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Summary

The major accomplishment of this project is the production of CafLib, an “object-oriented” parallel
numerical library written in Co-Array Fortran. CafLib contains distributed objects such as block
vectors and block matrices along with procedures, attached to each object, that perform basic linear
algebra operations such as matrix multiplication, matrix transpose and LU decomposition. It also
contains constructors and destructors for each object that hide the details of data decomposition
from the programmer, and it contains collective operations that allow the programmer to calculate
global reductions, such as global sums, global minima and global maxima, as well as vector and
matrix norms of several kinds. CafLib is designed to be extensible in such a way that programmers
can define distributed grid and field objects, based on vector and matrix objects from the library,
for finite difference algorithms to solve partial differential equations.

A very important extra benefit that resulted from the project is the inclusion of the co-array
programming model in the next Fortran standard called Fortran 2008. It is the first parallel pro-
gramming model ever included as a standard part of the language. Co-arrays will be a supported
feature in all Fortran compilers, and the portability provided by standardization will encourage a
large number of programmers to adopt it for new parallel application development. The combina-
tion of object-oriented programming in Fortran 2003 with co-arrays in Fortran 2008 provides a very
powerful programming model for high-performance scientific computing.

Additional benefits from the project, beyond the original goal, include a program to provide access
to the co-array model through access to the Cray compiler as a resource for teaching and research.
Several academics, for the first time, included the co-array model as a topic in their courses on
parallel computing. A separate collaborative project with LANL and PNNL showed how to extend
the co-array model to other languages in a small experimental version of Co-array Python. Another
collaborative project defined a Fortran 95 interface to ARMCI to encourage Fortran programmers
to use the one-sided communication model in anticipation of their conversion to the co-array model
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later. A collaborative project with the Earth Sciences community at NASA Goddard and GFDL
experimented with the co-array model within computational kernels related to their climate models,
first using CafLib and then extending the co-array model to use design patterns. Future work will
build on the design-pattern idea with a redesign of CafLib as a true object-oriented library using
Fortran 2003 and as a parallel numerical library using Fortran 2008.

1 CafLib: A parallel numerical library for Co-Array Fortran

The development of CafLib, a parallel numerical library to support Co-Array Fortran [15, 16], was
the project’s main goal. A copy of the CafLib Users’ Manual [17] is included with this report along
with a compressed archive file containing the source code. The library consists of about 75,000 lines
of code, fully tested and documented.

CafLib is written in Fortran 95 using object-oriented design principles [1, 7, 8, 11, 13]. Since
Fortran 95 s not a true object-oriented language, objects are emulated as Fortran derived types for
three different data types and two working precisions for each type: 4-byte and 8-byte real, 8-byte
and 16-byte complex, and 4-byte and 8-byte integer. These objects represent vectors and matrices
for each of the six options along with distributed vectors and distributed matrices of each kind
through an emulation of inheritance. Distribution across processors is defined by Maps attached
to each distributed object, and communication between objects takes place with co-array syntax
using information in the maps. Each object has a constructor that knows how to build distributed
objects based on input parameters supplied by the programmer. Destructors for each object clean
up allocated memory to avoid memory leaks.

1.1 Object Maps

The design of every parallel application starts with problem decomposition. Problem decomposition
in CafLib is represented by maps. A map contains all the information required to describe a set of
objects, defined globally, and their distribution to sets of local objects distributed across processors
locally. In Caflib, these maps are called ObjectMaps as shown in Figure 1.

Abstract Map

ObjectMap

VectorMap SparseMatrixMap

DenseMatrixMap

Figure 1: Problem decomposition represented as extensions of an Abstract Map.

