a 
piecewise linear map. Finding this piecewise linear mapping amounts to assigning each mesh node a 
pair of coordinates (u,v) referring to its position in the planar region (see Figure 8, left). Such 
(ideally one-to-one) mappings provide a flat parametric space, allowing complex mesh processing 
operations such as surface fitting and remeshing to be performed directly on a flat domain rather 
than on the curved, original surface patch. Planar coordinates are also particularly useful to 
dramatically enhance the visual richness of a 3D surface through texture mapping, both for overly 
simplified character meshes in game engines and for incredibly detailed surfaces in computer-

 
In our method, high-quality parameterizations are computed through a constrained minimization of a 

Spectral Conformal Parameterization: We have also introduced a spectral approach to 
automatically and efficiently obtain discrete free-boundary conformal parameterizations of triangle 
mesh patches, without the common artifacts due to positional constraints on vertices and without 
undue bias introduced by

generated feature films. Consequently, fast methods generating less distortion than current tools are
still in high demand. 

 

discrete weighted conformal energy by finding the largest eigenvalue/eigenvector of a generalized 
eigenvalue problem involving sparse, symmetric matrices. We demonstrated that this novel and 
robust approach improves on previous linear techniques both quantitatively and qualitatively, as 
indicated in Figure 8, middle. This work was published and presented at the Symposium on 
Geometry Processing ’08. 
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igure 8: When paramaterizing a triangle mesh  (left) with varying sampling rates (middle), previous linear methods (middle, 
p) fail to capture the symmetry of the mesh in the parameterization. In contrast, our spectral approach (middle/bottom and 

right) automatically computes a low-distortion conformal map.  
 
 

• Discrete Time Integrators: We have also introduced a general-purpose numerical time integration 
scheme for Lagrangian dynamical systems—an important computational tool at the core of most 
physics-based animation techniques. Several features make this particular time integrator highly 
desirable for computational science and simulation. It numerically preserves important invariants, 
such as linear and angular momenta; the symplectic nature of the integrator also guarantees a correct 
energy behavior, even when dissipation and external forces are added; holonomic constraints can 
also be enforced quite simply; finally, our simple methodology allows for the design of high-order 
accurate schemes if needed. Two key properties set the method apart from earlier integrators. First,

re 

 
the nonlinear equations that must be solved during an update step are replaced by a minimization of 
a novel functional, speeding up time stepping. Second, the formulation introduces additional 
variables that provide key flexibility in the implementation of the method. These properties a
achieved using a discrete form of a general variational principle called the Pontryagin-Hamilton 
principle, expressing time integration in a geometric manner. Non-linear elasticity can be directly 
simulated as indicated in Figure 9. This work was presented at the Symposium on Computer 
Animation ’06. 

 



      
9: (Left). For a physical system as simple as pendulum, different integrators exhibit very diverse resulting behaviors; 
tic integrators, however, captures the periodic nature at no exra computational cost.  (Right). Our geometric, 
gin-based symplectic integrators allow fast and predictive simulation of non-linear elasticity, with dampling or not.  

Reconstruction of Unoriented Point-Sets: Surface reconstruction from point clouds is motivated 
by a number of CAGD, point-based graphics, and reverse engineering applica

oint samples of a surface need to be turned into a proper, watertight surface m
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tions where scattered 
esh. Particularly 

challenging are point sets generated by laser scanners and hand-held digitizers, as they are often 
noisy (due to the inherent uncertainty of measurements), unorganized (due to the merging of several 
scans), and possibly containing large holes (due to occlusions during the acquisition process). In 
such a context, surface reconstruction can only be approximating—instead of interpolating—as data 
points are more of an indication of proximity to the surface than actual sample points. While a 
number of algorithms can now efficiently reconstruct oriented points (i.e., point sets where a normal 
is provided at each sample), fewer methods are able to approximate raw (unoriented) point sets, with 
controllable smoothness.  
 

