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Summary 
We development a general framework for information-passing and concurrent discrete to 
continuum scale bridging and applied it to biological, electro-mechanical and thermo-
electrical systems. Funds were used for partial support of two post-doctoral research 
associates (Aiqin Li, Dawei Zhang) and three graduate students (Renge Li, Mohan 
Nuggehally, Joseph Riendeau).  
 

1. Generalized Mathematical Homogenization (Fish, Chen, Li, 2007), (Li, Li, Fish, 
2007) 
1.1 The general framework 

A prototype of the atomistic to continuum (AtC) coupling system is schematically 
illustrated in Fig. 1. The system consists of the 
following modules: 

Experimental Data 
Depository 

a. Mathematical upscaling: derivation of 
coarse-scale equations directly from atomistic 
equations using Generalized Mathematical 
Homogenization theory (Fish, Chen, Li, 2007).  

b. Computational upscaling: reducing the 
complexity of solving an atomistic problem to a 
manageable size that can be adapted based on 
available computational resources. Our model 
reduction approach is based on the space-time 
multilevel method (Li, Waisman, Fish, 2007). In 
the regions where the Generalized Mathematical 
Homogenization is estimated to be inaccurate 
(Nuggehally et al, 2007), a concurrent AtC 
bridging approach is employed (Fish et al, 2007) 
( Badia et al, 2007). 

c. Model calibration: solving an inverse 
problem for calibration of fine scale parameters 

(interatomic potentials) by minimizing the error between the experimental data and 
multiscale simulations (Oskay, Fish, 2007).  

1.2 Summary Governing Equations  

The following thermo-mechanical continuum equations were derived directly from 
Molecular Dynamics (MD) equations with many body potential included (for derivation 
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Fig. 1: AtC coupling system 
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details see (Fish, Chen, Li, 2007)  for  two body potentials, (Li, Li, Fish, 2007) for many 
body potentials) 

1.2.1 Atomistic unit cell problem 
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where .  - many body interacting atoms 
;  and are the forces acting on atom i from two-body and many-body 

potential term, respectively. 
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1.2. 2. Macroscopic equations of motion 
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where is the First Piola-Kirchhoff stress tensor; S  is the many body force 
acting on atom i  by atom j;

tP X( , , )t ( )i j

Q  is the volume of a unit cell. 

1.2.3. Thermal equation 
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where  is heat capacity;  the heat flux vector; n the number of atoms in 
unit cell;  the Boltzmann constant;  the number of degrees-of-freedom in each 
atom.  

/B dC nk N= ( , , )t tq X

Bk dN

1.3 Algorithmic details and implementation 

In the following we describe how to integrate a molecular dynamics code into a 
commercial finite element code of choice (we selected ABAQUS as a commercial FEM 
code). The coarse scale (continuum) and fine scale (atomistic) analyses were linked via 
ABAQUS user-defined subroutines UMAT() and UMATHT(). The overall algorithm is 
schematically depicted in Figure 2. At each integration point of the continua, load 
increment n+1 and Newton iteration i+1, ABAQUS calls UMAT(mechanical fields) and 
UMATHT(thermal fields) routines to solve for the atomistic unit cell problem with 
coarse scale quantities, deformation gradient ( ), temperature ( ) and temperature 
gradient ( ) prescribed as external excitations. UMAT calculates the overall fields 
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including Cauchy stress ( 1

1

i

n

+

+
σ ) and the homogenized instantaneous tangent modulus 

( 1

1

i

n
L+

+
).  

 
Figure 2: Program architecture for the two-scale AtC analysis using ABAQUS.  
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The UMATHT solves the atomistic unit cell problem for the fast temporal averaging 
quantity 1

1

i

n
K+

+
 and the heat flux vector 1

1

i

n
q+

+
. It then calculates the internal heat energy 

per unit mass increment  and updates internal heat energy . 
 denotes the (i+1)th iteration during the load increment [tn, tn+1].  
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    We employ a linear perturbation approach to calculate instantaneous properties. By 
this approach, a small coarse scale strain perturbation is applied onto the unit cell, and 
each column of  is extracted from  

where
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influence functions are determined by
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calculation of instantaneous thermal properties  is similar except that there are 
three components of uniform temperature gradient in 3D.  
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1.4 Preliminary numerical results 