These maps are loosely based on the Composite design pattern [5, 10]. As implemented in CafLib,
an Object Map is a composite function,

Lp = Λp(Π(G)) . (1)
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A global set of n objects G = {G1, . . . , Gn} is first permuted,

π = Π(G) , (2)

such that
πj = Πi

j(Gi) i, j = 1, . . . , n . (3)

Subsets of these permuted objects are then projected to np local objects Lp = {Lp
1, . . . , L

p
np
} on

specific processors,
Lp = Λp(π) , (4)

such that
Lp

k = (Λp)j
k(πj) k = 1, . . . , np , p = 1, . . . , num images() . (5)

Figure 2 shows an example of an Object Map. A commonly used permutation in scientific appli-
cations, especially in linear algebra, is a cyclic permutation. CafLib uses this default permutation
unless the programmer specifies a different permutation. These programmer-provided permutations
are completely general and may be chosen to represent particular aspects of a particular application.
In the same way, the projection onto specific processors is also general with the default chosen as an
equal number of objects on each processor. But to balance work load, the programmer may specify
a projection specific to an application, including the zero projection for some processors. These
permutations and projections can change dynamically by switching from one map to another during
execution and by moving data accordingly using procedures provided by CafLib.

G1 G2 Gj−1 Gj Gj+1 Gn

πnπk

Lp
1

πk+1 πk+2

L1
1 L1

2

π1 π2

Lq
1 Lq

2 Lq
3

Figure 2: A composite Object Map.

Had Fortran 2003, a true object-oriented language, been available for this project, these maps
would have been represented as concrete instantiations of an Abstract Map as shown in Figure 1.
Fortran 95 not being a true object-oriented language, these maps were implemented by emulating
inheritance as well as possible starting with the Object Map. A Vector Map extends the Object Map
to a map for specific objects that correspond to blocks of a vector. A Dense Matrix Map extends
the Vector Map by assigning two Vector Maps, one for rows of the matrix and one for columns. A
Sparse Matrix Map extends the Object Map by defining the objects to be irregular pieces of the
matrix specific to a chosen compressed storage scheme.

The composite function (1) represented by an Object Map has an inverse so that each processor
knows how its set of local objects is related to the set of global objects. Figure 3, for example,
shows how processor q locates its neighbor to the left for its second local object Lq

2 as the first local
object L1

1 on processor 1 and its neighbor to the right as local object Lp
1 on processor p. These

relationships are encapsulated in procedures associated with each object that perform, for example,
halo exchanges between distributed matrix objects.
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Figure 3: Inverse map to nearest neighbors.

1.2 Library Design

The Object Maps described in Section 1.1 are key to the design of CafLib. As Figure 4 shows, they
occupy a central position in the library’s design in the form of concrete Vector Maps used both for
distributed Block Vector objects and for rows and columns of distributed Block Matrix objects.

Grids
Differential
Operators

Fields

Block
Vectors

Vector
Maps

Block
Matrices

Vectors
Linear
Algebra

Matrices

Figure 4: Design of CafLib.

A Block Matrix object, for example, has the structure,

type BlockXXMatrix

private

type(VectorMap) :: rowMap

type(VectorMap) :: colMap

type(XXMatrix),allocatable :: block(:,:)

!-other components-!

end type BlockXXMatrix

where the symbol XX can be any of six different precisions, XX = {R4,R8,C4,C8,I4,I8}. Each
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block(:,:) of the structure is itself a structure of type(XXMatrix) that holds the data in a normal
two-dimensional array,

type XXMatrix

real(kind=XX),allocatable :: matrix(:,:)

!-other components-!

end type XXMatrix

These distributed block matrices are created by calling a generic constructor,

type(BlockXXMatrix) :: a

call newBlockMatrix(a,m,n,k,l,p,q,w1,w2)

where m and n are the global size of the matrix, k and l are block sizes, p and q are co-dimensions
describing the processor decomposition, and w1 and w2 are optional halo widths. Based on the
arguments presented to the constructor, it builds vector maps for rows and columns of the matrix
and allocates the appropriate number of blocks for each processor and the appropriate amount of
memory for each block. An alternative form of the constructor,

call newBlockMatirx(a,rowMap,colMap)

allows the programmer to build vector maps outside of the constructor and pass them as arguments.
There is also a generic destructor for each distributed object,