 

, 
d the confidenc  computed by solving a 

p

We have introduced an algorithm for reconstructing watertight surfaces from unoriented point sets.
Using the Voronoi diagram of the input point set, we first deduce a tensor field whose principal axes 
and eccentricities locally represent respectively the most likely direction of the normal to the surface

e in this direction estimation. An implicit function is thenan
generalized eigenvalue problem such that its gradient is most aligned with the principal axes of the 
tensor field, providing a best-fitting isosurface reconstruction. Our approach possesses a number of 
distinguishing features. In particular, the implicit function optimization provides resilience to noise, 
adjustable fitting to the data, and controllable smoothness of the reconstructed surface. Finally, the 
use of simplicial meshes (possibly restricted to a thin crust around the input data) and (an)isotropic 
Laplace operators renders the numerical treatment simple and robust. This work was presented at the 
Symposium on Geometry Processing in 2007 (and won the best paper award). 
 

 
 

Figure 10: From Point Sets to Surface. Our variational method allows high-fidelity reconstruction of unprocessed point sets 
D sca
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instance of the problem arises in the field of human brain mapping, where deformable registration of 
two cortical surfaces is required for intersubject comparisons and intrasubject analysis of 

(3 nned kitten statuette, 20K points). The final mesh is extracted via isocontouring of a scalar function computed through 
ization involving anisotropic Dirichlet energy and biLaplacian energy. From left to right: input point set, optimized 

implicit function, and three output meshes at increasing resolutions. 
 
Generalized Gradient Flows: Matching (or registration) of deformable surfaces is a fundamental 
problem in medical image analysis and computational anatomy. One particularly challenging 



neuroanatomical surface data. Related studies include progression of disorders such as Alzheimer’s 
disease, brain growth patterns, genetic influences and the effects of drug abuse on the structure and 

nction of the brain. The challenge in registering two cortices lies in the wide inter-subject 
variability and the convoluted geometry of the cortical surface, representing a real ”stress test” for 
any general deformable registration technique. Various landmark-based and landmark-free methods 
have been developed. Parameterization-based techniques first find a mapping between the cortical 
surface and a plane or a sphere, then align in the parameter domain cortical features such as mean 
curvature or sulcal landmarks. The often large change in metric due to the mapping needs to be 

he

to align image features such as intensities or invariant geometric moments, rather than surfaces. As a 

ormable matching framework based on 
generalized surface flows that efficiently tackles these issues through tailored deformation priors and 
multiresolution computations. The value of our approach over existing methods was demonstrated 
for automa  user-guided cortical registration in a MICCAI paper (F ure 11) in 2007, while the 

fu

accounted for while performing the alignment process in the parameter domain, adding to t
computational costs. Another class of techniques operates directly in the ambient space by finding a 
3D warping field that aligns the cortical features. Most of these methods are volume-based, aiming 

 

result, their matching of the cortices often exhibits inaccuracies.  
 

Despite being routinely required in medical applications, deformable surface registration is 
notoriously difficult due to large intersubject variability and complex geometry of most medical 
datasets. We introduced a general and flexible def

tic and ig
geometric foundations were detailed in a Symposium of Geometry Processing paper the same year. 
 

 
gure 11: Brian Mapping: Automatically matching a template (grey) to the subject cortex (blue). Partially flattened 
ntations of both surfaces are iteratively aligned using a Hausdorff flow with a smoothing prior. The obtained alignment 
 a correspondence between the original surfaces. The final color mix is due the fact that the surfaces lie on each other. 

