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X - 2 LEE ET AL.: HEAVY ION WAVE RESONANCES

Abstract. Pc1-2 ULF waves are strongly associated with the presence

of various ions in the magnetosphere. We investigate the role of heavy ion

resonances in nonuniform plasmas near the equatorial region. By adopting

the invariant imbedding method, the coupled plasma wave equations are solved

in an exact manner to calculate the resonant absorption at the ion-ion hy-

brid resonance. Our results show that irreversible mode conversion occurs

at the resonance, which absorbs the fast wave energy. It is found that waves

near the resonances appear with linear polarization, and their amplitude and

frequency are sensitive to the properties of the heavy ion plasma composi-

tion. We examine how these resonances occur for various H+ − He+ popu-

lations in detail by performing an accurate calculation of the mode conver-

sion efficiency. Because the multi-ion hybrid resonance locations in cold plas-

mas are determined by simple parameters such as the fraction of the ion num-

ber density of each species and the magnetic field, we suggest that it is pos-

sible to monitor heavy ion composition by examining the peak frequencies

of linearly polarized wave events in either electric field or magnetic field spec-

tral data.

D R A F T August 26, 2008, 4:03pm D R A F T



LEE ET AL.: HEAVY ION WAVE RESONANCES X - 3

1. Introduction

Pc1-2 waves play an important role in understanding electromagnetic phenomena near

the cyclotron frequencies of multi-ion plasmas in space. The presence of heavy ions such

as He+ and O+ significantly modifies the dispersion relation in the sense that new wave

properties arise in the multi-ion plasma, which not present in a single ion plasma. The

effect of heavy ions on low frequency dispersion relations was summarized by Rauch and

Roux [1982] who showed that additional resonances, crossover, and cutoff frequencies

involving the multiple ion species are introduced.

Buchsbaum [1960] first introduced the concept that the addition of a second species of

heavy ions introduces a resonance (referred to as the Buchsbaum-Bers resonance) where

the wavenumber perpendicular to the background magnetic field becomes infinite. This

resonance is a principal resonance that occurs in addition to the upper and lower hybrid

resonances found in single ion plasmas. He showed that the resonance is associated with

the anti-phase motion between two ion species, and the resonance frequency is located

between the cyclotron frequencies of the two ions. A new multi-ion resonance is added

with each additional ion species. Smith and Brice [1964] also showed that for parallel

propagation there is a frequency between each pair of ion cyclotron frequencies where

the right- and left-hand polarized modes satisfy the same dispersion relation called the

crossover frequency. In an inhomogeneous plasma, significant transfer of energy may occur

between the right- and left-hand polarized modes near the local crossover frequency near

parallel propagation [Johnson et al., 1995].
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The dispersion relation of heavy ion waves in the terrestrial magnetosphere has been

studied in detail over the last few decades. Observational studies clearly indicate the

presence of two ions (H+ and He+) and the three ions (H+, He+ and O+ ) in the wave

dispersion. Studies of the observed waves have included ground-based [e.g. Arnoldy et al.,

1988; Engebretson et al., 2002] and space-based [e.g. Anderson et al., 1992a, b; Fraser and

Nguyen, 2001] observational signatures as well as correlation studies based on multi-point

measurements [Bossen et al., 1976; Gendrin et al., 1978; Young et al., 1981; Perraut et al.,

1984; Fraser et al., 1989]. For instance, the stop bands of He+ [Dowden, 1966; Fraser ,

1972] and O+ [Fraser and McPherron, 1982; Inhester et al., 1984] have often been used

to identify the presence of each heavy ion. The kinetic effects of finite temperature on

the generation and propagation of Pc1-2 wave events have also been studied extensively

[e.g. Mauk and McPherron, 1980; Mauk et al., 1981; Young et al., 1981; Roux et al., 1982;

Gendrin et al., 1984; Kozyra et al., 1984; Horne and Thorne, 1997; Summers and Thorne,

2003].

However, there are some interesting features in satellite observations which still remain

unanswered. According to the statistical studies of satellite observations such as Anderson

et al. [1992a, b] and Fraser and Nguyen [2001], it is evident that the wave events near

the equatorial region have unique features. One property is that wave events with linear

polarization are frequently observed [Young et al., 1981; Fraser and McPherron, 1982;

Fraser , 1985; Anderson et al., 1992b, 1996; Fraser and Nguyen, 2001]. The dispersion

relation of heavy ions indicates that any branch of the wave mode should be predominantly

left-hand (L) or right-hand (R) polarized except for a few exceptions near the crossover

frequency or at oblique propagation near the multi-ion hybrid resonances [e.g. Rauch
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and Roux , 1982; Fraser , 1985]. Because wave surveys involve a wide range of observed

frequency relative to the ion cyclotron frequency, it is highly unusual that a significant

number of wave events are linearly polarized.

Another interesting feature is that the wave properties appear to be sensitive to the local

time [e.g. Anderson et al., 1992a, b; Fraser and Nguyen, 2001]. For instance, Anderson

et al. [1992b] shows that the early morning region (AM) is dominated by linearly polarized

events, while the noon and dusk region (PM) contain a significant amount of R and L

events in addition to the linearly polarized events. The peak frequencies as well as the

polarization states are strongly dependent on the local time, which requires an explanation

why the AM and PM regions have different characteristics from each other.

It is also known that heavy ions can significantly affect ULF wave phenomena in other

planetary environments such as Jupiter (which has a significant source of Iogenic S++

and O+ originating from Io’s volcanically generated SO2 atmosphere). These heavy ions

populate the inner Jovian magnetosphere [Bagenal et al., 2004]) and affect low frequency

ULF wave propagation in the Io torus [Glassmeier et al., 1989]. Heavy ions should also

be important for understanding ULF waves observed at Mercury, which has a significant

exospheric source of Na+ [e.g. Glassmeier et al., 2003, 2004; Kim et al., 2008].

In this study, we solve the full coupled wave equations for wave propagation in a sim-

plified 1D inhomogeneous multi-ion (H+ and He+) plasma with parameters typical of the

Earth’s equatorial magnetosphere near geosynchronous orbit. We first discuss the wave

equations and the dispersion relation of heavy ion waves and then introduce the basic

properties of wave fields at the heavy ion resonances. In order to solve the coupled full

wave equations in a cold plasma limit, we extend a theoretical technique called the in-
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variant imbedding method (IIM), which enables us to obtain the resonant absorption in

an exact manner without taking a local approximation for the plasma profiles near wave

coupling regions. We present the mode conversion at each resonance, which occurs with

linear polarization, for various wavenumbers and density population cases. These results

suggest that mode conversion at the heavy ion resonances may explain the significant

fraction of linearly polarized wave events that have been observed. We also discuss elec-

trostatic and electromagnetic nature of the resonances and the basic properties of both

ion and electron resonances in the full wave equations. Finally, we suggest that it may be

possible to use wave behavior near heavy ion resonances to monitor heavy ion populations

using wave polarization and peak frequency in either electric or magnetic field data.

2. Model and Equations

Previous observations [Anderson et al., 1991, 1992a; Anderson and Fuselier , 1993;

Fraser and Nguyen, 2001] indicate that Pc1-2 waves are found over a broad range of

radial distance (3.5 < L < 10) in the equatorial magnetosphere. We start with a brief

introduction to the dispersion relation of heavy ion plasma and the coupled equations.

In order to solve these equation in an exact manner, we extend the invariant imbedding

method (IIM), which has recently been developed. Then we introduce the box-like model

used in this study, and present case studies for a number of different heavy ion density

profiles.
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2.1. Dispersion Relation and Wave Equations

The wave equations are derived in general from the following two time-dependent

Maxwell’s equations,

∇× E = −∂B

∂t
,

∇×B = µoJ +
1

c2

∂E

∂t
= −iω

c2
ε · E, (1)

which can be written as by either E or B by assuming e−iωt :

∇× (∇× E) =
ω2

c2
ε · E = 0, (2)

∇× (ε−1 · ∇ ×B) =
ω2

c2
B (3)

where c is the speed of the light and ε is the dielectric tensor in a plasma. In a cold fluid

plasma where the magnetic field is assumed to be constant (Bo = Boẑ), the dielectric

tensor and the Stix tensor elements S, D and P are given by

ε =




S −iD 0
iD S 0
0 0 P


 ,

S = 1−∑

j

ω2
pj(ω + iν)

ω
{
(ω + iν)2 − ω2

cj

} ,

D =
∑

j

ω2
pjωcj

ω
{
(ω + iν)2 − ω2

cj

}αj

(
αj =

qj

|qj|

)
,

P = 1−∑

j

ω2
pj

ω(ω + iν)
, (4)

where ωpj, ωcj and qj are the plasma frequency, cyclotron frequency and charge of j-th

species, and ν is the collision frequency of the medium.