call deleteBlockMatirx(a)

that cleans up the allocated memory and prevents memory leaks.
The library contains basic linear algebra procedures for the distributed block vector and block

matrix objects. It contains vector and matrix norms, vector and matrix reductions, matrix-vector
multiplication, matrix transpose, matrix-matrix multiplication, LU decomposition, and linear so-
lution procedures, all coded as parallel procedures using co-array syntax for data communication.
At the heart of each algorithm are calls to LAPACK procedures [3] to obtain high performance on
the local blocks of data on each processor. In addition, the programmer can call LAPACK proce-
dures directly for the non-distributed data structures at the bottom of Figure 4 by passing the data
component of the object directly to the procedure.

2 Scaling Results

The high level of abstraction in CafLib does not result in a degradation of performance. A measure
of performance is the comparison of the scalability of the LU decomposition procedure from CafLib
with the same procedure from ScaLAPACK [9, 16, 26]. Figure 5 shows such a comparison where
both procedures use the same block-cyclic distribution and the same internal block size.

The left side of Figure 5 shows execution time as a function of the number of processors. The
lower the curve, the better the results. As can be seen, the CafLib time is lower than the ScaLAPACK
time even for a single processor. This experiment is a strong-scaling experiment where the problem
size remains fixed at n = 1000 for all processor counts. Eventually the amount of computational
work done by each processor goes to zero, and all that is left is the communication overhead. As the
figure shows, for large numbers of processors, the communication overhead for the CafLib procedure
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is about half the overhead for the ScaLAPACK procedure. This difference is caused by the high
startup cost inherent to the underlying MPI implementation of the ScaLAPACK procedure. The
co-array implementation in CafLib has very low startup cost because the compiler is able to generate
instructions that take advantage of the global address space of the underlying Cray-T3E hardware.
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Figure 5: Scaling results for LU Decomposition. The left side shows time plotted as a function of the
number of processors, p = q × r. Time is expressed in dimensionless giga-clock-ticks, νt × 10−9, as
measured on a CRAY-T3E with frequency ν = 300 MHz. The global matrix size is 1000×1000 with
local blocks of size 48×48 on each image. The curve marked with bullets (•) is CafLib code [16]; the
one marked with triangles (∇) is ScaLAPACK code [26]. The right side shows speedup as a function
of the number of processors. The dotted line on each side represents perfect scaling.

Although weak-scaling experiments, where the problem size grows with the number of proces-
sors, show better scaling behavior than strong-scaling experiments, it is still important to examine
how well programming models behave for fixed-size problems. Not every problem can be artificially
increased in size to make it scale to large numbers of processors. When latency effects become impor-
tant for a fixed-size problem, it is important that performance declines gracefully to the asymptotic
limit represented by the the residual communication overhead. As Figure 5 shows, the MPI imple-
mentation does not decline gracefully. The communication overhead starts to grow, perhaps linearly
with processor count, at around 64 processors. The CafLib implementation, on the other hand,
remains relatively constant in the asymptotic limit.

3 Grids and Fields

The purpose of the CafLib design was not to reproduce the ScaLAPACK Library. The real purpose
was to provide an underlying foundation of vector and matrix structures that can be used as a

6



basis for defining physical fields on physical grids to support software for solving partial differential
equations using finite difference schemes. As an example, we implemented A finite difference scheme
applied to the one-dimensional shallow water equations [15].

The partial differential equations, defined by Cahn [2] and by Arakawa and Lamb [4], for the
surface height h(x, t) and the two velocity components u(x, t) and v(x, t), as functions of the space
variable x and the time variable t, are the equations [4, eqs. 23-25, p. 183]

∂u

∂t
− Fv + G

∂h

∂x
= 0

∂v

∂t
+ Fu = 0

∂h

∂t
+ H

∂u

∂x
= 0 .

In these equations, F is the Coriolis frequency, G is the acceleration of gravity, and H is the mean
height of the surface, which is assumed to be small relative to the width of the space interval.