Discrete Geometrical Optimal Control Framework: We have also ventured into the design of 
optimal motion control algorithms for robotic systems with symmetries. We considered the problem 
of computing the controls f(t) necessary to move a finite-dimensional mechanical 
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system with 
configuration space Q from its initial state (position and velocity) to a goal state (position and 
velocity), while minimizing a cost function of the form:  

         
Minimum control effort problems as well as minimum-time problems can be implemented through 
the design of the function C. Additional nonlinear equality or inequality constraints on the 
configuration (such as obstacle avoidance in the environment) and velocity variables can be imposed 
as well. Systems of interest captured by this formulation include autonomous vehicles such a

We ha  geometric 

s 
unmanned helicopters, micro-air vehicles or underwater gliders. 

 
ve studied the optimal motion control of mechanical systems through a discrete

approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational 
principle, from which are derived discrete equations of motion that serve as constraints in our 
optimization framework. We apply this discrete mechanical approach to holonomic systems with 
symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate 
our method by computing optimal trajectories for a simple model of an air vehicle flying through a 
digital terrain elevation map (see Figure 12), and point out some of the numerical benefits that ensue. 
These results were presented at the Robotics: Science and Systems conference in 2007. 
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SM methodology has proven very useful in vision, image processing, as well 
s graphics since the traditional hurdles that mesh processing faces are nicely circumvented due to a 

parameterization-free treatment. However, other problems arise in this particular Eulerian approach. 
From a numerical point of view, the LSM relies on finite difference methods applied to a distance 
function. This specific setup has significant consequences, first and foremost being that volume loss 
cannot be prevented without using additional (most often Lagrangian) computational devices. A less 
obvious consequence is that the variational nature of useful flows such as mean curvature motion, 
which was numerically exploited and proven crucial for mesh processing, is no longer respected. 

 
To avoid this typical numerical flaws present in current Eulerian methods, we have introduced a

al 

shows a helicopter path through an outdoor canyon; top and side views of the helicopter trajectory. 

Eulerian Processing of Surfaces and Foliations: Evolving surfaces, be it for modeling or 
animation purposes, is a routine task in Computer Graphics. Over the last decade, the method of 
choice to process geometry has consisted of a Lagrangian setup where the surface is explicitly stored 
as a piecewise-linear mesh, and vertices are moved so as to achieve the desired deformation. Great 
success with this approach has been reported for editing, smoothing, and parameterization, often 
using variational formulations. Nevertheless, Lagrangian methods come with their share of 
difficulties, including mesh element degeneracies, self-intersections, and topology changes, all of 
which require delicate treatment. While some of these issues can be addressed with point sets, the 
problem of continuous (fine) resampling remains, and the concern of a proper, topologically-sound 
surface reconstruction arises. Consequently, Eulerian methods emerged as a great alternative to 
meshes in several applications. One particularly successful Eulerian approach is the Level Set 
Method (LSM). The L
a

 
new, purely Eulerian framework for geometry processing of surfaces and foliations. Contrary to 
current Eulerian methods used in graphics and vision, we use conservative methods and a variation
interpretation, offering a unified framework for routine surface operations such as smoothing, 
offsetting, and animation. Computations are performed on a fixed volumetric grid without recourse 
to Lagrangian techniques such as triangle meshes, particles, or path tracing. At the core of our 
approach is the use of the Coarea Formula to express area integrals over isosurfaces as volume 
integrals. This enables the simultaneous processing of multiple isosurfaces, while a single interface 
can be treated as the special case of a dense foliation. We show that our method is a powerful 
alternative to conventional geometric representations in delicate cases such as the handling of high-
genus surfaces, weighted offsetting, foliation smoothing of medical datasets, and incompressible 
fluid animation. This work was published in the ACM Transactions on Graphics (SIGGRAPH 
2007), see Figure 13. 
 

 
Figu
offset
data

re 13: Our fully-Eulerian discrete variational approach to 3D geometry can be used for (left) outward and inward surface 
 (here spatially varying by height), (center) simultaneous smoothing of foliations (all isosurfaces of volumetric medical 

), and (right) conservative mass advection for incompressible fluid simulation. 



• 

eory that, at 
e same time, may enable the development of discrete, space-time integration algorithms for elasticity 

flect this geometric understanding.  
In this work, we showed that the stress field in the classical theory of continuum mechanics may be 
taken to be a covector-valued differential two-form. The balance laws and other fundamental laws of 
continuum mechanics can be nicely rewritten in terms of this geometric stress. A geometrically-
attractive and covariant derivation of the balance laws from the principle of energy balance in terms of 
this stress was also presented. This work was published in Z. angew. Math. Phys in 2007. 
 