Consider a model problem of a 3D beam (nano wire) depicted in Figure 3. The size of 
beam is200 . Note that all the units are normalized by . The 
beam is clamped at the left end with initial temperature of 20K. The surface 
flux,q t , is applied at the left end. In the first test problem, periodic pressure 

 is applied at the right end. In the second test problem,  
 is applied on the top surface. The beam is discretized 

with the 8-node coupled temperature-displacement brick elements having four degrees of 
freedom per node (three displacement components and temperature). A unit cell consists 
of  single silicon crystal cube having 95 atoms (Figure 3). The Stillinger-Weber 
potential is used. 

´ ´ s =
o

2.0951A

5( ) 10
p= - ´ -5( ) 0.005 sin(6.28318 10 )p t t
p= - ´ -5( ) 0.0001sin(6.28318 10 )p t t

2 2 2´ ´

  

a  

Figure 3: A 3D cantilever beam and unit cell models. 
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       (a)   Time history of nodal displacement                        (b) temperature distribution along the beam 

Figure 4: Results of Example 1 with 10 elements. In this case pressure is applied on the 
right end. 

The results of the first test problem are plotted in Figure 4. Figure 4(a) shows the time 
history of one nodal displacement at the right end. The temperature along one edge of the 
beam is shown in Figure 4(b).  
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(a)   Time history of nodal displacement                            (b) temperature distribution along the beam 

Figure 5: Results of Example 2. In this case pressure is applied on the top surface. 

The results of the second example are illustrated in Figure 5. Figure 5(a) shows the 
time history of one nodal displacement at the right end while the temperature along one 
edge of the beam is displayed in Figure 5(b).  

The GMH agrees reasonably well with the results from traditional continuum 
mechanics. We are in the process of applying GMH to nanodevices were the classical 
continuum mechanics is expected to break down because of significant surface effects. 

 

1.5. Generalized mathematical homogenization of ferroelectrics (Zhang, Riendeau, Fish, 
2007)  

The ferroelectric materials are widely used in actuators, capacitors, transducers, dynamic 
random access memory (DRAM) and non-volatile random access memory devices. Yet 
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to date, nearly all developments have centered on evaluating and “scaling” the high 
energy, short-range covalent bond forces into continuum descriptions with no rigorous 
theory that would feed atomistic data into continuum description. Our goal is to derive 
coupled electro-thermo-mechanical equations of continuum directly from the molecular 
dynamics equations of ferroelectric materials using Generalized Mathematical 
Homogenization theory. Some preliminary discussion is outlined below. 

      To account for electronic scale we adopt shell model originally proposed by Dick and 
Overhauser (1958). The shell model describes each polarizable ion or atom as a pair of 
point charges separated by a variable distance, as illustrated in Figure 6. A “core” charge 
zi + qi is attached by a harmonic (or anharmonic) spring with spring constant ki (or k2i and 
k4i) to a “shell” charge -qi. The center of mass is at or near the core charge. The 
magnitudes of both the core and shell charges are fixed in the shell model. The 
polarization thus occurs via relative displacement of the core and shell charges. As with 
any model involving inducible dipoles, the potential energy of the induced dipoles 
contains terms representing the interaction with any static field, the interaction with other 
dipoles, and the polarization energy. Both displacements of the core, shell and electric 
fields are expanded in space-time asymptotic expansions and macroscopic equations are 
derived (Zhang, Riendeau, Fish, 2007) 

 
where is the relative displacement of an electron cloud from the core. id

 
Fig. 6: Shell model 

   
2. Space-Time Reduced Order Multilevel Method  
To reduce the computational complexity of fine scale computations, we developed a 
space-time reduced order method (STRO) method (Li et al, 2007) for molecular 
dynamics simulations of biomolecules. The goal of the STRO is to reduce the 
computational cost of molecular dynamics simulations without loss of accuracy in the 
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quantities of interest. The method consists of the waveform relaxation scheme aimed at 
capturing the high frequency motions and a coarse scale solution in space and time aimed 
at resolving smooth features (in both space and time domains) of the system.  
The coarse model correction is calculated from the Hamilton principle on the 
subspace of coarse scale functions,  

f +u QeC

 

( ) ( ) ( ) ( ) min1
2

c

c

Tf f f fc cH w Q m Q Q →= + + + +∑ ∑ & &
e

e u e u e u ec  

 
where  is the interscale transfer operator; it depends on the choice of the coarse scale 
model. We have used the proper orthogonal decomposition (POD) modes for 
constructing the interscale transfer operator Q . The accuracy and efficiency of this 
method was reported by applying it to a model problem of chain of α-D-glucopyranose 
monomers as shown in Fig. 7.  

