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1. Research Summary and Activities 
Overall, the goal in this project is to develop and investigate novel methods to increase the 
performance of networking hardware. A particular method that is proposed is trading-off 
correctness for increased performance. In other words, the project investigates how the 
performance of networking hardware can be improved if it is known that the network can 
tolerate a larger number of errors. The research in this project is divided into four major tasks: 
understanding/quantifying application errors, development and analysis of fault throttling 
techniques (i.e., tools for error vs. performance trade-off), the engineering of hardware that is 
built with such trade-off mechanisms (i.e., clumsy packet processors), and understanding the 
effects performance/reliability trade-offs on users.  

In addition to this particular approach, the project included the development of other novel 
optimizations techniques to improve performance of networking hardware. First, we have 
worked on the design of customized architectures for various purposes. For example, we have 
developed hardware modules for feature extraction. The module we have developed can 
summarize network traffic information at speeds exceeding 30 Gbps. We have also developed a 
hardware anomaly-detection system utilizing the Principal Component Analysis. In addition, we 
have developed an all-digital software-defined radio. Second, we have developed techniques to 
improve the overall system performance by optimizing the network processing tasks on the host. 
Finally, we have worked on techniques to automatically configure networking applications to 
improve the efficiency of routing. Our detailed findings in these topics are described in Section 
3.  

2. Outcomes  
This project resulted in 1 PhD student graduated and supported two more (who are expected to 
graduate in the following year). The following papers related to the project have appeared in 
conferences and journals:  
• “Learning and Leveraging the Relationship between Architecture-Level Measurements and 

Individual User Satisfaction”, A. Shye, B. Ozisikyilmaz, A. Mallik, G. Memik, P. Dinda, R. 
Dick, A. Choudhary, in Proc. of International Symposium on Computer Architecture (ISCA), 
Beijing, China, June 2008  

• “Energy Detection using Estimated Noise Variance for Spectrum Sensing in Cognitive Radio 
Networks”, Z. Ye, G. Memik, J. Grosspietsch, in Proc. of IEEE Wireless Communications 
and Networking Conference (WCNC), Las Vegas, NV, March/April 2008 

• “An Efficient FPGA Implementation of Principle Component Analysis based Network 
Intrusion Detection System”, A. Das, S. Misra, J. Zambreno, G. Memik, A. Choudhary, in 
Proc. of Design, Automation and Test in Europe (DATE), Munich, Germany, Mar. 2008 

• “An FPGA-based Network Intrusion Detection Architecture”, David Nguyen, Abhishek Das, 
Joseph Zambreno, Gokhan Memik, Alok Choudhary, IEEE Transactions on Information 
Forensics and Security (TIFS), Volume 3, Issue 1, Mar. 2008 

• “Automated Task Distribution in Multicore Network Processors using Statistical Analysis”, 
A. Mallik, Y. Zhang, G. Memik, in Proc. of ACM/IEEE Symposium on Architectures for 
Networking and Communications Systems (ANCS), Orlando, FL, Dec. 2007 

• “Design and Implementation of an FPGA Architecture for High-Speed Network Feature 
Extraction”, S. Pati, R. Narayanan, G. Memik, A. Choudhary, J. Zambreno, in Proc. of 



International Conference on Field-Programmable Technology (FPT), Kitakyushu, Japan, 
Dec. 2007 

• “Spectrum Sensing Using Cyclostationary Spectrum Density for Cognitive Radios”, Z. Ye, J. 
Grosspietsch, G. Memik, in Proc. of 26th IEEE Workshop on Signal Processing Systems 
(SiPS), Shanghai, China, Oct. 2007  

• “Reversible Sketches: Enabling Monitoring and Analysis over High-speed Data Streams”, R. 
Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, E. Parasons, Y. Zhang, P. Dinda, M. Kao, G. 
Memik, accepted by IEEE/ACM Transactions on Networking, Volume 15, no. 5, October 
2007 

• “Digital Modulation Classification Using Temporal Waveform Features for Cognitive 
Radios”, Z. Ye, G. Memik, J. Grosspietsch, in Proc. of 18th Annual IEEE International 
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, 
Greece, Sep. 2007 

• “An FPGA Based All Digital Transmitter with Radio Frequency Output for Software 
Defined Radio”, Z. Ye, G. Memik, J. Grosspietsch, in Proc. of Design, Automation, and Test 
in Europe (DATE), Nice, France, April 2007 

