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An Analytic Study of the Perpendicularly Propagating

Electromagnetic Drift Instabilities in the Magnetic Reconnection

Experiment

Yansong Wang, Russell Kulsrud, Hantao Ji

Abstract

A local linear theory is proposed for a perpendicularly propagating drift instability driven by

relative drifts between electrons and ions. The theory takes into account local cross-field current,

pressure gradients and modest collisions as in the Magnetic Reconnection Experiment (MRX)

[10]. The unstable waves have very small group velocities in the direction of the pressure gradient,

but have a large phase velocity near the relative drift velocity between electrons and ions in the

direction of cross-field current. By taking into account the electron-ion collisions and applying

the theory in the Harris sheet, we establish that this instability could be excited near the center

of the Harris sheet and have enough e-foldings to grow to large amplitude before it propagates

out of the unstable region. Comparing with the other magnetic reconnection related instabilities

(LHDI, MTSI et.) studied previously, we believe the instability we find is a favorable candidate to

produce anomalous resistivity because of its unique wave characteristics, such as electromagnetic

component, large phase velocity, and small group velocity in the cross current layer direction.
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I. INTRODUCTION

Magnetic reconnection is a fundamental process whereby magnetic field lines are broken

and rejointed in an electric current singularity. In nature, magnetic reconnection proceeds

much faster than the predictions of the Sweet-Parker model. Its origin has been a puzzle

for many years. Fast reconnection has also been observed in the magnetic reconnection

experiment (MRX) [10]. Thus, we hope that gaining an understanding of fast reconnection

in this experiment will lead to insights into the general problem. There are two main

candidate mechanisms in explaining fast reconnection. One is based on the two fluid effects,

which facilitates the separation of electron and ion flows in a laminar fashion as verified in

the MRX [21]. The other one is based on resistivity enhancement due to turbulence within

the current sheet [2]. Electromagnetic fluctuations have been measured and have shown

positive correlations with fast reconnection in the MRX [8]. These fluctuations may play

an important role and speed up the rate of reconnection by enhancing plasma resistivity.

In the current sheet, there are many sources of free energy, such as relative drifts be-

tween ions and electrons, pressure gradient, and magnetic field gradient. These could drive

instabilities and the resulting turbulence can increase the forces on the current carrying

particles and produce an anomalously large resistivity. The lower-hybrid-drift instability

(LHDI) { [11]; [12]; [13]; [14]; [15]; [17]; [6]}which is driven by density gradient has

been extensively studied as a favorable candidate to produce anomalous resistivity in the

current sheet. Most of the theories of this instability are based on either the electrostatic

approximation assuming very small plasma beta [6], or local calculations assuming a small

density gradient [13]. However, the location where an anomalous resistivity is needed is the

center of the current sheet where the local plasma beta is large because of weak magnetic

field and large plasma pressure. Also, because of the narrowness of the current sheet (which

is order of the ion skin depth), a small density gradient is not an appropriate assumption in

most cases.

Most of the previous LHDI theories are only concerned with collisionless plasma and

rely on the finite electron Larmor radius effect (finite k⊥ρe), because the modes are stable

or slowly growing when k⊥ρe is very small [13]. In MRX plasmas where the fluctuations

are observed, the electron-electron and electron-ion collisions are relative frequent. These

collisions can damp the instabilities requiring large k⊥ρe since the collisional damping effect
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is proportional to νeik
2. No LHDI theory is found to take these effects into account. A

viable theory needs also to answer the following questions: what are the driving force for

the instability? what are their signatures? how do they grow and saturate? and how do

they affect the magnetic reconnection process?

Much effort has been devoted to searching for fluctuations in the MRX that produce

anomalous resistivity. Electrostatic fluctuations were first found by Carter [6]. However, it

turns out these fluctuations only exist on the edge of the current sheet and do not correlate

well in time with the reconnection process. These electrostatic fluctuations may have some

indirect effects on the reconnection process, such as making the current layer thinner and

triggering fast reconnection as suggested by some simulations. But they are not directly

related to the anomalous resistivity in the central body of the current sheet. (We note that

there are several typos on signs in Carter’s calculation, but the plot of the growth rate of the

electrostatic LHDI is correct.) Later, Ji [8], measured electromagnetic fluctuations which

are present in the center of the current sheet and correlate in time with the reconnection

progress. They have a phase velocity comparable to the relative drift velocity between

electrons and ions.

Motivated by these observations, Ji and his colleagues developed a local linear electromag-

netic instability in the lower hybrid frequency range [1]. This is an obliquely propagating

electromagnetic drift instability. This instability has an appreciable growth rate and could

arise near the center of the current sheet. It is driven by a large density gradient. However,

when applying this theory to the Harris sheet, we find this instability also has a large group

velocity in the direction of the density gradient and it propagates out of the unstable region

before it barely e-folds once or twice. Also the phase velocity of this instability is much

smaller than the experimental measured value.