In a uniform plasma, if the wavevector is assumed to be k = k⊥x̂ + k‖ẑ =

k(sin θx̂ + cos θẑ), the dispersion relation in terms of the refraction indices n = kc/ω,
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n‖ = k‖c/ω and n⊥ = k⊥c/ω is given by

tan2 θ =
n2
⊥

n2
‖

= − P (n2 −R)(n2 − L)

(Sn2 −RL)(n2 − P )
. (5)

where R = S + D and L = S − D. In general, the condition of resonances is satisfied

when n goes to infinity: either n⊥ → ∞ or n‖ → ∞. In both cases, (5) becomes

tan2 θ = −P/S. If we assume that inhomogeneity lies in the x direction perpendicular to

the background magnetic field, the resonance would occur when n⊥ (k⊥) goes to infinity,

which is equivalent to S = 0. In the single ion case, the condition S = 0 has only two

resonances: the upper hybrid resonance, which is associated primarily with the motion

of electrons, and the lower hybrid resonance, which involves a combined motion of both

electrons and ions (in phase). However, in the multi-ion case, an resonances (Buchsbaum-

Bers) appear for each new species of ion, which is associated with the out-of-phase (or

in-phase) motion among the different ions. It should also be noted that for field-aligned

propagation, the location S=0 also corresponds to a cutoff condition for a refracted wave

packet and and leads to wave reflection and bouncing wave packets between S=0 locations.

Mode conversion for field-aligned propagation has been discussed elsewhere [e.g. Johnson

et al., 1995; Johnson and Cheng , 1999].

Under a reasonable assumption of ωpe À ωce in space, the Buchsbaum-Bers resonance

frequency (ωbb) for two ions (i = 1, 2) is approximated as

ω2
bb = ωc1ωc2

ωc2A1 + ωc1A2

ωc1A1 + ωc2A2

, (6)

where Aj = nj/ne the fraction of the ion density occupied by the jth ion species and

ne = n1 + n2 is the electron density. It should be noted that ωbb is determined only

by the magnetic field (easily measured) and the relative population of each ion species,
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which constrains the background ion composition if the location of the resonance can be

identified through wave observations.

When the frequency is below the ion cyclotron frequency and electron inertial effects are

ignored (Sn2
⊥ ¿ Pn2

‖ and RL = S2−D2 ¿ PS) in the dispersion relation, it is possible to

derive a simplified the dispersion relation for perpendicular propagation of compressional

waves can be approximated as

n2
⊥ ≈

(L− n2
‖)(R− n2

‖)

(S − n2
‖)

. (7)

This approximate dispersion relation has a resonance when when n⊥ → ∞ (where the

approximation obviously breaks down). This resonance is referred to as the ion-ion (bi-

ion) resonance which occurs at the frequency, ωii, determined from S = n2
‖ in (7), which

corresponds to the Alfven resonance in the low frequency limit (ω ¿ ωcj) such as in

MHD. The relationship between the Buchsbaum-Bers resonance and the ion-ion hybrid

resonance will be discussed later in Discussion 4.2.

In an inhomogeneous plasma where we assume one-dimensional inhomogeneity in the

radial direction (x) near the equatorial region, the plasma wave equations are given by

two dependent variables, which satisfy two second-order coupled differential equations.

When B = Boẑ and k‖ = k‖ẑ is assumed, the dependence on z of all wave functions can

be taken as being through a factor eik‖z. Then, after straightforward calculations from

Maxwell’s equation (1), we have two coupled equations in terms of Ey and By as follows:

d2ψ

dx2
− dE(x)

dx
E−1(x)

dψ

dx
+

ω2

c2
E(x)M(x)ψ = 0 , (8)

where

ψ =
(

Ey

cBy

)
,
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E =
(

1 0
0 P (x)

)
,

M =




S2(x)−D2(x)
S(x)

− c2k2
‖

ω2 i
ck‖D(x)

ωS(x)

−i
ck‖D(x)

ωS(x)
1− c2k2

‖
ω2S(x)


 (9)

Here EM is given by

EM =




S2(x)−D2(x)
S(x)

− c2k2
‖

ω2 i
ck‖D(x)

ωS(x)

−i
ck‖D(x)

ωS(x)
P

[
1− c2k2

‖
ω2S(x)

]
P


 . (10)

On the plane of incidence (xz- plane), Ey and By represent TE and TM modes in vacuum

in the sense that they are normal to the plane of incidence, respectively. It is sometimes

useful, for convenience, to renormalize (10) by multiplying rows of by a factor. For

instance, in the uniform region marked by “1”, where the Stix elements are denoted by

S1, D1 and P1, we change E and M with the wave equation unchanged as follows:

E =

(
1 0
0 P (x)

P1

)
,

M =




S2(x)−D2(x)
S(x)

− c2k2
‖

ω2 i
ck‖D(x)

ωS(x)

−i
ck‖D(x)

ωS(x)
P1

[
1− c2k2

‖
ω2S(x)

]
P1


 . (11)

In this study, we will solve (8) with E(x) and M(x) given by (11) in an exact manner

without making any local approximations for the tensor elements.

2.2. Invariant Imbedding Equations

The invariant imbedding method (IIM) is a well known tool that has been used for

solving transport equations in many research areas such as radiation transfer [Chan-

drasekhar , 1960], optical electromagnetic waves [Klyatskin, 1994], electron localization in

solids [Rammal and Doucot , 1987], ocean waves [Klyatskin et al., 1998], compressional

MHD wave [Lee et al., 2002], and Langmuir waves in unmagnetized plasmas [Kim and

Lee, 2005]. This method enables us to focus on the exact reflection and transmission

rather than the details about local properties inside the inhomogeneous medium [Bellman
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and Wing , 1992], which can provide a powerful tool in determining the mode conversion

rate in complicated inhomogeneous plasmas [Lee et al., 2002; Kim and Lee, 2005].

Recently, Kim et al. [2005] generalized the invariant imbedding theory of wave propa-

gation and derived new invariant imbedding equations for the propagation of an arbitrary

number of coupled waves of any kind in arbitrarily inhomogeneous stratified media, where

the wave equations are effectively one-dimensional. They established the validity and the

usefulness of their results by applying this method to the propagation of circularly polar-

ized electromagnetic waves in one-dimensional photonic crystal chiral media. It has also

been demonstrated that this new version of IIM is very useful in solving the coupled plasma

wave equations in a one-dimensional inhomogeneous medium [Lee et al., 2006; Kim and

Lee, 2006]. We adopt this method in this study to solve the wave scattering/asorption

problem for waves propagating in an inhomogeneous, multi-ion plasma. According to

Kim and Lee [2006], the equation (8) may be solved by adopting the invariant imbedding

equations, which enables us to efficiently calculate the matrix reflection and transmission

coefficients inside the inhomogeneous media without making any local approximations to

simplify the differential equation.

We assume that the inhomogeneous medium of thickness X lies in 0 ≤ x ≤ X between

two uniform regions, where both E and M are functions of x. We assume that the waves

are incident from the right (Region 1) where x > X and transmitted to the left (Region

2) where x < 0 in all subsequent calculations [Lee et al., 2002]. For convenience, the wave

equation (8) can be transformed as follows, which is derived in Appendix A.

d2Φ

dx2
− dẼ(x)

dx
Ẽ−1(x)

dΦ

dx
+ Ẽ(x)H2M̃(x)Φ = 0 (12)
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where Ẽ and M̃ are defined in Appendix A, and

Φ(x) =
(

Φ11 Φ12

Φ21 Φ22

)
. (13)

Each component of Φij in (13) represents the i-th component when the j-th component

is an incident wave. Thus the first column of the matrix Φ represents the wave functions

when the first eigenstate wave is incident, and the second column represents the wave

functions when the other eigenstate wave is incident.

Since the waves are incident from Region 1 where x > X and transmitted to Region 2

where x < 0, we have the wave functions in the two uniform regions as follows:

{
e−iH(x−X) + eiH(x−X)r(X) if x > X
e−iQxt(X) if x < 0

(14)

where H and Q are diagonal matrices satisfying Hij = hiδij and Qij = qiδij where hi and

qi are the x component wavenumbers in Region 1 and Region 2, respectively, for the ith

wave as shown in Appendix A. The multi-ion plasma eigenmodes in uniform plasmas are

discussed in detail by [Andre, 1985].

The reflection and the transmission coefficients should satisfy the following first-order

differential equations, respectively, which are derived by Kim and Lee [2006],

d r

dX
= i

[
r(X)Ẽ(X)H + Ẽ(X)Hr(X)

]

− i

2

[
r(X) + I

][
Ẽ(X)H −HM̃(X)

][
r(X) + I

]
, (15)

d t

dX
= i t(X)Ẽ(X)H

− i

2
t(X)

[
Ẽ(X)H −HM̃(X)

][
r(X) + I

]
. (16)

The IIM provides a tool to calculate how the coefficients change when the barrier’s width,

X, changes. We solve the first-order differential equations (15,16) numerically, using
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appropriate initial conditions and obtain the reflection and transmission coefficients as

functions of X. The invariant imbedding equations should satisfy the following initial

conditions at X = 0:

r(0) = C2t(0)− I

t(0) = 2
(
C2 + H−1C2Q

)−1
. (17)

where C2 the linear transformation matrix from the plasma wave eigenstates of Region 2

to the eigenstates of Region 1. The derivation is presented in detail in Appendix A.

Reflectivity R, transmissivity T and absorption A are given by

Rij =
hi

hj

|rij|2, Tij =
qi

hj

|tij|2,

Aj = 1− (R1j + R2j + T1j + T2j) (18)

where i denotes a reflected or transmitted wave component and j denotes an incident wave

component. This absorption is associated with the loss of incident energy flow, and results

either from resonant absorption or dissipation while the waves as they propagate through

the inhomogeneous region. We will consider the absorption of the fast compressional wave

in this study.