• “User-Driven Frequency Scaling”, Arindam Mallik, Bin Lin, Gokhan Memik, Peter Dinda, 
Robert Dick, IEEE Computer Architecture Letters, Volume 5, no. 2, 2006 

• “The User In Experimental Computer Systems Research”, P. Dinda, G. Memik, R. Dick, B. 
Lin, A. Mallik, A. Gupta, and S. Rossoff, to appear at Workshop on Experimental Computer 
Science (Part of FCRC), San Diego, CA, June 2007 

• “A Reconfigurable Architecture for Network Intrusion Detection Using Principal Component 
Analysis”, D. Nguyen, A. Das, G. Memik, A. Choudhary, In Proc. of IEEE Symposium on 
Field-Programmable Custom Computing Machines (FCCM), Napa, California, April 2006 

• “Reverse Hashing for High-speed Network Monitoring: Algorithms, Evaluation, and 
Applications”, R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, E. Parsons, Y. Zhang, P. 
Dinda, M. Kao, G. Memik, in Proc. of 25th Annual Joint Conference of the IEEE Computer 
and Communications Societies (INFOCOM), Barcelona, Spain, Apr. 2006 

• “A Reconfigurable Architecture for Network Intrusion Detection using Principal Component 
Analysis”, D. Nguyen, G. Memik, A. Choudhary, in Proc. of Fourteenth ACM/SIGDA 
International Symposium on Field-Programmable Gate Arrays (FPGA), Monterey, CA, Feb. 
2006 

3. Details of Discoveries  
The details of the discoveries we have made for the topics described in Section 1 are listed in the 
following sections.  
3.1 Dedicated Networking Hardware Designs 
Our work in this topic focused on two areas: design of networking hardware for security and 
design of a digital software-defined radio architecture. 
3.1.1 Design of a Hardware-Based Security System 
The first step in the anomaly detection was to design a feature extraction module. The goal of 
feature extraction is to create associations between a series of events or data (e.g. streaming 
image or video, or network packets) and properties or behavior that is representative in that data 
set. Specifically, each data element possesses a multi-dimensional set of properties and features 



can be associated with different subsets and combinations of these properties. Our goal is to 
design fast and efficient hardware architectures that accomplish this task. We utilized the idea of 
sketches as a basis. Sketches are data structures, which are used in data stream modeling for 
summarizing large amounts of information requiring a small, constant amount of memory. They 
are a probabilistic summary technique for analyzing large streams without keeping per-flow state 
that make vector projections onto other sketches to infer additional information. Three basic 
components form our FEM architecture: Feature Controller (FC), Feature Sketch (FS), and Data 
Aggregate (DA). A generic view of this architecture is shown in Figure 1. The FEM architecture 
uses multiple hash functions in parallel to achieve high accuracy. This parallel access is 
particularly suitable for acceleration using hardware implementation. The feature controller (FC) 
coordinates the inputs to the hash functions, which are read from the atoms. For instance, a 
feature sketch monitoring traffic data in the highway network of a city could use number of cars 
passing through control points and their direction . The feature sketch (FS) is an application of 
sketches used for data stream modeling. Essentially, it is a memory block accessed by passing 
the input properties through different hash functions. An FS contains H rows each of length K. 
Finally, the data aggregate (DA) component takes H values and estimates the actual value for a 
query. There are two main functions supported by the FEM: UPDATE (k, v) to change the value 
in the sketch and ESTIMATE (k) to correctly retrieve a value from the sketch. Using statistical 
estimation techniques, we can show that ESTIMATE queries to the FS are accurate. Particularly, 
our preliminary implementation on a implemented using a Xilinx Virtex-II Pro chip reveal that 
the FEM architecture with H = 4 and K = 4096 achieves approximately 98% accuracy and 20.8 
Gbps throughput for a 6-dimensional input set derived from network packet traces. In addition, 
the throughput can be increased to approximately 30 Gbps for H = 8 and K = 1024, which 
achieves 91% accuracy. In general, by simply modifying the H and K values, the trade-off 
between accuracy and speed can be controlled. 

