
Enabling High Performance Application I/O

Final Report
Northwestern University

Alok Choudhary (PI) and Wei-keng Liao (Co-PI)
Part of the Scientific Data Management Center

Summary

This work provides software that enables scientific applications to more efficiently access available storage
resources at different levels of interfaces. We developed scalable techniques and optimizations for PVFS
parallel file systems, MPI I/O, and parallel netCDF I/O library. These implementations were evaluated using
production application I/O kernels as well as popular I/O benchmarks and demonstrated promising results.
The software developed under this work has been made available to the public via MCS, ANL web sites.

Introduction

Today's scientific applications access datasets
ranging from gigabytes (GB) to terabytes (TB),
checkpoint frequently, and create large volumes of
visualization data. Demanding high-performance
I/O systems, such applications are hamstrung by
bottlenecks anywhere in the I/O path, including
the storage hardware, file system, low-level I/O
middleware, application level interface, and in
some cases the mechanism used for Grid I/O
access. The goal of this project is to provide
significant improvements in the parallel I/O
subsystems used on today's machines. This work
addresses inefficiencies in all the software layers
by carefully balancing the needs of scientists with
implementations that allow the expression and
exploitation of parallelism in access patterns.

Sitting in between the storage devices and user
applications, file systems play an important role on
how to interpret application’s I/O requests and to
deliver the data efficiently. We developed several
techniques for the Parallel Virtual File System
(PVFS), including data types packing for multiple
non-contiguous I/O requests, and native PVFS
data type I/O. These methods reduce
communication cost between application client
processes and the I/O servers and hence
significantly improve the performance.

MPI-IO has become the standard utility for
parallel applications to obtain high-performance
I/O. It is important for MPI-IO implementation to

closely interpret high-level access information and
utilize proper system functionalities to achieve the
best data bandwidth. At the file system level, we
have integrated the PVFS data types into ROMIO
to enable applications to implicitly invoke the data
type functionality. We further addressed scalable
implementation issues for MPI file consistency
and atomicity. We also designed and developed a
client-side caching sub-system for MPI-IO. By
placing a thin caching layer in MPI-IO library, we
can capture high-level applications’ I/O patterns,
such as the information across multiple I/O calls,
and perform file caching more effectively while
maintaining data coherency.

Scientific applications desire more structured file
formats that map closely to the data structures
used, such as multidimensional datasets and their
associated attributes. One of the standard file
formats commonly used in scientific community is
netCDF. NetCDF defines a file format that is
portable across different platforms and provides a
set of programming interfaces to access data
stored in such format. Since only interfaces for
sequential access are provided in netCDF, we
constructed a new set of parallel I/O interfaces that
were built on top of MPI-IO. The implementation
ensures the file format conformation and backward
compatibility to the legacy codes. Parallel netCDF
library (pnetCDF) has been adopted by a number
of application groups in the climate community,
such as WRF at NCAR.

 node
compute

node
compute

node compute
node compute

server I/O
server
I/O

server I/O
server I/O

compute

server I/O

node compute
node node compute compute

node

server I/O

PVFS I/O Library

PVFS Data Types for Non-contiguous Access

Many scientific applications require non-
contiguous access of small regions of file data.
These access patterns can be described by MPI
derived data types, which will be used in the MPI-
IO operations later. However, they do not map
well to the traditional block access interfaces of
most file systems. Traditionally, parallel file
systems perform each of the contiguous-region
access as an individual I/O request to satisfy these
types of operations, resulting in a large request-
processing overhead. We implemented the PVFS’s
list-IO operation that internally combined multiple
requests into single ones. This work demonstrated
beneficial to many non-contiguous I/O patterns.
The follow-on PVFS datatype I/O implementation
used PVFS derived data types to describe non-
contiguous I/O in a concise representation that can
be handled by the file system natively and more
efficiently. We completed this work for both
client-side (MPI-IO library and client-side file
system) and the server system side. Underneath,
the communication between PVFS clients and
servers for non-contiguous I/O requests, as
depicted in Figure 1, is made through a derived
data type, instead of a list of offset-length pairs as
the traditional approach.