• Discrete Geometry Processing: During our geometry-based research on discrete differential calculus, 
we have also made contributions to graphics and discrete geometry processing where 3D Euclidean 
space is assumed. In particular, we introduced mesh quilting, a geometric texture synthesis algorithm 
in which a 3D texture sample given in the form of a triangle mesh is seamlessly applied inside a thin 
shell around an arbitrary surface through local stitching and deformation. We show that such geometric 

quilting is based on stitching together 3D geometry elements. Our quilting algorithm finds 
al 

 
 that 
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Geometric Character of Stress in Mechanics: We also proposed a reformulation of classical 
continuum mechanics in terms of bundle-valued exterior forms. Our motivation was to provide a 
geometric description of force in continuum mechanics leading to an elegant geometric th
th
that respect the underlying geometric structure at the discrete level. In classical mechanics the 
traditional approach is to define all the kinematic and kinetic quantities using vector and tensor fields. 
For example, velocity and traction are both viewed as vector fields and power is defined as their inner 
product, which is induced from an appropriately defined Riemannian metric. On the other hand, it has 
long been appreciated in geometric mechanics that force should not be viewed as a vector, but rather a 
one-form. This fits naturally with one of the main properties of a force, namely that when paired with a 
displacement (a vector), one gets work. No metric is needed for this operation of course when force is 
thought of as a one form. One also sees the same thing when one looks at the tensorial nature of the 
Euler–Lagrange equations: the equations themselves are natually one-form equations, not vector 
equations. Despite this, the notion of force as a one-form has not properly been put into the 
foundations of continuum mechanics. In the geometric approach to continuum mechanics we proposed, 
traction is defined as an exterior one-form. Consequently, one also has a metric-independent notion of 
power as the natural pairing between the velocity vector field and the traction one-form. Although the 
importance of the geometric character of these fields is already known in mechanics, the classical 
derivation of the balance laws presented in most works does not re

textures allow interactive and versatile editing d animation, producing compelling visual effects t at 
are difficult to achieve with traditional texturing methods. Unlike pixel-based image quilting, mesh 

 an h

corresponding geometry elements in adjacent texture patches, aligns elements through loc
deformation, and merges elements to connect texture patches seamlessly. For mesh quilting on curved 
surfaces, a critical issue is to reduce distortion of geometry elements inside the 3D space of the thin
shell. To address this problem we introduce a low-distortion parameterization of the shell space so
geometry elements can be synthesized even on very curved objects without the visual distortion
present in previous approaches. We demonstrated how mesh quilting generates convincing decoration
for a wide range of geometric textures as illustrated in Figure 14. 

    
igure 14: Our research has pioneered the quilting of complex, mesh-based texture-like details over meshes to construct

exquisite details. (Left): the Venus model is densely covered with nut elements. (Right): other examples of 3D quilting. 
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We also presented mesh puppetry, a variational framework for detail-preserving mesh manipulation 
through a set of high-level, intuitive, and interactive design tools. Our approach builds upon traditional 
rigging by optimizing skeleton position and vertex weights in an integrated manner. New poses and 
animations are created by specifying a few desired constraints on vertex positions, balance of the 
character, length and rigidity preservation, joint limits, and/or self-collision avoidance. Our algorithm 
then adjusts the skeleton and solves for the deformed mesh simultaneously through a novel cascading 
optimization procedure, allowing real-time manipulation of meshes for fast design of pleasing and 
realistic poses (see Figure 15). We demonstrated the potential of our framework through an interactive 
deformation platform and various applications such as deformation transfer and motion retargeting.  
Both pieces of work were published at SIGGRAPH, the first one in 2006, the second one in 2007. 