CafLib supports distributed Field Objects, at the top of Figure 4, based on block-vector and
block-matrix objects at lower levels. The fields u,v,h are represented as block vectors declared as
co-arrays:

type(BlockR8Vector),dimension[*] :: h,u,v

call newBlockVector(h,n,k,p,w)

call newBlockVector(u,getVectorMap(h))

call newBlockVector(v,getVectorMap(h))

call setBlockVector(h,h0)

The first call to the constructor creates the field h with n grid points cut into blocks of size k

distributed over p images. The halo width w equals one, wide enough for a two-point stencil for the
first-order difference operator. Calls to an alternative form of the constructor create the fields u and
v with a predefined vector map, returned by the procedure getVectorMap(h) as a second argument.
Use of the second form of the constructor avoids the overhead of building the map more than once and
guarantees that all three fields have the same distribution. The procedure setBlockVector(h,h0)

sets the field h from the input array h0(:), which contains its initial values.
Having created field objects, the programmer decides to let each image perform work on the

local blocks that it owns. For each of its local blocks, an image obtains the length of the block
and a pointer into the block, with or without halos depending on how it is used in the difference
formula. Each image performs the appropriate finite difference operation independently of the
others. Synchronization among images occurs within the halo exchange operation, which uses co-
array syntax internally to update overlapping halo regions. With a loop over some predetermined
number of time steps, tMax, the code might look like the following:

do t=1,tMax

do b=1,getNumLocalBlocks(u)

m = getLocalBlockLength(u,b)

hPtr => pointerToLocalBlock(h,b)

uPtr => pointerToLocalBlockwithHalo(u,b)

hPtr(1:m) = hPtr(1:m) - 0.5*H*(dt/dx)*(uPtr(2:m+1)-uPtr(0:m))

enddo
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call cyclicHaloExchange(h)

do b=1,getNumLocalBlocks(u)

m = getLocalBlockLength(u,b)

hPtr => pointerToLocalBlockwithHalo(h,b)

uPtr => pointerToLocalBlock(u,b)

vPtr => pointerToLocalBlock(v,b)

uPtr(1:m) = uPtr(1:m) + F*dt*vPtr(1:m) &

- 0.5*G*(dt/dx)*(hPtr(2:m+1)-hPtr(0:m))

vPtr(1:m) = vPtr(1:m) - F*dt*uPtr(1:m)

enddo

call cyclicHaloExchange(u)

call cyclicHaloExchange(v)

enddo

The library hides from the programmer all the details of data distribution and all the details of
how to exchange data between objects. The block vector objects themselves contain all the necessary
information, and the procedures associated with them know how to perform the required operations.

4 Co-arrays in the Fortran 2008 Standard

One of the most important outcomes of the Pmodels Project is the decision of the Fortran Standards
Committee to include co-arrays as an official feature of the language. Throughout this project, I
have worked closely with the committee to define the co-array standard. The Forran 2008 standard
is in its final stage of adoption with a projected release in 2010. The proposed co-array extension
is now open for public comment, and I will be engaged with the committee to follow developments
through this last stage.

Details of the co-array model have changed from our original proposal in light of comments from
committee members and especially in light of new features of Fortran 2003 that arose after our
original design. We now allow pointer components of co-array derived types to be assigned to local
data. This is a very powerful way for programmers to use co-array syntax for communication among
irregular objects allocated asymmetrically on different images. We also allow derived types to have
co-array components. It is illegal for a co-array derived type to also have a co-array component.
But we allow a derived type to be a co-array with no co-array components. We also allow a
derived type, which is not a co-array, to have co-array components. Relaxing this restriction allows
the programmer to emulate a form of inheritance that was very difficult to do with the original
restriction on co-array components.