2.3. Models

In this study, we consider the region near the geostationary orbit (L = 6.6), for conve-

nience, which tends to have abundant Pc1-2 activity. A 1D box-like model is assumed with

parameters representative of the equatorial magnetosphere. In order to focus on how varia-

tions in the heavy ion population affect the propagation of Pc1-2 waves, we assume that the

background magnetic field is constant (Bo = Boẑ) and the total number density of ions is

constant. Thus the magnetic field intensity is given by Bo = 0.31× 10−4/6.63T ' 108nT .
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The number densities, cyclotron frequencies, plasma frequencies of the j-th species of

charged particles are given by nj, fcj and fpj, and so on. For instance, when nH = 10/cm3,

fcH = 1.65Hz and fpH = 662.6Hz for protons, respectively. The electron density is equal

to the total ion density ( ne = Σnj).

In this paper, we consider the two-ion plasma consisting of H+ and He+ with various

ion density profiles. First, two different types of density profiles are examined: step-

like and bump-like cases. For each profile, we consider how mode conversion depends

on wavenumber and gradient scale of the background density. Second, we compare our

mode conversion calculations with the mode conversion in Budden’s problem. Third, the

effect of total plasma density on the mode conversion process is examined over a range

ne = 0.5 − 103/cm3 characteristic of plasma sheet→plasmasphere. Finally, it is shown

how the relative abundance of heavy ions affects the mode conversion.

In addition to the cases mentioned above, we also examine each case when nH and nHe

are switched, which corresponds to a reversal of heavy ion density gradient.

3. Mode Conversion at Resonances

Figure 1 shows the density models of H+ and He+, where the box has a scale of X = 1RE

in the radial direction. The total density is constant as ne = nH +nHe = 10/cm3, but the

relative ion population is assumed to vary significantly. In order to focus on the importance

of the heavy ion concentration, we assume a large composition variation in this model.

Each density variation is given by almost 100% of the total density in Figure 1a. For

instance, nH/ne (dotted line) varies from 0.999 to 0.001 when nHe/ne (dashed line) varies

from 0.001 to 0.999. The density variation becomes step-like over the different gradient

scales marked by (1, 2, 3) which are given by Λ = 0.2, 0.5 and 1.0RE, respectively. Since
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the incident wave is from Region 1 of x > X, the propagation is from a H+-rich plasma to

a He+-rich plasma. In Figure 1b, a bump-like He+ density variation is prescribed where

nHe/ne (dashed line) varies from 0.001 to 0.3 with the maximum density located in the

middle of the crest. The gradient scales (1, 2, 3) here are given by 0.4, 1.0 and 2.0RE,

respectively. We assume that fast compressional waves are incident radially inward from

the right side (x > X) of the box.

In addition to the profiles in Figure 1, we also examine each case when nH and nHe are

switched. Then, in the step-like profile of Figure 1a, the incident wave is from He+-rich

plasma to H+-rich plasma. In the bump-like profile of Figure 1b, the bump is assumed

in the H+ density.

3.1. Dependence on Gradient Scales and Wavenumbers

Figure 2 shows the resonance frequency profile and the resonant absorption when the

ion densities are given by Figure 1a. The left column of Figure 2 shows the frequency

profiles of Buchsbaum-Bers and ion-ion hybrid resonances for different k‖ = 2π/λ‖. As the

density variation in Figure 1a is monotonic in a step-like profile, the resonance frequency

also becomes monotonic. Since fbb (= ωbb/2π) is determined only by B and the relative

ion composition ratio as shown in (6), it remains the same for different λ‖. However, the

condition of the ion-ion hybrid resonance, S = n2
‖, should depend on k‖, and the resonance

frequency becomes different for three values of λ‖. For relatively large λ‖ (≥ 1RE), the

resonance frequencies are almost identical, but become slightly different as λ‖ decreases.

The right column of Figure 2 shows the resonant absorption A defined in Section 2.2,

which is calculated using the invariant imbedding equations. When λ‖ varies over 0.3

to 2.0RE, the absorption maximizes around 0.25 at both edges near each ion cyclotron
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frequency. The first peak is located near fcHe = 0.25fcH , and the second peak is near fcH .

Since the resonance frequency given by (6) gets close to fcHe (fcH) in the H-He plasma

only if nHe/ne (nH/ne) becomes 0, Figure 2 shows that the resonant absorption becomes

significant only when the plasma has a very small abundance of either ion species. The

first peak near fcHe occurs where the local nHe population is only a few percent, and the

second peak near fcH occurs where the local nH population is only a few percent.

The resonant absorption in Figure 2 shows that the mode conversion efficiency is not

very sensitive to the field-aligned wavenumber over the range, λ‖ = 0.3 − 2.0RE, which

reasonably fits the scale of Pc1-2 pulsations. The absorption feature remains the same even

for the larger λ‖ in unpublished calculations. For relatively short wavelength λ‖ = 0.3RE

in Figure 2a, the absorption range becomes only slightly extended compared to the cases of

larger wavelengths in Figure 2b and 2c. However, Figure 2 does suggest that the resonant

absorption strongly depends on the gradient scales. The frequency range of resonant

absorption widens as the gradient scale becomes smaller (from 3 to 1) becoming widest

for a sharp gradient.

When nH and nHe are switched (in the profiles of Figure 1a), Figure 3 shows that the

resonance frequency now decreases in the direction of the incident wave propagation, and

the resonant absorption becomes greatly enhanced, which reaches 1.0. It indicates that

the wave propagating from He+-rich to H+-rich plasma becomes significantly absorbed

into the resonance over a wide range of frequencies except for the nearby edges close

to each ion cyclotron frequency. If the two absorption profiles in Figures 2 and 3 are

compared with each other, they tend to be opposite to each other in terms of the peak
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locations and the dependence on gradient scales, even though the absorption peak values

are different with 0.25 and 1.0, respectively.

Figure 4 shows the case of the bump-like profiles presented in Figure 1b. As the density

variation of nHe in Figure 1b has a crest, the resonance frequency is also bump-like. The

mode conversion rate is not so sensitive to the field-aligned wavelength again as shown in

Figures 2 and 3. However, the absorption peaks in Figure 3 are found to reach about 0.5,

which double the absorption of Figure 2. In addition, the frequency range of absorption

appears with a single peak near the lower range, which becomes close to fcHe for weaker

gradients. The absorption frequency range tends to broaden for sharper gradients, which

is consistent with the results of the step-like cases in Figure 2.

Figure 5 shows the resonant absorption when nH and nHe are switched in Figure 1b,

which corresponds to the bump-like density profile of H+. Now the resonance frequency

has a well. The absorption is nearly complete (1.0) as in Figure 3 over most frequencies

lying within the resonance band for all three gradient scales. However, it is interesting

to note that the absorption has some spiky variations near fcH with an harmonic feature,

which drops down to about 0.5.

3.2. Mode Conversion Efficiency

In the results presented above, we solved the full wave equations including both fast

ion waves and electron inertial waves in the cold plasma limit. However, our results are

mainly associated with the ion waves, which have relatively large wavelength such that

thermal are often negligible. In the cold plasma limit, it is well known that the absorption

of the fast wave can be approximated as Budden problem [Budden, 1985; Swanson, 1985]

in many cases [e.g. Ngan and Swanson, 1977; Perkins , 1977; Swanson, 1985; Ram et al.,
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1996]. In this section, we adopt this approximation and examine the properties of mode

conversion efficiency above in terms of a simple Budden problem.

If n⊥ is calculated from (5) in a uniform plasma, we have

n2
⊥ =

1

2S
(α± β) (19)

where

α = (P + S)δ −D2

β =
√

α2 + 4PS(D + δ)(D − δ)

δ = S − n2
‖. (20)

At frequencies below the ion gyrofrequency, these two modes are characterized by two

different spatial scales corresponding to electron waves with large n⊥ (with spatial scale

of the electron skin depth) and ion waves with small n⊥ (with spatial scale on the order

of VA/f), respectively. The different role of electrons and ions is examined and discussed

in detail later in Section 4.2, where we discuss how the Buchsbaum-Bers resonance and

ion-ion hybrid resonance are associated with electron and ion effects in the dispersion

relation. If we apply the same assumption of Sn2
⊥ ¿ Pn2

‖ and RL = S2 −D2 ¿ PS for

the ion-ion hybrid resonance when the effect of electron inertia becomes less important,

we can expand (19) in terms of |Pδ| À 1 as follows:

2Sn2
⊥ ≈ (P + S)δ −D2

± |Pδ|
[
1 +

Sδ −D2

Pδ
+

2S(D2 − δ2)

Pδ2

]
. (21)

Whether Pδ is positive or negative, the solution of small n⊥ is reduced to

n2
⊥ ≈

δ2 −D2

δ
=

(L− n2
‖)(R− n2

‖)

(S − n2
‖)

, (22)
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which corresponds to the dispersion relation presented in (7).

To approximate the solutions near the resonance in an inhomogeneous plasma, we as-

sume linear profiles in x from the Taylor expansion such as

δ ≈ κx

∆ ≡ δ2 −D2 ≈ κc(x− a) (23)

where x = 0 and x = a are the location of resonance and cutoff, respectively. Then (22)

becomes

n2
⊥ ≈

κc(x− a)

κx
=

κc

κ

(
1− a

x

)
, (24)

which is equivalent to the Budden equation:

d2y

dx2
+ k2

0

(
1− a

x

)
y = 0 (25)

where k2
0 = κc/κ and x is the normalized coordinate obtained by multiplying ω/c.