Q

 
Fig. 7: Schematic diagram for stretching of the molecule by an AFM 

 
Fig. 8 illustrates the relative CPU time on a single processor machine by POD based 
space-time multilevel method compared to the time cost of time marching the original 
system by Explicit Newmark method. As the number of modes included decreases the 
allowable integration time step increases. With POD based space-time multilevel method, 
the simulation can be orders of magnitude faster than the original explicit time marching 
method. These time savings have been obtained without compromising on solution 
accuracy in the quantities of interest. 
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Fig. 8: Relative time vs. time step for different numbers of modes included in POD based 
space-time multilevel method. 
 
3. Concurrent domain decomposition based multiscale model 
 A concurrent domain decomposition coupling method based on blending of continuum 
stresses with atomistic forces was developed (Fish et al, 2007, Badia et al, 2007). The 
problem domain is decomposed into an atomistic sub-domain where fine scale features 
need to be resolved, a continuum sub-domain which can adequately describe the 
macroscale deformation and an overlap interphase sub-domain that has a blended 
description of the two. The problem is formulated in terms of equilibrium equations with 
a blending between the continuum stress and the atomistic force in the interphase. 
Coupling between the continuum and the atomistics is established by imposing 
constraints between the continuum solution and the atomistic solution over the interphase 
sub-domain in a weak sense. Specifically, in the examples considered here, the atomistic 
domain is modeled by the Aluminum Embedded Atom Method (EAM) inter-atomic 
potential and the continuum domain is a linear elastic model consistent with the EAM 
potential.  
     The formulation was subjected to patch tests to demonstrate its ability to represent the 
constant strain modes and the rigid body modes. Figure 9 shows the hybrid atomistic-
continuum domain considered for the patch tests. The constant strain modes and the rigid 
body modes are imposed through the appropriate Dirichlet boundary conditions to the 
continuum. The example consists of 13,075 total degrees of freedom out of which 12,147 
were atomistic degrees of freedom and 928 were continuum degrees of freedom. Figure 
10 shows that the displacements solved by the AtC concurrent method is consistent with 
the imposed strain modes for the case of a normal strain mode and a shear strain mode. 
These strains are well within the linear elastic regime of stress-strain response of the 
Aluminum lattice. 
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Figure 9: Hybrid atomistic-continuum domain for patch tests 

 

 
Figure 10: Displacement along X direction 

 
We have also studied the method on two numerical examples: nano-indentation of a thin 
film and nano-void subjected to hydrostatic loading. Numerical results were reported in 
(Fish et al, 2007), (Nuggehally et al, 2007), (Badia et al, 2007). Methods for adaptive 
selection of an appropriate scale based on local error indicators were reported in 
(Nuggehally et al, 2007). 
 
 

3.1 Adaptive Multiscale Concurrent Framework 
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To be able to select models from the hierarchy to minimize the modeling error, two error 
indicators are needed. The indicators employed in this work focus on defining and 
capturing the boundaries of domains within which various models in the hierarchy are 
required (i.e. the region within which a non-linear model is required, and the region 
within which the atomistic model is required).  The sequence of steps in the adaptive 
procedure are as follows:  
 

1. Start the load step of a quasi-statically loaded problem with a coarse model. 
(Note: Scale the load to a value where more than a linear elastic model is needed 
to solve the problem.)  

2. Increment the load step.  
3. Solve the problem with the concurrent model problem formulation.  
4. Compute error indicators for the model hierarchy chosen.  
5. Select or de-select the models from the hierarchy for sub-domains of the problem 

domain according to the error indicators and corresponding tolerance values.  
6. If models change, go to step 3, else continue with step 2 until the final load is 

reached. 
 