Since the obliquely propagating instability does not grow to desirable amplitude in the

Harris sheet, we reinvestigate the perpendicularly propagating modes using the same local

linear electromagnetic theory. Surprisingly, we find a more favorable instability which has

a very small group velocity in the density gradient direction. It has a phase velocity com-

parable to the relative drift velocity between electrons and ions which comparable with the

experimental measurement. By adding electron-ion collisions and applying the theory in

the Harris sheet, we confirm that this instability can still exist in the center of the current

sheet where the plasma beta is large. In addition, because of its extremely small group ve-
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locity across the current layer, this perpendicularly propagating electromagnetic instability

may have sufficient e-foldings to grow to a desired amplitude so that nonlinear effects are

important and lead to a resistivity increase.

First, in Sec. II, we present the theoretical calculations of our model. In Sec. III, we

discuss the wave characteristics and physical mechanism. In Sec. IV, we apply the theory

to the Harris sheet. In Sec.V, we present the modified theory including modest electron-ion

collisions. Finally, in Sec. VI, we present our conclusions.

In the Appendix, we revisit the obliquely propagating instability and show why that

instability is less favorable than the perpendicularly propagating instability.

II. THEORETICAL MODEL

A. Assumptions and Method of the calculation

Because we are trying to explain the observed instabilities in the MRX, we make the

same assumptions proposed in previous paper [1]. Namely, we assume that the frequency of

the modes is larger than the ion cyclotron frequency and smaller than the electron cyclotron

frequency. Also, we assume that the wavelength is small compared with the ion gyration

radius and large compared with the electron gyration radius. Thus, we consider the ions to

be unmagnetized, and treat the electrons as a fluid. As we discussed in the introduction, we

neglect the finite k⊥ρe effect, because the electron-ion collision rate in the MRX is relatively

high, and they may damp the instabilities at large k⊥.

Since the e-e collision rate in the MRX is comparable to the frequencies of the mode,

an isotropic pressure tensor should be a reasonable assumption. Further, we assume the

electron pressure is either isothermal or adiabatic based on the experimental data. Also we

assume Ti and Te are constant. The Debye length is very small in the MRX even compared

with the electron gyration radius, so charge neutrality is a very good approximation. This

gives us the perturbed electron density directly in terms of the perturbed ion density.

We take the equilibrium in the MRX to be a Harris equilibrium and study the instability

in the frame in which the ions are at rest and the electrons have a diamagnetic drift velocity

V0. As shown in Figure 1, we take a local Cartesian coordinate system with z along B0, y

in the direction of increasing plasma pressure, and x in the direction of the electron drift.
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Thus, the electric field balancing the ion pressure force is E0 = E0ŷ and in the equilibrium,

en0E0 = Ti
∂n0

∂y
, (1)

−en0(E0 − V0B0) = Te
∂n0

∂y
. (2)

Adding Equation(1) and (2) , we have en0V0B0 = (Ti + Te)(∂n0/∂y), and

E0 =
Ti

Te + Ti

V0B0. (3)

Defining dn0/dy = εn0, we get

ε =
eV0B0

Ti + Te

, (4)

which is the local relation between the electron drift velocity and the density gradient.

We obtain the perturbed ion density and current from the unmagnetized ion dynamics.

The detailed calculation presented in previous paper [1] yields

ji = −i
n0e

2

Mkvi

[Z(ζ)E− (ζZ ′ + Z)(E · k̂)k̂ + i(ε/k)(ζZ ′ + Z)Eyk̂] (5)

n ≈ i
n0e

Mk2v2
i

Z ′(ζ)(k · E− iεEy), (6)

where k̂ = k/k, ζ = ω/(kvi), vi =
√

2Ti/M , and Z is the plasma dispersion function.

We first take the cold ion limit because the unstable modes have a very large phase

velocity compared with the ion thermal velocity. We have

ji ≈ i
ω2

pi

ω
ε0E (7)

n ≈ i
n0e

Mω2
(k · E− iεEy), (8)

where ωpi ≡
√

n0e2/Mε0. Later, we will include ion thermal motion.

We obtain the perpendicular electron current from the first-order force for the electron

fluid, assuming either an isotropic or adiabatic perturbed pressure. Neglecting the electron

inertia term, we have

je ×B0 = en0V0 ×B + en0E + enE0 + γ̂∇(nTe). (9)
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The x and y components of Eq.(9) are given by

je
yB0 − iγ̂kxTen1 − n0eEx = 0 (10)

−je
xB0 + en0V0Bz − en1E0 − en0Ey − γ̂(iky + ε)Ten1 = 0. (11)

Here, by taking γ̂ = 1 or 5/3, we have either an adiabatic or isothermal perturbed

pressure, depending on the plasma parameters. When the electron mean free path is much

smaller than the distance for lines to leave the current layer, [the modes propagate only

perpendicularly to the unperturbed magnetic field (k‖ = 0)], there is no heat transport along

the field lines to smooth out the temperature. Thus, the temperature perturbations are not

zero, [T1/T0 = (2/3)n1/n0]. After taking into account these temperature perturbations, the

factor in front of the perturbed pressure gradient γ̂ is 5/3. However if the electron mean free

path is comparable with the length of the current layer, the isothermal pressure assumption

is reasonable, with γ̂ = 1.