We have also redefined some of the synchronization intrinsic procedures for Co-Array Fortran .
We originally allowed only a small amount of asynchronous behavior through the sync team() pro-
cedure with an optional wait list. We had many requests for a notify()/wait() protocol that allows
true asynchronous behavior among images. We have added these intrinsic procedures to the new
specification, and we have redefined the sync team() procedures in terms of the notify()/wait()

protocol.
John Reid and I contributed technical reports [29] and full published papers [25, 19, 18, 28] to

describe these changes as they evolved. We are now in the process of writing The Co-array Book to
describe the official Fortran 2008 co-array extension.
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Co-Array Fortran is finally on its way to a standard, portable parallel programming model.
When that happens, it will be a very satisfying result of about fifteen years of my effort and a
fitting highlight to the support given to Co-Array Fortran through the Pmodels grant over a five
year period. Without support from that grant, Co-Array Fortran most likely would have withered
on the vine.

5 Public Access to Co-Array Fortran for Education and Re-

search

One of the major hurdles in front of people wanting to try Co-Array Fortran has been the lack of
access to a Co-Array Fortran compiler. To attack this problem, I convinced Paul Muzio, at the
Army High Performance Computing Research Center (AHPCRC) in Minneapolis, to make a Cray-
X1 available as a public resource for teaching and research. The AHPCRC had a small prototype
Cray-X1 for several years, and after upgrading to a larger machine, they were able to free the smaller
one from its production load. For about a year, until the AHPCRC left Minneapolis, educators were
able to request accounts on the AHPCRC machine so they could include Co-Array Fortran in their
parallel programming courses.

Our first experiment along these lines, in collaboration with the DARPA HPCS Project, took
place at the University of California, San Diego where Alan Snavely included Co-Array Fortran in
his graduate-level course in parallel programming. I presented a Co-Array Fortran tutorial to his
class with a live, interactive demonstration of how to use Co-Array Fortran on the Cray-X1 back
at the AHPCRC in Minneapolis. The students were assigned a Sharks and Fishes problem using
both Co-Array Fortran and MPI. Vic Basili’s students from the University of Maryland measured
their programming effort to compare their productivity using the two programming models. The
students reported very favorable impressions of their experiences with Co-Array Fortran compared
with their experiences with MPI. We performed the same experiment with John Gilbert’s class at
the University of California, Santa Barbara with similar results.

This work has resulted in a new metric space for productivity in software development [23]. This
new metric space, which is an extension of my earlier work on computational action metrics [14],
will change the way we think of productivity in a fundamental way. This work is also related to two
companion papers [20, 22] that shows how to define a similar metric space based on computational
action for programs as they execute.

6 Co-Array Python

The parallel programming model underlying the three language extensions, Co-Array Fortran, UPC,
and Titanium, is independent of language and independent of architecture. The problem in demon-
strating that point has been the lack of access to proprietary compilers, especially for Fortran, so
that independent researchers could demonstrate the utility of these models. To further emphasize
the point, we have implemented the Co-Array Fortran model using the Python language and have
called it Co-Array Python [27]. Because Python is an open source language, it was a simple mat-
ter to insert co-array syntax into the language and to program a simple Laplace solver in the new
language. The project was not intended to show high performance, which no one expects from an
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interpreted language, but rather to show the ease of implementation and the increase in productivity
for programmers writing code using this programming model.

7 Fortran 90 Interface to ARMCI

In the absence of standard Co-Array Fortran compilers, we have designed a Fortran 95 interface
for the ARMCI Library [12]. This library is a portable communication library written in C that
provides one-sided message-passing capability, which is more efficient than MPI code, and it is
available on more platforms than the popular Shmem Library. In the absence of a Co-Array Fortran
compiler, ARMCI is the next best approach to the underlying programming model based on one-sided
communication. This new interface will allow programmers to write code that switches between co-
array syntax and ARMCI library calls depending on the availability of a Co-Array Fortran compiler.

Since Fortran 95 has no standard interface to the C language, it has been a challenge to design
an interface that works for all compilers. Fortran 2003 now defines a standard interface to the C
language so this design should be looked at again.