 
Figure 15: Mesh Puppetry: The Armadillo mesh (top left) can be deformed to take various sport poses in a matter of seconds. 
Its body automatically leans forward and raises its left leg backward to keep balance when trying to reach the user-specified 
(red) target (shot put, bottom left). Fixing only the positions of its hands and feet is enough to make the Armadillo look like it 
is bouncing off a springboard (high diving, top right); or the pose of a sprint athlete on the finish line (100m, bottom right).  

 
• Nonholonomic Integrators for Vehicle Motions: A vehicle is an actuated mechanical system that 

moves and interacts with its environment, such as a car, helicopter, or boat.  While vehicles constitute 
a highly visible component of the world around us, the topic of vehicle dynamics has received little 
attention in the computer animation literature, and only a few off-the-shelf solutions for vehicle 
animation and control exist. This deficiency is in sharp contrast with other animation and control tasks 
such as rigid/articulated/deformable body simulation, fluid phenomena, and character animation for 
which a plethora of techniques are available.  Additionally, human familiarity with vehicles' highly 
idiosyncratic trajectories makes it difficult (or simply tedious) for artists to capture the essence of 
vehicle motion.  Although locomotion and actuation have been thoroughly studied by roboticists, very 
few numerical integrators have been developed for complex, non-holonomic mechanical systems. 
 
In the course of our research effort, we introduced general integrators for vehicles which handle both 
holonomic and non-holonomic constraints. Our work extends the recently developed “geometric Lie 
group integrators” to provide a principled approach to the design of structure-preserving integrators for 
vehicles. Compared to previous methods, our approach to nonholonomic systems with symmetries is 
very general as it can handle arbitrary group structure, constraints, and shape dynamics, and is not 
restricted to a configuration space that is either solely a group or has a Chaplygin-type symmetry.  As a 
result, our formulation contains an additional discrete momentum equation analogous to the continuous 
case that explicitly accounts for and respects the interaction between symmetries and constraints in the

y 

 
t vehicle dynamics. Our resulting numerical schemes provide several practical benefits directly relevan

to computer graphics applications.  First, a user can easily apply our framework to any vehicle b
supplying its Lagrangian and constraints. Second, there is no need to use local coordinates that require 
expensive chart-switching, or special handling of singularities and numerical drift as required in 
previous methods. Additionally, fairly large time steps can be used without affecting numerical 
stability, making the method practical for the frame rates often used in animation. Finally, motion is 
computed in the minimum state-space dimension, thereby avoiding the computational burden that the 
conventional use of Lagrange multipliers induces. Consequently, our formulation allows the design of 
motions for systems with intricate dynamics through a simple algorithmic procedure, while benefiting 
from the desirable properties of discrete mechanics and Lie group methods such as robust and 
predictive numerics. Our results have been accepted in Transactions of Graphics, and will be 
published soon. 

 



 
Figure 16: A snakeboard (left) is animated using our nonholonomic integrator that realistically accounts for hip and foot 

motion. Our work presents a general framework for designing variational holonomic integrators and structure-respecting 
nonholonomic integrators for all sorts of vehicles, including cars, helicopters (middle), and boats (right). These Lie group-

based integrators 
 

on discrete forms, we also introduced a general family of variational, multisymplectic numerical 
methods for solving Maxwell's equations, using discrete differential forms in spacetime.  In doing so, 

ly both to some well-established numerical methods and 
owed that Yee's finite-difference time-domain (FDTD) 

riational integrator 

are particularly robust for large time steps, and compete in efficiency with RK methods for small time steps.

• Asynchronous Variational Integrators for Computational Electromagnetism: Using our expertise 

  

we demonstrate several new results, which app
to new methods introduced here. First, we sh
scheme, along with a number of related methods, are multisymplectic and derive from a discrete 
Lagrangian variational principle. Second, we generalized the Yee scheme to unstructured meshes, not 
just in space, but in $4$-dimensional spacetime.  This relaxes the need to take uniform time steps, or 
even to have a preferred time coordinate at all.  Finally, as an example of the type of methods that can 
be developed within this general framework, we introduced a new asynchronous va
(AVI) for solving Maxwell's equations. As Figure 17 shows, basic simulations on very challenging 
grids show excellent energy and conservation behavior of our asynchronous integrator. 