Another important term we must keep is the ε term in Eq.(11). This arises from the

equilibrium density gradient ε. It is important because it gives out-of-phase terms which

have the potential to generate instabilities.

We assume that the electric field has a normal mode decomposition proportional to

exp[i(k · x− wt)]. This is consistent with local theory when wavelengths in the y direction

are smaller than the thickness of the current layer. But other quantities have an addi-

tional dependence on y because of the pressure gradient of the equilibrium in y. With the

wave vector k = (kx, ky, 0), Ampere’s law and Faraday’s law are combined to give Maxwell

equation,

k× (k× E) = −iωµ0j. (12)

Taking only the perpendicular components, this equation becomes

k2
yEx − kxkyEy = iωµ0jx (13)

k2
xEy − kxkyEx = iωµ0jy. (14)

After calculating the perpendicular x and y electron currents from Eqs.(13) and (14), we can
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substitute them and the ion currents into Maxwell’s equations to find the two independent

relations for the perpendicular electric field. The warm ion effects based on Eq. (5) and

(6) will be discussed in Sec. 4. Since the parallel electric field is zero, we need only two

equations for Ex and Ey. This gives a 2× 2 matrix, whose determinant gives the dispersion

relation. We are now in a position to write down the equations for Ex and Ey and solve for

the dispersion relation.

B. Dispersion Relation

Substituting for n1, j
e and ji [from Eqs.(8), (10), (11) and (7)] into Eqs.(13) and (14),

and introducing dimensionless variables, we get


 Dxx Dxy

Dyx Dyy





 Ex

Ey


 = 0, (15)

where

Dxx = 1 + K2
y − τ

KxV

Ω
+ iV Ky − iγ̂

βe

2

Kx(Ky − iE)

Ω

Dxy = i(Ω−KxV )− τ
Ky − iE

Ω
V − iγ̂

βe

2

(Ky − iE)2

Ω
−KxKy

Dyx = iγ̂
βe

2

K2
x

Ω
− iΩ−KxKy

Dyy = 1 + K2
x + iγ̂

βe

2

Kx(Ky − iE)

Ω
.

The dimensionless parameters are defined by

Ω ≡ ω

ωci0

, K ≡ k
c

ωpi0

, E ≡ ε
c

ωpi0

, V ≡ V0

VA0

, βe ≡ n0Te

B2
0/2µ0

, βi ≡ n0Ti

B2
0/2µ0

, τ ≡ Ti

Te + Ti

(16)

and

γ̂ =





5/3 for adiabatic process

1 for isothermal process.

Here,

ωci0 ≡ B0e

M
, VA0 ≡ B0√

µ0Mn0

, ωpi0 ≡
√

n0e2

Mε0

. (17)
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We note here that in the parallel (z) direction, there is only a simple drift wave Ω = KxV

decoupling from the waves described by the 2×2 matrix. Set the determinant of the matrix

equal to zero,

DxxDyy −DxyDyx = 0. (18)

This gives the dispersion relation for Ω. It is a third order algebraic equation in Ω with

three controlling parameters, V , βe, βi, [E is not an independent parameter but is related

to V by Eq.(4)]. We have

−Ω3 + KxV Ω2 + (1 + K2
y + K2

x − 2τV 2)Ω + γ̂
βe

2
(K2

x + K2
y − 4V 2)Ω

−KxV γ̂
3βe

2
(K2

x + K2
y )−KxV τ(1 + K2

x + K2
y )

+i[−KyV (−1 + τ + 2γ̂βe)Ω + KxKyV
2(3γ̂βe + 2τ)] = 0. (19)

Figure ?? and ?? shows the real and imaginary parts of the dispersion relation as a

function of Kx for the case of V = 3, Ky = 20, βi = βe = 0.5, and γ̂ = 1 for all the three

modes. To display the group velocity more clearly, Figure 3(a) and 3(b)show the real and

imaginary parts of the mode frequency as a function of Ky for the case of V = 3, Kx = 15,

βi = βe = 0.5, and γ̂ = 1 . Figure 3(c) shows the group velocities. One of the three modes

has a very small group velocity. Figure 3(d) indicates the number of efoldings of the three

modes. Here, we define the efolding number N as N ≡ Im[Ω]/(VgroupE) and take it as an

estimate of the number of efoldings. We find the mode with the smallest group velocity also

has the most efoldings. It is the number of growths, while the mode passes the distance

1/E . In Sec. III, we discuss in some detail the importance of the small group velocity and

the large number of efoldings.