8 Collaboration with Earth Sciences

In collaboration with NASA Goddard Space Flight Center and the Geophysical Fluid Dynamics
Laboratory, I started a project to investigate the use of Design Patterns for the development of
large-scale application codes for the Earth Sciences. We have identified six design patterns for grid-
codes, codes that apply finite difference operators to fields defined on underlying physical grids[5]. We
implemented a prototype shallow water example written in Java using the Driver/Kernel model [6]
emulating the CafLib design. We used the Strategy Pattern to define the kind of architecture in-
volved. A Builder Pattern takes the strategy as input and returns a Composite Pattern, which
represents the domain decomposition of the problem for a particular architecture. We used the
Mediator Pattern to pick the best communication method for a given architecture, and we used the
Observer Pattern to implement asynchronous communication among domains transparently to the
programmer. The Iterator Pattern allows the programmer to traverse the domain decomposition ei-
ther locally or globally independent of architecture. By picking different strategies, we can use either
MPI or Shmem or ARMCI or Co-Array Fortran for communication. The applications programmer,
writing numerical kernels, never knows which one is used in the driver part of the code.

9 Publications Resulting from the Project

9.1 Peer-Reviewed Publications

Robert W. Numrich, A Metric Space for Computer Programs and The Principle of Computa-
tional Least Action, The Journal of Supercomputing, 43(3):281-298, 2008.

Robert W. Numrich, The computational energy spectrum of a program as it executes, The
Journal of Supercomputing, Under review, 2008.

John Reid and Robert W. Numrich, Co-arrays in the next Fortran Standard, Scientific Pro-
gramming, 15(1): 9-26, 2007.
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Robert W. Numrich, A note on scaling the Linpack benchmark, Journal of Parallel and Dis-
tributed Computing, 67(4): 491-498, 2007.

Ricky A. Kendall, Masha Sosonkina, William D. Gropp, Robert W. Numrich, Thomas Sterling,
Parallel Programming Models Applicable to Cluster Computing and Beyond, in Numerical
Solution of Partial Differential Equations on Parallel Computers, Are Magnus Bruaset and
Aslak Tveito, editors, Lecture Notes in Computational Science and Engineering, 51, 3-54,
Springer 2006.

Robert W. Numrich, A Parallel Numerical Library for Co-Array Fortran, Parallel Processing
and Applied Mathematics: Proceedings of the Sixth International Conference on Parallel Pro-
cessing and Applied Mathematics (PPAM05), Springer Lecture Notes in Computer Science,
LNCS 3911, 960-969, Poznan, Poland, September 11-14, 2005.

Robert W. Numrich, Parallel numerical algorithms based on tensor notation and Co-Array
Fortran syntax, Parallel Computing, 31, 588-607, 2005.

Robert W. Numrich and John Reid, Co-arrays in the next Fortran Standard, ACM Fortran
Forum, 24(2): 2-24, 2005.

J. Nieplocha, D. Baxter, V. Tipparaju, C. Rasmussen, and Robert W. Numrich, Symmetric
Data Objects and Remote Memory Access Communication for Fortran 95 Applications, Euro-
Par 2005 Parallel Processing: 11th International Euro-Par Conference, August 30-September
2, Lisbon, Portugal, Lecture Notes in Computer Science Number 3648, Springer-Verlag GmbH,
720-729, 2005.

V. Balaji and Robert W.Numrich, A Uniform Memory Model for Distributed Data Objects on
Parallel Architectures, Use of High-Performance Computing in Meteorology, Walter Zwieflhofer
and George Mozdzynski editors, World Scientific Publishing Co., 272-294, 2005.

Robert W. Numrich, Lorin Hochstein, Victor Basili, A Metric Space for Productivity Mea-
surement in Software Development, Proceedings SE-HPCS’05, Second International Workshop
on Software Engineering for High Performance Computing System Applications, St. Louis,
Missouri, May 15, 2005.