Since κ and κc in (23) satisfy δ′ = S ′ = κ and ∆′ = κc, we have the following relations

near the resonance

k2
0 =

∆′

δ′

a = −∆

κc

= −∆

∆′ . (26)

This relation is equivalent to the expression previously derived by Jacquinot et al. [1977]

k2
0 =

d
dx

(L− n2
‖)(R− n2

‖)
d
dx

(S − n2
‖)

a = − (L− n2
‖)(R− n2

‖)
d
dx

(L− n2
‖)(R− n2

‖)
. (27)

In Appendix B, we derive the expression for k0a in our model where the background

magnetic field and the electron density are assumed to be constant and gradients are only

due to variation in ion concentration.
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As derived in Appendix B, k0a satisfies

|k0a| ∝ ω5/2 | 1

n′He

n3/2
e√

(4f1 − f2)(f2 − 16f1)
| (28)

where

f1 =
1

1− Y 2
H

f2 =
1

1− Y 2
He

Yj = ωcj/ω. (29)

In general, |k0a| tends to remain relatively large, but (28) suggests that it can be signifi-

cantly reduced to a small value only if i) the total electron density ne becomes relatively

small, ii) the density gradient n′He becomes large, or iii) the frequency becomes close to

either ωcH (f1 → ∞) or ωcHe (f2 → ∞). In fact, the relation (28) based on the Budden

problem is consistent with many features in Figures 2-5.

When the incident wave propagates from a H+-rich to a He+-rich plasma region with

a monotonic density variation like the step-like profile in Figure 1a, the Budden equation

in (25) has a k2(x) profile topologically equivalent to the profile shown in Figure 6a. The

wave propagates from the right to left region, meets the cutoff point at x = a and the

resonance at x = 0 in time. When nH and nHe are switched, the incident wave propagates

from He+-rich to H+-rich plasma and k2(x) should have a reflected profile with respect

to the y axis. Then the problem becomes equivalent to the case that the incident wave

propagates from the left region in Figure 6a. In the Budden problem, it is well known

that the reflection and transmission coefficients are

TI = e−η

RI = −(1− e−2η)
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AI = 1−R2
I − T 2

I = e−2η(1− e−2η)

η =
πk0a

2
(30)

for case where the wave propagates from a H+-rich to a He+-rich plasma, and

TII = e−η

RII = 0

AII = 1−R2
II − T 2

II = 1− e−2η (31)

when the wave propagates from a He+-rich to a H+-rich plasma.

The absorption in the first case can reach a peak value of AI(max) = 0.25 when e−2η =

0.5 or k0a = ln2/π ≈ 0.22. When η or k0a becomes either significantly large or small,

the absorption, AI , becomes negligible. This result explains several features shown in

Figure 2. First, it explains why the peak value reaches 0.25 because AI(max) = 0.25. It

also explains why the absorption peak occurs near either ωcH or ωcHe because k0a in (28)

can only be small enough to give maximum absorption (0.22) if ω ≈ ωcH (f1 → ∞) or

ω ≈ ωcHe (f2 → ∞) as noted in condition iii) earlier. Finally, condition ii) explains why

mode conversion becomes more efficient over a broader range when the density gradients

become sharper because k0a is proportional to the gradient scale length.

For the second case where the incident wave propagates from a He+-rich to a H+-rich

plasma, the wave can reach the resonance region directly without cutoff, and no reflected

waves exist. For this case, when η À 1 AII(max) = 1.0 , in contrast to the previous

case where the wave approaches the resonance through the evanescent region. This result

explains why the absorption is found to be perfect over a broad range of frequencies in

Figure 3 where conditions i), ii) and iii) for small k0a are not satisfied. It is also interesting
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to note that the absorption becomes less effective when the gradient becomes large, which

reduces k0a (condition iii).

3.3. Effects of Multiple Resonances

When the density variation is no longer monotonic and has a bump-like or well-like

profile, resonances occur at multiple locations where the wave frequency matches the

resonance condition. Since both reflection and transmission occur at each resonance,

the addition of resonances affects the total mode conversion efficiency which will involve

transmitted and reflected waves propagating in the additional layer between the two neigh-

boring resonances.

The bump-like enhancement of nHe in Figure 1b allows the same type of fbb as shown

in Figure 4. For a given frequency, the resonance can occur at the two locations on each

side. When the incident wave propagates from H+-rich to He+-rich plasma region like

in Figure 1b, Figure 6b shows the case of two resonances, which occur in our bump-like

nHe distribution. Since reflection and transmission should depend on the direction of

propagation, it can be approximated by a three-layered problem marked by 1, 2, and 3,

respectively in Figure 6b.

If we define r̂ij and t̂ij as the reflection and transmission coefficients at each boundary

when the wave propagates from the j-th layer to i-th layer, total reflection and transmis-

sion coefficients can be written in terms of r̂ij and t̂ij:

r̂ = r̂21 + t̂21r̂32t̂12e
iβ̂

[
1 + r̂12r̂32e

iβ̂ +
(
r̂12r̂32e

iβ̂
)2

+ . . .
]

= r̂21 +
t̂21r̂32t̂12e

iβ̂

1− r̂12r̂32eiβ̂

t̂ = t̂21t̂32e
i β̂
2

[
1 + r̂12r̂32e

iβ̂ +
(
r̂12r̂32e

iβ̂
)2

+ . . .
]
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=
t̂21t̂32e

i β̂
2

1− r̂12r̂32eiβ̂
. (32)

In case of the propagation from H+-rich to He+-rich region in Figure 1b, r̂ij and t̂ij are:

t̂21 = T0 = e−η

r̂21 = R0 = −(1− e−2η)

t̂32 = T1 = e−η

r̂32 = R1 = 0

t̂12 = T2 = e−η

r̂12 = R2 = 0, (33)

where we can assume that η at the two resonances is the same because of symmetry

k2(x) = k2(−x). From (32) and (33), we obtain

r̂ = −(1− e−2η)

t̂ = e−2ηe
iβ̂
2

A = 1− |r̂|2 − |t̂|2 = 2e−2η(1− e−2η) (34)

where A has a maximum of 0.5 at e−2η = 0.5. The maximum absorption increases by a

factor of 2 at the same η compared to that of the step-like case. The transmitted wave

after the first resonance is absorbed again at the second resonance with each amount of

0.25, respectively. In this case, the effect of multiple reflections inside region 2 in Figure

6b disappears because r̂32 = 0 at the second resonance. This result explains why the

absorption peak can reach 0.5 in Figure 4. The dependence on the gradient scale is also

consistent with the prediction of (28), which shows that the absorption becomes small

when the gradient becomes zero near the top of the bump.
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When nH and nHe are switched and the incident wave propagates from a He+-rich to a

H+-rich plasma in Figure 6b, the resonance frequency profile becomes well-like in Figure

5. In this case, the k2(x) profile is reflected about k2(x) = k2
o (shown as a dotted line in

Figure 6b). Then all coefficients should be changed as follows:

t̂21 = T0 = e−η

r̂21 = R0 = 0

t̂32 = T1 = e−η

r̂32 = R1 = −(1− e−2η)

t̂12 = T2 = e−η

r̂12 = R2 = −(1− e−2η). (35)

From (32), we have the total reflection and transmission coefficients:

r̂ =
−ξ(1− ξ)eiβ̂

1− (1− ξ)2eiβ̂

t̂ =
ξei β̂

2

1− (1− ξ)2eiβ̂

A = 1− |r̂|2 − |t̂|2

= 1− (1 + ζ2)(1− ζ)2

1 + ζ4 − 2ζ2 cos β̂
(36)

where

ξ = e−2η

ζ = 1− ξ2 = 1− e−4η

β̂ ≈ 2
∫ x(R2

x(R1)
k(x)dx. (37)

Here β̂ in both (34) and (37) is the phase shift that results from the roundtrip travel path

between the two resonance locations x(R1) and x(R2). In Figure 5, (28) indicates that η

should be significantly large (À 1) near the minimum resonance frequency since neither
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f1 nor f2 is large and the gradient is also very small, which corresponds to ξ → 0, ζ → 1.

Then (36) is reduced to A = 1, which is consistent with the result in Figure 5. Since

this η is sufficiently large, the absorption remains perfect until the frequency approaches

fcH or f1 →∞. The minimum of A that is expected from (36) occurs when cos β̂ = 1 is

satisfied:

Amin(ζ) = 1− (1 + ζ2)

(1 + ζ)2
(38)

Since ζ is still relatively close to 1, we have Amin → 0.5 where β̂ = 2nπ is satisfied. Thus,

near fcH , it is expected that harmonic structure arises with the absorption varying from

1 to about 0.5. This feature is consistent with the result of Figure 5 in the sense that

such harmonic variation occurs when the frequency increases up to fcH . Our analogy

with a three-layered problem suggests that such harmonic variations (which in this case

range from 0.5 to 1) are possible in the absorption coefficient because of the interference

between the forward and backward waves that propagate between the two resonances.

3.4. Dependence on Electron and Heavy Ion Densities

The mode conversion efficiency discussed in Section 3.2 indicates that the absorption

should strongly depend on frequency, ion density gradients as well as electron density.