 We benchmarked this work using three different
test suites: an artificial benchmark, an I/O of the
FLASH astrophysics application, and an I/O
simulation of a tiled visualization application. Our
results show that in most cases, list I/O
outperforms traditional noncontiguous methods by
up to two orders of magnitude. By providing file

system support for more structured accesses, and
supporting this mechanism in ROMIO, our
performance improves by two or more orders of
magnitude for many common multidimensional
array accesses. An example performance results is
given in Figure 2. This work is applicable to most
applications running on clusters today and is
available in current PVFS and ROMIO releases.
The publications resulted from this work include
[1,2,3,4,5,6].

Scalable Implementations for MPI File
Atomicity and Data Consistency

MPI atomicity is defined as: in concurrent
overlapping MPI-IO operations, the results of the
overlapped regions shall contain data from only
one of the MPI processes that participates in the
I/O operations. Since each MPI-IO operation can
cross multiple non-contiguous file regions, the
overlaps can also contain non-contiguous regions.
Traditional approach uses file locking to ensure
the exclusive access to the conflicted accesses,
which can easily serialize the I/O parallelism. We
have designed scalable approaches to avoid the
serialization by having processes negotiate with
each other for overlapped access. The performance
results demonstrated higher scalability obtained on
multiple high-performance computers.

File locking is also used on the platforms where
client-side file caching is performed to fulfill the
requirement by the MPI file consistency

Four requests for each I/O server
one request for each server

Figure 1 Comparison of data flow between the
traditional I/O design and the PVFS list-IO design.
The number of I/O requests to the I/O servers is
reduced to one for each server through PVFS library.

Figure 2 FLASH I/O results that compare between
traditional multiple I/O and list I/O strategies. The
performance of list I/O is approximately two orders
of magnitude improved from the multiple I/O.

 2

649 16 25 36 49 64 49369 16 25

MPI-IO cachingMPI-IO caching no MPI-IO caching
BTIO Class B

Number of nodes

 0
 200
 400

 800
 1000

I/O
 b

an
dw

id
th

 in
 M

B
/s

 600

4

BTIO Class A

 0
 200
 400
 600
 800

 1000

Number of nodes

I/O
 b

an
dw

id
th

 in
 M

B
/s

4

no MPI-IO caching

1616 64

no MPI-IO caching
MPI-IO caching MPI-IO caching

no MPI-IO caching

328 8 32

FLASH I/O: 16 x 16 x 16 sub-arrays

I/O
 b

an
dw

id
th

 in
 M

B
/s

4 4
Number of nodes

 0
 200
 400
 600
 800

 1000 FLASH I/O: 8 x 8 x 8 sub-arrays

Number of nodes

I/O
 b

an
dw

id
th

 in
 M

B
/s

 200

 150

 100

 50

 0

Figure 3. BTIO benchmark performance results for
MPI-IO caching.

Figure 4. FLASH I/O benchmark performance results
for MPI-IO caching.

semantics. Incoherent cache occurs when multiple
copies of the same data are stored at different
clients and a change to one copy does not
propagate to others in time, leaving the cached
data in an incoherent state. Since MPI semantics
requires a write from one process to be
immediately visible to all the processes that open
the file, we propose a scalable approach, called
Persistent File Domain (PFD), which reuses the
file access information from the preceding MPI-IO
operations to guide the subsequent I/O to the
processes that hold the most up-to-date cache. Its
implementation has been embedded into ROMIO
and scalable performance results were obtained for
several I/O benchmarks. The publications resulted
from this work include [7,8].

Client-side File Caching in MPI-IO

We developed a file caching sub-system at MPI
library level in order to gain more control on data
caching. The motivation came from the inadequate
adoption by the parallel file systems from the
traditional strategies that treat each client
independently when performing client-side
caching. Our strategy is to cooperate application
processes to perform caching and coherence
control without involving I/O servers. Leaving the
I/O servers from coherence control would
dramatically reduce the communication overhead
and I/O burden at the servers. The techniques
involved in this task include the management of
distributed cache metadata, locks, local and global
coherence control, and caching policies within the
group of clients. We designed two approaches.
The first is to create a POSIX thread at each I/O
aggregator and lets the threads handle caching and
all I/O operations at the background. The second
approach is to utilize MPI remote-memory-access

functions for coherence control. Since not all
existing parallel machines support multi-threading
and MPI RMA, we exercise the cooperated
caching through these two methods and obtained a
certain degree of performance improvement.
Figures 3 and 4 give the results for BTIO
benchmarking and FLASH I/O. Comparing to the
runs relying on traditional file caching system, we
obtained a great performance enhancement. The
publications resulted from this work include
[9,10,11,12,13,14,15].