Craig E. Rasmussen, Matthew J. Sottile, Jarek Nieplocha, Robert W. Numrich, Eric Jones,
Co-Array Python: A Parallel Extension to the Python Language, Euro-Par 2004 Parallel Pro-
cessing: 10th International Euro-Par Conference, Pisa, Italy, August 31-September 3, Lecture
Notes in Computer Science Number 3149, Springer-Verlag GmbH, 632-637, 2004.

9.2 Conferences, Workshops, Tutorials, Technical Reports

Robert W. Numrich, Combining Object-oriented Techniques with Co-arrays in Fortran 2008,
13th SIAM Conference on Parallel Processing for Scientific Computing (PP08), Atlanta, GA,
March, 2008.

Robert W. Numrich, Computational Forces in the Linpack Benchmark, 13th SIAM Conference
on Parallel Processing for Scientific Computing (PP08), Atlanta, GA, March 12, 2008.
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Robert W. Numrich, A Parallel Numerical Library for Co-Array Fortran, Louisiana State
University, CCT Seminar, January 17, 2007.

Robert W. Numrich, A New Scaling Formula for the Linpack Benchmark, SIAM Conference
on Computational Science and Engineering, Costa Mesa, CA, February 19-23, 2007.

Robert W. Numrich, Tutorial on Co-Array Fortran, Albert Einstein Institute, Potsdam, Ger-
many, September 14, 2007.

Robert W. Numrich, Tutorial on Co-Array Fortran, University of Southern California, Los
Angeles, graduate course in parallel programming, January 12, 2006

Robert W. Numrich, Ragged allocatable/pointer co-arrays, Technical Report J3/06-135, (http://www.j3-
fortran.org), February, 2006.

Robert W. Numrich, Simplification of the co-array proposal, Technical Report J3/06-134,
(http://www.j3-fortran.org), February, 2006.

Robert W. Numrich, Tutorial on Co-Array Fortran, The 20th ACM International Conference
on Supercomputing, Cairns, Queensland, Australia, June 28-July 1, 2006.

Robert W. Numrich, Co-Array Fortran, Workshop on Programming Languages for High Per-
formance Computing (HPC WPL), Sandia National Laboratory, Albuquerque, NM, December
13, 2006.

Robert W. Numrich, Tutorial on Co-Array Fortran, University of California, San Diego, grad-
uate course in parallel programming, January 11, 2005.

Robert W. Numrich, Tutorial on Co-Array Fortran, University of California, Santa Barbara,
graduate course in parallel programming, April 13, 2005.

V. Balaji, Thomas L. Clune, Robert W. Numrich and Brice T. Womack, An Architectural
Design Pattern for Problem Decomposition, Workshop on Patterns in High Performance Com-
puting, Champaign-Urbana, IL, May 4-6, 2005.

Robert W. Numrich, Tutorial on Co-Array Fortran, SIAM Conference on Parallel Processing
for Scientific Computing, San Francisco, CA, February 25-27, 2004.

Robert W. Numrich, Tutorial on Co-Array Fortran, New Methods for Developing Peta-Scale
Codes, Pittsburgh Supercomputing Center, May 3-4, 2004.

Robert W. Numrich, Observations on Parallel Languages, High Productivity Programming
Languages and Models, Santa Monica, CA, May 17-20 2004.

Robert W. Numrich, Tutorial on Co-Array Fortran, NASA Goddard Space Flight Center,
summer intern program, July 27, 2004.

Robert W. Numrich, Tutorial on Co-Array Fortran, University of Maryland graduate seminar,
September 28, 2004.

Robert W. Numrich, Co-Array Fortran in HPCS, HPC User Forum, Tucson, AZ, September
20-22, 2004.
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Robert W. Numrich, Tutorial on Co-Array Fortran, 17th International Parallel and Distributed
Processing Symposium (IPDPS), Nice, France, April 22-26, 2003.

Robert W. Numrich, An overview of Co-Array Fortran with Some Recent Results, SCICOMP8,
Minneapolis, MN, August 5-8, 2003.

Robert W. Numrich, Co-Array Fortran: What is it? Why should you put it on BlueGene/L?,
Blue Gene/L Workshop, Reno, NV, October 14, 2003.