In this section, we examine the resonant absorption for different electron and heavy ion

densities. In the step-like case of Figure 1a, Figure 7 shows how the resonant absorption

occurs over different background electron densities from 0.5 to 1000cm−3. Here the gradi-

ent scale and λ‖ are assumed to be 0.3RE and 2.0RE, respectively, which cover the same

range of values in Figure 2.
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Figure 7a (7b) shows the absorption when the wave is incident from a H+-rich (He+-

rich) to a He+-rich (H+-rich) plasma. Figure 7a indicates that the absorption becomes

relatively effective when the total density decreases. When the density increases, the

absorption becomes significant only near each cyclotron frequency of H+ and He+ ion,

respectively. This feature is well understood if we consider the role of ne in (28). In order

to obtain large absorption, |k0a| should reach such a small value as 0.22 and it prefers

a relatively low ne, which is consistent with the result in Figure 7a. When ne increases,

|k0a| in (28) can be small only when either f1 → ∞ (ω ≈ ωcH) or f2 → ∞ (ω ≈ ωcHe)

is satisfied. It is evident that the absorption in Figure 7a tends to be limited to each ion

cyclotron frequency for relatively large ne.

Figure 7b shows that the absorption variation becomes roughly opposite to that in Fig-

ure 7a. As discussed in detail in Section 3.2, if ne increases and |k0a| becomes sufficiently

large in (28), the absorption becomes perfect in most frequencies in (31). When the den-

sity decrease in Figure 7b, it is evident that the absorption becomes gradually reduced

from both ion cyclotron frequencies where |k0a| is relatively small. However, as shown in

Figures 3 and 7b, this type of absorption always remains important over the intermediate

frequency range between the two cyclotron frequencies.

Figure 8 shows the absorption in the bump-like case of Figure 1b. Figure 8a (8b) shows

the absorption when there is the density bump in nHe (nH), respectively. The size of the

inhomogeneous bump is assumed to be 0.6RE and λ‖ = 2.0RE is used. The variation of

δnj/ne is from 0.001 at both edges to 0.3 at the top of the crest, which is the same as

in Figure 4. In Figure 8a, the absorption occurs over a large frequency band when the

density is small, but becomes restricted again to ω ≈ ωcHe when the density increases.
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This is consistent with condition (28) that small values of |k0a| are required to have large

absorption. Since the maximum composition of He+ ions is 30% in this bump-like profile

unlike 100% in the step-like case above, the resonance frequency cannot reach ωcH . Since

f1 →∞ (ω ≈ ωcH) is impossible, there is no absorption elsewhere as discussed in Section

3.3. It is also confirmed that the absorption peak maximized around 0.25 and 0.5 for

various background density values in Figures 7a and 8a, respectively, consistent with our

estimate based on the Budden solution.

The harmonic structure caused by the interference between the forward and backward

waves propagating between the two resonances has dependence on both the electron den-

sity in Figure 8b and the gradient scale in Figure 5. Between the two neighboring peaks,

δβ̂ ≈ 2π should be satisfied. If we assume that keff and XR = x(R1) − x(R2) are the

effective wavenumber and distance between the two resonances, we can approximate β̂ as

2keffXR, which is reduced to

δβ̂ = 2(δkeffXR + keffδXR) ≈ 2π (39)

Here keff and XR should be proportional to k0 and the total size of the bump, respectively.

For instance, if the density profile of the H+ bump is fixed by XR, the harmonics would

be determined simply by the wavenumbers and we obtain δkeffXR ≈ π. From Appendix

B, we have

k0 =

√
∆′

δ′
≈

√
f2 − 16f1

4f1 − f2

2D0YHe ∝
√

ne

ω
. (40)

Thus, δkeffXR ≈ π and (40) give δω ∝ ω3/2/n1/2
e , which shows that δω between the

neighboring harmonics is inversely proportional to n1/2
e . It is consistent with the feature

in Figure 8b that δω increases for relatively small ne.
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Up to now, we have assumed that the incident waves start from the region of either

H+ or He+ dominant plasmas in both step-like and bump-like cases. It is interesting

to examine the mode conversion process when the incident wave is from the region of

H+-He+ mixture. In Figure 9, we assume such cases where NH+ is the background H+

density in the region of incident waves. The H+ density drops by δN across the step-

like profile in Figure 9a, or has a dip of δN across the bump-like profile of He+. In the

previous cases in Figure 1, NH+ = 1.0 and δN = 1 were used in the step-like profile, and

NH+ = 1.0 and δN = 0.3 were used in the bump-like profile.

Figure 10a shows how the absorption occurs in Figure 9a when NH+ ranges from 0.5

(50% H+ and 50% He+) to 1.0 (100% H+) where δN = 0.5 is assumed. The gradient

scale is assumed to be 0.3RE for convenience. The cutoff frequency and the maximum

and minimum resonance frequencies are given by fco, fmax
bb and fmin

bb , respectively. The

absorption becomes significant in Figure 10a only when NH+ is close to either 1 or 0.5,

which indicates that relatively large absorption arises only if either side of the uniform

regions, where the incident waves or transmitted waves propagate, is composed of almost

purely H+ or He+ ions. For instance, the absorption becomes negligible (< 0.1) if NH+ <

0.90, and the peak occurs approximately only for NH+ > 0.95. The other absorption peak

occurs when NH+ ∼ 0.5 or NH+− δN ¿ 1 is satisfied. This indicates that the absorption

becomes significant only when any region has relatively small amount of minority ions.

Figure 10b shows the absorption when nH and nHe are switched. Thus the incident

wave is from He+-rich plasma and NH+ ranges from 0.5 (50% H+ and 50% He+) to

0 (100% He+). It should be noted that complete absorption occurs even though the

background plasma is almost an arbitrary mixture of H+ and He+ unlike Figure 10a.
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There are exceptions near the H+ dominant region near fcHe, which is already confirmed

in the previous sections. Therefore, it is expected that the resonant absorption is effective

only if the incident wave propagates from the region of relatively large nHe to the region

of relatively small nHe.

Figure 11a shows the absorption of Figure 9b when NH+ ranges from 0.3 (30% H+ and

70% He+) to 1.0 (100% H+) where δN = 0.3 is assumed. In Figure 11a, the absorption

becomes important (larger than 0.1) only for NH+ > 0.9, which is consistent with the

feature in Figure 10a. The bump-like profile also prefers a small amount of minority ions

in exciting a significant resonant absorption. Unlike Figure 10a, the absorption becomes

negligible where the plasma is composed of purely He+ ions or NH+ ≈ δN = 0.3. This

feature is understandable because its location corresponds to the top of the crest in the

He+ density profile where the density gradient vanishes and consequently |k0a| is large

(28).

Figure 11b shows the absorption in the bump-like profile when nH and nHe are switched

(in Figure 9b). The incident wave is from the He+-rich plasma, but has a dip in the middle

where NHe+ drops by δN = 0.3. Thus NH+ ranges from 0 (100% He+) to 0.7 (70% H+

and 30% He+). Complete absorption occurs except in the region where |k0a| is small,

where harmonic variations resulting from wave interference between the resonances can

be seen. Both Figures 10b and 11b suggest that complete absorption occurs whether

the density profile is bump-like or step-like. When a wave is incident from a region of

relatively large nHe to the region of relatively small nHe, a significant absorption should

always be expected.
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We assumed relatively large variation of the ion population in our density model. It

may be the case that it is not common to see such large variation over a radial distance

of 0.5RE except at the plasmapause, etc., even though the heavy ion population variation

sometimes becomes significant near geostationary orbit [e.g., Fraser et al., 2005]. However,

it should be noted that the resonance frequency not only varies because of changes in

the ion population but also because of variation in the magnetic field. Indeed, even if

the relative ion population ratio is maintained to be constant, the magnetic field from

L = 6.6 to L = 6.1 over the same distance of 0.5RE should change more than 25%, which

results in the similar variation of the resonance frequencies as shown in Figures 1 and 2.

Thus the resonance frequency in the magnetosphere varies in almost the same manner as

presented above suggesting that our results should be applicable to the magnetospheric

phenomena.

4. Discussion

4.1. Electrostatic and Electromagnetic Property

Magnetic field observations of Pc1-2 waves suggest that the wave events are primarily

electromagnetic in nature nature rather than electrostatic. For convenience, we can esti-

mate the ratio of each electric and magnetic field component by assuming the dispersion

relation in a homogeneous plasma, where (2) becomes



S − n2
‖ −iD n‖n⊥

iD S − n2 0
n‖n⊥ 0 P − n2

⊥







Ex

Ey

Ez


 = 0. (41)

Here P ' 1−ω2
pe/ω

2 ' −ω2
pe/ω

2 À 1 when ion waves (ω ∼ Ωi) are considered, and P ≤ 1

when an electron wave such as the upper hybrid wave is considered. From (41), we have

Ey

Ex

=
iD

n2 − S
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Ez

Ex

=
n‖n⊥

n2
⊥ − P

(42)

and the magnetic field components are determined by (1) such as cB = (−n‖Ey, n‖Ex −

n⊥Ez, n⊥Ey) and then we have the ratio of B components from (42):

By

Bx

=
n‖Ex − n⊥Ez

−n‖Ey

=
1− n2

⊥
n2
⊥−P

−iD
n2−S

Bz

Bx

=
n⊥Ey

−n‖Ey

= −n⊥
n‖

. (43)

When the inhomogeneity lies perpendicular to Bo, the cold plasma assumption implies

that n⊥ increases to infinity near the resonance point. However, in reality, this value

is limited by kinetic effects such as Landau damping or the finite gyro-radius effect and

dissipation. To maintain the validity of the cold fluid approach, the ion and electron

waves are restricted by the condition, k⊥ρci < 1 and k⊥ρce < 1, respectively, where ρci or

ρce are the gyro-radius of ions and electrons. If the temperature is assumed to be about

the order of 10eV for both background cold ions and electrons, we obtain ρci ∼ 4km and

ρce ∼ 0.1km, which provide k⊥max and λ⊥min and the mode conversion would be modified

by kinetic effects beyond this limit. Thus n⊥max is also determined by k⊥maxc/ω < c/ωρ

in each case.

