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1. Introduction 
 

Light element impurities, (e.g., O, C, N) and structural defects (dislocations, twins, and 
grain boundaries) are known to influence the mechanical properties of mono and multi-crystalline 
silicon. For example, Yonenaga and Sumino [1] showed that yield stress in silicon is a function of 
both the initial dislocation density and the interstitial oxygen content. It has also been found that in 
silicon containing point defects, dislocations, and planar defects, either the influence of oxygen on 
the movement of dislocation, or the blocking of dislocations by planar defects, such as grain 
boundaries or twin boundaries, may control the mechanical behavior [2, 3]. 

Since the above-mentioned impurities and defects are linked directly to the minority-carrier 
lifetime in silicon and therefore to its efficiency as a solar cell, we investigated in this study the 
mechanical properties of polycrystalline silicon in order to determine if the conversion efficiency is 
related to easily measurable mechanical properties. Accordingly, the dependence of hardness, elastic 
modulus, and fracture toughness on the wafer minority-carrier lifetime using a nanoindentation 
technique has been investigated in this work. 

 
2. Materials and Methods 
 
 A cast 5” x 5”polycrystalline silicon wafer (175 mm thick) produced by BP Solar was tested. 
This wafer was cut from a region near a corner of the quartz crucible. Minority-carrier lifetime 
mapping was performed on a 7% HF passivated wafer using an AMECON JANUS 300 microwave 
photoconductive decay (μPCD) system.  

Nanoindentations were made on selected low- and high-lifetime areas using a Hysitron 
TriboIndenter. Two different indenter tips were employed having centerline-to-face angles of 45° 
(cube corner) and 65.3° (Berkovich). Loads were varied from 0.25 to 9 mN and loading/unloading 
rates were kept at 1 mN/s. Five measurements were made for each load in order to check 
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Fig. 1. A μPCD map of the polycrystalline Si wafer (a) with the corresponding lifetime histogram (b). 
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reproducibility of the data. After testing, all the hardness impressions were imaged using atomic 
force microscopy (a unit attached to the Hysitron TriboIndenter) and a JEOL 6400F field emission 
scanning electron microscope (FESEM) to determine the sizes of the contact impressions and the 
lengths of the radial cracks. Crack length and indent size were measured from FESEM images 
approximately 24 h after indentation, and the average values were calculated for each load. 

 
3. Results and Discussion 
 

Figures 1a and b are the μPCD map and corresponding lifetime histogram, respectively. The 
microstructure of the polysilicon wafer was overlaid onto the μPCD map after scanning the wafer to 
correlate the microstructure with the lifetime map (see Fig. 1a). Low-lifetime bands observed in Fig. 
1a at the bottom and right-hand edges of the wafer correlate with ingot edges attached to the quartz 
crucible. The low-lifetime bands are likely due to impurities diffusing from the crucible wall. 
Selected high- and low-lifetime regions A and B, (see Fig. 1a) were cut from the wafer and polished 
for nanoindentation analyses.  
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Fig. 2. Nanoindentation P-h curves in the low- and high-lifetime regions 
at different peak loads using a Berkovich indenter. 

Figure 2 shows typical nanoindentation load- displacement (P-h) curves of the low- and 
high-lifetime regions at three different peak loads using a Berkovich indenter. A unique material 
behavior called “elbow” occurs in all curves during the unloading period. It has been shown to be 
associated with the formation 
of localized amorphous 
silicon regions [4]. Another 
important feature in Fig. 2 is 
the similar loading slope of 
the curves for each region as 
the indentation load is 
increased, while a significant 
variation is evident between 
Regions A and B. This 
behavior indicates that 
different mechanical 
properties exist between 
Regions A and B. Figures 3 
and 4 show the measured 
hardness and elastic modulus 
of the low- and high-lifetime 
regions as a function of the 
indentation load, respectively. 
The low-lifetime region has 
higher hardness (~15% more) than that of the high-lifetime region as a function of the peak load. 
The elastic modulus of the low-lifetime region also shows ~17% higher value than that of the high-
lifetime region. This is consistent with the results reported for Czochralski-grown silicon, which 
show increased mechanical strength with increasing oxygen and nitrogen concentrations [5]. Even 
though the increased hardness of the low-lifetime region can be attributed to the higher level of 

Region A 

Region B 

2 



impurities and the possible higher density of dislocations than found in the high-lifetime region, the 
variation of the elastic modulus values needs further work to be adequately explained. One possible 
reason could be the different crystallographic orientation between the two regions. Ebrahimi and 
Kalwani [6] reported elastic modulus variations in silicon from 130 to 169 GPa when the 
crystallographic orientation changed from (001) to (110).  

Comparing the P-h curves obtained by Berkovich and cube-corner indenters for regions A 
and B (Fig. 4) shows that the sharper cube-corner indenter produces larger peak-load displacements 
and a greater proportion of permanent plastic deformation after unloading than the Berkovich 
indenter. The cube-corner indenter also produces load-displacement discontinuities during 
unloading called “pop-outs’, which correspond to the formation of metastable Si-XII/Si-III 
crystalline phases [7]. 

Nanoindentation impressions produced by cube-corner indenter were imaged as a function 
of indentation load using FESEM (images are not shown). Radial cracks were measured from these 
images and the fracture toughness (Kc) in the low- and high-lifetime regions was calculated using 
the following equation [8]:   

where E is the elastic modulus, H is the hardness, P is the applied load, c is the length of the radial 
cracks, and α is an empirical constant that was taken as 0.032 for a cube-corner tip. Figure 5 
summarizes the experimental results of the fracture toughness of low- and high-lifetime regions at 
different loads. As can be seen in Fig. 5, the fracture toughness of Regions A and B appears to be 
independent of the load applied during nanoindentation, which demonstrates the applicability of the 
nanoindentation technique to determine fracture toughness. The average fracture toughness values 
of the low- and high-lifetime regions are 0.93 ±0.04 and 0.65 ±0.03 MPa m0.5, respectively. The 
fracture toughness follows a trend similar to that of the hardness and elastic modulus of the low- 
and high-lifetime regions. 
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4. Conclusion 
 

Hardness, elastic modulus, and fracture toughness of low and high carrier lifetime regions 
in polycrystalline silicon were evaluated using nanoindentation technique. The results obtained in 
this study indicate that mechanical properties of polysilicon are highly influenced by both the 
impurity levels and dislocation density and therefore can be correlated directly with the minority-
carrier lifetime. To better understand the observed variation in mechanical properties, grain-
orientation measurements (e.g., back-reflection Laue method) along with a detailed imaging 
technique(s) to reveal the various defects would be necessary. 
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lifetime regions as a function of indentation load. 

Fig. 4. Comparison of the P-h curves in the low- 
and high-lifetime regions using Berkovich and 
cube-corner indenters. 
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