3.2 Verification of adaptive multiscale concurrent method 
 
For the examples that follow, the constitutive parameters of the continuum nonlinear and 
linear elastic models are consistent with the EAM potential of Aluminum. The cubic 
elastic constants for aluminum are C11=0.1181MPa, C12=0,0623MPa, C44=0.0367MPa. 
 

3.2.1 Nano-indentation 
 
A comparison of the three-model hierarchy with that of a two-model hierarchy 
(consisting of only the atomistic model and the linear elastic model) is given here. The 
problem domain is a film of approximately 30 nm thickness placed on a rigid substrate. 
The indenter is rectangular in shape and approximately 1.87 nm wide. The indenter and 
film are considered to be infinite in the x direction (out of plane); thus a plane strain 
condition exists. Homogeneous Dirichlet boundary conditions are imposed in z on the 
bottom face, and in y on the left and right faces. The indenter load is applied quasi-
statically through a Dirichlet boundary condition by moving it by 0.005 nm for each load 
step. Periodic boundary conditions in are imposed on the atomistic model to maintain a 
3D lattice structure. The crystallographic orientation chosen is such that the dislocations 
generated from the corners of the indenter move straight into the material. Fig. 11 shows 
the results of the simulation at load step 60. The three-model hierarchy created about 
6500 atoms, while the two-model hierarchy produced about 13600 atoms. The total 
energy computed from the two models was roughly the same (see Fig. 12), indicating that 
the same accuracy for the solution was computed with about a third of the computational 
cost. For the solution accuracy obtained for the a priori mesh used in examples, the 
atomistic indicator tolerance predicts dislocation nucleation correctly with respect to a 
fully atomistic model 
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Figure 11:  Two hierarchical concurrent models at load step 60. 

 
 

 11



 
Figure 12. Energy comparison between atomistic reference solution  

and concurrent models with different hierarchy 

 

3.2.2. Nano-void subjected to hydrostatic load 
 
Adaptive model refinement and model coarsening is demonstrated here for the case of a 
nano-void subjected to a cycle of hydrostatic loading/unloading. The problem domain is a 
cube of approximately 50nm edge length with a spherical void of approximately 5nm 
diameter at the center. The load is applied quasi-statically in small increments of 
0.0375nm on each face of the cube through Dirichlet boundary conditions. The 
simulation of a nano-void subjected to hydrostatic load has been used to study nano-void 
growth and cavitation. 
 
The load is applied during the first 23 load steps, followed by subsequent unloading for 
the following 23 load steps. At each load step the problem is solved using the concurrent 
model of the previous load step. Models in the hierarchy are adaptively changed based on 
the error indicators computed for the current load step. 
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Figure 13: The concurrent model and dislocation loops observed at load step 18. 

Fig. 13 shows the concurrent model at load step 18 and the dislocation loops that are 
observed to just nucleate from the void surface at this load step. The atomistic model 
consists of 20190 atoms. These dislocation loops grow and react to form Lomer-Cottrell 
junctions as seen in the right side of Fig. 14. These junctions result in stacking fault 
tetrahedra around the void. The most energetic atoms located along the edges of these 
tetrahedra (dislocation cores) are shown in the right side of Fig. 14, while the left side 
shows the concurrent model at the corresponding load step. The atomistic model at load 
step 23 consists of 69070 atoms. The results obtained matched well with a fully atomistic 
solution to the problem. The model is unloaded gradually back to the initial stage. The 
reaction products of the dislocation structures formed during the unloading stage remain 
and can be seen in the right side of Fig. 15. Also note that the atomistic model has shrunk 
in size compared to that at maximum load. The left portion of Fig. 15 shows the 
concurrent model at the end of the simulation, which consists of 55763 atoms. However, 
the atomistic model is still used due to the presence of dislocation reaction debris. 
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Figure 14: The concurrent model and stacking fault tetrahedra  

around the void at load step 23. 