Let us consider the behavior near a resonance after an impulse, In the case that we

neglect kinetic limitations and assume n⊥ → ∞ in (42) and (43), we obtain the growth

of Ex and the damping of both Ey and Ez from (42), also the damping of Bx from Ey,

and the damping of By because By/Bx → P/iD as well as the damping of Bz because

Bz → (iD/cn‖)Ez. Thus only Ex grows, and all the other components are damped at the

resonance, which corresponds to the feature of the cold upper hybrid waves in numerical

experiments [e.g. Kim et al., 2005b]. Although that simulation applies to a different
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frequency range, the same approximations apply—namely, that P , which has the largest

value of all the tensor elements S, D and P , becomes negligibly small compared to n⊥2
max.

Near the geostationary equatorial region in our model, upper hybrid waves are expected

to satisfy

n⊥2
max

P
≈

(
c

ωρce

)2

1− ω2
pe

ω2

∼ 2.6× 104 À 1, (44)

which validates our assumption above that n⊥ is large enough to neglect all the other

terms.

However, when ion waves are considered in the geostationary equatorial region, we have

n⊥2
max/P ≈ (c/ωpeρci)

2 ∼ 0.17 ¿ 1, which is the opposite to the case of electron waves

above. This difference significantly modifies the ratio of By in (43)

By

Bx

≈ −n2 − S

iD
= −Ex

Ey

, (45)

indicating that By grows in time just like Ex. In fact, the relative ratio of n⊥2
max/P

is important in determining whether the resonant response can be electrostatic or elec-

tromagnetic. This feature suggests that the radial electric field (Ex) and the azimuthal

magnetic field (By) are likely to be excited at the heavy ion resonance, which is similar

to the case of shear Alfven modes in MHD waves. Unlike the electron waves, the electro-

magnetic waves are expected to occur with relatively strong linear polarization as long as

n⊥2
max/P ¿ 1 is satisfied.

4.2. BuchsBaum-Bers Resonances vs. Ion-Ion Hybrid Resonances

It is useful to discuss the relative roles of the Buchsbaum-Bers (BB) resonance (S = 0)

and the ion-ion hybrid (II) resonance (S = n2
‖). It should be noted that the BB resonance

has no k-dependence, which means that there is no propagation in the cold plasma limit.
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By definition, it should have an electrostatic nature in that the electric field parallel to

the k⊥ grows, while the other components damp via the mode conversion. On the other

hand, the II resonance has k‖-dependence, which allows propagation along the magnetic

field lines with electromagnetic nature just like shear Alfvén waves in MHD. Thus the

two resonances can be distinguished in the cold plasma limit by the electrostatic (BB) or

electromagnetic (II) nature, although the two resonance locations are close to each other

when n‖ (or k‖) becomes relatively small.

When electron inertial effects are included in a cold, fluid model, there is a fourth

order system of equations supporting two different modes (each forward and backward

propagating) and the only resonance is the BB resonance and there is no resonance at

S = n2
‖. However, when electron inertial effects are ignored, only one of the modes (an

ion mode) can be described with a resonance at the II resonance location and there is no

resonance at S = 0. In order to understand the role of the II resonance, it is necessary to

consider the fourth order equation. It should be noted that away from these resonances,

there are two modes in the system with far different scales—a compressional ion Alfvén-

like mode and a short scale electron inertial mode. If we go back to the full wave dispersion

relation of (19) and (21), we find the two modes of large and small n⊥, respectively:

n2
⊥ ≈

{
(P+S)δ−D2

S
− δ2−D2

δ
δ2−D2

δ
,

(46)

where the second mode is the ion wave that was derived in (22). The first mode, where

the first term is very large compared to the second term near the resonance, is an electron

inertial wave which can be approximated as

n2
⊥ ≈

(P + S)δ −D2

S
≈ Pδ

S
. (47)
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It should be noted that when P is large, the electron inertial mode is heavily damped

everywhere except between the BB and II resonances and therefore that mode is only

important in a small region near the two resonances. (47) shows that the resonance of

electron waves is determined by S = 0, where (47) becomes n2
⊥ ≈ −Pn2

‖/S. This is

equivalent to the original resonance condition of tan2 θ = −P/S from (5), where the BB

resonance is defined. Strictly speaking, the BB resonance (S = 0) implies a resonance of

the electron inertial scale waves rather than that of ions in the sense that n⊥ should be

so large that the wavelength becomes too small to represent the wave motion of ions.

When we completely neglect the effect of electron inertia, the full wave equations are

reduced to the second order differential equation of the ion waves, which is similar to the

Budden problem near the resonance. Thus the II resonance takes energy from the fast

wave at S = n2
‖ and launches a resonant wave along the magnetic field lines. The second

mode in (46) allows a sufficiently small n⊥ or large wavelength for the ion motion when

the leading term of (47) is removed. Since the dispersion relation n2
⊥ ≈ (δ2 −D2)/δ has no

dependence on P (associated with the electron inertia), it is evident that the resonance

of δ = 0 or S = n2
‖ is composed of ion motion. Thus, the II resonance represents the

resonance of ion waves.

A solution of the fourth order dispersion relation including the effect of electron inertia

shows that near the II resonance location the two approximate solutions given above break

down because the spatial scale of the modes becomes comparable. The ion and electron

branches couple at the II resonance location giving rise to two complex conjugate solutions

with wavelength comparable to the ion mode. No resonance occurs for either mode at the

II resonance location. However, the modes are strongly coupled in that region (S ≈ n2
‖)
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leading to mode conversion from the ion wave to the electron inertial wave. Some of

the wave Poynting flux remains in a transmitted ion wave which propagates unaffected

through the S = 0 resonance. On the other hand, the mode-converted electron inertial

wave carries wave Poynting flux into the principal resonance S = 0 where it is absorbed

in the cold plasma limit. We have found that this energy absorption is the same as

the energy absorption that occurs at the II resonance when electron inertial effects are

ignored provided that there is a principal resonance (S = 0) allowed by the profile, which

suggests that the electron inertial wave carries all the mode converted wave energy to

the principal resonance. On the other hand, if there is only an II resonance without a

BB resonance for a given profile, the ion waves are mode-converted at the II resonance

to electron inertial waves that propagate away from the II resonance region without any

resonant absorption. This property of the solutions explains why the absorption only

exists over the frequency range of S = 0 rather than S = n2
‖ in Figures 2-5, even though

the ion waves have a resonance at S = n2
‖. It is expected that the electron inertial waves

between the II resonance and the BB resonance are essentially dispersive waves associated

with a resonance field-aligned mode S = n2
‖. As the waves carry energy into the S = 0

resonance, it would be expected that they become electrostatic in nature.

In a realistic warm plasma, it is expected that the waves would not become fully elec-

trostatic in nature for several reasons. First, there would be a kinetic limit for large

n⊥ and second, if field-aligned propagation is faster than dispersion across the magnetic

field, the wave energy could be absorbed at some other location. If we examine the dis-

persion relation (47) of the electron wave (the waves including P -dependence), we can

assume that n⊥ is large, although it will be bounded because of kinetic physics. For in-
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stance, n⊥max can be limited by the finite gyro-radius, which is estimated in Section 4.1

as n⊥2
max/P ≈ (c/ωpeρci)

2 ∼ 0.17 ¿ 1 for 10eV -ions near the geosynchronous orbit. Then

we have a dispersion relation near the resonance from n2
⊥ ≈ Pδ/S in (47):

S ≈ n2
‖

1− n2
⊥

P

≈ n2
‖

1 +
k2
⊥c

ω2
pe

(48)

since P ≈= −ω2
pe/ω

2. As k⊥ becomes large, S → 0 consistent with the resonance condi-

tion. When k⊥ is so small that the wavelength becomes larger than the electron inertia

length, we have S = n2
‖, where it couples with the II resonance. This dispersion relation

describes dispersive electron inertial waves that mode convert from fast waves at the II

resonance and radiate energy away to the BB resonance location. This feature is similar

to the nature of the inertial Alfven wave since S → c2/V 2
A in the low frequency limit

where VA is the Alfven speed. Therefore, the relationship between the two resonances

in the cold plasma limit can be understood. Since our results suggest that the ion-ion

hybrid resonance S = n2
‖ or (48) is likely to act as a real resonance for relatively small

n⊥ or n2
⊥/P , the electromagnetic resonances II resonant waves are expected to propagate

along the magnetic field lines with dispersion across the magnetic field due to electron

inertial effects. This result is found to be consistent with the characteristics of statistical

observations near the equatorial region [e.g. Anderson et al., 1992b; Fraser and Nguyen,

2001].