III. WAVE CHARACTERISTICS AND INSTABILITY

Equation (19) gives Ω exactly for all the three modes. We now discuss the basic wave

characteristics of the separate modes and the origin of the instabilities. We show how the

exact modes can be conceived to be the simple wave modes coupled by linear interaction

produced by the density gradient and current.
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A. Waves Without Drift

First, we get a simple picture of the modes by examining the case that there is no drift.

When V = 0, Eq.(19) reduces to

−Ω3 + Ω(K2
y + K2

x)(1 + γ̂
βe

2
) = 0, (20)

which represents two fast magneto-sonic waves, and a modified entropy wave with Ω = 0,

as shown in Fig. 4.

B. Instability

When V 6= 0, Eq.(19) still represents two fast magnetosonic waves as shown in Fig. 2.

The modified entropy mode has become a beam mode (BM), Ω = K ·V.

To get some insight into the modes’ characteristics, we simplify Eq.(19) by assuming

Ky À Kx, V and taking βe = 0, (τ = 1), and obtain

−Ω3 + KxV Ω2 + (K2
y − τEnV )Ω−KxV K2

y + 2iKxKyV
2 = 0. (21)

Equation (21) can be factorized as,

(Ω−KxV )(Ω2 −K2
y ) + τEV Ω− 2iKxKyV

2 = 0. (22)

In Equation(22), the first term clearly shows the three modes. One is a beam mode (BM ,

Ω = KxV ), and the other two are magnetosonic modes (MS±, Ω = ±Ky). The second and

the third terms determine the modes’ stability. It is worth noticing that both of these two

terms depend on Ky and drift velocity V , which is directly related to equilibrium density

gradient.

To get the analytical dispersion relations for the three modes , we solve Equation(19) in

different parameter regimes. First, we simplify Eq.(19) in the limit of large K and Ω ∼ K,

Ω2 = (3γ̂βe + 2τ)(
K2

x + K2
y

2
− iV Ky). (23)
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These are the two magnetosonic waves.

For the beam wave, assuming large K and V but Ω ∼ K · V , Eq.(19) then becomes

−Ω2 + KxV Ω + (K2
x + K2

y )(1− γ̂βe − τ)− γ̂
βe

2
E2 + iKyV (1 + τ + γ̂βe) = 0. (24)

Write Ω = KxV + δΩ, and solve for δΩ,

δΩ ≈ K2
x + K2

y

KxV
(1− γ̂βe − τ)− γ̂

βe

2

E2

KxV
+ i

Ky

Kx

(1 + τ + γ̂βe). (25)

Therefore, the dispersion relation of the beam mode is,

Ω ≈ KxV +
K2

x + K2
y

KxV
(1− γ̂βe − τ)− γ̂

βe

2

E2

KxV
+ i

Ky

Kx

(1 + τ + γ̂βe). (26)

The BM is represented by the solid curve in Figures 2 − 4, while the MS± modes are

given by the dotted and dashed curves.

We can not be sure that the BM and MS± modes are unstable normal modes growing

indefinitely. This is because we limit ourselves to a local theory and treat the modes as

quasimodes. Strictly speaking, we should solve a differential equation in y to treat it properly.

A quasimode could grow only a finite amount during propagation through the unstable

region. But as shown in Fig. 3(d), for the beam mode, the growth itself (N) is very large

and the quasimode treatment should be adequate.

Perhaps it will make the quasi theory clearer if we compare with a sound mode in an

inhomogenous medium (see Appendix B). The sound mode increases adiabatically when

propagating into decreasing density region but its growth can also be estimated from a

quasimode similar to ours. The main difference is the much larger growth that our beam

mode has.

The MS± modes have efolding numbers about unity, which indicates these two modes

may not be able to grow appreciably in the inhomogeneous media. The following Sec. III

C will also show that the MS± modes would be stabilized by warm ion Landau damping

anyway. So only the BM could possibly be a real linear instability excited and growing in

the Harris current sheet. In a following paper, we will discuss a nonlinear mode coupling

mechanism that makes the MS± modes nonlinearly unstable. For the sake of simplicity, we
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will continue to call the three solutions of Eq. 19, modes in the following sections, although

they may not be the normal ones.

C. Warm Ion Effects

Before going into a detailed discussion of the instability mechanism, we show that warm

ion effects suppress one of the unstable modes: the backward propagating magnetosonic

mode. Instead of the cold ion Eqn. (7) and (8), we use the warm ion Eqs.(5) and (6) for the

perturbed ion current and density and solve the dispersion relation. Figure 5(a) and 5(b)

shows the warm ion effects on the instabilities.