 
Figure 1. Feature Extraction Module  

The feature extraction is followed by preprocessing, where features identified by the first module 
will be examined in closer detail and some filtering will be performed. This stage transforms the 
data into a more appropriate format for subsequent analysis. In addition, it increases the 
efficiency of the analysis stage. For example, by pruning out dimensions that are not important, a 
principal component analysis (PCA) technique can reduce the occurrence of false alarms, i.e., 
cases where the system reports change when there is none or vice versa. Some of the key 
components in this area are aggregation, dimensionality reduction, feature selection, and variable 
transformation. 
Principal Components Analysis (PCA) is a widely used data analysis technique that is useful for 
reducing the dimensionality of the data and generating a new set of uncorrelated variables that 
are linear combinations of the original variables. PCA is based on the eigenvalue decomposition 
of the data covariance matrix and is of interest because typically most of the variation in the data 
can be captured by projecting the data onto the space defined by the relatively small set of 



eigenvectors with the largest eigenvalues. This allows the use of techniques that cannot be used 
for high dimensional data, and also reduces data set size and computational requirements 
considerably. As an additional benefit, PCA often reduces the amount of noise in the data. We 
propose to develop a hardware module to perform fast PCA. The preliminary design is depicted 
in Figure 2. This module reads p-dimensional atomic of feature information as well as the 
eigenvalues and the eigenvectors that are generated offline. Then, it performs the “outlier 
detection” analysis (parC in Figure 2), where for each input, a principal component score (PCS) 
is calculated. PCS aims to capture the distance of a point from the averages of the input set. 
Then, if the PCS is above a threshold, a change alarm is raised. We have implemented this 
preliminary design using Xilinx XC2VP100 device from the Virtex-II Pro family. For a 28-
dimensional data (each field is 32-bits) and a major component selection of 6, our design was 
clocked at 75.83 MHz, achieving a throughput of 19.41 Gbps. 

 
Figure 2. Overview of the PCA implementation  

3.1.2 Software-Defined Radio  
We have worked on hardware implementation of a software-defined radio. Specifically, we have 
developed an all-digital software-defined radio architecture. Although there are several SDR 
implementations available, they still require significant amount of analog components. We 
tackled this problem and showed the feasibility of an all-digital transmitter. A high-level 
overview of this transmitter is illustrated in Figure 3. Almost all the transmitter’s functionalities 
can be incorporated in the digital signal processing engine using Field-Programmable Gate 
Arrays (FPGAs) except the RF power amplification and simple filtering. As technology 
advances, for an ideal SDR, the digitization might be at, or very close to the antenna, such that 
almost all the radio communication functionalities can be realized using software based on high 
speed and reprogrammable digital signal processing engine. The advantages of all-digital 
transmitters are: potential high efficiency power amplification, the capabilities of digitally 
combining signals from multiple channels, and software programmability. 
The generation of digital RF signals has drawn a lot of interest among researchers and engineers. 
However, prior to our work, only simulation results or non real-time test results have been 
presented in literature. In these works, the digital RF signals were computed offline and stored in 
pattern generator for the purpose of measurement. On the other hand, our work has presented the 
architecture and implementation of a real-time system that demonstrates the feasibility of digital 
generation of RF signals. 



The entire all-digital transmitter architecture is shown in Figure 4. For brevity, only the 
functional blocks for inphase path are shown in detail. For the implementation, we have chosen 
Xilinx’s Virtex2pro family: XC2VPX20-FF896, speed grade -7. On chip multi-gigabit 
transceiver (MGT) is used as the high speed parallel to serial converter. In the 20 MHz passband, 
the measured ACLR is 45 dB, which can meet the requirement for WCDMA. The noise shaping 
effects can clearly be seen from the spectrum plot where the noise rises outside the RF signal 
bandwidth. The EVM is measured to be less than 1%. 
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Figure 3. All-digital transmitter architecture 
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Figure 4. All-digital transmitter architecture implemented on FPGA 

3.2 Correctness Trade-Offs for Improving Performance  
Our work in this topic focused on two aspects. First, we studied fault throttling techniques and 
developed models for them. Second, we analyzed clumsy packet processors.  
3.2.1 Fault Throttling Techniques and Models  
The first stage is to investigate techniques that are available to a designer for controlling the fault 
behavior of a processor or processor component. There is already a set of techniques in the 
literature that varies the “reliability” of a component. For example, reducing the supply voltage 
(i.e., voltage scaling) of a component increases its delay and thereby increases the probability 
that the timing constraint will not be met (i.e., a hardware fault will occur). In the future, we will 
analyze these tools and investigate their applicability in clumsy execution. For example, in our 
previous work, we have analyzed the applicability of overclocking for clumsy execution.  