Parallel NetCDF

NetCDF is a high level API widely used in the
climate and fusion areas. The netCDF API is
designed for serial codes to perform file I/O
through a single processor as shown in Figure
5(a). Its interface does not define parallel access
semantics and the implementation underneath does
not support parallel I/O. We designed a new set of
parallel APIs for accessing netCDF data sets and
implement them using optimal I/O strategies such
that I/O can be concurrently performed. Our new
parallel API closely mimics the original API, but
is designed with scalability in mind and is
implemented on top of MPI-IO. The design
infrastructure of this work is illustrated in Figure
5(b).

In our implementation, the access pattern of an I/O
request is represented in an MPI file view
constructed from the API arguments. Similar to
MPI-IO, both collective and independent I/O calls
are provided to users such that proper calls can be
determined for application specific I/O requests.
File access hint object is also added to the new
API argument list and, in our parallel netCDF
implementation, it is passed down to MPI-IO in

 3

Y

X
Z

ZYX partition YX partition

ZY partitionY partitionZ partition X partition

ZX partition
process 7
process 6
process 5
process 4

process 1
process 2
process 3

process 0

B
an

dw
id

th
 (

M
B

/s
ec

) Write 64 MB

Number of processors

YX
ZYX

Z X ZYX
YX

(b) Concurrent file access(a) Sequential file access

P3

Parallel File System

P2P1 P0 P3 P2 P1 P0

netCDF Parallel netCDF

Parallel File System

MPI-IO

Number of processors

B
an

dw
id

th
 (

M
B

/s
ec

) Read 64 MB

Z

case certain I/O optimization and characteristics
are available for a specific file system. Figure 6
gives the results for I/O that uses regular array
partitioning patterns and pnetCDF clearly can
provide a scalable performance. Since the parallel
netCDF is built on top of MPI-IO and only MPI
standard feature are used in its implementation, it
is clear that the new APIs are portable. The
publication on this work includes [11] and the
software package of version 1.0.1 has been
released to the public.

We have completed the following
implementations. MPI derived data type support
for flexible API that allows applications to
describe flexible buffer memory layout. Mapped
strided sub-array access functions are incorporated
into the library. Fortran binding has been built and
tested successfully. Test package includes flexible
parallel APIs, collective var/vara/vars/varm
functions and subarray/darray/vector MPI derived
data types. PnetCDF is successfully installed in
many TeraGrid parallel computers. It is supported
across multiple MPI implementations, include
MPICH, IBM MPI, MAVPICH and others. Figure
7 shows the performance of the I/O kernel of the
astrophysics FLASH application. We compare the
pnetCDF and HDF5 methods.

Future Plans

Distributed File Locking for PVFS

Many parallel scientific applications use high-
level I/O APIs that offer atomic I/O capabilities.
Atomic I/O in current parallel file systems is often
slow when multiple processes simultaneously
access interleaved, shared files. Current atomic I/O
solutions are not optimized for handling
noncontiguous access patterns because current
locking systems have a fixed file system block-
based granularity and do not leverage high-level
access pattern information. We plan to develop a
new lock protocol that takes advantage of new list
and datatype byte-range lock description
techniques to enable high performance atomic I/O
operations for these challenging access patterns.