By comparing the cold ion and warm ion instabilities in Fig. 5(b), we see that the growth

rates of the backward propagating magnetosonic waves are reduced by the warm ion Landau

damping. However, the beam mode is hardly affected by the warm ions because its phase

velocity is much higher than the ion thermal speed. From now on, we only concentrate on

the unstable beam mode and discuss whether it could be a favorable candidate to exist in

the center of the current sheet and produce anomalous resistivity in the MRX.

D. Instability mechanism

In this section, we will describe the mechanism of the beam instability. To get a clear

physical picture, we redo the dispersion relation calculation in the electron frame. This

eliminates the large leading term (KxV ) in the beam wave dispersion relation and reveals

the feedback mechanism of the instability.

In the electron frame, the ions have a large drift velocity(Fig. 6). And we will only focus

on the βe = 0 case, which represents a clearer physical picture and does not change the

generality since the pressure gradient is higher order quantity comparing to the electric and

Lorenz force. We take the K, U À Ω assumption to further simplify the algebra without

losing the important physics. This is because the approximate dispersion relation of the

beam mode (Eq. 26) shows that the beam mode frequency after the Doppler shift (K ·V)

is in the order of unity.

We rotate the coordinates for E as shown in Fig. 6. E1 is the electrostatic component

in the k direction. E2 is the perpendicular component to k in the x− y plane, representing
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the electromagnetic component.

The perturbed equations for the electrons (γ̂ = 1) now becomes,

je ×B0 = en0E. (27)

In addition to the dimensionless parameters in Eq. (16), we further define other dimen-

sionless quantities, as

Ê ≡ E

VAB0

, ĵ ≡ j

en0VA

, n̂ ≡ n

n0

, B̂ ≡ B

B0

. (28)

With all the dimensionless parameters, the force equation on electrons (Eq. 27) becomes,

in the e1 direction,

Ê1 = ĵe
2. (29)

And in the e2 direction,

Ê2 = −ĵe
1. (30)

Similar to the calculation in the ion frame but with the finite drift velocity, we first

calculate the perturbed ion velocity,

∂v

∂t
+ U · ∇v = Ê + U× B̂, (31)

v ' i
Ê + UBzŷ

KU cos θ
. (32)

To get the perturbed density, we employ the continuity equation

∂n̂

∂t
+ U · ∇n̂ +∇ · v = 0, (33)

n ' K · v
KU cos θ

. (34)

The perturbed ion current is

ĵi = v + n̂U, (35)
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From Eq. 32 and 34, it is straight forward to calculate ĵi,

ĵi
1 = − εn

K2U
tan θE1 − εn

K2 cos θ
Bz, (36)

ĵi
2 = i

Bz

K cos2 θ
+ i

K − iεn

K2U
tan2 θE1 +

εn sin θ

K2 cos2 θ
Bz. (37)

The total perturbed current in e1 direction is zero (which is from charge neutrality,

∇ · j = 0), and in e2 direction, the total current can be derived from Ampere’s law,

ĵe
1 + ĵi

1 = 0 (38)

ĵe
2 + ĵi

2 = −iKB̂z. (39)

So far, we have all the perturbed quantities required to derive the dispersion relation of

the beam mode in the electron frame. To reveal the key of the instability mechanism, we

assume that ĵi
2 is negligible and we will show the self consistency later. Then we have the

electron current

ĵe
2 ' −iKB̂z. (40)

From Eq. 29, we obtain an electrostatic field

Ê1 = ĵe
2 ' −iKB̂z. (41)

This perturbed electric field Ê1 and magnetic field B̂z drive an ion current in the e1 direction,

as shown in Eq.36. By charge neutrality, there is an equal and opposite signed electron

current (see Eq.36).

Finally, as Eq.30 shows, there must be an electromagnetic field Ê2,

Ê2 = −ĵe
1 = ĵi

1. (42)

So far, all the results apply at a fixed time. But because of Faraday’s law, the electro-

magnetic field Ê2 and B̂z must change in time,

∂B̂z

∂t
= −iKÊ2. (43)
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Combining Eq.43, 42, 41 and 40, we get

∂B̂z

∂t
' εn(

tan θ

U
+ i

1

K cos θ
)B̂z. (44)

And because the imaginary term is positive, B̂z and all the other perturbed quantities grow

in time. This result is identical with the BM dispersion relation (Eq.26) in the ion frame by

setting βe = 0.

By combining Eq.43, 42, 41 and 40, we also see the self consistency of our previous

assumption. That B̂z is much smaller than Ê1 goes with the assumption that ĵi
2 is negligible.