 

 
Figure 17: The Yee scheme uses staggered grids to store field values (left). By extending these discrete forms on non-

conforming space-time meshes, we were able to extend the Yee scheme to become an asynchronous time integrator (middle), 
while preserving the good numerical properties (right).  

ding were included in all the papers (10 SIGGRAPH 

mmittees such 
sium on Geometry Processing 2004-2009, Shape Modeling 
er Animation 2004-2009, etc), editorial duties (Associate Editor 

 
 
Research Dissemination and Exposure 
 

ublications: Credits to this DOE Early Career funP
papers, 1 EuroVis, 2 ACM TOG, 5 SGP, 1 SCA, 1 JGT, 1 RSS, 1 MICCAI, 1 ZAMP, and 1 GI) and 
ongoing submissions. These papers were original pieces of work, not republished results. A book chapter 
was also published to help disseminate our initial results to the scientific community. 
 

ommunity Duties : Since the beginning of this grant, we have participated in program coC
as SIGGRAPH 2008/2006/2005, Sympo
International 2004, Symposium on Comput
for ACM Transactions on Graphics), and conference chairmanship (ACM/EG Symposium on Computer 
Animation ‘04, ACM/EG Symposium on Geometry Processing ‘05). 
  



Advising Duties: Since the beginning of this grant, we have graduated three PhD student (Dr Yiying Tong, 
November 2004; Ilya Eckstein, August 2007; Roger Donaldson, June2008). We are currently advising 

ree PhD student at Caltech, and co-adivsing two other Caltech graduate students from other departments. 

ersonnel: Funding has been partially used (until 2007) to support a post-doctoral researcher, Dr Yiying 

iscellaneous: We have also been involved with some companies (such as Pixar Animation Studios, 
Utopia Compression, and GM), in an effort 
to transfer our various technologies to the industry. Although we have spent a limited amount of time on 
this task, we have built solid connections that will undoubtedly be beneficial in the future. 
 
Summary and Future Endeavors 
 
The results obtained in the course of this grant have, in many ways, exceeded the progress announced in the 
original proposal—mostly due to our move to Caltech, where cross-disciplinary research can be achieved 
much more easily. However, we required an extension as our move also prevented us from finding enough 
graduate students to use up the funds. Even now that this grant is over, we will continue demonstrating the 
power of Discrete Differential Calculus on a wide number of test cases to prove the relevance of a discrete, 
geometrically-motivated calculus for computations by building upon the results of this grant.  
 
This DOE award has also resulted in innovative teaching contributions: we included our latest theoretical 
results on discrete manifolds in conventional differential geometry classes, to heighten the students' 
intuition. In particular, the PI is teaching an Discrete Differential Geometry class where students from 
Computer Science, Applied Math, and Control & Dynamical Systems can learn more about this topic. 
Finally, a course at the ACM SIGGRAPH conference (in 2005, 2006, and 2008) on our work was taught to 
reach our community more efficiently. 
 
As a final comment, we wish to mention that this grant has allowed us to develop enough expertise to 
continue focusing on simulation. In particular, we have been developing numerical techniques (using 
applied geometry) to deal with fluids, magnetohydrodynamics, plasma, and charged fluids. We will be 
seeking DOE funds to pursue and complete these research directions. 
 

For further information, please contact: mathieu@caltech.edu 

th
  
Other Funding: We got awarded (in September 2004) a single-PI NSF grant on Discrete Differential 
Geometry, that gave us even more leverage on the results from this DOE grant. More recently, we received 
NSF money from the CPA program to study “eigengeometry”, and a NSF grant to study geometric 
integrators.  
  
P
Tong, who worked with us on fluid simulation and discrete differential forms; most of the rest of the 
funding (besides computer equipments and travels) was spent on supporting our graduate students in 
agreement with our initial budget. 
 
M

and recently, Ageia (as part of their Technical Advisory Board) 