MPI-IO Caching

We plan to extend the MPI-IO caching work on
the machines with intermediate I/O nodes between
clients and I/O servers. We would like to

Figure 5. When using netCDF APIs, parallel I/O
requires the root process perform the access to the
file system for other processes. On the other hand,
the parallel netCDF APIs that is built on top of MPI-
IO can perform the writes concurrently and portably
across different platforms. ZX

YX
ZX

ZY Y

X Z
Y ZY ZX

Write 1 GB

Number of processors

B
an

dw
id

th
 (

M
B

/s
ec

)

B
an

dw
id

th
 (

M
B

/s
ec

)
Number of processors

Read 1 GB

X ZYX

ZYX

ZY

ZY
X ZX

Y

YX

Z
Y

200

0 4

50

100

150

32168

250

300

1 2 2

2 4 8 161

0
50

100
150
200
250

1 321684

200

168421

700
600
500
400
300
200
100

0 0
50

100
150

Figure 6. Performance results of parallel netCDF
using a test suite that performs various block pattern
accesses to a 3D array on the IBM SP at SDSC.

 4

16 8 64

Ti
m

e
in

 se
co

nd
s

Number of processors

HDF5 checkpoint
Parallel netCDF checkpoint

Parallel netCDF plotfile (corners)
HDF5 plotfile (corners)

0
0.5

1
1.5

2
2.5

4

3
3.5
4.5

5
5.5

6

investigate the idea of cooperated caching on
dedicate compute resource that run concurrently
with I/O clients and servers.

Parallel NetCDF

We plan to support large file size and large array
size. Currently netCDF file format and
implementation uses 32-bit integers that limits the
size of a file or array to 4GB. The large-size
support will include an extended file format,
adopting 64-bit integers throughout the
implementation, and changes of using MPI-IO
functions that support 64-bit integers. This
software package continues to mature as
application groups work with the software. We
have checked the software into a revision control
system and created a web page (via MCS at ANL)
in order to provide the community with easy
access to the software and to aid in debugging.

Personnel for Northwestern University
• Professor Alok Choudhary (PI)

• Professor Wei-keng Liao (Co-PI)

• Ph.D. students

o Jianwei Li, graduated in 2006

o Avery Ching, graduated in 2007

o Kenin Coloma, graduated in 2007

Software
i. Parallel Virtual File System

http://www.pvfs.org/

ii. ROMIO MPI-IO Implementation

http://www.mcs.anl.gov/romio

iii. Parallel NetCDF

http://www.mcs.anl.gov/parallel-netcdf

Publications
Figure 7. The I/O performance results of the FLASH
astrophysics application using HDF5 and parallel
netCDF. Two types of I/O are shown in FLASH:
plotfile and checkpoint.

1. A. Ching, A. Choudhary, W. Liao, R. Ross, and W.
Gropp, “Noncontiguous I/O through PVFS,” in the
Proceedings of Cluster 2002, September 2002.

2. A. Ching, A. Choudhary, K. Coloma, W. Liao, R.
Ross, and W. Gropp, “Noncontiguous I/O Accesses
Through MPI-IO,” in the Proceedings of the
CCGrid2003, May 2003.

3. A. Ching, A. Choudhary, W. Liao, R. Ross, and W.
Gropp, "Efficient Structured Access in Parallel File
Systems," in the Proceedings of the 2003 IEEE
International Conference on Cluster Computing,
December 2003.

4. A. Ching, A. Choudhary, W. Liao, R. Ross, and
W. Gropp. “Efficient Structured Data Access in
Parallel File Systems, in the International Journal
of High Performance Computing and Networking,
issue 3, 2004.

5. A. Ching, W. Feng, H. Lin, X. Ma, and A.
Choudhary. Exploring I/O strategies for parallel
sequence database search tools with S3aSim. In
Proceedings of the International Symposium on
High Performance Distributed Computing, 2006.

6. A. Ching, A. Choudhary, W. Liao, L. Ward, and N.
Pundit. Evaluating I/O characteristics and methods
for storing structured scientific data. In
Proceedings of the International Parallel and
Distributed Processing Symposium, 2006.

7. W. Liao, A. Choudhary, K. Coloma, G.
Thiruvathukal, L. Ward, E. Russell, and N. Pundit.
Scalable Implementations of MPI Atomicity for
Concurrent Overlapping I/O. In the Proceedings of
the International Conference on Parallel
Processing, 2003.

8. W. Liao, K. Coloma, A. Choudhary, L. Ward, E.
Russell, and N. Pundit. Scalable Design and
Implementations for MPI Parallel Overlapping I/O.