Summarizing the physical process, we start with a perturbed magnetic field. For this

fixed time, a perturbed ion current in the k direction requires an equal and opposite signed

electron current in the same direction. And this electron current needs an electromagnetic

field E2 to achieve the force balance on electrons in the e2 direction. Since this E2 and

Bz must change in time by Faraday’s law, we develop the positive feedback loop for the

magnetic field Bz, so as the other perturbed quantities.

Briefly speaking, the ion flux in k direction caused by finite density gradient εn, initiates

the positive feedback process and triggers the instability.

IV. INSTABILITY IN THE HARRIS SHEET

It is important to see how the non-local modes behave in a finite current layer. For this

purpose, we consider a Harris sheet. In this Section, we will emphasize the importance of

the two characteristics of the beam mode, its growth rate, and its group velocity across the

current layer. The growth rate is obviously important since it determines how fast the mode

grows. However, we find the group velocity across the current layer is equally, if not more,

important. To see this, we apply our theory to the Harris current sheet,

B = B0 tanh
y

δ
≡ B0t

n = n0 sec2 y

δ
≡ n0(1− t2), (45)

where t ≡ tanh(y/δ).

In the Harris sheet, in Eq.(19), we replace the local parameters by global parameters, as
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shown in Eq.(46)

K → K√
1− t2

, E → E√
1− t2

, V →
√

1− t2

t
V, β → 1− t2

t2
β, Ω → Ω

t
. (46)

The dimensionless parameters are defined as in Eq.(16). We use the maximum n0, B0

of the Harris sheet profile instead of local n,B to define ωci0, VA0, ωpi0. This avoids the

confusion when switching to dimensional parameters from dimensionless expressions.

For the obliquely propagating instabilities, the modes have a group velocity on the order

of the Alfvén speed across the current sheet. These modes only make one efolding before

they propagate out of the unstable region, which means they do not have enough time to

grow to the desired amplitude in spite of their large growth rates (Appendix A). However,

from Eq.(26), we can see that the dominant term of Ω does not depend Ky, which means

the beam mode has a very small group velocity in the y direction, Vgroup ≡ ∂Re[Ω]/∂Ky.

Figure 7 shows the beam mode for the case of V0 = 3, Kx = 15 in the Harris current sheet.

Figure 8 shows the beam mode at t = 0.7, which corresponds to a point half-way to the

center of the Harris current sheet, the group velocity in the y direction and the efoldings N ,

[N ≡ Im[Ω]/(VgroupE)]. Because of the extremely small group velocity in the y direction,

the beam modes probably have sufficient efoldings to reach a nonlinear state before they

propagate out of the unstable region. This makes the beam mode more promising when we

consider modes that produce enhanced resistivity.

Using the dimensionless global parameter β → 1−t2

t2
β [Eq.(46)], we obtain the group

velocity

Vg =
2Ky

KxV
(2− 1

t2
)βe0 (47)

and the efoldings

N =
V (t2 + βe0)

2(2t2 − 1)βe0

. (48)

Equation (47) gives a very special location in the Harris sheet: t = 1/
√

2, where Vg = 0.

And for all the β0e + β0i = 1 cases, (which is always true because we assume there is no

background density, which gives P0 = B2
0/2µ), the Vg = 0 location is the same. Since the

Vg = 0 point is an interesting location where the instability can stay and grow for a long

time, it could be a source of the instabilities in the current layer.
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V. THE EFFECT OF ELECTRON-ION COLLISIONS

As discussed in Sec. II, we rely on a modest electron-electron collision rate to satisfy the

isotropic (isothermal or adiabatic) electron pressure assumption and the neglect of the ∇B

drift Landau damping. However, we have not kept electron-ion collisions in the electron

force balance equation, Eq.(9). Now, if we add electron-ion collisions (i.e. resistivity) to the

electron motions, the new electron force balance equation is given by

je ×B0 = en0V0 ×B + en0E + enE0 + γ̂∇(n1Te) + mn0νei
jtotal

e
. (49)

After some algebra, we obtain the revised matrix to calculate dispersion relations.


 Dxx Dxy

Dyx Dyy





 Ex

Ey


 = 0, (50)

where

Dxx = 1 + K2
y − τ

KxV

Ω
+ iV Ky − iγ̂

βe

2

Kx(Ky − iε̂)

Ω
+

m

M
ν̂eiKxKy

Dxy = i(Ω−KxV )− τ
Ky − iε̂

Ω
V − iγ̂

βe

2

(Ky − iε̂)2

Ω
−KxKy − m

M
ν̂eiK

2
x

Dyx = iγ̂
βe

2

K2
x

Ω
− iΩ−KxKy

Dyy = 1 + K2
x + iγ̂

βe

2

Kx(Ky − iε̂)

Ω
+

m

M
ν̂eiK

2
y .

Here ν̂e ≡ νei/ωci is the new dimensionless parameter .

To find the beam mode, the same as Sec. II, we assume large K and V with Ω ∼ K · V .