3.2.2 Clumsy Packet Processors  
The main approach in clumsy packet processors is to push the architecture properties (i.e., fault 
throttling) to a point where the processor components start making mistakes. Doing this increases 
the performance and/or reduces the energy consumption according to the particular fault 
throttling technique. In network processors, many applications are known to be immune to errors 
in higher levels. However, we still need to investigate clumsy packet processors for different 
applications and be able to compare different configurations. Therefore, we worked on a) 
quantify the importance of an application error, b) define metrics for comparing two outputs, and 
c) measure the change in the output of an application when the fault behavior of a component is 
changed.  
3.3 Understanding User Behavior under Changing Performance Metrics  
Once we have established the feasibility of clumsy processors, we have started investigating how 
users would react to the changes that result from clumsy execution. Particularly, we have worked 
on the analysis of user tolerance towards performance trade-offs. We have concentrated on 
developing user-feedback methodologies that can be implemented in different operating systems. 
The main idea in this work is named User-Driven Frequency Scaling (UDFS), which uses direct 
user feedback to drive an online control algorithm that determines the performance of a target 
system. Particularly, our goal in this work is to develop a tool that would interact with the user 
and change the target system performance according to the feedback it receives. We have first 
targeted a processor that is used in a laptop. However, our findings can easily be applied to a 
number of different processing elements. The main problem in this approach is to find a good 
operating condition. 

Our goal is to change the performance visible to the user. To achieve this, we have manipulated 
the Dynamic Voltage and Frequency Scaling (DVFS) techniques. DVFS is one of the most 
commonly used power reduction techniques in high-performance processors. DVFS varies the 
frequency and voltage of a microprocessor in real-time according to processing needs. Although 
there are different versions of DVFS, at its core DVFS adapts power consumption and 
performance to the current workload of the CPU. Specifically, existing DVFS techniques in 
high-performance processors select an operating point (CPU frequency and voltage) based on the 
utilization of the processor. This approach integrates OS-level control, but such control is 
pessimistic.  

User-Driven Frequency Scaling (UDFS) uses direct user feedback to drive an online control 
algorithm that determines the processor frequency. Processor frequency has strong effects on 
power consumption and temperature, both directly and also indirectly through the need for 
higher voltages at higher frequencies. The choice of frequency is directly visible to the end-user 
as it determines the performance he sees. There is considerable variation among users with 
respect to the satisfactory performance level for a given workload mix. We exploit this variation 
to customize frequency control policies dynamically to the user. In UDFS, the user presses a 
button when discomforted by the performance of the machine. These input events drive the 
UDFS algorithm that sets processor frequency. Our approach employs direct feedback from the 
user during ordinary use of the machine. We implemented UDFS as Microsoft Windows client 
software that appears as a taskbar task. The F11 key serves as the user discomfort button. We 
developed two algorithms to control the frequency based on these events. The first one (UDFS1) 
is loosely related to TCP congestion algorithm, the frequency of the processor corresponding to 
bandwidth and the user input corresponding to packet losses. The second algorithm (UDFS2), on 



the other hand, assumes that the pressing of a button means that the user wants the processor 
remain at the level and adjusts itself to remain at that level for a longer time.  

Figure 5. Power Measurement Framework  

The UDFS algorithm dramatically reduced typical operating frequencies and voltages while 
maintaining performance at a satisfactory level for each user. The techniques were evaluated 
through user studies conducted on a Pentium M laptop running Windows applications. The 
studies include both single task and multitasking scenarios. The overall system power and 
temperature reduction achieved by our methods were measured in real time and the framework is 
pictured in Figure 5. UDFS reduces the overall power consumption by 22.1%, averaged across 
all users and applications, compared to the Windows XP DVFS scheme. The average 
temperature of the CPU is decreased by 13.2◦C. Using user trace-driven simulation to evaluate 
the CPU only, average CPU dynamic power savings was 24.9% UDFS, with a maximum of 
reduction 83.4%. These results suggest that there is strong variation in user performance 
expectation.  
3.4 Mitigating System Level Bottlenecks - Investigating the Effects of Packet Losses  
Finally, we worked on analyzing system level bottlenecks. Packet losses constitute an important 
problem for communication networks. For unreliable protocols such as UDP, they can degrade 
the performance of the applications. Some network transport protocols such as TCP provide 
reliable delivery of packets. In the event of a packet loss, the receiver asks for retransmission or 
the sender automatically resends any packets that have not been acknowledged. Although TCP 
can recover from a packet loss, retransmitting missing packets causes more interrupts raised at 
the host. Since our proposed architecture increases the rate of packet losses, we have to first 
analyze the effects of packet losses on the end systems. To achieve this, we have conducted a 
series of experiments. Figure 6 shows the simulation results for Maerts, a microbenchmark of 
Netperf. The figure presents the average number of interrupts per received packet. The results 
clearly reveal that even a small change in packet loss rate can cause a significant increase in the 
average interrupts on the end node: if the packet loss rate is increased to 1%, the average number 
of interrupts for each received packet goes up by 97.5%. In addition, if the packet loss rate 