4.3. Resonance Frequency and Heavy Ion Composition

When ωpe À ωce is satisfied, the resonance condition (S = 0) is determined only by

the magnetic field intensity and the population ratios among the multiple ions. Figure

12 shows how two- and three-ion cases have resonance frequencies, which suggest that
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from this resonance is is possible to infer the relative concentration of each ion in the

background plasma. If two ions are involved, a measurement of the resonance frequency

fbb directly provides the composition ratio. If more ions are involved, we would find an

additional branch satisfying S = 0 in Figure 12b. Each resonance would be located in

between each band of ion cyclotron frequencies such as fb1 (He+ branch) and fb2 (O+

branch), respectively, in Figure 12b. The resonance frequency varies in a simple manner

in that it increases (decreases) as its heavier ion composition increases (decreases). In

Figure 12a, fbb decreases as nHe/ne decreases in x. In Figure 12b, it is clear that fb1 and

fb2 tend to vary by the density variation of He+ and O+, respectively. This feature could

be used to monitor the heavy ion population by investigating Pc1-2 wave events near the

ion cyclotron frequencies. It should be noted that near the resonance the wave solutions

would be linearly polarized, which correspond to Ex and By in our model above. Thus,

when linearly polarized Pc1-2 events are found around each cyclotron frequency of ions in

space, we could use the peak frequencies to determine the abundance of heavy ions near

the location of the observation.

Our results showed that the resonant absorption should significantly depend on the

direction of incident waves relative to the density gradient. If the fast wave propagates

from the source region into the region where the resonance frequency profile (or the heavier

ion population) increases, relatively small absorption occurs only when the minority ions

are a few percent and the frequency should be close to each ion cyclotron frequency. If

the fast wave propagates into the region where the resonance frequency (or the heavier

ion population) decreases, it is strongly absorbed except for the case of a small relative

density of minority ions. For instance, if the source is located at x > X in Figure 12b,
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only fb2 would have strong absorption since this branch is decreasing in the direction of

the incident wave propagation. If the source is located at x < 0, fb2 would have strong

absorption as long as the least population of minority ions are more than a few percent.

It is expected that several observational features of Pc1-2 waves could be explained

by our results. For instance, Anderson et al. [1991] showed a puzzling case of Pc1-2

waves in the magnetosheath plasma consisting of He+, He++, O+ where the polarization

becomes left-handed above fHe++ and linearly-polarized below fHe++ . Our results indicate

that such a differential polarization pattern could happen if the He++ density decreases

and O+ increases toward the wave source region. When the source frequency is broad-

banded, the waves would be linearly-polarized below fHe++ because of the strong resonant

absorption, while the waves above fHe++ would remain either left-handed or right-handed

polarized.

Another consequence of this study for a realistic magnetospheric geometry can be in-

ferred from the topology of the resonant frequency profiles. If one considers fixed plasma

concentrations and magnetic field variation, the resonance frequency is proportional to

the magnetic field so the resonance profile would be topologically similar to the case of

Figure 2 for waves propagating inward (to smaller L) and Figure 3 for waves propagating

outward (note waves are launched from the right). Therefore, it would expected that

waves propagating outward would be absorbed most efficiently.

4.4. Effects of Warm Plasmas

In our model we assumed the cold plasma limit. In a high β plasma it would be

important to also include kinetic effects. Mode conversion of fast Alfven waves at the ion-

ion hybrid resonances has been extensively examined with models that include thermal
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effects [e.g. Swanson, 1976; Jacquinot et al., 1977; Perkins , 1977; Lapierre, 1983; Brambilla

and Ottaviani , 1985; Riyopoulos and Tajima, 1986; Lashmore-Davies et al., 1988; Fuchs

et al., 1995]. The mode conversion in warm plasmas indicates that the II resonance

typically leads to the electron heating via the excitation of ion Bernstein waves [e.g.

Swanson, 1976; Brambilla and Ottaviani , 1985; Lashmore-Davies et al., 1988; Majeski

et al., 1994; Fuchs et al., 1995]. As discussed in the previous sections 4.1 and 4.2 above,

our fluid model is restricted to relatively large scale phenomena (> ρci).

The small-scale response at the resonance requires a kinetic treatment. For instance,

the finite gyro-motion and resonant motion of each ion species directly affects the motion

of electrons near the singularities of ion resonances in the fluid equations. In addition, to

approximate the effect of warm plasma, the wave equations can be modified by replacing

(4) by the kinetic dielectric tensor including the correction term of finite gyro-radius as

the first-order approximation [Swanson, 1976]. These subjects are left as future work.

Since the region in our model lies in a relatively cold regime (β ∼ 0.01), it is expected

that our results can be applied to most wave events in observations, although the exact

nature of the resonant absorption needs to be clarified by a kinetic approach.

5. Conclusion

In order to focus on basic properties of the wave coupling at the heavy ion resonances,

we have considered the cases of two ions for simplicity in this study. When more ions

such as O+ are involved, there are more branches of resonances as indicated in Figure

12b. The resonant absorption would become rather complicated in the sense that the

gradient of each resonance frequency can be positive and negative at the same time and

there are many cases in the choices of minority ions. However, our result suggest that the
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absorption can be reduced to that of Budden problem near each resonance once the heavy

ion density profiles are given, which would enable us to understand the effect of more ion

cases.

We have also assumed that the background magnetic field is constant and the total den-

sity of ions or electrons is constant in order to focus on the role of heavy ion composition.

In fact, the condition of the resonant absorption (28) would depend on both the gradient

of magnetic field and electron density to some extent. It remains as a future work to

study such additional effects of more ions, ∇B as well as ∇ne.

The presence of heavy ions invokes a new resonance, which is composed of the hybrid

ion motions. Unlike the electron wave resonance, this heavy ion resonance is found to

have strong electromagnetic nature. These resonances are expected to occur with the

linear polarization near the multi-ion hybrid resonances, which could be important in

determining the heavy ion composition in space.

Appendix A: Derivation of the Coupled Wave Equations in Multi-Ion Plasmas

The coupled equations of (8) are written in terms of Ey and cBy, which represent the

eigenstates in vacuum. If the uniform plasmas are introduced at both sides of x > X

(Region 1) and x < 0 (Region 2), and the nonuniform region lies within 0 ≤ x ≤ X, we

can change (8) into the wave equations in terms of the eigenstates of plasma waves as

follows:

d2φ

dx2
− dẼ(x)

dx
Ẽ−1(x)

dφ

dx
+ Ẽ(x)H2M̃(x)φ = 0 (A1)

where

φ = C−1
1 ψ = C−1

1

(
Ey

cBy

)
,
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Ẽ(x) = C−1
1 E(x)C1,

M̃(x) = D−1
1 C−1

1 M(x)C1,

D1 = C−1
1 M1C1,

H2 =
ω2

c2
D1 =

(
h2

1 0
0 h2

2

)
. (A2)

Here C1 is the linear transformation matrix from the plasma wave eigenstates of Region 1

to the vacuum TE and TM modes. D1 and H are the diagonal matrix, where hj represents

the x component wavenumber of the j-th eigenstate in Region 1. Thus (A1) and (11) show

that both Ẽ1 and M̃1 become the unit matrix in Region 1. The boundary conditions for

φ(x) in (A1) are given by

φ(x)|x−ε = φ(x)|x+ε

1

Ẽ(x)

dφ

dx
|x−ε =

1

Ẽ(x)

dφ

dx
|x+ε . (A3)

In order to decompose the wave function in terms of the coupling components, we can

extend (A1) as

d2Φ

dx2
− dẼ(x)

dx
Ẽ−1(x)

dΦ

dx
+ Ẽ(x)H2M̃(x)Φ = 0 (A4)

where

Φ(x) =
(

Φ11 Φ12

Φ21 Φ22

)
. (A5)

Here, Φij is the i-th component when the j-th component is an incident wave. In Region

1, the wave equation (A4) is simplified as follows:

d2Φ1

dx2
+ Ẽ1H

2M̃1Φ1 =
d2Φ1

dx2
+ H2Φ1 = 0 (A6)

where Ẽ1 and M̃1 are the unit matrix. When the incident wave is given by plane waves in

Region 1, there are reflected waves in the same region and transmitted waves in Region
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2. If the incident waves have a unit amplitude and the reflected waves are determined by

the reflection coefficient matrix r in Region 1, we have

Φ1(x) = e−iH(x−X) + eiH(x−X)r(X) (A7)

where

e−iH(x−X) =
(

e−ih1(x−X) 0
0 e−ih2(x−X)

)
,

r(X) =
(

r11 r12

r21 r22

)
. (A8)

Here, rij(X) is the reflection coefficient of the i-th component when the j-th component

is an incident wave.