Robert W. Numrich, Tutorial on Co-Array Fortran, Supercomputing 2003, Phoenix, AZ,
November 15-21, 2003.

10 Future Work

Now that Fortran 2003 is a true object-oriented language, CafLib should be rewritten with a new
design based on inheritance. Emulating object-oriented design using Fortran 95 is awkward and
difficult [1, 7, 8, 11, 13]. Without inheritance, many pieces of code are replicated over and over
again. Without true constructors and destructors, dealing with memory leaks is very difficult.
These object-oriented features are now part of Fortran 2003, and they can be used to advantage to
improve productivity for programming high-performance, parallel scientific codes [21].

The new design would be based on Abstract Maps as indicated already in Figure 1. In Fortran
2003, these maps would look something like the following:

module AbstractMap

type,abstract :: Map

integer,private :: numberOfObjects = 0

contains

procedure(GtoL),deferred,pass :: getGlobalToLocal

procedure(LtoG),deferred,pass :: getLocalToGlobal

procedure :: getNumberOfObjects

end type Map

abstract interface

integer function GtoL(a,iGlobal) result(iLocal)

import Map

class(Map),intent(in) :: a

integer,intent(in) :: iGlobal

end function GtoL

end interface

contains

integer function getNumberOfObjects(a) result(n)

class(Map),intent(in) :: a

n = a\%numberOfObjects

end function getNumberOfObjects

end module AbstractMap

Every concrete extension to the abstract map inherits the private component variable numberOfObjects
and a public function getNumberOfObjects() that returns its value. Every concrete extension must
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provide a function getGlobalToLocal() that maps global objects to local objects and a function
getLocalToGlobal() that maps local objects to global objects. These are the composite functions
represented in Figures 2 and 3.

An ObjectMap is an extension of the Abstract Map, for example,

module ObjectMap

use AbstractMap

type,extends(Map) :: ObjectMap

integer,private,allocatable :: local(:)

contains

procedure,private,nopass :: newObjectMap

generic,public :: ObjectMap => newObjectMap

procedure :: getGlobalToLocal

procedure :: getLocalToGlobal

final :: delete

end type ObjectMap

contains

integer function getGlobalToLocal(a,global) result(local)

class(ObjectMap),intent(in) :: a

integer,intent(in) :: global

local=a%local(global)

end function getGlobalToLocal

end module ObjectMap

It adds an allocatable component array local(:) that holds the local object number for each global
object. It also adds a generic constructor ObjectMap, not shown, that allocates the memory for the
array and fills in the correct values based on some mapping function particular to each specific kind
of map. It also implements a destructor final(), not shown, that deallocates memory whenever the
map goes out of scope in a program. Finally, it implements the functions getGlobalToLocal(g),
shown, and getLocalToGlobal, not shown.

In the new CafLib, I would add sparse matrix objects along with the dense matrix objects already
included in the old CafLib. I decided about half way through the project that it did not make sense
to include these new objects without true inheritance, which is just now becoming available from
compiler vendors. I would also include grids and fields as objects in their own right as extensions of
vector and matrix objects rather than leaving it up to the programmer to define them as shown in
the shallow water example.

I intend to continue work with the Fortran Standards Committee as it takes Co-Array Fortran
through the long standardization process. I will continue to work with John Reid writing the official
specification of the language and to help him with the official edits to the standard document. We
also intend to write a book on Co-Array Fortran and to include it as a chapter in the next edition
of Fortran 2003/2008 Explained.

I am actively encouraging compiler vendors to provide early implementations of the co-array
extension in Fortran 2008. With all new hardware being based on multicore chips, a first imple-
mentation for a single multicore chip with shared memory is very easy to produce. In fact, the first
implementation of co-arrays took place on an SGI Origin 2000 with globally addressable, distributed
shared memory [24]. It only required a simple partitioning of the memory. I hope the vendors will
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take this route as a quick way to implement co-arrays well in advance of Fortran 2008 becoming the
official standard.
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