 
Figure 15:  The concurrent model and reaction products of  

stacking fault tetrahedra at load step 46. 
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3.2.3 Nano-porous block subjected to compression: 
 
The problem domain of a nano-porous block of material is idealized by a rectangular 
block of size 25nm X 25nm X 50nm with spherical nano-voids randomly distributed in it. 
An interesting physical phenomenon is the effect of the size of nano-voids, at a given 
porosity, on the stress-strain behavior of the material under compression is studied. 
Porosity can be quantified in terms of volume fraction defined as the ratio of total volume 
of the voids to the volume of the block of material. Materials with different size nano-
voids are considered holding the volume fraction constant. At a given size of the nano-
void different samples of the material block with random position of nano-voids are 
considered for the study. 
 
A finite element discretization of the problem domain for a chosen volume fraction of 
0.0164 and the nano-void size of 3.6 nm in diameter is shown in the left side of Figure 
16. There are 21 randomly positioned nano-voids in the problem domain. The block is 
subjected to compression. Load is applied quasi-statically in −Z direction on top face and 
+Z direction on the bottom face by means of Dirichlet boundary condition. Side faces are 
traction free. In order to avoid the effect of hard walls at the top and bottom surfaces anti-
periodicity in Z is imposed to mimic the behavior of a long nano-porous column. 

 
Figure 16: Finite element discretization of the problem domain and dislocation structures at a strain 

33 0.10ε =  

 
The problem domain is discretized with tetrahedral elements such that the mesh is finer at 
the void surface and is gradually coarser away. This is because of the fact that void 
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surfaces are the critical regions that act as sites of dislocation nucleation. The mesh 
shown in the left side of Figure 16 consists of 95,647 regions. By the load step of total 
strain of 6.4% the problem domain is transformed completely into atomistic model with 
1,932,692 atoms. Right half of Figure 9 shows the dislocation structures at the load step 
of total strain of 10%. At the beginning of the simulation, a load step with the linear 
elastic continuum model took 328 sec. Towards the end of the simulation the problem 
domain was fully atomistic. Atomistic model calculations were performed on 32 
processors and it took 460 sec for a load step with a fully atomistic model. Calculations 
were performed on AMD Opteron 2.2 GHz processors. 
 
Figure 17 shows the comparison of the stress-strain curves for different size mesh 
elements for the problem domain with 21 voids. This comparison was done to make sure 
results are not affected by the mesh size. Two meshes with 189,224 elements and 95,647 
elements yield nearly same stress-strain curves while a coarser mesh with 23,278 
elements yields stress-strain curve differs. This indicates a less accurate solution at the 
continuum level, which results in less accurate atomistic indicator and the atomistic sub-
domain. 

 
Figure 17: Comparison of the normal Virial stress 33σ  v/s the normal  

strain 33ε  for different mesh sizes for 3.6nm 21 void case. 

 
Figure 18 shows the compressive Virial stress 33σ  against the normal strain 33ε  for three 
different void sizes at a volume fraction of 0.0164 For a given volume fraction and 
smaller the size of the voids, the greater the number of voids present in the block of 
material and smaller the distance between the voids. At the selected volume fraction, for 
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the void size of 3.6 nm there are 21 voids in the block of material, for the void size of 
4.61 nm there are 10 voids and for the void size of 9.94 nm there is one void. Figure 18 
shows that the material is stronger with the smaller size voids. This behavior can be 
attributed to the hardening associated with dislocation interaction. For the smaller void 
case, the dislocation nucleation and dislocation interaction is more intense since there are 
more voids which act as sources of dislocation nucleation, which interact at a closer 
range making the material harder. 

 
Figure 18: Variation of normal virial stress 33σ  with the normal strain 33ε  for different nano-void 

sizes. Stress computed at the top surface 

 
The Influence of using parallel computation for the atomistic calculation while the 
continuum calculations are done in serial is studied for the simulation of the example 
with 10 voids of size 4.61 nm. Time taken for the atomistic calculations is 102,372 
seconds. The time taken for the serial part of calculations is 7583 seconds. Parallel 
speedup is defined as 

( )( )
( )
t ss p
t p

=  

where is time for single processor and is the time for processors ( )t s ( )t p p
 
Since ~ 93 % of the time is spent on atomistic calculation acceptable parallel speedups 
are obtained on systems up to several dozen processors (Fig. 19). 
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Figure 19: Parallel speedup for the atomistic calculations 

 
This example is a first step towards understanding the phenomena of variation in yield 
stress related to volume fraction of the voids and the size of the voids in the nano-porous 
materials. 
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