In Region 2 (x < 0) which is the uniform region of Ẽ2 and M̃2, (A4) becomes

d2Φ2

dx2
+ Ẽ2H

2M̃2Φ2 =
d2Φ2

dx2
+ M2Φ2 = 0. (A9)

However, M2 = Ẽ2H
2M̃2 is no longer diagonal, and we can transform (A9) into

d2Φ̃2

dx2
+ Q2Φ̃2 = 0 (A10)

where

Φ̃2 = C−1
2 Φ2,

Q2 = C−1
2 M2C2 =

(
q2
1 0
0 q2

2

)
. (A11)

Q is the diagonal matrix, and qj represents the x component wavenumber of the j-th

eigenstate in Region 2. Here C2 is the linear transformation matrix from the plasma wave

eigenstates of Region 2 to the eigenstates of Region 1. Thus, we can write the transmitted

wave in Region 2 as

Φ̃2(x) = e−iQxt(X) (A12)
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where tij(X) represents the transmission coefficient of the i-th component when j-th

component is an incident wave.

If we remove the inhomogeneous region (X → 0), (A3) becomes the boundary conditions

at x = 0 between the two uniform regions:

Φ1|x=0 = Φ2|x=0 = C2Φ̃2|x=0

1

Ẽ1

dΦ1

dx
|x=0 =

1

Ẽ2

dΦ1

dx
|x=0 =

1

Ẽ2

C2
dΦ̃2

dx
|x=0. (A13)

From (A7) and (A12), (A13) becomes

I + r(0) = C2t(0)

1

Ẽ1

H (I − r(0)) =
1

Ẽ2

C2Qt(0). (A14)

Since both Ẽ1 and C−1
2 Ẽ−1

2 C2 are the unit matrix I, r(0) and t(0) become

r(0) = C2t(0)− I

t(0) = 2
(
C2 + H−1C2Q

)−1
. (A15)

Both (A6) and (A9) satisfy the conservation of J = dΦ†/dxΦ− Φ†dΦ/dx,

J =
dΦ†

1

dx
Φ1 − Φ†

1

dΦ1

dx

=
dΦ†

2

dx
Φ2 − Φ†

2

dΦ2

dx

=
dΦ̃†

2

dx
Φ̃2 − Φ̃†

2

dΦ̃2

dx
(A16)

which should be conserved if the inhomogeneous region is neglected and there is no ab-

sorption through mode conversion. By putting (A7) and (A12) into (A16), we have the

following condition:

H = r(0)†Hr(0) + t(0)†Qt(0). (A17)
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For instance, if the incident wave is assumed to be the first kind (e−ih1x) in Region 1,

1 = |r11|2 +
h2

h1

|r21|2 +
q1

h1

|t11|2 +
q2

h1

|t21|2. (A18)

Thus, when the mode conversion occurs in an inhomogeneous region, the absorption of

mode conversion can be defined by

A1 = 1−
(
|r11|2 +

h2

h1

|r21|2 +
q1

h1

|t11|2 +
q2

h1

|t21|2
)

. (A19)

When the two uniform regions are identical (C2 = I), the conditions become simplified

as follows:

Ẽ1 = Ẽ2, M̃1 = M̃2,

Φ = Φ̃,

r(0) = 0, t(0) = I,

Aj = 1− (|r1j|2 + |r2j|2 + |t1j|2 + |t2j|2). (A20)

Appendix B: Application of Heavy Ion Resonances to Budden Problem

In order to make an analogy with the Budden problem, we adopt the expressions for k0

and a in an inhomogeneous plasma, which are derived in Section 3.2:

k2
0 =

∆′

δ′

a = −∆

∆′

|k0a| =

∣∣∣∣∣
∆√
δ′∆′

∣∣∣∣∣ (B1)

where ∆ and δ are defined in Section 3.2. Here the resonance is defined by S = 0 or δ ≈ 0

and the cutoff is defined by δ = D (or ∆ = 0), respectively. To approximate the solutions
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near the resonance and cutoff, we assume the linear profiles such as

δ ≈ κx

δ −D ≈ κ̃(x− a). (B2)

Near the resonance, the condition of |δ0| ¿ |∆0| can be applied:

∆0 = δ2
0 −D2

0 ≈ −D2
0

∆′
0 = 2(δ0δ

′
0 −D0D

′
0)

≈ 2(δ0 −D0)κ + 2D0κ̃

≈ 2D0(κ̃− κ)

= −2D0D
′, (B3)

which are consistent with our various profiles assumed above in this study.

From (4), S and D are given by

S = 1− XH

1− Y 2
H

− XHe

1− Y 2
He

− Xe

1− Y 2
e

D =
XHYH

1− Y 2
H

+
XHeYHe

1− Y 2
He

− XeYe

1− Y 2
e

. (B4)

where Xj = ω2
pj/ω

2 and Yj = ωcj/ω. Since X ′
j = n′je

2/mjεoω
2 and n′H = −n′He when the

total electron density remains constant, X ′
H = −4X ′

He is satisfied:

δ′ = X ′
He(4f1 − f2) ≈ κ

D′ = X ′
HeYHe(f2 − 16f1) ≈ κ− κ̃

f1 =
1

1− Y 2
H

f2 =
1

1− Y 2
He

. (B5)

From (B3)-(B5), k0a in (B1) becomes

|k0a| ≈ 1√
2YHeX ′

He

| D
3/2
0√

(4f1 − f2)(f2 − 16f1)
|
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∝ ω5/2 | 1

n′He

n3/2
e√

(4f1 − f2)(f2 − 16f1)
| . (B6)
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Figure 1. The density models of H+ and He+. The total density is constant as ne =

nH + nHe = 10/cm3. The ion density profiles are given by nH (dotted line) and nHe (dashed

line): (a) the three different gradient scales marked by (1, 2, 3) are assumed to be Λ = 0.2, 0.5,

and 1.0RE, respectively, in the step-like cases, and (b) three different bump sizes marked by (1,

2, 3) are assumed to be 0.4, 1.0, and 2.0RE in the bump-like cases.

Figure 2. The left column shows the frequency profiles of Buchsbaum-Bers and ion-ion hybrid

resonances in the step-like profile shown in Figure 1a for different field-aligned wavelength, λ‖,

when ne = 10/cm3 is assumed. The horizontal axis is normalized by Λ, which represents each

gradient scale in the step-like profiles. The right column is the resonant absorption for each

case. The line segment labeled fbb is the range of possible resonance frequency shown in the left

column. The different scales of Λ = 0.2, 0.5, and 1.0RE in Figure 1a are marked by 1, 2 and 3,

respectively.

Figure 3. The same profiles as in Figure 2 when nH and nHe are switched in Figure 1a.

Figure 4. The left column shows fbb and fii in a bump-like profile in Figure 1b for different

λ‖ when ne = 10/cm3 is assumed. The different bump sizes of 0.4, 1.0, and 2.0 RE in Figure 1b

are marked by 1, 2 and 3, respectively.

Figure 5. The same profiles as in Figure 4 when nH and nHe are switched in Figure 1b.

Figure 6. The radial wavenumber variation and the coefficients of reflection and transmission

in the Budden problem when the incident wave propagates from a H+-rich to a He+-rich plasma

region: (a) a single resonance in a monotonic step-like profile in Figure 1a, and (b) two resonances

in a bump-like profile in Figure 1b.

Figure 7. The resonant absorption in a step-like profile of Figure 1a for different ne: (a) when

the incident wave propagates from a H+-rich to a He+-rich plasma, and (b) when the incident

wave propagates from a He+-rich to a H+-rich plasma where nH ↔ nHe.
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Figure 8. The resonant absorption in a bump-like profile of Figure 1b for different ne: (a)

when the incident wave propagates from a H+-rich to a He+-rich plasma, and (b) when the

incident wave propagates from a He+-rich to a H+-rich plasma where nH ↔ nHe.

Figure 9. The (a) step-like and (b) bump-like density models where NH+ and δN are the

residual H+ density and its variation in the region of incidence, respectively. The total ion

density is kept constant.

Figure 10. The absorption for profiles shown in Figure 9a for different NH+. The gradient

scale is assumed to be 0.3RE and δN = 0.5 is assumed. The cutoff frequency and the maximum

and minimum resonance frequencies are given by fco, fmax
bb and fmin

bb , respectively: (a) when the

incident wave propagates from a H+-rich to a He+-rich plasma, and (b) when the incident wave

propagates from a He+-rich to a H+-rich plasma where NH+ ↔ NHe+ in the profile shown in

Figure 9a.

Figure 11. The absorption for profiles shown in Figure 9b for different NH+. The bump size

is assumed to be 0.6RE and δN = 0.3 is assumed. (a) when the incident wave propagates from

a H+-rich to a He+-rich plasma, and (b) when the incident wave propagates from a He+-rich to

a H+-rich plasma where NH+ ↔ NHe+ in the profile shown in Figure 9b.

Figure 12. The density models and the resonance frequency profiles for: (a) two ions and (b)

three ions. In the three-ion case of (b), fb1 and fb2 are the resonances of the H+ −He+ branch

and the He+ −O+ branch, respectively.

D R A F T August 26, 2008, 4:03pm D R A F T



























 



The Princeton Plasma Physics Laboratory is operated
by Princeton University under contract

with the U.S. Department of Energy.

Information Services
Princeton Plasma Physics Laboratory

P.O. Box 451
Princeton, NJ 08543

Phone: 609-243-2750
Fax: 609-243-2751

e-mail: pppl_info@pppl.gov
Internet Address: http://www.pppl.gov


	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4368
	Title: Effects of Heavy Ions on ULF Wave Resonances Near the Equatorial Region 
	Date: November,  2008
	authors: D.-H.Lee, J.R. Johnson, K. Kim and K.-S.Kim