reaches 5%, the increase in the number of interrupts reaches 275.3%. To be able to understand 
the impact of execution time on the CPU, we have analyzed the distribution of execution time 
during our simulations described above. Specifically, we measure the total time spent for 
handling the interrupts. As shown in Figure 7, the processing time of interrupts can increase by 
more than 62.3% as the packet loss rate increases from 0% to 1% and by more than 180% when 
the loss rate increases to 5%. In any networked application, interrupt handling constitutes a large 
fraction of the overall execution time. Hence, this change in the interrupt handling time has an 
important impact on the overall execution time of the applications. 

There are several reasons for such a drastic change in the number of interrupts. The most 
important one is the inefficiently handling of the packets on the end nodes. Therefore, we have 
developed an approach that can be readily applied at Network Interface Cards (NICs) to mitigate 
the effects of packet losses. Our Delayed Processing approach employs a buffer in the NIC to 
delay the packets transmitted within the Round-Trip Time (RTT) when a packet is lost. Our goal 
is to minimize interrupts when a packet loss occurs. We achieve this by masking the packet loss 
information from the kernel whenever possible. In other words, the kernel will not be aware that 
the arriving packet is out-of-sequence. As a result, no interrupt will be raised when there is a 
packet missing, hence no special processing will be performed due to the lost packet. By 
delaying the processing of received packets, the execution on the host will not be interrupted; 
hence the time spent on interrupt handling is minimized.  

 

 

 

 

 

 
Figure 8. Change in the packet handling process on the end-nodes  

Figure 8 shows our modification on the NIC of the receive host. When an out-of-sequence packet 
arrives, we do not put it into the ring buffer but into a delay buffer, which is a First in First out 
(FIFO) buffer in the NIC of the receiver side. In this figure, we do not provide the whole view of 
the process, since the following steps after the ring buffer remain the same as the conventional 
implementation. 

The results show that using our proposed scheme, the number of interrupts can be reduced by up 
to 40% when packet losses take place. In addition, we also observe that, generally a very small 
buffer is necessary to achieve the maximum benefits. For example, on a 200 ms latency link, a 
buffer size of 11 MTU is large enough to achieve the maximum benefits. We have observed 
similar results after varying the link latency. In other words, the latency does not have a 
significant impact on the overall buffer requirement. In conclusion, the results suggest that the 
delayed packet processing can ameliorate interrupt overhead of TCP/IP workloads remarkably.  

4. Personnel  
The project throughout its span supported three graduate students: Arindam Mallik (graduated), 
Yu Zhang, and Pan Yan. Arindam Mallik participated in this project since its inception in August 
2005. He received his PhD degree in June 2008. His work included the fault tolerance analysis 



for clumsy processors and code optimizations for networking applications. Yu Zhang received 
her BS degree from the Electrical Engineering Department of Tsinghua University, which is 
considered to be the top engineering school in China. Before joining our department in the 
Spring 2006, she has been a member of the Laboratory on Optical Networks at the Tsinghua 
University. Yu has worked on the system level studies. Pan Yan joined the project in the Fall 
2007 quarter. Pan Yan has a B.S. degree from Shanghai Jiatong University and an M.S. degree 
from National University of Singapore. He continues to work on understanding the effects of 
reliability and performance (i.e., effects of clumsy execution) on user satisfaction.  

5. DOE Collaborators  
The PI collaborated with Dr. Wenji Wu at Fermi National Accelerator Laboratory. The 
collaboration was in the topic of system optimizations for high-performance networking.  