 5

http://www.pvfs.org/
http://www.mcs.anl.gov/romio
http://www.mcs.anl.gov/parallel-netcdf

In the IEEE Transactions on Parallel and
Distributed System, Volume 17, Number 11, pp.
1264-1276, November 2006.

9. W. Liao, K. Coloma, A. Choudhary, and L. Ward.
Cooperative Write-Behind Data Buffering for MPI
I/O. In Proceedings of the 12th European Parallel
Virtual Machine and Message Passing Interface
Conference, September 2005.

10. W. Liao, K. Coloma, A. Choudhary, L. Ward, E.
Russel, and S. Tideman. Collective Caching:
Application-Aware Client-Side File Caching. In
Proceedings of the 14th International Symposium
on High Performance Distributed Computing, July
2005.

11. K. Coloma, A. Choudhary, W Liao, L. Ward, and
S. Tideman. DAChe: Direct Access Cache System
for Parallel I/O. In Proceedings of the 20th
International Supercomputer Conference (ISC),
June 2005.

12. W. Liao, A. Ching, K. Coloma, A. Choudhary, and
L. Ward. Implementation and evaluation of client-
side file caching for MPI-IO. In Proceedings of the
International Parallel and Distributed Processing
Symposium, March 2007.

13. W. Liao, A. Ching, K. Coloma, A. Choudhary, and
M. Kandemir. Improving MPI Independent Write
Performance Using A Two-Stage Write-Behind
Buffering Method. In the Proceedings of the Next
Generation Software (NGS) Workshop, held in
conjunction with the 21st International Parallel
and Distributed Processing Symposium, March
2007.

14. Avery Ching, R. Ross, W. Liao, L. Ward, and A.
Choudhary. Noncontiguous locking techniques for
parallel file systems. In Proceedings of
Supercomputing, November 2007.

15. W. Liao, A. Ching, K. Coloma, A. Choudhary, J,
Chen, R. Sankaran,, and S. Klasky. Using MPI file
caching to improve parallel write performance for
large-scale scientific applications. In Proceedings
of Supercomputing, November 2007.

16. J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale. “Parallel netCDF: A Scientific High-
Performance I/O Interface,” in the Proceedings of
Supercomputing Conference, November 2003.

17. Y. Liu, J. Pisharath, W. Liao, G. Memik, A.
Choudhary, and P. Dubey. Performance Evaluation
and Characterization of Scalable Data Mining
Algorithms. In Proceedings of the 16th
International Conference on Parallel and
Distributed Computing and Systems, November
2004.

18. K. Coloma, A. Choudhary, A. Ching, W. Liao, S.
Son, M. Kandemir, and L. Ward. Power and
Performance in I/O for Scientific Applications. In
Proceedings of the Next Generation Software
Workshop (NGS), held in conjunction with the 21st
International Parallel and Distributed Processing
Symposium, April 2005.

19. Y. Liu, W. Liao, and A. Choudhary. A Two-Phase
Algorithm for Fast Discovery of High Utility
Itemsets. In Proceedings of the 9th Pacific-Asia
Conference on Knowledge Discovery and Data
Minin,, May 2005.

20. J. Pisharath, W. Liao, and A. Choudhary. Design
and Evaluation of Database Layouts for MEMS-
Based Storage Systems. In Proceedings of the
International Database Engineering and
Applications Symposium, July 2005.

21. Y. Liu, W. Liao, and A. Choudhary. A Fast High
Utility Itemsets Mining Algorithm. In the
Proceedings of the Workshop on Utility-Based
Data Mining, held in conjunction with the 11th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August
2005..

22. J. Li, A. Choudhary, N. Jiang, and W. Liao. Mining
Frequent Patterns by Differential Refinement of
Clustered Bitmaps. In Proceedings of the SIAM
International Conference on Data Mining, April
2006.

 6

	Final Report
	Summary
	
	Introduction
	PVFS Data Types for Non-contiguous Access
	Scalable Implementations for MPI File Atomicity and Data Consistency
	Client-side File Caching in MPI-IO
	Parallel NetCDF

	Future Plans
	Distributed File Locking for PVFS
	MPI-IO Caching
	Parallel NetCDF

	Personnel for Northwestern University
	Software
	Publications