Similar to Eq.(26), the approximate dispersion relation of the beam mode with collisions is

given by

Ω ≈ KxV +
K2

x + K2
y

KxV
(1− γ̂βe − τ)− γ̂

βe

2

E2

KxV

+i[
Ky

Kx

(1 + τ + γ̂βe)− m

M
ν̂ei(K

2
x + K2

y )]. (51)

The imaginary part has two terms: one gives the wave growth rate, which is the same

as the collisionless calculation; the other term that arises from the electron-ion collisions
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damps the modes. The damping rate depends on collisional rates and wave vectors. The

sum of these two effects gives the final growth rate of the beam mode. From Eq.(51), we see

that the larger βe, Ky but smaller Kx will make the imaginary part positive. The unstable

modes appear near the center of the current sheet where βe is large. The small Kx modes

are more unstable. Physically, the electron-ion collisions are a mechanism that resistively

diffuses the perturbed magnetic field at the rate K2η, which for large K spreads out the

mode and tends to stabilize it.

VI. DISCUSSION AND CONCLUSIONS

A. Discussion

In this paper, we only study the electromagnetic modes. We are interested the modes

that can be excited in the center of the current sheet, but the pure electrostatic modes do

not exist in this high plasma β region because the perturbed magnetic field is proportional

to the plasma β and the perturbed density. In the MRX, electrostatic fluctuations were

found by Carter et al. However, it turned out these fluctuations only exist on the edge of

the current sheet where β is small and do not correlate well in time with the reconnection

process. Later, electromagnetic fluctuations were found in the center of the current sheet

and correlate in time with the reconnection progress.

Compared with the previous oblique LHDI mode [1] which has a large group velocity

and smaller phase velocity than the experimental data, the perpendicularly propagating

unstable beam mode which we describe here has several favorable characteristics. It has

a very small group velocity across the unstable region in the current layer. The obliquely

propagating instability has about one or two efoldings, but the perpendicular one has tens

of efolings. Also, this instability is not affected by the warm ion effect because of the large

phase velocity. The growth rate of the oblique LHDI is reduced to half when including the

warm ion effect. The growth rate of this unstable beam mode is not sensitive to its location

in the current sheet. The oblique LHDI has a very narrow unstable region in the Harris

sheet.

In the previous LHDI calculations, the instability arises from the finite k⊥ρe effect and

is saturated in the high β region because of the ∇B drift resonance. But in the MRX, the

17



electron-electron and electron-ion collisions are not negligible and even the modest collision

rates can disturb the ∇B drift resonance. So the ∇B drift resonance can not damp the

instability in the MRX. Further, if the collision rate is high enough, the finite k⊥ρe effect

cannot play an important role and the plasma behaves more like a fluid.

During the formation of the current layer, as it becomes narrower, the drift velocity

becomes larger. It is still not clear why the current layer stops shrinking at some critical

widths. A possible explanation is that some instability is excited when the drift velocity

becomes large enough. This instability can enhance the resistivity and trigger the fast

reconnection. At the same time it can stop the shrinking of the current layer by providing

enhanced resistivity. Based on the experimental results, we assume a large drift velocity.

Since the density gradient and drift velocity are related, we also keep the equilibrium density

gradient term in the perturbed density and the pressure. This density gradient is one of the

two factors that trigger the instability, the other one is the finite ky.

B. Conclusion

We have developed a local theory to derive and analyze in detail an unstable electromag-

netic beam wave that propagates perpendicularly to the unperturbed magnetic field. This

instability has a small group velocity across the current layer and a large number of efoldings

before it leaves the unstable region. Also, because of the large electron streaming velocity

in the current layer, the phase velocity of the drift instability is much higher than the ion

thermal speed. This means that the warm ion Landau damping does not stabilize this drift

instability. Thus, this instability is a favorable candidate to enhance the resistivity within

the reconnection layer.

We also identify that the instability arises from a positive feedback mechanism trigged

by the non-zero ion flux in k direction resulting from the finite density gradient.

In Sec. II, we assume that the electrons are isothermal or adiabatic because there are

enough electro-electron collisions in the MRX. And in Sec.V, we add a finite electron-ion

collision (resistivity) term to the electron force balance Eq. (49). We find that the electron-

ion collisions diffuse the perturbed magnetic field at the rate of k2η, but for small kx, large

ky and large βe, the drift instability is still unstable and could grow to a sufficient amplitude

to produce the enhanced resistivity.
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Our theory is self-consistent in that the density gradient ε and drift velocity V0 are related

by the equilibrium equations. The instability we find is thus related to the LHDI. Our theory

has the potential to explain the experimental results from the MRX, and possibly provides

an understanding of fast reconnection mechanism. In the next paper we develop a nonlinear

theory to determine saturated amplitudes and their consequences for reconnection.
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APPENDIX

APPENDIX A: APPLICATION OF THE OBLIQUELY PROPAGATING INSTA-

BILITY TO THE HARRIS CURRENT SHEET

An obliquely propagating electromagnetic instability in the lower hybrid frequency range

has been investigated in detail by Ji et al. [1]. They term the instability as the oblique

LHDI. Here, we add Ky into the calculation and apply to the Harris current sheet. Figure 9

shows the growth rate, group velocity and number of efoldings for the instability of V = 6,

βe = βi = 0.5, and θ = 60◦. Here, θ is the angle between ẑ and k̂.

From Fig.9, we see that the oblique LHDI has a large group velocity in y direction. Thus,

the oblique LHDI has very few efoldings, which makes the instability not very likely to be

able to grow to the desired amplitude that brings in the nonlinear effect.

APPENDIX B: REAL INSTABILITY OR NOT?

In Sec. III B, we mention that our instability (BM) may not be a normal mode but

a real quasimode instability. Here, we compare our treatment of the BM with a parallel

treatment of the sound mode in an inhomogenous medium.

The dispersion relation of a sound mode in the inhomogenous media is

ω2 = c2
sky(ky − iε). (B1)

For fixed ky, the mode has a growth rate of Γ = csε/2. The mode could increase expo-

nentially but only at a rate related to the inhomogeneity scale. This can be interpreted as

the correct behavior of a sound wave, since by energy conservation, nmv2/2 is a constant

and n increases at the rate eεy.

In terms of our calculation of mode efolding numbers, one can estimate the amount of

growth of the sound mode over the scaleheight 1/ε as of order,

N ≡ Γ

vgε
=

csε/2

csε
=

1

2
, (B2)

which agrees with the energy argument.
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Figure 3(d) shows that N is much larger than unity for the BM , so the BM must amplify

the electric field by a substantial amount when passing though a inhomogeneity distance

and should be a substantial instability. While the MS± modes have N about one, they may

not really exist in the inhomogenous media linearly.

A more correct way to treat the instabilities is to solve for k at fixed real ω (which has

a imaginary part ε/2 for the sound mode case). For the sound mode, the imaginary part of

k/ε is exactly equal to the N of our estimate. However, for a strongly growing mode (large

N) this formula is not strictly valid.

For our large k beam modes, given kx and ω, from Eq. 26 but with βe = 0 and τ = 1,

Ky ≈ −i
Kx

2
(Ω−KxV ) (B3)

which can be very large for a proper choice of Ω.
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FIGURES

FIG. 1: The equilibrium state. Electrons drift toward the positive x direction and ions are at rest.
The unperturbed magnetic field is in the z direction. Pressure gradient and electric field is in the
y direction. And the positive y direction points toward the center of the current layer.

(a) (b)

FIG. 2: (a)Real and (b) imaginary parts of the dispersion relation versus Kx for the case of V = 3,
Ky = 20, βi = βe = 0.5, and γ̂ = 1.

(a) (b)

(c) (d)

FIG. 3: (a) Real and (b) imaginary parts of the dispersion relation, (c) group velocities (Vgroup ≡
∂Re[Ω]/∂Ky) and (d) efoldings [N ≡ Im[Ω]/(VgroupE)] versus Ky for the case of V = 3, Kx = 15,
βi = βe = 0.5, and γ̂ = 1.

FIG. 4: Dispersion relation for the case that V = 0, βe = βi = 0.5, γ̂ = 1 and Ky = 20. There are
two magnetosonic waves (dashed lines) and one beam wave (solid line).

(a)

(b)

FIG. 5: (a) The real and (b) imaginary parts of the case of Kx = 15,V = 3, βe = 0, τ = 1, γ̂ = 1
with warm ion effect. The ”square” shows the cold BM and the ”diamond” gives the warm BM .
The ”triangle” presents the cold MS− and the ”star” shows the warm MS−. Clearly, the MS− is
more effected by the warm ions and becomes a damping mode.
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FIG. 6: Definitions of E1 and E2 in the electron frame. Ions drift toward the negative x direction
while electrons are at rest.

FIG. 7: The growth rate of the beam mode in the Harris sheet, V = 3,Kx = 15

(a) (b)

(c) (d)

FIG. 8: (a) The frequency, (b) the growth rate, (c)the group velocity and (d)the efodings of the
beam mode at the half-way to the center of the Harris sheet, t = 0.7, V = 3,Kx = 15.

(a) (b)

(c) (d)

FIG. 9: (a) The dispersion relation and (b) the growth rate for V = 6, Ky = 20 mode , and
βe0 = βi0 = 0.5. (c) The group velocity and (d) number of efoldings of the obliquely propagating
instability as a function of t = tanh(y/δ) for V = 6, Ky = 20, K − x = 15 and the same βe, βi.
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